Exercises A & B – 18 November 2024 LNMB Course Networks and Semidefinite Programming

Exercise A. The goal is to give a polynomial-time reduction from the vertex-coloring problem to the stable set problem.

Consider an instance of the coloring problem, consisting of a graph G = (V, E)and an integer $k \ge 1$, and the task is to decide whether there exists a vertex-coloring of G using k colours, i.e., whether $\chi(G) \le k$.

We build a new graph H as the Cartesian product of G and the complete graph K_k on k nodes. That is, the vertices of H are the pairs (u, i), where $u \in V$ and $i \in [k]$, and two distinct vertices (u, i) and (v, j) are adjacent in H if and only if either $\{u, v\} \in E$ and i = j, or u = v and $i \neq j$ (i.e., $\{i, j\}$ is an edge in K_k).

Show that

$$\chi(G) \le k \Longleftrightarrow \alpha(H) \ge n.$$

Exercise B. The goal is to give a polynomial-time reduction from the stable set problem to the vertex-coloring problem.

Consider an instance of the stable set problem, consisting of a graph G = (V, E)and an integer $k \ge 1$, and the task is to decide whether there exists a stable set of G of cardinality k, i.e., whether $\alpha(G) \ge k$.

We build a new graph H = (W, F) in the following manner.

Let V' be a disjoint copy of the vertex set V of G, and let U be a set of cardinality k that is disjoint from V and V'. Set $V = \{v_1, \ldots, v_n\}, V' = \{v'_1, \ldots, v'_n\}$, and $U = \{u_1, \ldots, u_k\}$. Then, the vertex set of H is $W = V \cup V' \cup U$, with |W| = 2n + k.

The edge set of H consists of the following edges:

- Two distinct nodes of V are adjacent in H if and only if they are adjacent in G (i.e., there is a copy of G on V).

- Any two distinct nodes of V' are adjacent (i.e., there is a complete graph on V').

- Any two distinct nodes of U are adjacent (i.e., there is a complete graph on U).

- Two nodes $v_i \in V$ and $v'_j \in V'$ are adjacent if and only if $i \neq j$ (i.e., each node $v_i \in V$ is adjacent to each node $v'_j \in V'$ except to its 'copy' v'_i).

- Every node of V is adjacent to every node of U (i.e., there is a complete bipartite graph between V and U).

Show that

$$\alpha(G) \ge k \Longleftrightarrow \chi(H) \le n+1.$$