Exercises – 25 November 2022 LNMB Course Networks and Semidefinite Programming

Note: In what follows the symbol $\chi(\cdot)$ is used to denote the vertex-coloring number of a graph, which is denoted by $\gamma(\cdot)$ in [LNAS].

Exercise 1. Let G = (V, E) be a connected simple planar graph with $n \ge 3$ nodes. The goal is to show that $\chi(G) \le 5$.

We let m denote the number of edges of G and f denote the number of faces in a plane drawing of G.

- (1) Show: $2m \geq 3f$.
- (2) Show: $m \le 3n 6$.

Hint: Use Euler's formula: n + f = m + 2. (For instance, for K_4 , n = 4, m = 6 and f = 4).

- (3) Show: G has at least one node u with degree at most 5.
- (4) Show: $\chi(G) \leq 5$ (using induction on n).

Hint: Distinguish two cases: (i) u has degree at most 4; (ii) u has degree 5. In case (ii), pick two neighbors v_1 and v_2 of u that are not adjacent (why do they exist?) and consider the graph H obtained by contracting both edges $\{u, v_1\}$ and $\{u, v_2\}$, which is 5-colorable using induction.

Exercise 2. (Exercise 7.5 in [LNAS]). Derive König's edge cover theorem (Corollary 3.3a in [LNAS]) from the Strong Perfect Graph Theorem.

Note: The Strong Perfect Graph Theorem claims that if a graph H does not contain an odd cycle of length at least 5 or its complement as an induced subgraph, then its vertex-colouring number $\chi(H)$ is equal to its clique number $\omega(H)$.

Exercise 3. (Exercise 7.12 in [LNAS]). Let $\mathcal{A} = (A_1, \ldots, A_n)$ and $\mathcal{B} = (B_1, \ldots, B_n)$ be partitions of a finite set X such that $|A_1| = \ldots = |A_n| = |B_1| = \ldots = |B_n| = k$. Show that \mathcal{A} and \mathcal{B} have k disjoint common transversals.

Note: A set $Y \subseteq X$ is called a transversal of \mathcal{A} if $|Y \cap A_i| = 1$ for all $i \in [n]$. Hint: Note that König's edge-coloring theorem (Theorem 7.3 in [LNAS]) holds for bipartite graphs with multiple edges.