Exercises – 27 January 2025 LNMB Course Networks and Semidefinite Programming

Exercise A. Let G = (V = [n], E) be a graph with nonnegative edge weights $w \in \mathbb{R}^{E}_{+}$, and extend w to the edge set of the complete graph K_n by setting $w_{ij} = 0$ if $i \neq j \in V$ and $\{i, j\} \notin E$. Define the associated Laplacian matrix $L \in S^n$, with entries

$$L_{ii} = \sum_{j \in V \setminus \{i\}} w_{ij} \text{ for } i \in V,$$
$$L_{ij} = L_{ji} = -w_{ij} \text{ for } i \neq j \in V.$$

- (a) Show that $x^T L x = \sum_{1 \le i < j \le n} w_{ij} (x_i x_j)^2$ for any $x \in \mathbb{R}^n$, and that $L \succeq 0$.
- (b) Show that $\frac{1}{4}x^T L x = \sum_{1 \le i < j \le n} w_{ij} \left(\frac{1 x_i x_j}{2}\right)$ for any $x \in \{\pm 1\}^n$.

Note: The above underlies the alternative formulation (4.8) for the max-cut problem and the alternative formulation (4.9) for its sdp relaxation. After taking the dual one arrives at the dual formulation (4.11), which reads

$$sdp(G, w) = \min\left\{\frac{n}{4}\lambda_{\max}(L + \text{Diag}(u)) : u \in \mathbb{R}^n, \sum_{i=1}^n u_i = 0\right\}$$

$$= \max\left\{\frac{n}{4}t : tI - L - \text{Diag}(u) \succeq 0, \ t \in \mathbb{R}, \ u \in \mathbb{R}^n, \sum_{i=1}^n u_i = 0\right\}.$$
(1)

Here, $\lambda_{\max}(\cdot)$ denotes the largest eigenvalue. For $u \in \mathbb{R}^n$, Diag(u) is the diagonal matrix whose diagonal entries are u_1, \ldots, u_n . (Please read the proof of Theorem 4.2.2.)

Exercise B. Consider the complete graph K_n , where all edges have weight 1.

- (a) Compute the value of $mc(K_n)$, the maximum cardinality of a cut in K_n .
- (b) Compute the optimal value of the semidefinite program

$$\min\{\langle J, X \rangle : X \in \mathcal{S}^n, X \succeq 0, X_{ii} = 1 \text{ for } i \in [n]\}.$$

(c) Compute the value of $sdp(K_n)$, the optimal value of the semidefinite relaxation for K_n equipped with all-ones edge weights.

Exercise C. Let G = (V = [n], E) be a graph, equipped with all-ones edge weights (i.e., $w_{ij} = 1$ for $\{i, j\} \in E$). As in Exercise A, consider the associated Laplacian matrix L and the formulation for sdp(G) from relation (1).

- (a) Assume G is a vertex-transitive graph. Then, G is r-regular for some integer r.
 - (a1) Show that $L = rI_n A_G$, where A_G is the adjacency matrix of G (with entries $(A_G)_{ij} = 1$ if $\{i, j\} \in E$, and entries 0 elsewhere).
 - (a2) Show: If σ is a permutation of V that is an automorphism of G, then $\sigma(A_G) = A_G$. Recall that $\sigma(A_G) = ((A_G)_{\sigma(i)\sigma(j)})_{i,j=1}^n$.

- (a3) Show that $sdp(G) = \frac{n}{4}\lambda_{max}(L)$. Hint: Use the formulation (1) and show that u = 0 is an optimal solution.
- (b) Assume $G = C_{2n+1}$ is an odd cycle, with $n \ge 1$. Show that

$$sdp(G) = \frac{2n+1}{2} \Big(1 + \cos\left(\frac{\pi}{2n+1}\right) \Big).$$

Hint: The eigenvalues of the adjacency matrix of C_{2n+1} are $2\cos\left(\frac{2k\pi}{2n+1}\right)$ for $0 \le k \le 2n$.