LNMB - NETWORKS AND SEMIDEFINITE PROGRAMMING

Exercises for Lecture 3 - December 5, 2017

Exercise 1. Let G = (V, E) and let $\overline{G} = (V, \overline{E})$ denote its complementary graph. Show: G is an interval graph if and only if G is chordal and \overline{G} is a comparability graph.

(1) First show the 'only if' part.

(2) Then show the 'if part' through (2a)-(2d) below.

Sketch of proof: Assume that G is chordal and \overline{G} is a comparability graph. Hence there exists a partial order on V, denoted as \leq , such that for any distinct nodes $u, v, \{u, v\} \in \overline{E}$ if and only if $u \leq v$ or $v \leq u$. We are going to use this partial order on V in order to define a total order on the set of maximal (with respect to inclusion) cliques of G, which is then used to construct an interval representation of G.

- (2a) Let C_1 and C_2 be two maximal cliques of G. Show: There exist nodes $u \in C_1$, $v \in C_2$ such that $\{u, v\} \in \overline{E}$. Without loss of generality we may assume that $u \leq v$. Show: If $u' \in C_1$, $v' \in C_2$ and $\{u', v'\} \in \overline{E}$ then $u' \leq v'$. Then let us say that $C_1 \leq C_2$.
- (2b) Let C_1, C_2, C_3 be three distinct maximal cliques of G. Show: If $C_1 \leq C_2$ and $C_2 \leq C_3$ then $C_1 \leq C_3$.
- (2c) Let C_1, \ldots, C_q denote the maximal cliques of G which can be labeled in such a way that $C_1 \leq C_2 \leq \ldots \leq C_q$ (in view of (2b)). For any node $u \in V$ define the set

$$I_u = \{ i \in \{1, \dots, q\} : u \in C_i \}.$$

Show: I_u is an interval, i.e.,

$$i < k < j \text{ with } i, j \in I_u \Longrightarrow k \in I_u.$$

(2d) Show that the intervals I_u ($u \in V$) provide an interval representation of G, i.e., $\{u, v\} \in E$ if and only if $I_u \cap I_v \neq \emptyset$.

Exercise 2. Let G = (V, E). A linear ordering $\pi = (v_1, \dots, v_n)$ of the vertices of V is said to be a *perfect elimination ordering* if, for any $1 \le i < n$, the set of vertices

$$N(v_i) := \{v_j : i < j \text{ and } \{v_i, v_j\} \in E\}$$

(consisting of the vertices adjacent to v_i that come after v_i in the linear ordering π) is a clique in G. As you will show below this ordering is very useful to design efficient algorithms for computing $\omega(G)$, $\alpha(G)$ and $\chi(G)$ in chordal graphs.

We now assume that G is a chordal graph.

- (a) Show that G has a perfect elimination ordering, give a polynomial time algorithm to find such an ordering π .
- (b) Show that G has at most n maximal cliques and give a polynomial time algorithm permitting to enumerate the maximal cliques of G and to compute $\omega(G)$.
- (c) Give a polynomial time algorithm permitting to find a stable set in G of maximum cardinality (and thus to compute $\alpha(G)$).
- (d) Give a polynomial time algorithm permitting to find a vertex coloring of G using $\omega(G)$ colors (which thus shows that $\chi(G) = \omega(G)$).

Hint: For (c) use a greedy approach starting from the first node in π in order to construct a maximum cardinality stable set, and for (d) use a greedy approach starting from the last node in π in order to construct a vertex coloring of G using $\omega(G)$ colors.