LNMB - NETWORKS AND SEMIDEFINITE PROGRAMMING HINTS FOR EXERCISE 7.29

Exercise 7.29. Let G = (V, E) and let $\overline{G} = (V, \overline{E})$ denote its complementary graph. Show: G is an interval graph if and only if G is chordal and \overline{G} is a comparability graph.

Here are some hints for the 'if part'. Assume that G is chordal and \overline{G} is a comparability graph. Hence there exists a partial order on V, denoted as \leq , such that for any distinct nodes $u, v, \{u, v\} \in \overline{E}$ if and only if $u \leq v$ or $v \leq u$.

Sketch: We are going to use this partial order on V in order to define a total order on the set of maximal (with respect to inclusion) cliques of G, which is then used to construct an interval representation of G.

- (a) Let C_1 and C_2 be two maximal cliques of G. Show: There exist nodes $u \in C_1$, $v \in C_2$ such that $\{u, v\} \in \overline{E}$. Without loss of generality we may assume that $u \leq v$. Show: If $u' \in C_1$, $v' \in C_2$ and $\{u', v'\} \in \overline{E}$ then $u' \leq v'$. Then let us say that $C_1 \leq C_2$.
- (b) Let C_1, C_2, C_3 be three distinct maximal cliques of G. Show: If $C_1 \leq C_2$ and $C_2 \leq C_3$ then $C_1 \leq C_3$.
- (c) Let C_1, \ldots, C_q denote the maximal cliques of G which can be labeled in such a way that $C_1 \leq C_2 \leq \ldots \leq C_q$ (in view of (b)). For any node $u \in V$ define the set

$$I_u = \{ i \in \{1, \dots, q\} : u \in C_i \}.$$

Show: I_u is an interval, i.e.,

$$i < k < j \text{ with } i, j \in I_u \Longrightarrow k \in I_u.$$

1

(d) Show that the intervals I_u ($u \in V$) provide an interval representation of G.