LNMB - NETWORKS AND SEMIDEFINITE PROGRAMMING

Exercises for Lecture 3 - December 5, 2017

Exercise 1. Let $G=(V, E)$ and let $\bar{G}=(V, \bar{E})$ denote its complementary graph. Show: G is an interval graph if and only if G is chordal and \bar{G} is a comparability graph.
(1) First show the 'only if' part.
(2) Then show the 'if part' through (2a)-(2d) below.

Sketch of proof: Assume that G is chordal and \bar{G} is a comparability graph. Hence there exists a partial order on V, denoted as \leq, such that for any distinct nodes $u, v,\{u, v\} \in \bar{E}$ if and only if $u \leq v$ or $v \leq u$. We are going to use this partial order on V in order to define a total order on the set of maximal (with respect to inclusion) cliques of G, which is then used to construct an interval representation of G.
(2a) Let C_{1} and C_{2} be two maximal cliques of G.
Show: There exist nodes $u \in C_{1}, v \in C_{2}$ such that $\{u, v\} \in \bar{E}$.
Without loss of generality we may assume that $u \leq v$.
Show: If $u^{\prime} \in C_{1}, v^{\prime} \in C_{2}$ and $\left\{u^{\prime}, v^{\prime}\right\} \in \bar{E}$ then $u^{\prime} \leq v^{\prime}$.
Then let us say that $C_{1} \leq C_{2}$.
(2b) Let C_{1}, C_{2}, C_{3} be three distinct maximal cliques of G.
Show: If $C_{1} \leq C_{2}$ and $C_{2} \leq C_{3}$ then $C_{1} \leq C_{3}$.
(2c) Let C_{1}, \ldots, C_{q} denote the maximal cliques of G which can be labeled in such a way that $C_{1} \leq C_{2} \leq \ldots \leq C_{q}$ (in view of (2b)). For any node $u \in V$ define the set

$$
I_{u}=\left\{i \in\{1, \ldots, q\}: u \in C_{i}\right\} .
$$

Show: I_{u} is an interval, i.e.,

$$
i<k<j \text { with } i, j \in I_{u} \Longrightarrow k \in I_{u} .
$$

(2d) Show that the intervals $I_{u}(u \in V)$ provide an interval representation of G, i.e., $\{u, v\} \in E$ if and only if $I_{u} \cap I_{v} \neq \emptyset$.

Exercise 2. Let $G=(V, E)$. A linear ordering $\pi=\left(v_{1}, \cdots, v_{n}\right)$ of the vertices of V is said to be a perfect elimination ordering if, for any $1 \leq i<n$, the set of vertices

$$
\tilde{N}\left(v_{i}\right):=\left\{v_{j}: i<j \text { and }\left\{v_{i}, v_{j}\right\} \in E\right\}
$$

(consisting of the vertices adjacent to v_{i} that come after v_{i} in the linear ordering π) is a clique in G. As you will show below this ordering is very useful to design efficient algorithms for computing $\omega(G), \alpha(G)$ and $\chi(G)$ in chordal graphs.
We now assume that G is a chordal graph.
(a) Show that G has a perfect elimination ordering, give a polynomial time algorithm to find such an ordering π.
(b) Show that G has at most n maximal cliques and give a polynomial time algorithm permitting to enumerate the maximal cliques of G and to compute $\omega(G)$.
(c) Give a polynomial time algorithm permitting to find a stable set in G of maximum cardinality (and thus to compute $\alpha(G)$).
(d) Give a polynomial time algorithm permitting to find a vertex coloring of G using $\omega(G)$ colors (which thus shows that $\chi(G)=\omega(G)$).

Hint: For (c) use a greedy approach starting from the first node in π in order to construct a maximum cardinality stable set, and for (d) use a greedy approach starting from the last node in π in order to construct a vertex coloring of G using $\omega(G)$ colors.

