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• LP and SDP-relaxations for polynomial programming

• Application in mathematical finance ; option pricing
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Polynomial programming

P : f∗ = min{ f(x) | x ∈ K},

with K ⊂ Rn being the semi-algebraic set

K = {x ∈ Rn | gj(x) ≥ 0, j = 1, . . . ,m},

and {f, gj}mj=1 ⊂ R[x1, . . . , xn].

- very general formulation which encompasses a lot of standard

problems with many appplications. In particular, the set K can

be nonconvex, non-connected, discrete.
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Recent SDP-relaxations of P have been designed, extending ear-

lier work by Shor, and later Nesterov. See e.g. De Klerk, Kojima,

Lasserre, Laurent, Marshall, Parrilo, Schweighofer, ...

- Theory asserts asymptotic (and sometimes finite) convergence

to f∗

- Practice seems to reveal fast (and finite) convergence.

Matlab based solvers : GLOPTIPOLY (Henrion and Lasserre),

SOSTOOLS (Prajna, Papachristodoulou and Parrilo, ) use the

Sedumi SDP solver of J. Sturm.

4



LP-relaxations of Sherali-Adams, Lovász-Schrijver, Ceria-Balas-

Cornuejols have finite convergence for 0− 1 programs.

LP-relaxations of the Sherali-Adams type for polynomial pro-

gramming have been shown to also converge in the case K is a

polytope (Lasserre, Parrilo and Sturmfels).

In fact, using an old representation result by Krivine, one may

show that LP-relaxations also converge for general compact

semi-algebraic sets under a relatively weak assumption (Lasserre).

Question: how do LP and SDP-relaxation compare?
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BACKGROUND

Let 1, x1, . . . xn, x
2
1, . . . , x

r
n, . . . be a basis for the vector space P of

polynomials Rn→R. A polynomial f ∈ P is written

x 7→ f(x) =
∑
α∈Nn

fα x
α

with finitely many nonzero coefficients {fα} ⊂ R.

Let y = {yα}, α ∈ Nn, be an infinite sequence indexed in this

basis, and let Ly : P→R be the linear functional

f 7→ Ly(f) =
∑
α∈Nn

fα yα
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Theorem [Schmüdgen, Putinar, Jacobi, Prestel]

Assume there is a polynomial u : Rn→R such that

u = u0 +
m∑

k=1

gk uk,

for some polynomials {uk}mk=0, all sums of squares (s.o.s.), and
such that the level set {x | u(x) ≥ 0} is compact. Then:

Every polynomial p > 0 on K has the representation:

(∗) p = q0 +
m∑

k=1

gk qj

for some family of s.o.s. polynomials {qj}mj=0.

If one restricts the degree of the polynomials {qj}, then testing
(*) translates into LMIs on the coefficients of the qj’s
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Equivalent (dual) moment point of view

Let y = {yα} ⊂ R be an infinite sequence. Then y has a repre-

senting measure µ with support contained in K, that is,

∃ µ s.t. yα =
∫
K

xα dµ, ∀α ∈ Nn

if and only if

(∗∗) Ly(f2) ≥ 0; Ly(f2 gj) ≥ 0, ∀j = 1, . . . ,m,

for all polynomials f ∈ R[x1, . . . , xn]

If one restricts the degree of the polynomials f , then (**) trans-

lates into LMIs on y
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SDP-relaxations

Moment matrix Mr(y). With y = {yα}α∈Nn

Mr(y)(i,1) = yα and Mr(y)(1, j) = yβ ⇒ Mr(y)(i, j) = yα+β.

M2(y) =



1 | y1,0 y0,1 | y2,0 y1,1 y0,2
− − − − − − −

y1,0 | y2,0 y1,1 | y3,0 y2,1 y1,2
y0,1 | y1,1 y0,2 | y2,1 y1,2 y0,3

− − − − − − −
y2,0 | y3,0 y2,1 | y4,0 y3,1 y2,2
y1,1 | y2,1 y1,2 | y3,1 y2,2 y1,3
y0,2 | y1,2 y0,3 | y2,2 y1,3 y0,4


Mr(y) � 0 ⇔ Ly(f2) ≥ 0, ∀f,deg(f) ≤ r
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Localizing matrix.

Given a polynomial x 7→ θ(x) =
∑
α∈Nn θα xα, and y = {yα}α∈Nn,

let Mr(θ y) be the localizing matrix with respect to θ.

If Mr(y)(i, j) = yβ then Mr(θ y)(i, j) =
∑
α θα yβ+α.

For instance, with x 7→ θ(x) = 1− x2
1 − x

2
2,

M1(θ y) =

 1− y20 − y02, y10 − y30 − y12, y01 − y21 − y03
y10 − y30 − y12, y20 − y40 − y22, y11 − y21 − y12
y01 − y21 − y03, y11 − y21 − y12, y02 − y22 − y04

 .

Mr(θ y) � 0 ⇔ Ly(f2 θ) ≥ 0, ∀f,deg(f) ≤ r
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With f ∈ R[x], introduce the family {Qr} of SDP-relaxations

Qr



min
y

Ly(f)

Ly(h2) ≥ 0, ∀h,deg(h) ≤ r

Ly(h2 gj) ≥ 0 ∀h,deg(h2 gj) ≤ 2r
j = 1, . . . ,m.

and the family {Q∗r} of their dual

Q∗r



max
λ,q0,...,qm

λ

f − λ = q0 +
∑m
j=1 qj gj

qj s.o.s. deg(qj gj) ≤ 2r, ∀j = 0, . . . ,m
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Theorem : Assume there is a polynomial u : Rn→R such that

u = u0 +
m∑

k=1

gk uk,

for some polynomials {uk}mk=0, all sums of squares (s.o.s.), and
such that the level set {x | u(x) ≥ 0} is compact.

Then min Qr ↑ f∗ as r→∞.

In practice the convergence is fast and even finite.

If x∗ ∈ Rn is the unique global minimizer of P, convergence of
first-order moments {yα}|α|=1 to x∗ occurs (Schweighofer)

finite convergence eventually occurs for 0-1 (nonlinear) pro-
grams (and discrete optimization)
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LP relaxations : Background.

Assumption (generating): Let g0 ≡ 1. The polynomials {0, g0, . . . , gm}
generate the R-algebra R[x1, . . . , xn], that is, R[x1, . . . , xn] =
R[g1, . . . , gm].

Let 0 ≤ gj := maxx∈K gj(x) for all j = 1, . . . ,m, and let

ĝj =

{
gj/gj if gj > 0
gj otherwise

j = 1, . . . ,m

so that 0 ≤ gj ≤ 1 on K for all j = 0,1, . . . ,m.

- One may also take for gj any upper bound of gj on K;

- One may also introduce redundant constraints xk ≥ xk in the
definition of K to enforce the generating assumption.
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Upper bounds on gj or lower bounds on xk can be obtained

by running the SDP relaxations Qr with f := −gj, or f ≡ xk,

respectively.

Theorem : [Krivine, Becker and Schwartz, Marshall, Vasilescu]

Let the generating assumption hold. If f ∈ R[x1, . . . , xm] is posi-

tive on K then

(∗ ∗ ∗) f =
∑

α,β∈Nm

cαβ ĝ
α (1− ĝ)β,

for finitely many positive coefficients {cαβ}.

Testing (***) with |α+ β| ≤ r reduces to solving a LP.
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Equivalent (dual) moment point of view.

Let y = {yα} ⊂ R be an infinite sequence. Then y has a repre-

senting measure µ with support contained in K, that is,

∃ µ s.t. yα =
∫
K

xα dµ, ∀α ∈ Nn

if and only if

(∗ ∗ ∗∗) Ly(ĝα (1− ĝ)β) ≥ 0 ∀ α, β ∈ Nm.

→ Countably many linear inequalities on the vector y.....

If one restricts to |α+ β| ≤ r then (****) translates into finitely

many linear inequalities on y
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With f ∈ R[x], introduce the family {Lr} of LP-relaxations

Lr


min
y

Ly(f)

Ly(ĝα (1− ĝ)β) ≥ 0, |α+ β| ≤ 2r

and the family {L∗r} of their dual

L∗r



max
λ,{cαβ}

λ

f − λ =
∑

α,β∈Nm

cαβ ĝ
α (1− ĝ)β

cαβ ≥ 0, ∀ |α+ β| ≤ 2r
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Theorem : Assume that K is compact and R[x1, . . . , xn] =

R[g1, . . . , gm]. Then the LP-relaxations converge, that is,

max L∗r = min Lr ↑ f∗ as r→∞.
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Primal LP-relaxation L∗r Primal SDP-relaxation Q∗r

min
y

Ly(f)

Ly(ĝα (1− ĝ)β) ≥ 0

∀α, β, |α+ β| ≤ 2r

min
y

Ly(f)

Ly(h2gj) ≥ 0

∀h,deg(hgj) ≤ 2r, j ∈ {0, . . . ,m}

Dual LP-relaxation Lr Dual SDP-relaxation Qr

max
λ,{cαβ}

λ

f − λ =
∑

α,β∈Nm

cαβĝ
α(1− ĝ)β

|α+ β| ≤ 2r
cαβ ≥ 0 ∀α, β

max
λ,{qj}

λ

f − λ =
m∑
j=0

qj gj

deg(qj gj) ≤ 2r, j ∈ {0, . . . ,m}
qj s.o.s., j ∈ {0, . . . ,m}
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Some remarks ....

1. Notice the presence of binomial coefficients in both primal and

dual LP-relaxations ... which yields numericall ill-conditioning for

relatively large r.

2. Let x∗ ∈ K be a global minimizer, and for x ∈ K, let J(x) be

the set of active constraints ĝj(x) = 0 and ...1− ĝk(x) = 0.

Then FINITE convergence CANNOT occur

- (a) If there exists nonoptimal x ∈ K with J(x) ⊇ J(x∗),

- (b) or if
◦
K= {x ∈ Rn| gj(x) > 0, j = 1, . . . ,m} and x∗ ∈

◦
K

(whenever such
◦
K exists)
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3. If K is a Polytope then FINITE convergence is possible only
if every global minimizer is a vertex of K.

Hence if f is convex .. the LP-relaxations cannot be exact !!

Ex: min{x(x− 1)| 0 ≤ x ≤ 1} ⇒ x∗ = 0.5 and f∗ = −0.25.

f(x) + 0.25 = x2 − x+ 0.25 = (x− 0.5)2, x ∈ R,

and the SDP-relaxation Q1 is exact whereas one CANNOT write

f(x)− f∗ = f(x) + 0.25 =
∑
i,j∈N

cij x
i(1− x)j,

because

0 = f(x∗) + 0.25 =
∑
i,j∈N

cij 2−i−j > 0.



In addition, the convergence min Lr ↑ −0.25 is very slow...

λ2 = λ4 = −1/3; λ6 = −0.3; λ10 = −0.27, . . .

Consider now the concave minimization problem:

min {x(1 − x)| 0 ≤ x ≤ 1} ⇒, with f∗ = 0 and x∗ = 0 or x∗ = 1,

both vertices of K.

f(x)− f∗ = x (1− x), x ∈ R,

so that the LP-relaxation L1 is exact (the SDP-relaxation Q2 is

also exact).

Hence we have the paradox that the LP-relaxations behave much

better for the concave minmization problem than for the convex

one!!



Mathematical finance applications

Joint work with

- T. Prieto-Rumeau (Computinense, Madrid, Spain)

- M. Zervos (King’s College, London)
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Consider a multi-dimensional SDE:

dXt = b(Xt)dt+ σ(Xt)dWt, X0 = x0.

Generator of the process: A :D→D ⊂ C0(Rn).

A f(x) =
∑
i

bi(x)
∂f

∂xi
(x) +

∑
i,j

(σσ′)ij(x)
∂2f

∂xi∂xj
(x)

τ is a stopping time. In some examples τ = T .

We want to evaluate

J = E
[∫ τ

0
J0(Xt)dt+ J1(Xτ)

]
,

where J0 and J1 are (piecewise) polynomials.
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Define the expected occupation measure (before τ) as:

µ0(B) = E
[∫ τ

0
1{Xs∈B}ds

]
, for measurable sets B.

and the exit location probability measure (at τ) as:

µ1(B) = P (Xτ ∈ B), for measurable sets B.

Let {yk} and {zk} be the moments of µ0 and µ1:∫
xkµ0(dx) = yk, where xk = x

k1
1 x

k2
2 · · ·x

kn
n .

For every f ∈ D(A):

f(Xt)− f(x0)−
∫ t

0
(Af)(Xs)ds, t ≥ 0

is a martingale. If E[τ ] < +∞ then:

E[f(Xτ)]− f(x0)− E
[∫ τ

0
(Af)(Xs)ds

]
= 0.
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The moment approach

The martingale property yields the basic adjoint equation:

†
∫
f dµ1 − f(x0)−

∫
(Af) dµ0 = 0.

If f(x) ≡ xk then (Af)(x) =
∑
ci(k)xi and so, † yields

†† yk − xk0 −
∑
j

cj(k) zj = 0, k ∈ N.

The basic adjoint equation is �relaxed to:

(i) the martingale moment conditions ††

(ii) moment conditions on {yk} and {zk} to be moments of some
measures µ0, µ1,

for moments up to some order r
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If J0, J1 ∈ R[x] write J0 =
∑
kAk x

k and J1 =
∑
kDk x

k, to obtain

J = E
[∫ τ

0
J0(Xt)dt+ J1(Xτ)

]
,

or, equivalently,

J =
∑
k

Ak yk +Dk zk.

To obtain upper and lower bounds on J we solve the problems:

infy,z and supy,z
∑
k (Ak yk +Dk zk),

subject to: (i) martingale and (ii) moment conditions, for r

moments.
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Numerical comparison of LP and SDP-relaxations.

Accuracies of the LP and SDP-relaxations for the Cox-

Ingersoll-Ross interest rate model.

r 5 10 15 20 25

LP 58% 7.38% 1.55% 0.59% 0.17%

SDP 31% 0.14% 0.0052% 0.0045% 0.0026%
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Financial Models: Stochastic differential equation:

dXt = b(Xt)dt+ σ(Xt)dWt, X0 = x0.

Price dynamics

1. Geometric Brownian motion (Black and Scholes model):

dXt = µXtdt+ σXt dWt,

2. Ornstein-Uhlenbeck process:

dXt = k(θ −Xt)dt+ σ dWt,

3. Fleming process (Cox-Ingersoll-Ross interest rate model):

dXt = k(θ −Xt)dt+ σ
√
Xt dWt,
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European (call) options: e−rTE[(XT −K)+].

Barrier options (down-and-out): e−rTE[(XT −K)+1{τ≥T}].

Asian options: e−rTE
[(

1
T

∫ T
0 Xtdt−K

)+
]
.

Parameters:

Option’s maturity: T .

Option’s strike price: K.

Discount factor: r.

Option’s knockout barrier: H < min{K,x0}.
Stopping time: τ = inf{t ≥ 0 | Xt ≤ H}.
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Handling piecewise polynomials, e.g. in J =
∫

(x−K)+ dµ ?

Write µ = ϕ+ ψ with

ϕ([K,+∞)) = 0; ψ((−∞,K)) = 0,

and

yk =
∫
xk dµ =

∫
xk dϕ+

∫
xk dψ = uk + vk, k = 0,1, . . .

so that J =
∫

(x−K) dψ = v1 −Kv0.

So it suffices to introduce the moment conditions

Lu(f2(K − x)) ≥ 0, Lv(f
2(x−K)) ≥ 0, ∀f ∈ R[x],
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1 2 3 4 5 6 7
0.39

0.4

0.41

0.42

0.43

0.44

0.45

European options. Black and Scholes model
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Irreducible gap between upper and lower bounds ... because the

log-normal distribution of XT is not moment determinate.

Relative error := (UB- LB) / ((UB+LB)/2)

σ = 0.10 σ = 0.15 σ = 0.20 σ = 0.25

M = 4 0.87% 3.42% 8.31% 12.42%
M = 6 0.50% 2.77% 4.60% 6.40%
M = 8 0.46% 1.92% 4.18% 6.38%
M = 10 0.34% 1.91% 3.36% 4.42%

European options. Ornstein-Uhlenbeck process
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Drift µ = 0.14

σ = 0.08 σ = 0.10 σ = 0.12

Curran lower bound 0.16605 0.16658 0.16778
SDP lower bound 0.16642 0.16715 0.16796
SDP upper bound 0.16656 0.16772 0.16965

Relative error 0.08% 0.34% 1.01%

Drift µ = 0.16

σ = 0.08 σ = 0.10 σ = 0.12

Curran lower bound 0.18497 0.18518 0.18578
SDP lower bound 0.18534 0.18565 0.18704
SDP upper bound 0.18562 0.18652 0.18788

Relative error 0.15% 0.47% 0.45%

Asian options. Geom. Brownian motion. M = 10
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σ = 0.05 σ = 0.10 σ = 0.15 σ = 0.20 σ = 0.25

M = 2 0.88% 3.40% 7.22% 11.94% 17.20%
M = 4 0.03% 0.42% 1.98% 5.31% 10.21%
M = 6 0.03% 0.20% 1.58% 4.69% 7.48%
M = 8 0.02% 0.19% 1.52% 3.95% 5.54%

Asian options. Ornstein-Uhlenbeck process
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Barrier options

σ = 0.10 σ = 0.15 σ = 0.20 σ = 0.25

M = 16 2.63% 3.91% 0.52% (1.07%)

Geometric Brownian motion

σ = 0.10 σ = 0.15 σ = 0.20 σ = 0.25

M = 18 1.97% 2.19% 1.36% 2.8%

Ornstein-Uhlenbeck process

σ = 0.10 σ = 0.15 σ = 0.20 σ = 0.25

M = 18 6.3% 2.85% 1.47% 0.83%

Fleming process
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Conclusion

SDP might be preferable to LP-relaxations both for theoretical

and practical (numerical) reasons ... However the status of SDP

software packages is far from being comparable to that of LP

packages ....
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