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Motivation

In the last years I studied packing problems in compact metric spaces,
e.g. the kissing number problem.

Tools: combinatorial optimization
in a continuous setting:
– semidefinite optimization
– harmonic analysis

Questions:
– Dealing with non-compact spaces?
– From discrete point sets to sets with positive measure?



Chromatic number of Euclidean space

χ(Rn) = minimal number of colors needed to paint all points in Rn

so that every two points at distance 1 receive different colors.

Clearly, χ(Rn) ≤ χm(Rn), and maybe χ(Rn) < χm(Rn) for some n.

χm(Rn) = minimal number colors needed to paint all points in Rn

so that every two points at distance 1 receive different colors.
& points receiving the same colors are Lebesgue measurable sets.

χ(R1) = 2



What is known?

7 ≥ χm(R2) χ(R2) ≥ 4

Falconer (1981): χm(R2) ≥ 5

Frankl, Wilson (1981), Larman, Rogers (1972):

(1 − o(1))1.2n ≤ χ(Rn) ≤ χm(Rn) ≤ (3 + o(1))n

1000$ problem

(Graham/Erdős)



Distance avoiding sets

δ(A) ≈ 0.200544

A ⊆ Rn measurable set

A has upper density

δ(A) = lim sup
T→∞

vol(A ∩ [−T, T ]n)

vol[−T, T ]n
.

A avoids the distances d1, . . . , dN if

∀x, y ∈ A : ‖x − y‖ %∈ {d1, . . . , dN}.



Relation

Upper bounds form1(Rn) give lower bounds for χm(Rn):

m1(R
n) · χm(Rn) ≥ 1

extreme density

md1,...,dN
(Rn) = sup{δ(A) : A ⊆ Rn avoids d1, . . . , dN}

Best bounds (previously) known (Croft (1967), Székely (1984)):

Conjecture (Erdős): m1(R2) < 0.25

0.2293 ≤ m1(R
2) ≤ 0.2790



The linear programming bound
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Main Theorem. Suppose that there are real numbers z0, z1, . . . , zN which
satisfy z0 + z1 + · · · + zN = 1 and that for all t ≥ 0

holds, thenmd1,...,dN
(Rn) ≤ z0.

z0 + Ωn(d1t)z1 + Ωn(d2t)z2 + · · · + Ωn(dN t)zN ≥ 0



Application 1- one distance
LP: min{z0 : z0 + z1 = 1, z0 + Ωn(t)z1 ≥ 0, t ≥ 0} ≥ m1(Rn)

Corollary: χm(Rn) ≥ 1 −
1

Ωn(jn,1)
∼ 1.165n

Solution: z0 + z1 = 1 and z0 + Ωn(jn,1)z1 = 0

jn,1 — first minimum of Ωn
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LOWER BOUNDS? CONSTRUCTIONS?



Computational results
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dimension 3
Falconer 1981: 6

de Oliveira, V. 2008: 7



Application 2 - many distances

Can be used to prove a quantitative version of

Theorem. (Furstenberg, Katznelson, Weiss, 1990)
Let A ⊂ R2 be a measurable set with δ(A) > 0. Then, there is a d0

so that for all d ≥ d0 the set A does not avoid the distance d.

Their proof uses ergodic theory. Other proofs:
Bourgain (1986) — harmonic analysis
Falconer, Marstrand (1986) — geometric measure theory
Bukh (2007) — Szemerédi’s regularity lemma



Proof sketch of main theorem

only avoid distance d1 = 1

(saves some notation)
don’t care about existence of limits
(saves 10 minutes)

Simplifications:



Fourier analysis
f, g : Rn

→ C complex-valued functions

(f, g) = lim
T→∞

1

vol[−T, T ]n

∫
[−T,T ]n

f(x)g(x)dx

mean value inner product

Fourier coefficient

for u ∈ Rn: f̂(u) = (f, eiu·x) (f̂ has discrete support in our case)

(f, g) =
∑

u∈Rn

f̂(u)ĝ(u)

Parseval’s formula



ϕ(x) = 0 if ‖x‖ = 1

ϕ(0) = δ(A)

Autocorrelation function
A ⊂ Rn measurable set avoiding distance d1 = 1

ϕ(x) = (1A, 1A−x) autocorrelation function of A

= lim
T→∞

1

vol[−T, T ]n

∫
[−T,T ]n

1A(y)1A−x(y)dy

= δ(A ∩ (A − x))

=
∑

u∈Rn

|1̂A(u)|2eiu·x
ϕ̂(u) = |1̂A(u)|2 ≥ 0

ϕ̂(0) = δ(A)2



Linear programming

sup
{

ϕ̂(0)
∑

u∈Rn

ϕ̂(u)
: ϕ̂(u) ≥ 0, u ∈ Rn

,

∑

u∈Rn

ϕ̂(u)eiu·x = 0, ‖x‖ = 1
}

The linear program in the infinite variables ϕ̂(u)

gives an upper bound onm1(Rn).



Symmetrization
Taking spherical averages simplifies its computation tremendously
(and explains the appearance of Ωn).

Transform ϕ into a radial function by taking averages over the unit sphere
For x ∈ Rn define
∫

Sn−1

ϕ(‖x‖ξ)dω(ξ) =

∫

Sn−1

∑

u∈Rn

ϕ̂(u)eiu·‖x‖ξdω(ξ)

=
∑

t≥0

∑

u:‖u‖=t

ϕ̂(u)

∫

Sn−1

eiu·‖x‖ξdω(ξ)

︸ ︷︷ ︸

=:α(t)

︸ ︷︷ ︸

=:Ωn(‖x‖t)



Duality

Taking the dual linear program and showing
weak duality proves the theorem.

sup
{ α(0)

∑

t≥0

α(t)
: α(t) ≥ 0, t ≥ 0,

∑

t≥0

α(t)Ωn(t) = 0
}

Symmetrization gives linear program in infinite variables α(t), t ∈ R≥0.


