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Affine Lower Bound Functions for Polynomials and their use in Global
Optimisation

Outline
e Relaxations of constrained global optimisation problems
e T he Bernstein expansion for polynomials and its properties
e Affine lower bound functions for polynomials (5 methods)
e One algorithm in detail with an error bound
e Examples and a comparison of methods

e Future work and conclusions



Constrained Global Optimization Problem (GOP)

xrgij\r}f(w),

where the set M of feasible solutions is given by inequalities and
equations

g;(x) <0,i=1,...,m, x € X,

hj(z) =0, j=1,...,], x € X,

with D C R", X being a boxin D, and f, g;, h; are real-valued functions
defined on D.



A frequently used approach is the generation of relaxations and their
use in a branch and bound framework. Generally speaking, a relax-
ation of the given problem has the properties that

1. each feasible point of the given problem is feasible for the relax-
ation,

2. the relaxation is easier to solve than the original problem, and

3. the solutions of the relaxation converge to the solutions of the
original problem, provided the maximal width of the set of feasible
points converges to zero.



We obtain a relaxation for the GOP if we proceed as follows:

1. Replace the objective function f and the functions g; by affine
lower bound functions f and g;, respectively.

2. If the function h; defining the j-th equality constraint is affine,
then this equation is added to the constraints that define the re-
laxation. The remaining equations are written as two inequalities
and these are treated according to (1).

Then we obtain the following optimization problem: mijr\} f(x)
TreN —

with the set N of feasible solutions given by
gi(z) <0, ¢ = 1,....m z € X,
hi(x) =0, j=1,...,I', z € X,

References for recent relaxation techniques: Adjiman and Floudas ('96)
I.P. Androulakis, C.D. Maranas, and C.A. Floudas ('95)
C. Jansson ('00, '01) C.D. Maranas and C.A. Floudas ('94)



Bernstein Polynomials
Bi(z) = (;)2'(1 —2)!~%, 0<i<lI

[ :
given: p(z) = > a;’

1=
wanted: p(I) = {p(x) |x € I} w.l.o.g. I = [0, 1]"
power form — Bernstein form

p(x) = zl: b;B;(x), where

1=

“ ()
b; = Z %aj, 0<:<1 Bernstein coefficients
=0 (5)

l
in particular, bg =ag =p(0), b= > a;=p(1)

1=

can be calculated economically by difference table method
(similarly to the de Casteljau algorithm).



Range Enclosing Property

! l
p(I) C By = [minbi, maxbi]

1=0 1=0

Bounds are sharp (i.e. no overestimation) if and only if the min/max
IS attained at bg or b;.

bo = a9 = p(0)
p(1)
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Convex Hull Property

{(pé)) : xEI}
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Notations

Multiindices ¢ = (i1,...,in)Y are vectors, where the components are
nonnegative integers. The vectors O and 1 denote the multiindices
with all components equal to 0 or 1, resp.

Comparisons and the absolute value |.| are used entrywise.

The division of multiindices ¢,Il with [ > 0 is defined componentwise as

. n
i/l := (i1/l1,...,in/ln)L. For z € R™ its multipowers are z* := 1‘[1 :cif‘.
N:
We use the notations > = > ... > and (Z) = ]I (Z“)
i=0 i1=0  ip=0 p=1 ‘A



Method 1 - Constant bound function

co(x) = b,o = min{b; : 0 <7 <1}

Then

co(z) <p(x) Veel

Method 2 (our previous approach) computes a bound function pasi-
ing through b,0 and relies on the computation of gradients and the
solution of an LP problem.

Garloff, Jansson, Smith ('03)



Method 3 - Algorithm, First Iteration:

Let vl = (1,0,...,0)7T.

Compute slopes gil from the control point b; to b° in direction w!:
b; — bY .
gi = +——5 for all i with i1 # 3.
i1 _ Y
i~ I

Let 1 be a multiindex with smallest absolute val%e of associated
-1
slope g}. Designate the control point b! = (%,bil) and the vector

wl = # Define the lower bound function

40

c1(z) =0 + gillul : (:1: — %) :



7th Iteration, 7 =2,...,n:

|_etajz([3{,...,5}_1,1,0,...,0)7” |
such that @/ -w* =0, k=1,...,5 — 1. Normalise @/.

Compute slopes g‘g from the control point b; to b0 in direction wJ:

i bi—cj—1(7) i — Y
.O .

g; = for all i, except where ) = 0.

’I,—l'l . ’U;J

Let #/ be a multiindex with smallest absolute val%e of associated
slope gg. Designate the control point ¥/ = (%,bij) and the vector

wl =¥ l" . Define the lower bound function

40

cj(z) =cj_1(z) + g‘zjuj : (x — %) .



For the n iterations of the algorithm, the solution of such a sequence
of systems of linear equations would normally require %n“ + O(n3)
arithmetic operations. However we can take advantage of the fact
that, in the jth iteration, the vectors wl,...,wJ~1 are unchanged
from the previous iteration. The solution of these systems can then
be formulated as Gaussian elimination applied rowwise to a single
(n—1) x (n— 1) matrix. In addition, a sequence of back-substitution
steps has to be performed. Then altogether only n3+0(n2) arithmetic
operations are required. Let

L=?jﬁ(zi+1).

i=1
There are then L™ Bernstein coefficients, so that the computation of
the slopes g‘g in all iterations requires at most n2L”+L”O(n) arithmetic
operations.




Theorem 1 We have that

which means that ¢, passes through all n+ 1 control points bo, ..., b".

Since ¢, is by construction a lower bound function, 8°,...,5" must
therefore span a lower facet of the convex hull of all control points.



Theorem 2 The affine lower bound function c,, satisfies the a pos-
teriori error bound

0 <plzx) —cnlx) < max{bi—an) ; Ogigl}, x € 1,
which specifies in the univariate case to (x € I)

b, — b0 bl —b0>

0 <p(zr)—ci(z) < max{(m 1,0

(i —i9) : Ogigl,i;éio}.

Remark: If we extend the construction of affine lower bound functions in the
univariate case from I to arbitrary intervals [a,a] with a < @, then we can show
that this error bound is quadratic w.r.t. the width of the interval , i.e., the right-
hand side can be bounded from above by C(p)(a — a)?, where C(p) is an constant
depending only on p. The question whether quadratic convergence holds true in

the multivariate case is open, but seems likely also to hold.



Example 1: For [ =3,8,13,17: p(z) =
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Example 2: p(z) = %([) (x —i), ze€][l,3]

=1

x10%

The error bound is 1.6912 x 1016,



Example 3:

p1(z1,20) = alwiwz + arr? -|2- a3r12 + agry -|3- 5T, ,
po(x1,22) = aer{ro + o715 + agriro + agrs + a1oxs + o112 + a12,
where

a1 = —1.697 x 107 a7 =4.126 x 107
asr = 2.177 x 10 ag = —8.285 x 10°
a3z = 0.5500 ag = 2.284 x 107
0.4500 x 107 @19 =1.918 x 10’
—1.0000 x 107 @77 = 48.40

1.585 x 1014 a1, = —-27.73

o7

as
ag



11111

respectively.



Method 4 - Designate control points corresponding to the n 4+ 1
smallestx Bernstein coefficients.

Method 5 - Designate the control point corresponding to the min-
imum Bernstein coefficient and n others which connect to it with
Mminimums* absolute value of gradient.

In either case, a lower bound function is obtained by interpolating
the designated control points (solution of a linear system). This
bound function may be invalid, in which case it is corrected by the
computation of an error term followed by a downward shift.

(x excluding degenerate cases)



Method 4 - Example of poor lower bound function




Method 5 - Example of poor lower bound function




Table 1. Results for random polynomials

Method 1 (Constant) 2 (LP problems) 3 (Linear eqs)
n D E (D4 1)" | time (s) ) time (s) ) time (s) )
2 2 5 9 | 0.000040 1.414 | 0.00020 0.976 | 0.000069 0.981
2 6 10 49 | 0.00013 1.989 | 0.0025 1.695 | 0.00031 1.677
2 10 20 121 | 0.00039 2.867 | 0.023 2.543 | 0.00074 2.511
4 2 20 81 | 0.00037 3.459 | 0.0082 2.847 | 0.0012 2.797
4 4 50 625 | 0.0024 5.678 | 2.82 5.056 | 0.0093 5.045
§) 2 20 729 | 0.0011 4.043 | 4.48 3.403 | 0.016 3.353
8 2 50 6561 | 0.0093 6.941 greater than 0.24 6.291
10 2 50 59049 | 0.091 7.143 1 minute 3.43 6.503
4 (min BCs) 5 (min gradients)
2 2 5 9 | 0.000085 1.147 | 0.00011 0.961
2 6 10 49 | 0.00031 4.914 | 0.00044 1.910
2 0 20 121 | 0.00090 11.49 | 0.0012 3.014
4 2 20 81 | 0.0012 4.797 | 0.0015 3.199
4 4 50 625 | 0.0088 14.05 | 0.011 5.940
§) 2 20 729 | 0.015 5.921 | 0.017 3.687
8 2 50 6561 | 0.21 14.33 | 0.24 7.360
10 2 50 59049 | 2.69 17.11 | 3.11 7.680




Comparison of Methods - Summary

e Method 1 is the fastest, but constant bound functions are crude,
with no shape information and a mediocre error bound.

e Method 2 is too slow, requiring the solution of LP problems.

e Method 3 is recommended, with the best error bound.

e Methods 4 and 5 are unreliable, giving extremely poor bound
functions in some cases.

e The best method for any given polynomial may vary.



Future Work

e Verified bound functions can be obtained, either by using interval
arithmetic, or by the computation of error terms and adjustment.

e Bound functions for derivatives can also be computed - first- and
second-order information is easily obtainable from the Bernstein
coefficients.

e Taylor expansion can be used to compute bound functions for
problems involving general functions. A high-degree Taylor poly-
nomial is computed (introduction of higher degree polynomial
terms is not problematic for our approach), for which Bernstein
coefficients and a bound function can be computed. The remain-
der of the Taylor expansion can be enclosed in an interval by
interval computation methods. Subtracting this interval from the
lower bound function of the Taylor polynomial provides the lower
bound function for the given function.



Conclusions

e Bernstein expansion can deliver tight affine bounding functions
for polynomials which may be of use in global optimisation or
constraint programming.

e A package for the computation of bound functions for polynomials
based on Bernstein expansion will shortly be contributed to the

COCONUT project.

e For more information and papers, please see
http://www-home.fh-konstanz.de/ " garloff/

e T hank you for your attention!



