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CHAPTER 1

PRELIMINARIES: CONVEX
SETS AND POSITIVE

SEMIDEFINITE MATRICES

A set C is called convex if, given any two points x and y in C, the straight line
segment connecting x and y lies completely inside of C. For instance, cubes,
balls or ellipsoids are convex sets whereas a torus is not. Intuitively, convex sets
do not have holes or dips.

Usually, arguments involving convex sets are easy to visualize by two-dim-
ensional drawings. One reason being that the definition of convexity only in-
volves three points which always lie in some two-dimensional plane. On the
other hand, convexity is a very powerful concept which appears (sometimes
unexpected) in many branches of mathematics and its applications. Here are
a few areas where convexity is an important concept: mathematical optimiza-
tion, high-dimensional geometry, analysis, probability theory, system and con-
trol, harmonic analysis, calculus of variations, game theory, computer science,
functional analysis, economics, and there are many more.

Our aim is to work with convex sets algorithmically. So we have to discuss
ways to represent them in the computer, in particular which data do we want
to give to the computer. Roughly speaking, there are two convenient possibil-
ities to represent convex sets: By an implicit description as an intersection of
halfspaces or by an explicit description as the convex combination of extreme
points. The goal of this chapter is to discuss these two representations. In the
context of functional analysis they are connected to two famous theorems, the
Hahn-Banach theorem and the Krein-Milman theorem. Since we are only work-
ing in finite-dimensional Euclidean spaces (and not in the more general setting
of infinite-dimensional topological vector spaces) we can derive the statements
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using simple geometric arguments.
Later we develop the theory of convex optimization in the framework of

conic programs. For this we need a special class of convex sets, namely convex
cones. The for optimization most relevant convex cones are at the moment two
involving vectors in Rn and two involving symmetric matrices in Rn×n, namely
the non-negative orthant, the second order cone, the cone of positive semidefi-
nite matrices, and the cone of copositive matrices. Clearly, the cone of positive
semidefinite matrices plays the main role here. As background information we
collect a number of basic properties of positive semidefinite matrices.

1.1 Some fundamental notions

Before we turn to convex sets we recall some fundamental geometric notions.
The following is a brief review, without proofs, of some basic definitions and
notations appearing frequently in the sequel.

1.1.1 Euclidean space

Let E be an n-dimensional Euclidean space which is an n-dimensional real vector
space having an inner product. We usually use the notation x · y for the inner
product between the vectors x and y. This inner product defines a norm on E
by ‖x‖ =

√
x · x and a metric by d(x, y) = ‖x− y‖.

For sake of concreteness we will work with coordinates most of the time:
One can always identify E with Rn where the inner product of the column
vectors x = (x1, . . . , xn)T and y = (y1, . . . , yn)T is the usual one: x · y = xTy =∑n
i=1 xiyi. This identification involves a linear transformation T : E → Rn

which is an isometry, i.e. x · y = Tx · Ty holds for all x, y ∈ E. Then the norm
is the Euclidean norm (or `2-norm): ‖x‖2 =

√∑
i x

2
i and d(x, y) = ‖x − y‖2 is

the Euclidean distance between two points x, y ∈ Rn.

1.1.2 Topology in finite-dimensional metric spaces

The ball with center x ∈ Rn and radius r is

B(x, r) = {y ∈ Rn : d(x, y) ≤ r}.

Let A be a subset of n-dimensional Euclidean space. A point x ∈ A is an interior
point of A if there is a positive radius ε > 0 so that B(x, ε) ⊆ A. The set
of all interior points of A is denoted by intA. We say that a set A is open if
all points of A are interior points, i.e. if A = intA. The set A is closed if its
complement Rn \ A is open. The (topological) closure A of A is the smallest
(inclusion-wise) closed set containing A. One can show that a set A in Rn is
closed if and only if every converging sequence of points in A has a limit which
also lies in A. A point x ∈ A belongs to the boundary ∂A of A if for every ε > 0
the ball B(x, ε) contains points in A and in Rn \A. The boundary ∂A is a closed
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set and we have A = A ∪ ∂A, and ∂A = A \ intA. The set A is compact if every
sequence in A contains a convergent subsequence. The set A is compact if and
only if it is closed and bounded (i.e. it is contained in a ball of sufficiently large,
but finite, radius).

For instance, the boundary of the ball with radius 1 and center 0 is the unit
sphere

∂B(0, 1) = {y ∈ Rn : d(0, y) = 1} = {x ∈ Rn : xTx = 1}.

Traditionally, it is called the (n − 1)-dimensional unit sphere, denoted as Sn−1,
where the superscript n− 1 indicates the dimension of the manifold.

1.1.3 Affine geometry

A subset A ⊆ Rn is called an affine subspace of Rn if it is a translated linear
subspace: One can write A in the form

A = x+ L = {x+ y : y ∈ L}

where x ∈ Rn and where L is a linear subspace of Rn. The dimension of A
is defined as dimA = dimL. Affine subspaces are closed under affine linear
combinations:

∀N ∈ N ∀x1, . . . , xN ∈ A ∀α1, . . . , αN ∈ R :

N∑
i=1

αi = 1 =⇒
N∑
i=1

αixi ∈ A.

The smallest affine subspace containing a set of given points is its affine hull.
The affine hull of A ⊆ Rn is the set of all possible affine linear combinations

aff A =

{
N∑
i=1

αixi : N ∈ N, x1, . . . , xN ∈ A,α1, . . . , αN ∈ R,
N∑
i=1

αi = 1

}
.

A fact which requires a little proof (exercise). The dimension of an arbitrary set
A is dimA = dim(aff A). One-dimensional affine subspaces are lines and (n−1)-
dimensional affine subspaces are hyperplanes. A hyperplane can be specified as

H = {x ∈ Rn : cTx = β},

where c ∈ Rn \ {0} is the normal of H (which lies orthogonal to H) and where
β ∈ R. Sometimes we write Hc,β for it.

If the dimension ofA ⊆ Rn is strictly smaller than n, thenA does not have an
interior, intA = ∅. In this situation one is frequently interested in the interior
points of A relative to the affine subspace aff A. We say that a point x ∈ A
belongs to the relative interior of A when there is a ball B(x, ε) with strictly
positive radius ε > 0 so that aff A ∩ B(x, ε) ⊆ A. We denote the set of all
relative interior points of A by relintA. Of course, if dimA = n, then the
interior coincides with the relative interior: intA = relintA.
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1.2 Convex sets

A subset C ⊆ Rn is called a convex set if for every pair of points x, y ∈ C also
the entire line segment between x and y is contained in C. The line segment
between the points x and y is defined as

[x, y] = {(1− α)x+ αy : 0 ≤ α ≤ 1}.

Convex sets are closed under convex combinations:

∀N ∈ N ∀x1, . . . , xN ∈ C ∀α1, . . . , αN ∈ R≥0 :

N∑
i=1

αi = 1 =⇒
N∑
i=1

αixi ∈ C.

Throughout we set R≥0 = {λ ∈ R : λ ≥ 0}. The convex hull of A ⊆ Rn is the
smallest convex set containing A. It is

convA =

{
N∑
i=1

αixi : N ∈ N, x1, . . . , xN ∈ A,α1, . . . , αN ∈ R≥0,
N∑
i=1

αi = 1

}
,

which requires again a small argument. We can give a mechanical interpretation
of the convex hull of finitely many point conv{x1, . . . , xN}: The convex hull
consists of all centres of gravity of point masses α1, . . . , αN at the positions
x1, . . . , xN .

The convex hull of finitely many points is called a polytope. Two-dimensional,
planar, polytopes are polygons. Other important examples of convex sets are
balls, halfspaces, and line segments. Furthermore, arbitrary intersections of
convex sets are convex again. The Minkowski sum of convex sets C,D given by

C +D = {x+ y : x ∈ C, y ∈ D}

is a convex set.
Here are two useful properties of convex sets. The first result gives an al-

ternative description of the relative interior of a convex set and the second one
permits to embed a convex set with an empty interior into a lower dimensional
affine space.

Lemma 1.2.1. Let C ⊆ Rn be a convex set. A point x ∈ C lies in the relative
interior of C if and only if

∀y ∈ C ∃z ∈ C,α ∈ (0, 1) : x = αy + (1− α)z,

where (0, 1) denotes the open interval 0 < α < 1.

Theorem 1.2.2. Let C ⊆ Rn be a convex set. If intC = ∅ then the dimension of
its affine closure is at most n− 1.
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1.3 Implicit description of convex sets

In this section we show how one can describe a closed convex set implicitly as
the intersection of halfspaces (Theorem 1.3.7). For this we show the intuitive
fact that through every of its boundary points there is a hyperplane which has
the convex set on only one of its sides (Lemma 1.3.5). We also prove an impor-
tant fact which we will need later: Any two convex sets whose relative interiors
do not intersect can be properly separated by a hyperplane (Theorem 1.3.8).
After giving the definitions of separating and supporting hyperplanes we look
at the metric projection which is a useful tool to construct these separating hy-
perplanes.

The hyperplane at a point x ∈ Rn with normal vector c ∈ Rn \ {0} is

H = {y ∈ Rn : cTy = cTx}.

It is an affine subspace of dimension n − 1. The hyperplane H divides Rn into
two closed halfspaces

H+ = {y ∈ Rn : cTy ≥ cTx}, H− = {y ∈ Rn : cTy ≤ cTx}.

A hyperplane H is said to separate two sets A ⊆ Rn and B ⊆ Rn if they lie on
different sides of the hyperplane, i.e., if A ⊆ H+ and B ⊆ H− or conversely. In
other words, A and B are separated by a hyperplane if there exists a non-zero
vector c ∈ Rn and a scalar β ∈ R such that

∀x ∈ A, y ∈ B : cTx ≤ β ≤ cTy.

The separation is said to be strict if both inequalities are strict, i.e.,

∀x ∈ A, y ∈ B : cTx < β < cTy.

The separation is said to be proper when H separates A and B but does not
contain both A and B.

A hyperplane H is said to support A at a point x ∈ A if x ∈ H and if A
is contained in one of the two halfspaces H+ or H−, say H−. Then H is a
supporting hyperplane of A at x and H− is a supporting halfspace.

1.3.1 Metric projection

Let C ∈ Rn be a non-empty closed convex set. One can project every point
x ∈ Rn onto C by simply taking the point in C which is closest to it. This fact is
very intuitive and in the case when C is a linear subspace we are talking simply
about the orthogonal projection onto C.

Lemma 1.3.1. Let C be a non-empty closed convex set in Rn. Let x ∈ Rn \ C be
a point outside of C. Then there exists a unique point πC(x) in C which is closest
to x. Moreover, πC(x) ∈ ∂C.
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Figure 1.1: The hyperplane H supports A and separates A and B.

Proof. The argument for existence is a compactness argument: AsC is not empty,
pick z0 ∈ C and consider the intersection C ′ of C with the ball B(z0, r) centered
at z0 and with radius r = ‖z0 − x‖. Then C ′ is closed, convex and bounded.
Moreover the minimum of the distance ‖y − x‖ for y ∈ C is equal to the mini-
mum taken over y ∈ C ′. As we minimize a continuous function over a compact
set, the minimum is attained. Hence there is at least one closest point to x in C.

The argument for uniqueness requires convexity: Let y and z be two distinct
points in C, both having minimum distance to x. In this case, the midpoint
of y and z, which lies in C, would even be closer to x, because the distance
d(x, 12 (y + z)) is the height of the isosceles triangle with vertices x, y, z.

Hence there is a unique point in C which is at minimum distance to x, which
we denote by πC(x). Clearly, πC(x) ∈ ∂C, otherwise one would find another
point in C closer to x lying in some small ball B(πC(x), ε) ⊆ C.

Thus, the map πC : Rn → C defined by the property

∀y ∈ C : d(y, x) ≥ d(πC(x), x)

is well-defined. This map is called metric projection and sometimes we refer to
the vector πC(x) as the best approximation of x in the set C.

The metric projection πC is a contraction:

Lemma 1.3.2. Let C be a non-empty closed and convex set in Rn. Then,

∀x, y ∈ Rn : d(πC(x), πC(y)) ≤ d(x, y).

In particular, the metric projection πC is a Lipschitz continuous map.

Proof. We can assume that d(πC(x), πC(y)) 6= 0. Consider the line segment
[πC(x), πC(y)] and the two parallel hyperplanes Hx and Hy at πC(x) and at
πC(y) both having normal vector πC(x) − πC(y). The points x and πC(y) are
separated by Hx because otherwise there would be a point in [πC(x), πC(y)] ⊆
C which is closer to x than to πC(x), which is impossible. In the same way, y
and πC(x) are separated by Hy. Hence, x and y are on different sides of the
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“slab” bounded by the parallel hyperplanes Hx and by Hy. So their distance
d(x, y) is at least the width of the slab, which is d(πC(x), πC(y)).

The metric projection can reach every point on the boundary of C:

Lemma 1.3.3. Let C be a non-empty closed and convex set in Rn. Then, for every
boundary point y ∈ ∂C there is a point x lying outside of C so that y = πC(x).

Proof. First note that one can assume that C is bounded (since otherwise re-
place C by its intersection with a ball around y). Since C is bounded it is
contained in a ball B of sufficiently large radius. We will construct the desired
point x which lies on the boundary ∂B by a limit argument. For this choose a se-
quence of points yi ∈ Rn \C such that d(y, yi) < 1/i, and hence limi→∞ yi = y.
Because the metric projection is a contraction (Lemma 1.3.2) we have

d(y, πC(yi)) = d(πC(y), πC(yi)) ≤ d(y, yi) < 1/i.

By intersecting the line aff{yi, πC(yi)} with the boundary ∂B one can determine
a point xi ∈ ∂B so that πC(xi) = πC(yi). Since the boundary ∂B is compact
there is a convergent subsequence (xij ) having a limit x ∈ ∂B. Then, because
of the previous considerations and because πC is continuous

y = πC(y) = πC

(
lim
j→∞

yij

)
= lim
j→∞

πC(yij )

= lim
j→∞

πC(xij ) = πC

(
lim
j→∞

xij

)
= πC(x),

which proves the lemma.

Figure 1.2: The construction which proves Lemma 1.3.3.
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1.3.2 Separating and supporting hyperplanes

One can use the metric projection to construct separating and supporting hy-
perplanes:

Lemma 1.3.4. Let C be a non-empty closed convex set in Rn. Let x ∈ Rn \ C be
a point outside C and let πC(x) its closest point in C. Then the following holds.

(i) The hyperplane through x with normal x− πC(x) supports C at πC(x) and
thus it separates {x} and C.

(ii) The hyperplane through (x + πC(x))/2 with normal x − πC(x) strictly sep-
arates {x} and C.

Proof. It suffices to prove (i) and then (ii) follows directly. Consider the hyper-
plane H through x with normal vector c = x− πC(x), defined by

H = {y ∈ Rn : cTy = cTπC(x)}.

As cTx > cTπC(x), x lies in the open halfspace {y : cTy > cTπC(x)}. We
show that C lies in the closed halfspace {y : cTy ≤ cTπC(x)}. Suppose for a
contradiction that there exists y ∈ C such that cT(y − πC(x)) > 0. Then select
a scalar λ ∈ (0, 1) such that 0 < λ < 2cT(y−πC(x))

‖y−πC(x)‖2 < 1 and set w = λy + (1 −
λ)πC(x) which is a point C. Now verify that ‖w − x‖ < ‖πC(x) − x‖ = ‖c‖,
which follows from

‖w − x‖2 = ‖λ(y − πC(x))− c‖2 = ‖c‖2 + λ2‖y − πC(x)‖2 − 2λcT(y − πC(x))

and which contradicts the fact that πC(x) is the closest point in C to x.

Figure 1.3: A separating hyperplane constructed using πC .

Combining Lemma 1.3.3 and Lemma 1.3.4 we deduce that one can construct
a supporting hyperplane at every boundary point.

Lemma 1.3.5. Let C ⊆ Rn be a closed convex set and let x ∈ ∂C be a point lying
on the boundary of C. Then there is a hyperplane which supports C at x.
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One can generalize Lemma 1.3.4 (i) and remove the assumption that C is
closed.

Lemma 1.3.6. Let C ⊆ Rn be a non-empty convex set and let x ∈ Rn \ C be a
point lying outside C. Then, {x} and C can be separated by a hyperplane.

Proof. In view of Lemma 1.3.1 we only have to show the result for non-closed
convex sets C. We are left with two cases: If x 6∈ C, then a hyperplane separat-
ing {x} and the closed and convex set C also separates {x} and C. If x ∈ C,
then x ∈ ∂C. By Lemma 1.3.5 there is a hyperplane supporting C at x. In
particular, it separates {x} and C.

As a direct application of the strict separation result in Lemma 1.3.4 (ii),
we can formulate the following fundamental structural result for closed convex
sets.

Theorem 1.3.7. A non-empty closed convex set is the intersection of its supporting
halfspaces.

This is an implicit description as it gives a method to verify whether a point
belongs to the closed convex set in question: One has to check whether the
point lies in all these supporting halfspaces. If the closed convex set is given as
an intersection of finitely many halfspaces, then it is called a polyhedron and the
test we just described is a simple algorithmic membership test.

We conclude with the following result which characterizes when two convex
sets can be separated properly. When both sets are closed and one of them is
bounded, one can show a strict separation. These separation results will be the
basis in our discussion of the duality theory of conic programs.

Theorem 1.3.8. Let C,D ⊆ Rn be non-empty convex sets.

(i) C and D can be properly separated if and only if their relative interiors do
not have a point in common: relintC ∩ relintD = ∅.

(ii) Assume that C and D are closed and that at least one of them is bounded. If
C ∩D = ∅, then there is a hyperplane strictly separating C and D.

Proof. (i) The “only if” part (=⇒): Let Hc,β be a hyperplane properly separating
C and D with C ⊆ H− and D ⊆ H+, i.e.,

∀x ∈ C, y ∈ D : cTx ≤ β ≤ cTy.

Suppose there is a point x0 ∈ relintC ∩ relintD. Then cTx0 = β, i.e., x0 ∈ H.
Pick any x ∈ C. By Lemma 1.2.1 there exists x′ ∈ C and α ∈ (0, 1) such that
x0 = αx+ (1− α)x′. Now

β = cTx0 = αcTx+ (1− α)cTx′ ≤ αβ + (1− α)β = β,

hence all inequalities have to be tight and so cTx = β. Thus C is contained in
the hyperplane H. Similarly, D ⊆ H. This contradicts the assumption that the
separation is proper.
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The “if part” (⇐=): Consider the set

E = relintC − relintD = {x− y : x ∈ relintC, y ∈ relintD},

which is convex. By assumption, the origin 0 does not lie in E. By Lemma 1.3.6
there is a hyperplane H separating {0} and E which goes through the origin.
Say H = Hc,0 and

∀x ∈ relintC, y ∈ relintD : cT(x− y) ≥ 0.

Define
β = inf{cTx : x ∈ relintC}.

Then,
C ⊆ {x ∈ Rn : cTx ≥ β},

and we want to show that

D ⊆ {y : cTy ≤ β}.

For suppose not. Then there is a point y ∈ relintD so that cTy > β. Moreover,
by definition of the infimum there is a point x ∈ relintC so that β ≤ cTx < cTy.
But then we find cT(x − y) < 0, a contradiction. Thus, C and D are separated
by the hyperplane Hc,β .

If C ∪D lies in some lower dimensional affine subspace, then the argument
above gives a hyperplane in the affine subspace aff(C ∪ D) which can be ex-
tended to a hyperplane in Rn which properly separates C and D.

(ii) Assume that C is bounded and C ∩D = ∅. Consider now the set

E = C −D

which is closed (check it) and convex. As the origin 0 does not lie in E, by
Lemma 1.3.4 (ii), there is a hyperplane strictly separating {x} and E: There is
a non-zero vector c and a positive scalar β such that

∀x ∈ C, y ∈ D : cT(x− y) > β > 0.

This implies

inf
x∈C

cTx ≥ β + sup
y∈D

cTy >
β

2
+ sup
y∈D

cTy > sup
y∈D

cTy.

Hence the hyperplaneHc,α with α = β
2 +sup

y∈D
cTy strictly separates C andD.
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1.4 Explicit description of convex sets

Now we turn to an explicit description of convex sets. An explicit description
gives an easy way to generate points lying in the convex set.

We say that a point x ∈ C is extreme if it is not a relative interior point
of any line segment in C. In other words, if x cannot be written in the form
x = (1− α)y + αz with y, z ∈ C and 0 < α < 1. The set of all extreme points of
C we denote by extC.

Theorem 1.4.1. Let C ⊆ Rn be a compact and convex set. Then,

C = conv(extC).

Proof. We prove the theorem by induction on the dimension n. If n = 0, then C
is a point and the result follows.

Let the dimension n be at least one. If the interior of C is empty, then C lies
in an affine subspace of dimension at most n− 1 and the theorem follows from
the induction hypothesis. Suppose that intC 6= ∅. We have to show that every
x ∈ C can be written as the convex hull of extreme points of C. We distinguish
between two cases:

First case: If x lies on the boundary of C, then by Lemma 1.3.5 there is a
supporting hyperplane H of C through x. Consider the set F = H ∩ C. This is
a compact and convex set which lies in an affine subspace of dimension at most
n − 1 and hence we have by the induction hypotheses x ∈ conv(extF ). Since
extF ⊆ extC, we are done.

Second case: If x does not lie on the boundary of C, then the intersection of
a line through x with C is a line segment [y, z] with y, z ∈ ∂C. By the previous
argument we have y, z ∈ conv(extC). Since x is a convex combination of y and
z, the theorem follows.

An easy, but very useful application, is that if one maximizes a convex func-
tion on a compact convex set then the maximum is attained at an extreme point.

Lemma 1.4.2. Let C ⊆ Rn be a compact convex set and let f : Rn 7→ R be a
continuous convex function. Then, the maximization program maxx∈X f(x) has a
maximizer which is an extreme point of C. This applies in particular to maximizing
(or minimizing) a linear function over C.

Proof. Let x∗ ∈ C be a maximizer of f over C (which exists by continuity of
f over C compact). By Theorem 1.4.1, x∗ is a convex combination of extreme
points x1, . . . , xN of C, i.e. x∗ =

∑N
i=1 λixi where λi > 0 with

∑N
i=1 λi =

1. Then, as f is convex, f(x∗) ≤
∑N
i=1 λif(xi). Moreover, f(xi) ≤ f(x∗) by

maximality of x∗. This implies f(xi) = f(x∗) for each i and thus any xi is a
maximizer as well.
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1.5 Convex cones

We will develop the theory of convex optimization using the concept of conic
programs. Before we can say what a “conic program” is, we have to define
convex cones.

Definition 1.5.1. A non-empty subset K of Rn is called a convex cone if it is
closed under non-negative linear combinations:

∀α, β ∈ R≥0 ∀x, y ∈ K : αx+ βy ∈ K.

Moreover, K is pointed if

x,−x ∈ K =⇒ x = 0.

One can easily check that convex cones are indeed convex sets. Furthermore,
the direct product

K ×K ′ = {(x, x′) ∈ Rn+n
′

: x ∈ K,x′ ∈ K ′}

of two convex cones K ⊆ Rn and K ′ ⊆ Rn′ is a convex cone again.
The dual of a cone K ⊆ Rn is defined as

K∗ = {y ∈ Rn : xTy ≥ 0 ∀x ∈ K}.

The set K∗ is a closed convex cone.
A pointed convex cone in Rn defines a partial order on Rn by

x � y ⇐⇒ x− y ∈ K

for x, y ∈ Rn. This partial order satisfies the following conditions:

reflexivity:
∀x ∈ Rn : x � x

antisymmetry:
∀x, y ∈ Rn : x � y, y � x =⇒ x = y

transitivity:
∀x, y, z ∈ Rn : x � y, y � z =⇒ x � z

homogenity:
∀x, y ∈ Rn ∀α ∈ R≥0 : x � y =⇒ αx � αy

additivity:
∀x, y, x′, y′ ∈ Rn : x � y, x′ � y′ =⇒ x+ x′ � y + y′.
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In order that a convex cone is useful for practical algorithmic optimization
methods we will need two additional properties to eliminate undesired degen-
erate conditions: A convex cone should be closed and moreover it should be
full-dimensional, i.e. have non-empty interior. Then, we define strict inequali-
ties by:

x � y ⇐⇒ x− y ∈ intK.

The separation result from Lemma 1.3.4 specializes to convex cones in the fol-
lowing way.

Lemma 1.5.2. Let C ⊆ Rn be a closed convex cone and let x ∈ Rn \ C be a
point outside of C. Then there is a linear hyperplane separating {x} and C. Even
stronger, there is a non-zero vector c ∈ Rn such that

∀y ∈ C : cTy ≥ 0 > cTx,

thus with the strict inequality cTx < 0.

1.6 Examples

The convex cone generated by a set of vectors A ⊆ Rn is the smallest convex
cone containing A. It is

coneA =

{
N∑
i=1

αixi : N ∈ N, x1, . . . , xN ∈ A,α1, . . . , αN ∈ R≥0

}
.

Furthermore, every linear subspace of E is a convex cone, however a somewhat
boring one. More interesting are the following examples. We will use them,
especially cone of positive semidefinite matrices, very often.

1.6.1 The non-negative orthant and linear programming

The convex cone which is connected to linear programming is the non-negative
orthant. It lies in the Euclidean space Rn with the standard inner product. The
non-negative orthant is defined as

Rn≥0 = {x = (x1, . . . , xn)T ∈ Rn : x1, . . . , xn ≥ 0}.

It is a pointed, closed and full-dimensional cone. A linear program is an opti-
mization problem of the following form

maximize c1x1 + · · ·+ cnxn

subject to a11x1 + · · ·+ a1nxn ≥ b1
a21x1 + · · ·+ a2nxn ≥ b2

...

am1x1 + · · ·+ amnxn ≥ bm.
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One can express the above linear program more conveniently using the partial
order defined by the non-negative orthant Rn≥0:

maximize cTx

subject to Ax � b,

where c = (c1, . . . , cn)T ∈ Rn is the objective vector, A = (aij) ∈ Rm×n is the
matrix of linear constraints, x = (x1, . . . , xn)T ∈ Rn is the optimization variable,
and b = (b1, . . . , bm)T ∈ Rm is the right hand side. Here, the partial order x � y
means inequality coordinate-wise: xi ≥ yi for all i ∈ [n].

1.6.2 The second-order cone

While the non-negative orthant is a polyhedron, the following cone is not. The
second-order cone is defined in the Euclidean space Rn+1 = Rn × R with the
standard inner product. It is

Ln+1 =

{
(x, t) ∈ Rn × R : ‖x‖2 =

√
x21 + · · ·+ x2n ≤ t

}
.

Sometimes it is also called the ice cream cone (make a drawing of L3 to con-
vince yourself) or the Lorentz cone. The second-order cone will turn out to be
connected to conic quadratic programming.

1.6.3 The cone of semidefinite matrices

The convex cone which will turn out to be connected to semidefinite program-
ming is the cone of positive semidefinite matrices. It lies in the space Sn of
symmetric n×nmatrices, which can be seen as the (n(n+1)/2)-dimensional Eu-
clidean space, equipped with the trace inner product: for two matrices X,Y ∈
Rn×n,

〈X,Y 〉 = Tr(XTY ) =

n∑
i=1

n∑
j=1

XijYij , where TrX =

n∑
i=1

Xii.

Here we identify the Euclidean space Sn with Rn(n+1)/2 by the isometry T :
Sn → Rn(n+1)/2 defined by

T (X) = (X11,
√

2X12,
√

2X13, . . . ,
√

2X1n, X22,
√

2X23, . . . ,
√

2X2n, . . . , Xnn)

where we only consider the upper triangular part of the matrix X. We will come
back to the trace iner product in Section 1.7.2 below.

The cone of semidefinite matrices is

Sn�0 = {X ∈ Sn : X is positive semidefinite},

where a matrix X is positive semidefinite if

∀x ∈ Rn : xTXx ≥ 0.

More characterizations are given in Section 1.7 below.
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1.6.4 The copositive cone

The copositive cone is a cone in Sn which contains the semidefinite cone. It is
the basis of copositive programming and it is defined as the set of all copositive
matrices:

Cn = {X ∈ Sn : xTXx ≥ 0 ∀x ∈ Rn≥0}.

Unlike for the semidefinite cone no easy characterization (for example in terms
of eigenvalues) of copositive matrices is known. Even stronger: Unless the
complexity classes P and NP coincide no easy characterization (meaning one
which is polynomial-time computable) exists.

1.7 Positive semidefinite matrices

1.7.1 Basic facts

Throughout we let In denote the identity matrix and Jn denotes the all-ones
matrix. Sometimes the index n may be omitted if there is no ambiguity on the
size of the matrices.

A matrix P ∈ Rn×n is orthogonal if PPT = In or, equivalently, PTP = In,
i.e. the rows (resp., the columns) of P form an orthonormal basis of Rn. By
O(n) we denote the set of n×n orthogonal matrices which forms a group under
matrix multiplication.

For a matrix X ∈ Rn×n, a nonzero vector u ∈ Rn is an eigenvector of X
if there exists a scalar λ ∈ R such that Xu = λu, then λ is the eigenvalue of
X for the eigenvector u. A fundamental property of real symmetric matrices is
that they admit a set of eigenvectors {u1, . . . , un} forming an orthonormal basis
of Rn. This is the spectral decomposition theorem, one of the most important
theorems about real symmetric matrices.

Theorem 1.7.1. (Spectral decomposition theorem) Any real symmetric matrix
X ∈ Sn can be decomposed as

X =

n∑
i=1

λiuiu
T
i , (1.1)

where λ1, . . . , λn ∈ R are the eigenvalues of X and where u1, . . . , un ∈ Rn are
the corresponding eigenvectors which form an orthonormal basis of Rn. In matrix
terms, X = PDPT, where D is the diagonal matrix with the λi’s on the diagonal
and P is the orthogonal matrix with the ui’s as its columns.

Theorem 1.7.2. (Positive semidefinite matrices) Let X ∈ Sn be a symmetric
matrix. The following assertions are equivalent.

(1) X is positive semidefinite, written asX � 0, which is defined by the property:
xTXx ≥ 0 for all x ∈ Rn.
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(2) The smallest eigenvalue of X is non-negative, i.e., the spectral decomposition
of X is of the form X =

∑n
i=1 λiuiu

T
i with all λi ≥ 0.

(3) X = LLT for some matrix L ∈ Rn×k (for some k ≥ 1), called a Cholesky
decomposition of X.

(4) There exist vectors v1, . . . , vn ∈ Rk (for some k ≥ 1) such that Xij = vTi vj
for all i, j ∈ [n]; the vectors vi’s are called a Gram representation of X.

(5) All principal minors of X are non-negative.

Proof. (1) =⇒ (2): By assumption, uTi Xui ≥ 0 for all i ∈ [n]. On the other
hand, Xui = λiui implies uTi Xui = λi‖ui‖2 = λi, and thus λi ≥ 0 for all i.

(2) =⇒ (3): By assumption, X has a decomposition (1.1) where all scalars
λi are nonnegative. Define the matrix L ∈ Rn×n whose i-th column is the vector√
λiui. Then X = LLT holds.

(3) =⇒ (4): Assume X = LLT where L ∈ Rn×k. Let vi ∈ Rk denote the i-th
row of L. The equality X = LLT gives directly that Xij = vTi vj for all i, j ∈ [n].

(4) =⇒ (1): Assume X = (vTi vj)
n
i,j=1 for some vectors v1, . . . , vn ∈ Rk and

some k ≥ 1. Let x = (x1, . . . , xn)T ∈ Rn. Then, xTXx =
∑n
i,j=1 xixjXij =∑n

i,j=1 xixjv
T
i vj = ‖

∑n
i=1 xivi‖2 is thus nonnegative. This shows that X � 0.

The equivalence (1) ⇐⇒ (5) can be found in any standard Linear Algebra
textbook (and will not be used here).

The above characterization extends to positive definite matrices. A matrix
X is positive definite (denoted as X � 0) if it satisfies any of the following
equivalent properties: (1) xTXx > 0 for all x ∈ Rn \{0}, (2) all eigenvalues are
strictly positive, (3) in a Cholesky decomposition the matrix L is non-singular,
(4) any Gram representation has full rank n, and (5) all the principal minors
are positive (in fact already positivity of all the leading principal minors implies
positive definiteness; Sylvester’s criterion).

Observe that, if X is a diagonal matrix (i.e., Xij = 0 for all i 6= j ∈ [n]),
then X � 0 if and only if all its diagonal entries are nonnegative: Xii ≥ 0 for
all i ∈ [n]. Moreover, X � 0 if and only if Xii > 0 for all i ∈ [n].

The positive semidefinite cone set Sn�0 is the set of all positive semidefinite
matrices in Sn. It is a pointed, closed, convex, full-dimensional cone in Sn.
Moreover, by Theorem 1.7.2(2), it is generated by rank one matrices, i.e.

Sn�0 = cone{xxT : x ∈ Rn}. (1.2)

The matrices lying in the interior of the cone Sn�0 are precisely the positive
definite matrices (Exercise 1.9).

1.7.2 The trace inner product

The trace of an n × n matrix A is defined as Tr(A) =
∑n
i=1Aii. The trace is a

linear mapping: Tr(λA) = λTr(A) and Tr(A + B) = Tr(A) + Tr(B). Moreover
the trace satisfies the following properties:

16



Tr(A) = Tr(AT), Tr(AB) = Tr(BA), Tr(uuT) = uTu = ‖u‖2 ∀u ∈ Rn. (1.3)

Using the fact that Tr(uuT) = 1 for any unit vector u, combined with the relation
(1.1), we deduce that the trace of a symmetric matrix is equal to the sum of its
eigenvalues.

Lemma 1.7.3. If A ∈ Sn has eigenvalues λ1, . . . , λn, then Tr(A) = λ1 + . . .+λn.

One can define an inner product on Rn×n by setting

〈A,B〉 = Tr(ATB) =

n∑
i,j=1

AijBij .

This defines the Frobenius norm on Rn×n obtained by setting ‖A‖ =
√
〈A,A〉 =√∑n

i,j=1A
2
ij . For a vector x ∈ Rn we have xTAx = 〈A, xxT〉. The following

property is useful to know:

Lemma 1.7.4. Let A,B ∈ Sn and P ∈ O(n). Then, 〈A,B〉 = 〈PAPT, PBPT〉.

Proof. Indeed, 〈PAPT, PBPT〉 is equal to

Tr(PAPTPBPT) = Tr(PABPT) = Tr(ABPTP ) = Tr(AB) = 〈A,B〉,

where we have used the fact that PPT = PTP = In and the commutativity rule
from (1.3).

Positive semidefinite matrices satisfy the following fundamental property:

Lemma 1.7.5. For a symmetric matrix A ∈ Sn,

A � 0 ⇐⇒ ∀B ∈ Sn�0 : 〈A,B〉 ≥ 0.

In other words, the cone Sn�0 is self-dual, i.e., it coincides with its dual cone:

(Sn�0)∗ = Sn�0.

Proof. The proof is based on the fact that Sn�0 is generated by rank 1 matrices
(see (1.2)). Indeed, if A � 0 then 〈A, xxT〉 ≥ 0 for all x ∈ Rn implies that
〈A,B〉 ≥ 0 for all B ∈ Sn�0. Conversely, if 〈A,B〉 ≥ 0 for all B ∈ Sn�0, then for
B = xxT we obtain that xTAx ≥ 0, which shows A � 0.

1.7.3 Basic operations

We recall some basic operations about positive semidefinite matrices. The proofs
of the following Lemmas 1.7.6, 1.7.7 and 1.7.8 are easy and left as an exercise.

Given a matrix X ∈ Sn and a subset I ⊆ [n] of its index set, the matrix
X[I] = (Xij)i,j∈I is the principal submatrix of X indexed by I.
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Lemma 1.7.6. If X � 0 then every principal submatrix of X is positive semidefi-
nite.

Moreover, any matrix congruent to X � 0 (i.e., of the form PXPT where P
is non-singular) is positive semidefinite:

Lemma 1.7.7. Let X ∈ Sn and let P ∈ Rn×n be a non-singular matrix (i.e., P is
invertible). Then,

X � 0⇐⇒ PXPT � 0.

Given two matrices A ∈ Sn and B ∈ Sm, we define the following block-
diagonal matrix A⊕B ∈ Sn+m:

A⊕B =

(
A 0
0 B

)
. (1.4)

Lemma 1.7.8. For A ∈ Sn and B ∈ Sm, we have:

A⊕B � 0⇐⇒ A � 0 and B � 0.

From an algorithmic point of view it is more economical to deal with positive
semidefinite matrices in block-form like (1.4).

If we have a set A of matrices that pairwise commute, then it is a funda-
mental result of linear algebra that they admit a common set of eigenvectors. In
other words, there exists an orthogonal matrix P ∈ O(n) such that the matrices
PTXP are diagonal for all X ∈ A.

We now introduce the following notion of Schur complement, which can be
very useful for showing positive semidefiniteness.

Definition 1.7.9. (Schur complement) Consider a symmetric matrix X in block
form

X =

(
A B
BT C

)
, (1.5)

with A ∈ Rn×n, B ∈ Rn×l and C ∈ Rl×l. Assume that A is non-singular. Then,
the matrix C −BTA−1B is called the Schur complement of A in X.

Lemma 1.7.10. LetX ∈ Sn be in block form (1.5) where A is non-singular. Then,

X � 0 ⇐⇒ A � 0 and C −BTA−1B � 0.

Proof. The following identity holds:

X = PT

(
A 0
0 C −BTA−1B

)
P, where P =

(
I A−1B
0 I

)
.

As P is non-singular, we deduce that X � 0 if and only if (P−1)TXP−1 � 0
(use Lemma 1.7.7) which is thus equivalent to A � 0 and C − BTA−1B � 0
(use Lemma 1.7.8).
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1.7.4 Kronecker and Hadamard products

Given two matrices A = (Aij) ∈ Rn×m and B = (Bhk) ∈ Rp×q, their Kronecker
product is the matrix C = A⊗B ∈ Rnp×mq with entries

Cih,jk = AijBhk ∀i ∈ [n], j ∈ [m], h ∈ [p], k ∈ [q].

It can also be seen as the n×m block matrix whose ij-th block is the p×q matrix
AijB for all i ∈ [n], j ∈ [m]. As an example, the matrix I2 ⊗ J3 takes the form:

I2 I2 I2
I2 I2 I2
I2 I2 I2

 =


1 0 1 0 1 0
0 1 0 1 0 1
1 0 1 0 1 0
0 1 0 1 0 1
1 0 1 0 1 0
0 1 0 1 0 1


or after permuting rows and columns, the form:

(
J3 0
0 J3

)
=


1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0
0 0 0 1 1 1
0 0 0 1 1 1
0 0 0 1 1 1

 .

This includes in particular defining the Kronecker product u ⊗ v ∈ Rnp of two
vectors u ∈ Rn and v ∈ Rp, with entries (u⊗ v)ih = uivh for i ∈ [n], h ∈ [p].

Given two matrices A,B ∈ Rn×m, their Hadamard product is the matrix
A ◦B ∈ Rn×m with entries

(A ◦B)ij = AijBij ∀i ∈ [n], j ∈ [m].

Note that A ◦B coincides with the principle submatrix of A⊗B indexed by the
subset of all ‘diagonal’ pairs of indices of the form (ii, jj) for i ∈ [n], j ∈ [m].
For an integer k ≥ 1, A◦k = A ◦ A ◦ . . . ◦ A (with k terms) is the matrix with
(i, j)-th entry (Aij)

k, the k-th power of Aij .

Here are some (easy to verify) facts about these products, where the matrices
and vectors have the appropriate sizes.

1. (A⊗B)(C ⊗D) = (AC)⊗ (BD).

2. In particular, (A⊗B)(u⊗ v) = (Au)⊗ (Bv).

3. AssumeA ∈ Sn andB ∈ Sp have, respectively, eigenvalues α1, . . . , αn and
β1, . . . , βp. Then A⊗B ∈ Snp has eigenvalues αiβh for i ∈ [n], h ∈ [p]. In
particular,

A,B � 0 =⇒ A⊗B � 0 and A ◦B � 0,

A � 0 =⇒ A◦k = ((Aij)
k)ni,j=1 � 0 ∀k ∈ N.
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1.7.5 Properties of the kernel

The kernel of a matrix X ∈ Sn is the subspace kerX = {x ∈ Rn : Xx = 0}.
Here is a first useful property of the kernel of a positive semidefinite matrix.

Lemma 1.7.11. Assume that X ∈ Sn is positive semidefinite and let x ∈ Rn.
Then,

Xx = 0⇐⇒ xTXx = 0.

Proof. The ‘only if’ part is clear. Conversely, decompose x =
∑n
i=1 xiui in the

orthonormal basis of eigenvectors of X and let λ1, . . . , λn be the corresponding
eigenvalues of X. Then, xTXx =

∑n
i=1 λix

2
i . Hence, 0 = xTXx gives 0 =∑n

i=1 λix
2
i and thus xi = 0 for each i for which λi > 0. This shows that x is

a linear combination of the eigenvectors ui with eigenvalue λi = 0, and thus
Xx = 0.

As an example of application, we get the following fact:

Lemma 1.7.12. Let X = LTL ∈ Sn where L ∈ Rk×n. Then, kerX = kerL and
thus rank(X) = rank(L) (≤ min{k, n}).

Clearly, X � 0 implies Xii ≥ 0 for all i, because Xii = eTi Xei, where
ei denotes the i-th standard unit vector (with all zero coordinates except 1 at
the i-th position). Moreover, if Xii = 0 then the whole i-row and column are
identically zero. This follows e.g. from the following property:

Lemma 1.7.13. Let X ∈ Sn with the block-form:

X =

(
A B
BT C

)
,

where A ∈ Sb, B ∈ Rp×q, C ∈ Sq and n = p + q. Given a vector y ∈ Rp, define
the vector x ∈ Rn defined as x = (y, 0, . . . , 0). Then,

Ay = 0 =⇒ Xx = 0.

Proof. We have: xTXx = yTAy = 0 which, by Lemma 9.3.1, implies that Xx =
0.

1.8 Historical remarks

The history of convexity is astonishing: On the one hand, the notion of convexity
is very natural and it can be found even in prehistoric arts. For instance, the
Platonic solids are convex polyhedra and carved stone models of some of them
were crafted by the late neolithic people of Scotland more than 4,000 years
ago. For more information on the history, which unearthed some good hoax,
see also John Baez’ discussion of “Who discovered the icosahedron?” http:

//math.ucr.edu/home/baez/icosahedron/.
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On the other hand, the first mathematician who realized how important con-
vexity is as a geometric concept was the brilliant Hermann Minkowski (1864–
1909) who in a series of very influential papers “Allgemeine Lehrsätze über
die konvexen Polyeder” (1897), “Theorie der konvexen Körper, insbesondere
Begründung ihres Oberflächenbegriffs” (published posthumously) initiated the
mathematical study of convex sets and their properties. All the results in this
chapter on the implicit and the explicit representation of convex sets can be
found there (although with different proofs).

Not much can be added to David Hilbert’s (1862–1943) praise in his obituary
of his close friend Minkowski:

Dieser Beweis eines tiefliegenden zahlentheoretischen Satzes1 ohne rech-
nerische Hilfsmittel wesentlich auf Grund einer geometrisch anschau-
lichen Betrachtung ist eine Perle Minkowskischer Erfindungskunst. Bei
der Verallgemeinerung auf Formen mit n Variablen führte der Minkowski-
sche Beweis auf eine natürlichere und weit kleinere obere Schranke für
jenes Minimum M , als sie bis dahin Hermite gefunden hatte. Noch
wichtiger aber als dies war es, daß der wesentliche Gedanke des Mink-
owskischen Schlußverfahrens nur die Eigenschaft des Ellipsoids, daß
dasselbe eine konvexe Figur ist und einen Mittelpunkt besitzt, benutzte
und daher auf beliebige konvexe Figuren mit Mittelpunkt übertragen
werden konnte. Dieser Umstand führte Minkowski zum ersten Male
zu der Erkenntnis, daß überhaupt der Begriff des konvexen Körpers ein
fundamentaler Begriff in unserer Wissenschaft ist und zu deren frucht-
barsten Forschungsmitteln gehört.

Ein konvexer (nirgends konkaver) Körper ist nach Minkowski als ein
solcher Körper definiert, der die Eigenschaft hat, daß, wenn man zwei
seiner Punkte in Auge faßt, auch die ganze geradlinige Strecke zwischen
denselben zu dem Körper gehört.2

Until the end of the 1940s convex geometry was a small discipline in pure
mathematics. This changed dramatically when in 1947 the breakthrough of
general linear programming came. Then Dantzig formulated the linear pro-
gramming problem and designed the simplex algorithm for solving it. Nowa-
days, convex geometry is an important toolbox for researchers, algorithm de-
signers and practitioners in mathematical optimization.

1Hilbert is refering to Minkowski’s lattice point theorem. It states that for any invertible matrix
A ∈ Rn×n defining a lattice AZn and any convex set in Rn which is symmetric with respect to the
origin and with volume greater than 2n det(A)2 contains a non-zero lattice point.

2It is not easy to translate Hilbert’s praise into English without losing its poetic tone, but here is
an attempt. This proof of a deep theorem in number theory contains little calculation. Using chiefly
geometry, it is a gem of Minkowski’s mathematical craft. With a generalization to forms having n
variables Minkowski’s proof lead to an upper boundM which is more natural and also much smaller
than the bound due to Hermite. More important than the result itself was his insight, namely that
the only salient features of ellipsoids used in the proof were that ellipsoids are convex and have a
center, thereby showing that the proof could be immediately generalized to arbitrary convex bodies
having a center. This circumstances led Minkowski for the first time to the insight that the notion of
a convex body is a fundamental and very fruitful notion in our scientific investigations ever since.

Minkowski defines a convex (nowhere concave) body as one having the property that, when one
looks at two of its points, the straight line segment joining them entirely belongs to the body.
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1.9 Further reading

Two very good books which emphasize the relation between convex geometry
and optimization are by Barvinok [1] and by Gruber [5] (available online).
Less optimization but more convex geometry is discussed in the little book of
Bonnesen, Fenchel [3] and the encyclopedic book by Schneider [7]. The first
one is now mainly interesting for historical reasons. Somewhat exceptional, and
fun to read, is Chapter VII in the book of Berger [2] (available online) where
he gives a panoramic view on the concept of convexity and its many relations
to modern higher geometry.

Let us briefly mention connections to functional analysis. Rudin in his clas-
sical book “Functional analysis” discusses Theorem 1.3.8 and Theorem 1.4.1 in
an infinite-dimensional setting. Although we will not need these more general
theorems, they are nice to know.

The Hahn-Banach separation theorem is Theorem 3.4 in Rudin.

Theorem 1.9.1. Suppose A and B are disjoint, nonempty, convex sets in a topo-
logical vector space X.

(a) If A is open there exist Λ ∈ X∗ and γ ∈ R such that

<Λx < γ ≤ <Λy

for every x ∈ A and for every y ∈ B. (Here, <z is the real part of the complex
number z.)

(b) If A is compact, B is closed, and X is locally convex, there exist Λ ∈ X∗,
γ1 ∈ R, γ2 ∈ R, such that

<Λx < γ1 < γ2 < <Λy

for every x ∈ A and for every y ∈ B.

The Krein-Milman theorem is Theorem 3.23 in Rudin.

Theorem 1.9.2. Suppose X is a topological vector space on which X∗ separates
points. If K is a nonempty compact convex set in X, then K is the closed convex
hull of the set of its extreme points.

In symbols, K = conv(ext(K)).

In his blog “What’s new?” Terry Tao [8] gives an insightful discussion of the
finite-dimensional Hahn-Banach theorem.

The book “Matrix analyis” by Horn and Johnson [6] contains a wealth of
very useful information, more than 70 pages, about positive definite matrices.

1.10 Exercises

1.1. Give a proof for the following statement:

Let C ⊆ Rn be a convex set. If C 6= ∅, then relintC 6= ∅
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1.2. Give a proof for the following statement:

Let C ⊆ Rn be a closed convex set and let x ∈ Rn \C a point lying outside
of C. A separating hyperplane H is defined in Lemma 1.3.4. Consider
a point y on the line aff{x, πC(x)} which lies on the same side of the
separating hyperplane H as x. Then, πC(x) = πC(y).

1.3. (a) Prove or disprove: Let A ⊆ Rn be a subset. Then,

convA = convA.

(b) Construct two convex sets C,D ⊆ R2 so that they can be separated
by a hyperplane but which cannot be properly separated.

1.4. Show that the lnp unit ball(x1, . . . , xn)T ∈ Rn : ‖x‖p =

(
n∑
i=1

|xi|p
)1/p

≤ 1


is convex for p = 1, p = 2 and p = ∞ (‖x‖∞ = maxi=1,...,n |xi|). Deter-
mine the extreme points and determine a supporting hyperplane for every
boundary point.

(*) What happens for the other p?

1.5. Consider a subset S ⊆ Rn≥0. Then, S is said to be down-monotone in Rn≥0 if
for each x ∈ S all vectors y ∈ Rn≥0 with 0 ≤ y ≤ x belong to S. Moreover,
its antiblocker abl(S) is defined as

abl(S) = {y ∈ Rn≥0 : yTx ≤ 1 ∀x ∈ S}.

Show: abl(abl(S)) = S if and only if S is nonempty, closed, convex and
down-monotone in Rn≥0.

1.6. Let P and Q be polyhedra in Rn such that P ⊆ Q.

(a) Show: P = Q if and only if the following equality holds for all
weights w ∈ Rn:

max
x∈P

wTx = max
x∈Q

wTx. (1.6)

(b) Assume that P ⊆ Q ⊆ Rn≥0 are down-monotone in Rn≥0.
Show: P = Q if and only if (1.6) holds for all nonnegative weights
w ∈ Rn≥0.

(c) Show that in (a),(b) it suffices to show that (1.6) holds for all integer
valued weights w.

1.7 Given an integer k ∈ [n] consider the polyhedron

P = {x ∈ [0, 1]n : x1 + . . .+ xn = k}.
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(a) Show: P = conv(P ∩ {0, 1}n).

(b) Show that each point x ∈ P ∩ {0, 1}n is an extreme point of P .

1.8. Consider the set of matrices:

Dn = {X ∈ Rn×n : Xe = e,XTe = e,X ≥ 0},

where e is the all-ones vector. Matrices in Dn are called doubly stochastic
and 0/1-valued matrices in Dn are permutation matrices (as they corre-
spond to the permutations of [n]).
Show: [Birkhoff’s theorem] Dn = conv(Dn ∩ {0, 1}n×n).

1.9. Define the matrices Fij , Gij ∈ Sn for 1 ≤ i < j ≤ n, where Gij has entries
1 at positions (i, i), (j, j), (i, j) and (j, i) and entries 0 elsewhere; Fij has
entries 1 at positions (i, i) and (j, j), entries−1 at positions (i, j) and (j, i),
and entries 0 at all other positions.

(a) Show: Fij , Gij � 0.

(b) Assume that X ∈ Sn satisfies the conditions:

Xii ≥
∑

j∈[n]:j 6=i

|Xij | for all i ∈ [n].

(Then X is said to be diagonally dominant.)
Show: X � 0.

1.10. (a) Show that the identity matrix In lies in the interior of the positive
semidefinite cone Sn�0.

(b) Show that a positive semidefinite matrix A lies in the interior of Sn�0
if and only if A is positive definite.

1.11. Given x1, . . . , xn ∈ R, consider the following (n+ 1)× (n+ 1) matrix:

X =


1 x1 . . . xn
x1 x1 0 0
... 0

. . . 0
xn 0 0 xn

 .

That is, X is indexed by {0, 1, . . . , n}, with entries X00 = 1, X0i = Xi0 =
Xii = xi for i ∈ [n], and all other entries are equal to 0.
Show: X � 0 if and only if xi ≥ 0 for all i ∈ [n] and

∑n
i=1 xi ≤ 1.
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CHAPTER 2

SEMIDEFINITE PROGRAMS:
BASIC FACTS AND EXAMPLES

In this chapter we introduce semidefinite programs and we give some basic
properties. Moreover, we present several problems that can be modeled as
instances of semidefinite programs, arising from optimization, geometry and
algebra. to which we will come back in later chapters.

For convenience we briefly recall some notation that we will use in this chap-
ter. Most of it has already been introduced in Section 1.7. Sn denotes the set of
symmetric n×n matrices. For a matrix X ∈ Sn, X � 0 means that X is positive
semidefinite and Sn�0 is the cone of positive semidefinite matrices. Analogously,
X � 0 means that X is positive definite and Sn�0 is the open cone of positive
definite matrices.

Throughout In (or simply I when the dimension is clear from the con-
text) denotes the n × n identity matrix, e denotes the all-ones vector, i.e.,
e = (1, . . . , 1)T ∈ Rn, and Jn = eeT (or simply J) denotes the all-ones ma-
trix. The vectors e1, . . . , en are the standard unit vectors in Rn, and the matrices
Eij = (eie

T
j + eje

T
i )/2 form the standard basis of Sn. O(n) denotes the set

of orthogonal matrices, where A is orthogonal if AAT = In or, equivalently,
ATA = In.

We consider the trace inner product: 〈A,B〉 = Tr(ATB) =
∑n
i,j=1AijBij for

two matrices A,B ∈ Rn×n. Here Tr(A) = 〈In, A〉 =
∑n
i=1Aii denotes the trace

of A. Recall that Tr(AB) = Tr(BA); in particular, 〈QAQT, QBQT〉 = 〈A,B〉 if
Q is an orthogonal matrix. A well known property of the positive semidefinite
cone Sn�0 is that it is self-dual: for a matrix X ∈ Sn, X � 0 if and only if
〈X,Y 〉 ≥ 0 for all Y ∈ Sn�0.
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2.1 Primal and dual semidefinite programs

2.1.1 Primal form

The typical form of a semidefinite program (often abbreviated as SDP) is a
maximization problem of the form

p∗ = sup
X
{〈C,X〉 : 〈Aj , X〉 = bj (j ∈ [m]), X � 0}. (2.1)

Here A1, . . . , Am ∈ Sn are given n×n symmetric matrices and b ∈ Rm is a given
vector, they are the data of the semidefinite program (2.1). The matrix X is the
variable, which is constrained to be positive semidefinite and to lie in the affine
subspace

W = {X ∈ Sn | 〈Aj , X〉 = bj (j ∈ [m])}

of Sn. The goal is to maximize the linear objective function 〈C,X〉 over the
feasible region

F = S�0 ∩W,

obtained by intersecting the positive semidefinite cone S�0 with the affine sub-
spaceW.

A feasible solutionX ∈ F is said to be strictly feasible ifX is positive definite.
The program (2.1) is said to be strictly feasible if it admits at least one strictly
feasible solution.

One can also handle minimization problems, of the form

inf
X
{〈C,X〉 : 〈Aj , X〉 = bj (j ∈ [m]), X � 0}

since they can be brought into the above standard maximization form using the
fact that inf〈C,X〉 = − sup〈−C,X〉.

Note that we write a supremum in (2.1) rather than a maximum. This is
because the optimum value p∗ might not be attained in (2.1). In general, we
have: p∗ ∈ R ∪ {±∞}, with p∗ = −∞ if the problem (2.1) is infeasible (i.e.,
F = ∅) and p∗ = +∞ might occur in which case we say that the problem is
unbounded.

We give a small example as an illustration. Consider the problem of mini-
mizing/maximizing X11 over the feasible region

Fa =
{
X ∈ S2 : X =

(
X11 a
a 0

)
� 0
}

where a ∈ R is a given parameter.

Note that det(X) = −a2 for any X ∈ Fa. Hence, if a 6= 0 then Fa = ∅ (the
problem is infeasible). Moreover, if a = 0 then the problem is feasible but not
strictly feasible. The minimum value of X11 over F0 is equal to 0, attained at
X = 0, while the maximum value of X11 over F0 is equal to∞ (the problem is
unbounded).
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As another example, consider the problem

p∗ = inf
X∈S2

{
X11 :

(
X11 1

1 X22

)
� 0

}
.

Then the infimum is p∗ = 0 which is reached at the limit when X11 = 1/X22

and letting X22 tend to +∞. So the infimum is not attained.

In the special case when the matrices Aj , C are diagonal matrices, with di-
agonals aj , c ∈ Rn, then the program (2.1) reduces to the linear program (LP):

max
{
cTx : aTj x = bj (j ∈ [m]), x ≥ 0

}
.

Indeed, let x denote the vector consisting of the diagonal entries of the matrix
X, so that x ≥ 0 ifX � 0, and 〈C,X〉 = cTx, 〈Aj , X〉 = aTj x. Hence semidefinite
programming contains linear programming as a special instance.

2.1.2 Dual form

The program (2.1) is often referred to as the primal SDP in standard form. One
can define its dual SDP, which takes the form:

d∗ = inf
y

m∑
j=1

bjyj = bTy such that
m∑
j=1

yjAj − C � 0. (2.2)

Thus the dual program has variables yj , one for each linear constraint of the
primal program. The positive semidefinite constraint arising in (2.2) is also
named a linear matrix inequality (LMI). The following facts relate the primal
and dual SDP’s. They are simple, but very important.

Lemma 2.1.1. Let (X, y) be a primal/dual pair of feasible solutions, i.e., X is a
feasible solution of (2.1) and y is a feasible solution of (2.2).

1. (weak duality) We have that 〈C,X〉 ≤ bTy and thus p∗ ≤ d∗.

2. (complementary slackness) Assume that the primal program attains its
supremum at X, that the dual program attains its infimum at y, and that
p∗ = d∗. Then the equalities 〈C,X〉 = bTy and 〈X,

∑m
j=1 yjAj − C〉 = 0

hold.

3. (optimality criterion) If equality 〈C,X〉 = bTy holds, then the supremum
of (2.1) is attained at X, the infimum of (2.2) is attained at y and p∗ = d∗.

Proof. If (X, y) is a primal/dual pair of feasible solutions, then

0 ≤ 〈X,
∑
j

yjAj−C〉 =
∑
j

〈X,Aj〉yj−〈X,C〉 =
∑
j

bjyj−〈X,C〉 = bTy−〈C,X〉.
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The left most inequality follows from the fact that both X and
∑
j yjAj −C are

positive semidefinite and we use the fact that 〈Aj , X〉 = bj to get the second
equality. This implies that

〈C,X〉 ≤ p∗ ≤ d∗ ≤ bTy.

The rest of the lemma follows by direct verification.

The quantity d∗ − p∗ is called the duality gap. In general there might be
a positive duality gap between the primal and dual SDP’s. When there is no
duality gap, i.e., p∗ = d∗, one says that strong duality holds, a very desirable
sitiuation. This topic and criteria for strong duality will be discussed in detail
in the next chapter. For now we only quote the following result on strong du-
ality which will be proved in the next chapter (in the general setting of conic
programming).

Theorem 2.1.2. (Strong duality: no duality gap) Consider the pair of primal
and dual programs (2.1) and (2.2).

1. Assume that the dual program (2.2) is bounded from below (d∗ > −∞)
and that it is strictly feasible. Then the primal program (2.1) attains its
supremum (i.e., p∗ = 〈C,X〉 for some X ∈ F) and there is no duality gap:
p∗ = d∗.

2. Assume that the primal program (2.1) is bounded from above (p∗ <∞) and
that it is strictly feasible. Then the dual program (2.2) attains its infimum
(i.e., d∗ = bTy for some dual feasible y) and there is no duality gap: p∗ = d∗.

In the rest of this chapter we discuss several examples of semidefinite pro-
grams.

2.2 Eigenvalue optimization

Given a matrix C ∈ Sn, let λmin(C) (resp., λmax(C)) denote its smallest (resp.,
largest) eigenvalue. One can express them (please check it) as follows:

λmax(C) = max
x∈Rn\{0}

xTCx

‖x‖
= max
x∈Sn−1

xTCx, (2.3)

where Sn−1 = {x ∈ Rn | ‖x‖ = 1} denotes the unit sphere in Rn, and

λmin(C) = min
x∈Rn\{0}

xTCx

‖x‖
= min
x∈Sn−1

xTCx. (2.4)

(This is known as the Rayleigh principle.) As we now see the largest and small-
est eigenvalues can be computed via a semidefinite program. For this, consider
the semidefinite program

p∗ = sup {〈C,X〉 : Tr(X) = 1, X � 0} (2.5)
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and its dual program
d∗ = inf

y∈R
{y : yI − C � 0} . (2.6)

In view of (2.3), we have that d∗ = λmax(C). The feasible region of (2.5)
is bounded (all entries of any feasible X lie in [−1, 1]) and closed. Hence, in
program (2.5), we maximize the continuous function 〈C,X〉 on a compact set
and thus the supremum is attained. Moreover, the program (2.5) is strictly
feasible (since the positive definite matrix In/n is feasible), hence the infimum
is attained in the dual program (2.6) and there is no duality gap: p∗ = d∗. Here
we have applied Theorem 2.1.2. Thus we have shown:

Lemma 2.2.1. The largest and smallest eigenvalues of a symmetric matrix C ∈ Sn
can be expressed with the following semidefinite programs:

λmax(C) = max 〈C,X〉 = min y
s.t. Tr(X) = 1, X � 0 s.t. yIn − C � 0,

λmin(C) = min 〈C,X〉 = max y
s.t. Tr(X) = 1, X � 0 s.t. C − yIn � 0.

More generally, also the sum of the k largest eigenvalues of a symmetric
matrix can be computed via a semidefinite program.

Theorem 2.2.2. (Fan’s theorem) Let C ∈ Sn be a symmetric matrix with eigen-
values λ1 ≥ . . . ≥ λn. Then the sum of its k largest eigenvalues: λ1 + . . . + λk is
equal to the optimal value of any of the following two programs:

µ1 := max
Y ∈Rn×k

{
〈C, Y Y T〉 : Y TY = Ik

}
, (2.7)

µ2 := max
X∈Sn

{〈C,X〉 : Tr(X) = k, In � X � 0} . (2.8)

That is, λ1 + . . .+ λk = µ1 = µ2.

The proof will use the fact that the extreme points of the polytope

P = {x ∈ [0, 1]n : eTx = k} (2.9)

are the points x ∈ P ∩ {0, 1}n. (Recall Exercise 1.7).

Proof. Let u1, . . . , un denote the eigenvectors corresponding to the eigenval-
ues λ1. . . . , λn of C, let U denote the matrix with columns u1, . . . , un which is
thus an orthogonal matrix, and let D denote the diagonal matrix with entries
λ1, . . . , λn. Thus we have: C = UDUT.

The proof is in three steps and consists of showing each of the following
three inequalities: λ1 + . . .+ λk ≤ µ1 ≤ µ2 ≤ λ1 + . . .+ λk.

Step 1: λ1 + . . . + λk ≤ µ1: Consider the matrix Y with columns u1, . . . , uk,
then Y is feasible for the program (2.7) with value 〈C, Y Y T〉 = λ1 + . . .+ λk.
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Step 2: µ1 ≤ µ2: Let Y be feasible for the program (2.7) and set X = Y Y T,
then X is feasible for the program (2.8).

Step 3: µ2 ≤ λ1 + . . . + λk: This is the most interesting part of the proof. A
first key observation is that the program (2.8) is equivalent to the same pro-
gram where we replace C by the diagonal matrix D (containing its eigenval-
ues). Indeed, using the spectral decomposition C = UDUT, we have: 〈C,X〉 =
Tr(CX) = Tr(UDUTX) = Tr(DUTXU) = Tr(DZ), where the matrix Z =
UTXU is again feasible for (2.8). Therefore we obtain:

µ2 = max
Z∈Sn

{〈D,Z〉 : Tr(Z) = k, In � Z � 0} .

Now let z = (Zii)
n
i=1 denote the vector containing the diagonal entries of Z.

The condition: I � Z � 0 implies that z ∈ [0, 1]n. Moreover, the condition:
Tr(Z) = k implies eTz = k and we have: Tr(DZ) =

∑n
i=1 λizi. Hence the vector

z lies in the polytope P from (2.9) and we obtain: µ2 ≤ maxz∈P
∑n
i=1 λizi.

Now recall that the maximum of the linear function
∑n
i=1 λizi is attained at

an extreme point of P. As recalled above, the extreme points of P are the
0/1 valued vectors with exactly k ones. From this follows immediately that
the maximum value of

∑n
i=1 λizi taken over P is equal to λ1 + . . . + λk. Thus

we have shown the last inequality: µ2 ≤ λ1 + . . . + λk and this concludes the
proof.

As an application, we obtain that the feasible region of the program (2.8) is
equal to the convex hull of the feasible region of the program (2.7). That is,

{X ∈ Sn : In � X � 0, Tr(X) = k} = conv{Y Y T : Y ∈ Rn×k, Y TY = Ik}.

2.3 Hoffman-Wielandt inequality and quadratic as-
signment

In this section we consider the following optimization problem over the set of
orthogonal matrices:

OPT(A,B) = min
{

Tr(AXBXT) : X ∈ O(n)
}
, (2.10)

where A,B ∈ Sn are two given symmetric matrices. We will indicate below its
relation to the quadratic assignment problem.

Quite surprisingly, it turns out that the optimal value of the program (2.10)
can be expressed in a closed form in terms of the eigenvalues of A and B.
This gives the nice inequality (2.12) about interlacing of eigenvalues of two
matrices, due to Hoffman-Wielandt (1953). Moreover, the program (2.10) has
an equivalent reformulation as a semidefinite program given in (2.11).

Theorem 2.3.1. Let A,B ∈ Sn be symmetric matrices with respective eigenvalues
α1, . . . , αn and β1, . . . , βn ordered as follows: α1 ≤ . . . ≤ αn and β1 ≥ . . . ≥ βn.
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The program (2.10) is equivalent to the following semidefinite program:

max
S,T∈Sn

{Tr(S) + Tr(T ) : A⊗B − In ⊗ T − S ⊗ In � 0} . (2.11)

and its optimum value is equal to

OPT(A,B) =

n∑
i=1

αiβi.

In particular, the following inequality holds:

Tr(AB) ≥
n∑
i=1

αiβi. (2.12)

For the proof we will use an intermediary result about doubly-stochastic
matrices. Recall that a matrix X ∈ Rn×n is doubly stochastic if X is nonnegative
and has all its row and column sums equal to 1. So the polyhedron

Dn =

X ∈ Rn×n≥0 :

n∑
i=1

Xij = 1 ∀j ∈ [n],

n∑
j=1

Xij = 1 ∀i ∈ [n]


is the set of all doubly stochastic matrices. Given a permutation σ of [n] one
can represent it by the corresponding permutation matrix X(σ) with entries
X(σ)iσ(i) = 1 for all i ∈ [n] and all other entries are equal to 0. Hence 0/1 val-
ued doubly stochastic matrices are precisely the permutation matrices. More-
over, the well known theorem of Birkhoff shows that the set of doubly stochastic
matrices is equal to the convex hull of the set of permutation matrices.

Theorem 2.3.2 (Birkhoff’s theorem). Dn = conv{X(σ) : σ is a permutation of [n]}.

Lemma 2.3.3. Given scalars α1, . . . , αn and β1, . . . , βn ordered as α1 ≤ . . . ≤ αn
and β1 ≥ . . . ≥ βn, consider the following linear program:

max
x,y∈Rn


n∑
i=1

xi +

n∑
j=1

yj : αiβj − xi − yj ≥ 0 ∀i, j ∈ [n]

 (2.13)

and its dual linear program:

min
Z∈Rn×n


n∑

i,j=1

αiβjZij :

n∑
i=1

Zij = 1 ∀j ∈ [n],

n∑
j=1

Zij = 1 ∀i ∈ [n], Z ≥ 0

 .

(2.14)
The optimum value of (2.13) and (2.14) is equal to

∑n
i=1 αiβi.

Proof. The feasible region of the program (2.14) is the set Dnof doubly stochas-
tic matrices and, by the above mentioned result of Birkhoff, it is equal to the
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convex hull of permutation matrices. As the minimum value of (2.14) is at-
tained at an extreme point of Dn (i.e., at a permutation matrix), it is equal to
the minimum value of

∑
i=1 αiβσ(i) taken over all permutations σ of [n]. It is an

easy exercise to verify that this minimum is attained for the identity permuta-
tion. This shows that the optimum value of (2.14) (and thus of (2.13)) is equal
to
∑n
i=1 αiβi.

Proof. (of Theorem 2.3.1) The first step in the proof consists of replacing the
program (2.10) by an equivalent program where the matrices A and B are
diagonal. For this, write A = PDPT and B = QEQT where P,Q ∈ O(n) and
D (resp., E) is the diagonal matrix with diagonal entries αi (resp. βi). For
X ∈ O(n), we have Y := PTXQ ∈ O(n) and Tr(AXBXT) = Tr(DY EY T).
Hence the optimization problem (2.10) is equivalent to the program:

OPT(D,E) = min{Tr(DXEXT) : X ∈ O(n)}. (2.15)

That is,
OPT(A,B) = OPT(D,E).

The next step is to show that the program (2.15) has the same optimum
value as the linear program (2.14). For this, pick X ∈ O(n) and consider the
matrix Z = ((Xij)

2)ni,j=1 which is doubly-stochastic (since X is orthogonal).
Moreover, since

Tr(DXEXT) =

n∑
i,j=1

αiβi(Xij)
2 =

n∑
i,j=1

αiβiZij ,

it follows that Tr(DXEXT) is at least the minimum value of the program (2.14)
and thus the minimum value of (2.15) is at least the minimum value of (2.14).
By Lemma 2.3.3, the minimum value of (2.14) is equal to

∑n
i=1 αiβi. So we can

already conclude that OPT(D,E) ≥
∑n
i=1 αiβi. The reverse inequality follows

by selecting the orthogonal matrix X = In as feasible solution of (2.15), so that
OPT(D,E) ≤ Tr(DE) =

∑n
i=1 αiβi. Hence we have shown that OPT(D,E) =∑n

i=1 αiβi and thus OPT(A,B) =
∑n
i=1 αiβi.

We now show that the semidefinite program:

min
S′,T ′∈Sn

{Tr(S′) + Tr(T ′) : E ⊗ F − In ⊗ T ′ − S′ ⊗ In � 0} (2.16)

is equivalent to the program (2.11). Indeed, using the relation

(P⊗Q)(E⊗F−In⊗T−S⊗In)(P⊗Q)T = A⊗B−In⊗(QTQT)−(PSPT)⊗In

and the fact that P ⊗ Q is orthogonal, we see that S, T is feasible for (2.11) if
and only if S′ = PSPT, T ′ = QTQT is feasible for (2.16) and moreover we
have Tr(S) + Tr(T ) = Tr(S′) + Tr(T ′).

Finally we show that the program (2.16) has the same optimum value as
the linear program (2.13). For this, first observe that in the program (2.16) we
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may assume without loss of generality that the matrices S′ and T ′ are diagonal.
Indeed, if we define the vectors x = diag(S′) and y = diag(T ′), we see that,
since E ⊗ F is diagonal, the diagonal matrices S′′ = Diag(x) and T ′′ = Diag(y)
are still feasible for (2.16) with the same objective value: Tr(S′) + Tr(T ′) =
Tr(S′′) + Tr(T ′′). Now, the program (2.16) with the additionnal condition that
S′, T ′ are diagonal matrices can be rewritten as the linear program (2.13), since
the matrix E⊗F−In⊗T ′−S′⊗In is diagonal with diagonal entries αiβj−xi−yj
for i, j ∈ [n]. From this we can conclude that the maximum value of the program
(2.16) is equal to the maximum value of (2.13) (and thus of (2.14)). In turn we
can conclude that the program (2.16) (and thus (2.11)) has the same optimum
value as the program (2.10), which finishes the proof.

The result of Theorem 2.3.1 can be used to give an explicit lower bound for
the following quadratic assignment problem (QAP):

QAP(A,B) = min


n∑

i,j=1

AijBσ(i)σ(j) : σ is a permutation of [n]

 . (2.17)

The QAP problem models e.g. the following facility location problem, where
one wants to allocate n facilities to n locations at the lowest possible total cost.
The cost of allocating facilities i and j to the respective locations σ(i) and σ(j)
is then AijBσ(i)σ(j) (Aij is the ‘flow’ cost between the facilities i and j, and Bhk
is the ‘distance’ between the locations h and k). Or think of the campus building
problem, where one needs to locate n buildings at n locations, Aij represents
the traffic intensity between buildings i and j, and Bhk is the distance between
locations h and k.

As QAP is NP-hard one needs to find good tractable lower bounds for it.
For this observe first that problem (2.17) can be reformulated as the following
optimization problem over the set of permutation matrices:

QAP(A,B) = min{Tr(AXBXT) : X is a permutation matrix}

(because
∑n
i,j=1AijBσ(i)σ(j) = Tr(AXBXT) if X = X(σ)). Then, observe that

a matrix X is a permutation matrix if and only if it is doubly stochastic and
orthogonal (Exercise 2.6). Hence, if in program (2.17) we relax the condition
thatX be a permutation matrix by the condition thatX be orthogonal we obtain
program (2.10). This shows:

QAP(A,B) ≥ OPT(A,B)

and the next result.

Theorem 2.3.4. Let A,B ∈ Sn be symmetric matrices with respective eigenvalues
α1, . . . , αn and β1, . . . , βn ordered as follows: α1 ≤ . . . ≤ αn and β1 ≥ . . . ≥ βn.
Then,

QAP(A,B) ≥ OPT(A,B) =

n∑
i=1

αiβi.
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2.4 Convex quadratic constraints

Consider a quadratic constraint for a vector x ∈ Rn of the form

xTAx ≤ bTx+ c, (2.18)

where A ∈ Sn, b ∈ Rn and c ∈ R. In the special case when A � 0, then the
feasible region defined by this constraint is convex and it turns out that it can
be equivalently defined by a semidefinite constraint.

Lemma 2.4.1. Assume A � 0. Say, A = LLT, where L ∈ Rn×k. Then, for any
x ∈ Rn,

xTAx ≤ bTx+ c ⇐⇒
(
Ik LTx
xTL bTx+ c

)
� 0.

Proof. The equivalence follows as a direct application of Lemma 1.7.10: Choose
here A = Ik, B = LTx ∈ Rk×1 and C = bTx + c ∈ R1×1, and take the Schur
complement of the submatrix Ik in the block-matrix on the right hand side.

As a direct application, the Euclidean unit ball can be represented by an LMI:

{x ∈ Rn : ‖x‖ ≤ 1} =
{
x ∈ Rn :

(
1 xT

x In

)
=

(
1 0
0 In

)
+

n∑
i=1

xi

(
0 eTi
ei 0

)
� 0
}

as well as its homogenization:

Ln+1 = {(x, t) ∈ Rn+1 : ‖x‖ ≤ t} =
{
x ∈ Rn :

(
t xT

x tIn

)
� 0
}
.

So at t = t0, we have in the x-space the ball of radius t0. The set Ln+1 is a cone,
known as the second-order cone (or Lorentz cone), which we briefly introduced
in the previous chapter and to which we will come back in the next chapter.

The fact that one can reformulate linear optimization over the Euclidean ball
as a maximization or minimization semidefinite program can be very useful as
we will see in the next section.

Corollary 2.4.2. Given c ∈ Rn, the following holds:

min
‖x‖≤1

cTx = min
x∈Rn

cTx s.t.
(

1 xT

x In

)
� 0

= max
X∈Sn+1

−Tr(X) s.t. 2X0i = ci (i ∈ [n]), X � 0.
(2.19)

Proof. Apply Lemma 2.4.1 combined with the duality theorem (Theorem 2.1.2).
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2.5 Robust optimization

We indicate here how semidefinite programming comes up when dealing with
some robust optimization problems.

Consider the following linear programming problem:

max{cTx : aTx ≥ b},

where c, a ∈ Rn and b ∈ R are given data, with just one constraint for simplicity
of exposition. In practical applications the data a, b might be given through ex-
perimental results and might not be known exactly with 100% certainty, which
is in fact the case in most of the real world applications of linear programming.
One may write a = a(z) and b = b(z) as functions of an uncertainty parameter
z assumed to lie in a given uncertainty region Z ⊆ Rk. Then one wants to find
an optimum solution x that is robust against this uncertainty, i.e., that satisfies
the constraints a(z)Tx ≥ b(z) for all values of the uncertainty parameter z ∈ Z.
That is, solve

max{cTx : a(z)Tx ≥ b(z) ∀z ∈ Z}. (2.20)

Depending on the set Z this problem might have infinitely many constraints.
However, for certain choices of the functions a(z), b(z) and of the uncertainty
regionZ, one can reformulate the problem as a semidefinite programming prob-
lem, thus tractable.

Suppose that the uncertainty region Z is the unit ball and that a(z), b(z) are
linear functions in the uncertainty parameter z = (ζ1, · · · , ζk) ∈ Rk, of the form

a(z) = a0 +

k∑
j=1

ζjaj , b(z) = b0 +

k∑
j=1

ζjbj (2.21)

where aj ∈ Rn and bj ∈ R are known. Then the robust optimization problem
(2.20) can be reformulated as a semidefinite programming problem involving
the variable x ∈ Rn and a new matrix variable Z ∈ Sk�0. The proof relies on
the result from Corollary 2.4.2, where we made use in a crucial manner of the
duality theory for semidefinite programming, for showing the equivalence of
both problems in (2.19).

Theorem 2.5.1. Suppose that the functions a(z) and b(z) are given by (2.21) and
that Z = {z ∈ Rk : ‖z‖ ≤ 1}. Then problem (2.20) is equivalent to the problem:

min
x∈Rn,Z∈Sk+1

cTx such that aTj x− 2Z0j = bj (j ∈ [k])

aT0x− Tr(Z) ≥ b0, Z � 0.
(2.22)

Proof. Fix x ∈ Rn, set αj = aTj x − bj for j = 0, 1, . . . , k, and define the vector
α = (αj)

k
j=1 ∈ Rk (which depends on x). Then the constraints: a(z)Tx ≥ b(z)

∀z ∈ Z can be rewritten as

αTz ≥ −α0 ∀z ∈ Z.
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Therefore, we find the problem of deciding whether p∗ ≥ −α0, where

p∗ = min
‖z‖≤1

αTz.

Now the above problem fits precisely within the setting considered in Corollary
2.4.2. Hence, we can rewrite it using the second formulation in (2.19) – the
one in maximization form – as

p∗ = max
Z∈Sk+1

{−Tr(Z) : 2Z0j = αj (j ∈ [k]), Z � 0} .

So, in problem (2.20), we can substitute the condition: a(z)Tx ≥ b(z) ∀z ∈ Z
by the condition:

∃Z ∈ Sk+1
�0 s.t. − Tr(Z) ≥ −α0, 2Z0j = αj (j ∈ [k]).

The crucial fact here is that the quantifier “∀z” has been replaced by the exis-
tential quantifier “∃Z”. As problem (2.20) is a maximization problem in x, it is
equivalent to the following maximization problem in the variables x and Z:

max
x∈Rn,Z∈Sk+1

{
cTx : aT0x− Tr(Z) ≥ b0, aTj x− 2Z0j = bj (j ∈ [k])

}
(after substituting back in αj their expression in terms of x).

2.6 Examples in combinatorial optimization

Semidefinite programs provide a powerful tool for constructing useful convex
relaxations for combinatorial optimization problems. We will treat this in detail
in later chapters. For now we illustrate the main idea on the following two
examples: finding a maximum independent set and a maximum cut in a graph.

2.6.1 The maximum independent set problem

Consider a graph G = (V,E) with vertex set V = [n], the edges are unordered
pairs of distinct vertices. A set of nodes (or vertices) S ⊆ V is said to be inde-
pendent (or stable) if it does not contain an edge and the maximum cardinality
of an independent set is denoted as α(G), known as the stability number of G.
The maximum independent set problem asks to compute α(G). This problem is
NP -hard.

Here is a simple recipe for constructing a semidefinite programming upper
bound for α(G). It is based on the following observation: Let S be an indepen-
dent set in G and let x ∈ {0, 1}n be its incidence vector, with xi = 1 if i ∈ S and
xi = 0 otherwise. Define the matrix X = xxT/|S|. Then the matrix X satisfies
the following conditions: X � 0, Xij = 0 for all edges {i, j} ∈ E, Tr(X) = 1,
and 〈J,X〉 = |S|. It is therefore natural to consider the following semidefinite
program

ϑ(G) = max
X∈Sn

{〈J,X〉 : Tr(X) = 1, Xij = 0 ({i, j} ∈ E), X � 0}, (2.23)
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whose optimum value ϑ(G) is known as the theta number of G. It follows from
the above discussion that ϑ(G) is an upper bound for the stability number. That
is,

α(G) ≤ ϑ(G).

The dual semidefinite program reads

min
y∈RE

∑
ij∈E

yij :
∑
ij∈E

yijEij − J � 0

 , (2.24)

and its optimum value is equal to ϑ(G) (because (4.16) is strictly feasible and
bounded – check it). Here we have used the elementary matrices Eij introduced
in the abstract of the chapter.

We will come back to the theta number in a later chapter. As we will see
there, there is an interesting class of graphs for which α(G) = ϑ(G), the so-
called perfect graphs. For these graphs, the maximum independent set problem
can be solved in polynomial time. This result is one of the first breakthrough
applications of semidefinite programming obtained in the early eighties.

2.6.2 The maximum cut problem

Consider again a graph G = (V,E) where V = [n]. Given a subset S ⊆ V ,
the cut δG(S) consists of all the edges {i, j} of G that are cut by the partition
(S, V \ S), i.e., exactly one of the two nodes i, j belongs to S. The maximum
cut problem (or max-cut) asks to find a cut of maximum cardinality. This is an
NP -hard problem.

One can encode the max-cut problem using variables x ∈ {±1}n. Assign
xi = 1 to the nodes i ∈ S and −1 to the nodes i ∈ V \ S. Then the cardinality
of the cut δG(S) is equal to

∑
{i,j}∈E(1 − xixj)/2. Therefore max-cut can be

formulated as

max-cut = max
x∈Rn

 ∑
{i,j}∈E

(1− xixj)/2 : x ∈ {±1}n
 . (2.25)

Again there is a simple recipe for constructing a semidefinite relaxation for
max-cut: Pick a vector x ∈ {±1}n (arising in the above formulation of max-
cut) and consider the matrix X = xxT. This matrix X satisfies the following
conditions: X � 0 and Xii = 1 for all i ∈ [n]. Therefore, it is natural to consider
the following semidefinite relaxation for max-cut:

sdp = max
X∈Sn

 ∑
{i,j}∈E

(1−Xij)/2 : X � 0, Xii = 1 (i ∈ [n])

 . (2.26)

As we will see later this semidefinite program provides a very good approx-
imation for the max-cut problem: sdp ≤ 1.13 · max-cut . This is a second
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breakthrough application of semidefinite programming, obtained in the early
nineties.

Let LG ∈ Sn denote the Laplacian matrix of G: its (i, i)th diagonal entry is
the degree of node i in G, and the (i, j)th off-diagonal entry is −1 if {i, j} is an
edge and 0 otherwise. Note that

xTLGx =
∑
{i,j}∈E

(xi−xj)2 ∀x ∈ Rn,
1

4
xTLGx =

1

2

∑
{i,j}∈E

(1−xixj) ∀x ∈ {±1}n.

The first item shows that LG � 0, and the second item shows that one can refor-
mulate max-cut using the Laplacian matrix. Analogously one can reformulate
the semidefinite program (2.26) as

sdp = max

{
1

4
〈LG, X〉 : X � 0, Xii = 1 (i ∈ [n])

}
. (2.27)

Given a positive semidefinite matrix A, consider the following quadratic
problem

opt = max{xTAx : ‖x‖∞ ≤ 1}. (2.28)

where ‖x‖∞ = maxi |xi| is the `∞-norm. As we maximize a convex function
over the convex set [−1, 1]n, the maximum is attained at a vertex, i.e., at a point
of {±1}n. This shows that (5.11) is equivalent to

opt = max{xTAx : x ∈ {±1}n}. (2.29)

This problem is NP -hard – indeed it contains the max-cut problem, obtained
when choosing A = LG/4.

Note that if we would replace in (5.11) the cube [−1, 1]n by the Euclidean
unit ball, then we find the problem of computing the largest eigenvalue of A
which, as we saw earlier, can be modeled as a semidefinite program.

Just as for max-cut one can formulate the following semidefinite relaxation
of (2.29) (and thus of (5.11)):

sdp = max{〈A,X〉 : X � 0, Xii = 1 ∀i ∈ [n]}. (2.30)

We will see later that this semidefinite program too gives a good approximation
of the quadratic problem (5.11): sdp ≤ π

2 opt .

2.7 Examples in geometry

Given vectors u1, . . . , un ∈ Rk, let d = (dij) denote the vector consisting of their
pairwise squared Euclidean distances, i.e., dij = ‖ui − uj‖2 for all i, j ∈ [n].
Thus dii = 0 for all i. Now, think of the vectors ui as representing the locations
of some objects (e.g., atoms of a molecule, or sensors in a sensor network).
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One might be able to determine the pairwise distances dij by making some
measurements. However, in general, one can determine these distances dij only
for a subset of pairs, that we can view as the set of edges of a graph G. Then
the problem arises whether one can reconstruct the locations of the objects (the
vectors ui) from these partial measurements (the distances dij for the edges
{i, j} of G).

In mathematical terms, given a graph G = (V = [n], E) and d ∈ RE≥0, decide
whether there exist vectors u1, . . . , un ∈ Rk such that

‖ui − uj‖2 = dij for all {i, j} ∈ E.

Of course, this problem comes in several flavors. One may search for such
vectors ui lying in a space of prescribed dimension k; then typically k = 1, 2, or
3 would be of interest. This is in fact a hard problem. However, if we relax the
bound on the dimension and simply ask for the existence of the ui’s in Rk for
some k ≥ 1, then the problem can be cast as the problem of deciding feasibility
of a semidefinite program.

Lemma 2.7.1. Given d ∈ RE≥0, there exist vectors u1, . . . , un ∈ Rk (for some
k ≥ 1) if and only if the following semidefinite program is feasible:

X � 0, Xii +Xjj − 2Xij = dij for {i, j} ∈ E.

Moreover, such vectors exist in the space Rk if and only if the above semidefinite
program has a feasible solution of rank at most k.

Proof. Directly, using the fact that X � 0 if and only if X admits a Gram repre-
sentation u1, . . . , un ∈ Rk (for some k ≥ 1), i.e., Xij = uTi uj for all i, j ∈ [n].
Moreover, the rank of X is equal to the rank of the system {u1, . . . , un}.

Thus arises naturally the problem of finding low rank solutions to a semidef-
inite program. We will come back to this topic in a later chapter.

2.8 Examples in algebra

Another, maybe a bit unexpected at first sight, application of semidefinite pro-
gramming is for testing whether a multivariate polynomial can be written as a
sum of squares of polynomials.

First recall a bit of notation. R[x1, . . . , xn] (or simply R[x] for simplicity)
denotes the ring of polynomials in n variables. A polynomial p ∈ R[x] can
be written as p =

∑
α pαx

α, where pα ∈ R and xα stands for the monomial
xα1
1 · · ·xαnn . The sum is finite and the maximum value of |α| =

∑n
i=1 αi for

which pα 6= 0 is the degree of p. For an integer d, [x]d denotes the vector con-
sisting of all monomials of degree at most d, which has

(
n+d
d

)
entries. Denoting

by p = (pα) the vector of coefficients of p, we can write
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p =
∑
α

pαx
α = pT[x]d. (2.31)

Definition 2.8.1. A polynomial p is said to be a sum of squares (SOS) if p can
be written as a sum of squares of polynomials, i.e., p =

∑m
j=1(qj)

2 for some
polynomials qj .

As an example, consider the polynomial p = 3x21 + x22 − 2x1x2 − 2x1 + 4 =
pT[x]2, where [x]2 = (1, x1, x2, x

2
1, x1x2, x

2
2)T and p = (4,−2, 0, 3,−2, 1)T. Then

p is SOS since p = (x1 − x2)2 + (x1 − 2)2 + x21.

It turns out that checking whether p is SOS can be reformulated via a semidef-
inite program. Clearly, we may assume that p has even degree 2d (else p is not
SOS) and the polynomials qj arising in a SOS decomposition will have degree
at most d.

Let us now make the following simple manipulation, based on (2.31):∑
j

q2j =
∑
j

[x]Tdqjqj
T[x]d = [x]Td

(∑
j

qjqj
T)[x]d = [x]TdQ[x]d,

after setting Q =
∑
j qjqj

T. Having such a decomposition for the matrix Q
amounts to requiring that Q is positive semidefinite. Therefore, we have just
shown that the polynomial p is SOS if and only if

p = [x]TQ[x]d for some matrix Q � 0.

Linear conditions on Q arise by equating the coefficients of the polynomials on
both sides in the above identity.

Summarizing, one can test whether p can be written as a sum of squares by
checking the feasibility of a semidefinite program. If p has degree 2d, this SDP
involves a variable matrix Q of size

(
n+d
d

)
(the number of monomials of degree

at most d) and
(
n+2d
2d

)
(the number of monomials of degree at most 2d) linear

constraints.
One can sometimes restrict to smaller matrices Q. For instance, if the poly-

nomial p is homeogeneous (i.e, all its terms have degree 2d), then we may
assume without loss of generality that the polynomials qj appearing in a SOS
decomposition are homogeneous of degree d. Hence Q will be indexed by the(
n+d−1

d

)
monomials of degree equal to d.

Why bother about sums of squares of polynomials? A good reason is that
they can be useful to recognize and certify positive polynomials and to approxi-
mate optimization problems dealing with polynomials. Let us just give a glimpse
on this.

Suppose that one wants to compute the infimum pmin of a polynomial p
over the full space Rn. In other words, one wants to find the largest scalar λ for
which p(x)−λ ≥ 0 for all x ∈ Rn. This is in general a hard problem. However, if
we relax the positivity condition on p−λ and instead require that p−λ is a sum
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of squares, then it follows from the above considerations that we can compute
the maximum λ for which p − λ is SOS using semidefinite programming. This
gives a tractable bound p∗ satisfying: p∗ ≤ pmin.

In general p∗ might be distinct from pmin. However in the univariate case
(n = 1), equality holds: pmin = p∗. (This will follow from the result in Problem
2.2.) Equality holds also in the quadratic case: d = 2, and in one exceptional
case: n = 2 and d = 4. This was shown by Hilbert in 1888.

We will return to this topic in a later chapter.

2.9 Further reading

A detailed treatment about Fan’s theorem (Theorem 2.2.2) can be found in
Overton and Womersley [8] and a detailed discussion about Hoffman-Wielandt
inequality, Theorem 2.3.1 and applications to quadratic assignment can be found
in Anstreicher and Wolkowicz [2].

The recent monograph of Ben-Tal, El Ghaoui and Nemirovski [3] offers a de-
tailed treatment of robust optimization. The result presented in Theorem 2.5.1
is just one of the many instances of problems which admit a robust counterpart
which is a tractable optimization problem. Although we formulated it in terms
of semidefinite programming (to fit our discussion), it can in fact be formulated
in terms of second-order conic optimization, which admits faster algorithms.

The theta number ϑ(G) was introduced in the seminal work of Lovász [10].
A main motivation of Lovász was to give good bounds for the Shannon capacity
of a graph, an information theoretic measure of the graph. Lovász succeeded
to determine the exact value of the Shannon capacity of C5, the circuit on five
nodes, by computing ϑ(C5) =

√
5. This work of Lovász can be considered as

the first breakthrough application of semidefinite programming, although the
term semidefinite programming was coined only later. Chapter 33 of [1] gives
a beautiful treatment of this result. The monograph by Grötschel, Lovász and
Schrijver [5] treats in detail algorithmic questions related to semidefinite pro-
gramming and, in particular, to the theta number. Polynomial time solvability
based on the ellipsoid method is treated in detail there.

Using semidefinite programming to approximate max-cut was pioneered by
the work of Goemans and Williamson [5]. This novel approach and their result
had a great impact on the area of combinatorial optimization. It indeed spurred
a lot of research activity for getting tight approximations for various problems.
This line of research is now also very active in theoretical computer science,
where the unique games conjecture has been formulated that is directly relevant
to the basic semidefinite relaxation (2.26) for max-cut – cf. e.g. the survey by
Trevisan [10].

Sums of squares of polynomials are a classical topic in mathematics and they
have many applications e.g. to control theory and engineering. In the late 1800s
David Hilbert classified the parameters degree/number of variables for which
any positive polynomial can be written as a sum of squares of polynomials. He
posed the question whether any positive polynomial can be written as a sum of
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squares of rational functions, known as Hilbert’s 17th problem. This was solved
by Artin in 1927, a result which started the field of real algebraic geometry. The
survey by Reznick [6] gives a nice overview and historical perspective and the
monograph by Delzell and Prestell [4] gives an in-depth treatment of positivity.

2.10 Exercises

2.1. (a) Show that the dual SDP of the program (2.8) can be formulated as
the following SDP:

min
z∈R,Z∈Sn

{
kz +

n∑
i=1

Zii : Z � 0, −C + zI + Z � 0

}
.

(b) Give a semidefinite programming formulation for the following prob-
lem:

min{λ1(X) + . . .+ λk(X) : 〈Aj , X〉 = bj (j ∈ [m])},

which asks for a matrix X ∈ Sn satisfying a system of linear con-
straints and for which the sum of the k largest eigenvalues of X is
minimum.

2.2. Let p be a univariate polynomial.

(a) Show that p can be written as a sum of squares if and only if p is
non-negative over R, i.e., p(x) ≥ 0 ∀x ∈ R.

(b) Show that if p is non-negative over R then it can be written as sum
of two squares.

2.3. (a) Build the dual of the semidefinite programming (2.27) and show that
it is equivalent to

n

4
min
u∈Rn

{λmax(Diag(u) + LG) : eTu = 0},

where Diag(u) is the diagonal matrix with diagonal entries u1, . . . , un.

(b) Show that the maximum cardinality of a cut is at most

n

4
λmax(LG),

where λmax(LG) is the maximum eigenvalue of the Laplacian matrix
of G.

(c) Show that the maximum cardinality of a cut in G is at most

1

2
|E| − n

4
λmin(AG)

where AG is the adjacency matrix of G.
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(d) Show that both bounds in (b) and (c) coincide when G is a regular
graph (i.e., all nodes have the same degree).

2.4. Consider the polynomial in two variables x and y

p = x4 + 2x3y + 3x2y2 + 2xy3 + 2y4.

(a) Build a semidefinite program permitting to recognize whether p can
be written as sum of squares.

(b) Describe all possible sums of squares decompositions for p.

(c) What can you say about the number of squares needed?

2.5. Let G = (V = [n], E) be a graph and let LG ∈ Sn be its Laplacian matrix,
whose eigenvalues are denoted λ1 ≤ λ2 ≤ . . . ,≤ λn.

(a) Show that LG is positive semidefinite.

(b) Show: If G is connected then the kernel of LG has dimension 1.

(c) Show: The dimension of the kernel of LG is equal to the number of
connected components of G.

(d) Show: λ2 > 0 if and only if G is connected.

2.6. Show that the following assertions are equivalent for a matrix X ∈ Rn×n:

(1) X is a permutation matrix.

(2) X is an orthogonal matrix and X is doubly stochastic.

(3) X is doubly stochastic and ‖X‖ =
√
n.

(4) X is doubly stochastic with entries in {0, 1}.
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CHAPTER 3

DUALITY IN CONIC
PROGRAMMING

Traditionally, convex optimization problems are of the form

minimize f0(x)

subject to f1(x) ≤ 0, . . . , fN (x) ≤ 0,

aT1x = b1, . . . , a
T
Mx = bM ,

where the objective function f0 : D → R and the inequality constraint functions
fi : D → R which are defined on a convex domain D ⊆ Rn are convex, i.e. their
epigraphs

epi fi = {(x, α) : D × R : fi(x) ≤ α}, i = 0, . . . , N,

are convex sets in D × R ⊆ Rn+1. Equivalently, the function fi is convex if and
only if

∀x, y ∈ D ∀α ∈ [0, 1] : fi((1− α)x+ αx) ≤ (1− α)fi(x) + αfi(y).

The equality constraints are given by vectors aj ∈ Rn \ {0} and right hand sides
bj ∈ R. The convex set of feasible solutions is the intersection of N convex sets
with M hyperplanes

N⋂
i=1

{x ∈ D : fi(x) ≤ 0} ∩
M⋂
j=1

{x ∈ Rn : aTj x = bj}.

The set-up for conic programming is slightly different. We start by consider-
ing a fixed convex cone K lying in the n-dimensional Euclidean space Rn. The
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task of conic programming is the following: One wants to maximize (or mini-
mize) a linear function over the feasible region which is given as the intersection
of the convex cone K with an affine subspace:

maximize cTx

subject to x ∈ K,
aT1x = b1, . . . , a

T
mx = bm.

This differs only slightly from a traditional convex optimization problem:
The objective function is linear and feasibility with respect to the inequality
constraint functions is replaced by membership in the fixed convex cone K. In
principle, one can transform every convex optimization problem into a conic
program. However, the important point in conic programming is that it seems
that a vast majority of convex optimization problems which come up in practice
can be formulated as conic programs using the three standard cones:

1. the non-negative orthant Rn≥0 – giving linear programming (LP),

2. the second-order cone Ln+1 – giving second-order cone programming
(CQP),

3. or the cone of positive semidefinite matrices Sn�0 – giving semidefinite
programming (SDP).

As we will see in the next lecture, these three cones have particular nice analytic
properties: They have a self-concordant barrier function which is easy to evalu-
ate. This implies that there are theoretically (polynomial-time) and practically
efficient algorithms to solve these standard problems.

In addition to this, the three examples are ordered by their “difficulty”, which
can be pictured as

LP ⊆ CQP ⊆ SDP.

This means that one can formulate every linear program as a conic quadratic
program and one can formulate every conic quadratic program as a semidefinite
program.

Why do we care about conic programming in general and do not focus on
these three most important special cases?

The answer is that conic programming gives a unifying framework to design
algorithms, to understand the basic principles of its geometry and duality, and
to model optimization problems. Moreover this offers the flexibility of dealing
with new cones obtained e.g. by taking direct products of the three standard
types of cones.
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3.1 Fundamental properties

3.1.1 Local minimizers are global minimizers

A first fundamental property of convex optimization problems is that every local
minimizer is at the same time a global minimizer. A local minimizer of the
convex optimization problem is a feasible solution x ∈ D having the property
that there is a positive ε so that

f0(x) = inf{f0(y) : y is feasible and d(x, y) ≤ ε}.

Here and throughout we use the notation d(x, y) to denote the Euclidean dis-
tance ‖x − y‖2 between x, y ∈ Rn. To see that local optimality implies global
optimality assume that x is a local but not a global minimizer, then there is a
feasible solution y so that f0(y) < f0(x). Clearly, d(x, y) > ε. Define z ∈ [x, y]
by setting

z = (1− α)x+ αy, α =
ε

2d(x, y)
,

which is a feasible solution because of convexity. Then, d(x, z) = ε/2 and again
by convexity

f0(z) ≤ (1− α)f0(x) + αf0(y) < f0(x),

which contradicts the fact that x is a local minimizer.

3.1.2 Karush-Kuhn-Tucker condition

A second fundamental property of convex optimization problems is that one has
necessary and sufficient conditions for x being a local (and hence a global) min-
imizer. Stating and analyzing these kind of conditions is central to the theory
of non-linear programming and convex analysis. We just state one fundamental
result here without proving it. A proof can be found for instance in the book [2,
Chapter 5] by Boyd and Vandenberghe.

We assume that the convex optimization problem satisfies the following con-
dition, known as Slater’s condition:

There exists a point x ∈ relintD such that fi(x) < 0 for all i = 1, . . . , N and
such that aTj x = bj for all j = 1, . . . ,M .

This point is called a strictly feasible solution since the inequality constraints
hold with strict inequality. Furthermore, we assume that the objective function
and that the inequality constraint functions are differentiable. Under these con-
ditions a feasible solution is a global minimizer if and only if the Karush-Kuhn-
Tucker (KKT) condition holds: There are λ1, . . . , λN ∈ R≥0 and µ1, . . . , µM ∈ R
so that the following equations are satisfied:

λ1f1(x) = 0, . . . , λNfN (x) = 0,

∇f0(x) +

N∑
i=1

λi∇fi(x) +

M∑
j=1

µjaj = 0.
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The KKT-condition is an extension of the method of Lagrange multipliers where
one also can consider inequalities instead of only equalities.

3.2 Primal and dual conic programs

When defining conic programming we need a “nice” cone K, satisfying the fol-
lowing properties: K is closed, convex, pointed, and has a non-empty interior
or, equivalently, it is full-dimensional.

3.2.1 Primal conic programs

Let K ⊆ Rn be a pointed, closed, convex cone with non-empty interior.

Definition 3.2.1. Given c ∈ Rn, a1, . . . , am ∈ Rn, and b1, . . . , bm ∈ R, a primal
conic program (in standard form) is the following maximization problem:

sup{cTx : x ∈ K, aT1x = b1, . . . , a
T
mx = bm},

which can also be written in a more compact form as

sup{cTx : x ∈ K, Ax = b},

where A is the m× n matrix with rows aT1 , . . . , a
T
m and b = (b1, . . . , bm)T ∈ Rm.

We say that x ∈ Rn is a feasible solution (of the primal) if it lies in the cone
K and if it satisfies the equality constraints. It is a strictly feasible solution if it
additionally lies in the interior of K.

Note that we used a supremum here instead of a maximum. The reason is
simply that sometimes the supremum is not attained. We shall see examples in
Section 3.5.

3.2.2 Dual conic programs

The principal problem of duality is to find upper bounds for the primal conic
program (a maximization problem), in a systematic, or even mechanical way.
This is helpful e.g. in formulating optimality criteria and in the design of effi-
cient algorithms. Duality is a powerful technique, and sometimes translating
primal problems into dual problems gives unexpected benefits and insights. To
define the dual conic program we need the dual cone K∗.

Definition 3.2.2. Let K ⊆ Rn be a cone. The dual cone K∗ of K is

K∗ = {y ∈ Rn : yTx ≥ 0 for all x ∈ K}.

Lemma 3.2.3. If K is a pointed, closed, convex cone with non-empty interior, then
the same holds for its dual cone K∗.
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You will prove this in Exercise 3.1. The following property of cones will be
useful — you will prove it in Exercise 3.2.

Lemma 3.2.4. Let K be a closed convex full-dimensional cone. Then we have the
equivalence

x ∈ int K ⇐⇒ ∀y ∈ K∗ \ {0} : yTx > 0.

Definition 3.2.5. Let

sup{cTx : x ∈ K, aT1x = b1, . . . , a
T
mx = bm} = sup{cTx : x ∈ K, Ax = b}

be a primal conic program. Its dual conic program is the following minimization
problem

inf


m∑
j=1

yjbj : y1, . . . , ym ∈ R,
m∑
j=1

yjaj − c ∈ K∗
 ,

or more compactly,

inf{bTy : y ∈ Rm, ATy − c ∈ K∗}.

We say that y ∈ Rm is a feasible solution (of the dual) if
∑m
j=1 yjaj − c ∈ K∗.

It is a strictly feasible solution if
∑m
j=1 yjaj − c ∈ intK∗.

3.2.3 Geometric interpretation of the primal-dual pair

At first sight, the dual conic program does not look like a conic program, i.e.
optimizing a linear function over the intersection of a convex cone by an affine
subspace. Although the expression z =

∑m
i=1 yiai − c ranges over the inter-

section of the convex cone K∗ with an affine subspace, it might be less clear a
priori why the objective function

∑m
i=1 yibi has the right form (a linear function

in z =
∑m
i=1 yiai − c).

The following explanation shows how to view the primal and the dual conic
program geometrically. This also will bring the dual program into the right
form. For this consider the linear subspace

L = {x ∈ Rn : aT1x = 0, . . . , aTmx = 0},

and its orthogonal complement

L⊥ =


m∑
j=1

yjaj ∈ Rn : y1, . . . , ym ∈ R

 .

We may assume that there exists a point x0 ∈ Rn satisfying Ax0 = b for, if not,
the primal conic program would not have a feasible solution. Note then that

bTy = xT0A
Ty = xT0

 m∑
j=1

ajyj

 = xT0

 m∑
j=1

ajyj − c

+ xT0 c.
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Therefore, the primal conic program can be written as

sup{cTx : x ∈ K ∩ (x0 + L)}

and the dual conic program as

cTx0 + inf{xT0 z : z ∈ K∗ ∩ (−c+ L⊥)}.

Now both the primal and the dual conic programs have the right form and the
symmetry between the primal and the dual conic program becomes more clear.

What happens when one builds the dual of the dual? Then one gets a conic
program which is equivalent to the primal. This is due to the following lemma.

Lemma 3.2.6. Let K ⊆ Rn be a closed convex cone. Then, (K∗)∗ = K.

Proof. The inclusion K ⊆ (K∗)∗ is easy to verify using the definition only. For
the reverse inclusion, one needs the separation theorem (Lemma 1.5.2). Let
x ∈ Rn \ K. Then {x} and K can be separated by a hyperplane of the form
H = {z ∈ Rn : cTz = 0} for some c ∈ Rn \ {0}. Say, K ⊆ H+ = {z : cTz ≥ 0}
and cTx < 0. The inclusion K ⊆ H+ shows that c ∈ K∗ and then the inequality
cTx < 0 shows that x 6∈ (K∗)∗

3.3 Examples

Now we specialize the cone K to the first three examples of Section 1.5. These
three examples are useful for a huge spectrum of applications.

3.3.1 Linear programming (LP)

A conic program where K is the non-negative orthant Rn≥0 is a linear program.
We write a primal linear program (in standard form) as

sup{cTx : x ≥ 0, aT1x = b1, . . . , a
T
mx = bm} = sup{cTx : x ≥ 0, Ax = b}.

The non-negative orthant is self-dual: (Rn≥0)∗ = Rn≥0. The dual linear program
is

inf


m∑
j=1

bjyj : y1, . . . , ym ∈ R,
m∑
j=1

yjaj − c ≥ 0

 = inf{bTy : ATy − c ≥ 0}.

In the case when the problems are not unbounded we could replace the supre-
mum/infimum by maximum/minimum. This is because we are optimizing a
linear function over a polyhedron, which is equivalent to optimizing over its set
of extreme points, and any polyhedron has finitely many extreme points.
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3.3.2 Conic quadratic programming (CQP)

A conic program where K is the second-order cone Ln+1 is a conic quadratic
program. We write a primal conic quadratic program (in standard form) as

sup{(c, γ)T(x, t) : (x, t) ∈ Ln+1, (a1, α1)T(x, t) = b1, . . . (am, αm)T(x, t) = bm}.

Here (x, t) stands for the (column) vector in Rn+1 obtained by appending a new
entry t ∈ R to x ∈ Rn, we use this notation to emphasize the different nature of
the vector’s components. Recall the definition of the second-order cone Ln+1:

(x, t) ∈ Ln+1 if and only if ‖x‖2 ≤ t.

The second-order cone is self-dual, too — you will show this in Exercise 3.3

(Ln+1)∗ = Ln+1.

The dual conic quadratic program is

inf


m∑
j=1

yjbj : y1, . . . , ym ∈ R,
m∑
j=1

yj(aj , αj)− (c, γ) ∈ Ln+1

 .

This can be written in a nicer and more intuitive form using the Euclidean norm.
Define the matrix B ∈ Rn×m which has ai as its i-th column, and the vectors
b = (bj)

m
j=1, α = (αj)

m
j=1 and y = (yj)

m
j=1 in Rm. Then the dual conic quadratic

program can be reformulated as

inf
{
bTy : y ∈ Rm, ‖By − c‖2 ≤ αTy − γ

}
.

3.3.3 Semidefinite programming (SDP)

A conic program where K is the cone of semidefinite matrices Sn≥0 is a semidef-
inite program. We write a primal semidefinite program (in standard form) as

sup{〈C,X〉 : X � 0, 〈A1, X〉 = b1, . . . , 〈Am, X〉 = bm}.

We have already seen earlier that the cone of semidefinite matrices is self-dual:

(Sn�0)∗ = Sn�0.

The dual semidefinite program is

inf


m∑
j=1

yjbj : y1, . . . , ym ∈ R,
m∑
j=1

yjAj − C � 0

 .

Engineers and applied mathematicians like to call an inequality of the form∑m
i=1 yiAi − C � 0 a linear matrix inequality (LMI) between the parameters

y1, . . . , ym. It is a convenient way to express a convex constraint posed on the
vector y = (y1, . . . , ym)T.
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3.4 Duality theory

Duality is concerned with understanding the relation between the primal conic
program and the dual conic program. We denote the supremum of the primal
conic program by p∗ and the infimum of the dual conic program by d∗. What
is the relation between p∗ and d∗? As we see in the next theorem it turns out
that in many cases one has equality p∗ = d∗ and that the supremum as well
as the infimum are attained. In these cases duality theory can be very useful
because sometimes it is easier to work with the dual problem instead of the
primal problem.

Theorem 3.4.1. Suppose we are given a pair of primal and dual conic programs.
Let p∗ be the supremum of the primal and let d∗ be the infimum of the dual.

1. (weak duality) Suppose x is a feasible solution of the primal conic program,
and y is a feasible solution of the dual conic program. Then,

cTx ≤ bTy.

In particular p∗ ≤ d∗.

2. (complementary slackness) Suppose that the primal conic program attains
its supremum at x, and that the dual conic program attains its infimum at
y, and that p∗ = d∗. Then(

m∑
i=1

yiai − c

)T

x = 0.

3. (optimality criterion) Suppose that x is a feasible solution of the primal
conic program, and y is a feasible solution of the dual conic program, and
equality (

m∑
i=1

yiai − c

)T

x = 0

holds. Then the supremum of the primal conic program is attained at x and
the infimum of the dual conic program is attained at y.

4. (strong duality; no duality gap) If the dual conic program is bounded from
below and if it is strictly feasible, then the primal conic program attains its
supremum and there is no duality gap: p∗ = d∗.

If the primal conic program is bounded from above and if it is strictly feasible,
then the dual conic programs attains its infimum and there is no duality gap.

Before the proof one more comment about the usefulness of weak duality:
Suppose you want to solve a primal conic program. If the oracle of Delft, gives
you y, then it might be wise to check whether

∑m
i=1 yiai − c lies in K∗. If so,

then this gives immediately an upper bound for p∗.
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The difference d∗−p∗ is also called the duality gap between the primal conic
program and dual conic program.

One last remark: If the dual conic program is not bounded from below:
d∗ = −∞, then weak duality implies that p∗ = −∞, i.e., the primal conic
program is infeasible.

Proof. The proof of weak duality is important and simple. It reveals the origin
of the definition of the dual conic program: We have

m∑
j=1

yjbj =

m∑
j=1

yj(a
T
j x) =

 m∑
j=1

yjaj

T

x ≥ cTx,

where the last inequality is implied by
∑m
i=1 yiai − c ∈ K∗ and x ∈ K.

Now complementary slackness and the optimality criterion immediately
follow from this.

Strong duality needs considerably more work. It suffices to prove the first
statement (since the second one follows using the symmetry between the primal
and dual problems). So we assume that d∗ > −∞ and that the dual program
has a strict feasible solution. Using these assumptions we will construct a primal
feasible solution x∗ with cTx∗ ≥ d∗. Then, weak duality implies p∗ = d∗ and
hence x∗ is a maximizer of the primal conic program.

Consider the set

M =


m∑
j=1

yjaj − c : y ∈ Rm, bTy ≤ d∗
 .

If b = 0 then d∗ = 0 and setting x∗ = 0 proves the result immediately. Hence
we may assume that there is an index i so that bi is not zero, and then M is not
empty. We first claim that

M ∩ intK∗ = ∅.

For suppose not. Then there exists y ∈ Rm such that
∑m
j=1 yjaj − c ∈ intK∗

and yTb ≤ d∗. Assume without loss of generality that b1 < 0. Then for a small
enough ε > 0 one would have (y1 + ε)a1 +

∑m
j=2 yjaj − c ∈ K∗ with (y1 + ε)b1 +∑m

j=2 yjbj < yTb ≤ d∗. In other words, the vector ỹ = (y1 + ε, y2, . . . , ym)T is
dual feasible with bTỹ < d∗. This contradicts the fact that d∗ is the infimum of
the dual conic program.

Since M and K∗ are both convex sets whose relative interiors do not inter-
sect, we can separate them by an affine hyperplane, according to Theorem 1.3.8.
Hence, there is a non-zero vector x ∈ Rn so that

sup{xTz : z ∈M} ≤ inf{xTz : z ∈ K∗}. (3.1)

We shall use this point x to construct a maximizer of the primal conic pro-
gram which we do in three steps.
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First step: x ∈ K.

To see it, it suffices to show that

inf
z∈K∗

xTz ≥ 0, (3.2)

as this implies that x ∈ (K∗)∗ = K. We show the inequality by contradiction.
Suppose there is a vector z ∈ K∗ with xTz < 0. Then, for any positive λ, the
vector λy lies in the convex cone K∗. Making λ extremely large drives xTλy
towards −∞. But we reach a contradiction since, by (3.1), the infimum of xTz
over z ∈ K∗ is lower bounded since M 6= ∅.

Second step: There exists µ > 0 so that aTj x = µbj (j ∈ [m]) and xTc ≥ µd∗.
Since 0 ∈ K∗ we also have that the infimum of (3.2) is at most 0. So

we have shown that the infimum of (3.2) is equal to 0. Therefore, by (3.1),
supz∈M xTz ≤ 0. In other words, by the definition of M , for any y ∈ Rm,

yTb ≤ d∗ =⇒ xT
( m∑
j=1

yjaj − c
)
≤ 0

or, equivalently,

yTb ≤ d∗ =⇒
m∑
j=1

yj(x
Taj) ≤ xTc.

This means that the halfspace {y : yTb ≤ d∗} is contained into the halfspace
{y : yT(xTaj)j ≤ xTc}. Hence their normal vectors b and (xTaj)j point in the
same direction. In other words there exists a scalar µ ≥ 0 such that

xTaj = µbj (j = 1, . . . ,m), µd∗ ≤ xTc.

It suffices now to verify that µ is positive. Indeed suppose that µ = 0. Then, on
the one hand, we have that xTc ≥ 0. On the other hand, using the assumption
that the conic dual program is strictly feasible, there exists ȳ ∈ Rm such that∑
j ȳjaj − c ∈ intK∗. This implies

0 <
( m∑
j=1

ȳjaj − c
)T
x = −cTx,

where strict inequality follows from
∑
j ȳjaj − c ∈ intK∗ and x ∈ K \ {0} (use

here Lemma 3.2.4). This gives cTx < 0, a contradiction.

Third step: x∗ = x/µ is a maximizer of the primal conic program.

This follows directly from the fact that x∗ is a primal feasible solution (since
we saw above that x∗ ∈ K and aTj x

∗ = bj for j ∈ [m]) with cTx∗ ≥ d∗.
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3.5 Some pathological examples

If you know linear programming and its duality theory you might wonder why
do we always write sup and inf instead of max and min and why do we care
about strictly feasibility in Theorem 3.4.1. Why doesn’t strong duality always
hold? Here are some examples of semidefinite programs showing that we in-
deed have to be more careful.

3.5.1 Dual infimum not attained

Consider the semidefinite program

p∗ = sup

{〈(
0 −1
−1 0

)
, X

〉
: X � 0,

〈(
1 0
0 0

)
, X

〉
= 1,

〈(
0 0
0 1

)
, X

〉
= 0

}
and its dual

d∗ = inf

{
y1 : y1

(
1 0
0 0

)
+ y2

(
0 0
0 1

)
−
(

0 −1
−1 0

)
=

(
y1 1
1 y2

)
� 0

}
.

In this example, p∗ = d∗ = 0 and the supremum is attained in the primal, but
the infimum is not attained in the dual. Note indeed that the primal is not
strictly feasible (since X22 = 0 for any feasible solution).

3.5.2 Positive duality gap

There can be a duality gap between the primal and the dual conic programs.
Consider the primal semidefinite program with data matrices

C =

−1 0 0
0 −1 0
0 0 0

 , A1 =

1 0 0
0 0 0
0 0 0

 , A2 =

0 0 1
0 1 0
1 0 0

 ,

and b1 = 0, b2 = 1. It reads

p∗ = sup{−X11 −X22 : X11 = 0, 2X13 +X22 = 1, X � 0}

and its dual reads

d∗ = inf

y2 : y1A1 + y2A2 − C =

y1 + 1 0 y2
0 y2 + 1 0
y2 0 0

 � 0

 .

Then any primal feasible solution satisfies X13 = 0, X22 = 1, so that the primal
optimum value is equal to p∗ = −1, attained at the matrix X = E22. Any dual
feasible solution satisfies y2 = 0, so that the dual optimum value is equal to
d∗ = 0, attained at y = 0. Hence there is a positive duality gap: d∗ − p∗ = 1.
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3.5.3 Both primal and dual infeasible

Consider the semidefinite program

p∗ = sup

{〈(
0 0
0 1

)
, X

〉
: X � 0,

〈(
1 0
0 0

)
, X

〉
= 0,

〈(
0 1/2

1/2 0

)
, X

〉
= 1

}
and its dual

d∗ = inf

{
y2 : y1

(
0 0
0 1

)
+ y2

(
0 1/2

1/2 0

)
−
(

0 0
0 1

)
� 0

}
.

Both programs are infeasible, so that −∞ = p∗ < d∗ = +∞.

3.6 Strong and weak infeasibility

Consider the following two conic programming systems

Ax = b, x ∈ K, (3.3)

m∑
j=1

yjaj = ATy ∈ K∗, bTy < 0. (3.4)

Clearly, if (3.3) has a solution then (3.4) has no solution: If x is feasible for
(3.3) and y is feasible for (3.4) then

0 ≤ (ATy)Tx = yTAx = yTb < 0,

giving a contradiction. When K is the non-negative orthant then the converse
also holds: If (3.3) has no solution then (3.4) has a solution. This fact follows by
applying the separation theorem (Lemma 1.5.2). Indeed, assume that (3.3) has
no solution. Then b does not belong to the cone generated by the columns of A.
By Lemma 1.5.2, there exists a hyperplane, having normal y ∈ Rm, separating
{b} and this cone spanned by column vectors. So we have the inequalities
ATy ≥ 0 and yTb < 0. This shows that y is feasible for (3.4). We just proved
Farkas’ lemma for linear programming.

Theorem 3.6.1. (Farkas’ lemma for linear programming)
Given A ∈ Rm×n and b ∈ Rm, exactly one of the following two alternatives

holds:

(1) Either the linear system Ax = b, x ≥ 0 has a solution,

(2) Or the linear system ATy ≥ 0, bTy < 0 has a solution.

For general conic programming, it is not true that infeasibility of (3.3) im-
plies feasibility of (3.4). As an illustration, consider the following semidefinite
systems:

〈E11, X〉 = 0, 〈E12, X〉 = 1, X � 0, (3.5)
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y1E11 + y2E12 � 0, y2 < 0, (3.6)

which are both infeasible.
However, one can formulate the following analogous, although weaker, the-

orem of alternatives, which needs some strict feasibility condition.

Theorem 3.6.2. Let K ⊆ Rn be a full dimensional, pointed, closed and convex
cone, let A ∈ Rm×n with rows aT1 , . . . , a

T
m and let b ∈ Rm. Assume that the system

Ax = b has a solution x0. Then exactly one of the following two alternatives holds:

(1) Either there exists x ∈ intK such that Ax = b.

(2) Or there exists y ∈ Rm such that
∑m
j=1 yjaj = ATy ∈ K∗ \ {0}, bTy ≤ 0.

Proof. Again one direction is clear: If x ∈ intK satisfies Ax = b and y satisfies
ATy ∈ K∗ \ {0} and bTy ≤ 0, then we get 0 ≤ (ATy)Tx = yTAx = yTb ≤ 0,
implying (ATy)Tx = 0. This gives a contradiction since x ∈ intK and ATy ∈
K∗ \ {0} (recall Lemma 3.2.4).

Assume now that the system in (1) has no solution. By assumption, the
affine space L = {x : Ax = b} is not empty, as x0 ∈ L. Define the linear space

L = {x : Ax = 0} = {x : aT1x = 0, . . . , aTmx = 0}

so that L = L + x0. By assumption, L ∩ intK = ∅. By the separation theorem
(Theorem 1.3.8), there exists a hyperplane separating L and intK: There exists
a non-zero vector c ∈ Rn and a scalar β such that

∀x ∈ K : cTx ≥ β and ∀x ∈ L : cTx ≤ β.

Then β ≤ 0 (as 0 ∈ K) and c ∈ K∗ (as cTtx ≥ β for all x ∈ K and t > 0,
which implies that cTx ≥ 0). Moreover, for any x ∈ L and any scalar t ∈ R,
we have that cT(tx + x0) ≤ β which implies cTx = 0. Therefore c ∈ L⊥
and thus c is a linear combination of the aj ’s, say c =

∑m
j=1 yjaj = ATy for

some y = (yj) ∈ Rm. So we already have that ATy ∈ K∗ \ {0}. Finally,
yTb = yTAx0 = cTx0 ≤ β ≤ 0 (as x0 ∈ L).

Consider again the above example: the system (3.5) is not strictly feasible,
and indeed there is a feasible solution to (3.6) after replacing the condition
y2 < 0 by y2 ≤ 0 and adding the condition y1E11 + y2E12 6= 0.

We now further investigate the situation when the primal system (3.3) is
infeasible. According to the above discussion, there are two possibilities:

1. Either (3.4) is feasible: There exists y ∈ Rm such that
∑m
j=1 yjaj ∈ K∗

and bTy < 0. Then we say that the system (3.3) is strongly infeasible.

2. Or (3.4) is not feasible.

As we will show below, this second alternative corresponds to the case when
the system (3.3) is “weakly infeasible”, which roughly means that it is infeasible
but any small perturbation of it becomes feasible. Here is the exact definition.
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Definition 3.6.3. The system Ax = b, x ∈ K is weakly infeasible if it is infeasible
and, for any ε > 0, there exists x ∈ K such that ‖Ax− b‖ ≤ ε.

For instance, the system (3.5) is weakly infeasible: For any ε > 0 the per-
turbed system 〈E11, X〉 = ε, 〈E12, X〉 = 1, X � 0 is feasible.

Theorem 3.6.4. Consider the two systems (3.3) and (3.4). Assume that the sys-
tem (3.3) is infeasible, i.e., there does not exist x ∈ K such that Ax = b. Then
exactly one of the following two alternatives holds.

(1) Either (3.3) is strongly infeasible: There exists y ∈ Rm such that bTy < 0
and

∑m
j=1 yjaj − c ∈ K∗.

(2) Or (3.3) is weakly infeasible: For every ε > 0 there exists x ∈ K satisfying
‖Ax− b‖ ≤ ε.

Proof. Assume that (3.3) is not strongly infeasible. Then the two convex sets
{y : ATy ∈ K∗} and {y : bTy < 0} are disjoint. By the separation theorem
(Theorem 1.3.8) there exists a non-zero vector c ∈ Rm such that

inf{cTy : ATy ∈ K∗} ≥ 0 ≥ sup{cTy : bTy < 0}.

Hence, bTy < 0 implies cTy ≤ 0. This implies that c = λb for some positive λ
and, up to rescaling, we can assume that c = b. Therefore,

m∑
j=1

ajyj ∈ K∗ =⇒ bTy ≥ 0. (3.7)

We show that (3.3) is weakly infeasible. For this consider the following pro-
gram, where we have two new variables z, z′ ∈ Rm:

p∗ = inf
x∈Rn,z,z′∈Rm

{eTz + eTz′ : Ax+ z − z′ = b, x ∈ K, z, z′ ∈ Rm≥0}, (3.8)

where e = (1, . . . , 1)T is the all-ones vector. It suffices now to show that the
infimum of (3.8) is equal to 0, since this implies directly that (3.3) is weakly
infeasible. For this consider the dual program of (3.8), which can be written as
(check it)

d∗ = sup
y∈Rm

{bTy : −ATy ∈ K∗, −e ≤ y ≤ e}. (3.9)

Clearly the primal (3.8) is strictly feasible and d∗ ≥ 0 (since y = 0 is feasible).
Moreover, d∗ ≤ 0 by (4.26). Hence d∗ = 0 and thus p∗ = d∗ = 0 since there is
no duality gap (applying Theorem 3.4.1).

Of course the analogous result holds for the dual conic program (which
follows using symmetry between primal/dual programs).

Theorem 3.6.5. Assume that the system
m∑
j=1

yjaj − c ∈ K∗ (3.10)

is infeasible. Then exactly one of the following two alternatives holds.
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(1) Either (3.10) is strongly infeasible: There exists x ∈ K such that Ax = 0
and cTx > 0.

(2) Or (3.10) is weakly infeasible: For every ε > 0 there exist y ∈ Rm and
z ∈ K∗ such that ‖(

∑m
j=1 yjaj − c)− z‖ ≤ ε.

3.7 More on the difference between linear and conic
programming

We have already seen above several differences between linear programming
and semidefinite programming: there might be a duality gap between the pri-
mal and dual programs and the supremum/infimum might not be attained even
though they are finite. We point out some more differences regarding rationality
and bit size of optimal solutions.

In the classical bit (Turing machine) model of computation an integer num-
ber p is encoded in binary notation, so that its bit size is log p+ 1 (logarithm in
base 2). Rational numbers are encoded as two integer numbers and the bit size
of a vector or a matrix is the sum of the bit sizes of its entries.

Consider a linear program

max{cTx : Ax = b, x ≥ 0} (3.11)

where the dataA, b, c is rational-valued. From the point of view of computability
this is a natural assumption and it would be desirable to have an optimal solu-
tion which is also rational-valued. A fundamental result in linear programming
asserts that this is indeed the case: If program (5.4) has an optimal solution,
then it has a rational optimal solution x ∈ Qn, whose bit size is polynomially
bounded in terms of the bit sizes of A, b, c.

On the other hand it is easy to construct instances of semidefinite program-
ming where the data are rational valued, yet there is no rational optimal solu-
tion. For instance, the following program

max

{
x :

(
1 x
x 2

)
� 0

}
attains its maximum at x = ±

√
2.

Consider now the semidefinite program, with variables x1, . . . , xn,

inf

{
xn :

(
1 2
2 x1

)
� 0,

(
1 xi−1

xi−1 xi

)
� 0 for i = 2, . . . , n

}
.

Then any feasible solution satisfies xn ≥ 22
n

. Hence the bit-size of an optimal
solution is exponential in n, thus exponential in terms of the bit-size of the data.
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3.8 Further reading

Conic programs, especially linear programs, conic quadratic programs, and
semidefinite programs are the central topic in the text book of Ben-Tal and Ne-
mirovski [1]. There also many interesting engineering applications (synthesis
of filters and antennas, truss topology design, robust optimization, optimal con-
trol, stability analysis and synthesis, design of chips) are covered. This book
largely overlaps with Nemirovski’s lecture notes [5] which are available online.
A nutshell version of these lecture notes is Nemirovski’s plenary talk “Advances
in convex optimization: conic programming” at the International Congress of
Mathematicians in Madrid 2006 for which a paper and a video is available on-
line: [6]. It is astonishing how much material Nemirovski covers in only 60
minutes.

A second excellent text book on convex optimization is the book by Boyd
and Vandenberghe [2] (available online). Here the treated applications are: ap-
proximation and fitting, statistical estimation, and geometric problems. Videos
of Boyd’s course held at Stanford can also be found there.

The duality theory for linear programming which does not involve duality
gaps is explained in every book on linear programming. For example, Schrijver
[7, Chapter 7] is a good source.

3.9 Historical remarks

The history of conic programming is difficult to trace. Only recently researchers
recognized that they give a unifying framework for convex optimization.

In 1956, Duffin in a short paper “Infinite programs” [3] introduced conic pro-
grams. His approach even works in infinite dimensions and he focused on these
cases. However, the real beginning of conic programming seems to be 1993
when the book “Interior-Point Polynomial Algorithms in Convex Optimization”
by Yurii Nesterov and Arkadi Nemirovski was published. There they described
for the first time a unified theory of polynomial-time interior point methods for
convex optimization problems based on their conic formulations. Concerning
the history of conic programs they write:

Duality for convex program involving “non-negativity constraints” de-
fined by a general-type convex cone in a Banach space is a relatively
old (and, possibly, slightly forgotten by the mathematical programming
community) part of convex analysis (see, e.g. [ET76]). The correspond-
ing general results, as applied to the case of conic problems (i.e., finite-
dimensional problems with general-type non-negativity constraints and
affine functional constraints), form the contents of §3.2. To our knowl-
edge, in convex analysis, there was no special interest to conic problems,
and consequently to the remarkable symmetric form of the aforemen-
tioned duality in this particular case. The only previous result in spirit
of this duality known to us it the dual characterization of the Lovasz
capacity number θ(Γ) of a graph (see [Lo79]).
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3.10 Exercises

3.1 Let K ⊆ Rn be a cone and let K∗ be its dual cone.

(a) Show that K∗ is a closed convex cone.

(b) If K is pointed, closed, convex and full-dimensional, show that the
same holds for K∗.

3.2 Let K be a closed convex full dimensional cone. Show that

x ∈ intK ⇐⇒ yTx > 0 ∀y ∈ K∗ \ {0}.

3.3 (a) For the Lorentz cone, show that (Ln+1)∗ = Ln+1.

(b) Determine the dual cone of the cone of copositive matrices.

3.4 Consider the following location problem: We are given N locations in the
plane x1, . . . , xN ∈ R2. Find a point y ∈ R2 which minimizes the sum of
the distances to the N locations:

min
y∈R2

N∑
i=1

d(xi, y).

(a) Formulate this problem as a conic program using the cone

L2+1 × L2+1 × · · · × L2+1.

(b) Determine its dual.

(c) Is there a duality gap?
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CHAPTER 4

GRAPH COLORING AND
INDEPENDENT SETS

In this chapter we revisit in detail the theta number ϑ(G), which has already
been introduced in earlier chapters. In particular, we present several equivalent
formulations for ϑ(G), we discuss its geometric properties, and present some
applications: for bounding the Shannon capacity of a graph, and for comput-
ing in polynomial time maximum stable sets and minimum colorings in perfect
graphs.

Here are some additional definitions used in this chapter. Let G = (V,E) be
a graph. Then, E denotes the set of pairs {i, j} of distinct nodes that are not
adjacent in G. The graph G = (V,E) is called the complementary graph of G. G
is self-complementary if G and G are isomorphic graphs. Given a subset S ⊆ V ,
G[S] denotes the subgraph induced by S: its node set is S and its edges are all
pairs {i, j} ∈ E with i, j ∈ S. The graph Cn is the circuit (or cycle) of length n,
with node set [n] and edges the pairs {i, i+1} (for i ∈ [n], indices taken modulo
n). For a set S ⊆ V , its characteristic vector is the vector χS ∈ {0, 1}S , whose
i-th entry is 1 if 1 ∈ S and 0 otherwise. As before, e denotes the all-ones vector.

4.1 Preliminaries on graphs

4.1.1 Stability and chromatic numbers

A subset S ⊆ V of nodes is said to be stable (or independent) if no two nodes
of S are adjacent in G. Then the stability number of G is the parameter α(G)
defined as the maximum cardinality of an independent set in G.
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A subset C ⊆ V of nodes is called a clique if every two distinct nodes in C
are adjacent. The maximum cardinality of a clique in G is denoted ω(G), the
clique number of G. Clearly,

ω(G) = α(G).

Computing the stability number of a graph is a hard problem: Given a graph
G and an integer k, deciding whether α(G) ≥ k is an NP -complete problem.

Given an integer k ≥ 1, a k-coloring of G is an assignment of numbers (view
them as colors) from {1, · · · , k} to the nodes in such a way that two adjacent
nodes receive distinct colors. In other words, this corresponds to a partition of
V into k stable sets: V = S1 ∪ · · · ∪ Sk, where Si is the stable set consisting of
all nodes that received the i-th color. The coloring (or chromatic) number is the
smallest integer k for which G admits a k-coloring, it is denoted as χ(G).

Again it is anNP -complete problem to decide whether a graph is k-colorable.
In fact, it is NP -complete to decide whether a planar graph is 3-colorable. On
the other hand, it is known that every planar graph is 4-colorable – this is the
celebrated 4-color theorem. Moreover, observe that one can decide in polyno-
mial time whether a graph is 2-colorable, since one can check in polynomial
time whether a graph is bipartite.

Figure 4.1: The Petersen graph has α(G) = 4, ω(G) = 2 and χ(G) = 3

Clearly, any two nodes in a clique of G must receive distinct colors. There-
fore, for any graph, the following inequality holds:

ω(G) ≤ χ(G). (4.1)

This inequality is strict, for example, when G is an odd circuit, i.e., a circuit
of odd length at least 5, or its complement. Indeed, for an odd circuit C2n+1

(n ≥ 2), ω(C2n+1) = 2 while χ(C2n+1) = 3. Moreover, for the complement
G = C2n+1, ω(G) = n while χ(G) = n + 1. For an illustration see the cycle of
length 7 and its complement in Figure 4.2.

4.1.2 Perfect graphs

It is intriguing to understand for which graphs equality ω(G) = χ(G) holds.
Note that any graph G with ω(G) < χ(G) can be embedded in a larger graph
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Figure 4.2: For C7 and its complement C7: ω(C7) = 2, χ(C7) = 3, ω(C7) =
α(C7) = 3, χ(C7) = 4

Ĝ with ω(Ĝ) = χ(Ĝ), simply by adding to G a set of χ(G) new nodes forming
a clique. This justifies the following definition, introduced by C. Berge in the
early sixties, which makes the problem well posed.

Definition 4.1.1. A graph G is said to be perfect if equality

ω(H) = χ(H)

holds for all induced subgraphs H of G (including H = G).

For instance, bipartite graphs are perfect (the min-max relation ω(G) =
χ(G) ≤ 2 is clear) and complement of line graphs of bipartite graphs are per-
fect (then the min-max relation claims that in a bipartite graph the maximum
cardinality of a matching is equal to the minimum cardinality of a vertex cover,
which is true by a theorem of König).

It follows from the definition and the above observation about odd circuits
that if G is a perfect graph then it does not contain an odd circuit of length
at least 5 or its complement as an induced subgraph. Berge already conjec-
tured in 1961 that all perfect graphs arise in this way. Resolving this conjecture
has haunted generations of graph theorists. It was finally settled in 2006 by
Chudnovsky, Robertson, Seymour and Thomas who proved the following result,
known as the strong perfect graph theorem:

Theorem 4.1.2. (The strong perfect graph theorem)[2] A graph G is perfect if
and only if it does not contain an odd circuit of length at least 5 or its complement
as an induced subgraph.

This implies the following structural result about perfect graphs, known as
the perfect graph theorem, already proved by Lovász in 1972.

Theorem 4.1.3. (The perfect graph theorem) If G is a perfect graph, then its
complement G too is a perfect graph.

We give a direct proof of Theorem 4.1.3 in the next section and we will
mention later some other, more geometric, characterizations of perfect graphs
(see, e.g., Theorem 4.2.4).
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4.1.3 The perfect graph theorem

Lovász [9] proved the following result, which implies the perfect graph theorem
(Theorem 4.1.3). The proof given below follows the elegant linear-algebraic
argument of Gasparian [4].

Theorem 4.1.4. A graph G is perfect if and only if |V (G′)| ≤ α(G′)ω(G′) for
each induced subgraph G′ of G.

Proof. Necessity is easy: Assume that G is perfect and let G′ be an induced
subgraph of G. Then χ(G′) = ω(G′) and thus V (G′) can be covered by ω(G′)
stable sets, which implies that |V (G′)| ≤ ω(G′)α(G′).

To show sufficiency, assume for a contradiction that there exists a graph G
which satisfies the condition but is not perfect; choose such a graph with |V (G)|
minimal. Then, n ≤ α(G)ω(G), ω(G) < χ(G) and ω(G′) = χ(G′) for each
induced subgraph G′ 6= G of G. Set ω = ω(G) and α = α(G) for simplicity. Our
first claim is:

Claim 1: There exist αω + 1 stable sets S0, . . . , Sαω such that each vertex of G
is covered by exactly α of them.

Proof of the claim: Let S0 be a stable set of size α in G. For each node v ∈ S0,
as G\v is perfect (by the minimality assumption on G), χ(G\v) = ω(G\v) ≤ ω.
Hence, V \ {v} can be partitioned into ω stable sets. In this way we obtain a
collection of αω stable sets which together with S0 satisfy the claim.

Our next claim is:

Claim 2: For each i = 0, 1, . . . , αω, there exists a clique Ki of size ω such that
Ki ∩ Si = ∅ and Ki ∩ Sj 6= ∅ for j 6= i.

Proof of the claim: For each i = 0, 1, . . . , αω, as G \ Si is perfect we have
that χ(G \ Si) = ω(G \ Si) ≤ ω. This implies that χ(G \ Si) = ω since, if
χ(G \ Si) ≤ ω − 1, then one could color G with ω colors, contradicting our
assumption on G. Hence there exists a clique Ki disjoint from Si and with
|Ki| = ω. Moreover Ki meets all the other αω stable sets Sj for j 6= i. This
follows from the fact that each of the ω elements of Ki belongs to α stable sets
among the Sj ’s (Claim 1) and these ωα sets are pairwise distinct.

We can now conclude the proof. Define the matrices M,N ∈ Rn×(αω+1), whose
columns are χS0 , . . . , χSαω (the incidence vectors of the stable sets Si), and the
vectors χK0 , . . . , χαω+1 (the incidence vectors of the cliques Ki), respectively.
By Claim 2, we have thatMTN = J−I (where J is the all-ones matrix and I the
identity). As J − I is nonsingular, we obtain that rank(MTN) = rank(J − I) =
αω + 1. On the other hand, rank(MTN) ≤ rankN ≤ n. Thus we obtain that
n ≥ αω + 1, contradicting our assumption on G.
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4.2 Linear programming bounds

4.2.1 Fractional stable sets and colorings

Let ST(G) denote the polytope in RV defined as the convex hull of the charac-
teristic vectors of the stable sets of G:

ST(G) = conv{χS : S ⊆ V, S is a stable set in G},

called the stable set polytope of G. Hence, computing α(G) is linear optimization
over the stable set polytope:

α(G) = max{eTx : x ∈ ST(G)}.

We have now defined the stable set polytope by listing explicitly its extreme
points. Alternatively, it can also be represented by its hyperplanes representa-
tion, i.e., in the form

ST(G) = {x ∈ RV : Ax ≤ b}
for some matrix A and some vector b. As computing the stability number is
a hard problem one cannot hope to find the full linear inequality description
of the stable set polytope (i.e., the explicit A and b). However some partial
information is known: several classes of valid inequalities for the stable set
polytope are known. For instance, if C is a clique of G, then the clique inequality

x(C) =
∑
i∈C

xi ≤ 1 (4.2)

is valid for ST(G): any stable set can contain at most one vertex from the clique
C. The clique inequalities define the polytope

QST(G) =
{
x ∈ RV : x ≥ 0, x(C) ≤ 1 ∀C clique of G

}
. (4.3)

Cleary, QST(G) is a relaxation of the stable set polytope:

ST(G) ⊆ QST(G). (4.4)

Maximizing the linear function eTx over the polytope QST(G) gives the pa-
rameter

α∗(G) = max{eTx : x ∈ QST(G)}, (4.5)

known as the fractional stability number of G. Analogously, χ∗(G) denotes the
fractional coloring number of G, defined by the following linear program:

χ∗(G) = min

{ ∑
S stable in G

λS :
∑

S stable in G

λSχ
S = e, λS ≥ 0 ∀S stable in G

}
.

(4.6)
If we add the constraint that all λS should be integral then we obtain the
coloring number of G. Thus, χ∗(G) ≤ χ(G). In fact the fractional stability
number of G coincides with the fractional coloring number of its complement:
α∗(G) = χ∗(G), and it is nested between α(G) and χ(G).
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Lemma 4.2.1. For any graph G, we have

α(G) ≤ α∗(G) = χ∗(G) ≤ χ(G), (4.7)

where χ∗(G) is the optimum value of the linear program:

min

 ∑
C clique of G

yC :
∑

C clique of G

yCχ
C = e, yC ≥ 0 ∀C clique of G

 . (4.8)

Proof. The inequality α(G) ≤ α∗(G) in (4.7) follows from the inclusion (4.4)
and the inequality χ∗(G) ≤ χ(G) was observed above. We now show that
α∗(G) = χ∗(G). For this, we first observe that in the linear program (4.5) the
condition x ≥ 0 can be removed without changing the optimal value; that is,

α∗(G) = max{eTx : x(C) ≤ 1 ∀C clique of G} (4.9)

(check it). Now, it suffices to observe that the dual LP of the above linear
program (4.9) coincides with the linear program (4.8).

For instance, for an odd circuit C2n+1 (n ≥ 2), α∗(C2n+1) = 2n+1
2 (check it)

lies strictly between α(C2n+1) = n and χ(C2n+1) = n+ 1.

When G is a perfect graph, equality holds throughout in relation (4.7). As
we see in the next section, there is a natural extension of this result to weighted
graphs, which permits to show the equality ST(G) = QST(G) when G is a
perfect graph. Moreover, it turns out that this geometric property characterizes
perfect graphs.

4.2.2 Polyhedral characterization of perfect graphs

For any graph G, the fractional stable set polytope is a linear relaxation of the
stable set polytope: ST(G) ⊆ QST(G). Here we show a geometric character-
ization of perfect graphs: G is perfect if and only if both polytopes coincide:
ST(G) = QST(G).

The following operation of duplicating a node will be useful. Let G = (V,E)
be a graph and let v ∈ V . Add to G a new node, say v′, which is adjacent to v
and to all neighbours of v in G. In this way we obtain a new graph H, which
we say is obtained from G by duplicating v. Repeated duplicating is called
replicating.

Lemma 4.2.2. Let H arise from G by duplicating a node. If G is perfect then H
too is perfect.

Proof. First we show that α(H) = χ(H) if H arises from G by duplicating node
v. Indeed, by construction, α(H) = α(G), which is equal to χ(G) since G is
perfect. Now, if C1, . . . , Ct are cliques in G that cover V with (say) v ∈ C1, then
C1∪{v′}, . . . , Ct are cliques in H covering V (H). This shows that χ(G) = χ(H),
which implies that α(H) = χ(H).
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From this we can conclude that, if H arises from G by duplicating a node
v, then α(H ′) = χ(H ′) for any induced subgraph H ′ of H, using induction on
the number of nodes of G. Indeed, either H ′ is an induced subgraph of G (if
H ′ does not contain both v and v′), or H ′ is obtained by duplicating v in an
induced subgraph of G; in both cases we have that α(H ′) = χ(H ′).

Hence, if H arises by duplicating a node in a perfect graph G, then H is
perfect which, by Theorem 4.1.3, implies that H is perfect.

Given node weights w ∈ RV+, we define the following weighted analogues of
the (fractional) stability and chromatic numbers:

α(G,w) = max
x∈ST(G)

wTx,

α∗(G,w) = max
x∈QST(G)

wTx,

χ∗(G,w) = min
y

 ∑
C clique of G

yC :
∑

C clique of G

yCχ
C = w, yC ≥ 0 ∀C clique of G

 ,

χ(G,w) = min
y

 ∑
C clique of G

yC :
∑

C clique of G

yCχ
C = w, yC ∈ Z, yC ≥ 0 ∀C clique of G

 .

When w is the all-ones weight function, we find again α(G), α∗(G), χ∗(G) and
χ(G), respectively. The following analogue of (4.7) holds for arbitrary node
weights:

α(G,w) ≤ α∗(G,w) = χ∗(G,w) ≤ χ(G,w). (4.10)

Lemma 4.2.3. Let G be a perfect graph and let w ∈ ZV≥0 be nonnegative integer
node weights. Then, α(G,w) = χ(G,w).

Proof. Let H denote the graph obtained from G by duplicating node i wi times
if wi ≥ 1 and deleting node i if wi = 0. Then, by construction, α(G,w) = ω(H),
which is equal to χ(H) since H is perfect (by Lemma 4.2.2). Say, S̃1, . . . , S̃t are
t = χ(H) stable sets in H partitioning V (H). Each stable set S̃k corresponds to
a stable set Sk in G (since S̃k contains at most one of the wi copies of each node
i of G). Now, these stable sets S1, . . . , St have the property that each node i of
G belongs to exactly wi of them, which shows that χ(G,w) ≤ t = χ(H). This
implies that χ(G,w) ≤ χ(H) = α(G,w), giving equality χ(G,w) = α(G,w).

We can now show the following geometric characterization of perfect graphs,
due to Chvátal [1]. In the proof we will use the fact that ST(G) ⊆ QST(G) are
down-monotone polytopes in Rn≥0 (and the properties from Exercise 1.6). Re-
call that a polytope P ⊆ Rn≥0 is down-monotone if x ∈ P and 0 ≤ y ≤ x
(coordinate-wise) implies y ∈ P .

Theorem 4.2.4. [1] A graph G is perfect if and only if ST(G) = QST(G).
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Proof. First assume that G is perfect, we show that ST(G) = QST(G). As
ST(G) ⊆ QST(G) are down-monotone in RV≥0, we can use the following prop-
erty shown in Exercise 1.6: To show equality ST(G) = QST(G) it suffices to
show that α(G,w) = α∗(G,w) for all w ∈ ZV≥0; now the latter property follows
from Lemma 4.2.3 (applied to G).

Conversely, assume that ST(G) = QST(G) and that G is not perfect. Pick
a minimal subset U ⊆ V for which the subgraph G′ of G induced by U satis-
fies α(G′) < χ(G′). Setting w = χU , we have that α(G′) = α(G,w) which,
by assumption, is equal to maxx∈QST(G) w

Tx = α∗(G,w). Consider the dual of
the linear program defining α∗(G,w) with an optimal solution y = (yC). Pick
a clique C of G for which yC > 0, then C is a nonempty subset of U . More-
over, using complementary slackness, we deduce that x(C) = 1 for any optimal
solution x ∈ QST(G) and thus |C ∩ S| = 1 for any maximum cardinality sta-
ble set S ⊆ U . Let G′′ denote the subgraph of G induced by U \ C. Then,
α(G′′) ≤ α(G′) − 1 < χ(G′) − 1 ≤ χ(G′′), which contradicts the minimality
assumption made on U .

When G is a perfect graph, equality ST(G) = QST(G) holds. Hence an
explicit linear inequality description is known for its stable set polytope, given
by the clique inequalities. However, it is not clear how to use this information in
order to give an efficient algorithm for optimizing over the stable set polytope of
a perfect graph. As we see later in Section 4.5.1 there is yet another description
of ST(G) – in terms of semidefinite programming, using the theta body TH(G)
– that will allow to give an efficient algorithm.

4.3 Semidefinite programming bounds

4.3.1 The theta number

Definition 4.3.1. Given a graph G = (V,E), consider the following semidefinite
program

max
X∈Sn

{〈J,X〉 : Tr(X) = 1, Xij = 0 ∀{i, j} ∈ E, X � 0} . (4.11)

Its optimal value is denoted as ϑ(G), and called the theta number of G.

This parameter was introduced by Lovász [10]. He proved the following
simple, but crucial result – called the Sandwich Theorem by Knuth [6] – which
shows that ϑ(G) provides a bound for both the stability number of G and the
chromatic number of the complementary graph G.

Theorem 4.3.2. (Lovász’ sandwich theorem) For any graph G, we have that

α(G) ≤ ϑ(G) ≤ χ(G).
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Proof. Given a stable set S of cardinality |S| = α(G), define the matrix

X =
1

|S|
χS(χS)T ∈ Sn.

Then X is feasible for (4.11) with objective value 〈J,X〉 = |S| (check it). This
shows the inequality α(G) ≤ ϑ(G).

Now, consider a matrix X feasible for the program (4.11) and a partition of
V into k cliques: V = C1 ∪ · · · ∪ Ck. Our goal is now to show that 〈J,X〉 ≤ k,
which will imply ϑ(G) ≤ χ(G). For this, using the relation e =

∑k
i=1 χ

Ci ,
observe that

Y :=

k∑
i=1

(
kχCi − e

) (
kχCi − e

)T
= k2

k∑
i=1

χCi(χCi)T − kJ.

Moreover, 〈
X,

k∑
I=1

χCi(χCi)T

〉
= Tr(X).

Indeed the matrix
∑
i χ

Ci(χCi)T has all its diagonal entries equal to 1 and it
has zero off-diagonal entries outside the edge set of G, while X has zero off-
diagonal entries on the edge set of G. As X,Y � 0, we obtain

0 ≤ 〈X,Y 〉 = k2Tr(X)− k〈J,X〉

and thus 〈J,X〉 ≤ k Tr(X) = k.

An alternative argument for the inequality ϑ(G) ≤ χ(G), showing an even
more transparent link to coverings by cliques, will be given later in the para-
graph after the proof of Lemma 4.4.2.

4.3.2 Computing maximum stable sets in perfect graphs

Assume that G is a graph satisfying α(G) = χ(G). Then, as a direct applica-
tion of Theorem 4.3.2, α(G) = χ(G) = ϑ(G) can be computed by solving the
semidefinite program (4.11), it suffices to solve this semidefinite program with
precision ε < 1/2 as one can then find α(G) by rounding the optimal value to
the nearest integer. In particular, combining with the perfect graph theorem
(Theorem 4.1.3):

Theorem 4.3.3. If G is a perfect graph then α(G) = χ(G) = ϑ(G) and ω(G) =
χ(G) = ϑ(G).

Hence one can compute the stability number and the chromatic number in
polynomial time for perfect graphs. Moreover, one can also find a maximum
stable set and a minimum coloring in polynomial time for perfect graphs. We
now indicate how to construct a maximum stable set – we deal with minimum
graph colorings in the next section.
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Let G = (V,E) be a perfect graph. Order the nodes of G as v1, · · · , vn. Then
we construct a sequence of induced subgraphsG0, G1, · · · , Gn ofG. Hence each
Gi is perfect, also after removing a node, so that we can compute in polynomial
time the stability number of such graphs. The construction goes as follows: Set
G0 = G. For each i = 1, · · · , n do the following:

1. Compute α(Gi−1\vi).

2. If α(Gi−1\vi) = α(G), then set Gi = Gi−1\vi.

3. Otherwise, set Gi = Gi−1.

By construction, α(Gi) = α(G) for all i. In particular, α(Gn) = α(G). Moreover,
the node set of the final graph Gn is a stable set and, therefore, it is a maximum
stable set of G. Indeed, if the node set of Gn is not stable then it contains a
node vi for which α(Gn\vi) = α(Gn). But then, as Gn is an induced subgraph
of Gi−1, one would have that α(Gn\vi) ≤ α(Gi−1\vi) and thus α(Gi−1\vi) =
α(G), so that node vi would have been removed at Step 2.

Hence, the above algorithm permits to construct a maximum stable set in
a perfect graph G in polynomial time – namely by solving n + 1 semidefinite
programs for computing α(G) and α(Gi−1\vi) for i = 1, · · · , n.

More generally, given integer node weights w ∈ ZV≥0, the above algorithm
can also be used to find a stable set S of maximum weight w(S). For this,
construct the new graph G′ in the following way: Duplicate each node i ∈ V wi
times, i.e., replace node i ∈ V by a set Wi of wi nodes pairwise non-adjacent,
and make two nodes x ∈ Wi and y ∈ Wj adjacent if i and j are adjacent in
G. By Lemma 4.2.2, the graph G′ is perfect. Moreover, α(G′) is equal to the
maximum weight w(S) of a stable set S in G. From this it follows that, if the
weights wi are bounded by a polynomial in n, then one can compute α(G,w)
in polynomial time. (More generally, one can compute α(G,w) in polynomial
time, e.g. by optimizing the linear function wTx over the theta body TH(G),
introduced in Section 4.5.1 below.)

4.3.3 Minimum colorings of perfect graphs

We now describe an algorithm for computing a minimum coloring of a perfect
graph G in polynomial time. This will be reduced to several computations of
the theta number which we will use for computing the clique number of some
induced subgraphs of G.

Let G = (V,E) be a perfect graph. Call a clique of G maximum if it has
maximum cardinality ω(G). The crucial observation is that it suffices to find a
stable set S in G which meets all maximum cliques.

First of all, such a stable set S exists: in a ω(G)-coloring, any color class S
must meet all maximum cliques, since ω(G \ S) = χ(G \ S) = ω(G)− 1.

Now, if we have found such a stable set S, then one can recursively color
G\S with ω(G\S) = ω(G)−1 colors (in polynomial time), and thus one obtains
a coloring of G with ω(G) colors.
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The algorithm goes as follows: For t ≥ 1, we grow a list L of t maximum
cliques C1, · · · , Ct. Suppose C1, · · · , Ct have been found. Then do the follow-
ing:

1. We find a stable set S meeting each of the cliques C1, · · · , Ct (see below).

2. Compute ω(G\S).

3. If ω(G\S) < ω(G) then S meets all maximum cliques and we are done.

4. Otherwise, compute a maximum clique Ct+1 in G\S, which is thus a new
maximum clique of G, and we add it to the list L.

The first step can be done as follows: Set w =
∑t
i=1 χ

Ci ∈ ZV≥0. As G is
perfect, we know that α(G,w) = χ(G,w), which in turn is equal to t. (Indeed,
χ(G,w) ≤ t follows from the definition of w. Moreover, if y = (yC) is feasible
for the program defining χ(G,w) then, on the one hand, wTe =

∑
C yC |C| ≤∑

C yCω(G) and, on the other hand, wTe = tω(G), thus implying t ≤ χ(G,w).)
Now we compute a stable set S having maximum possible weight w(S). Hence,
w(S) = t and thus S meets each of the cliques C1, · · · , Ct.

The above algorithm has polynomial running time, since the number of iter-
ations is bounded by |V |. To see this, define the affine space Lt ⊆ RV defined
by the equations x(C1) = 1, · · · , x(Ct) = 1 corresponding to the cliques in the
current list L. Then, Lt contains strictly Lt+1, since χS ∈ Lt \Lt+1 for the set S
constructed in the first step, and thus the dimension decreases at least by 1 at
each iteration.

4.4 Other formulations of the theta number

4.4.1 Dual formulation

We now give several equivalent formulations for the theta number obtained by
applying semidefinite programming duality and some further elementary ma-
nipulations.

Lemma 4.4.1. The theta number can be expressed by any of the following pro-
grams:

ϑ(G) = min
t∈R,A∈Sn

{t : tI +A− J � 0, Aij = 0 (i = j or {i, j} ∈ E)}, (4.12)

ϑ(G) = min
t∈R,B∈Sn

{
t : tI −B � 0, Bij = 1 (i = j or {i, j} ∈ E)

}
, (4.13)

ϑ(G) = min
t∈R,C∈Sn

{t : C − J � 0, Cii = t (i ∈ V ), Cij = 0 ({i, j} ∈ E)}, (4.14)

ϑ(G) = min
B∈Sn

{
λmax(B) : Bij = 1 (i = j or {i, j} ∈ E)

}
. (4.15)
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Proof. First we build the dual of the semidefinite program (4.11), which reads:

min
t∈R,y∈RE

t : tI +
∑
{i,j}∈E

yijEij − J � 0

 . (4.16)

As both programs (4.11) and (4.16) are strictly feasible, there is no duality gap:
the optimal value of (4.16) is equal to ϑ(G), and the optimal values are attained
in both programs – here we have applied the duality theorem (Theorem 3.4.1).

Setting A =
∑
{i,j}∈E yijEij , B = J −A and C = tI+A in (4.16), it follows

that the program (4.16) is equivalent to (4.12), (4.13) and (4.14). Finally the
formulation (4.15) follows directly from (4.13) after recalling that λmax(B) is
the smallest scalar t for which tI −B � 0.

4.4.2 Two more (lifted) formulations

We give here two more formulations for the theta number. They rely on semidef-
inite programs involving symmetric matrices of order 1 +n which we will index
by the set {0} ∪ V , where 0 is an additional index that does not belong to V .

Lemma 4.4.2. The theta number ϑ(G) is equal to the optimal value of the follow-
ing semidefinite program:

min
Z∈Sn+1

{Z00 : Z � 0, Z0i = Zii = 1 (i ∈ V ), Zij = 0 ({i, j} ∈ E)}. (4.17)

Proof. We show that the two semidefinite programs in (4.12) and (4.17) are
equivalent. For this, observe that

tI +A− J � 0⇐⇒ Z :=

(
t eT

e I + 1
tA

)
� 0,

which follows by taking the Schur complement of the upper left corner t in the
block matrix Z. Hence, if (t, A) is feasible for (4.12), then Z is feasible for
(4.17) with same objective value: Z00 = t. The construction can be reversed:
if Z is feasible for (4.17), then one can construct (t, A) feasible for (4.12) with
t = Z00. Hence both programs are equivalent.

From the formulation (4.17), the link of the theta number to the (fractional)
chromatic number is even more transparent.

Lemma 4.4.3. For any graph G, we have that ϑ(G) ≤ χ∗(G).

Proof. Let y = (yC) be feasible for the linear program (4.8) defining χ∗(G). For
each clique C define the vector zC = (1 χC) ∈ R1+n, obtained by appending
an entry equal to 1 to the characteristic vector of C. Define the matrix Z =∑
C clique of G yCzCz

T
C . One can verify that Z is feasible for the program (4.17)

with objective value Z00 =
∑
C yC (check it). This shows ϑ(G) ≤ χ∗(G).
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Applying duality to the semidefinite program (4.17), we obtain1 the follow-
ing formulation for ϑ(G).

Lemma 4.4.4. The theta number ϑ(G) is equal to the optimal value of the follow-
ing semidefinite program:

max
Y ∈Sn+1

{∑
i∈V

Yii : Y � 0, Y00 = 1, Y0i = Yii (i ∈ V ), Yij = 0 ({i, j} ∈ E)

}
.

(4.18)

Proof. First we write the program (4.17) in standard form, using the elementary
matrices Eij (with entries 1 at positions (i, j) and (j, i) and 0 elsewhere):

inf{〈E00, Z〉 : 〈Eii, Z〉 = 1, 〈E0i, Z〉 = 2 (i ∈ V ), 〈Eij , Z〉 = 0 ({i, j} ∈ E), Z � 0}.

Next we write the dual of this sdp:

sup

∑
i∈V

yi + 2zi : Y = E00 −
∑
i∈V

yiEii + ziE0i +
∑
{i,j}∈E

uijEij � 0

 .

Observe now that the matrix Y ∈ Sn+1 occurring in this program can be equiva-
lently characterized by the conditions: Y00 = 1, Yij = 0 if {i, j} ∈ E and Y � 0.
Moreover the objective function reads:

∑
i∈V yi + 2zi = −

(∑
i∈V Yii + 2Y0i

)
.

Therefore the dual can be equivalently reformulated as

max

{
−

(∑
i∈V

Yii + 2Y0i

)
: Y � 0, Y00 = 1, Yij = 0 ({i, j} ∈ E)

}
. (4.19)

As (4.17) is strictly feasible (check it) there is no duality gap, the optimal value
of (4.19) is attained and it is equal to ϑ(G).

Let Y be an optimal solution of (4.19). We claim that Y0i + Yii = 0 for all
i ∈ V . Indeed, assume that Y0i + Yii 6= 0 for some i ∈ V , so that Yii 6= 0. We
construct a new matrix Y ′ feasible for (4.19) having a larger objective value
than Y , thus contradicting the optimality of Y . If Y0i ≥ 0, then we let Y ′ be
obtained from Y by setting to 0 all the entries at the positions (i, 0) and (i, j)
for j ∈ [n], which has a larger objective value since Yii + 2Y0i > 0. Assume
now Y0i < 0. Then set λ = −Y0i/Yii > 0 and let Y ′ be obtained from Y by
multiplying its i-th row and column by λ. Then, Y ′ii = λ2Yii = Y 2

0i/Yii, Y
′
0i =

λY0i = −Y ′ii, and Y ′ has a larger objective value than Y since −Y ′ii − 2Y ′0i =
Y 2
0i/Yii > −Yii − 2Y0i.

Therefore, we can add w.l.o.g. the condition Y0i = −Yii (i ∈ V ) to (4.19),
so that its objective function can be replaced by

∑
i∈V Yii. Finally, in order to

get the program (4.18), it suffices to observe that one can change the signs on

1Of course there is more than one road leading to Rome: one can also show directly the equiva-
lence of the two programs (4.11) and (4.18).
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the first row and column of Y (indexed by the index 0). In this way we obtain a
matrix Ỹ such that Ỹ0i = −Y0i for all i and Ỹij = Yij at all other positions. Thus
Ỹ now satisfies the conditions Ỹii = Ỹ0i for i ∈ V and it is an optimal solution
of (4.18).

4.5 Geometric properties of the theta number

In this section we introduce the theta body TH(G). This is a semidefinite relax-
ation of the stable set polytope ST(G) tighter that its linear relaxation QST(G),
which provides another more geometric formulation for the theta number as
well as geometric characterizations of perfect graphs.

4.5.1 The theta body TH(G)

It is convenient to introduce the following set of matrices X ∈ Sn+1, where
columns and rows are indexed by the set {0} ∪ V :

MG = {Y ∈ Sn+1 : Y00 = 1, Y0i = Yii (i ∈ V ), Y � 0}, (4.20)

which is thus the feasible region of the semidefinite program (4.18). Now let
TH(G) denote the convex set obtained by projecting the setMG onto the sub-
space RV of the diagonal entries:

TH(G) = {x ∈ RV : ∃Y ∈MG such that xi = Yii ∀i ∈ V }, (4.21)

called the theta body of G. It turns out that TH(G) is nested between ST(G) and
QST(G).

Lemma 4.5.1. For any graph G, we have that ST(G) ⊆ TH(G) ⊆ QST(G).

Proof. The inclusion ST(G) ⊆ TH(G) follows from the fact that the character-
istic vector of any stable set S lies in TH(G). To see this, define the vector
y = (1 χS) ∈ Rn+1 obtained by adding an entry equal to 1 to the characteris-
tic vector of S, and define the matrix Y = yyT ∈ Sn+1. Then Y ∈ MG and
χS = (Yii)i∈V , which shows that χS ∈ TH(G).

We now show the inclusion TH(G) ⊆ QST(G). For this pick a vector x ∈
TH(G) and a clique C of G; we show that x(C) ≤ 1. Say xi = Yii for all i ∈ V ,
where Y ∈MG. Consider the principal submatrix YC of Y indexed by {0} ∪C,
which is of the form

YC =

(
1 xTC
xC Diag(xC)

)
,

where we set xC = (xi)i∈C . Now, YC � 0 implies that Diag(xC) − xCxTC � 0
(taking a Schur complement). This in turn implies: eT(Diag(xC)−xCxTC)e ≥ 0,
which can be rewritten as x(C)− (x(C))2 ≥ 0, giving x(C) ≤ 1.
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In view of Lemma 4.4.4, maximizing the all-ones objective function over
TH(G) gives the theta number:

ϑ(G) = max
x∈RV

{eTx : x ∈ TH(G)}.

As maximizing eTx over QST(G) gives the LP bound α∗(G), Lemma 4.5.1 im-
plies directly that the SDP bound ϑ(G) dominates the LP bound α∗(G):

Corollary 4.5.2. For any graph G, we have that α(G) ≤ ϑ(G) ≤ α∗(G).

Combining the inclusion from Lemma 4.5.1 with Theorem 4.2.4, we deduce
that TH(G) = ST(G) = QST(G) for perfect graphs. As we will see in Theorem
4.5.9 below it turns out that these equalities characterize perfect graphs.

4.5.2 Orthonormal representations of graphs

We introduce orthonormal representations of a graph G, which will be used in
the next section to give further geometric descriptrions of the theta body TH(G).

Definition 4.5.3. An orthonormal representation ofG, abbreviated as ONR, con-
sists of a set of unit vectors {u1, . . . , un} ⊆ Rd (for some d ≥ 1) satisfying

uTi uj = 0 ∀{i, j} ∈ E.

Note that the smallest integer d for which there exists an orthonormal rep-
resentation of G is upper bounded by χ(G) (check it). Moreover, if C is a clique
in G and the ui’s form an ONR of G of dimension d, then the vectors ui labeling
the nodes of C are pairwise orthogonal, which implies that d ≥ ω(G). It turns
out that the stronger lower bound: d ≥ ϑ(G) holds.

Lemma 4.5.4. The minimum dimension d of an orthonormal representation of a
graph G satisfies: ϑ(G) ≤ d.

Proof. Let u1, · · · , un ∈ Rd be an ONR of G. Define the matrices U0 = Id,
Ui = uiu

T
i ∈ Sd for i ∈ [n]. Now we define a symmetric matrix Z ∈ Sn+1 by

setting Zij = 〈Ui, Uj〉 for i, j ∈ {0}∪ [n]. One can verify that Z is feasible for the
program (4.17) defining ϑ(G) (check it) with Z00 = d. This gives ϑ(G) ≤ d.

4.5.3 Geometric properties of the theta body

There is a beautiful relationship between the theta bodies of a graph G and of
its complementary graph G:

Theorem 4.5.5. For any graph G,

TH(G) = {x ∈ RV≥0 : xT z ≤ 1 ∀z ∈ TH(G)}.

In other words, we know an explicit linear inequality description of TH(G);
moreover, the normal vectors to the supporting hyperplanes of TH(G) are pre-
cisely the elements of TH(G). One inclusion is easy:
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Lemma 4.5.6. If x ∈ TH(G) and z ∈ TH(G) then xTz ≤ 1.

Proof. Let Y ∈ MG and Z ∈ MG such that x = (Yii) and z = (Zii). Let Z ′

be obtained from Z by changing signs in its first row and column (indexed by
0). Then 〈Y, Z ′〉 ≥ 0 as Y,Z ′ � 0. Moreover, 〈Y, Z ′〉 = 1 − xTz (check it), thus
giving xTz ≤ 1.

Next we observe how the elements of TH(G) can be expressed in terms of
orthonormal representations of G.

Lemma 4.5.7. For x ∈ RV≥0, x ∈ TH(G) if and only if there exist an orthonormal
representation v1, . . . , vn of G and a unit vector d such that x = ((dTvi)

2)i∈V .

Proof. Let d, vi be unit vectors where the vi’s form an ONR of G; we show that
x = ((dTvi)

2) ∈ TH(G). For this, let Y ∈ Sn+1 denote the the Gram matrix
of the vectors d and (vTi d)vi for i ∈ V , so that x = (Yii). One can verify that
Y ∈MG, which implies x ∈ TH(G).

For the reverse inclusion, pick Y ∈ MG and a Gram representation w0, wi
(i ∈ V ) of Y . Set d = w0 and vi = wi/‖wi‖ for i ∈ V . Then the conditions
expressing membership of Y in MG imply that the vi’s form an ONR of G,
‖d‖ = 1, and Yii = (dTvi)

2 for all i ∈ V .

To conclude the proof of Theorem 4.5.5 we use the following result, which
characterizes which partially specified matrices can be completed to a positive
semidefinite matrix – this will be proved in Exercise 6.1.

Proposition 4.5.8. Let H = (W,F ) be a graph and let aij (i = j ∈ W or
{i, j} ∈ F ) be given scalars, corresponding to a vector a ∈ RW∪F . Define the
convex set

Ka = {Y ∈ SW : Y � 0, Yij = aij ∀i = j ∈W and {i, j} ∈ F} (4.22)

(consisting of all possible positive semidefinite completions of a) and the cone

CH = {Z ∈ SW : Z � 0, Zij = 0 ∀{i, j} ∈ F} (4.23)

(consisting of all positive semidefinite matrices supported by the graph H). Then,
Ka 6= ∅ if and only if∑

i∈W
aiiZii + 2

∑
{i,j}∈F

aijZij ≥ 0 ∀Z ∈ CH . (4.24)

Proof. (of Theorem 4.5.5). Let x ∈ RV≥0 such that xTz ≤ 1 for all z ∈ TH(G);
we show that x ∈ TH(G). For this we need to find a matrix Y ∈ MG such
that x = (Yii)i∈V . In other words, the entries of Y are specified already at the
following positions: Y00 = 1, Y0i = Yii = xi for i ∈ V , and Y{i,j} = 0 for all
{i, j} ∈ E, and we need to show that the remaining entries (at the positions of
non-edges of G) can be chosen in such a way that Y � 0.
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To show this we apply Proposition 4.5.8, where the graph H is G with an
additional node 0 adjacent to all i ∈ V . Hence it suffices now to show that
〈Y, Z〉 ≥ 0 for all Z ∈ S{0}∪V�0 with Zij = 0 if {i, j} ∈ E. Pick such Z, with Gram
representation w0, w1, · · · , wn. Then wT

i wj = 0 if {i, j} ∈ E. We can assume
without loss of generality that all wi are non-zero (use continuity if some wi
is zero) and up to scaling that w0 is a unit vector. Then the vectors wi/‖wi‖
(i ∈ V ) form an ONR of G. By Lemma 4.5.7 (applied to G), the vector z ∈ RV
with zi = (wT

0wi)
2/‖wi‖2 belongs to TH(G) and thus xTz ≤ 1 by assumption.

Therefore, 〈Y, Z〉 is equal to

1 + 2
∑
i∈V

xiw
T
0wi +

∑
i∈V

xi‖wi‖2 ≥
∑
i∈V

xi

(
(wT

0wi)
2

‖wi‖2
+ 2wT

0wi + ‖wi‖2
)

=
∑
i∈V

xi

(
wT

0wi
‖wi‖

+ ‖wi‖
)2

≥ 0.

4.5.4 Geometric characterizations of perfect graphs

We can now prove the following geometric characterization of perfect graphs,
which strengthens the polyhedral characterization of Theorem 4.2.4.

Theorem 4.5.9. For any graph G the following assertions are equivalent.

1. G is perfect.

2. TH(G) = ST(G)

3. TH(G) = QST(G).

4. TH(G) is a polytope.

We start with the following observations which will be useful for the proof.
Recall that the antiblocker of a set P ⊆ Rn≥0 is defined as

abl(P ) = {y ∈ Rn≥0 : yTx ≤ 1 ∀x ∈ P}.

We will use the following property, shown in Exercise 1.6: If P ⊆ Rn≥0 is a
down-monotone polytope in Rn≥0 then P = abl(abl(P )).

Using this notion of antiblocker, we see that Theorem 4.5.5 shows that
TH(G) is the antiblocker of TH(G): TH(G) = abl(TH(G)) and, analogously,
TH(G) = abl(TH(G)). Moreover, by its definition, QST(G) is the antiblocker of
ST(G): QST(G) = abl(ST(G)). This implies the equalities

abl(QST(G)) = abl(abl(ST(G))) = ST(G)

and thus
ST(G) = abl(QST(G)). (4.25)
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We now show that if TH(G) is a polytope then it coincides with QST(G),
which is the main ingredient in the proof of Theorem 4.5.9. As any polytope
is equal to the solution set of its facet defining inequalities, it suffices to show
that the only inequalities that define facets of TH(G) are the nonnegativity con-
ditions and the clique inequalities.

Lemma 4.5.10. Let a ∈ Rn and α ∈ R. If the inequality aTx ≤ α defines a facet
of TH(G) then it is a multiple of a nonnegativity condition xi ≥ 0 for some i ∈ V
or of a clique inequality x(C) ≤ 1 for some clique C of G.

Proof. Let F = {x ∈ TH(G) : aTx = α} be the facet of TH(G) defined by the
inequality aTx ≤ α. Pick a point z in the relative interior of F , thus z lies
on the boundary of TH(G). We use the description of TH(G) from Theorem
4.5.5. If zi = 0 for some i ∈ V , then the inequality aTx ≤ α is equivalent to the
nonnegativity condition xi ≥ 0. Suppose now that zTy = 1 for some y ∈ TH(G).
In view of Lemma 4.5.7, y = ((cTui)

2)ni=1 for some unit vectors c, u1, . . . , un ∈
Rk forming an orthonormal representation of G, i.e., satisfying uTi uj = 0 for
{i, j} ∈ E. Then the inequality aTx ≤ α is equivalent to

∑n
i=1(cTui)

2xi ≤ 1,
i.e., up to scaling we may assume that α = 1 and ai = (cTui)

2 for all i ∈ V . We
claim that

c =

n∑
i=1

(cTui)xiui for all x ∈ F. (4.26)

Indeed, for any unit vector d ∈ Rk, the vector ((dTui)
2)ni=1 belongs to TH(G)

and thus
∑n
i=1(dui )2xi ≤ 1 for all x ∈ F . In other words, the maximum of the

quadratic form dT(
∑n
i=1 xiuiu

T
i )d taken over all unit vectors d ∈ Rk is equal to

1 and is attained at d = c. This shows that c is an eigenvector of the matrix∑n
i=1 xiuiu

T
i for the eigenvalue 1, and thus equality (

∑n
i=1 xiuiu

T
i )c = c holds,

which gives (4.26).
From (4.26) we deduce that each equation

∑n
i=1(uTi c)xi(ui)j = cj is a scalar

multiple of
∑n
i=1(uTi c)

2 = 1. This implies that (uTi c)(ui)j = cj(u
T
i c)

2 for all i, j ∈
[n]. Hence, uTi c 6= 0 implies ui = (uTi c)c, thus ui = ±c (since ui and c are both
unit vectors) and without loss of generality ui = c. Set C = {i ∈ V : ui = c},
so that the inequality

∑n
i=1(cTui)

2xi ≤ 1 reads
∑
i∈C xi ≤ 1. Finally we now

observe that C is a clique in G, since i 6= j ∈ C implies uTi uj = cTc = 1 and thus
{i, j} ∈ E. This concludes the proof.

Proof. (of Theorem 4.5.9). By Theorem 4.2.4 we know that G is perfect if and
only if QST(G) = ST(G). Moreover, by Lemma 4.5.1, we have the inclusion
ST(G) ⊆ TH(G) ⊆ QST(G). Hence, in order to show the theorem it suffices to
show that G is perfect if and only if TH(G) is a polytope.

There remains only to show the ‘if’ part. Assume that TH(G) is a polytope.
Then TH(G) too is a polytope since TH(G) = abl(TH(G)). Therefore, by Lemma
4.5.10 (applied to G), TH(G) = QST(G). Taking the antiblocker of both sides
(and using (4.25)), we obtain that TH(G) = abl(TH(G)) = abl(QST(G)) =
ST(G).
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4.6 Bounding the Shannon capacity

The theta number was introduced by Lovász [10] in connection with the prob-
lem of computing the Shannon capacity of a graph, a problem in coding theory
considered by Shannon. We need some definitions.

Definition 4.6.1. (Strong product) Let G = (V,E) and H = (W,F ) be two
graphs. Their strong product is the graph denoted as G ·H with node set V ×W
and with edges the pairs of distinct nodes {(i, r), (j, s)} ∈ V ×W with (i = j or
{i, j} ∈ E) and (r = s or {r, s} ∈ F ).

If S ⊆ V is stable in G and T ⊆ W is stable in H then S × T is stable in
G · H. Hence, α(G · H) ≥ α(G)α(H). Let Gk denote the strong product of k
copies of G. For any integers k,m ∈ N we have that

α(Gk+m) ≥ α(Gk)α(Gm)

and thus α(Gk) ≥ (α(G))k. Consider the parameter

Θ(G) := sup
k≥1

k

√
α(Gk), (4.27)

called the Shannon capacity of the graph G. Using Fekete’s lemma2 one can
verify that Θ(G) = limk→∞

k
√
α(Gk).

The parameter Θ(G) was introduced by Shannon in 1956. The motivation
is as follows. Suppose V is a finite alphabet, where some pairs of letters could
be confused when they are transmitted over some transmission channel. These
pairs of confusable letters can be seen as the edge set E of a graph G = (V,E).
Then the stability number of G is the largest number of one-letter messages that
can be sent without danger of confusion. Words of length k correspond to k-
tuples in V k. Two words (i1, · · · , ik) and (j1, · · · , jk) can be confused if at every
position h ∈ [k] the two letters ih and jh are equal or can be confused, which
corresponds to having an edge in the strong product Gk. Hence the largest
number of words of length k that can be sent without danger of confusion is
equal to the stability number of Gk and the Shannon capacity of G represents
the rate of correct transmission of the graph.

For instance, for the 5-cycle C5, α(C5) = 2, but α((C5)2) ≥ 5. Indeed,
if 1, 2, 3, 4, 5 are the nodes of C5 (in this cyclic order), then the five 2-letter
words (1, 1), (2, 3), (3, 5), (4, 2), (5, 4) form a stable set in G2. This implies that
Θ(C5) ≥

√
5.

Determining the exact Shannon capacity of a graph is a very difficult prob-
lem in general, even for small graphs. For instance, the exact value of the Shan-
non capacity of C5 was not known until Lovász [10] showed how to use the
theta number in order to upper bound the Shannon capacity: Lovász showed

2Consider a sequence (ak)k of positive real numbers satisfying: ak+m ≥ ak + am for k,m ∈ N.
Fekete’s lemma claims that limk→∞ ak/k = supk∈N ak/k. Then apply Fekete’s lemma to the
sequence ak = logα(Gk).
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that Θ(G) ≤ ϑ(G) and ϑ(C5) =
√

5, which implies that Θ(C5) =
√

5. For in-
stance, although the exact value of the theta number of C2n+1 is known (cf.
Proposition 4.7.6), the exact value of the Shannon capacity of C2n+1 is not
known, already for C7.

Theorem 4.6.2. For any graph G, we have that Θ(G) ≤ ϑ(G).

The proof is based on the multiplicative property of the theta number from
Lemma 4.6.3 – which you will prove in Exercise 6.2 – combined with the fact
that the theta number upper bounds the stability number: For any integer k,
α(Gk) ≤ ϑ(Gk) = (ϑ(G))k implies k

√
α(Gk) ≤ ϑ(G) and thus Θ(G) ≤ ϑ(G).

Lemma 4.6.3. The theta number of the strong product of two graphs G and H
satisfies ϑ(G ·H) = ϑ(G)ϑ(H).

As an application one can compute the Shannon capacity of C5: Θ(C5) =√
5. Indeed, Θ(C5) ≥

√
α(C2

5 ) ≥
√

5 and Θ(C5) ≤ ϑ(C5), with ϑ(C5) =
√

5 as
we will see below in relation (4.29).

4.7 The theta number for vertex-transitive graphs

The following inequalities relate the stability number and the (fractional) col-
oring number of a graph:

|V | ≤ α(G)χ∗(G) ≤ α(G)χ(G).

(Check it.) First we mention the following analogous inequality relating the
theta numbers of G and its complement G.

Proposition 4.7.1. For any graph G = (V,E), we have that ϑ(G)ϑ(G) ≥ |V |.

Proof. Using the formulation of the theta number from (4.14), we obtain ma-
trices C,C ′ ∈ Sn such that C − J,C ′− J � 0, Cii = ϑ(G), C ′ii = ϑ(G) for i ∈ V ,
Cij = 0 for {i, j} ∈ E and C ′ij = 0 for {i, j} ∈ E. Combining the inequali-
ties 〈C − J, J〉 ≥ 0, 〈C ′ − J, J〉 ≥ 0 and 〈C − J,C ′ − J〉 ≥ 0 with the identity
〈C,C ′〉 = nϑ(G)ϑ(G), we get the desired inequality.

We now show that equality ϑ(G)ϑ(G) = |V | holds for certain symmetric
graphs, namely for vertex-transitive graphs. In order to show this, one exploits
in a crucial manner the symmetry of G, which permits to show that the semidef-
inite program defining the theta number has an optimal solution with a special
(symmetric) structure. We need to introduce some definitions.

Let G = (V,E) be a graph. A permutation σ of the node set V is called
an automorphism of G if it preserves edges, i.e., {i, j} ∈ E if and only if
{σ(i), σ(j)} ∈ E. Then the set Aut(G) of automorphisms of G is a group. The
graph G is said to be vertex-transitive if for any two nodes i, j ∈ V there exists
an automorphism σ ∈ Aut(G) mapping i to j: σ(i) = j.
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The group of permutations of V acts on symmetric matrices X indexed by
V . Namely, if σ is a permutation of V and Pσ is the corresponding permutation
matrix (with (i, j)th entry Pσ(i, j) = 1 if j = σ(i) and 0 otherwise), then one
can build the new symmetric matrix

σ(X) := PσXP
T
σ = (Xσ(i),σ(j))i,j∈V .

If σ is an automorphism of G, then it preserves the feasible region of the
semidefinite program (4.11) defining the theta number ϑ(G). This is an easy,
but very useful fact.It follows from the fact that the matrices entering the pro-
gram (4.11) (the all-ones matrix J , the identity I and the elementary matrices
Eij for edges {i, j} ∈ E) are invariant under action of Aut(G).

Lemma 4.7.2. If X is feasible for the program (4.11) and σ is an automorphism
of G, then σ(X) is again feasible for (4.11), moreover with the same objective
value as X.

Proof. Directly from the fact that 〈J, σ(X)〉 = 〈J,X〉, Tr(σ(X)) = Tr(X) and
σ(X)ij = Xσ(i)σ(j) = 0 if {i, j} ∈ E (since σ is an automorphism of G).

Lemma 4.7.3. The program (4.11) has an optimal solutionX∗ which is invariant
under action of the automorphism group of G, i.e., satisfies σ(X∗) = X∗ for all
σ ∈ Aut(G).

Proof. Let X be an optimal solution of (4.11). By Lemma 4.7.2, σ(X) is again
an optimal solution for each σ ∈ Aut(G). Define the matrix

X∗ =
1

|Aut(G)|
∑

σ∈Aut(G)

σ(X),

obtained by averaging over all matrices σ(X) for σ ∈ Aut(G). As the set of
optimal solutions of (4.11) is convex, X∗ is still an optimal solution of (4.11).
Moreover, by construction, X∗ is invariant under action of Aut(G).

Corollary 4.7.4. If G is a vertex-transitive graph then the program (4.11) has an
optimal solution X∗ satisfying X∗ii = 1/n for all i ∈ V and X∗e = ϑ(G)

n e.

Proof. By Lemma 4.7.3, there is an optimal solutionX∗ which is invariant under
action of Aut(G). As G is vertex-transitive, all diagonal entries of X∗ are equal.
Indeed, let i, j ∈ V and σ ∈ Aut(G) such that σ(i) = j. Then, X∗jj = X∗σ(i)σ(i) =

X∗ii. As Tr(X∗) = 1 we must have X∗ii = 1/n for all i. Moreover,
∑
k∈V X

∗
jk =∑

k∈V X
∗
σ(i)k =

∑
h∈V X

∗
σ(i)σ(h) =

∑
h∈V X

∗
ih, which shows that X∗e = λe for

some scalar λ. Combining with the condition 〈J,X∗〉 = ϑ(G) we obtain that
λ = ϑ(G)

n .

Proposition 4.7.5. If G is a vertex-transitive graph, then ϑ(G)ϑ(G) = |V |.
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Proof. By Corollary 4.7.4, there is an optimal solution X∗ of the program (4.11)
defining ϑ(G) which satisfies X∗ii = 1/n for i ∈ V and X∗e = ϑ(G)

n e. Then
n2

ϑ(G)X
∗ − J � 0 (check it). Hence, t = n

ϑ(G) and C = n2

ϑ(G)X
∗ define a feasible

solution of the program (4.14) defining ϑ(G), which implies ϑ(G) ≤ n/ϑ(G).
Combining with Proposition 4.7.1 we get the equality ϑ(G)ϑ(G) = |V |.

For instance, the cycle Cn is vertex-transitive, so that

ϑ(Cn)ϑ(Cn) = n. (4.28)

In particular, as C5 is isomorphic to C5, we deduce that

ϑ(C5) =
√

5. (4.29)

For n even, Cn is bipartite (and thus perfect), so that ϑ(Cn) = α(Cn) = n
2

and ϑ(Cn) = ω(Cn) = 2. For n odd, one can compute ϑ(Cn) using the above
symmetry reduction.

Proposition 4.7.6. For any odd n ≥ 3,

ϑ(Cn) =
n cos(π/n)

1 + cos(π/n)
and ϑ(Cn) =

1 + cos(π/n)

cos(π/n)
.

Proof. As ϑ(Cn)ϑ(Cn) = n, it suffices to compute ϑ(Cn). We use the formulation
(4.15). As Cn is vertex-transitive, there is an optimal solution B whose entries
are all equal to 1, except Bij = 1 + x for some scalar x whenever |i − j| = 1
(modulo n). In other words, B = J + xACn , where ACn is the adjacency
matrix of the cycle Cn. Thus ϑ(Cn) is equal to the minimum value of λmax(B)
for all possible x. The eigenvalues of ACn are known: They are ωk + ω−k

(for k = 0, 1, · · · , n − 1), where ω = e
2iπ
n is an n-th root of unity. Hence the

eigenvalues of B are

n+ 2x and x(ωk + ω−k) for k = 1, · · · , n− 1. (4.30)

We minimize the maximum of the values in (4.30) when choosing x such that

n+ 2x = −2x cos(π/n)

(check it). This gives ϑ(Cn) = λmax(B) = −2x cos(π/n) = n cos(π/n)
1+cos(π/n) .

As another application, one can compute the Shannon capacity of any graph
G which is vertex-transitive and self-complementary (like C5).

Theorem 4.7.7. If G = (V,E) is a vertex-transitive graph, then Θ(G ·G) = |V |.
If, moreover, G is self-complementary, then Θ(G) =

√
|V |.

Proof. We have Θ(G · G) ≥ α(G · G) ≥ |V |, since the set of diagonal pairs
{(i, i) : i ∈ V } is stable in G ·G. The reverse inequality follows from Proposition
4.7.5 combined with Lemma 4.6.3: Θ(G · G) ≤ ϑ(G · G) = ϑ(G)ϑ(G) = |V |.
Therefore, Θ(G ·G) = |V |.

If moreover G is isomorphic to G then ϑ(G) =
√
|V | and thus Θ(G) ≤

ϑ(G) =
√
|V |. On the other hand, |V | = Θ(G · G) = Θ(G2) ≤ (Θ(G))2 (check

it), which implies: Θ(G) ≥
√
|V | and thus equality: Θ(G) =

√
|V |.
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4.8 Application to Hamming graphs: Delsarte LP
bound for codes

A binary code of length n is a subset C of the set V = {0, 1}n of binary sequences
(aka words) of length n. Given two words u, v ∈ V , their Hamming distance
dH(u, v) is the number of positions i ∈ [n] such that ui 6= vi. The Hamming
weight |u| of a word u ∈ V is its number of nonzero coordinates: |u| = dH(u, 0).

Given an integer d ∈ [n], one says that C has minimum distance d if any two
distinct words of C have Hamming distance at least d. A fundamental problem
in coding theory is to compute the maximum cardinality A(n, d) of a code of
length n with minimum distance d. This is the maximum number of messages
of length n that can correctly be decoded if after transmission at most (d− 1)/2
bits can be erroneously transmitted in each word of C.

Computing A(n, d) is in fact an instance of the maximum stable set problem.
Indeed, let G(n, d) denote the graph with vertex set V = {0, 1}n and with an
edge {u, v} if dH(u, v) ≤ d − 1, called a Hamming graph. Then, a code C ⊆ V
has minimum distance d if and only if C is a stable set in G(n, d) and thus
A(n, d) = α(G(n, d)).

A natural idea for getting an upper bound for A(n, d) is to use the theta
number ϑ(G), or its strengthening ϑ′(G) obtained by adding nonnegativity con-
ditions on the entries of the matrix variable:

ϑ′(G) = {max〈J,X〉 : Tr(X) = 1, Xuv = 0 ({u, v} ∈ E), X ≥ 0, X � 0}.
(4.31)

Computing the paramater ϑ(G(n, d)) or ϑ′(G(n, d)) is apparently a difficult
problem. Indeed the graph G(n, d) has 2n vertices and thus the matrix X in
the above semidefinite program has size 2n. However, using the fact that the
Hamming graph has a large automorphism group, one can simplify the above
semidefinite program and in fact reformulate it as an equivalent linear program
with only n+ 1 variables and linear constraints. This is thus an enormous gain
in complexity, thanks to which one can compute the parameter ϑ′(G(n, d)) for
large values of n.

In a nutshell this symmetry reduction is possible because the symmetric ma-
trices that are invariant under action of the automorphism group of the Ham-
ming graph form a commutative algebra, so that they can all be diagonalized
simultaneously, by the same orthogonal basis. In what follows we explain how
to derive the linear program equivalent to (4.31).

Automorphisms of the Hamming graph.

Any permutation π of [n] induces an automorphism of G(n, d) by setting

σ(v) = (vσ(1), . . . , vσ(n)) ∈ {0, 1}n for v ∈ {0, 1}n.

Moreover, any a ∈ {0, 1}n induces an automorphism sa of G(n, d) by setting

sa(v) = v ⊕ a for v ∈ {0, 1}n.
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Here we use addition moduo 2 in {0, 1}n: u⊕ v = (ui ⊕ vi)ni=1, setting 0⊕ 0 =
1⊕ 1 = 0 and 1⊕ 0 = 0⊕ 1 = 1. Thus dH(u, v) = |u⊕ v|. The set

Gn = {πsa : π ∈ Sym(n), a ∈ {0, 1}n}

is a group (check it), which is contained in the automorphism group of G(n, d).
Note, for instance, that πsa = sπ(a)π (check it).

The graph G(n, d) is vertex-transitive under action of Gn (since, for any
two vertices u, v ∈ V , the map su⊕v maps u to v). Moreover, given words
u, v, u′, v′ ∈ V , there exists σ ∈ Gn such that σ(u) = u′ and σ(v) = v′ if and only
if dH(u, v) = dH(u′, v′) (check it).

Invariant matrices under action of Gn.

Let Bn denote the set of matrices indexed by {0, 1}n that are invariant under
action of Gn. That is, X ∈ Bn if it satisfies: X(u, v) = X(σ(u), σ(v)) for all
u, v ∈ V and σ ∈ Gn or, equivalently, if each entry X(u, v) depends only on the
value of the Hamming distance dH(u, v). For k ∈ {0, 1, . . . , n} let Mk denote the
matrix indexed by V with entries Mk(u, v) = 1 if dH(u, v) = k and Mk(u, v) = 0
otherwise. Then the matrices M0,M1, . . . ,Mn form a basis of the vector space
Bn, and Bn has dimension n + 1. Moreover, Bn is a commutative algebra (this
will be clear from Lemma 4.8.1), known as the Bose-Mesner algebra. It will
be convenient to use another basis in order to describe positive semidefinite
matrices in Bn.

Given a ∈ V = {0, 1}n, define the vector Ca ∈ {±1}V defined by

Ca = ((−1)a
Tv)v∈V for a ∈ V. (4.32)

Next define the V × V matrices B0, B1, . . . , Bn by

Bk =
∑

a∈V :|a|=k

CaC
T
a for k = 0, 1, . . . , n. (4.33)

Lemma 4.8.1. (i) The vectors Ca (a ∈ V ) are pairwise orthogonal.

(ii) The matrices B0, B1, . . . , Bn are pairwise orthogonal: BhBk = 2nBkδh,k.

(iii) B0 = J , Tr(Bk) = 2n
(
n
k

)
for 0 ≤ k ≤ n, and 〈J,Bk〉 = 0 for 1 ≤ k ≤ n.

(iv) For any k and u, v ∈ V , Bk(u, v) = P kn (dH(u, v)), where P kn (t) is the
Krawtchouk polynomial which, at any integer t = 0, 1, . . . , n, is given by

P kn (t) =

k∑
i=0

(−1)i
(
t

i

)(
n− t
k − i

)
. (4.34)

(v) The set {B0, . . . , Bn} is a basis of Bn and Bn is a commutative algebra.
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Proof. (i) is direct verification (check it) and then (ii),(iii) follow easily.
(iv) Set t = dH(u, v) and Z = {i ∈ [n] : ui 6= vi} with t = |Z|. Moreover

for each a ∈ V define the set A = {i ∈ [n] : ai = 1}. Then, we find that
Bk(u, v) =

∑
A⊆[n]:|A|=k(−1)|A∩Z| =

∑t
i=0(−1)i

(
t
i

)(
n−t
k−i
)

= P kn (t).
(v) follows from (ii) and (iv).

Note that the vectors {Ca : a ∈ V = {0, 1}n} form an orthogonal basis of
RV , and they are the common eigenvectors to all matrices Bk and thus to all
matrices in the Bose-Mesner algebra Bn.

Lemma 4.8.2. Let X =
∑n
k=0 xkBk ∈ Bn Then, X � 0⇐⇒ x0, x1, . . . , xn ≥ 0.

Proof. The claim follows from the fact that the Bk ’s are positive semidefinite
and pairwise orthogonal. Indeed, X � 0 if all xk ’s are nonnegative. Conversely,
if X � 0 then 0 ≤ 〈X,Bk〉 = xk〈Bk, Bk〉, implying xk ≥ 0.

Delsarte linear programming bound for A(n, d)

Using the above facts we can now formulate the parameter ϑ′(G(n, d)) as the
optimum value of a linear program. This linear program (4.35) provides an
upper bound for A(n, d), which was first discovered by Delsarte [3]; that this
bound coincides with the theta number ϑ′(G(n, d)) was proved by Schrijver
[12].

Theorem 4.8.3. (Delsarte LP bound for A(n, d) = α(G(n, d))) The parameter
ϑ′(G(n, d)) can be computed with the following linear program:

maxx0,...,xn∈R 22nx0 s.t.
∑n
k=0 xk

(
n
k

)
= 2−n,∑n

k=0 xkP
k
n (t) = 0 for t = 1, . . . , d− 1,∑n

k=0 xkP
k
n (t) ≥ 0 for t = d, . . . , n,

xk ≥ 0 for k = 0, 1, . . . , n,
(4.35)

where P kn (t) is the Krawtchouk poynomial in (4.34).

Proof. In the formulation (4.31) of ϑ′(G) we may assume that the variable X
belongs to Bn, i.e., X =

∑n
k=0 xkBk for some scalars x0, . . . , xn ∈ R. It now

suffices to rewrite the constraints on X as constraints on the xk ’s. Using Lemma
4.8.1, we find: 〈J,X〉 = 22nx0, 1 = Tr(X) =

∑n
k=0 2n

(
n
k

)
xk, and X(u, v) =∑n

k=0 xkP
k
n (t) if dH(u, v) = t. Finally the condition X � 0 gives x ≥ 0.

4.9 Lasserre hierarchy of semidefinite bounds

A first easy way of getting a stronger bound toward α(G) is by adding nonneg-
ativity constraints to the formulation of ϑ(G). In this way we get the parameter
ϑ′(G) in (4.31), which satisfies α(G) ≤ ϑ′(G) ≤ ϑ(G).

There is a more systematic way of constructing stronger and stronger bounds
for α(G). The idea is to start from the formulation of ϑ(G) from (4.18) and
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to observe that the matrix variable is indexed by all nodes together with an
additional index 0. More generally, we can define a hierarchy of upper bounds
for α(G) that are obtained by optimizing over a matrix variable indexed by all
products of at most t (distinct) variables, for increasing values of t.

The idea is simple and consists of ‘lifting’ the problem into higher dimension
by adding new variables. Given a set S ⊆ V , let x = χS ∈ {0, 1}n denote its
characteristic vector and, for t ∈ [n], define the vector

[x]t = (1, x1, . . . , xt, x1x2, . . . , xn−1xn, . . . , x1x2 · · ·xt, . . . , xn−t+1 · · ·xn) ∈ RPt(n)

consisting of all products of at most t distinct xi’s (listed in sone order). Here we
let Pt(n) denote the collection of all subsets I ⊆ [n] with |I| ≤ t. For instance,
[x]1 = (1, x1, . . . , xn) and [x]n contains all 2n possible products of distinct xi’s.

Next we consider the matrix Y = [x]t[x]Tt which, by construction, is positive
semidefinite and satisfies the following linear conditions:

Y (I, J) = Y (I ′, J ′) if I ∪ J = I ′ ∪ J ′

and Y∅,∅ = 1. This motivates the following definition.

Definition 4.9.1. Given an integer 0 ≤ t ≤ n and a vector y = (yI) ∈ RP2t(n), let
Mt(y) denote the symmetric matrix indexed by Pt(n), with (I, J)th entry yI∪J for
I, J ∈ Pt(n). Mt(y) is called the moment matrix of order t of y.

Example 4.9.2. As an example, for n = 2, the matrices M1(y) and M2(y) have
the form

M1(y) =


∅ 1 2

∅ y∅ y1 y2
1 y1 y1 y12
2 y2 y12 y2

, M2(y) =


∅ 1 2 12

∅ y∅ y1 y2 y12
1 y1 y1 y12 y12
2 y2 y12 y2 y12
12 y12 y12 y12 y12


Note that M1(y) corresponds to the matrix variable in the formulation (4.18) of
ϑ(G). Moreover, M1(y) occurs as a principal submatrix of M2(y).

We can now formulate new upper bounds for the stability number.

Definition 4.9.3. For any integer 1 ≤ t ≤ n, define the parameter

last(G) = max
y∈RP2t(n)

{
n∑
i=1

yi : y∅ = 1, yij = 0 ({i, j} ∈ E), Mt(y) � 0}, (4.36)

known as the Lasserre bound of order t.

Lemma 4.9.4. For each 1 ≤ t ≤ n, we have that α(G) ≤ last(G). Moreover,
last+1(G) ≤ last(G).
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Proof. Let x = χS where S is a stable set of G, and let y = [x]t. Then the
moment matrix Mt(y) is feasible for the program (4.36) with value

∑n
i=1 yi =

|S|, which shows |S| ≤ last(G) and thus α(G) ≤ last(G).
The inequality last+1(G) ≤ last(G) follows from the fact that Mt(y) occurs

as a principal submatrix of Mt+1(y).

Some further observations:
• For t = 1, the Lasserrre bound is simply the theta number: las1(G) = ϑ(G).
• For t = 2, the Lasserre bound improves ϑ′(G): las2(G) ≤ ϑ′(G). This is
because the condition M2(y) � 0 implies that all entries yij are nonnegative (as
yij occurs a diagonal entry of M2(y)).
• The bounds form a hierarchy of stronger and stronger bounds:

α(G) ≤ lasn(G) ≤ . . . ≤ last(G) ≤ . . . ≤ las2(G) ≤ las1(G) = ϑ(G).

It turns out that, at order t = α(G), the Lasserre bound is exact: last(G) = α(G).

Theorem 4.9.5. For any graph G, last(G) = α(G) for any t ≥ α(G).

In the rest of the section we prove this result.

Characterizing positive semidefinite full moment matrices Mn(y).

In a first step we characterize the vectors y = (yI)I⊆[n] whose moment matrix
Mn(y) is positive semidefinite.

For this we use the 2n × 2n matrix Zn, whose columns are the vectors [x]n
for x ∈ {0, 1}n. Alternatively, Zn is the matrix indexed by Pn(n), with entries
Zn(I, J) = 1 if I ⊆ J and Zn(I, J) = 0 otherwise. Its inverse matrix Z1

n is
defined by Z−1n (I, J) = (−1)|J\I| if I ⊆ J and 0 otherwise. (Check it). The
matrix Zn is known as the Zeta matrix of the lattice Pn(n) (all subsets of the set
[n], ordered by set inclusion) and its inverse Z−1n as its Möbius matrix (cf., e.g.,
[11]).

Example 4.9.6. For n = 2 we have:

Z2 =


∅ 1 2 12

∅ 1 1 1 1
1 0 1 0 1
2 0 0 1 1
12 0 0 0 1

, Z−12 =


∅ 1 2 12

∅ 1 −1 −1 1
1 0 1 0 −1
2 0 0 1 −1
12 0 0 0 1

.
Lemma 4.9.7. Let y ∈ RPn(n) and set λ = Z−1n y. Then,

Mn(y) = ZnDiag(λ)ZT
n .

Proof. Pick I, J ⊆ [n]. We show that the (I, J)th entry of ZnDiag(λ)ZT
n is equal

to yI∪J . This is direct verification:

(ZnDiag(λ)ZT
n )I,J =

∑
K:I⊆K

(Diag(λ)ZT
n )K,J =

∑
K:I∪J⊆K

(Z−1n y)K
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=
∑

K:I∪J⊆K

∑
H:K⊆H

(−1)|H\K|yH =
∑

H:I∪J⊆H

yH
∑

K:I∪J⊆K⊆H

(−1)|H\K|,

which is equal to yI∪J , since the inner summation
∑
K:I∪J⊆K⊆H(−1)|H\K| is

equal to zero whenever H 6= I ∪ J .

Corollary 4.9.8. Let y ∈ RPn(n). The following assertions are equivalent.

(i) Mn(y) � 0.

(ii) Z−1n y ≥ 0.

(iii) y is a conic combination of the vectors [x]n for x ∈ {0, 1}n, i.e., y =∑
x∈{0,1}n λx[x]n for some nonnegative scalars λx.

Example 4.9.9. Let n = 2 and consider a vector y = (y∅, y1, y2, y12). Then, y can
be written as the following linear combination of the vectors [x]2 for x ∈ {0, 1}2:

y = (y∅ − y1 − y2 + y12)[0]2 + (y1 − y12)[e1]2 + (y2 − y12)[e2]2 + y12[e1 + e2]2

(setting e1 = (1, 0) and e2 = (0, 1)). Therefore, we see that this is indeed a conic
combination if and only if any of the following equivalent conditions holds:

M2(y) =


∅ 1 2 12

∅ y0 y1 y2 y12
1 y1 y1 y12 y12
2 y2 y12 y2 y12
12 y12 y12 y12 y12

 � 0⇐⇒


y∅ − y1 − y2 + y12 ≥ 0
y1 − y12 ≥ 0
y2 − y12 ≥ 0
y12 ≥ 0.

Canonical lifted representation for 0− 1 polytopes

We sketch here the significance of the above results about moment matrices
for discrete optimization. A fundamental question is whether one can optimize
efficiently a linear objective function over a given set X ⊆ {0, 1}n. Think for
instance of the traveling salesman problem, in which case X is the set of the
incidence vectors of all Hamiltonian cycles in a graph, or of the maximum stable
set problem considered here, in which case X is the set of incidence vectors of
the stable sets in a graph. The classical so-called polyhedral approach is to
consider the polytope P = conv(X ), defined as the convex hull of all vectors in
X . Then the question boils down to finding the linear inequality description of
P (or at least a part of it). It turns out that this question gets a simpler answer
if we ‘lift’ the problem into higher dimension and allow the use of additionnal
variables.

Define the polytope P = conv([x]n : x ∈ X ). Let π denote the projec-
tion from the space RPn(n) to the space Rn where, for a vector y = (yI)I⊆[n],
π(y) = (y1, . . . , yn) denotes its projection onto the coordinates indexed by the
n singleton subsets of [n]. Then, by construction, we have that P = π(P). As
we now indicate the results from the previous subsection show that the lifted
polytope P admits a simple explicit description.
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Indeed, for a vector y ∈ RPn(n), the trivial identity y = Zn(Z−1n y) shows
that y ∈ P if and only if it satisfies the following conditions:

Z−1y ≥ 0, (Z−1y)x = 0 ∀x 6∈ X , eTZ−1y = 1. (4.37)

The first condition says that y is a conic combination of vectors [x]n (for x ∈
{0, 1}n), the second one says that only vectors [x]n for x ∈ X are used in this
conic combination, the last one says that the conic combination is in fact a con-
vex combination and it can be equivalently written as y∅ = 1. Hence (9.7)
gives an explicit linear inequality description for the polytope P. Moreover, us-
ing Corollary 4.9.8, we can replace the condition Z−1n y ≥ 0 by the condition
Mn(y) � 0. In this way we get a description of P involving positive semidefi-
niteness of the full moment matrix Mn(y).

So what this says is that any polytope P with 0− 1 vertices can be obtained
as projection of a polytope P admitting a simple explicit description. The price
to pay however is P ”lives” in a 2n-dimensional space, thus exponentially large
with respect to the dimension n of the ambiant space of the polytope P . Never-
theless this perspective leads naturally to hierarchies of semidefinite relaxations
for P , obtained by considering only truncated parts Mt(y) of Mn(y) for growing
orders t. We refer to [7, 8] for a detailed treatment, also about the links to other
ift-and-project techniques used in combinatorial optimization.

This idea of ‘lifting’ a problem by adding new variables is widely used in
optimization and it can sometimes lead to a huge efficiency gain. As a simple
illustrating example consider the `1-ball B = {x ∈ Rn : |x1|, . . . , |xn| ≤ 1}. The
explicit linear inequality description of B requires the following 2n inequalities:∑n
i=1 aixi ≤ 1 for all a ∈ {±1}n. On the other hand, if we allow n additional

variables we can describe B using only 3n linear inequalities. Namely, define
the polytope

Q = {(x, y) ∈ Rn × Rn : xi ≤ yi, −xi ≤ yi, yi ≤ 1 (i ∈ [n]}.

Then B coincides with the projection of Q onto the x-subspace.

Convergence of the Lasserre hierarchy to α(G).

We can now conclude the proof of Theorem 4.9.5, showing that the Lasserre
relaxation solves the maximum stable set problem at any order t ≥ α(G). It fol-
lows through the following claims. We let SG denote the set of all characteristic
vectors of the stable sets of G (so we consider here the set X = SG).

Lemma 4.9.10. Assume Mt(y) � 0 and yij = 0 for all edges {i, j} ∈ E. Then
yI = 0 if I contains an edge and |I| ≤ 2t.

Proof. Exercise.

Lemma 4.9.11. Assume y0 = 1, Mn(y) � 0 and yij = 0 for all edges {i, j} ∈ E.
Then y is a convex combination of vectors [x]n for x ∈ SG.
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Proof. By Corollary 4.9.8, y =
∑
x∈{0,1}n λx[x]n, with all λx ≥ 0. It suffices now

to observe that λx > 0 implies x ∈ S(G), which follows directly from the fact
that 0 = yij =

∑
x λxxixj for all edges {i, j} ∈ E.

Lemma 4.9.12. Let t ≥ α(G). Assume y ∈ RP2t(n) satisfiesMt(y) � 0, yij = 0 for
all edges {i, j} ∈ E and y0 = 1. Then,

∑n
i=1 yi ≤ α(G) and thus last(G) ≤ α(G).

Proof. We extend the vector y to a vector ỹ ∈ Pn(n) by setting ỹI = yI if |I| ≤ 2t
and ỹI = 0 if |I| > 2t. We claim that the matrix Mn(ỹ) has the block-form:

Mn(ỹ) =

(
Mt(y) 0

0 0

)
.

Indeed, by construction, ỹI∪J = yI∪J if both I and J have cardinality at most t.
Otherwise, say |I| > t. If |I ∪ J | ≤ 2t, then ỹI∪J = yI∪J = 0 by Lemma 4.9.10
(since I is not stable). If |I ∪ J | > 2t, then ỹI∪J = 0 by construction.

Hence Mt(y) � 0 implies Mn(ỹ) � 0. Using Lemma 4.9.11, we can con-
clude that ỹ is a convex combination of vectors [x]n for x ∈ SG. By projecting
onto the positions indexed by 1, 2, . . . , n, we get that the vector (y1, . . . , yn) =
(ỹ1, . . . , ỹn) is a convex combination of characteristic vectors of stable sets of G,
and thus this implies

∑n
i=1 yi ≤ α(G).

4.10 Further reading

In his seminal paper [10], Lovász gives several equivalent formulations for the
theta number, and relates it to the Shannon capacity and to some eigenvalue
bounds. It is worth noting that Lovász’ paper was published in 1979, thus be-
fore the discovery of polynomial time algorithms for semidefinite programming.
In 1981, together with Grötschel and Schrijver, he derived the polynomial time
algorithms for maximum stable sets and graph colorings in perfect graphs, based
on the ellipsoid method for solving semidefinite programs. As of today, this is
the only known polynomial time algorithm – in particular, no purely combinato-
rial algorithm is known. Detailed information about the theta number can also
be found in the survey of Knuth [6] and a detailed treatment about the material
about the theta body TH(G) can be found in Chapter 9 of Grötschel, Lovász and
Schrijver [5].

The Lasserre hierarchy of semidefinite bounds for α(G) is based on the work
of Lasserre [7] and Laurent [8]. As explained there this type of hierarchies
extends to arbitrary 0/1 polynomial optimization problems.

4.11 Exercises

4.1 Show the result of Proposition 4.5.8.
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4.2 The goal is to show the result of Lemma 4.6.3 about the theta number of
the strong product of two graphs G = (V,E) and H = (W,F ):

ϑ(G ·H) = ϑ(G)ϑ(H).

(a) Show that ϑ(G ·H) ≥ ϑ(G)ϑ(H).

(b) Show that ϑ(G ·H) ≤ ϑ(G)ϑ(H).

Hint: Use the primal formulation (4.11) for (a), and the dual formulation
(4.12) for (b), and think of using Kronecker products of matrices in order
to build feasible solutions.

4.3 Given a graph G = (V = [n], E), a symmetric matrix B ∈ Sn is said to fit
G if it has non-zero diagonal entries and zero entries at the off-diagonal
positions corresponding to non-edges of G. Consider the parameter R(G),
defined as the smallest possible rank of a matrix B which fits G, i.e.,

R(G) = min rank(B) such that Bii 6= 0 (i ∈ V ), Bij = 0 ({i, j} ∈ E).

(a) Show that R(G) ≤ χ(G).

(b) Show that R(G) ≥ α(G).

(c) Show that R(G) ≥ Θ(G).

(This upper bound on the Shannon capacity is due to W. Haemers.)

4.4 Let G = (V = [n], E) be a graph. Consider the graph parameter

ϑ1(G) = min
c,ui

max
i∈V

1

(cTui)2
,

where the minimum is taken over all unit vectors c and all orthonormal
representations u1, · · · , un of G (i.e., u1, . . . , un are unit vectors satisfying
uTi uj = 0 for all pairs {i, j} ∈ E).

Show: ϑ(G) = ϑ1(G).

Hint for the inequality ϑ(G) ≤ ϑ1(G): Use the dual formulation of ϑ(G)
from Lemma 4.4.1 and the matrix M = (vTi vj)

n
i,j=1, where vi = c − ui

cTui
for i ∈ [n].
Hint for the inequality ϑ1(G) ≤ ϑ(G): Use an optimal solution X = tI −B
of the dual formulation for ϑ(G), written as the Gram matrix of vectors
x1, . . . , xn. Show that there exists a nonzero vector c which is orthogonal
to x1, . . . , xn, and consider the vectors ui = c+xi√

t
.

4.5 Show: ϑ(C5) ≤
√

5, using the formulation of Exercise 4.3 for the theta
number.

Hint: Consider the following vectors c, u1, . . . , u5 ∈ R3: c = (0, 0, 1),
uk = (s cos(2kπ/5), s sin(2kπ/5), t) for k = 1, 2, 3, 4, 5, where the scalars
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s, t ∈ R are chosen in such a way that u1, . . . , u5 form an orthonormal
representation of C5. Recall cos(2π/5) =

√
5−1
4 .

(This is the original proof of Lovász [10], known as the umbrella construc-
tion.)

4.6 Let G = C2n+1 be the complement of the odd cycle (1, 2, . . . , 2n + 1).
Consider a vector y = (yI)I⊆V,|I|≤4 which satisfies the conditions of the
Lasserre relaxation of order 2. That is, M2(y) � 0, yij = 0 for all edges
{i, j} ∈ E(G), and y∅ = 1.

Show:
∑
i∈V (G) yi ≤ 2.
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CHAPTER 5

APPROXIMATING THE MAX
CUT PROBLEM

5.1 Introduction

5.1.1 The MAX CUT problem

The maximum cut problem (MAX CUT) is the following problem in combina-
torial optimization. Let G = (V,E) be a graph and let w = (wij) ∈ RE+ be
nonnegative weights assigned to the edges. Given a subset S ⊆ V , the cut
δG(S) consists of the edges {u, v} ∈ E having exactly one endnode in S, i.e.,
with |{i, j} ∩ S| = 1. In other words, δG(S) consists of the edges that are
cut by the partition (S, S = V \ S) of V . The cut δG(S) is called trivial if
S = ∅ or V (in which case it is empty). Then the weight of the cut δG(S)
is w(δG(S)) =

∑
{i,j}∈δG(S) wij and the MAX CUT problem asks for a cut of

maximum weight, i.e., compute

mc(G,w) = max
S⊆V

w(δG(S)).

It is sometimes convenient to extend the weight function w ∈ RE to all pairs
of nodes of V , by setting wij = 0 if {i, j} is not an edge of G. Given disjoint
subsets S, T ⊆ V , it is also convenient to use the following notation:

w(S, T ) =
∑

i∈S,j∈T
wij .

Thus,
w(S, S) = w(δG(S)) for all S ⊆ V.
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To state its complexity, we formulate MAX CUT as a decision problem:

MAX CUT: Given a graph G = (V,E), edge weights w ∈ ZE+ and an integer
k ∈ N, decide whether there exists a cut of weight at least k.
It is well known that MAX CUT is an NP-complete problem. In fact, MAX CUT
is one of Karp’s 21 NP-complete problems. So unless the complexity classes P
and NP coincide there is no efficient polynomial-time algorithm which solves
MAX CUT exactly. We give here a reduction of MAX CUT from the PARTITION
problem, defined below, which is one the first six basic NP-complete problems
in Garey and Johnson [3]:

PARTITION: Given natural numbers a1, . . . , an ∈ N, decide whether there ex-
ists a subset S ⊆ [n] such that

∑
i∈S ai =

∑
i 6∈S ai.

Theorem 5.1.1. The MAX CUT problem is NP-complete.

Proof. It is clear that MAX CUT to the class NP. We now show a reduction from
PARTITION. Let a1, . . . , an ∈ N be given. Construct the following weights wij =
aiaj for the edges of the complete graph Kn. Set σ =

∑n
i=1 ai and k = σ2/4.

For any subset S ⊆ [n], set a(S) =
∑
i∈S ai. Then, we have

w(S, S) =
∑

i∈S,j∈S

wij =
∑

i∈S,j∈S

aiaj = (
∑
i∈S

ai)(
∑
j∈S

aj) = a(S)(σ−a(S)) ≤ σ2/4,

with equality if and only if a(S) = σ/2 or, equivalently, a(S) = a(S). From
this it follows that there is a cut of weight at least k if and only if the sequence
a1, . . . , an can be partitioned. This concludes the proof.

This hardness result for MAX CUT is in sharp contrast to the situation of the
MIN CUT problem, which asks for a nontrivial cut of minimum weight, i.e., to
compute

min
S⊆V :S 6=∅,V

w(S, S).

(For MIN CUT the weights of edges are usually called capacities and they also
assumed to be nonnegative). It is well known that the MIN CUT problem can be
solved in polynomial time (together with its dual MAX FLOW problem), using
the Ford-Fulkerson algorithm. Specifically, the Ford-Fulkerson algorithm per-
mits to find in polynomial time a minimum cut (S, S) separating a given source
s and a given sink t, i.e., with s ∈ S and t ∈ S. Thus a minimum weight nontriv-
ial cut can be obtained by applying this algorithm |V | times, fixing any s ∈ V
and letting t vary over all nodes of V \ {s}. Details can be found in Chapter 4
of the Lecture Notes [7].

Even stronger, Håstad in 2001 showed that it is NP-hard to approximate
MAX CUT within a factor of 16

17 ∼ 0.941.
On the positive side, one can compute a 0.878-approximation of MAX CUT

in polynomial time, using semidefinite programming. This algorithm, due to
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Figure 5.1: Minimum and maximum weight cuts

Goemans and Williamson [4], is one of the most influential approximation al-
gorithms which are based on semidefinite programming. We will explain this
result in detail in Section 5.2.1.

Before doing that we recall some results for MAX CUT based on using linear
programming.

5.1.2 Linear programming relaxation

In order to define linear programming bounds for MAX CUT, one needs to find
some linear inequalities that are satisfied by all cuts of G, i.e., some valid in-
equalities for the cut polytope ofG. Large classes of such inequalities are known
(cf. e.g. [2] for an overview and references).

We now present some simple but important valid inequalities for the cut
polytope of the complete graph Kn, which is denoted as CUTn, and defined as
the convex hull of the incidence vectors of the cuts of Kn:

CUTn = conv{χδKn (S) : S ⊆ [n]}.

For instance, for n = 2, CUTn = [0, 1] and, for n = 3, CUT3 is a simplex in R3

(indexed by the edges of K3 ordered as {1, 2}, {1, 3}, {2, 3}) with as vertices the
incidence vectors of the four cuts (S, S) of K3: (0, 0, 0), (1, 1, 0), (1, 0, 1),
and (0 1 1) (for S = ∅, {1}, {2} and {3}, respectively).

As a first easy observation it is important to realize that in order to compute
the maximum cut mc(G,w) in a weighted graph G on n nodes, one can as well
deal with the complete graph Kn. Indeed, any cut δG(S) of G can be obtained
from the corresponding cut δKn(S) of Kn, simply by ignoring the pairs that are
not edges of G, in other words, by projecting onto the edge set of G. Hence one
can reformulate any maximum cut problem as a linear optimization problem
over the cut polytope of Kn:

mc(G,w) = max
x∈CUTn

∑
{i,j}∈E

wijxij ;

the graph G is taken into account by the objective function of this LP.
The following triangle inequalities are valid for the cut polytope CUTn:

xij − xik − xjk ≤ 0, xij + xjk + xjk ≤ 2, (5.1)
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for all distinct i, j, k ∈ [n]. This is easy to see, just verify that these inequalities
hold when x is equal to the incidence vector of a cut. The triangle inequalities
(5.1) imply the following bounds (check it):

0 ≤ xij ≤ 1 (5.2)

on the variables. Let METn denote the polytope in RE(Kn) defined by the trian-
gle inequalities (5.1). Thus, METn is a linear relaxation of CUTn, tighter than
the trivial relaxation by the unit hypercube:

CUTn ⊆ METn ⊆ [0, 1]E(Kn).

It is known that equality holds for n ≤ 4, but the inclusion is strict for n ≥ 5.
Indeed, the inequality: ∑

1≤i<j≤5

xij ≤ 6 (5.3)

is valid for CUT5 (as any cut of K5 has cardinality 0, 4 or 6), but it is not valid
for MET5. For instance, the vector (2/3, . . . , 2/3) ∈ R10 belongs to MET5 but it
violates the inequality (5.3) (since 10.2/3 > 6).

We can define the following linear programming bound:

lp(G,w) = max

 ∑
{i,j}∈E(G)

wijxij : x ∈ METn

 (5.4)

for the maximum cut:
mc(G,w) ≤ lp(G,w).

The graphs for which this bound is tight have been characterized by Barahona
[1]:

Theorem 5.1.2. Let G be a graph. Then, mc(G,w) = lp(G,w) for all weight
functions w ∈ RE if and only if the graph G has no K5 minor.

In particular, if G is a planar graph, then mc(G,w) = lp(G,w) so that the
maximum cut can be computed in polynomial time using linear programming.

A natural question is how good the LP bound is for general graphs. Here are
some easy bounds.

Lemma 5.1.3. Let G be a graph with nonnegative weights w. The following holds.

(i) mc(G,w) ≤ lp(G,w) ≤ w(E).

(ii) mc(G,w) ≥ w(E)/2.

Proof. (i) follows from the fact that METn ⊆ [0, 1]E(Kn) and w ≥ 0. For (ii) pick
S ⊆ V for which (S, S) is a cut of maximum weight: w(S, S) = mc(G,w). Thus
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if we move one node i ∈ S to S, or if we move one node j ∈ S to S, then we
obtain another cut whose weight is at most w(S, S). This gives:

w(S \ {i}, S ∪ {i})− w(S, S) = w(S \ {i}, {i})− w({i}, S) ≥ 0,

w(S ∪ {j}, S \ {j})− w(S, S) = w({j}, S \ {j})− w(S, {j}) ≥ 0.

Summing the first relation over i ∈ S and using the fact that 2w(E(S)) =∑
i∈S w(S \{i}, {i}), where E(S) is the set of edges contained in S, and the fact

that
∑
i∈S w({i}, S) = w(S, S), we obtain:

2w(E(S)) ≥ w(S, S).

Analogously, summing over j ∈ S, we obtain:

2w(E(S)) ≥ w(S, S).

Summing these two relations yields: w(E(S)) + w(E(S)) ≥ w(S, S). Now
adding w(S, S) to both sides implies: w(E) ≥ 2w(S, S) = 2mc(G,w), which
shows (ii).

As an application of Lemma 5.1.3, we obtain that

1

2
≤ mc(G,w)

lp(G,w)
≤ 1 for all nonnegative weights w ≥ 0.

It turns out that there are graphs for which the ratio mc(G,w)/lp(G,w) can
be arbitrarily close to 1/2 [6]. This means that for these graphs, the metric
polytope does not provide a better approximation of the cut polytope than its
trivial relaxation by the hypercube [0, 1]E .

We now provide another argument for the lower bound mc(G,w) ≥ w(E)/2.
This argument is probabilistic and based on the following simple randomized al-
gorithm: Construct a random partition (S, S) of V by assigning, independently,
with probability 1/2, each node i ∈ V to either side of the partition. Then the
probability that an edge {i, j} is cut by the partition is equal to

P({i, j} is cut) = P(i ∈ S, j ∈ S) + P(i ∈ S, j ∈ S) =
1

2
· 1

2
+

1

2
· 1

2
=

1

2
.

Hence, the expected weight of the cut produced by this random partition is
equal to

E(w(S, S)) =
∑
{i,j}∈E

wijP({i, j} is cut) =
∑
{i,j}∈E

wij
1

2
=
w(E)

2
.

Here we have used the linearity of the expectation.

In the next section, we will see another probabilistic argument, due to Goe-
mans and Williamson, which permits to construct a much better random cut.
Namely we will get a random cut whose expected weight satisfies:

E(w(S, S)) ≥ 0.878 · w(E),
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thus improving the above factor 0.5. The crucial tool will be to use a semidefi-
nite relaxation for MAX CUT combined with a simple, but ingenious randomized
“hyperplane rounding” technique.

5.2 The algorithm of Goemans and Williamson

5.2.1 Semidefinite programming relaxation

We now want to describe the Goemans-Williamson algorithm.
For this we first reformulate MAX CUT as a (non-convex) quadratic optimiza-

tion problem having quadratic equality constraints. With every vertex i ∈ V , we
associate a binary variable xi ∈ {−1,+1} which indicates whether i lies in S or
in S, say, i ∈ S if xi = −1 and i ∈ S if xi = +1. We model the binary constraint
xi ∈ {−1,+1} as a quadratic equality constraint

x2i = 1 for i ∈ V.

For two vertices i, j ∈ V we have

1− xixj ∈ {0, 2}.

This value equals to 0 if i and j lie on the same side of the cut (S, S) and the
value equals to 2 if i and j lie on different sides of the cut. Hence, one can
express the weight of the cut (S, S) by

w(S, S) =
∑
{i,j}∈E

wij
1− xixj

2
.

Now, the MAX CUT problem can be equivalently formulated as

mc(G,w) = max

1

2

∑
{i,j}∈E

wij(1− xixj) : x2i = 1 ∀i ∈ V

 . (5.5)

Next, we introduce a matrix variable X = (xij) ∈ Sn, whose entries xij
model the pairwise products xixj . Then, as the matrix (xixj)

n
i,j=1 = xxT is

positive semidefinite, we can require the condition that X should be positive
semidefinite. Moreover, the constraints x2i = 1 give the constraints Xii = 1 for
all i ∈ [n]. Therefore we can formulate the following semidefinite programming
relaxation:

sdp(G,w) = max

1

2

∑
{i,j}∈E

wij(1−Xij) : X � 0, Xii = 1 ∀i ∈ [n]

 . (5.6)

By construction, we have:

mc(G,w) ≤ sdp(G,w). (5.7)
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The feasible region of the above semidefinite program is the convex (non-
polyhedral) set

En = {X ∈ Sn : X � 0, Xii = 1 ∀i ∈ [n]},

called the elliptope (and its members are known as correlation matrices). One
can visualize the elliptope E3. Indeed, for a 3 × 3 symmetric matrix X with an
all-ones diagonal, we have:

X =

1 x y
x 1 z
y z 1

 � 0⇐⇒ 1 + 2xyz − x2 − y2 − z2 ≥ 0, x, y, z ∈ [−1, 1],

which expresses the fact that the determinant of X is nonnegative as well as the
three 2× 2 principal subdeterminants. The following Figure 5.2.1 visualizes the
set of triples (x, y, z) for which X ∈ E3. Notice that the elliptope E3 looks like
an “inflated” tetrahedron, while the underlying tetrahedron corresponds to the
linear relaxation MET3.

Figure 5.2: Views on the convex set E3 behind the semidefinite relaxation.

5.2.2 The Goemans-Williamson algorithm

Goemans and Williamson [4] show the following result for the semidefinite
programming bound sdp(G,w).

Theorem 5.2.1. Given a graph G with nonnegative edge weights w, the following
inequalities hold:

sdp(G,w) ≥ mc(G,w) ≥ 0.878 · sdp(G,w).

The proof is algorithmic and it gives an approximation algorithm which
approximates the MAX CUT problem within a ratio of 0.878. The Goemans-
Williamson algorithm has five steps:

1. Solve the semidefinite program (5.6); let X be an optimal solution, so
that sdp(G,w) =

∑
{i,j}∈E wij(1−Xij)/2.
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2. Perform a Cholesky decomposition of X to find unit vectors vi ∈ R|V |−1
for i ∈ V , so that X = (vTi vj)i,j∈V .

3. Choose a random unit vector r ∈ R|V |−1, according to the rotationally
invariant probability distribution on the unit sphere.

4. Define a cut (S, S) by setting xi = sign(vTi r) for all i ∈ V . That is, i ∈ S if
and only if sign(vTi r) ≤ 0.

5. Check whether
∑
{i,j}∈E wij(1− xixj)/2 ≥ 0.878 · sdp(G,w). If not, go to

step 3.

The steps 3 and 4 in the algorithm are called a randomized rounding pro-
cedure because a solution of a semidefinite program is “rounded” (or better:
projected) to a solution of the original combinatorial problem with the help of
randomness.

Note also that because the expectation of the constructed solution is at least
0.878 · sdp(G,w) the algorithm eventually terminates; it will pass step 5 and
without getting stuck in an endless loop. One can show that with high proba-
bility we do not have to wait long until the condition in step 5 is fulfilled.

The following lemma (also known as Grothendieck’s identity, since it came
up in work of Grothendieck in the 50’s, however in the different context of
functional analysis) is the key to the proof of Theorem 5.2.1.

Lemma 5.2.2. Let u, v ∈ Rd (for some d ≥ 1) be unit vectors and let r ∈ Rd
be a random unit vector chosen according to the rotationally invariant probability
distribution on the unit sphere. The following holds.

(i) The probability that sign(uTr) 6= sign(vTr) is equal to

P(sign(uTr) 6= sign(vTr)) =
arccos(uTv)

π
. (5.8)

(ii) The expectation of the random variable sign(uTr) sign(vTr) ∈ {−1,+1} is
equal to

E[sign(uTr) sign(vTr)] =
2

π
arcsin(uTv). (5.9)

Proof. (i) Since the probability distribution from which we sample the unit vec-
tor r is rotationally invariant we can assume that u, v and r lie in a common
plane. Hence we can assume that they lie on a unit circle in R2 and that r is
chosen according to the uniform distribution on this circle. Then the probability
that sign(uTr) 6= sign(vTr) depends only on the angle between u and v. Using
a figure (draw one!) it is easy to see that

P[sign(uTr) 6= sign(vTr)] = 2 · 1

2π
arccos(uTv) =

1

π
arccos(uTv).
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(ii) By definition, the expectation E[sign(uTr) sign(vTr)] can be computed as

(+1) · P[sign(uTr) = sign(vTr)] + (−1) · P[sign(uTr) 6= sign(vTr)]

= 1− 2 · P[sign(uTr) 6= sign(vTr)] = 1− 2 · arccos(u
Tv)

π ,

where we have used (i) for the last equality. Now use the trigonometric identity

arcsin t+ arccos t =
π

2
,

to conclude the proof of (ii).

Using elementary univariate calculus one can show the following fact.

Lemma 5.2.3. For all t ∈ [−1, 1)], the following inequality holds:

2

π

arccos t

1− t
≥ 0.878. (5.10)

One can also “see” this on the following plots of the function in (5.10), where
t varies in [−1, 1) in the first plot and in [−0.73,−0.62] in the second plot.

-1 -0.5 0 0.5 1

2

4

6

8

10

-0.73 -0.72 -0.71 -0.7 -0.69 -0.68 -0.67 -0.66 -0.65

8.786e-1

8.787e-1

8.788e-1

8.789e-1

8.79e-1

8.791e-1

Proof. (of Theorem 5.2.1) Let X be the optimal solution of the semidefinite
program (5.6) and let v1, . . . , vn be unit vectors such that X = (vTi vj)

n
i,j=1, as

in Steps 1,2 of the GW algorithm. Let (S, S) be the random partition of V ,
as in Steps 3,4 of the algorithm. We now use Lemma 5.2.2(i) to compute the
expected value of the cut (S, S):

E(w(S, S)) =
∑
{i,j}∈E wijP({i, j} is cut) =

∑
{i,j}∈E wijP(xi 6= xj)

=
∑
{i,j}∈E wijP(sign(vTi r) 6= sign(vTj r)) =

∑
{i,j}∈E wij

arccos(vTi vj)
π

=
∑
{i,j}∈E wij

(
1−vTi vj

2

)
·
(

2
π

arccos(vTi vj)

1−vTi vj

)
.

By Lemma 5.2.3, each term 2
π

arccos(vTi vj)

1−vTi vj
can be lower bounded by the constant

0.878. Since all weights are nonnegative, each term wij(1−vTi vj) is nonnegative.
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Therefore, we can lower bound E(w(S, S)) in the following way:

E(w(S, S)) ≥ 0.878 ·
∑
{i,j}∈E

wij

(
1− vTi vj

2

)
.

Now we recognize that the objective value sdp(G,w) of the semidefinite pro-
gram is appearing in the right hand side and we obtain:

E(w(S, S)) ≥ 0.878 ·
∑
{i,j}∈E

wij

(
1− vTi vj

2

)
= 0.878 · sdp(G,w).

Finally, it is clear that the maximum weight of a cut is at least the expected
value of the random cut (S, S):

mc(G,w) ≥ E(w(S, S)).

Putting things together we can conclude that

mc(G,w) ≥ E(w(S, S)) ≥ 0.878 · sdp(G,w).

This concludes the proof, since the other inequality mc(G,w) ≤ sdp(G,w) holds
by (5.7).

5.2.3 Remarks on the algorithm

It remains to give a procedure which samples a random vector from the unit
sphere. This can be done if one can sample random numbers from the standard
normal (Gaussian) distribution (with mean zero and variance one) which has
probability density

f(x) =
1√
2π
e−x

2/2.

Many software packages include a procedure which produces random numbers
from the standard normal distribution.

If we sample n real numbers x1, . . . , xn independently uniformly at random
from the standard normal distribution, then, the vector

r =
1√

x21 + · · ·+ x2n
(x1, . . . , xn)T ∈ Sn−1

is distributed according to the rotationally invariant probability measure on the
unit sphere.

Finally we mention that one can modify the Goemans-Williamson algorithm
so that it becomes an algorithm which runs deterministically (without the use
of randomness) in polynomial time and which gives the same approximation
ratio. This was done by Mahajan and Ramesh in 1995.
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5.3 Extensions

5.3.1 Reformulating MAX CUT using the Laplacian matrix

Given a graph G with edge weights w, its Laplacian matrix Lw is the symmetric
n× n matrix with entries:

(Lw)ii =
∑

j:{i,j}∈E

wij (i ∈ [n]),

(Lw)ij = −wij ({i, j} ∈ E), (Lw)ij = 0 (i 6= j, {i, j} 6∈ E).

The following can be checked (Exercise 4.2).

Lemma 5.3.1. The following properties hold for the Laplacian matrix Lw:

(i) For any vector x ∈ {±1}n, 1
4x

TLwx = 1
2

∑
{i,j}∈E wij(1− xixj).

(ii) For any nonnegative edge weights w ≥ 0, Lw � 0.

This permits to reformulate the quadratic formulation (5.5) of MAX CUT as

mc(G,w) = max

{
1

4
xTLwx : x2i = 1 ∀i ∈ V

}
and its semidefinite relaxation (5.6) as

sdp(G,w) = max

{
1

4
〈Lw, X〉 : X � 0, Xii = 1 ∀i ∈ V

}
.

A property of the above programs is that the matrix Lw/4 occurring in the ob-
jective function is positive semidefinite. In the next section we consider general
quadratic programs, where Lw is replaced by an arbitrary positive semidefinite
matrix A. Then one can still show an approximation algorithm, however with
performance ration 2

π ∼ 0.636, thus weaker than the 0.878 ratio of Goemans
and Williamson for the case when A = Lw for some w ≥ 0.

5.3.2 Nesterov’s approximation algorithm

Nesterov [5] considers the class of quadratic problems:

qp(A) = max


n∑

i,j=1

Aijxixj : x2i = 1 ∀i ∈ [n]

 , (5.11)

where A ∈ Sn is a symmetric matrix. (Thus, qp(A) = mc(G,w) for A = Lw/4).
Analogously define the semidefinite programming relaxation:

sdp(A) = max {〈A,X〉 : X � 0, Xii = 1 ∀i ∈ [n]} . (5.12)
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The following inequality holds:

qp(A) ≤ sdp(A)

for any symmetric matrix A. In the special case when A is positive semidefinite,
Nesterov shows that sdp(A) is a 2

π -approximation for qp(A). The proof is based
on the same rounding technique of Goemans-Williamson, but the analysis is
different. It relies on the following property of the function arcsin t: There exist
positive scalars ak > 0 (k ≥ 0) such that

arcsin t = t+
∑
k≥0

akt
2k+1 for all t ∈ [−1, 1]. (5.13)

Based on this one can show the following result.

Lemma 5.3.2. Given a matrix X = (xij) ∈ Sn, define the new matrix

X̃ = (arcsinXij −Xij)
n
i,j=1,

whose entries are the images of the entries of X under the map t 7→ arcsin t − t.
Then, X � 0 implies X̃ � 0.

Proof. The proof uses the following fact: If X = (xij)
n
i,j=1 is positive semidef-

inite then, for any integer k ≥ 1, the matrix (Xk
ij)

n
i,j=1 (whose entries are the

k-th powers of the entries of X) is positive semidefinite as well. (Recall Section
1.2.2 of Chapter 1.)
Using this fact, the form of the series decomposition (5.13), and taking limits,
implies the result of the lemma.

Theorem 5.3.3. Assume A is a positive semidefinite matrix. Then,

sdp(A) ≥ qp(A) ≥ 2

π
sdp(A).

Proof. Let X be an optimal solution of the semidefinite program (5.12) and let
v1, . . . , vn be unit vectors such that X = (vTi vj)

n
i,j=1 (as in Steps 1,2 of the GW

algorithm). Pick a random unit vector r and set xi = sign(vTi r) for i ∈ V (as in
Steps 3,4 of the GW algorithm). We now use Lemma 5.2.2(ii) to compute the
expected value of

∑n
i,j=1Aijxixj:

E(
∑n
i,j=1Aijxixj) =

∑n
i,j=1AijE(xixj)

= 2
π

∑n
i,j=1Aij arcsin(vTi vj) = 2

π

∑n
i,j=1Aij arcsinXij

= 2
π

(∑n
i,j=1AijXij +

∑n
i,j=1Aij(arcsinXij −Xij)

)
.

By Lemma 5.3.2, the second term is equal to 〈A, X̃〉 ≥ 0, since X̃ � 0. Moreover,
we recognize in the first term the objective value of the semidefinite program
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(5.12). Combining these facts, we obtain:

E(

n∑
i,j=1

Aijxixj) ≥
2

π
sdp(A).

On the other hand, it is clear that

qp(A) ≥ E(

n∑
i,j=1

Aijxixj).

This concludes the proof.

5.3.3 Quadratic programs modeling MAX 2SAT

Here we consider another class of quadratic programs, of the form:

qp(a, b) = max

 ∑
ij∈E1

aij(1− xixj) +
∑
ij∈E2

bij(1 + xixj) : x ∈ {±1}n
 ,

(5.14)
where aij , bij ≥ 0 for all ij. Write the semidefinite relaxation:

sdp(a, b) = max

 ∑
ij∈E1

aij(1−Xij) +
∑
ij∈E2

bij(1 +Xij) : X � 0, Xii = 1 ∀i ∈ [n]

 .

(5.15)
Goemans and Williamson [4] show that the same approximation result holds as
for MAX CUT:

Theorem 5.3.4. Assume that a, b ≥ 0. Then,

sdp(a, b) ≥ qp(a, b) ≥ 0.878 · sdp(a, b).

In the proof we will use the following variation of Lemma 5.2.3.

Lemma 5.3.5. For any z ∈ [−1, 1], the following inequality holds:

2

π

π − arccos z

1 + z
≥ 0.878.

Proof. Set t = −z ∈ [−1, 1]. Using the identity arccos(−t) = π − arccos t and
applying (5.10), we get: 2

π
π−arccos z

1+z = 2
π

arccos t
1−t ≥ 0.878.

Proof. (of Theorem 5.3.4) We apply the GW algorithm: Let X = (vTi vj) be an
optimal solution of (5.15). Pick a random unit vector r and set xi = sign(vTi r)

for i ∈ [n]. Using the fact that E(xixj) = 1−2·P(xi 6= xj) = 1−2· arccos(v
T
i vj)

π , we
can compute the expected value of the quadratic objective of (5.14) evaluated
at x:
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E
(∑

ij∈E1
aij(1− xixj) +

∑
ij∈E2

bij(1 + xixj)
)

= 2 ·
∑
ij∈E1

aij
arccos(vTi vj)

π + 2 ·
∑
ij∈E2

bij

(
1− arccos(vTi vj)

π

)
=
∑
ij∈E1

aij(1− vTi vj)︸ ︷︷ ︸
≥0

2

π

arccos(vTi vj)

1− vTi vj︸ ︷︷ ︸
≥0.878

+
∑
ij∈E2

bij(1 + vTi vj)︸ ︷︷ ︸
≥0

2

π

π − arccos(vTi vj)

1 + vTi vj︸ ︷︷ ︸
≥0.878

≥ 0.878 · sdp(a, b).

Here we have used Lemmas 5.2.3 and 5.3.5. From this we can conclude that
qp(a, b) ≥ 0.878 · sdp(a, b).

In the next section we indicate how to use the quadratic program (5.14) in
order to formulate MAX 2 SAT.

5.3.4 Approximating MAX 2-SAT

An instance of MAX SAT is given by a collection of Boolean clauses C1, . . . , Cm,
where each clause Cj is a disjunction of literals, drawn from a set of variables
{z1, . . . , zn}. A literal is a variable zi or its negation zi. Moreover there is
a weight wj attached to each clause Cj . The MAX SAT problem asks for an
assignment of truth values to the variables z1, . . . , zn that maximizes the total
weight of the clauses that are satisfied. MAX 2SAT consists of the instances
of MAX SAT where each clause has at most two literals. It is an NP-complete
problem [3] and analogously to MAX CUT it is also hard to approximate.

Goemans and Williamson show that their randomized algorithm for MAX
CUT also applies to MAX 2SAT and yields again a 0.878-approximation algo-
rithm. Prior to their result, the best approximation was 3/4, due to Yannakakis
(1994).

To show this it suffices to model MAX 2SAT as a quadratic program of the
form (5.14). We now indicate how to do this. We introduce a variable xi ∈ {±1}
for each variable zi of the SAT instance. We also introduce an additional variable
x0 ∈ {±1} which is used as follows: zi is true if xi = x0 and false otherwise.

Given a clause C, define its value v(C) to be 1 if the clause C is true and 0
otherwise. Thus,

v(zi) =
1 + x0xi

2
, v(zi) = 1− v(zi) =

1− x0xi
2

.

Based on this one can now express v(C) for a clause with two literals:

v(zi ∨ zj) = 1− v(zi ∧ zj) = 1− v(zi)v(zj) = 1− 1−x0xi
2

1−x0xj
2

= 1+x0xi
4 +

1+x0xj
4 +

1−xixj
4 .
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Analogously, one can express v(zi ∨ zj) and v(zi ∨ zj), by replacing xi by −xi
when zi is negated. In all cases we see that v(C) is a linear combination of
terms of the form 1 + xixj and 1− xixj with nonnegative coefficients.

Now MAX 2SAT can be modelled as

max{
m∑
j=1

wjv(Cj) : x21 = . . . = x2n = 1}.

This quadratic program is of the form (5.14). Hence Theorem 5.3.4 applies.
Therefore, the approximation algorithm of Goemans and Williamson gives a
0.878 approximation for MAX 2SAT.

5.4 Further reading and remarks

We start with an anecdote. About the finding of the approximation ratio 0.878,
Knuth writes in the article “Mathematical Vanity Plates”:

For their work [4], Goemans and Williamson won in 2000 the Fulkerson
prize (sponsored jointly by the Mathematical Programming Society and the
AMS) which recognizes outstanding papers in the area of discrete mathemat-
ics for this result.
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How good is the MAX CUT algorithm? Are there graphs where the value
of the semidefinite relaxation and the value of the maximal cut are a factor of
0.878 apart or is this value 0.878, which maybe looks strange at first sight, only
an artefact of our analysis? It turns out that the value is optimal. In 2002 Feige
and Schechtmann gave an infinite family of graphs for which the ratio mc/sdp
converges to exactly 0.878 . . .. This proof uses a lot of nice mathematics (con-
tinuous graphs, Voronoi regions, isoperimetric inequality) and it is explained in
detail in the Chapter 8 of the book Approximation Algorithms and Semidefinite
Programming of Gärtner and Matoušek.

In 2007, Khot, Kindler, Mossel, O’Donnell showed that the algorithm of Goe-
mans and Williamson is optimal in the following sense: If the unique games
conjecture is true, then there is no polynomial time approximation algorithm
achieving a better approximation ratio than 0.878 unless P = NP. Currently, the
validity and the implications of the unique games conjecture are under heavy
investigation. The book of Gärtner and Matoušek also contains an introduction
to the unique games conjecture.

5.5 Exercises

5.1 The goal of this exercise is to show that the maximum weight stable set
problem can be formulated as an instance of the maximum cut problem.

Let G = (V,E) be a graph with node weights c ∈ RV+. Define the new
graph G′ = (V ′, E′) with node set V ′ = V ∪ {0}, with edge set E′ =
E ∪ {{0, i} : i ∈ V }, and with edge weights w ∈ RE′+ defined by

w0i = ci − degG(i)M for i ∈ V, and wij = M for {i, j} ∈ E.

Here, degG(i) denotes the degree of node i in G, and M is a constant to
be determined.

(a) Let S ⊆ V . Show: w(S, V ′ \ S) = c(S)− 2M |E(S)|.
(b) Show: If M is sufficiently large, then S ⊆ V is a stable set of maxi-

mum weight in (G, c) if and only if (S, V ′ \ S) is a cut of maximum
weight in (G′, w).
Give an explicit value of M for which the above holds.

5.2 Let G = (V = [n], E) be a graph with edge weights w ∈ RE . Define
the Laplacian matrix Lw ∈ Sn by: Lii =

∑
j∈V :{i,j}∈E wij for i ∈ V ,

Lij = −wij if {i, j} ∈ E, and Lij = 0 otherwise.

(a) Show: xTLwx = 2 ·
∑
{i,j}∈E wij(1−xixj) for any vector x ∈ {±1}n.

(b) Show: If w ≥ 0 then Lw � 0.

(c) Given an example of weights w for which Lw is not positive semidef-
inite.
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5.3 Let G = (V = [n], E) be a graph and let w ∈ RE+ be nonnegative edge
weights.

(a) Show the following reformulation for the MAX CUT problem:

mc(G,w) = max

 ∑
{i,j}∈E

wij
arccos(vTi vj)

π
: v1, . . . , vn unit vectors in Rn

 .

Hint: Use the analysis of the Goemans-Williamson algorithm.

(b) Let v1, . . . , v7 be unit vectors. Show:∑
1≤i<j≤7

arccos(vTi vj) ≤ 12π.

5.4 For a matrix A ∈ Rm×n we define the following quantities:

f(A) = max
I⊆[m],J⊆[n]

|
∑
i∈I

∑
j∈J

Aij |,

called the cut norm of A, and

g(A) = max

∑
i∈[m]

∑
j∈[n]

Aijxiyj : x1, . . . , xm, y1, . . . , yn ∈ {±1}

 .

(a) Show: f(A) ≤ g(A) ≤ 4f(A).

(b) Assume that all row sums and all column sums of A are equal to 0.
Show: g(A) = 4f(A).

(c) Formulate a semidefinite programming relaxation for g(A).

(d) Show:

g(A) = max

∑
i∈[m]

∑
j∈[n]

Aijxiyj : x1, . . . , xm, y1, . . . , yn ∈ [−1, 1]

 .

(e) Assume that A is a symmetric positive semidefinite n× n matrix.
Show:

g(A) = max


n∑
i=1

n∑
j=1

Aijxixj : x1, . . . , xn ∈ {±1}

 .

(f) Show that the maximum cut problem in a graph G = ([n], E) with
nonnegative edge weights can be formulated as an instance of com-
puting the cut norm f(A) of some matrix A.
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5.5 LetG = C5 denote the cycle on 5 nodes. Compute the Goemans-Williamson
semidefinite relaxation for max-cut (where all edge weights are taken
equal to 1):

sdp(C5) = max

{
1

2

5∑
i=1

(1−Xi,i+1) : X ∈ S5, X � 0, Xii = 1 ∀i ∈ [5]

}
.

How does the ratio mc(C5)
sdp(C5)

compare to the GW ratio 0.878?

5.6 Given a vector y = (yij,ijkl) indexed by all subsets of V = {1, . . . , n} of
cardinality 2 or 4, consider the symmetric matrix M(y) of size 1 +

(
n
2

)
indexed by all pairs of V and an additional index denoted 0, with entries:

M(y)0,0 = M(y)ij,ij = 1, M(y)ij,ik = yjk, M(y)ij,kl = yijkl

for all distinct i, j, k, l ∈ V . (Here yij , yijkl denote the cooordinates of y
indexed by the subsets {i, j}, {i, j, k, l}, resp.).

Given a graph G = (V,E) with edge weights w, consider the SDP:

sdp2(G,w) = max
y

∑
ij∈E

wij
1− yij

2
s.t. M(y) � 0. (5.16)

(a) Show that (5.16) is a relaxation of max-cut: mc(G,w) ≤ sdp2(G,w).

(b) Show that the bound given by (5.16) is at least as good as the basic
bound sdp(G,w) of (5.6): sdp2(G,w) ≤ sdp(G,w).

(c) Show that M(y) � 0 implies the following (triangle) inequalities:

yij + yik + yjk ≥ −1, yij − yik − yjk ≥ −1

for all distinct i, j, k ∈ V .
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CHAPTER 6

EUCLIDEAN EMBEDDINGS:
LOW DIMENSION

In many situations one is interested in finding solutions to semidefinite pro-
grams having a small rank. For instance, if the semidefinite program arises
as relaxation of a combinatorial optimization problem (like max-cut or max
clique), then its rank one solutions to correspond to the solutions of the under-
lying combinatorial problem. Finding an embedding of a weighted graph in the
Euclidean space of dimension d, or finding a sum of squares decomposition of
a polynomial with d squares, amounts to finding a solution of rank at most d
to some semidefinite program. As another example, the minimum dimension of
an orthonormal representation of a graph G = (V,E) is the minimum rank of a
positive semidefinite matrix X with nonzero diagonal entries satisfying Xij = 0
for all non-edges.

This chapter is organized as follows. First we show some upper bounds on
the rank of solutions to semidefinite programs. For this we have to look into
the geometry of the faces of the cone of positive semidefinite matrices. Then we
discuss several applications: Euclidean embeddings of weighted graphs, hidden
convexity results for images of quadratic maps, and the S-lemma which deals
with quadratic inequalities. We also discuss complexity issues related to the
problem of determining the smallest possible rank of solutions to semidefinite
programs.
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6.1 Geometry of the positive semidefinite cone

6.1.1 Faces of convex sets

We begin with some preliminary facts about faces of convex sets which we will
use to study the faces of the positive semidefinite cone Sn�0.

Let K be a convex set in Rn. A set F ⊆ K is called a face of K if for all x ∈ F
the following holds:

x = ty + (1− t)z with t ∈ (0, 1), y, z ∈ K =⇒ y, z ∈ F.

Clearly any intersection of faces is again a face. Hence, for x ∈ K, the smallest
face containing x is well defined (as the intersection of all the faces of K that
contain x), let us denote it by FK(x).

A point z ∈ Rn is called a perturbation of x ∈ K if x±εz ∈ K for some ε > 0;
then the whole segment [x− εz, x+ εz] is contained in the face FK(x). The set
PK(x) of perturbations of x ∈ K is a linear space, whose dimension is equal to
the dimension of the face FK(x).

Lemma 6.1.1. Given a convex set K and x ∈ K, let FK(x) be the smallest face of
K containing x. The following properties hold.

(i) x belongs to the relative interior of FK(x).

(ii) FK(x) is the unique face of K containing x in its relative interior.

Proof. (i) Assume for a contradiction that x 6∈ relint FK(x). Then, by applying
the separation theorem from Theorem 1.3.8 (i), there exists a hyperplane

Hc,γ = {y : cTy = γ}

separating the two convex sets {x} and FK(x) properly: There exist a nonzero
vector c ∈ Rn and γ ∈ R such that

cTx ≥ γ, cTy ≤ γ ∀y ∈ FK(x), and FK(x) 6⊆ Hc,γ .

We may assume that γ = cTx. Then the set FK(x) ∩Hc,γ is a face of K, which
contains x and is strictly contained in FK(x) (check it). This contradicts the fact
that FK(x) is the smallest face containing x.

(ii) Let F be a face ofK containing x in its relative interior. Then FK(x) ⊆ F .
To show the reverse inclusion, pick y ∈ F , y 6= x. As x lies in the relative interior
of F , Lemma 1.2.1 implies that there exists a point z ∈ F and a scalar t ∈ (0, 1)
such that x = ty + (1 − t)z. As FK(x) is a face, we deduce that y, z ∈ FK(x).
This shows that F ⊆ FK(x).

Hence, x lies in the relative interior of K precisely when FK(x) = K and x
is an extreme point of K, i.e.,

x = ty + (1− t)z with y, z ∈ K and t ∈ (0, 1) =⇒ y = z = x,

precisely when FK(x) = {x}. Recall that if K does not contain a line then it has
at least one extreme point.
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6.1.2 Faces of the positive semidefinite cone

Here we describe the faces of the positive semidefinite cone Sn�0. We show that
each face of Sn�0 can be identified to a smaller semidefinite cone Sr�0 for some
0 ≤ r ≤ n.

Proposition 6.1.2. Let A ∈ Sn�0, r = rank(A), and let F (A) = FSn�0
(A) denote

the smallest face of Sn�0 containing A. Let u1, · · · , un be an orthonormal set of
eigenvectors of A, where u1, · · · , ur correspond to its nonzero eigenvalues, and let
U (resp., U0) be the matrix with columns u1, · · · , un (resp., u1, · · · , ur). The map

φA : Sr → Sn

Z 7→ U

(
Z 0
0 0

)
UT = U0ZU

T
0

(6.1)

is a rank-preserving isometry, which identifies F (A) and Sr�0:

F (A) = φ(Sr�0) =

{
U

(
Z 0
0 0

)
UT = U0ZU

T
0 : Z ∈ Sr�0

}
.

Moreover, F (A) is given by

F (A) = {X ∈ Sn�0 : KerX ⊇ KerA} (6.2)

and its dimension is equal to
(
r+1
2

)
.

Proof. Set D = diag(λ1, · · · , λr, 0, · · · , 0) ∈ Sn�0, D0 = diag(λ1, · · · , λr) ∈ Sr�0,
where λi is the eigenvalue for eigenvector ui, ∆ = diag(0, · · · , 0, 1, · · · , 1) ∈
Sn�0, where the first r entries are 0 and the last n − r entries are 1. Finally, set
Q = U∆UT =

∑n
i=r+1 uiu

T
i . Then, A = UDUT and 〈∆, D〉 = 0. Moreover,

〈Q,A〉 = 0, as the vectors ur+1, · · · , un span the kernel of A.
As Q � 0, the hyperplane

H = {X ∈ Sn : 〈Q,X〉 = 0}

is a supporting hyperplane for Sn�0 and the intersection

F = Sn�0 ∩H = {X ∈ Sn�0 : 〈Q,X〉 = 0}

is a face of Sn�0 containing A. We claim that

F = {X ∈ Sn�0 : KerX ⊇ KerA}.

Indeed, the condition 〈Q,X〉 = 0 reads
∑
i=r+1 u

T
i Xui = 0. For X � 0,

uTi Xui ≥ 0 for all i, so that 〈Q,X〉 = 0 if and only if uTi Xui = 0 or, equiv-
alently, Xui = 0 for all i ∈ {r + 1, · · · , n}, i.e., KerA ⊆ KerX. Moreover,

F = φA(Sr�0).
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For this, consider X ∈ Sn written as X = UY UT where Y ∈ Sn. Then, X � 0
if and only if Y � 0. Moreover, 〈Q,X〉 = 0 if and only if 〈∆, Y 〉 = 0 or,
equivalently, Y = φA(Z) for some Z ∈ Sr. Summarizing, X ∈ F if and only if
X = φA(Z) for some Z ∈ Sr�0.

We now show that F = F (A). In view of Lemma 6.1.1, it suffices to show
that A lies in the relative interior of the face F . We use Lemma 1.2.1: let
X ∈ F , we show that there exist X ′ ∈ F and a scalar t ∈ (0, 1) such that
A = tX + (1 − t)X ′. As we just saw above, X = φA(Z) for some Z ∈ Sr�0.
As Λ0 is an interior point of Sr�0, there exists Z ′ ∈ Sr�0 and t ∈ (0, 1) such that
Λ0 = tZ + (1 − t)Z ′. Then, X ′ = φA(Z ′) ∈ F and A = tX + (1 − t)X ′, as
required.

Summarizing, we have shown that F (A) can be identified with Sr�0 via the
rank-preserving isometry:

Z 7→ Y =

(
Z 0
0 0

)
7→ X = UY UT

D0 7→ D 7→ A
Sr�0 → F ′ → F (A)

and the dimension of F is equal to dimSr�0 =
(
r+1
2

)
.

As a direct application, the possible dimensions for the faces of the cone Sn�0
are

(
r+1
2

)
for r = 0, 1, · · · , n. Moreover there is a one-to-one correspondence

between the lattice of faces of Sn�0 and the lattice of subspaces of Rn:

U subspace of Rn 7→ FU = {X ∈ Sn�0 : KerX ⊇ U}, (6.3)

with U1 ⊆ U2 ⇐⇒ FU1
⊇ FU2

.

6.1.3 Faces of spectrahedra

Consider an affine subpsace A in the space of symmetric matrices, of the form

A = {X ∈ Sn : 〈Aj , X〉 = bj (j ∈ [m])}, (6.4)

whereA1, · · · , Am are given symmetric matrices and b1, · · · , bm are given scalars.
Assume that A is not empty. The codimension of A is

codim A = dimSn − dimA = dim〈A1, · · · , Am〉,

where 〈A1, · · · , Am〉 denotes the linear subspace of Sn spanned by {A1, . . . , Am}.
If we intersect the cone of positive semidefinite matrices with the affine

space A, we obtain the convex set

K = Sn�0 ∩ A = {X ∈ Sn : X � 0, 〈Aj , X〉 = bj (j ∈ [m])}. (6.5)

This is the feasible region of a typical semidefinite program (in standard primal
form). Such a convex set is called a spectrahedron – this name is in the analogy
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with polyhedron, which corresponds to the feasible region of a linear program
and spectra reflects the fact that the definition involves spectral properties of
matrices.

An example of spectrahedron is the elliptope

En = {X ∈ Sn�0 : Xii = 1 ∀i ∈ [n]}, (6.6)

which is the feasible region of the semidefinite relaxation for Max-Cut consid-
ered in earlier chapters.

As an application of the description of the faces of the positive semidefinite
cone in Proposition 6.1.2, we can describe the faces of K.

Proposition 6.1.3. Let K be the spectrahedron (9.2). Let A ∈ K, r = rank(A),
and let U,U0 be as in Proposition 6.1.2. Define the affine space in Sr:

AA = {Z ∈ Sr : 〈UT
0 AjU0, Z〉 = bj ∀j ∈ [m]}, (6.7)

and the corresponding linear space:

LA = {Z ∈ Sr : 〈UT
0 AjU0, Z〉 = 0 ∀j ∈ [m]}. (6.8)

The map φA from (6.1) identifies FK(A) and Sr�0 ∩ AA:

FK(A) = φA(Sr�0 ∩ AA)

and the set of perturbations of A ∈ K is

PK(A) = φA(LA).

Moreover, FK(A) is given by

FK(A) = {X ∈ K : KerX ⊇ KerA} (6.9)

and its dimension is equal to

dimFK(A) = dimAA =

(
r + 1

2

)
− dim〈UT

0 AjU0 : j ∈ [m]〉. (6.10)

Proof. Recall that K = Sn�0 ∩A and that F (A) denotes the smallest face of Sn�0
containing A. One can verify that the set F (A) ∩ A contains A in its relative
interior and thus we have that FK(A) = F (A) ∩ A. Hence (6.9) follows from
(6.2).

If X = φA(Z) is the image of Z ∈ Sr under the map φA from (6.1), then

〈Aj , X〉 = 〈UTAjU,U
TXU〉 =

〈
UTAjU,

(
Z 0
0 0

)〉
= 〈UT

0 AjU0, Z〉.

Therefore, the face FK(A) is the image of Sr�0 ∩ AA under the map φA, i.e.,
FK(A) = φA(Sr�0 ∩ AA). Moreover, a matrix B ∈ Sn is a perturbation of A if
and only if A±εB ∈ K for some ε > 0, which is equivalent to B ∈ U0LAUT

0 , i.e.,
B ∈ φA(LA). Therefore, we find that PK(A) = φA(LA), and thus the dimension
of FK(A) is equal to dimPK(A) = dimφA(LA) = dimAA, which gives (6.10).
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Corollary 6.1.4. Let K be defined as in (9.2). Let A ∈ K and r = rank(A). If A
is an extreme point of K then(

r + 1

2

)
≤ codim A ≤ m (6.11)

In particular, K contains a matrix A whose rank r satisfies

r ≤ −1 +
√

8m+ 1

2
. (6.12)

Proof. If A is an extreme point of K then dimFK(A) = 0. Then, by (6.10),(
r+1
2

)
= codimAA ≤ codimA (since, for any J ⊆ [m], {UT

0 AjU0 : j ∈ J}
linearly independent implies that {Aj : j ∈ J} too is linearly independent). As
codimA ≤ m, then (9.15) follows from (6.10).

As K contains no line, K has at least one extreme point. Now (6.12) follows
directly from

(
r+1
2

)
≤ m for any matrix A which is an extreme point of K.

Remark 6.1.5. The codimension of the affine space AA can be expressed from any
Cholesky decomposition: A = WWT, where W ∈ Rn×r, by

codim AA = dim〈WTAjW : j ∈ [m]〉.

Indeed, the matrix P = WTU0D
−1
0 is nonsingular, since PTP = D−10 using the

fact that UT
0 U0 = Ir. Moreover, WP = U0, and thus

dim〈WTAjW : j ∈ [m]〉 = dim〈PTWTAjWP : j ∈ [m]〉 = dim〈UT
0 AjU0 : j ∈ [m]〉.

As an illustration, for the elliptope K = En, if A ∈ En is the Gram matrix of vectors
{a1, · · · , an} ⊆ Rk, then codim AA = dim〈a1aT1 , · · · , anaTn〉.

As an illustration we discuss a bit the geometry of the elliptope En. As a
direct application of Corollary 6.1.4, we obtain the following bound for the
rank of extreme points:

Corollary 6.1.6. Any extreme point of En has rank r satisfying
(
r+1
2

)
≤ n.

A matrix X ∈ En has rank 1 if and only if it is of the form X = xxT for some
x ∈ {±1}n. Such matrix is also called a cut matrix (since it corresponds to a
cut in the complete graph Kn). There are 2n−1 distinct cut matrices. They are
extreme points of En and any two of them form an edge (face of dimension 1)
of En. While for n ≤ 4, these are the only faces of dimension 1, the elliptope
En for n ≥ 5 has faces of dimension 1 that are not an edge between two cut
matrices. You will see an example in Exercise 10.3.

Figure 6.1 shows the elliptope E3 (more precisely, its bijective image in R3

obtained by taking the upper triangular part ofX). Note the four corners, which
correspond to the four cuts of the graph K3. All the points on the boundary of
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Figure 6.1: The elliptope E3

E3 - except those lying on an edge between two of the four corners – are extreme
points. For instance, the matrix

A =

 1 0 1/
√

2

0 1 1/
√

2

1/
√

2 1/
√

2 1


is an extreme point of E3 (check it), with rank r = 2.

6.1.4 Finding an extreme point in a spectrahedron

In order to find a matrix A in a spectrahedron K whose rank satisfies (6.12),
it suffices to find an extreme point A of K. Algorithmically this can be done as
follows.

Suppose we have a matrix A ∈ K with rank r. Observe that A is an extreme
point of K precisely when the linear space LA (in (6.8)) is reduced to the zero
matrix. Assume that A is not an extreme point of K. Pick a nonzero matrix C ∈
LA, so that B = U0CU

T
0 is a nonzero perturbation of A. Hence A± tB � 0 for

some t > 0. Moreover, at least one of the supremums: sup{t > 0 : A+ tB � 0}
and sup{t > 0 : A − tB � 0} is finite, since K contains no line. Say, the first
supremum is finite, and compute the largest scalar t > 0 for which A + tB � 0
(this is a semidefinite program). Then the matrixA′ = A+tB still belongs to the
face FK(A), but it now lies on its border (by the maximality of t). Therefore, A′

has a larger kernel: KerA′ ⊃ KerA, and thus a smaller rank: rankA′ ≤ rankA−1.
Then iterate, replacing A by A′, until finding an extreme point of K.

Therefore, one can find an extreme point of K by solving at most n semidef-
inite programs. However, finding the smallest possible rank of a matrix in K is
a hard problem – see Proposition 6.2.4.

6.1.5 A refined bound on ranks of extreme points

The upper bound on the rank of an extreme point from Corollary 6.1.4 is tight
– see Example 6.2.3 below. However, there is one special case when it can be
sharpened, as we explain here. Consider again the affine space A from (6.4)
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and the spectrahedron K = Sn�0 ∩A. From Corollary 6.1.4, we know that every
extreme point A of K has rank r satisfying(

r + 1

2

)
≤ codim A.

Hence, r ≤ s+ 1 if codim A =
(
s+2
2

)
. Under some assumptions, Barvinok shows

that r ≤ s for at least one extreme point of K.

Proposition 6.1.7. Assume that K is nonempty bounded and codim A =
(
s+2
2

)
for some integer s ≥ 1 satisfying n ≥ s + 2. Then there exists A ∈ K with rank
rank A ≤ s.

The proof uses the following topological result.

Theorem 6.1.8. Consider the projective space Pn−1, consisting of all lines in Rn
passing through the origin, and let Sn−1 be the unit sphere in Rn. For n ≥ 3 there
does not exist a continuous map Φ : Sn−1 → Pn−1 such that Φ(x) 6= Φ(y) for all
distinct x, y ∈ Sn−1.

The following lemma deals with the case n = s+2, it is the core of the proof
of Proposition 6.1.7.

Lemma 6.1.9. Let n = s+ 2 with s ≥ 1 and let A ⊆ Ss+2 be an affine space with
codim A =

(
s+2
2

)
. If K = Ss+2

�0 ∩ A is nonempty and bounded, then there is a
matrix A ∈ K with rank A ≤ s.

Proof. Assume first thatA∩Ss+2
�0 = ∅. ThenA lies in a hyperplaneH supporting

a proper face F of Ss+2
�0 . (This can be checked using the separating theorem

from Theorem 1.3.8 (i).) By Proposition 6.1.2, F can be identified with St�0 for
some t ≤ s+ 1 and thus an extreme point of K has rank at most t− 1 ≤ s.

Suppose now thatA∩Ss+2
�0 6= ∅. By (6.10), dimK =

(
s+3
2

)
−codimA = s+2.

Hence, K is a (s + 2)-dimensional compact convex set, whose boundary ∂K is
(topologically) the sphere Ss+1. We now show that the boundary of K contains
a matrix with rank at most s.

Clearly every matrix in ∂K has rank at most s + 1. Suppose for a contra-
diction that no matrix of ∂K has rank at most s. Then, each matrix X ∈ ∂K
has rank s+ 1 and thus its kernel KerX has dimension 1, it is a line though the
origin. We can define a continuous map Φ from ∂K to Ps+1 in the following
way: For each matrix X ∈ ∂K, its image Φ(X) is the line KerX. The map Φ is
continuous (check it) from Ss+1 to Ps+1 with s+ 1 ≥ 2. Hence, applying Theo-
rem 6.1.8, we deduce that there are two distinct matrices X,X ′ ∈ ∂K with the
same kernel: KerX = KerX ′. Hence X and X ′ are two distinct points lying in
the same face of K: FK(X) = FK(X ′). Then this face has an extreme point A,
whose rank satisfies rankA ≤ rankX − 1 ≤ s.

We can now conclude the proof of Proposition 6.1.7.
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Proof. (of Proposition 6.1.7). By Corollary 6.1.4 there exists a matrix A ∈ K
with rank A ≤ s + 1. Pick a vector space U ⊆ KerA with codim U = s + 2.
By Proposition 6.1.2, there is a rank-preserving isometry between FU and Ss+2

�0 .
Moreover, A ∈ FU ∩ A. Hence the result follows by applying Lemma 6.1.9.

Example 6.1.10. Consider the three matrices

A =

(
1 0
0 −1

)
, B =

(
0 1
1 0

)
, C =

(
1 1
1 0

)
and the affine space

A = {X ∈ S2 : 〈A,X〉 = 0, 〈B,X〉 = 0, 〈C,X〉 = 1}.

Then S2�0 ∩ A = {I} thus contains no rank 1 matrix, and codim A = 3 =
(
s+2
2

)
with s = 1. This example shows that the condition n ≥ s+ 2 cannot be omitted in
Lemma 6.1.9.

Example 6.2.3 below shows that the assumption that K is bounded cannot be
omitted as well.

6.2 Applications

6.2.1 Euclidean realizations of graphs

The graph realization problem can be stated as follows. Suppose we are given
a graph G = (V = [n], E) together with nonnegative edge weights w ∈ RE+,
viewed as ‘lengths’ assigned to the edges. We say that (G,w) is d-realizable if
one can place the nodes of G at points v1, · · · , vn ∈ Rd in such a way that their
Euclidean distances respect the given edge lengths:

∃v1, · · · , vn ∈ Rd ‖vi − vj‖2 = wij ∀{i, j} ∈ E. (6.13)

(We use here the squares of the Euclidean distances as this makes the notation
easier). Moreover, (G,w) is realizable if it is d-realizable for some d ≥ 1. In
dimension 3, the problem of testing d-realizability arises naturally in robotics
or computational chemistry (the given lengths represent some known distances
between the atoms of a molecule and one wants to reconstruct the molecule
from these partial data).

Testing whether a weighted graph is realizable amounts to testing feasibility
of a semidefinite program:

Lemma 6.2.1. (G,w) is realizable if and only if the following semidefinite pro-
gram (in matrix variable X ∈ Sn):

Xii +Xjj − 2Xij = wij ∀{i, j} ∈ E, X � 0 (6.14)

has a feasible solution. Moreover, (G,w) is d-realizable if and only if the system
(6.14) has a solution of rank at most d.
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Proof. If v1, · · · , vn ∈ Rd is a realization of (G,w), then their Gram matrix X =
(vTi vj) is a solution of rank at most d of (6.14). Conversely, if X is a solution of
(6.14) of rank d and v1, · · · , vn ∈ Rd is a Gram decomposition of X, then the
vi’s form a d-realization of (G,w).

As a direct application of Corollary 6.1.4, any realizable graph (G,w) is d-
realizable in dimension d satisfying(

d+ 1

2

)
≤ |E|, i.e., d ≤

−1 +
√

8|E|+ 1

2
. (6.15)

When G = Kn is a complete graph, checking whether (Kn, w) is d-realizable
amounts to checking whether a suitable matrix is positive semidefinite and com-
puting its rank:

Lemma 6.2.2. Consider the complete graph G = Kn with edge weights w, and
define the matrix X ∈ Sn−1 by

Xii = win (i ∈ [n− 1]), Xij =
win + wjn − wij

2
(i 6= j ∈ [n− 1]).

Then, (Kn, w) is d-realizable if and only if X � 0 and rankX ≤ d.

Proof. The proof relies on the observation that if a set of vectors v1, · · · , vn ∈
Rd satisfies (6.13), then one can translate it and thus assume without loss of
generality that vn = 0.

Example 6.2.3. Consider the complete graph G = Kn with weights wij = 1 for
all edges. Then (Kn, w) is (n − 1)-realizable but it is not (n − 2)-realizable (easy
to check using Lemma 6.2.2).

Hence, the upper bound (6.15) is tight on this example. This shows that the
condition that K is bounded cannot be omitted in Proposition 6.1.7. (Note that
the set of feasible solutions to the program (6.14) is indeed not bounded).

On the other hand, for any fixed d ≥ 1, deciding whether a graph (G,w)
is d-realizable is a hard problem. Therefore, deciding whether the semidefinite
program (6.14) has a solution of rank at most d is a hard problem.

We show this for d = 1. Then there is a simple reduction from the following
partition problem, well known to be NP-complete: decide whether a given se-
quence of integers a1, · · · , an ∈ N can be partitioned, i.e., whether there exists
ε ∈ {±1}n such that ε1a1 + · · ·+ εnan = 0.

Proposition 6.2.4. Given a graph (G,w) with integer lengths w ∈ NE , deciding
whether (G,w) is 1-realizable is an NP -complete problem, already when G is
restricted to be a circuit.

Proof. Let a1, · · · , an ∈ N be an instance of the partition problem. Consider
the circuit G = Cn of length n, with edges {i, i + 1} for i ∈ [n] (indices taken
modulo n). Assign the length wi,i+1 = ai+1 to edge {i, i + 1} for i = 1, · · · , n.
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It is now an easy exercise to show that (Cn, w) is 1-realizable if and only if the
sequence (a1, · · · , an) can be partitioned.

Indeed, assume that v1, · · · , vn−1, vn ∈ R is a 1-realization of (Cn, w). With-
out loss of generality we may assume that vn = 0. The condition wn,1 = a1 =
|v1| implies that v1 = ε1a1 for some ε1 ∈ {±1}. Next, for i = 1, · · · , n − 1, the
conditions wi,i+1 = ai+1 = |vi − vi+1| imply the existence of ε2, · · · , εn ∈ {±1}
such that vi+1 = vi + εi+1ai+1. This implies 0 = vn = ε1a1 + · · ·+ εnan and thus
the sequence a1, · · · , an can be partitioned.

These arguments can be reversed to show the reverse implication.

On the other hand:

Lemma 6.2.5. If a circuit (Cn, w) is realizable, then it is 2-realizable.

This can be shown (Exercise 6.1) using the following basic geometrical fact.

Lemma 6.2.6. Let u1, · · · , uk ∈ Rn and v1, · · · , vk ∈ Rn two sets of vectors
representing the same Euclidean distances, i.e., satisfying

‖ui − uj‖ = ‖vi − vj‖ ∀i, j ∈ [k].

Then there exists an orthogonal matrix A ∈ O(n) and a vector a ∈ Rn such that
vi = Aui + a for all i ∈ [k].

Hence what the above shows is that any realizable weighted circuit can be
embedded in the line or in the plane, but deciding which one of these two
possibilities holds is an NP -complete problem!

6.2.2 Hidden convexity results for quadratic maps

As a direct application of Proposition 6.1.4, we obtain the following result for
systems of two quadratic equations.

Proposition 6.2.7. Consider two matrices A,B ∈ Sn and a, b ∈ R. Then the
system of two quadratic equations

n∑
i,j=1

Aijxixj = a,

n∑
i,j=1

Bijxixj = b (6.16)

has a real solution x = (x1, · · · , xn) ∈ Rn if and only if the system of two linear
matrix equations

〈A,X〉 = a, 〈B,X〉 = b (6.17)

has a positive semidefinite solution X � 0.

Proof. If x is a solution of (6.16), then X = xxT is a solution of (6.17). Con-
versely, assume that the system (6.17) has a solution. Applying Corollary 6.1.4,
we know that it has a solution of rank r satisfying

(
r+1
2

)
≤ m = 2, thus with

r ≤ 1. Now, if X has rank 1, it can be written in the form X = xxT, so that x is
a solution of (6.16).
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This result does not extend to three equations: The affine space from Exam-
ple 6.1.10 contains a positive semidefinite matrix, but none of rank 1. As we
now observe, the above result can be reformulated as follows: The image of Rn
under a quadratic map into R2 is a convex set.

Proposition 6.2.8. (Dines 1941) Given two matrices A,B ∈ Sn, the image of
Rn under the quadratic map q(x) = (xTAx, xTBx):

Q = {(xTAx, xTBx) : x ∈ Rn}, (6.18)

is a convex set in R2.

Proof. Set
Q′ = {(〈A,X〉, 〈B,X〉) ∈ R2 : X ∈ Sn�0}.

Clearly, Q ⊆ Q′ and Q′ is convex. Thus it suffices to show equality: Q = Q′.
For this, let (a, b) ∈ Q′. Then the system (6.17) has a solution X � 0. By
Proposition 6.2.7, the system (6.16) too has a solution, and thus (a, b) ∈ Q.

While it is not obvious from its definition that the setQ is convex, it is obvious
from its definition that the above set Q′ is convex. For this reason, such a result
is called a hidden convexity result.

Here is another hidden convexity result, showing that the image of the unit
sphere Sn−1 (n ≥ 3) under a quadratic map in R2 is convex. We show it using
the refined bound from Proposition 6.1.7.

Proposition 6.2.9. (Brinkman 1961) Let n ≥ 3 and A,B ∈ Sn. Then the image
of the unit sphere under the quadratic map q(x) = (xTAx, xTBx):

C = {(xTAx, xTBx) :

n∑
i=1

x2i = 1}

is a convex set in R2.

Proof. It suffices to show that, if the set

K = {X ∈ Sn�0 : 〈A,X〉 = a, 〈B,X〉 = b, Tr(X) = 1}

is not empty then it contains a matrix of rank 1. Define the affine space

A = {X ∈ Sn : 〈A,X〉 = a, 〈B,X〉 = b, Tr(X) = 1}.

Then the existence of a matrix of rank 1 in K follows from Corollary 6.1.4 if
codim A ≤ 2, and from Proposition 6.1.7 if codim A = 3 (as K is bounded,
codim A =

(
s+2
3

)
, n ≥ s+ 2 for s = 1).

The assumption n ≥ 3 cannot be omitted in Proposition 6.2.9: Consider
the quadratic map q defined using the matrices A and B from Example 6.1.10.
Then, q(1, 0) = (1, 0), q(0, 1) = (−1, 0), but (0, 0) does not belong to the image
of S1 under q.
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We conclude with the following application of Proposition 6.2.9, which shows
that the numerical range R(M) of a complex matrix M ∈ Cn×n is a convex sub-
set of C (viewed as R2). Recall that the numerical range of M is

R(M) = {z∗Mz =

n∑
i,j=1

ziMijzi : z ∈ Cn,
n∑
i=1

|zi|2 = 1}.

Proposition 6.2.10. (Toeplitz-Hausdorff) The numerical range of a complex
matrix is convex.

Proof. Write z ∈ Cn as z = x+iy where x, y ∈ Rn, so that
∑
i |zi|2 =

∑
i x

2
i +y2i .

Define the quadratic map q(x, y) = (q1(x, y), q2(x, y)) by

z∗Mz = q1(x, y) + iq2(x, y).

Then, the numerical range of M is the image of the unit sphere S2n−1 under
the map q, and the result follows from Proposition 6.2.9.

6.2.3 The S-Lemma

In the preceding section we dealt with systems of quadratic equations. We now
discuss systems of quadratic inequalities.

Recall Farkas’ lemma for linear programming: If a system of linear inequali-
ties: 

aT1x ≤ b1
...

aTmx ≤ bm

implies the linear inequality cTx ≤ d, then there exist nonnegative scalars
λ1, · · · , λm ≥ 0 such that c = λ1a1 + · · ·+ λmam and λ1b1 + · · ·+ λmbm ≤ d.

This type of inference rules does not extend to general nonlinear inequali-
ties. However such an extension does hold in the case of quadratic polynomials,
in the special case m = 1 (and under some strict feasibility assumption).

Theorem 6.2.11. (The homogeneous S-lemma) Given matrices A,B ∈ Sn,
assume that xTAx > 0 for some x ∈ Rn. The following assertions are equivalent.

(i) {x ∈ Rn : xTAx ≥ 0} ⊆ {x ∈ Rn : xTBx ≥ 0}.

(ii) There exists a scalar λ ≥ 0 such that B − λA � 0.

Proof. The implication (ii) =⇒ (i) is obvious. Now, assume (i) holds, we show
(ii). For this consider the semidefinite program:

inf{〈B,X〉 : 〈A,X〉 ≥ 0, Tr(X) = 1, X � 0} (P)

and its dual:
sup{y : B − zA− yI � 0, z ≥ 0}. (D)
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First we show that (P) is strictly feasible. By assumption, there exists a unit
vector x for which xTAx > 0. If Tr(A) ≥ 0 then X = xxT/2 + I/2n is a
strictly feasible solution. Assume now that Tr(A) < 0. Set X = αxxT + βI,
where we choose α ≥ 0, β > 0 in such a way that 1 = Tr(X) = α + βn and
0 < 〈A,X〉 = αxTAx+ βTr(A), i.e.,

0 < β < min

{
1

n
,

xTAx

nxTAx− Tr(A)

}
.

Then X is strictly feasible for (P).
Next we show that the optimum value of (P) is nonnegative. For this, con-

sider a feasible solution X0 of (P) and consider the set

K = {X ∈ Sn�0 : 〈A,X〉 = 〈A,X0〉, 〈B,X〉 = 〈B,X0〉}.

As K 6= ∅, applying Corollary 6.1.4, there is a matrix X ∈ K with rank 1.
Say X = xxT. Then, xTAx = 〈A,X0〉 ≥ 0 which, by assumption (i), implies
xTBx ≥ 0, and thus 〈B,X0〉 = xTBx ≥ 0.

As (P) is bounded and strictly feasible, applying the strong duality theorem,
we deduce that there is no duality gap and that the dual problem has an optimal
solution (y, z) with y, z ≥ 0. Therefore, B − zA = (B − zA− yI) + yI � 0, thus
showing (ii).

This extends to non-homogeneous quadratic polynomials (Exercise 6.5):

Theorem 6.2.12. (The non-homogeneous S-lemma)
Let f(x) = xTAx + 2aTx + α and g(x) = xTBx + 2bTx + β be two quadratic
polynomials where A,B ∈ Sn, a, b ∈ Rn and α, β ∈ R. Assume that f(x) > 0 for
some x ∈ Rn. The following assertions are equivalent.

(i) {x ∈ Rn : f(x) ≥ 0} ⊆ {x ∈ Rn : g(x) ≥ 0}.

(ii) There exists a scalar λ ≥ 0 such that
(
β bT

b B

)
− λ

(
α aT

a A

)
� 0.

(iii) There exist a nonnegative scalar λ and a polynomial h(x) which is a sum of
squares of polynomials such that g = λf + h.

6.3 Notes and further reading

Part of the material in this chapter can be found in the book of Barvinok [1].
In particular, the refined bound (from Section 6.1.5) on the rank of extreme
points of a spectrahedron is due to Barvinok. Details about the geometry of the
elliptope can be found in [3].

The structure of the d-realizable graphs has been studied by Belk and Con-
nelly [2]. It turns out that the class of d-realizable graphs is closed under taking
minors, and it can be characterized by finitely many forbidden minors. For d ≤ 3

130



the forbidden minors are known: A graph G is 1-realizable if and only if it is a
forest (no K3-minor), G is 2-realizable if and only if it has no K4-minor, and G
is 3-realizable if and only if it does not contain K5 and K2,2,2 as a minor. (You
will show some partial results in Exercise 10.1.) Saxe [5] has shown that testing
whether a weighted graph is d-realizable is NP -hard for any fixed d.

The S-lemma dates back to work of Jakubovich in the 1970s in control the-
ory. There is a rich history and many links to classical results about quadratic
systems of (in)equations (including the results of Dines and Brinkman presented
here), this is nicely exposed in the survey of Polik and Terlaky [4].

6.4 Exercises

6.1 A graph G is said to be d-realizable if, for any edge weights w, (G,w) is
d-realizable whenever it is realizable. For instance, the complete graph
Kn is (n− 1)-realizable, but not (n− 2)-realizable (Example 6.2.3).

(a) Given two graphs G1 = (V1, E1) and G2 = (V2, E2) such that V1∩V2 is
a clique in G1 and G2, their clique sum is the graph G = (V1∪V2, E1∪E2).

Show that if G1 is d1-realizable and G2 is d2-realizable, then G is d-
realizable where d = max{d1, d2}.
(b) Given a graph G = (V,E) and an edge e ∈ E, G\e = (V,E \ {e})
denotes the graph obtained by deleting the edge e in G.

Show that if G is d-realizable, then G\e is d-realizable.

(c) Given a graph G = (V,E) and an edge e = {i1, i2} ∈ E, G/e denotes
the graph obtained by contracting the edge e in G, which means: Identify
the two nodes i1 and i2, i.e., replace them by a new node, called i0, and
replace any edge {i1, j} ∈ E by {i0, j} and any edge {i2, j} ∈ E by {i0, j}.
Show that if G is d-realizable, then G/e is d-realizable.

(d) Show that the circuit Cn is 2-realizable, but not 1-realizable.

(e) Show that G is 1-realizable if and only if G is a forest (i.e., a disjoint
union of trees).

(f) Show that K2,2,2 is 4-realizable.

NB: A minor of G is a graph that can be obtained from G by deleting and
contracting edges and by deleting nodes. So the above shows that if G is
d-realizable then any minor of G is d-realizable.

Belk and Connelly [2] show that K2,2,2 is not 3-realizable, and that a
graph G is 3-realizable if and only if G has no K5 and K2,2,2 minor. (The
‘if part’ requires quite some work.)

6.2 Let A,B,C ∈ Sn and let

Q = {q(x) = (xTAx, xTBx, xTCx) : x ∈ Rn} ⊆ R3
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denote the image of Rn under the quadratic map q. Assume that n ≥ 3
and that there exist α, β, γ ∈ R such that αA+ βB + γC � 0.

Show that the set Q is convex.

Hint: Use Proposition 6.1.7.

6.3 (a) Consider the two cut matrices J (the all-ones matrix) and X = xxT

where x ∈ {±1}n, distinct from the all-ones vector. Show that the segment
F = [J,X] is a face of the elliptope En.

(b) Consider the matrix

A =


1 0 0 1/

√
2 1/

√
2

0 1 0 1/
√

2 0

0 0 1 0 1/
√

2

1/
√

2 1/
√

2 0 1 1/2

1/
√

2 0 1/
√

2 1/2 1

 ∈ E5.

What is the dimension of the face FE5(A)? What are its extreme points?

6.4 Let p be polynomial in two variables and with (even) degree d. Show that
if p can be written as a sum of squares, then it can be written as a sum of
at most d+ 1 squares.

NB: For d = 4, Hilbert has shown that p can be written as sum of at most
three squares but this is a difficult result.

6.5 Show the result of Theorem 6.2.12.
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CHAPTER 7

SUMS OF SQUARES OF
POLYNOMIALS

In this chapter we return to sums of squares of polynomials, which we had al-
ready briefly introduced in Chapter 2. We address the following basic question:
Given a subset K ⊆ Rn defined by finitely many polynomial inequalities, how
can one certify that a polynomial p is nonnegative on K? This question is moti-
vated by its relevance to the problem of minimizing p over K, to which we will
return in the next two chapters. We collect a number of results from real al-
gebraic geometry which give certificates for nonnegative (positive) polynomials
on K in terms of sums of squares. We give a full proof for the representation re-
sult of Putinar, which we will use later for designing a hierarchy of semidefinite
relaxations for polynomial optimization problems.

In this and the next two chapters we use the following notation. R[x1, . . . , xn]
(or simply R[x]) denotes the ring of polynomials in n variables. A polyno-
mial p ∈ R[x] can be written as p =

∑
α pαx

α, where pα ∈ R and xα stands
for the monomial xα1

1 · · ·xαnn . The sum is finite and the maximum value of
|α| =

∑n
i=1 αi for which pα 6= 0 is the degree of p. For an integer d, Nnd denotes

the set of sequences α ∈ Nn with |α| ≤ d, thus the exponents of the monomials
of degree at most d. Moreover, R[x]d denotes the vector space of all polyno-
mials of degree at most d, its dimension is s(n, d) = |Nnd | =

(
n+d
d

)
and the set

{xα : α ∈ Nn, |α| ≤ d} of monomials of degree at most d is its canonical base.

7.1 Sums of squares of polynomials

A polynomial p is said to be a sum of squares, abbreviated as p is sos, if p can be
written as a sum of squares of polynomials. Σ denotes the set of all polynomials
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that are sos. A fundamental property, already proved in Section 2.7, is that sums
of squares of polynomials can be recognized using semidefinite programming.

Lemma 7.1.1. Let p ∈ R[x]2d. Then p is sos if and only if the following semidefi-
nite program in the matrix variable Q ∈ Ss(n,d) is feasible:

Q � 0,
∑

β,γ∈Nn
d

β+γ=α

Qβ,γ = pα ∀α ∈ Nn2d. (7.1)

7.1.1 Polynomial optimization

Why do we care about sums of squares?
Sums of squares are useful because they constitute a sufficient condition for

nonnegative polynomials.

Example 7.1.2. Consider the polynomial:

fn(x) = xn1 + · · ·+ xnn − nx1 · · ·xn.

One can show that fn is a sum of squares for any even n, which permits to derive
the arithmetic-geometric mean inequality:

n
√
x1 · · ·xn ≤

x1 + · · ·+ xn
n

(7.2)

for x1, · · · , xn ≥ 0 and any n ≥ 1. (You will show this in Exercise 13.1).

As one can recognize sums of squares using semidefinite programming, sums
of squares can be used to design tractable bounds for hard optimization prob-
lems of the form: Compute the infimum pmin of a polynomial p over a subset
K ∈ Rn defined by polynomial inequalities:

K = {x ∈ Rn : g1(x) ≥ 0, · · · , gm(x) ≥ 0},

where g1, · · · , gm ∈ R[x]. Such optimization problem, where the objective and
the constraints are polynomial functions, is called a polynomial optimization
problem.

Define the set of nonnegative polynomials on K:

P(K) = {f ∈ R[x] : f(x) ≥ 0 ∀x ∈ K}. (7.3)

Clearly,

pmin = inf
x∈K

p(x) = sup{λ : p− λ ∈ P(K)}. (7.4)

Computing pmin is hard in general.
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Example 7.1.3. Given integers a1, · · · , an ∈ N, consider the polynomial

p(x) =

(
n∑
i=1

aixi

)2

+

n∑
i=1

(x2i − 1)2.

Then the infimum of p over Rn is equal to 0 if and only if the sequence a1, · · · , an
can be partitioned. So if one could compute the infimum over Rn of a quartic
polynomial then one could solve the NP -complete partition problem.

As another example, the stability number α(G) of a graph G = (V,E) can be
computed using any of the following two programs:

α(G) = max

{∑
i∈V

xi : xi + xj ≤ 1 ∀{i, j} ∈ E, x2i − xi = 0 ∀i ∈ V

}
, (7.5)

1

α(G)
= min

{
xT(AG + I)x :

∑
i∈V

xi = 1, x ≥ 0

}
, (7.6)

where AG is the adjacency matrix of G. The formulation (7.6) is due to Motzkin.
This shows that polynomial optimization captures NP -hard problems, as soon as
the objective or the constraints are quadratic polynomials.

A natural idea is to replace the hard positivity condition: p ∈ P(K) by the
easier sos type condition: p ∈ Σ + g1Σ + · · · + gmΣ. This leads to defining the
following parameter:

psos = sup{λ : p− λ ∈ Σ + g1Σ + · · ·+ gmΣ}. (7.7)

As a direct application of Lemma 7.1.1, one can compute psos using semidefinite
programming. For instance, when K = Rn,

psos = p0 + sup

−Q00 : Q � 0, pα =
∑

β,γ∈Nn
d

β+γ=α

Qβ,γ , ∀α ∈ Nn2d \ {0}

 . (7.8)

Clearly the inequality holds:
psos ≤ pmin. (7.9)

In general the inequality is strict. However, when the set K is compact and
satisfies an additional condition, equality holds. This follows from Putinar’s
theorem (Theorem 7.2.9), which claims that any polynomial positive on K be-
longs to Σ + g1Σ + · · · + gmΣ. We will return to the polynomial optimization
problem (8.1) and its sos relaxation (7.7) in the next chapters. In the remain-
ing of this chapter we investigate sums of squares representations for positive
polynomials and we will prove Putinar’s theorem.
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7.1.2 Hilbert’s theorem

Hilbert has classified in 1888 the pairs (n, d) for which every nonnegative poly-
nomial of degree d in n variables is a sum of squares of polynomials:

Theorem 7.1.4. Every nonnegative n-variate polynomial of even degree d is a sum
of squares if and only if n = 1, or d = 2, or (n, d) = (2, 4).

We saw earlier that nonnegative univariate polynomials are sos, the case
d = 2 boils down to the fact that positive semidefinite matrices have a Cholesky
factorization, but the last exceptional case (n, d) = (2, 4) is difficult. For every
pair (n, d) 6= (2, 4) with n ≥ 2 and even d ≥ 4, there is an n-variate polynomial
of degree d which is nonnegative over Rn but not sos. It is not difficult to see
that it suffices to give such a polynomial for the two pairs (n, d) = (2, 6), (3, 4).
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Figure 7.1: The Motzkin polynomial

Example 7.1.5. Hilbert’s proof for the ‘only if ’ part of Theorem 7.1.4 was not
constructive, the first concrete example of a nonnegative polynomial that is not sos
is the following polynomial, for the case (n, d) = (2, 6):

p(x, y) = x2y2(x2 + y2 − 3) + 1,

constructed by Motzkin in 1967.
To see that p is nonnegative on R2, one can use the arithmetic-geometric mean

inequality: a+b+c
3 ≥ 3

√
abc, applied to a = x4y2, b = x2y4 and c = 1.
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To show that p is not sos, use brute force. Say p =
∑
l s

2
l for some polynomials

sl of degree at most 3. As the coefficient of x6 in p is 0, we see that the coefficient
of x3 in each sl is 0; analogously, the coefficient of y3 in sl is 0. Then, as the
coefficients of x4 and y4 in p are 0, we get that the coefficients of x2 and y2 in sl
are 0. After that, as the coefficients of x2 and y2 in p are 0, we can conclude that
the coefficients of x and y in sl are 0. Finally, say sl = alxy

2 + blx
2y + clxy + dl.

Then the coefficient of x2y2 in p is equal to −3 =
∑
l c

2
l , yielding a contradiction.

In fact, the same argument shows that p − λ is not sos for any scalar λ ∈ R.
Therefore, for the infimum of the Motzkin polynomial p over R2, the sos bound psos

carries no information: psos = −∞, while pmin = 0 is attained at (±1,±1).
For the case (n, d) = (3, 4), the Choi-Lam polynomial:

q(x, y, z) = 1 + x2y2 + y2z2 + x2z2 − 4xyz

is nonnegative (directly, using the arithmetic-geometric mean inequality) but not
sos (direct inspection).

7.1.3 Are sums of squares a rare event?

A natural question is whether sums of squares abound or not within the cone of
of nonnegative polynomials. It turns out hat the answer depends, whether we
fix or let grow the number of variables and the degree.

On the one hand, if we fix the number of variables and allow the degree
to grow, then every nonnegative polynomial p can be approximated by sums of
squares obtained by adding a small high degree perturbation to p.

Theorem 7.1.6. If p ≥ 0 on [−1, 1]n, then the following holds:

∀ε > 0 ∃k ∈ N p+ ε

(
1 +

n∑
i=1

x2ki

)
∈ Σ.

On the other hand, if we fix the degree and let the number of variables
grow, then there are significantly more nonnegative polynomials than sums of
squares: There exist universal constants c, C > 0 such that

c · n(d−1)/2 ≤

(
vol(P̂n,2d)
vol(Σ̂n,2d)

)1/D

≤ C · n(d−1)/2. (7.10)

Here P̂n,2d is the set of nonnegative homogeneous polynomials of degree 2d
in n variables intersected with the hyperplane H = {p :

∫
Sn−1 p(x)µ(dx) =

1}. Analogously, Σ̂n,2d is the set of homogeneous polynomials of degree 2d in
n variables that are sums of squares, intersected by the same hyperplane H.
Finally, D =

(
n+2d−1

2d

)
− 1 is the dimension of the ambient space.
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7.1.4 Artin’s theorem

Hilbert asked in 1900 the following question, known as Hilbert’s 17th problem:
Is it true that every nonnegative polynomial on Rn is a sum of squares of rational
functions? Artin answered this question in the affirmative in 1927:

Theorem 7.1.7. (Artin’s theorem) A polynomial p is nonnegative on Rn if and

only if p =
∑m
j=1

(
pj
qj

)2
for some pj , qj ∈ R[x].

This was a major breakthrough, which started the field of real algebraic
geometry.

7.2 Positivstellensätze

We now turn to the study of nonnegative polynomials p on a basic closed semi-
algebraic set K, i.e., a set K of the form

K = {x ∈ Rn : g1(x) ≥ 0, · · · , gm(x) ≥ 0}, (7.11)

where g1, · · · , gm ∈ R[x]. Set g0 = 1. When the polynomials p, gj are linear,
Farkas’ lemma implies:

p ≥ 0 on K ⇐⇒ p =

m∑
j=0

λjgj for some scalars λj ≥ 0. (7.12)

We will show the following result, due to Putinar: Assume that K is compact
and satisfies the additional condition (7.17) below. Then

p > 0 on K =⇒ p =

m∑
j=0

sjgj for some polynomials sj ∈ Σ. (7.13)

Of course, the following implication holds trivially:

p =

m∑
j=0

sjgj for some polynomials sj ∈ Σ =⇒ p ≥ 0 on K.

However, this is not an equivalence, one needs a stronger assumption: strict
positivity of p over K. Note the analogy between (7.12) and (7.13): While the
variables in (7.12) are nonnegative scalars λi, the variables in (7.13) are sos
polynomials si. A result of the form (7.13) is usually called a Positivstellensatz.
This has historical reasons, the name originates from the analogy to the classical
Nullstellensatz of Hilbert for the existence of complex roots:

Theorem 7.2.1. (Hilbert’s Nullstellensatz) Given g1, · · · , gm ∈ R[x], define the
complex variety, consisting of their common complex roots:

VC(g1, · · · , gm) = {x ∈ Cn : g1(x) = 0, · · · , gm(x) = 0}.
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For a polynomial p ∈ R[x],

p = 0 on VC(g1, · · · , gm)⇐⇒ pk =

m∑
j=1

ujgj for some uj ∈ R[x], k ∈ N.

In particular, VC(g1, · · · , gm) = ∅ ⇐⇒ 1 =
∑m
j=1 ujgj for some uj ∈ R[x].

Checking a Nullstellensatz certificate: whether there exist polynomials uj
satisfying p =

∑
j ujhj , amounts to solving a linear program (after fixing a

bound d on the degrees of the unknown uj ’s). On the other hand, checking a
certificate of the form: p =

∑
j sjgj where the sj ’s are sos, amounts to solving

a semidefinite program (again, after fixing some bound d on the degrees of the
unknown sj ’s). In a nutshell, semidefinite programming is the key ingredient to
deal with real elements while linear programming permits to deal with complex
elements. We will return to this in the last chapter.

7.2.1 The univariate case

We consider here nonnegative univariate polynomials over a closed interval
K ⊆ R, thus of the form K = [0,∞) or K = [−1, 1] (up to scaling). Then
a full characterization is known, moreover with explicit degree bounds.

Theorem 7.2.2. (Pólya-Szegö) Let p be a univariate polynomial of degree d.
Then, p ≥ 0 on [0,∞) if and only if p = s0 + s1x for some s0, s1 ∈ Σ with
deg(s0) ≤ d and deg(s1) ≤ d− 1.

Theorem 7.2.3. (Fekete, Markov-Lukácz) Let p be a univariate polynomial of
degree d. Assume that p ≥ 0 on [−1, 1].

(i) p = s0 + s1(1− x2), where s0, s1 ∈ Σ, deg(s0) ≤ d+ 1 and deg(s1) ≤ d− 1.

(ii) For d odd, p = s1(1+x)+s2(1−x) where s1, s2 ∈ Σ, deg(s1),deg(s2) ≤ d− 1.

Note the two different representations in (i), (ii), depending on the choice
of the polynomials describing the set K = [−1, 1].

7.2.2 Krivine’s Positivstellensatz

Here we state the Positivstellensatz of Krivine (1964), which characterizes non-
negative polynomials on an arbitrary basic closed semi-algebraic set K (with no
compactness assumption). Let K be as in (7.11). Set g = (g1, · · · , gm) and, for
a set of indices J ⊆ {1, · · · ,m}, set gJ =

∏
j∈J gj . The set

T(g) =

 ∑
J⊆[m]

sJgJ : sJ ∈ Σ

 (7.14)

is called the preordering generated by g = (g1, · · · , gm). It consists of all
weighted sums of the products gJ , weighted by sums of squares. Clearly, any
polynomial in T(g) is nonnegative on K: T(g) ⊆ P(K).
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Example 7.2.4. Let K = {x ∈ R : g = (1− x2)3 ≥ 0} and p = 1− x2. Then, p is
nonnegative on K, but p 6∈ T(g) (check it). But, note that pg = p4 (compare with
item (ii) in the next theorem).

Theorem 7.2.5. (Krivine’s Positivstellensatz) Let K be as in (7.11) and let
p ∈ R[x]. The following holds.

(i) p > 0 on K ⇐⇒ pf = 1 + h for some f, h ∈ T(g).

(ii) p ≥ 0 on K ⇐⇒ pf = p2k + h for some f, h ∈ T(g) and k ∈ N.

(iii) p = 0 on K ⇐⇒ −p2k ∈ T(g) for some k ∈ N.

(iv) K = ∅ ⇐⇒ −1 ∈ T(g).

In (i)-(iv) above, there is one trivial implication. For example, it is clear that
−1 ∈ T(g) implies K = ∅. And in (i)-(iii), the existence of a sos identity for p
of the prescribed form implies the desired property for p.

Choosing K = Rn (g = 1), we have T(g) = Σ and thus (ii) implies Artin’s
theorem. Moreover, one can derive the following result, which characterizes the
polynomials that vanish on the set of common real roots of a set of polynomials.

Theorem 7.2.6. (The Real Nullstellensatz) Given g1, · · · , gm ∈ R[x], define the
real variety, consisting of their common real roots:

VR(g1, · · · , gm) = {x ∈ Rn : g1(x) = 0, · · · , gm(x) = 0}. (7.15)

For a polynomial p ∈ R[x],

p = 0 on VR(g1, · · · , gm)⇐⇒ p2k+s =

m∑
j=1

ujgj for some s ∈ Σ, uj ∈ R[x], k ∈ N.

In particular,

VR(g1, · · · , gm) = ∅ ⇐⇒ −1 = s+

m∑
j=1

ujgj for some s ∈ Σ, uj ∈ R[x].

The above result does not help us yet to tackle the polynomial optimization
problem (8.1): Indeed, using (i), we can reformulate psos as

psos = sup
λ∈R,f,g∈R[x]

{λ : (p− λ)f = 1 + g, f, g ∈ T(g)}.

However, this does not lead to a semidefinite program, because of the quadratic
term λf where both λ and f are unknown. Of course, one could fix λ and
solve the corresponding semidefinite program, and iterate using binary search
on λ. However, there is an elegant, more efficient remedy: Using the refined
representation results of Schmüdgen and Putinar in the next sections one can
set up a simpler semidefinite program permmitting to search over the variable
λ.
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7.2.3 Schmüdgen’s Positivstellensatz

When K is compact, Schmüdgen [7] proved the following simpler representa-
tion result for positive polynomials on K.

Theorem 7.2.7. (Schmüdgen’s Positivstellensatz) AssumeK is compact. Then,

p(x) > 0 ∀x ∈ K =⇒ p ∈ T(g).

A drawback of a representation
∑
J sJgJ in the preordering T(g) is that it

involves 2m sos polynomials sJ , thus exponential in the numberm of constraints
defining K. Next we see how to get a representation of the form

∑
j sjgj , thus

involving only a linear number of terms.

7.2.4 Putinar’s Positivstellensatz

Under an additional (mild) assumption on the polynomials defining the set K,
Putinar [5] showed the analogue of Schmüdgen’s theorem, where the preorder-
ing T(g) is replaced by the following quadratic module:

M(g) =


m∑
j=0

sjgj : sj ∈ Σ

 . (7.16)

First we describe this additional assumption. For this consider the following
conditions on the polynomials gj defining K:

∃h ∈M(g) {x ∈ Rn : h(x) ≥ 0} is compact, (7.17)

∃N ∈ N N −
n∑
i=1

x2i ∈M(g), (7.18)

∀f ∈ R[x] ∃N ∈ N N ± f ∈M(g). (7.19)

Proposition 7.2.8. The conditions (7.17), (7.18) and (7.19) are all equivalent.
If any of them holds, the quadratic module M(g) is said to be Archimedean.

Proof. The implications (7.19) =⇒ (7.18) =⇒ (7.17) are clear. Assume (7.17)
holds and let f ∈ R[x]. As the set K0 = {x : h(x) ≥ 0} is compact, there exists
N ∈ N such that −N < f(x) < N over K0. Hence, N ± f is positive on K.
Applying Theorem 7.2.7, we deduce that N ± f ∈ T(h) ⊆M(g).

Clearly, (7.17) implies that K is compact. On the other hand, if K is com-
pact, then it is contained in some ball {x ∈ Rn : gm+1 = R2 −

∑n
i=1 x

2
i ≥ 0}.

Hence, if we know the radius R of a ball containing K, then it suffices to add
the (redundant) ball constraint gm+1(x) ≥ 0 to the description of K so that the
quadratic module M(g′) is now Archimedean, where g′ = (g, gm+1).
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Theorem 7.2.9. (Putinar’s Positivstellensatz) Assume that the qudratic module
M(g) is Archimedean (i.e., the gj ’s satisfy any of the equivalent conditions (7.17)-
(7.19)). Then,

p(x) > 0 ∀x ∈ K =⇒ p ∈M(g).

Example 7.2.10. Consider the simplex K = {x ∈ Rn : x ≥ 0,
∑n
i=1 xi ≤ 1} and

the corresponding quadratic module M = M(x1, · · · , xn, 1 −
∑n
i=1 xi). Then M

is Archimedean. To see it note that the polynomial n −
∑
i x

2
i ∈ M . This follows

from the following identities:

• 1− xi = (1−
∑
j xj) +

∑
j 6=i xj ∈M.

• 1− x2i =
(1+xi)(1−x2

i )
2 +

(1+xi)(1−x2
i )

2 = (1+xi)
2

2 (1− xi) + (1−xi)2
2 (1 + xi) ∈M .

• n−
∑
i x

2
i =

∑
i(1− x2i ) ∈M .

Example 7.2.11. Consider the cube K = [01]n = {x ∈ Rn : 0 ≤ xi ≤ 1 ∀i ∈ [n]}
and the corresponding quadratic module M = M(x1, 1 − x1, · · · , xn, 1 − xn).
Then M is Archimedean. Indeed, as in the previous example, 1−x2i ∈M and thus
n−

∑
i x

2
i ∈M .

7.2.5 Proof of Putinar’s Positivstellensatz

In this section we give a full proof for Theorem 7.2.9. The proof is elementary,
combining some (sometimes ingenious) algebraic manipulations. We start with
defining the notions of ideal and quadratic module in the ring R[x].

Definition 7.2.12. A set I ⊆ R[x] is an ideal if I is closed under addition and
multiplication by R[x]: I + I ⊆ I and R[x] · I ⊆ I.

Definition 7.2.13. A subset M ⊆ R[x] is a quadratic module if 1 ∈M and M is
closed under addition and multiplication by squares: M+M ⊆M and Σ·M ⊆M .
M is said to be proper if M 6= R[x] or, equivalently, if −1 6∈M .

Example 7.2.14. Given polynomials g1, · · · , gm,

(g1, · · · , gm) =


m∑
j=1

ujgj : uj ∈ R[x]


is an ideal (the ideal generated by the gj ’s) and the set M(g) from (7.16) is a
quadratic module (the quadratic module generated by the gj ’s).

We start with some technical lemmas.

Lemma 7.2.15. If M ⊆ R[x] is a quadratic module, then I = M ∩ (−M) is an
ideal.

Proof. This follows from the fact that, for any f ∈ R[x] and g ∈ I, we have:

fg =
(
f+1
2

)2
g +

(
f−1
2

)2
(−g) ∈ I.
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Lemma 7.2.16. Let M ⊆ R[x] be a maximal proper quadratic module. Then,
M ∪ (−M) = R[x].

Proof. Assume f 6∈M∪(−M). Each of the setsM ′ = M+fΣ andM ′′ = M−fΣ
is a quadratic module, strictly containing M . By the maximality assumption on
M , M ′ and M ′′ are not proper: M ′ = M ′′ = R[x]. Hence:

−1 = g1 + s1f, −1 = g2 − s2f for some g1, g2 ∈M, s1, s2 ∈ Σ.

This implies: −s2 − s1 = s2(g1 + s1f) + s1(g2 − s2f) = s2g1 + s1g2 and thus
s1, s2 ∈ −M . On the other hand, s1, s2 ∈ Σ ⊆ M . Therefore, s1, s2 ∈ I =
M ∩ (−M). As I is an ideal (by Lemma 7.2.15), we get s1f ∈ I ⊆ M and
therefore −1 = g1 + s1f ∈M , contradicting M proper.

Lemma 7.2.17. Let M be a maximal proper quadratic module in R[x] and I =
M ∩ (−M). Assume that M is Archimedean, i.e., satisfies:

∀f ∈ R[x] ∃N ∈ N N ± f ∈M.

Then, for any f ∈ R[x], there exists a (unique) scalar a ∈ R such that f − a ∈ I.

Proof. Define the sets

A = {a ∈ R : f − a ∈M}, B = {b ∈ R : b− f ∈M}.

As M is Archimedean, A,B are both non-empty. We show that |A ∩ B| = 1.
First observe that a ≤ b for any a ∈ A and b ∈ B. For, if one would have
a > b, then b− a = (f − a) + (b− f) is a negative scalar in M , contradicting M
proper. Let a0 be the supremum of A and b0 the infimum of B. Thus a0 ≤ b0.
Moreover, a0 = b0. For, if not, there is a scalar c such that a0 < c < b0. Then,
f − c 6∈M ∪ (−M), which contradicts Lemma 7.2.16.

We now show that a0 = b0 belongs to A∩B, which implies that A∩B = {a0}
and thus concludes the proof. Suppose for a contradiction that a0 6∈ A, i.e.,
f − a0 6∈ M . Then the quadratic module M ′ = M + (f − a0)Σ is not proper:
M ′ = R[x]. Hence,

−1 = g + (f − a0)s for some g ∈M, s ∈ Σ.

As M is Archimedean, there exists N ∈ N such that N − s ∈M . As a0 = supA,
there exists ε such that 0 < ε < 1/N and a0 − ε ∈ A. Then, f − (a0 − ε) =
(f − a0) + ε ∈M and thus

−1 + εs = g + (f − a0 + ε)s ∈M.

Adding with ε(N − s) ∈M , we obtain:

−1 + εN = (−1 + εs) + ε(N − s) ∈M.

We reach a contradiction since −1 + εN < 0.
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Lemma 7.2.18. Assume p > 0 on K. Then there exists s ∈ Σ such that sp− 1 ∈
M(g).

Proof. We need to show that the quadratic module M0 = M(g) − pΣ is not
proper. Assume for a contradiction that M0 is proper. We are going to construct
a ∈ K for which p(a) ≤ 0, contradicting the assumption that p is positive on K.
By Zorn’s lemma1 let M be a maximal proper quadratic module containing M0.
As M ⊇ M(g), M too is Archimedean. Applying Lemma 7.2.17 to M , we find
some scalar ai ∈ R for which

xi − ai ∈ I = M ∩ (−M) ∀i ∈ [n].

The ai’s constitute a vector a ∈ Rn. As I is an ideal, this implies that

f − f(a) ∈ I ∀f ∈ R[x]. (7.20)

Indeed, say f =
∑
α fαx

α, then f − f(a) =
∑
α fα(xα − aα). It suffices now to

show that each xα − aα belongs to I. We do this using induction on |α| ≥ 0. If
α = 0 there is nothing to prove. Otherwise, say α1 ≥ 1 and write β = α− e1 so
that xα = x1x

β and aα = a1a
β . Then we have

xα − aα = x1(xβ − aβ) + aβ(x1 − a1) ∈ I

since xβ − aβ ∈ I (using induction) and x1 − a1 ∈ I.
Now we apply (7.20) to each of the polynomials f = gj defining K and we

obtain that
gj(a) = gj − (gj − gj(a)) ∈M

since gj ∈M(g) ⊆M and gj − gj(a) ∈ −M . As M is proper, we must have that
gj(a) ≥ 0 for each j. This shows that a ∈ K. Finally,

−p(a) = (p− p(a))− p ∈M,

since p− p(a) ∈ I ⊆ M and −p ∈ M0 ⊆ M . Again, as M is proper, this implies
that −p(a) ≥ 0, yielding a contradiction because p > 0 on K.

Lemma 7.2.19. Assume p > 0 on K. Then there exist N ∈ N and h ∈M(g) such
that N − h ∈ Σ and hp− 1 ∈M(g).

Proof. Choose s as in Lemma 7.2.18. Thus, s ∈ Σ and sp− 1 ∈M(g). As M(g)
is Archimedean, we can find k ∈ N such that

2k − s, 2k − s2p− 1 ∈M(g).

Set h = s(2k − s) and N = k2. Then, h ∈ M(g) and N − h = (k − s)2 ∈ Σ.
Moreover,

hp− 1 = s(2k − s)p− 1 = 2k(sp− 1) + (2k − s2p− 1) ∈M(g),

since sp− 1, 2k − s2p− 1 ∈M(g).
1Zorn’s lemma states the following: Let (P,≤) be a partially ordered set in which every chain

(totally ordered subset) has an upper bound. Then P has a maximal element.
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We can now show Theorem 7.2.9. Assume p > 0 on K. Let h and N satisfy
the conclusion of Lemma 7.2.19. We may assume that N > 0. Moreover let
k ∈ N such that k+p ∈M(g) (such k exists since M(g) is Archimedean). Then,(

k − 1

N

)
+ p =

1

N
((N − h)(k + p) + (hp− 1) + kh) ∈M(g).

So what we have just shown is that

k + p ∈M(g) =⇒ (k − 1/N) + p ∈M(g).

Iterating this (kN) times, we obtain that

p =

(
k − kN 1

N

)
+ p ∈M(g).

This concludes the proof of Theorem 7.2.9.

7.3 Notes and further reading

Hilbert obtained the first fundamental results about the links between nonnega-
tive polynomials and sums of squares. He posed in 1900 at the first International
Congress of Mathematicians in Paris the following question, known as Hilbert’s
17th problem: Is it true that every nonnegative polynomial on Rn is a sum of
squares of rational functions? The solution of Artin in 1927 to Hilbert’s 17th
problem was a major breakthrough, which started the field of real algebraic
geometry. Artin’s proof works in the setting of formal real (ordered) fields. It
combines understanding which elements are positive in any ordering of the field
and using Tarksi’s transfer principle which roughly states the following: If (F,≤)
is an ordered field extension of R which contains a solution x ∈ Fn of a system of
polynomial equations and inequalities with coefficients in R, then this system also
has a solution x′ ∈ Rn. Tarski’s transfer principle also plays a crucial role in the
proof of the Positivstellensatz of Krivine (Theorem 7.2.5). The book of Marshall
[3] contains the proofs of all the Positivstellensätze described in this chapter.

Reznick [6] gives a nice historical overview of results about positive polyno-
mials and sums of squares. The idea of using sums of squares combined with
the power of semidefinite programming in order to obtain tractable sufficient
conditions for nonnegativity of polynomials goes back to the PhD thesis of Par-
rilo [4]. He exploits this idea to attack various problems from optimization and
control theory. Lasserre and Netzer [2] showed that every nonnegative polyno-
mial can be approximated by sums of squares of increasing degrees (Theorem
7.1.6). Blekherman [1] proved the inequalities (7.10) relating the volumes of
the cones of sums of squares and of nonnegative polynomials.

146



7.4 Exercises

7.1. Let f(x1, . . . , xn) =
∑
α:|α|≤2d fαx

α be an n-variate polynomial of de-
gree 2d and let F (x1, . . . , xn, t) =

∑
α:|α|≤2d fαx

αt2d−|α| be the corre-
sponding homogeneous (n+ 1)-variate polynomial (in the n+ 1 variables
x1, . . . , xn, t).

(a) Show: f(x) ≥ 0 for all x ∈ Rn ⇐⇒ F (x, t) ≥ 0 for all (x, t) ∈ Rn+1.

(b) Show: f is a sum of squares of polynomials in R[x1, . . . , xn]⇐⇒ F is
a sum of squares of polynomials in R[x1, . . . , xn, t].

7.2. Given a ∈ Nn with |a| =
∑
i ai = 2d, define the polynomial in n variables

x = (x1, · · · , xn) and of degree 2d:

Fn,2d(a, x) =

n∑
i=1

aix
2d
i − 2d

n∏
i=1

xaii =

n∑
i=1

aix
2d
i − 2dxa.

(a) Show: For n = 2, Fn,2d(a, x) is sum of two squares of polynomials.

(b) Let a ∈ Nn with |a| = 2d. Show that a = b + c for some b, c ∈ Nn,
where |b| = |c| = d and both bi, ci > 0 for at most one index i ∈ [n].

(c) With a, b, c as in (b), show that

Fn,2d(a, x) =
1

2
(Fn,2d(2b, x) + Fn,2d(2c, x)) + d(xb − xc)2.

(d) Show that, for any a ∈ Nn with |a| = 2d, the polynomial Fn,2d(a, x)
can be written as the sum of at most 3n− 4 squares.

(e) Show the arithmetic-geometric mean inequality (7.2) for any n ∈ N.

7.3 Show Theorem 7.2.2: A univariate polynomial p of degree d is nonneg-
ative on [0,∞) if and only if p = s0 + s1x for some s0, s1 ∈ Σ with
deg(s0),deg(s1x) ≤ d.

7.4 For a univariate polynomial f of degree d define the following univariate
polynomial G(f), known as its Goursat transform:

G(f)(x) = (1 + x)df

(
1− x
1 + x

)
.

(a) Show that f ≥ 0 on [−1, 1] if and only if G(f) ≥ 0 on [0,∞).

(b) Show Theorem 7.2.3.

7.5 Show the Real Nullstellensatz (Theorem 7.2.6) (you may use Theorem
7.2.5).
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7.6 Let G = (V,E) be a graph. The goal is to show Motzkin’s formulation (7.6)
for the stability number α(G). Set

µ = min

{
xT(AG + I)x :

∑
i∈V

xi = 1, x ≥ 0

}
. (7.21)

(a) Show that µ ≤ 1/α(G).

(b) Let x be an optimal solution of the program (7.21), S = {i : xi 6= 0}
denotes its support. Show that µ ≥ 1/α(G) if S is a stable set in G.

(c) Show that the program (7.21) has an optimal solution xwhose support
is a stable set. Conclude that (7.6) holds.
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CHAPTER 8

POLYNOMIAL EQUATIONS
AND MOMENT MATRICES

Consider the polynomial optimization problem:

pmin = inf
x∈K

p(x), (8.1)

which asks for the infimum pmin of a polynomial p over a basic closed semi-
algebraic set K, of the form:

K = {x ∈ Rn : g1(x) ≥ 0, · · · , gm(x) ≥ 0} (8.2)

where g1, · · · , gm ∈ R[x]. In the preceding chapter we defined a lower bound
for pmin obtained by considering sums of squares of polynomials. Here we con-
sider another approach, which will turn out to be dual to the sums of squares
approach.

Say, p =
∑
α pαx

α, where there are only finitely many nonzero coefficients
pα and let p = (pα)α∈Nn denote the vector of coefficients of p, so pα = 0 for all
|α| > deg(p). Moreover, let [x]∞ = (xα)α∈Nn denote the vector consisting of all
monomials xα. Then, one can write:

p(x) =
∑
α

pαx
α = pT[x]∞.

We define the set C∞(K) as the convex hull of the vectors [x]∞ for x ∈ K:

C∞(K) = conv{[x]∞ : x ∈ K}. (8.3)

Let us introduce a new variable yα = xα for each monomial. Then, using
these variables y = (yα) and the set C∞(K), we can reformulate problem (8.1)
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equivalently as

pmin = inf
x∈K

p(x) = inf
x∈K

pT[x]∞ = inf
y=(yα)α∈Nn

{pTy : y ∈ C∞(K)}. (8.4)

This leads naturally to the problem of understanding which sequences y belong
to the set C∞(K). In this chapter we give a characterization for the set C∞(K),
we will use it in the next chapter as a tool for deriving global optimal solutions
to the polynomial optimization problem (8.1).

This chapter is organized as follows. We introduce some algebraic facts
about polynomial ideals I ⊆ R[x] and their associated quotient spaces R[x]/I,
which we will need for the characterization of the set C∞(K). Using these
tools we can also describe the so-called eigenvalue method for computing the
complex solutions of a system of polynomial equations. This method also gives
a useful tool to extract the global optimizers of problem (8.1). Then we give
a characterization for the sequences y belonging to the set C∞(K), in terms of
associated (moment) matrices required to be positive semidefinite.

8.1 The quotient algebra R[x]/I

8.1.1 (Real) radical ideals and the (Real) Nullstellensatz

Here, K = R or C denotes the field of real or complex numbers. A set I ⊆ K[x]
is an ideal if I + I ⊆ I and K[x] · I ⊆ I. Given polynomials h1, · · · , hm, the ideal
generated by the hj ’s is

I = (h1, · · · , hm) =


m∑
j=1

ujhj : uj ∈ K[x]

 .

A basic property of the polynomial ring K[x] is that it is Noetherian: every ideal
admits a finite set of generators. Given a subset V ⊆ C, the set

I(V ) = {f ∈ K[x] : f(x) = 0 ∀x ∈ V }

is an ideal, called the vanishing ideal of V .
The complex variety of an ideal I ⊆ K[x] is

VC(I) = {x ∈ Cn : f(x) = 0 ∀f ∈ I}

and its real variety is

VR(I) = {x ∈ Rn : f(x) = 0 ∀f ∈ I} = VC(I) ∩ Rn.

The elements x ∈ VC(I) are also called the common roots of the polynomials in
I. Clearly, if I = (h1, · · · , hm) is generated by the hj ’s, then VC(I) is the set of
common complex roots of the polynomials h1, · · · , hm and VR(I) is their set of
common real roots.
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Given an ideal I ⊆ K[x], the set
√
I = {f ∈ K[x] : fm ∈ I for some m ∈ N} (8.5)

is an ideal (Exercise 14.1), called the radical of I. Clearly we have the inclu-
sions:

I ⊆
√
I ⊆ I(VC(I)).

Consider, for instance, the ideal I = (x2) generated by the monomial x2. Then,
VC(I) = {0}. The polynomial x belongs to

√
I and to I(VC(I)), but x does not

belong to I. Hilbert’s Nullstellensatz states that both ideals
√
I and I(VC(I))

coincide:

Theorem 8.1.1. (Hilbert’s Nullstellensatz) For any ideal I ⊆ K[x], we have
equality: √

I = I(VC(I)).

That is, a polynomial f vanishes at all x ∈ VC(I) if and only if some power of f
belongs to I.

The ideal I is said to be radical if I =
√
I or, equivalently (in view of the

Nullstellensatz), I = I(VC(I)). For instance, the ideal I = (x2) is not radical.
Note that 0 is a root with double multiplicity. Roughly speaking, an ideal is
radical when all roots x ∈ VC(I) have single multiplicity, but we will not go into
details about multiplicities of roots.

Given an ideal I ⊆ R[x], the set

R
√
I = {f ∈ R[x] : f2m + s ∈ I for some m ∈ N, s ∈ Σ} (8.6)

is an ideal in R[x] (Exercise 14.1), called the real radical of I. Clearly we have
the inclusions:

I ⊆ R
√
I ⊆ I(VR(I)).

As an example, consider the ideal I = (x2+y2) ⊆ R[x, y]. Then, VR(I) = {(0, 0)}
while VC(I) = {(x,±ix) : x ∈ C}. Both polynomials x and y belong to R

√
I and

to I(VR(I)). The Real Nulstellensatz states that both ideals R
√
I and I(VR(I))

coincide.

Theorem 8.1.2. (The Real Nullstellensatz) For any ideal I ⊆ R[x],

R
√
I = I(VR(I)).

That is, a polynomial f ∈ R[x] vanishes at all common real roots of I if and only
if the sum of an even power of f and of a sum of squares belongs to I.

We will use the following characterization of (real) radical ideals (see Exer-
cise 14.2).

Lemma 8.1.3.
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(i) An ideal I ⊆ K[x] is radical (i.e.,
√
I = I) if and only if

∀f ∈ K[x] f2 ∈ I =⇒ f ∈ I.

(ii) An ideal I ⊆ R[x] is real radical (i.e., R
√
I = I) if and only if

∀f1, · · · , fm ∈ R[x] f21 + · · ·+ f2m ∈ I =⇒ f1, · · · , fm ∈ I.

It is good to realize that, if V is a complex variety, i.e., if V = VC(I) for some
ideal I, then VC(I(V )) = V . Indeed, the inclusion VC(I) ⊆ VC(I(VC(I)))) is
clear. Moreover, if v 6∈ VC(I), then there is a polynomial f ∈ I ⊆ I(VC(I)) such
that f(v) 6= 0, thus showing v 6∈ VC(I(VC(I))).

However, the inclusion V ⊆ VC(I(V )) can be strict if V is not a complex va-
riety. For example, for V = C \ {0} ⊆ C, I(V ) = {0}, since the zero polynomial
is the only polynomial vanishing at all elements of V . Hence, VC(I(V )) = C
contains strictly V .

For any ideal I, we have the inclusions:

I ⊆ I(VC(I)) ⊆ I(VR(I)),

with equality throughout if I is real radical. Yet this does not imply in general
that VC(I) = VR(I), i.e., that all roots are real. As an example illustrating
this, consider e.g. the ideal I = (x − y) ⊆ R[x, y]; then I is real radical, but
VR(I) ⊂ VC(I). However, equality holds if VR(I) is finite.

Lemma 8.1.4. If I ⊆ R[x] is a real radical ideal, with finite real variety: |VR(I)| <
∞, then VC(I) = VR(I).

Proof. By assumption, equality: I(VR(I)) = I(VC(I)) holds. Hence these two
ideals have the same complex variety: VC(I(VR(I))) = VC(I(VC(I))). This im-
plies equality VR(I) = VC(I), since VR(I) is a complex variety (as it is finite, see
Exercise 14.3) and VC(I) too is a complex variety (by definition).

8.1.2 The dimension of the quotient algebra K[x]/I

Let I be an ideal in K[x]. We define the quotient space A = K[x]/I, whose
elements are the cosets

[f ] = f + I = {f + q : q ∈ I}

for f ∈ K[x]. Then A is an algebra with addition: [f ] + [g] = [f + g], scalar
multiplication λ[f ] = [λf ], and multiplication [f ][g] = [fg], for f, g ∈ K[x] and
λ ∈ K. These operations are well defined. Indeed, if [f ] = [f ′] and [g] = [g′],
i.e., f ′, g′ are other representatives in the cosets [f ], [g], respectively, so that
f − f ′, g − g′ ∈ I, then

(f ′ + g′)− (f + g) ∈ I, λf ′ − λf ∈ I, f ′g′ − fg = (f ′ − g′)g′ + f(g′ − g) ∈ I.

As we now see, the dimension of the quotient space A is related to the cardinal-
ity of the complex variety VC(I).
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Theorem 8.1.5. Let I ⊆ K[x] be an ideal and let A = K[x]/I be the associated
quotient space.

(i) dimA <∞ if and only if |VC(I)| <∞.

(ii) Assume |VC(I) < ∞. Then |VC(I)| ≤ dimA, with equality if and only if the
ideal I is radical (i.e., I =

√
I).

Remark 8.1.6. Let I be an ideal in R[x]. Then the set

IC := I + iI = {f + ig : f, g ∈ I}

is an ideal in C[x]. Moreover, the two quotient spaces R[x]/I and C[x]/IC have the
same dimension. Indeed, if f1, . . . , fr ∈ R[x] are real polynomials whose cosets in
R[x]/I form a basis of R[x]/I, then their cosets in C[x]/IC form a basis of C[x]/IC.
Hence, in order to compute the dimension of R[x]/I, we can as well deal with the
corresponding ideal IC = I + iI in the complex polynomial ring.

For the proof of Theorem 8.1.5, it is useful to have the following construction
of interpolation polynomials.

Lemma 8.1.7. Let V ⊆ Kn be a finite set. There exist polynomials pv ∈ K[x] for
v ∈ V satisfying the following property:

pv(u) = δu,v ∀u, v ∈ V.

They are called interpolation polynomials at the points of V . Then, for any poly-
nomial f ∈ K[x],

f −
∑

v∈VC(I)

f(v)pv ∈ I(VC(I)). (8.7)

Proof. Fix v ∈ V . For any u ∈ V \ {v}, let iu be a coordinate where v and u
differ, i.e., viu 6= uiu. Then define the polynomial pv by

pv =
∏

u∈V \{v}

xiu − uiu
viu − uiu

.

Clearly, pv(v) = 1 and pv(u) = 0 if u ∈ V , u 6= v. By construction the polynomial
in (8.7) vanishes at all v ∈ VC(I) and thus belongs to I(VC(I)).

Example 8.1.8. Say, V = {(0, 0), (1, 0), (0, 2)} ⊆ R2. Then the polynomials
p(0,0) = (x1−1)(x2−2)/2, p(1,0) = x21 and p(0,2) = x2(1−x1)/2 are interpolation
polynomials at the points of V .

Lemma 8.1.9. Let I be an ideal in C[x] and A = C[x]/I. Assume VC(I) is finite,
let pv (v ∈ VC(I)) be interpolation polynomials at the points of VC(I), and let

L = {[pv] : v ∈ VC(I)}

be the corresponding set of cosets in A. Then,
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(i) L is linearly independent in A.

(ii) L generates the vector space C[x]/I(VC(I)).

(iii) If I is radical, then L is a basis of A and dimA = |VC(I)|.

Proof. (i) Assume that
∑
v∈VC(I)

λv[pv] = 0 for some scalars λv. That is, the
polynomial f =

∑
v∈VC(I)

λvpv belongs to I. By evaluating the polynomial f at
each v ∈ VC(I) and using the fact that pv(v) = 1 and pv(u) = 0 if u ∈ VC(I)\{v},
we deduce that λv = 0 for all v. This shows that L is linearly independent in A.

(ii) Relation (8.7) implies directly that L is generating in K[x]/I(VC(I)).
(iii) Assume that I is radical and thus I = I(VC(I)) (by the Nullstellensatz).

Then, L is linearly independent and generating in A and thus a basis of A.

Proof. (of Theorem 8.1.5). In view of Remark 8.1.6, we may assume K = C.
(i) Assume first that dimA = k < ∞, we show that |VC(I)| < ∞. For this,
pick a variable xi and consider the k + 1 cosets [1], [xi], · · · , [xki ]. Then they
are linearly dependent in A and thus there exist scalars λh (0 ≤ h ≤ k) (not
all zero) for which the (univariate) polynomial f =

∑k
h=0 λhx

h
i is a nonzero

polynomial belonging to I. As f is univariate, it has finitely many roots. This
implies that the i-th coordinates of the points v ∈ VC(I) take only finitely many
values. As this holds for all coordinates we deduce that VC(I) is finite.

Assume now that |VC(I)| < ∞, we show that dimA < ∞. For this, as-
sume that the i-th coordinates of the points v ∈ VC(I) take k distinct values:
a1, · · · , ak ∈ C. Then the polynomial f = (xi − a1) · · · (xi − ak) vanishes at all
v ∈ VC(I). Applying the Nullstellensatz, fm ∈ I for some integer m ∈ N. This
implies that there is a linear dependency among the cosets [1], [xi], · · · , [xmki ].
Therefore, there exists an integer ni for which [xnii ] lies in the linear span
of {[xhi ] : 0 ≤ h ≤ ni − 1}. From this one can easily derive that the set
{[xα] : 0 ≤ αi ≤ ni− 1, i ∈ [n]} generates the vector space A, thus showing that
dimA <∞.

(ii) Assume |VC(I)| < ∞. Lemma 8.1.9 (i) shows that |VC(I)| ≤ dimA.
If I is radical then the equality dimA = |VC(I)| follows from Lemma 8.1.9
(iii). Assume now that I is not radical and let f ∈

√
I \ I. If pv (v ∈ VC(I))

are interpolation polynomials at the points of VC(I), one can easily verify that
the system {[pv] : v ∈ VC(I)} ∪ {[f ]} is linearly independent in A, so that
dimA ≥ |VC(I)|+ 1.

8.1.3 The eigenvalue method for complex roots

A basic, fundamental problem in mathematics and many areas of applications
is how to solve a system of polynomial equations: h1(x) = 0, · · · , hm(x) = 0. In
other words, how to compute the complex variety of the ideal I = (h1, · · · , hm).
Here we assume that I ⊆ K[x] is an ideal which has finitely many complex roots:
|VC(I)| < ∞. We now describe a well known method for finding the elements
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of VC(I), which is based on computing the eigenvalues of a suitable linear map
on the algebra A = K[x]/I.

Namely, given an arbitrary polynomial h ∈ K[x], we consider the following
‘multiplication by h’ linear map:

mh : A → A
[f ] 7→ [fh].

(8.8)

As VC(I) is finite we known from Theorem 8.1.5 that the vector space A has
finite dimension. Say, N = dimA, then N ≥ |VC(I)|, with equality if I is radical
(by Theorem 8.1.5).

Let us choose a set of cosets B = {[b1], · · · , [bN ]} forming a basis of A and let
Mh denote the matrix of mh with respect to the base B (which not symmetric
in general). Then, for v ∈ VC(I), we define the vector [v]B = (bj(v))Nj=1 whose
entries are the evaluations at v of the polynomials in B.

Lemma 8.1.10. The vectors {[v]B : v ∈ VC(I)} are linearly independent.

Proof. Assume
∑
v∈VC(I)

λv[v]B = 0 for some scalars λv, i.e.,
∑
v∈VC(I)

λvbj(v) =

0 for all j ∈ [N ]. As B is a base of A, this implies that
∑
v∈VC(I)

λvf(v) = 0 for
any f ∈ K[x] (check it). Applying this to the polynomial f = pv, we obtain that
λv = 0 for all v ∈ VC(I).

As we now show, the matrix Mh carries out useful information about the
elements of VC(I): its eigenvalues are the evaluations h(v) of h at the points
v ∈ VC(I) and its left eigenvectors are the vectors [v]B.

Theorem 8.1.11. Let h ∈ K[x], let I ⊆ K[x] be an ideal with |VC(I)| < ∞, and
let mh be the linear map from (8.8).

(i) Let B be a base of A and let Mh be the matrix of mh in the base B. Then, for
each v ∈ VC(I), the vector [v]B is a left eigenvector of Mh with eigenvalue
h(v), i.e.,

MT
h [v]B = h(v)[v]B. (8.9)

(ii) The set {h(v) : v ∈ VC(I)} is the set of eigenvalues of mh.

(iii) Assume that I is radical and let pv (v ∈ VC(I)) be interpolation polynomials
at the points of VC(I). Then,

mh([pu]) = h(u)[pu]

for all u ∈ VC(I). Therefore, the matrix of mh in the base {[pv] : v ∈ VC(I)}
is a diagonal matrix with h(v) (v ∈ VC(I)) as diagonal entries.

Proof. (i) Say, Mh = (aij)
N
i,j=1, so that

[hbj ] =

N∑
i=1

aij [bi], i.e., hbj −
N∑
i=1

aijbi ∈ I.
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Evaluating the above polynomial at v ∈ VC(I) gives directly relation (8.9).
(ii) By (i), we already know that each scalar h(v) is an eigenvalue of MT

h

and thus of mh. We now show that the scalars h(v) (v ∈ VC(I)) are the only
eigenvalues of mh. For this, let λ 6∈ {h(v) : v ∈ VC(I)}, we show that λ is
not an eigenvalue of mh. Let J denote the ideal generated by I ∪ {h − λ}.
Then, VC(J) = ∅. Applying the Nullstellensatz, we obtain that 1 ∈ J and thus
1 − u(h − λ) ∈ I for some u ∈ K[x]. It suffices now to observe that the latter
implies that mu(mh − λid) = id, where id is the identity map from A to A. But
then mh − λid is nonsingular, which implies that λ is not an eigenvalue of mh.

(iii) Assume that I is radical and let {pv : v ∈ VC(I)} be interpolation poly-
nomials. Using relation (8.7), we obtain that mh([f ]) =

∑
v∈VC(I)

f(v)h(v)[pv]

for any polynomial f . In particular, mh([pv]) = h(v)[pv].

Here is a simple strategy on how to use the above result in order to com-
pute the points v ∈ VC(I). Assume that the ideal I is radical (this will be the
case in our application to polynomial optimization) and suppose that we have
a polynomial h for which the values h(v) (v ∈ VC(I)) are pairwise distinct (e.g.
pick a linear polynomial h with random coefficients). Suppose also that we
know a base B of A and that we know the matrix Mh of mh in this base. We
know from Theorem 8.1.11 that Mh has N = |VC(I)| distinct eigenvalues so
that each eigenspace has dimension 1. Hence, by computing the eigenvectors
of MT

h , we can recover the vectors [v]B = (bj(v))Nj=1 (up to scaling). In order to
compute the i-th coordinate vi of v, just express the coset [xi] in the base B: If
[xi] =

∑N
j=1 cij [bj ] for some scalars cij , then vi =

∑N
j=1 cijbj(v).

Example 8.1.12. Let I = (x3 − 6x2 + 11x − 6) be the ideal generated by the
polynomial x3 − 6x2 + 11x− 6 = (x− 1)(x− 2)(x− 3) (univariate case). Then,
VC(I) = {1, 2, 3} and B = {[1], [x], [x2]} is a base of A = R[x]/I. With respect to
this base B, the matrix of the multiplication operator by x is

Mx =


[x] [x2] [x3]

[1] 0 0 6
[x] 1 0 −11
[x2] 0 1 6


(built using the relation [x3] = 6[1] − 11[x] + 6[x2]). It is an easy exercise to
verify that MT

x has three eigenvectors: (1, 1, 1) with eigenvalue λ = 1, (1, 2, 4)
with eigenvalue λ = 2, and (1, 3, 9) with eigenvalue λ = 3. Thus the eigenvectors
are indeed of the form [v]B = (1, v, v2) for v ∈ {1, 2, 3}.

The polynomials p1 = (x − 2)(x − 3)/2, p2 = −(x − 1)(x − 3) and p3 =
(x − 1)(x − 2)/2 are interpolation polynomials at the roots v = 1, 2, 3. Note that
the matrix of mx with respect to the base {[p1], [p2], [p3]} is


[xp1] [xp2] [xp3]

[p1] 1 0 0
[p2] 0 2 0
[p3] 0 0 3

,
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thus indeed a diagonal matrix with the values v = 1, 2, 3 as diagonal entries.

Finally, we indicate how to compute the number of real roots using the mul-
tiplication operators. This is a classical result, going back to work of Hermite in
the univariate case. You will prove it in Exercise 14.4 for radical ideals.

Theorem 8.1.13. Let I be an ideal in R[x] with |VC(I)| <∞. Define the Hermite
quadratic form:

H : R[x]/I × R[x]/I → R
([f ], [g]) 7→ Tr(mfg),

(8.10)

where Tr(mfg) denotes the trace of the multiplication operator by fg. Let σ+(H)
(resp., σ−(H)) denote the number of positive eigenvalues (resp., negative eigenval-
ues) of H. Then, the rank of H is equal to |VC(I)| and

σ+(H)− σ−(H) = |VR(I)|.

8.2 Characterizing the set C∞(K)

Our goal in this section is to characterize the set C∞(K) from (8.3). We need
one more ingredient: moment matrices.

8.2.1 Moment matrices

Let y = (yα)α∈Nn be a sequence of real numbers indexed by Nn. It is convenient
to introduce the corresponding linear functional L on the polynomial ring:

L : R[x] → R
xα 7→ L(xα) = yα

f =
∑
α fαx

α 7→ L(f) =
∑
α fαyα.

(8.11)

Consider first the case when y = [v]∞ for some v ∈ Rn. Then, L is the
evaluation at v (denoted as Lv) since L(f) =

∑
α fαv

α = f(v) for f ∈ R[x].
Moreover, the matrix yyT has a special structure: its (α, β)-th entry is equal to
vαvβ = vα+β = yα+β , thus depending only on the sum of the indices α and β.
This observation motivates the following definition.

Definition 8.2.1. Given a sequence y = (yα)α∈Nn of real numbers, its moment
matrix is the real symmetric (infinite) matrix indexed by Nn, defined by

M(y) = (yα+β)α,β∈Nn .

Next we observe that nonnegativity of L on the cone Σ of sums of squares
can be reformulated in terms of positive semidefiniteness of the moment matrix
M(y).
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Lemma 8.2.2. Let y = (yα)α∈Nn be a sequence of real numbers and let L be the
associated linear functional from (8.11). For any polynomials f, g ∈ R[x]:

L(f2) = fTM(y)f , L(gf2) = fTM(g ∗ y)f ,

where g ∗ y ∈ RNn is the new sequence with α-th entry

(g ∗ y)α = L(gxα) =
∑
γ

gγyα+γ ∀α ∈ Nn.

Therefore, L ≥ 0 on Σ if and only if M(y) � 0, and L ≥ 0 on gΣ if and only if
M(g ∗ y) � 0.

Proof. For f =
∑
α fαx

α, g =
∑
γ gγx

γ , we have:

L(f2) = L

∑
α,β

fαfβx
α+β

 =
∑
α,β

fαfβyα+β =
∑
α,β

fαfβM(y)α,β = fTM(y)f ,

L(gf2) = L

∑
α,β,γ

fαfβgγx
α+β+γ

 =
∑
α,β

fαfβL(gxγ) = fTM(g ∗ y)f .

These two identities give directly the result of the lemma.

Next we observe that the kernel of M(y) can be seen as an ideal of R[x],
which is real radical when M(y) � 0. This observation will play a cucial role in
the characterization of the set C∞(K) in the next section.

Lemma 8.2.3. Let y = (yα)α∈Nn be a sequence of real numbers and let L be the
associated linear functional from (8.11). Set

I = {f ∈ R[x] : L(fh) = 0 ∀h ∈ R[x]}. (8.12)

(i) A polynomial f belongs to I if and only if its coefficient vector f belongs to the
kernel of M(y).

(ii) I is an ideal in R[x].

(iii) If M(y) � 0 then the ideal I is real radical.

Proof. (i), (ii): Direct verification.
(iii) Using Lemma 8.2.2 and the fact that M(y) � 0, the following holds for any
polynomial f :

L(f2) = fTM(y)f ≥ 0 and L(f2) = 0 =⇒M(y)f = 0 =⇒ f ∈ I.

We now show that I is real radical, using the characterization from Lemma
8.1.3: Assume that

∑
i f

2
i ∈ I. Then, 0 = L(

∑
i f

2
i ) =

∑
i L(f2i ) and thus

L(f2i ) = 0, which in turn implies that fi ∈ I for all i.
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8.2.2 Finite rank positive semidefinite moment matrices

We can now characterize the sequences belonging to the set C∞(K), in terms of
positivity and rank conditions on their moment matrices.

Theorem 8.2.4. Let K be the set from (9.2). Let y = (yα)α∈Nn be a sequence
of real numbers and let L be the linear functional from (8.11). The following
assertions are equivalent.

(i) y ∈ C∞(K), i.e., y =
∑r
i=1 λi[vi]∞ for some v1, . . . , vr ∈ K and for some

scalars λ1, . . . , λr > 0 with
∑r
i=1 λi = 1.

(ii) rank M(y) <∞, M(y) � 0, M(gj ∗ y) � 0 for j ∈ [m], and y0 = 1.

(iii) rank M(y) <∞, L ≥ 0 on Σ + g1Σ + · · ·+ gmΣ, and L(1) = 1.

Proof. Assume that (i) holds. Then,M(y) =
∑r
i=1 λiM([vi]∞) is positive semidef-

inite (since M([vi]∞) � 0 for each i) and M(y) has finite rank. For i ∈ [r] and
j ∈ [m], we have that gj ∗ [vi]∞ = gj(vi)[vi]∞ with gj(vi) ≥ 0. Therefore,
M(gj ∗ y) =

∑r
i=1 λigj(vi)M([vi]∞) is positive semidefinite. This shows (ii).

The equivalence of (ii) and (iii) follows directly from Lemma 8.2.2.
We now show the implication (ii) =⇒ (i), which is the core of Theorem

8.2.4. Assume that rank M(y) = r < ∞, M(y) � 0, M(gj ∗ y) � 0 for j ∈ [m];
we show (i). Let L be the linear functional from (8.11) and let I be the set from
(8.12). By Lemma 9.3.1, we know that I is a real radical ideal in R[x]. First we
claim that

dimR[x]/I = r.

This follows directly from the fact that a set of columns {C1, · · · , Cs} of M(y),
indexed (say) by {α1, · · · , αs} ⊆ Nn, is linearly independent if and only if the
corresponding cosets of monomials {[xα1 ], · · · , [xαs ]} is linearly independent in
R[x]/I.

As dimR[x]/I = r < ∞, we deduce using Lemma 8.1.9 that |VC(I)| < ∞;
moreover, |VC(I)| = dimR[x]/I = r since I is real radical (and thus radical).
Furthermore, using Lemma 8.1.4, we deduce that VR(I) = VC(I). Say,

VC(I) = {v1, · · · , vr} ⊆ Rn.

Let pv1 , · · · , pvr ∈ R[x] be interpolation polynomials at the vi’s. We next claim
that

L =

r∑
i=1

L(pvi)Lvi , i.e., y =

r∑
i=1

L(pvi)[vi]∞, (8.13)

where Lvi is the evaluation at vi. For this, set L′ =
∑r
i=1 L(pvi)Lvi ; we show

that L = L′. As both L and L′ vanish at all polynomials in I, in order to show
that L = L′, it suffices to show that L and L′ coincide at all elements of a given
base of R[x]/I. Now, by Lemma 8.1.9, we know that the set {[pv1 ], · · · , [pvr ]} is
a base of R[x]/I and it is indeed true that L′(pvi) = L(pvi) for all i. Thus (8.13)
holds.
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Next, we claim that

L(pvi) > 0 for all i ∈ [r].

Indeed, L(pvi) = L(p2vi), since pvi − p2vi ∈ I (as it vanishes at all points of VC(I)
and I is radical). Therefore, L(pvi) ≥ 0 (since M(y) � 0). Moreover, L(pvi) 6= 0
since, otherwise, the rank of M(y) would be smaller than r.

Remains to show that v1, · · · , vr belong to the set K, i.e., that gj(vi) ≥ 0
for all j ∈ [m], i ∈ [r]. For this, we use the fact that L(gjp

2
vi) ≥ 0, since

M(gj ∗ y) � 0. Indeed, using (8.13), we get:

L(gjp
2
vi) = gj(vi)L(pvi).

By assumption, L(gjp
2
vi) ≥ 0 and we just showed that L(pvi) > 0. This implies

that gj(vi) ≥ 0, as desired, and the proof is complete.

8.2.3 Moment relaxation for polynomial optimization

Let us return to the polynomial optimization problem (8.1). In Chapter 13, we
defined the lower bound psos ≤ pmin, obtained by considering sums of squares
decompositions in the quadratic module M(g) = Σ + g1Σ + · · ·+ gmΣ:

psos = sup{λ : p− λ ∈M(g) = Σ + g1Σ + · · · gmΣ}. (8.14)

Based on the discussion in the preceding section, we can also define the follow-
ing lower bound for pmin:

pmom = inf{pTy : y0 = 1, M(y) � 0, M(gj ∗ y) � 0 (j ∈ [m])} (8.15)

These two bounds are ‘dual’ to each other, since the positivity conditions in
(8.15) mean that the corresponding linear functional L is nonnegative onM(g).
We have the following inequalities:

Lemma 8.2.5. We have: psos ≤ pmom ≤ pmin.

Proof. The inequality psos ≤ pmom is ‘weak duality’: Let λ be feasible for (8.14)
and let y be feasible for (8.15) with associated linear functional L. Then, p−λ ∈
M(g), L(1) = 1 and L ≥ 0 on M(g). Therefore, L(p−λ) = L(p)−λ ≥ 0 implies
pTy = L(p) ≥ λ and thus pmom ≥ psos.

The inequality pmom ≤ pmin follows from the fact that, for each v ∈ K,
y = [v]∞ is feasible for (8.15) with value p(v).

We saw in the preceding chapter that psos = pmin = pmom if K is compact and
if moreover the quadratic module M(g) is Archimedean.

On the other hand, it follows from Theorem 8.2.4 that pmom = pmin if the
program (8.15) has an optimal solution y for which M(y) has finite rank.

In the next chapter we will consider hierarchies of semidefinite program-
ming relaxations for problem (8.1) obtained by adding degree constraints to
the programs (8.14) and (8.15), and we will use the results of Theorems 8.1.11
and 8.2.4 for giving a procedure to find global optimizers of problem (8.1).
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8.3 Notes and further reading

The terminology of ‘moment matrix’ which we have used for the matrix M(y) is
motivated by the relevance of these matrices to the classical moment problem.
Recall that, given a (positive Borel) measure µ on a subset K ⊆ Rn, the quantity
yα =

∫
K
xαdµ(x) is called its moment of order α. The K-moment problem asks

to characterize the sequences y ∈ RNn which are the sequence of moments of
some measure µ supported by K.

In the special case when µ is a finite atomic measure, i.e., when µ is sup-
ported by finitely many points of K, then its sequence of moments is of the form
y =

∑r
i=1 λi[vi]∞ for some positive scalars λi and some vi ∈ K. In other words,

the set C∞(K) corresponds to the set of sequences of moments of finite atomic
measures on K. Moreover, the closure of the set C∞(K) is the set of sequences
of moments of an arbitrary measure on K. Hence, Theorem 8.2.4 character-
izes which sequences admit a finite atomic measure on K, when K is a basic
closed semi-algebraic set, in terms of positivity and finite rank conditions on the
sequence y. This result is due to Curto and Fialkow [1]. (When the condition
rank M(y) < ∞ holds, Curto and Fialkow speak of flat data). The proof of
[1] uses tools from functional analysis, the simpler algebraic proof given here is
based on [4] (see also [5]).

We refer to the books of Cox, Little and O’Shea [1, 2] for further reading
about ideals and varieties (and, in particular, about multiplication operators in
the quotient space R[x]/I).

8.4 Exercises

8.1 Recall the definitions (8.5) and (8.6) for
√
I and R

√
I.

(a) Show that the radical
√
I of an ideal I ⊆ C[x] is an ideal.

(b) Show that the real radical R
√
I of an ideal I ⊆ R[x] is an ideal.

8.2 Show Lemma 8.1.3.

8.3 (a) Let I and J be two ideals in C[x]. Show that I ∩ J is an ideal and that
VC(I ∩ J) = VC(I) ∪ VC(J).

(b) Given v ∈ Cn, show that the set {v} is a complex variety.

(c) Show that any finite set V ⊆ Cn is a complex variety.

8.4 The goal is to show Theorem 8.1.13 in the radical case.

Let I be a radical ideal in R[x] with N = |VC(I)| = dimR[x]/I < ∞.
Let B = {[b1], · · · , [bN ]} be a base of A = R[x]/I and, for any h ∈ R[x],
let Mh denote the matrix of the multiplication by h in the base B. Then,
the matrix of the Hermite quadratic form (8.10) in the base B is the real
symmetric matrix H = (Hij)

N
i,=1 with entries Hij = Tr(Mbibj ). Finally,
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σ+(H), σ−(H) denote, respectively, the numbers of positive and negative
eigenvalues of H.

(a) Show that H =
∑
v∈VC(I)

[v]B[v]TB and rank(H) = |VC(I)|.

(b) Show that VC(I) can be partitioned into VR(I)∪ T ∪ T , where T is the
set of complex conjugates of the elements of T .

(c) Show that H = P − Q for some matrices P,Q such that P,Q � 0,
rank(P ) = |VR(I)|+ |T | and rank(Q) = |T |.
(d) Show that H = A − B for some matrices A,B such that A,B � 0,
AB = BA = 0, rank(A) = σ+(H) and rank(B) = σ−(H).

(e) Show that σ+(H) = |VR(I)|+ |T | and σ−(H) = |T |.
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CHAPTER 9

POLYNOMIAL OPTIMIZATION
AND REAL ROOTS

We return to the polynomial optimization problem:

pmin = inf
x∈K

p(x), (9.1)

where K is defined by polynomial inequalities:

K = {x ∈ Rn : g1(x) ≥ 0, · · · , gm(x) ≥ 0} (9.2)

with p, g1, · · · , gm ∈ R[x]. Throughout we set g0 = 1. In the previous chapters
we have introduced the two parameters:

psos = sup

λ : p− λ ∈M(g) =

m∑
j=0

gjΣ

 ,

pmom = inf{L(p) : L linear function on R[x], L(1) = 1, L ≥ 0 on M(g)},

which satisfy the inequalities:

psos ≤ pmom ≤ pmin.

Both parameters can be reformulated using positive semidefinite matrices. How-
ever these matrices are infinite (indexed by Nn), since there is a priori no de-
gree bound on the polynomials sj entering a decomposition: p − λ =

∑
j sjgj

in M(g), and since L is a linear function on R[x] which is infinite dimensional.
Hence, it is not clear how to compute the parameters pmom and psos. In this
chapter, we consider hierarchies of approximations for problem (9.1) obtained
by adding degree bounds to the programs defining psos and pmom.
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Given an integer t, recall that R[x]t denotes the set of polynomials of degree
at most t. We set Σ2t = Σ ∩ R[x]2t and we define the truncated (at degree 2t)
quadratic module:

M(g)2t =


m∑
j=0

gjsj : sj ∈ Σ, deg(sjgj) ≤ 2t (j = 0, 1, · · · ,m)

 ,

which consists of the elements
∑
j sjgj of the quadratic module M(g) where all

summands have degree at most 2t. Then, we define the bounds:

psos,t = sup{λ : p− λ ∈M(g)2t}, (9.3)

pmom,t = inf{L(p) : L linear function on R[x]2t, L(1) = 1, L ≥ 0 on M(g)2t}.
(9.4)

Lemma 9.0.1. For any integer t, psos,t ≤ pmom,t ≤ pmin.

Proof. Let L be feasible for (9.4) and let λ be feasible for (9.3). Then, we have:
0 ≤ L(p− λ) = L(p)− λ. This implies that psos,t ≤ pmom,t.

Given v ∈ K, let L be the evaluation at v; that is, L is the linear function
on R[x]2t defined by L(f) = f(v) for f ∈ R[x]2t. Then, L is feasible for the
program (9.4) with objective value L(p) = p(v). This implies: pmom,t ≤ p(v). As
this holds for all v ∈ K, we deduce that pmom,t ≤ pmin.

In this chapter we investigate some properties of these hierarchies of bounds:

1. Duality: The bounds psos,t and pmom,t are defined by dual semidefinite pro-
grams.

2. Asymptotic convergence: Both bounds converge to pmin, when M(g) is
Archimedean.

3. Optimality certificate and global minimizers: When (9.4) has an optimal
solution satisfying a special rank condition, the bound pmom,t is exact and
one can compute global minimizers of the problem (9.1).

4. Application to computing real roots of polynomial equations.

9.1 Duality

We now indicate how to reformulate the programs (9.3) and (9.4) as semidefi-
nite programs and to check that they are in fact dual semidefinite programs.

The following is the truncated analogue of what we did in Section 14.2 (for
linear functions L on R[x] and sequences y ∈ RNn). Any linear function L on
R[x]2t is completely specified by the sequence of real numbers y = (yα)α∈Nn2t ,
where yα = L(xα). Then we define the corresponding truncated (at order t)
moment matrix:

Mt(y) = (yα+β)α,β∈Nnt ,
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indexed by Nnt . One can easily check that:

L ≥ 0 on Σ ∩ R[x]2t ⇐⇒Mt(y) � 0.

Analogously,

L ≥ 0 on {sg : s ∈ Σ, deg(sg) ≤ 2t} ⇐⇒Mt−dg (g ∗ y) � 0,

after setting dg := ddeg(g)/2e and where g ∗ y is the sequence indexed by Nnt−dg
with (g ∗ y)α = L(xαg) =

∑
γ gγyα+γ (which is well defined if |α| ≤ 2(t − dg)

as then |α+ γ| ≤ 2(t− dg) + deg(g) ≤ 2t). Therefore, the program (9.4) can be
equivalently reformulated as:

pmom,t = inf
y∈Nn2t

{pTy : y0 = 1, Mt(y) � 0, Mt−dgj (gj ∗ y) � 0 (j = 1, · · · ,m)}.

(9.5)
We now explicit the fact that the dual semidefinite program of (9.5) coin-

cides with (9.3); we do this only in the unconstrained case: K = Rn (i.e., with
no constraints gj ≥ 0) in order to avoid tedious notational details. For γ ∈ Nn2t
let At,γ denote the 0/1 matrix indexed by Nnt with (α, β)-th entry At,γ(α, β) = 1
when α+ β = γ and 0 otherwise. Note that

Mt(y) =
∑
γ∈Nn2t

yγAt,γ and
∑
γ∈Nn2t

xγAt,γ = [x]t[x]Tt (9.6)

after setting [x]t = (xα)α∈Nnt .

Lemma 9.1.1. The programs:

sup{λ : p− λ ∈ Σ ∩ R[x]2t}, (9.7)

and
inf

y∈RNn2t
{pTy : y0 = 1, Mt(y) � 0} (9.8)

are dual semidefinite programs.

Proof. Using (9.6), we can express (9.8) as the following semidefinite program
(in standard dual form):

p0 + inf

 ∑
γ∈Nn2t\{0}

pγyγ : At,0 +
∑

γ∈Nn2t\{0}

yγAt,γ � 0

 . (9.9)

Next we express (9.7) as a semidefinite program (in standard primal form). For
this, we use the fact that p− λ ∈ Σ ∩ R[x]2t if and only if there exists a positive
semidefinite matrix Q indexed by Nnt such that p − λ = [x]Tt Q[x]t. Rewrite:
[x]Tt Q[x]t = 〈Q, [x]t[x]Tt 〉 =

∑
γ∈Nn2t

〈At,γ , Q〉xγ (using (9.6)). Therefore, (9.7) is
equivalent to

p0 + sup {−〈At,0, Q〉 : 〈At,γ , Q〉 = pγ (γ ∈ Nn2t \ {0}), Q � 0} . (9.10)

It is now clear that the programs (9.9) and (9.10) are dual semidefinite pro-
grams.
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9.2 Convergence

Theorem 9.2.1. Assume thatM(g) is Archimedean (i.e., there exists a polynomial
f ∈ M(g) for which the set {x ∈ Rn : f(x) ≥ 0} is compact). Then, the bounds
pmom,t and psos,t converge to pmin as t→∞.

Proof. Pick ε > 0. Then the polynomial p− pmin + ε is strictly positive on K. As
M(g) is Archimedean, we can apply Putinar’s theorem (Theorem 13.2.9) and
deduce that p−pmin+ε ∈M(g). Hence, there exists t ∈ N such that p−pmin+ε ∈
M(g)2t and thus pmin − ε ≤ psos,t. Therefore, limt→∞ psos,t = pmin. Since, by
Lemma 9.0.1, psos,t ≤ pmom,t ≤ pmin for all t, we deduce: limt→∞ pmom,t = pmin.

9.3 Flat extensions of moment matrices

We state here a technical result about moment matrices which will be useful for
establishing an optimality certificate for the moment bounds pmom,t. Roughly
speaking, this result permits to extend a truncated sequence y ∈ RNn2s satisfying
a rank condition (see (9.12) below) to an infinite sequence ỹ ∈ RNn whose
moment matrix M(ỹ) has the same rank as M(y), to which we can then apply
the result from Theorem 14.2.4.

We recall that we can view the kernel of a moment matrix as a set of poly-
nomials, after identifying a polynomial f with its vector of coefficients f . If y is
a sequence in RNn2s and L is the associated linear function on R[x]2s, then

f ∈ kerMs(y)⇐⇒ L(fg) = 0 ∀g ∈ R[x]s; (9.11)

from now on we abuse notation and also write ‘f ∈ kerMs(y)’. We also recall
that the kernel of an infinite moment matrix M(ỹ) corresponds to an ideal I in
R[x] (Lemma 14.2.3). The following simple result about kernels of matrices is
useful (check it).

Lemma 9.3.1. Let X be a symmetric matrix with block form

X =

(
A B
BT C

)
.

Assume that we are in one of the following two situations: (i) rankX = rankA
(then one says that X is a flat extension of A), or (ii) X � 0. Then the following
holds:

x ∈ kerA⇐⇒ x ∈ kerBT ⇐⇒ (xT, 0)T ∈ kerX.

As an application we obtain the following result showing that the kernel of
a truncated moment matrix behaves like a ‘truncated ideal’.

Lemma 9.3.2. Given a sequence y ∈ RNn2s consider its moment matrices Ms(y)
and Ms−1(y). Clearly Ms−1(y) is a principal submatrix of Ms(y). Assume that we
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are in one of the following two situations: (i) rankMs(y) = rankMs−1(y), or (ii)
Ms(y) � 0. Given polynomials f, g ∈ R[x], the following holds:

f ∈ kerMs(y), deg(fg) ≤ s− 1 =⇒ fg ∈ kerMs(y).

Proof. Let L be the linear function on R[x]2s associated to y. A first observation
is that it suffices to show the result when g has degree 1, say g = xi (then the
general result follows by iterating this special case). A second observation is
that it suffices to show that fg belongs to the kernel of Ms−1(y) (then fg also
belongs to the kernel of Ms(y), in view of Lemma 9.3.1). So, pick a polynomial
u of degree at most s − 1 and let us show that L((fxi)u) = 0. But this follows
from the fact that f ∈ kerMs(y) since deg(xiu) ≤ s (recall (9.11)).

Theorem 9.3.3. Given a sequence y ∈ RNn2s , consider its moment matrices Ms(y)
and Ms−1(y). Assume that

rank Ms(y) = rank Ms−1(y). (9.12)

Then, one can extend y to a sequence ỹ ∈ RNn satisfying:

rank M(ỹ) = rank Ms(y). (9.13)

Let I be the ideal in R[x] corresponding to the kernel of M(ỹ). The following
properties hold:

(i) If {α1, · · · , αr} ⊆ Nns−1 indexes a maximum linearly independent set of columns
of Ms−1(y), then the set {[xα1 ], · · · , [xαr ]} ⊆ R[x]/I is a base of R[x]/I.

(ii) The ideal I is generated by the polynomials in kerMs(y): I = (kerMs(y)).

Proof. The first part of the proof consists of constructing the sequence ỹ satisfy-
ing (9.13). It is based on Lemma 9.3.2; the details are elementary but technical,
so we omit them. (You will show the case n = 1 in Exercise 15.1).

(i) If the set {α1, · · · , αr} indexes a maximum set of linearly independent
columns of Ms−1(y) then, as rankM(ỹ) = rankMs−1(y), it also indexes a max-
imum set of linearly independent columns of M(ỹ). This implies that the set
{[xα1 ], · · · , [xαr ]} is a base of R[x]/I.

(ii) As rankM(ỹ) = rankMs(y), we have the inclusion: kerMs(y) ⊆ kerM(ỹ)
(recall Lemma 9.3.1). Thus the ideal generated by kerMs(y) is contained in the
ideal kerM(ỹ):

(kerMs(y)) ⊆ kerM(ỹ).

Set M = {xα1 , · · · , xαr} where the αi’s are as in (i), and let 〈M〉 denote the
linear span ofM (whose elements are the polynomials

∑
i λix

αi where λi ∈ R).
Then, 〈M〉 ∩ kerM(ỹ) = {0} (by (i)). We claim that

R[x] = 〈M〉+ (kerMs(y)).

For this, one can show using induction on its degree that each monomial xα can
be written as xα = p + q where p lies in the span of M and q lies in the ideal
generated by kerMs(y) (check it). Now, let f ∈ kerM(ỹ). Applying the above
to f , we can write f = p + q where p ∈ 〈M〉 and q ∈ (kerMs(y)). This implies
that p = f − q ∈ 〈M〉 ∩ kerM(ỹ) = {0} and thus f = p ∈ (kerMs(y)).
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9.4 Optimality certificate and global minimizers

Let K∗p = {x ∈ K : p(x) = pmin} denote the set (possibly empty) of global
minimizers of the polynomial p over K. We also set

dK = max{dg1 , · · · , dgm}, where df = ddeg(f)/2e for f ∈ R[x]. (9.14)

Theorem 9.4.1. Let L be an optimal solution to the program (9.4) and let y =
(L(xα)) ∈ RNn2t be the corresponding sequence. Asssume that y satisfies the rank
condition:

rank Ms(y) = rank Ms−dK (y) (9.15)

for some integer s satisfying max{dp, dK} ≤ s ≤ t. Then the following properties
hold:

(i) The relaxation (9.4) is exact: pmom,t = pmin.

(ii) The common roots to the polynomials in kerMs(y) are all real and they are
global minimizers: VC(kerMs(y)) ⊆ K∗p .

(iii) If L is an optimal solution of (9.4) for which the matrix Mt(y) has maximum
possible rank, then VC(kerMs(y)) = K∗p .

Proof. As y satisfies the rank condition (9.15), we can apply Theorem 9.3.3:
There exists a sequence ỹ ∈ RNn extending the subsequence (yα)|α|≤2s of y and
satisfying rank M(ỹ) = rank Ms(y) =: r. Thus, ỹα = yα if |α| ≤ 2s, but it could
be that ỹ and y differ at entries indexed by monomials of degree higher than
2s, these entries of y will be irrelevant in the rest of the proof. Let I be the
ideal corresponding to the kernel of M(ỹ). By Theorem 9.3.3, I is generated
by kerMs(y) and thus VC(I) = VC(kerMs(y)). As M(ỹ) is positive semidefinite
with finite rank r, we can apply Theorem 14.2.4 (and its proof): We deduce
that

VC(I) = {v1, · · · , vr} ⊆ Rn

and

ỹ =

r∑
i=1

λi[vi]∞ where λi > 0 and
r∑
i=1

λi = 1.

Taking the projection onto the subspace RNn2s , we obtain:

(yα)α∈Nn2s =

r∑
i=1

λi[vi]2s where λi > 0 and
r∑
i=1

λi = 1. (9.16)

In other words, the restriction of the linear map L to the subspace R[x]2s is the
convex combination

∑r
i=1 λiLvi of evaluations at the points of VC(I). More-

over, let {α1, · · · , αr} ⊆ Nns−dK index a maximum linearly independent set of
columns of Ms−dK (y), so that the set B = {[xα1 ], · · · , [xαr ]} is a base of R[x]/I
(by Theorem 9.3.3).
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First we claim that we can choose interpolation polynomials pvi at the points
of VC(I) with deg(pvi) ≤ s − dK . Indeed, if pvi are arbitrary interpolation
polynomials then, using the base B, write pvi = fi + gi where gi ∈ I and fi
lies in the linear span of the monomials xα1 , · · · , xαr . Thus the fi’s are again
interpolation polynomials but now with degree at most s− dK .

Next we claim that v1, · · · , vr belong to the set K. To see this, we use the
fact that L ≥ 0 on (gjΣ)∩R[x]2t for all j ∈ [m]. As deg(pvi) ≤ s− dK , we have:
deg(gjp

2
vi) ≤ deg(gj)+2(s−dK) ≤ 2s, and thus we can compute L(gjp

2
vi) using

(9.16) and obtain that L(gjp
2
vi) = gj(vi)λi ≥ 0. This gives gj(vi) ≥ 0 for all j

and thus vi ∈ K.
As deg(p) ≤ 2s, we can also evaluate L(p) using (9.16): we obtain that

L(p) =
∑r
i=1 λip(vi) ≥ pmin, since p(vi) ≥ pmin as vi ∈ K. This gives the

inequality: pmom,t ≥ pmin. The reverse inequality holds always (Lemma 9.0.1).
Thus (i) holds: pmom,t = pmin. In turn, this implies that p(vi) = pmin for all i,
which shows (ii): {v1, · · · , vr} ⊆ K∗p .

Assume now that rankMt(y) is maximum among all optimal solutions of
(9.4). In other words, y lies in the relative interior of the face of the fea-
sible region of (9.4) consisting of all optimal solutions. Therefore, for any
other optimal solution y′, we have that kerMt(y) ⊆ kerMt(y

′). Consider a
global minimizer v ∈ K∗p of p over K and the corresponding optimal solution
y′ = [v]2t of (9.4). The inclusion kerMt(y) ⊆ kerMt(y

′) implies that any poly-
nomial in kerMt(y) vanishes at v. Therefore, kerMs(y) ⊆ I(K∗p ) and thus
I = (kerMs(y)) ⊆ I(K∗p ). In turn, this implies the inclusions:

K∗p ⊆ VC(I(K∗p )) ⊆ VC(I) = {v1, · · · , vr}.

Thus (iii) holds and the proof is complete.

Under the assumptions of Theorem 9.4.1, we can apply the eigenvalue method
described in Section 14.1.3 for computing the points in the variety VC(kerMs(y)).
Indeed, all the information that we need is contained in the matrix Ms(y). Re-
call that what we need in order to recover VC(I) is an explicit base B of the
quotient space R[x]/I and the matrix in the base B of some multiplication op-
erator in R[x]/I, where I = (kerMs(y)).

First of all, if we choose {α1, · · · , αr} ⊆ Nns−dK indexing a maximum linearly
independent set of columns of Ms−1(y), then the set B = {[xα1 ], · · · , [xαr ]} of
corresponding cosets in R[x]/I is a base of R[x]/I. For any variable xk, we
now observe that it is easy to build the matrix Mxk of the ‘multiplication by
xk ’ in the base B, using the moment matrix Ms(y). Indeed, for any j ∈ [r], as
deg(xkx

αj ) ≤ s, we can compute the linear dependency among the columns of
Ms(y) indexed by the monomials xkxαj , xα1 , · · · , xαr . In this way, we obtain
a polynomial in the kernel of Ms(y) (thus in I) which directly gives the j-th
column of the matrix Mxk .

Finally, we point out that it is a property of most interior-point algorithms
that they return an optimal solution in the relative interior of the optimal face,
thus a point satisfying the assumption of (iii). In conclusion, if we have an
optimal solution of the moment relaxation (9.4) satisfying the rank condition
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(9.15), then we can (numerically) compute all the global optimizers of problem
(9.1).

9.5 Real solutions of polynomial equations

Consider now the problem of computing all real roots to a system of polynomial
equations:

h1(x) = 0, · · · , hm(x) = 0

where h1, · · · , hm ∈ R[x]. In other words, with I denoting the ideal generated
by the hj ’s, this is the problem of computing the real variety VR(I) of I. We
address this question in the case when VR(I) is finite.

Of course, if the complex variety VC(I) of I is finite, then we can just apply
the eigenvalue method presented in Chapter 14 to compute VC(I) (then select
the real elements). However, it can be that VR(I) is finite while VC(I) is infinite.
As a trivial such example, consider the ideal generated by the polynomial x21+x22
in two variables, to which we come back in Example 9.5.2 below. In that case
we cannot apply directly the eigenvalue method. However we can apply it
indirectly: Indeed, we can view the problem of computing VR(I) as an instance
of polynomial optimization problem to which we can then apply the results of
the preceding section. Namely, consider the problem of minimizing the constant
polynomial p = 0 over the set

K = {x ∈ Rn : hj(x) ≥ 0,−hj(x) ≥ 0 ∀j ∈ [m]}.

Then, K = VR(I) coincides with the set of global minimizers of p = 0 over K.
As before, we consider the moment relaxations (9.4). Now, any feasible

solution L is an optimal solution of (9.4). Hence, by Theorem 9.4.1, if the rank
condition (9.15) holds, then we can compute all points in VR(I). We now show
that it is indeed the case that, for t large enough, the rank condition (9.15) will
be satisfied.

Theorem 9.5.1. Let h1, · · · , hm ∈ R[x] be polynomials having finitely many real
roots. Set dK = maxjddeg(hj)/2e. For t ∈ N, let Ft denote the set of sequences
y ∈ RNn2t whose associated linear function L on R[x]2t satisfies the conditions:

L(1) = 1, L ≥ 0 on Σ2t, L(uhj) = 0 ∀j ∈ [m] ∀u ∈ R[x] with deg(uhj) ≤ 2t.
(9.17)

Then, there exist integers t0 and s such that dK ≤ s ≤ t0 and the following rank
condition holds:

rankMs(y) = rankMs−dK (y) ∀y ∈ Ft ∀t ≥ t0. (9.18)

Moreover, R
√
I = (kerMs(y)) if y ∈ Ft has maximum possible rank.

Proof. The goal is to show that if we choose t large enough, the the kernel
of Mt(y) contains sufficiently many polynomials permitting to show the rank
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condition (9.18). Here y is an arbitrary feasible solution in Ft and L is its
corresponding linear function on R[x]2t. We assume that t ≥ maxj deg(hj).
Then,

hj ∈ kerMt(y) ∀j ∈ [m] (9.19)

(since then L(h2j ) = 0).
Now we choose a ‘nice’ set of polynomials {f1, · · · , fL} generating R

√
I, the

real radical ideal of the ideal I; namely, one for which we can claim the follow-
ing degree bounds:

∀f ∈ R
√
I f =

L∑
l=1

ulfl for some ul ∈ R[x] with deg(ulfl) ≤ deg(f). (9.20)

(That such a nice set of generators exists follows from the theory of Gröbner
bases.) Next we claim:

∃t1 ∈ N f1, · · · , fL ∈ kerMt(y) for any t ≥ t1. (9.21)

Fix l ∈ [L]. Applying the Real Nullstellensatz, we know that there exist polyno-
mials pi and uj and an integer N (which, for convenience, we can choose to be
a power of 2) satisfying the following identity:

fNl +
∑
i

p2i =

m∑
j=1

ujhj .

If t is large enough, then L vanishes at each ujhj (since hj ∈ kerMt(y) and
apply Lemma 9.3.2). Hence L vanishes at the polynomial fNl +

∑
i p

2
i . As L is

nonnegative on Σ2t, we deduce that L(fNl ) = 0. Now an easy induction permits
to show that L(f2l ) = 0 (this is where choosing N a power of 2 was helpful) and
thus fl ∈ kerMt(y).

By assumption, the set VR(I) is finite. Therefore, the quotient space R[x]/ R
√
I

has finite dimension (Theorem 14.1.5). LetM = {b1, · · · , br} be a set of poly-
nomials whose cosets form a base of the quotient space R[x]/ R

√
I. Let d0 denote

the maximum degree of the polynomials inM and set

t2 = max{t1, d0 + dK}.

Pick any monomial xα of degree at most t2. We can write:

xα = p(α) + q(α), with q(α) =

L∑
l=1

u
(α)
l fl, (9.22)

where p(α) lies in the span ofM and thus has degree at most d0, and each term
u
(α)
l fl has degree at most max{|α|, d0} ≤ t2. Here we have used the fact that
{[b1], · · · , [br]} is a base of R[x]/ R

√
I, combined with the property (9.20) of the

generators fl of R
√
I.
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We can now conclude the proof: We show that, if t ≥ t0 := t2 + 1, then the
rank condition (9.18) holds with s = t2. For this pick a monomial xα of degree
at most t2, so that (9.22) holds. As deg(u

(α)
l fl) ≤ t2 ≤ t− 1 and fl ∈ kerMt(y)

(by (9.20)), we obtain that u(α)l fl ∈ kerMt(y) (use Lemma 9.3.2). Therefore,
the polynomial xα − p(α) belongs to the kernel of Mt(y). As the degree of p(α)

is at most d0 ≤ t2 − dK , we can conclude that rankMt2−dK (y) = rankMt2(y).
Finally, the equality R

√
I = (kerMt2(y))) follows from Theorem 9.4.1 (iii).

Example 9.5.2. Let I be the ideal generated by the polynomial x21 + x22. Clearly,
VR(I) = {(0, 0)} and R

√
I = (x1, x2) is generated by the two monomials x1 and x2.

Let us see how we can find this again by applying the above result.
For this, let L be a feasible solution in the set Ft defined by (9.17) for t = 1.

Then, we have that L(x21), L(x22) ≥ 0 and L(x21 + x22) = 0. This implies: L(x21) =
L(x22) = 0 and thus L(x1) = L(x2) = L(x1x2) = 0. Hence the moment matrix
M1(y) has the form:

M1(y) =


1 x1 x2

1 1 y10 y01
x1 y10 y20 y11
x2 y01 y11 y02

 =

.1 0 0
0 0 0
0 0 0

 .

Therefore, rankM1(y) = rankM0(y), x1, x2 belong to the kernel of M1(y), and we
find that kerM1(y) generates R

√
I.

As an exercise, check what happens when I is the ideal generated by (x21 +x2)2.
When does the rank condition holds?

9.6 Notes and further reading

The flat extension theorem (Theorem 9.3.3) was proved by Curto and Fialkow
[1] (this result and some extensions are exposed in the survey [4]).

The moment approach to polynomial optimization presented in this chapter
was introduced by Lasserre [3]. Lasserre realized the relevance of the results of
Curto and Fialkow [1] for optimization, in particular, that their flat extension
theorem yields an optimality certificate and together with Henrion he adapted
the eigenvalue method to compute global optimizers. Having such a stopping
criterium and being able to compute global optimizers is a remarkable property
of this ‘moment based’ approach. It has been implemented in the software
GloptiPoly, the most recent version can be found at [2]. The application to
computing real roots (and real radical ideals) has been developed by Lasserre,
Laurent and Rostalski, see the survey [5].

Other implementations of the sums of squares vs. moment approach for
polynomial optimization include
- YALMIP:
http://users.isy.liu.se/johanl/yalmip/pmwiki.php?n=Main.HomePage,
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- SOSTOOLS: http://www.cds.caltech.edu/sostools/,
- SparsePOP, for polynomial optimization problems with sparsity pattern:

http://www.is.titech.ac.jp/~kojima/SparsePOP/.

9.7 Exercises

9.1. Given an integer s ≥ 1, consider a sequence y = (y0, y1, · · · , y2s) ∈ R2s+1

and its moment matrix Ms(y) of order s. Assume that the rank condition
holds:

rankMs(y) = rankMs−1(y).

(a) Show that one can find scalars a, b ∈ R for which the extended se-
quence ỹ = (y0, y1, · · · , y2s, a, b) satisfies:

rankMs+1(ỹ) = rankMs(y).

(b) Show that one can find an (infinite) extension

ỹ = (y0, y1, · · · , y2s, ỹ2s+1, ỹ2s+2, · · · ) ∈ RN

satisfying
rankM(ỹ) = rankMs(y).

This shows the flat extension theorem (Theorem 9.3.3) in the univariate
case n = 1.

9.2 Consider the problem of computing pmin = infx∈K p(x), where p = x1x2
and

K = {x ∈ R2 : −x22 ≥ 0, 1 + x1 ≥ 0, 1− x1 ≥ 0}.

(a) Show that, at order t = 1, pmom,1 = pmin = 0 and psos,1 = −∞.

(b) At order t = 2, what is the value of psos,2?
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