LP and SDP relaxations for polynomial programming with applications in mathematical finance

J.B. Lasserre

LAAS-CNRS, Toulouse, France

HPOPT 2004, CWI, Amsterdam

- LP and SDP-relaxations for polynomial programming
- Application in mathematical finance; option pricing

Polynomial programming

$$\mathbf{P}: \quad f^* = \min\{ f(x) \mid x \in \mathbf{K} \},\$$

with $\mathbf{K} \subset \mathbf{R}^n$ being the semi-algebraic set

$$\mathbf{K}=\{x\in\mathbf{R}^n\,|\quad g_j(x)\geq 0,\,j=1,\ldots,m\},$$
 and $\{f,g_j\}_{j=1}^m\subset\mathbf{R}[x_1,\ldots,x_n].$

- very general formulation which encompasses a lot of standard problems with many applications. In particular, the set ${\bf K}$ can be nonconvex, non-connected, discrete.

Recent SDP-relaxations of $\mathbf P$ have been designed, extending earlier work by Shor, and later Nesterov. See e.g. De Klerk, Kojima, Lasserre, Laurent, Marshall, Parrilo, Schweighofer, ...

- Theory asserts asymptotic (and sometimes finite) convergence to f^{st}
- Practice seems to reveal fast (and finite) convergence.

Matlab based solvers: GLOPTIPOLY (Henrion and Lasserre), SOSTOOLS (Prajna, Papachristodoulou and Parrilo,) use the Sedumi SDP solver of J. Sturm.

LP-relaxations of Sherali-Adams, Lovász-Schrijver, Ceria-Balas-Cornuejols have finite convergence for 0-1 programs.

LP-relaxations of the Sherali-Adams type for polynomial programming have been shown to also converge in the case \mathbf{K} is a polytope (Lasserre, Parrilo and Sturmfels).

In fact, using an old representation result by Krivine, one may show that LP-relaxations also converge for general compact semi-algebraic sets under a relatively weak assumption (Lasserre).

Question: how do LP and SDP-relaxation compare?

BACKGROUND

Let $1, x_1, \dots, x_n, x_1^2, \dots, x_n^r, \dots$ be a basis for the vector space \mathcal{P} of polynomials $\mathbf{R}^n \to \mathbf{R}$. A polynomial $f \in \mathcal{P}$ is written

$$x\mapsto f(x)=\sum_{lpha\in\mathbf{N}^n}f_lpha\,x^lpha$$

with finitely many nonzero coefficients $\{f_{\alpha}\}\subset\mathbf{R}$.

Let $y = \{y_{\alpha}\}$, $\alpha \in \mathbf{N}^n$, be an infinite sequence indexed in this basis, and let $L_y : \mathcal{P} \to \mathbf{R}$ be the linear functional

$$f\mapsto L_y(f)=\sum_{lpha\in \mathbf{N}^n}f_lpha\,y_lpha$$

Theorem [Schmüdgen, Putinar, Jacobi, Prestel]

Assume there is a polynomial $\mathbf{u}: \mathbf{R}^n \rightarrow \mathbf{R}$ such that

$$\mathbf{u} = \mathbf{u_0} + \sum_{k=1}^{m} \mathbf{g_k} \mathbf{u_k},$$

for some polynomials $\{\mathbf{u_k}\}_{k=0}^m$, all sums of squares (s.o.s.), and such that the level set $\{x \mid \mathbf{u}(x) \geq 0\}$ is compact. Then:

Every polynomial p > 0 on K has the representation:

(*)
$$p = q_0 + \sum_{k=1}^{m} g_k q_j$$

for some family of s.o.s. polynomials $\{\mathbf{q_j}\}_{j=0}^m$.

If one restricts the degree of the polynomials $\{q_j\}$, then testing (*) translates into LMIs on the coefficients of the q_j 's

Equivalent (dual) moment point of view

Let $\mathbf{y} = \{\mathbf{y}_{\alpha}\} \subset \mathbf{R}$ be an infinite sequence. Then \mathbf{y} has a representing measure μ with support contained in \mathbf{K} , that is,

$$\exists \mu \quad s.t. \quad \mathbf{y}_{\alpha} = \int_{\mathbf{K}} \mathbf{x}^{\alpha} \, \mathbf{d}\mu, \quad \forall \alpha \in \mathbf{N}^{\mathbf{n}}$$

if and only if

(**)
$$L_y(\mathbf{f^2}) \geq 0$$
; $L_y(\mathbf{f^2} \mathbf{g_j}) \geq 0$, $\forall j = 1, \dots, m$,

for all polynomials $\mathbf{f} \in \mathbf{R}[x_1, \dots, x_n]$

If one restricts the degree of the polynomials f, then (**) translates into LMIs on y

SDP-relaxations

Moment matrix $M_r(y)$. With $y = \{y_\alpha\}_{\alpha \in \mathbb{N}^n}$

$$M_r(y)(i,1) = y_{\alpha}$$
 and $M_r(y)(1,j) = y_{\beta} \Rightarrow M_r(y)(i,j) = y_{\alpha+\beta}$.

$$M_{2}(y) = \begin{bmatrix} 1 & | & y_{1,0} & y_{0,1} & | & y_{2,0} & y_{1,1} & y_{0,2} \\ & - & - & - & - & - & - & - & - \\ y_{1,0} & | & y_{2,0} & y_{1,1} & | & y_{3,0} & y_{2,1} & y_{1,2} \\ y_{0,1} & | & y_{1,1} & y_{0,2} & | & y_{2,1} & y_{1,2} & y_{0,3} \\ & - & - & - & - & - & - & - & - \\ y_{2,0} & | & y_{3,0} & y_{2,1} & | & y_{4,0} & y_{3,1} & y_{2,2} \\ y_{1,1} & | & y_{2,1} & y_{1,2} & | & y_{3,1} & y_{2,2} & y_{1,3} \\ y_{0,2} & | & y_{1,2} & y_{0,3} & | & y_{2,2} & y_{1,3} & y_{0,4} \end{bmatrix}$$

$$M_r(y) \succeq 0 \quad \Leftrightarrow \quad L_y(f^2) \geq 0, \quad \forall f, \deg(f) \leq r$$

Localizing matrix.

Given a polynomial $x \mapsto \theta(x) = \sum_{\alpha \in \mathbb{N}^n} \theta_{\alpha} x^{\alpha}$, and $y = \{y_{\alpha}\}_{\alpha \in \mathbb{N}^n}$, let $M_r(\theta y)$ be the **localizing matrix** with respect to θ .

If
$$M_r(y)(i,j) = y_{\beta}$$
 then $M_r(\theta y)(i,j) = \sum_{\alpha} \theta_{\alpha} y_{\beta+\alpha}$.

For instance, with $x \mapsto \theta(x) = 1 - x_1^2 - x_2^2$,

$$M_{1}(\theta y) = \begin{bmatrix} 1 - y_{20} - y_{02}, & y_{10} - y_{30} - y_{12}, & y_{01} - y_{21} - y_{03} \\ y_{10} - y_{30} - y_{12}, & y_{20} - y_{40} - y_{22}, & y_{11} - y_{21} - y_{12} \\ y_{01} - y_{21} - y_{03}, & y_{11} - y_{21} - y_{12}, & y_{02} - y_{22} - y_{04} \end{bmatrix}.$$

$$M_r(\theta y) \succeq 0 \quad \Leftrightarrow \quad L_y(f^2 \theta) \geq 0, \quad \forall f, \deg(f) \leq r$$

With $f \in \mathbf{R}[x]$, introduce the family $\{\mathbf{Q}_r\}$ of SDP-relaxations

$$\mathbf{Q}_r \left\{egin{array}{ll} \min & L_{oldsymbol{y}}(f) \ L_{oldsymbol{y}}(h^2) & \geq 0, \ orall h, \deg(h) \leq r \ \end{array}
ight. \ \left. egin{array}{ll} L_{oldsymbol{y}}(h^2\,g_j) & \geq 0 \ j = 1, \ldots, m. \end{array}
ight.$$

and the family $\{\mathbf{Q}_r^*\}$ of their dual

$$\mathbf{Q}_r^* \left\{ \begin{array}{l} \max & \lambda \\ \lambda, q_0, ..., q_m \end{array} \right.$$

$$\mathbf{Q}_r^* \left\{ \begin{array}{l} f - \lambda = q_0 + \sum_{j=1}^m q_j \, g_j \\ q_j \quad s.o.s. \quad \deg(q_j \, g_j) \leq 2r, \quad \forall j = 0, \ldots, m \end{array} \right.$$

Theorem: Assume there is a polynomial $\mathbf{u}: \mathbf{R}^n \to \mathbf{R}$ such that

$$\mathbf{u} = \mathbf{u}_0 + \sum_{k=1}^{m} \mathbf{g}_k \, \mathbf{u}_k,$$

for some polynomials $\{\mathbf{u_k}\}_{k=0}^m$, all sums of squares (s.o.s.), and such that the level set $\{x \mid \mathbf{u}(x) \geq 0\}$ is compact.

Then $\min \mathbf{Q}_r \uparrow f^*$ as $r \rightarrow \infty$.

In practice the convergence is **fast** and even **finite**.

If $x^* \in \mathbf{R}^n$ is the unique global minimizer of \mathbf{P} , convergence of first-order moments $\{y_{\alpha}\}_{|\alpha|=1}$ to x^* occurs (Schweighofer)

finite convergence eventually occurs for 0-1 (nonlinear) programs (and discrete optimization)

LP relaxations: Background.

Assumption (generating): Let $g_0 \equiv 1$. The polynomials $\{0, g_0, \ldots, g_m\}$ generate the R-algebra $\mathbf{R}[x_1, \ldots, x_n]$, that is, $\mathbf{R}[x_1, \ldots, x_n] = \mathbf{R}[g_1, \ldots, g_m]$.

Let $0 \leq \overline{g}_j := \max_{x \in \mathbf{K}} g_j(x)$ for all $j = 1, \dots, m$, and let

$$\widehat{g}_j = \left\{ egin{array}{ll} g_j/\overline{g}_j & \mbox{if } \overline{g}_j > 0 \\ g_j & \mbox{otherwise} \end{array} \right. \quad j = 1, \ldots, m$$

so that $0 \le g_j \le 1$ on **K** for all j = 0, 1, ..., m.

- One may also take for \overline{g}_j any upper bound of g_j on ${f K}$;
- One may also introduce redundant constraints $x_k \geq \underline{x}_k$ in the definition of \mathbf{K} to enforce the generating assumption.

Upper bounds on g_j or lower bounds on x_k can be obtained by running the SDP relaxations \mathbf{Q}_r with $f:=-g_j$, or $f\equiv x_k$, respectively.

Theorem : [Krivine, Becker and Schwartz, Marshall, Vasilescu] Let the generating assumption hold. If $f \in \mathbf{R}[x_1, \ldots, x_m]$ is positive on \mathbf{K} then

(***)
$$f = \sum_{\alpha,\beta \in \mathbf{N}^m} c_{\alpha\beta} \, \widehat{g}^{\alpha} \, (1 - \widehat{g})^{\beta},$$

for finitely many positive coefficients $\{c_{\alpha\beta}\}$.

Testing (***) with $|\alpha + \beta| \le r$ reduces to solving a LP.

Equivalent (dual) moment point of view.

Let $\mathbf{y} = \{\mathbf{y}_{\alpha}\} \subset \mathbf{R}$ be an infinite sequence. Then \mathbf{y} has a representing measure μ with support contained in \mathbf{K} , that is,

$$\exists \mu \quad s.t. \quad \mathbf{y}_{\alpha} = \int_{\mathbf{K}} \mathbf{x}^{\alpha} \, \mathbf{d}\mu, \quad \forall \alpha \in \mathbf{N}^{\mathbf{n}}$$

if and only if

$$(****)$$
 $L_{\mathbf{y}}(\widehat{\mathbf{g}}^{\alpha}(1-\widehat{\mathbf{g}})^{\beta}) \geq 0 \quad \forall \alpha, \beta \in \mathbf{N}^{\mathbf{m}}.$

 \rightarrow Countably many linear inequalities on the vector \mathbf{y}

If one restricts to $|\alpha + \beta| \le r$ then (****) translates into finitely many linear inequalities on y

With $f \in \mathbf{R}[x]$, introduce the family $\{\mathbf{L}_r\}$ of LP-relaxations

$$\mathbf{L}_r \left\{egin{array}{ll} \min_{m{y}} & L_{m{y}}(f) \ & L_{m{y}}(\widehat{g}^lpha \ (1-\widehat{g})^eta) & \geq 0, & |lpha+eta| \leq 2r \ & ext{ramily } \{\mathbf{L}_r^*\} ext{ of their dual} \end{array}
ight.$$

and the family $\{\mathbf{L}_r^*\}$ of their dual

nily
$$\{\mathbf{L}_r^*\}$$
 of their dual $\begin{cases} \max & \lambda \\ \lambda, \{c_{lphaeta}\} \end{cases}$ $\mathbf{L}_r^* \left\{ egin{array}{l} f - \lambda = \sum \limits_{lpha, eta \in \mathbf{N}^m} c_{lphaeta} \, \widehat{g}^{lpha} \, (1 - \widehat{g})^{eta} \\ c_{lphaeta} \geq 0, \end{cases}
ight. orall |lpha + eta| \leq 2r \end{cases}$

```
Theorem: Assume that K is compact and R[x_1,\ldots,x_n]=R[g_1,\ldots,g_m]. Then the LP-relaxations converge, that is, \max L_r^* = \min L_r \uparrow f^* \quad \text{as } r \to \infty.
```

Primal LP-relaxation \mathbf{L}_r^*

$$\min_{m{y}} \ L_{m{y}}(f)$$
 $L_{m{y}}(\widehat{g}^{lpha}(1-\widehat{g})^{eta}) > 0$

$$\forall \alpha, \beta, |\alpha + \beta| \leq 2r$$

Primal SDP-relaxation Q_r^*

 $\forall h, \deg(hg_j) \leq 2r, \ j \in \{0, \dots, m\}$

Dual LP-relaxation L_r

$$\max_{\substack{\lambda, \{c_{\alpha\beta}\}\\ f - \lambda}} \lambda$$

$$f - \lambda = \sum_{\alpha, \beta \in \mathbf{N}^m} c_{\alpha\beta} \hat{g}^{\alpha} (1 - \hat{g})^{\beta}$$

$$|\alpha + \beta| \leq 2r$$

$$c_{\alpha\beta} \geq 0 \quad \forall \alpha, \beta$$

$$\max_{\substack{\lambda, \{q_j\}\\ f - \lambda}} \lambda$$

$$f - \lambda = \sum_{j=0}^m q_j g_j$$

$$\deg(q_j g_j) \leq 2r, j \in \{0, \dots, m\}$$

$$q_j \quad s.o.s., j \in \{0, \dots, m\}$$

Dual SDP-relaxation Q_r

$$\max_{\substack{\lambda,\{q_j\}}} \lambda$$

$$f - \lambda = \sum_{j=0}^{m} q_j g_j$$

$$\deg(q_j g_j) \leq 2r, j \in \{0, \dots, m\}$$

$$q_j \qquad s.o.s., j \in \{0, \dots, m\}$$

Some remarks

- 1. Notice the presence of binomial coefficients in both primal and dual LP-relaxations ... which yields numericall ill-conditioning for relatively large r.
- 2. Let $x^* \in \mathbf{K}$ be a global minimizer, and for $x \in \mathbf{K}$, let J(x) be the set of active constraints $\widehat{g}_j(x) = 0$ and $...1 \widehat{g}_k(x) = 0$.

Then FINITE convergence CANNOT occur

- (a) If there exists nonoptimal $x \in K$ with $J(x) \supseteq J(x^*)$,
- (b) or if $\overset{\circ}{\mathbf{K}}=\{x\in\mathbf{R}^n|\ g_j(x)>0,\ j=1,\ldots,m\}$ and $x^*\in\overset{\circ}{\mathbf{K}}$ (whenever such $\overset{\circ}{\mathbf{K}}$ exists)

3. If K is a Polytope then FINITE convergence is possible only if every global minimizer is a vertex of K.

Hence if f is convex .. the LP-relaxations cannot be exact !!

Ex: $\min\{x(x-1)|\ 0 \le x \le 1\} \Rightarrow x^* = 0.5 \text{ and } f^* = -0.25.$

$$f(x) + 0.25 = x^2 - x + 0.25 = (x - 0.5)^2, \qquad x \in \mathbf{R},$$

and the SDP-relaxation Q_1 is exact whereas one CANNOT write

$$f(x) - f^* = f(x) + 0.25 = \sum_{i,j \in \mathbb{N}} c_{ij} x^i (1 - x)^j,$$

because

$$0 = f(x^*) + 0.25 = \sum_{i,j \in \mathbb{N}} c_{ij} 2^{-i-j} > 0.$$

In addition, the convergence min $L_r \uparrow -0.25$ is very slow...

$$\lambda_2 = \lambda_4 = -1/3; \quad \lambda_6 = -0.3; \quad \lambda_{10} = -0.27, \quad \dots$$

Consider now the concave minimization problem:

min $\{x(1-x)|\ 0 \le x \le 1\} \Rightarrow$, with $f^* = 0$ and $x^* = 0$ or $x^* = 1$, both vertices of K.

$$f(x) - f^* = x (1 - x), \qquad x \in \mathbf{R},$$

so that the LP-relaxation \mathbf{L}_1 is exact (the SDP-relaxation \mathbf{Q}_2 is also exact).

Hence we have the paradox that the LP-relaxations behave much better for the concave minmization problem than for the convex one!!

Mathematical finance applications

Joint work with

- T. Prieto-Rumeau (Computinense, Madrid, Spain)
- M. Zervos (King's College, London)

Consider a multi-dimensional SDE:

$$dX_t = b(X_t)dt + \sigma(X_t)dW_t, \quad X_0 = x_0.$$

Generator of the process: $\mathcal{A}: \mathcal{D} \to \mathcal{D} \subset C_0(\mathbf{R}^n)$.

$$\mathcal{A} f(x) = \sum_{i} b_{i}(x) \frac{\partial f}{\partial x_{i}}(x) + \sum_{i,j} (\sigma \sigma')_{ij}(x) \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(x)$$

 τ is a stopping time. In some examples $\tau = T$.

We want to evaluate

$$J = \mathbf{E} \left[\int_0^{\tau} J_0(X_t) dt + J_1(X_{\tau}) \right],$$

where J_0 and J_1 are (piecewise) polynomials.

Define the expected occupation measure (before τ) as:

$$\mu_0(B) = \mathbf{E} \left[\int_0^\tau \mathbf{1}_{\{X_s \in B\}} ds \right],$$
 for measurable sets B .

and the exit location probability measure (at τ) as:

$$\mu_1(B) = P(X_{\tau} \in B)$$
, for measurable sets B.

Let $\{y_k\}$ and $\{z_k\}$ be the moments of μ_0 and μ_1 :

$$\int x^k \mu_0(dx) = y_k$$
, where $x^k = x_1^{k_1} x_2^{k_2} \cdots x_n^{k_n}$.

For every $f \in \mathcal{D}(A)$:

$$f(X_t) - f(x_0) - \int_0^t (\mathcal{A}f)(X_s) ds, \quad t \ge 0$$

is a martingale. If $E[\tau] < +\infty$ then:

$$\mathbf{E}[f(X_{\tau})] - f(x_0) - \mathbf{E}\left[\int_0^{\tau} (Af)(X_s)ds\right] = 0.$$

The moment approach

The martingale property yields the basic adjoint equation:

$$\int f \, d\mu_1 - f(x_0) - \int (Af) \, d\mu_0 = 0.$$

If
$$f(x)\equiv x^k$$
 then $(\mathcal{A}f)(x)=\sum c_i(k)\,x^i$ and so, \dagger yields
$$\dagger^\dagger \qquad y_k-x_0^k-\sum_j c_j(k)\,z_j\,=\,0, \qquad k\in\mathbf{N}.$$

The basic adjoint equation is relaxed to:

- (i) the martingale moment conditions ††
- (ii) moment conditions on $\{y_k\}$ and $\{z_k\}$ to be moments of some measures μ_0, μ_1 ,

for moments up to some order r

If $J_0, J_1 \in \mathbf{R}[x]$ write $J_0 = \sum_k A_k x^k$ and $J_1 = \sum_k D_k x^k$, to obtain

$$J = \mathbf{E} \left[\int_0^{\tau} J_0(X_t) dt + J_1(X_{\tau}) \right],$$

or, equivalently,

$$J = \sum_k A_k \, y_k + D_k \, z_k.$$

To obtain upper and lower bounds on J we solve the problems:

$$\inf_{y,z}$$
 and $\sup_{y,z}$ $\sum_{k} (A_k y_k + D_k z_k)$,

subject to: (i) martingale and (ii) moment conditions, for r moments.

Numerical comparison of LP and SDP-relaxations.

Accuracies of the LP and SDP-relaxations for the Cox-Ingersoll-Ross interest rate model.

\overline{r}	5	10	15	20	25
LP	58%	7.38%	1.55%	0.59%	0.17%
SDP	31%	0.14%	0.0052%	0.0045%	0.0026%

Financial Models: Stochastic differential equation:

$$dX_t = b(X_t)dt + \sigma(X_t)dW_t, \quad X_0 = x_0.$$

Price dynamics

1. Geometric Brownian motion (Black and Scholes model):

$$dX_t = \mu X_t dt + \frac{\sigma X_t}{\sigma X_t} dW_t,$$

2. Ornstein-Uhlenbeck process:

$$dX_t = k(\theta - X_t)dt + \sigma dW_t,$$

3. Fleming process (Cox-Ingersoll-Ross interest rate model):

$$dX_t = k(\theta - X_t)dt + \sigma\sqrt{X_t}dW_t,$$

European (call) options: $e^{-rT}\mathbf{E}[(X_T - K)^+]$.

Barrier options (down-and-out): $e^{-rT}\mathbf{E}[(X_T - K)^+ \mathbf{1}_{\{\tau \geq T\}}].$

Asian options:
$$e^{-rT}\mathbf{E}\left[\left(\frac{1}{T}\int_0^T X_t dt - K\right)^+\right]$$
.

Parameters:

Option's maturity: T.

Option's strike price: K.

Discount factor: r.

Option's knockout barrier: $H < \min\{K, x_0\}$.

Stopping time: $\tau = \inf\{t \ge 0 \mid X_t \le H\}$.

Handling piecewise polynomials, e.g. in $J = \int (x - K)^+ d\mu$?

Write $\mu = \varphi + \psi$ with

$$\varphi([K, +\infty)) = 0; \qquad \psi((-\infty, K)) = 0,$$

and

$$y_k=\int x^k\,d\mu=\int x^k\,d\varphi+\int x^k\,d\psi=\,u_k+v_k,\quad k=0,1,\ldots$$
 so that $J=\int (x-K)\,d\psi=\,v_1-Kv_0.$

So it suffices to introduce the moment conditions

$$L_u(f^2(K-x)) \ge 0, \qquad L_v(f^2(x-K)) \ge 0, \quad \forall f \in \mathbf{R}[x],$$

European options. Black and Scholes model

Irreducible gap between upper and lower bounds ... because the log-normal distribution of X_T is not moment determinate.

Relative error := (UB-LB) / ((UB+LB)/2)

	$\sigma = 0.10$	$\sigma = 0.15$	$\sigma = 0.20$	$\sigma = 0.25$
M = 4	0.87%	3.42%	8.31%	12.42%
M = 6	0.50%	2.77%	4.60%	6.40%
M = 8	0.46%	1.92%	4.18%	6.38%
M = 10	0.34%	1.91%	3.36%	4.42%

European options. Ornstein-Uhlenbeck process

Drift $\mu = 0.14$

	$\sigma = 0.08$	$\sigma = 0.10$	$\sigma = 0.12$
Curran lower bound	0.16605	0.16658	0.16778
SDP lower bound	0.16642	0.16715	0.16796
SDP upper bound	0.16656	0.16772	0.16965
Relative error	0.08%	0.34%	1.01%

Drift $\mu = 0.16$

	$\sigma = 0.08$	$\sigma = 0.10$	$\sigma = 0.12$
Curran lower bound	0.18497	0.18518	0.18578
SDP lower bound	0.18534	0.18565	0.18704
SDP upper bound	0.18562	0.18652	0.18788
Relative error	0.15%	0.47%	0.45%

Asian options. Geom. Brownian motion. M=10

	$\sigma = 0.05$	$\sigma = 0.10$	$\sigma = 0.15$	$\sigma = 0.20$	$\sigma = 0.25$
M = 2	0.88%	3.40%	7.22%	11.94%	17.20%
M = 4	0.03%	0.42%	1.98%	5.31%	10.21%
M = 6	0.03%	0.20%	1.58%	4.69%	7.48%
M = 8	0.02%	0.19%	1.52%	3.95%	5.54%

Asian options. Ornstein-Uhlenbeck process

Barrier options

	$\sigma = 0.10$	$\sigma = 0.15$	$\sigma = 0.20$	$\sigma = 0.25$
M = 16	2.63%	3.91%	0.52%	(1.07%)

Geometric Brownian motion

	$\sigma = 0.10$	$\sigma = 0.15$	$\sigma = 0.20$	$\sigma = 0.25$
M = 18	1.97%	2.19%	1.36%	2.8%

Ornstein-Uhlenbeck process

$$\sigma = 0.10$$
 $\sigma = 0.15$ $\sigma = 0.20$ $\sigma = 0.25$ $M = 18$ 6.3% 2.85% 1.47% 0.83%

Fleming process

Conclusion

SDP might be preferable to LP-relaxations both for theoretical and practical (numerical) reasons ... However the status of SDP software packages is far from being comparable to that of LP packages