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Polynomial programming

P: f*=min{f(z)| zeK}
with K C R"™ being the semi-algebraic set
K ={zcR"| gj(x)>0,5j=1,...,m},
and {f7 g] ;71:1 C R[xla ce 733?1]-
- very general formulation which encompasses a lot of standard

problems with many appplications. In particular, the set K can
be nonconvex, non-connected, discrete.



Recent SDP-relaxations of P have been designed, extending ear-
lier work by Shor, and |later Nesterov. See e.g. De Klerk, Kojima,
asserre, Laurent, Marshall, Parrilo, Schweighofer, ...

- Theory asserts asymptotic (and sometimes finite) convergence
to f*

- Practice seems to reveal fast (and finite) convergence.

Matlab based solvers : GLOPTIPOLY (Henrion and Lasserre),
SOSTOOLS (Prajna, Papachristodoulou and Parrilo, ) use the
Sedumi SDP solver of J. Sturm.



L_P-relaxations of Sherali-Adams, Lovasz-Schrijver, Ceria-Balas-
Cornuejols have finite convergence for O — 1 programs.

LP-relaxations of the Sherali-Adams type for polynomial pro-
gramming have been shown to also converge in the case K is a
polytope (Lasserre, Parrilo and Sturmfels).

In fact, using an old representation result by Krivine, one may
show that LP-relaxations also converge for general compact
semi-algebraic sets under a relatively weak assumption (Lasserre).

Question: how do LP and SDP-relaxation compare?



BACKGROUND

Let 1,2q,...2p,2%,...,20,... be a basis for the vector space P of

) V%

polynomials R"—R. A polynomial f € P is written

r— f(r) = Z faz®

aceN"
with finitely many nonzero coefficients {fo} C R.

Let v = {yo}, o € N™, be an infinite sequence indexed in this
basis, and let L, : P — R be the linear functional

fHLy(f) — Z Ja Ya

aeENM



Theorem [Schmiidgen, Putinar, Jacobi, Prestel]

Assume there is a polynomial u : R"—R such that

m
u=ug+ ) gku,
k=1

for some polynomials {uy }}"_ ., all sums of squares (s.o.s.), and
such that the level set {x|u(x) > 0} is compact. Then:

Every polynomial p > 0 on K has the representation:

m
(%) P =do+ ) gk
k=1
for some family of s.o.s. polynomials {qj};-”zo.

If one restricts the degree of the polynomials {q;}, then testing
(*) translates into LMIs on the coefficients of the q;'s



Equivalent (dual) moment point of view

Let y = {ya} C R be an infinite sequence. Then y has a repre-
senting measure . with support contained in K, that is,

Ju st yo = /Kxo‘d,u, Vae N
if and only if
(o) Ly(f?) > 0; Ly(f?g) >0, Vvj=1,..,m,
for all polynomials f € R[xq,...,zn]

If one restricts the degree of the polynomials f, then (**) trans-
lates into LMIs on y



SDP-relaxations

Moment matrix M,(y). With y = {ya}tyenn

My (y)(i,1) = ya and My(y)(1,5) = yg = Mr(y)(4,5) = Ya+p-

1 Y1,0 90,1 Y2.0 Y11 Y02
Y1,0 Y20 Yi,1 Y3.0 Y21 Y12
Y0,1 Y11 Y0,2 Y21 Y12 Y
Mp(y) = | “0+ | hb 202 1o 2L T2 IS
Y2.0 Y3.0 Y2,1 Ya,0 Y31 Y22
Y1.1 Y21 Y12 Y31l Y22 Y13
| 90,2 Y12 Y0,3 Y22 Y13 Y04

My(y) =0 < Ly(f%) >0, Vf,deg(f)<r



Localizing matrix.

Given a polynomial z — 0(z) = > enn baz®, and y = {ya}oeNn,
let M,(6vy) be the localizing matrix with respect to 6.

If My(y)(i,5) = yp then M;(0y)(i,j) = Yo baysta-

For instance, with = — 0(z) = 1 — 27 — 23,
1 —yo0— Y02, Y10 — Y30 — Y12, Y0l — Y21 — Y03 |
M1(0y) = | y10 — Y30 — Y12, Y20 — Y40 — Y22, Y11 — Y21 — Y12

| Y01 — Y21 — Y03, Y11 — Y21 — Y12, Y02 — Y22 — Y04 |

My(0y) =0 < Ly(f%0) >0, Vfdeg(f)<r
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With f € R[z], introduce the family {Q,} of SDP-relaxations

Qr 4

[ min  Ly(f)
Ly(h?) >0, Vh,deg(h) <r

\ 7 =1,...,m.

and the family {Q;} of their dual

Qr

([ max A
)‘7q07"'aqm

f=A=aq+XI14;9;

| ¢j s.o.s. dedg(gjg;) <2r, Vj=0,...

Ly(h? g;) >0 Vh,deg(h?g;) <2r

11



Theorem : Assume there is a polynomial u : R"—R such that

m
u = ug+ Y gku,
k=1

for some polynomials {uy}]L 4, all sums of squares (s.o.s.), and
such that the level set {x|u(x) > 0} is compact.

Then minQ, T f* as r—oo.
In practice the convergence is fast and even finite.

If ¥ € R"™ is the unique global minimizer of P, convergence of
first-order moments {ya}|&|:1 to ™ occurs (Schweighofer)

finite convergence eventually occurs for 0-1 (nonlinear) pro-
grams (and discrete optimization)
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LP relaxations : Background.

Assumption (generating): Let gg = 1. The polynomials {0, go, . . .
generate the R-algebra Rx1,...,zn], that is, Rlxq,...,zn] =

Rlg1,. .., 9m].
Let 0 < g; := max,ck g;(x) for all j =1,...,m, and let
93 { gj otherwise Lm

so that 0 <g; <1 on K for all j =0,1,...,m.

- One may also take for g; any upper bound of g; on K;

- One may also introduce redundant constraints x;. > x;. in the

definition of K to enforce the generating assumption.
13
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Upper bounds on g; or lower bounds on xz; can be obtained
by running the SDP relaxations Q, with f = —g;, or f = x,
respectively.

Theorem : [Krivine, Becker and Schwartz, Marshall, Vasilescu]
Let the generating assumption hold. If f € R[x1,...,xm] IS poOsSi-
tive on K then

Gexx) f= > capd® @ -9)7
o, BEN™
for finitely many positive coefficients {c,3}.

Testing (***) with |a 4+ 8| < r reduces to solving a LP.
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Equivalent (dual) moment point of view.

Let y = {ya} C R be an infinite sequence. Then y has a repre-
senting measure p with support contained in K, that is,

Ju st yo = /Kxo‘d,u, Vae N
if and only if
(k% 5x) Ly(8*(1—-8)")>0 Va,BeN™

— Countably many linear inequalities on the vector y.....

If one restricts to |a+ G| < r then (****) translates into finitely
many linear inequalities on y
15



With f € R[z], introduce the family {L,} of LP-relaxations

( myin Ly(f)

L, ¢

 Ly@*(1-9)F) >0,  Jatpl<2r
and the family {L;} of their dual

max A
Aa{caﬂ}

LS f-A= Y copg®(1—9)F
o, BEN™

cap = 0, Viae+ 3] <2r

\
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Theorem :  Assume that K is compact and Rlxq,...,zn] =
Rlg1,...,9m]. Then the LP-relaxations converge, that is,

maxL; = minL, | f* as r—oo.
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Primal LP-relaxation L

Primal SDP-relaxation Q

min
Y
Ly(ga

va?ﬁ?

Ly(f)
(1-9)F) >0

a4+ 6] <2r

min

in Ly (f)
Ly(hQQj) >0

Vh,deg(hg;) <2r, j€{0,...,

m}

Dual LP-relaxation L,

Dual SDP-relaxation Q,

max A
>‘7{Caﬁ}
F=Xx = 3 g1 -9)"”
a,BeN™
a4+ 6] <2r
Caf3 >0 Va,p

max A
Aaj}
™m
f=A Z 95 95
deg(Qj gj) < 2T J € {O ol ., m}
q; s.0.s., j €40,...,m}




Some remarks ....

1. Notice the presence of binomial coefficients in both primal and
dual LP-relaxations ... which yvields numericall ill-conditioning for

relatively large r.

2. Let 2* € K be a global minimizer, and for z € K, let J(x) be
the set of active constraints g;(z) =0 and ...1 — gi(z) = 0.

Then FINITE convergence CANNOT occur

- (a) If there exists nonoptimal z € K with J(z) 2 J(z*),

- (b) or if fg: {z € R"| gj(x) > 0,5 = 1,...,m} and z* EIO{

O
(whenever such K exists)
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3. If K is a Polytope then FINITE convergence is possible only
it every global minimizer is a vertex of K.

Hence if f is convex .. the LP-relaxations cannot be exact !l

Ex: min{z(x—1)|0<x <1} = z*=0.5 and f* = —0.25.
f(z)+0.25=2° -2+ 0.25 = (z — 0.5)2, z € R,

and the SDP-relaxation Qq is exact whereas one CANNOT write

f(x) = f*=fx) +025 =Y ¢;z"(1—a),
i,jEN
because

0= f(z*)+025= Y ¢;27"7 > 0.
1,7€EN



In addition, the convergence minL, T —0.25 is very slow...

Ao = A\ =-1/3; Xg=-0.3; Aig=—-0.27,

Consider now the concave minimization problem:

min {z(1 —xz)|0<x <1} =, with ff*=0and z* =0 or =* =1,
both vertices of K.

so that the LP-relaxation L1 is exact (the SDP-relaxation Q> is
also exact).

Hence we have the paradox that the LP-relaxations behave much

better for the concave minmization problem than for the convex
onell



Mathematical finance applications
Joint work with
- T. Prieto-Rumeau (Computinense, Madrid, Spain)

- M. Zervos (King's College, London)
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Consider a multi-dimensional SDE:

dX; = b(Xy)dt + o(Xp)dWy, X = xp.
Generator of the process: A : D—D C Co(R").

of
(9.277;

o2 f
8%@(9:133'

Af(@) = Y bi@)(2) + 3 (00")5(x)
) 1,7

7 1S a stopping time. In some examples = =1T'.

We want to evaluate

71=E| [ Jo(X)dt + 11(X7)].

where Jy and Jq are (piecewise) polynomials.

()
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Define the expected occupation measure (before 7) as:

-
o(B) = E Uo 1{X8€B}ds], for measurable sets B.

and the exit location probability measure (at 7) as:

uwi1(B) = P(X, € B), for measurable sets B.
Let {y.} and {z.} be the moments of ug and pq:

/xk,ug(dac) =y, Wwhere zF = aclflml? o ghn,
For every f € D(A):

t
FX0) = (@) = [ (AD(Xa)ds, 120
is a martingale. If E[r] < 400 then:

E[f(X7)] - f(z0) ~ B| ["(Af)(Xs)ds| = 0.

22






The moment approach

The martingale property yields the basic adjoint equation:
t [ fdm - f@o) ~ [(AD) dug=o.
If f(z) =2F then (Af)(z) = S ¢;(k) 2* and so, T yields
Tt yk.—xlé—ch(k)zj = 0, k e N.
J

The basic adjoint equation is relaxed to:

(i) the martingale moment conditions {7

(i) moment conditions on {y.} and {z.} to be moments of some
measures uq, p41,

for moments up to some order r
23



If Jo,J1 € R[z] write Jg = Y1 Arz® and J; = ¥, Dy «¥, to obtain

-
J=F [ /O Jo(Xp)dt + J1(X7)|,
or, equivalently,

k

To obtain upper and lower bounds on J we solve the problems:

infy . and sup, . > (Agyr + Dy 21),

subject to: (i) martingale and (ii) moment conditions, for r
moments.
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Numerical comparison of LP and SDP-relaxations.

Accuracies of the LP and SDP-relaxations for the Cox-

Ingersoll-Ross interest rate model.

r 5 10 15 20 25
LP |58% 7.38% 1.55% 0.59% 0.17%
SDP|31% 0.14% 0.0052% 0.0045% 0.0026%

25



Financial Models: Stochastic differential equation:

dX; = b(Xp)dt + o(Xp)dW:, Xg = x0.
Price dynamics

1. Geometric Brownian motion (Black and Scholes model):

dXi = puXidt + o Xy dWy,

2. Ornstein-Uhlenbeck process:

dX; = k(0 — X3)dt + o dWy,

3. Fleming process (Cox-Ingersoll-Ross interest rate model):

dX: = k(0 — X3)dt + o/ Xt dWy,

26



European (call) options: e "™ TE[(X; — K)71].

Barrier options (down-and-out): e ™ E[(X1 — K)"‘l{TZT}].

Asian options: e "™1E [(% fOT Xdt — K)+].

Parameters:

Option’s maturity: 7.

Option’s strike price: K.

Discount factor: r.

Option’s knockout barrier: H < min{K, zg}.
Stopping time: m=inf{t >0 | Xy < H}.
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Handling piecewise polynomials, e.g. in J = [(z— K)Tdu 7

Write = ¢ 4+ ¢ with

and

yk=/$kdu=/wkds@—|—/mkdw = up+v., k=0,1,...
so that J = [(x — K)dy = v — Kuy.

So it suffices to introduce the moment conditions

Lu(f?(K —z)) > 0, Lo(f2(x — K)) > 0, YfeR[z],

28
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European options. Black and Scholes model
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Irreducible gap between upper and lower bounds ... because the
log-normal distribution of X+ is not moment determinate.

Relative error := (UB- LB) / ((UB+4+LB)/2)

c=0.10|c=0.15|0=0.20| 0 = 0.25

0.87% 3.42% 8.31% | 12.42%
0.50% 2.77% 4.60% 6.40%
0.46% 1.92% 4.18% 6.38%
0| 0.34% 1.91% 3.36% 4.42%

SIS
Iy

European options. Ornstein-Uhlenbeck process
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Drift u = 0.14

c=008|0c=0.10| c =0.12
Curran lower bound | 0.16605 | 0.16658 | 0.16778
SDP lower bound | 0.16642 | 0.16715 | 0.16796
SDP upper bound | 0.16656 | 0.16772 | 0.16965
Relative error 0.08% 0.34% 1.01%
Drift 1 = 0.16
c=008|0=0.10| c =0.12
Curran lower bound | 0.18497 | 0.18518 | 0.18578
SDP lower bound | 0.18534 | 0.18565 | 0.18704
SDP upper bound | 0.18562 | 0.18652 | 0.18788
Relative error 0.15% 0.47% 0.45%

Asian options. Geom. Brownian motion. M = 10
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c=0050=0.10 c=0.15|06=0.20| 0 =0.25
M=2]| 0.88% 3.40% 7.22% | 11.94% | 17.20%
M=4| 0.03% 0.42% 1.98% 5.31% 10.21%
M =06 0.03% 0.20% 1.58% 4.69% 7.48%
M=8| 0.02% 0.19% 1.52% 3.95% 5.54%

Asian options. Ornstein-Uhlenbeck process
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Barrier options

' 0=0.10|0=0.15|0=0.20 | 0 =0.25

M=16| 263% | 391% | 0.52% | (1.07%)

Geometric Brownian motion

1 0=0.10|0=0.15|0=0.20 | 0 =0.25

M=18| 1.97% | 2.19% | 1.36% | 2.8%

Ornstein-Uhlenbeck process

' 0=0.10|0=0.15|0c=0.20 | 0 =0.25

M=18| 63% | 285% | 1.47% | 0.83%

Fleming process
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Conclusion

SDP might be preferable to LP-relaxations both for theoretical
and practical (numerical) reasons ... However the status of SDP

software packages is far from being comparable to that of LP
packages ....
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