
 Grammars and Parsing

Grammars and Parsing

Paul Klint

Grammars and Parsing 2

Grammars and Languages are one
of the most established areas of
Natural Language Processing

and
Computer Science

Grammars and Parsing 3

N. Chomsky,
Aspects of the theory of syntax,
1965

Grammars and Parsing 4

A Language ...

● ... is a (possibly infinite) set of sentences
● Exercise:

● Give examples of finite languages
● Give examples of infinite languages

Grammars and Parsing 5

A Grammar ...

● ... is a set of formation rules to describe the sentences
in a language

● The Chomsky hierarchy:

● Context-sensitive languages

– Natural language processing
● Context-free languages

– Syntax of programming languages
● Regular languages

– Regular expressions, grep, lexical syntax

Grammars and Parsing 6

Syntax Analysis (aka Parsing) ...

● ... is the process of analyzing the syntactic
structure of a sentence.

● A recognizer only says Yes or No (+ messages)
to the question:
● Does this sentence belong to language L?

● A parser also builds a structured representation
when the text is syntactically correct.
● Such a “syntax tree” or “parse trees” is a

proof how the grammar rules can be sued to
derive the sentence.

Grammars and Parsing 7

l
1
 -> r

1

 l
2
 -> r

2

 l
n
 -> r

n

...

Grammar

Source text

Recognizer Yes or No (+ Errors)

A Recognizer

Grammars and Parsing 8

l
1
 -> r

1

 l
2
 -> r

2

 l
n
 -> r

n

...

Grammar

Source text

Parser

Parse tree or Errors

A Parser

Grammars and Parsing 9

Why are Grammars and Parsing
Techniques relevant?

● A grammar is a formal method to describe a
(textual) language
● Programming languages: C, Java, C#, JavaScript
● Domain-specific languages: BibTex, Mathematica
● Data formats: log files, protocol data

● Parsing:
● Tests whether a text conforms to a grammar
● Turns a correct text into a parse tree

Grammars and Parsing 10

A.V. Aho & J.D. Ullman,
The Theory of Parsing,
Translation and
Compiling,
Parts I + II, 1972

Grammars and Parsing 11

A.V. Aho, R. Sethi,
J.D. Ullman,
Compiler, Principles,
Techniques and
Tools,
1986

Grammars and Parsing 12

D. Grune, C.
Jacobs,
Parsing Techniques,
A Practical Guide,
2008

Grammars and Parsing 13

What is Syntax Analysis about?

● Syntax analysis (or parsing) is about
recognizing structure in text (or the lack thereof)

● The question “Is this a textually correct Java
program?” can be answered by syntax analysis.

● Note: other correctness aspects are outside the
scope of parsing:
● Has this variable been declared?
● Is this expression type correct?
● Is this method called with the right parameters?

Grammars and Parsing 14

When is Syntax Analysis Used?

● Compilers
● IDEs
● Software analysis
● Software transformation
● DSL implementations
● Natural Language processing
● Genomics (parsing of DNA fragments)

Grammars and Parsing 15

How to define a grammar?

● Simplistic solution: finite set of acceptable
sentences
● Problem: what to do with infinite languages?

● Realistic solution: finite recipe that describes all
acceptable sentences

● A grammar is a finite description of a possibly
infinite set of acceptable sentences

Grammars and Parsing 16

Example: Tom, Dick and Harry

● Suppose we want describe a language that
contains the following legal sentences:
● Tom
● Tom and Dick
● Tom, Dick and Harry
● Tom, Harry, Tom and Dick
● ...

● How do we find a finite recipe for this?

Grammars and Parsing 17

The Tom, Dick and Harry Grammar

● Name -> tom
● Name -> dick
● Name -> harry
● Sentence -> Name
● Sentence -> List End
● List -> Name
● List -> List , Name
● , Name End -> and Name

Non-terminals:
Name, Sentence, List, End

Terminals:
tom, dick, harry, and, ,

Start Symbol:
Sentence

Grammars and Parsing 18

● Name -> tom
● Name -> dick
● Name -> harry
● Sentence -> Name
● Sentence -> List End
● List -> Name
● List -> List , Name
● , Name End -> and

Name

Example

● Sentence ->
● Name ->
● tom

● Sentence ->
● List End ->
● List , Name End ->
● Name , Name End ->
● tom, Name End ->

tom, dick End ->
● tom and dick

Grammars and Parsing 19

Variations in Notation

● Name -> tom | dick | harry
● <Name> ::= “tom” | “dick” | “harry”
● “tom” | “dick” | “harry” -> Name
● In Rascal:

● syntax Name = ”tom” | ”dick” | ”harry”;

Grammars and Parsing 20

Chomsky’s Grammar Hierarchy

● Type-0: Recursively Enumerable
● Rules: α -> β (unrestricted)

● Type-1: Context-sensitive
● Rules: αAβ -> αγβ

● Type-2: Context-free
● Rules: A -> γ

● Type-3: Regular
● Rules: A -> a and A -> aB

Grammars and Parsing 21

Context-free Grammar for TDH

● Name -> tom | dick | harry
● Sentence -> Name | List and Name
● List -> Name , List | Name

Grammars and Parsing 22

Exercise: What changed and Why?

● Name -> tom
● Name -> dick
● Name -> harry
● Sentence -> Name
● Sentence -> List End
● List -> Name
● List -> List , Name
● , Name End -> and

Name

● Name -> tom
● Name -> dick
● Name -> harry
● Sentence -> Name
● Sentence -> List and

Name
● List -> Name
● List -> Name , List

Grammars and Parsing 23

In practice ...

● Regular grammars used for lexical syntax:
● Keywords: if, then, while
● Constants: 123, 3.14, “a string”
● Comments: /* a comment */

● Context-free grammars used for structured and
nested concepts:
● Class declaration
● If statement

Grammars and Parsing 24

p o s i t i o n : = i n i t i a l + r a t e * 6 0

Position := initial + rate * 60

We start with text

Consider the assignment statement:

First approximation, this is a string of characters:

Grammars and Parsing 25

From text to tokens
p o s i t i o n : = i n i t i a l + r a t e * 6 0

● The identifier position
● The assignment symbol :=
● The identifier initial
● The addition operator +
● The identifier rate
● The multiplication operator *
● The number 60

Grammars and Parsing 26

Lexical syntax

● Regular expressions define lexical syntax:
● Literal characters: a,b,c,1,2,3
● Character classes: [a-z], [0-9]
● Operators: sequence (space), repetition (* or +),

option (?)

● Examples:
● Identifier: [a-z][a-z0-9]*
● Number: [0-9]+
● Floating constant: [0-9]*.[0-9]*(e-[0-9]+)

Grammars and Parsing 27

Lexical syntax

● Regular expressions can be implemented with
a finite automaton

● Consider [a-z][a-z0-9]*

Start
[a-z]

Start

[a-z0-9]*

Grammars and Parsing 28

identifier

position :=

identifier

initial + *

identifier number

rate 60

From text to tokens

p o s i t i o n : = i n i t i a l + r a t e * 6 0

Classify characters by lexical category:
● Tokenization
● Lexical analysis
● Lexical scanning

Grammars and Parsing 29

assignment statement

identifier

expression

expression

expression expression

expression

position :=

identifier

initial + *

identifier number

rate 60

From Tokens to Parse Tree

Grammars and Parsing 30

Expression Grammar

The hierarchical structure of expressions can be
described by recursive rules:

1. Any Identifier is an expression

2. Any Number is an expression

3. If Expression
1
 and Expression

2
 are expressions

then so are:

● Expression
1
 + Expression

2

● Expression
1
 * Expression

2

● (Expression
1
)

Grammars and Parsing 31

Statement Grammar

1. If Identifier
1
 is an identifier and Expression

1
 is

an expression then the following is a statement:

● Identifier
1
 := Expression

1

2. If Expression
1
 is an expression and Statement

1

is an statement then the following are statements:

● while (Expression
1
) Statement

1

● if (Expression
1
) then Statement

1

Grammars and Parsing 32

How do we get a parser?

Use a parser generator
● Pro: regenerate when grammar changes
● Pro; recognized language is exactly known
● Pro: less effort
● Con: Grammar has to fit in the grammar class

accepted by the parser generator (this may be very
hard!)

● Con: mixing of parsing and other actions somewhat
restricted

● Con: limited error recovery

Grammars and Parsing 33

Language A

start syntax A = "a";

parseTreeViewer(#start[A])

Grammars and Parsing 34

Language AB

start syntax AB = "a" "b";

parseTreeViewer(#start[AB])

Grammars and Parsing 35

Language AB

start syntax AB = "a" "b";

parseTreeViewer(#start[AB])

Grammars and Parsing 36

Language AB (with layout)

layout Whitespace = [\ \t\n]*;
start syntax AB = "a" "b";

parseTreeViewer(#start[AB])

Grammars and Parsing 37

Language AB2
layout Whitespace = [\ \t\n]*;
syntax A = "a";
syntax B = "b";
start syntax AB2 = A B;

parseTreeViewer(#start[AB2])

Grammars and Parsing 38

Language C
layout Whitespace = [\ \t\n]*;
syntax A = "a";
syntax B = "b";
start syntax C = "c" | A C B;

parseTreeViewer(#start[C])

Grammars and Parsing 39

Language E
layout Whitespace = [\ \t\n]*;
lexical Integer = [0-9]+;
start syntax E = Integer
 | E "*" E
 | E "+" E
 | "(" E ")"
 ;

parseTreeViewer(#start[E])

Grammars and Parsing 40

Language E: ambiguity

parseTreeViewer(#start[E])

Grammars and Parsing 41

Language E: Using Parentheses

parseTreeViewer(#start[E])

Grammars and Parsing 42

Language E1: Define Priority
layout Whitespace = [\ \t\n]*;
lexical Integer = [0-9]+;
start syntax E1 = Integer
 | E1 "*" E1
 > E1 "+" E1
 | "(" E1 ")"
 ;

> defines that E1 “*” E1
has higher priority than

E1 “+” E1

parseTreeViewer(#start[E1])

Grammars and Parsing 43

Language E2: Extra non-terminals
layout Whitespace = [\ \t\n]*;
lexical Integer = [0-9]+;
start syntax E2 = E2 "+" T | T;
syntax T = T "*" P | P;
syntax P = "(" E2 ")" | Integer;

parseTreeViewer(#start[E2])

Grammars and Parsing 44

Language La0:
List of zero or more a's

start syntax La0 = "a"*;

parseTreeViewer(#start[La0])

Grammars and Parsing 45

Language La0:
List of one or more a's

start syntax La1 = "a"+;

parseTreeViewer(#start[La1])

Grammars and Parsing 46

Language LaS0: List of zero or more
a's separated by comma's

start syntax LaS0 = {"a" ","}*;

parseTreeViewer(#start[LaS0])

Grammars and Parsing 47

Language LaS1: List of one or more
a's separated by comma's

start syntax LaS1 = {"a" ","}+;

parseTreeViewer(#start[LaS1])

Grammars and Parsing 48

Language S: Statement-like

layout Whitespace = [\ \t\n]*;

lexical Integer = [0-9]+;
syntax E1 = Integer
 | E1 "*" E1
 > E1 "+" E1
 | "(" E1 ")"
 ;
lexical Id = [a-z][a-z0-9]*;

start syntax S =
 Id "=" E1
 | "while" E1 "do" {S ";"}+ "od"
 ;

parseTreeViewer(#start[S])

Grammars and Parsing 49

What is a grammar?

● A context-free grammar is 4-tuple G=(N,Σ,P,S)
● N is a set of nonterminals
● Σ is a set of terminals (literal symbols, disjoint

from N)
● P is a set of production rules of the form (A, α)

with A a nonterminal, and α a list of zero or
more terminals or nonterminals. Notation:
● A ::= α (in BNF)

● syntax A = α; (in Rascal)

● S ε N, is the start symbol.

Grammars and Parsing 50

Derivations

● A grammar is a formal system with one proof
rule:
● α A β ═> α γ β if A ::= γ is a production
● A is a nonterminal, α, β, γ possibly empty lists of

(non)terminals

Grammars and Parsing 51

Example

● N = {E}
● Σ = { +, *, (,), -, a}
● S = E
● P = {E::=E+E, E::=E*E, E::=(E), E::=-E, E::= a}
● A derivation:

● E ═> - E ═> - (E) ═> - (E + E) ═> - (a + E) ═>
- (a + a)

● A derivation generates a sentence from the
start symbol

Grammars and Parsing 52

Exercise

● Give a derivation for a + a * a

Grammars and Parsing 53

Language defined by a Grammar

● Extend the one step derivation ═> to
● ═>* derive in zero or more steps
● ═>+ derive in one or more steps

● The language defined by a grammar
G = (N,Σ,P,S) is:
● L(G) = { w ε Σ* | S ═>+ w }

● A sentence w ε L(G) only contains terminals

Grammars and Parsing 54

Derivations

● At each derivation step there are choices:
● Which nonterminal will we replace?
● Which alternative of the selected nonterminal will

we apply?

● Two choices:
● Leftmost: always select leftmost nonterminal
● Rightmost: always select leftmost nonterminal

Grammars and Parsing 55

Examples

● Recall our -(a+a) example
● Leftmost derivation of -(a+a):

● E ═> - E ═> - (E) ═> - (E + E) ═>
 - (a + E) ═> - (a + a)

● Rightmost derivation of -(a+a):
● E ═> - E ═> - (E) ═> - (E + E) ═>

 - (E + a) ═> - (a + a)

Grammars and Parsing 56

Derivation versus parsing

● A derivation generates a sentence from the
start symbol

● A recognizer does the inverse: it deduces the
start symbol from the sentence

● Leftmost derivation leads to a topdown
recognizer (LL parser)

● Rightmost derivation leads to a bottom-up
recognizer (LR parser)

Grammars and Parsing 57

Recognizing versus Parsing

● Recognizer:
● Is this string in the language?

● Parser:
● Is this string in the language?
● If so, return a syntax tree

● Generalized Parser:
● Idem, but may return more than one tree
● Accepts larger class of grammars

Grammars and Parsing 58

l
1
 -> r

1

 l
2
 -> r

2

 l
n
 -> r

n

...

Grammar

Source text

Recognizer Yes or No (+ Errors)

A Recognizer

Grammars and Parsing 59

l
1
 -> r

1

 l
2
 -> r

2

 l
n
 -> r

n

...

Grammar

Source text

Parser

Parse tree or Errors

A Parser

Grammars and Parsing 60

l
1
 -> r

1

 l
2
 -> r

2

 l
n
 -> r

n

...

Grammar

Source text

GLL+

Parse trees or Errors

Generalized Parser
(as used in Rascal)

Grammars and Parsing 61

Recall Language E

parseTreeViewer(#start[E])

Grammars and Parsing 62

General Parsing Approaches

● Top-Down (predictive)
● Predict what you want to parse, and verify the input
● Leftmost derivation

● Bottom-Up
● Recognize token by token and infer what you are

recognizing by combining these tokens.
● Rightmost derivation

● The type of grammar determines the parsing
techniques that can be used

Grammars and Parsing 63

Parsing techniques

● Top-Down
● LL(1): Left-to-right,

Leftmost derivation, 1
symbol lookahead

● LL(k), k symbols
lookahead

● ...

● Bottom-Up
● LR(1): Left-to-right,

Rightmost, 1 symbol
lookahead

● LR(k)
● LALR(k)
● SLR(k)
● ...

Grammars and Parsing 64

assignment statement

identifier

expression

position :=

Integer

70

Top-Down Parser

Grammars and Parsing 65

assignment statement

identifier

expression

position :=

Integer

70

Bottom-Up Parser

Grammars and Parsing 66

How do we get a parser?

Write it by hand
● Pro: large flexibility
● Pro: each mixing of parsing with other actions

– Type checking
– Tree building

● Pro: specialized error messages/error recovery
● Con: more effort
● Con: reprogramming needed when grammar

changes
● Con: unclear which language is recognized

Grammars and Parsing 67

Example: Writing a Parser
syntax A = "a";
syntax B = "b";
start syntax C = "c" | A C B;

Idea: implement three functions
bool parseA()
bool parseB()
bool parseC()

that parse the corresponding non-
terminal

Grammars and Parsing 68

Infrastructure
syntax A = "a";
syntax B = "b";
start syntax C = "c" | A C B;

str input = "";
int cursor = -1;

private void initParse(str s) { input = s; cursor = 0; }

private str lookahead() = cursor < size(input) ? input[cursor] : "$";

private void nextChar(){
 cursor += 1;
}

public bool endOfString() = lookahead() == "$";

public bool parseC(str s){
 initParse(s);
 return parseC() && endOfString();
}

input

cursor

lookahead()

nextChar()

$

Grammars and Parsing 69

Parser
syntax A = "a";
syntax B = "b";
start syntax C = "c" | A C B;

public bool parseTerm(str term){
 if(lookahead() == term){
 nextChar();
 return true;
 }
 return false;
}

public bool parseA() = parseTerm("a");

public bool parseB() = parseTerm("b");

public bool parseC(){
 if(lookahead() == "c")
 return parseTerm("c");
 if(lookahead() == "a"){
 parseA();
 if(parseC()){
 if(lookahead() == "b"){
 return parseB();
 }
 }
 }
 return false;
}

rascal>parseC("aaacbbb")
bool: true

rascal>parseC("aaacbb")
bool: false

Grammars and Parsing 70

Trickier Cases

● Fixed lookahead > 1 characters
● No fixed lookahead
● Alternatives overlap partially:

● Naive approach tries first alternative and then fails
but another alternative may match.

● A backtracking approach tries each alternative and
if it fails it restores the input position and tries other
alternatives.

● Generalized parsing approach: try alternatives
in parallel

Grammars and Parsing 71

Automatic Parser Generation

Syntax of L

Parser
Generator

 Parser
for L

L text
L

tree

Grammars and Parsing 72

Some Parser Generators

● Bottom-up
● Yacc/Bison, LALR(1)
● CUP, LALR(1)
● SDF, SGLR

● Top-down:
● ANTLR, LL(k)
● JavaCC, LL(k)
● Rascal, GLL+

● Except SDF and Rascal, all depend on a
scanner generator

Grammars and Parsing 73

Assessment parser implementation

● Manual parser construction

+ Good error recovery

+ Flexible combination of parsing and actions

- A lot of work

● Parser generators

+ May save a lot of work

- Complex and rigid frameworks

- Rigid actions

- Error recovery more difficult

Grammars and Parsing 74

Context-free
Grammar

Source
Code

Source
Code

Parse Table
Generator

Parse Table

Parser

Parse Tree

Lexical
Grammar

Scanner
Generator

Scanner

Scanner
Table

Scanner table
interpreter

Parse table
interpreter

Parser Generation Architecture
(table-generator)

Grammars and Parsing 75

Context-free
Grammar

Source
Code

Source
Code

Parser
Generator

Parser

Parse Tree

Lexical
Grammar

Scanner
Generator

Scanner

Executable
Scanner program

Executable
Parsing program

Parser Generation Architecture
(program-generator)

Grammars and Parsing 76

Context-free
Grammar

Source
Code

Source
Code

Parser
Generator

Scannerless Parser

Parse Tree

Lexical
Grammar

Executable
Parsing program

Parser Generation Architecture

Grammars and Parsing 77

Pragmatic Issues

● How do I get my grammar in a form accepted
by the parser generator:
● Rewriting, refactoring, renaming, ...
● May be very hard (or impossible!)

● How does the scanner get its input?
● How are scanner and parser interfaced?
● How are actions attached to grammar rules?

● Semantic actions in C/Java code + Interface
variables

● How to define error recovery?

Grammars and Parsing 78

Parsing in Rascal

● Scannerless, GLL+ parser
● Grammars can easily be composed (this is not

possible with other technologies)
● Parsing and executing Rascal code can be

mixed.
● Work in progress: error recovery.

Grammars and Parsing 79

Conclusions

● Parsing is a vital ingredient for many systems
● Formal languages, grammars, etc. are a well-

established but rather theoretical part of
computer science. Learn the basic notions!

● Not always easy to get to grips with a specific
parsing technology
● Grammar rewriting/refactoring is difficult

● Rascal's scannerless GLL+ parser makes this
unnecessary.

Grammars and Parsing 80

Grammar

Source
Code

Source
Code Parser

Parse Tree

Parser in a Bigger Picture
Call Graph Visualization

Extract
Calls

Visualize

Rules
Rules

Call Relation

{< , >,
< , >,
... }

Graph
Visualization

Grammars and Parsing 81

Grammar

Source
Code

Source
Code Parser

Parse Tree

Parser in a Bigger Picture
Compiler

Typechecker Code generator

Rules
Rules

Annotated
Parse Tree Code

Grammars and Parsing 82

Grammar

Source
Code

Source
Code Parser

Parse Tree

Parser in a Bigger Picture
Refactoring

Typechecker Refactor

Rules
Rules

Annotated
Parse Tree

Refactored
Program

Grammars and Parsing 83

Further Reading

● http://en.wikipedia.org/wiki/Chomsky_hierarchy
● D. Grune & C.J.H. Jacobs, Parsing Techniques:

A Practical Guide, Second Edition, Springer,
2008

● Tutor/Rascalopedia (Grammar, Language,

LanguageDefinition)
● Tutor/Rascal (Concepts/SyntaxDefinitionAndParsing,

Declarations/Syntaxdefinition)
● Tutor/Recipes/Languages

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83

