Exercise 1. Let $G = (V, E)$ be a graph and A_G be its adjacency matrix with eigenvalues $\lambda_1 \geq \cdots \geq \lambda_n$. Assume that G is k-regular (i.e., all vertices have degree k), so that $\lambda_1 = k$, with corresponding eigenvector the all-ones vector e.

(i) Show that $\vartheta(G) \leq -n\lambda_n - \lambda_n^{-1}$.

(ii) Assume moreover that G is edge-transitive, i.e., for any two edges $\{i,j\}, \{i',j'\} \in E$ there exists an automorphism σ of G such that $\{i',j'\} = \{\sigma(i), \sigma(j)\}$. Show that $\vartheta(G) = -n\lambda_n - \lambda_n^{-1}$.

Hint: Use the formulation:
$$\vartheta(G) = \min_t \text{ s.t. } tI - B \succeq 0, \ B_{ii} = 1 \ (i \in V), \ B_{ij} = 1 \ (\{i,j\} \in E).$$

Remark: The cycle C_n is 2-regular and edge-transitive. For n odd and with $\omega_k := e^{2k\pi/n}$ for $1 \leq k \leq n$, the eigenvalues of A_{C_n} are $\omega_k + \omega_k^{-1} = 2\cos(2k\pi/n)$, with corresponding eigenvector $(1, \omega_k, \omega_k^2, \cdots, \omega_k^{n-1})$. From this you may deduce that $\lambda_1 = 2$ and $\lambda_n = -2\cos(\pi/n)$, so that you get
$$\vartheta(C_n) = \frac{n\cos(\pi/n)}{1 + \cos(\pi/n)}.$$

Exercise 2. Given a graph $G = (V, E)$, a symmetric matrix $B \in S^n$ is said to fit G if it has non-zero diagonal entries and zero entries at positions of non-edges of G, i.e.,
$$B_{ii} \neq 0 \text{ for } i \in V, \ B_{ij} = 0 \text{ for all } \{i,j\} \in \overline{E}.$$
Consider the parameter $R(G)$ defined as the smallest rank of a matrix B which fits G.

(a) Show that $R(G) \leq \chi(G)$.

(b) Show that $R(G) \geq \alpha(G)$.

(c) Show that $R(G) \geq \Theta(G)$.

(This upper bound on the Shannon capacity is due to W. Haemers.)
Exercise 3. The goal of the exercise is to show a concise LP reformulation for the theta number of Hamming graphs (with only $n + 1$ variables), also known as Delsarte LP bound.

Consider the Hamming graph $G(n, d)$ with vertex set $V = \{0, 1\}^n$ and with an edge $\{u, v\}$ if $d_H(u, v) \leq d - 1$. Here $d \geq 1$ is an integer and $d_H(u, v)$ is the Hamming distance between $u, v \in V$, defined as the number of positions i with $u_i \neq v_i$. We also set $|v| = d_H(v, 0)$, the number of nonzero coordinates of $v \in V$.

Let $\text{Sym}(n)$ denote the set of permutations of $[n]$. Any $\sigma \in \text{Sym}(n)$ induces a permutation of V (again denoted σ for simplicity), obtained by permuting coordinates:

$$\sigma : V \rightarrow V \quad v \mapsto \sigma(v) = (v_{\sigma(1)}, \ldots, v_{\sigma(n)})$$

Given $a \in V$, one can define the following permutation of V:

$$s_a : V \rightarrow V \quad v \mapsto s_a(v) = a \oplus v,$$

where $a \oplus v$ is the element of V obtained by doing addition modulo 2 coordinate-wise. (For instance, $(1, 0) \oplus (1, 1) = (0, 1)$ and $(1, 1) \oplus (1, 1) = (0, 0).$)

Let G_n denote the subgroup of $\text{Sym}(V)$ generated by all such σ and s_a (for $a \in V$).

(a) Show that all permutations in G_n are automorphisms of $G(n, d)$ and that $G(n, d)$ is vertex-transitive under the action of G_n.

(b) Show that if $u, v, u', v' \in V$ are such that $d_H(u, v) = d_H(u', v')$ then there exists $\pi \in G_n$ such that $\pi(u) = u'$ and $\pi(v) = v'$.

(c) Show that if a matrix $X \in S^V$ is invariant under action of G_n then it satisfies $X(u, v) = X(u', v')$ whenever $d_H(u, v) = d_H(u', v')$.

Let B_n denote the subspace of S^V consisting of all matrices that are invariant under action of G_n. For $0 \leq k \leq n$ define the matrix $M_k \in S^V$ with entries $M_k(u, v) = 1$ if $d_H(u, v) = k$ and zero otherwise. It follows from (c) that the matrices M_0, M_1, \ldots, M_n form a linear basis of the vector space B_n. We now indicate how to construct another basis of B_n (which will helpful to simultaneously diagonalize all matrices in B_n).

Given $a \in V$ define the vector in \mathbb{R}^V:

$$C_a = ((-1)^a)^Tv \in V$$

and define the matrices in S^V:

$$B_k = \sum_{a \in V: |a| = k} C_aC_a^T \quad \text{for } 0 \leq k \leq n.$$

(d) What is B_0? What is the value of $\text{Tr}(B_k)$? Show that the matrices B_0, B_1, \ldots, B_n are pairwise orthogonal.

(e) For any $0 \leq k \leq n$ and $u, v \in V$, show that

$$B_k(u, v) = P^k_n(d_H(u, v)),$$
where \(P^k_n(t) \) is defined by

\[
P^k_n(t) := \sum_{i=0}^{k} (-1)^i \binom{t}{i} \binom{n-t}{k-i}
\]

(known as the Krawtchouk polynomial).

(f) Show that \(B_0, B_1, \ldots, B_n \) form a linear basis of \(B_n \).

(g) Let \(X \in B_n \), say \(X = \sum_{k=0}^{n} x_k B_k \). Show that \(X \succeq 0 \) if and only if \(x_0, \ldots, x_n \geq 0 \).

(h) Show that the theta number of \(G(n,d) \) can be reformulated as the following LP:

\[
\vartheta(G(n,d)) = \max_{x_0, x_1, \ldots, x_n \in \mathbb{R}^2} 2^{2n} x_0 \text{ s.t. } \begin{align*}
\sum_{k=0}^{n} x_k \binom{n}{k} &= 2^{-n}, \\
\sum_{k=0}^{n} x_k P^k_n(t) &= 0 \text{ for } t = 1, \ldots, d - 1, \\
x_k &\geq 0 \text{ for } k = 0, 1, \ldots, n.
\end{align*}
\]