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Grammars and Languages are one 
of the most established areas of 
Natural Language Processing

and
Computer Science
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N. Chomsky,
Aspects of the theory of syntax,
1965
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A Language ...

● ... is a (possibly infinite) set of sentences
● Exercise:

● Give examples of finite languages
● Give examples of infinite languages
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A Grammar ...

● ... is a set of formation rules to describe the sentences 
in a language

● The Chomsky hierarchy:

● Context-sensitive languages

– Natural language processing
● Context-free languages

– Syntax of programming languages
● Regular languages

– Regular expressions, grep, lexical syntax
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Syntax Analysis (aka Parsing) ...

● ... is the process of analyzing the syntactic 
structure of a sentence.

● A recognizer only says Yes or No (+ messages) 
to the question:
● Does this sentence belong to language L?

● A parser also builds a structured representation 
when the text is syntactically correct.
● Such a “syntax tree” or “parse trees” is a 

proof how the grammar rules can be sued to 
derive the sentence.
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Why are Grammars and Parsing 
Techniques relevant?

● A grammar is a formal method to describe a 
(textual) language
● Programming languages: C, Java, C#, JavaScript
● Domain-specific languages: BibTex, Mathematica
● Data formats: log files, protocol data

● Parsing:
● Tests whether a text conforms to a grammar
● Turns a correct text into a parse tree
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A.V. Aho & J.D. Ullman,
The Theory of Parsing,
Translation and 
Compiling,
Parts I + II, 1972
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A.V. Aho, R. Sethi, 
J.D. Ullman,
Compiler, Principles, 
Techniques and 
Tools,
1986
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D. Grune, C. 
Jacobs,
Parsing Techniques,
A Practical Guide,
2008
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What is Syntax Analysis about?

● Syntax analysis (or parsing) is about 
recognizing structure in text (or the lack thereof)

● The question “Is this a textually correct Java 
program?” can be answered by syntax analysis.

● Note: other correctness aspects are outside the 
scope of parsing:
● Has this variable been declared?
● Is this expression type correct?
● Is this method called with the right parameters?
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When is Syntax Analysis Used?

● Compilers
● IDEs
● Software analysis
● Software transformation
● DSL implementations
● Natural Language processing
● Genomics (parsing of DNA fragments)
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How to define a grammar?

● Simplistic solution: finite set of acceptable 
sentences
● Problem: what to do with infinite languages?

● Realistic solution: finite recipe that describes all 
acceptable sentences

● A grammar is a finite description of a possibly 
infinite set of acceptable sentences
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Example: Tom, Dick and Harry

● Suppose we want describe a language that 
contains the following legal sentences:
● Tom
● Tom and Dick
● Tom, Dick and Harry
● Tom, Harry, Tom and Dick
● ...

● How do we find a finite recipe for this?
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The Tom, Dick and Harry Grammar

● Name -> tom
● Name -> dick
● Name -> harry
● Sentence -> Name
● Sentence -> List End
● List -> Name
● List -> List , Name
● , Name End -> and Name

Non-terminals: 
Name, Sentence, List, End

Terminals: 
tom, dick, harry, and, ,

Start Symbol: 
Sentence
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● Name -> tom
● Name -> dick
● Name -> harry
● Sentence -> Name
● Sentence -> List End
● List -> Name
● List -> List , Name
● , Name End -> and 

Name

Example

● Sentence ->
● Name -> 
● tom

● Sentence -> 
● List End -> 
● List , Name End ->
● Name , Name End ->
● tom, Name End -> 

tom, dick End ->
● tom and dick
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Variations in Notation

● Name -> tom | dick | harry
● <Name> ::= “tom” | “dick” | “harry”
● “tom” | “dick” | “harry” -> Name
● In Rascal:

● syntax Name = ”tom” | ”dick” | ”harry”;
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Chomsky’s Grammar Hierarchy

● Type-0: Recursively Enumerable
● Rules: α -> β (unrestricted)

● Type-1: Context-sensitive
● Rules: αAβ -> αγβ

● Type-2: Context-free
● Rules: A -> γ

● Type-3: Regular
● Rules: A -> a and A -> aB
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Context-free Grammar for TDH

● Name -> tom | dick | harry
● Sentence -> Name | List and Name
● List -> Name , List | Name



Grammars and Parsing 22

Exercise: What changed and Why?

● Name -> tom
● Name -> dick
● Name -> harry
● Sentence -> Name
● Sentence -> List End
● List -> Name
● List -> List , Name
● , Name End -> and 

Name

● Name -> tom 
● Name -> dick
● Name -> harry
● Sentence -> Name
● Sentence -> List and 

Name
● List -> Name
● List -> Name , List
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In practice ...

● Regular grammars used for lexical syntax:
● Keywords: if, then, while
● Constants: 123, 3.14, “a string”
● Comments: /* a comment */

● Context-free grammars used for structured and 
nested concepts:
● Class declaration
● If statement
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p o s i t i o n  : = i n i t i a l  + r a t e  *  6 0

Position := initial + rate * 60

We start with text

Consider the assignment statement:

First approximation, this is a string of characters:
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From text to tokens
p o s i t i o n  : = i n i t i a l  + r a t e  *  6 0

● The identifier position
● The assignment symbol :=
● The identifier initial
● The addition operator +
● The identifier rate
● The multiplication operator *
● The number 60
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Lexical syntax

● Regular expressions define lexical syntax:
● Literal characters: a,b,c,1,2,3
● Character classes: [a-z], [0-9]
● Operators: sequence (space), repetition (* or +), 

option (?)

● Examples:
● Identifier: [a-z][a-z0-9]*
● Number: [0-9]+
● Floating constant: [0-9]*.[0-9]*(e-[0-9]+)
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Lexical syntax

● Regular expressions can be implemented with 
a finite automaton

● Consider [a-z][a-z0-9]*

Start
[a-z]

Start

[a-z0-9]*
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identifier

position :=

identifier

initial + *

identifier number

rate 60

From text to tokens

p o s i t i o n  : = i n i t i a l  + r a t e  *  6 0

Classify characters by lexical category:
● Tokenization
● Lexical analysis
● Lexical scanning
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assignment statement

identifier

expression

expression

expression expression

expression

position :=

identifier

initial + *

identifier number

rate 60

From Tokens to Parse Tree
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Expression Grammar

The hierarchical structure of expressions can be 
described by recursive rules:

1. Any Identifier is an expression

2. Any Number is an expression

3. If Expression
1
 and Expression

2
 are expressions 

then so are:

● Expression
1
 + Expression

2

● Expression
1
 * Expression

2

● ( Expression
1
 )



Grammars and Parsing 31

Statement Grammar

1. If Identifier
1
 is an identifier and Expression

1
 is 

an expression then the following is a statement:

● Identifier
1
 := Expression

1

2. If Expression
1
 is an expression and Statement

1
 

is an statement then the following are statements:

● while ( Expression
1
 ) Statement

1

● if ( Expression
1
) then Statement

1
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How do we get a parser?

Use a parser generator
● Pro: regenerate when grammar changes
● Pro; recognized language is exactly known
● Pro: less effort
● Con: Grammar has to fit in the grammar class 

accepted by the parser generator (this may be very 
hard!)

● Con: mixing of parsing and other actions somewhat 
restricted

● Con: limited error recovery
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Language A

start syntax A = "a";

parseTreeViewer(#start[A])
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Language AB

start syntax AB = "a" "b";

parseTreeViewer(#start[AB])
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Language AB

start syntax AB = "a" "b";

parseTreeViewer(#start[AB])
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Language AB (with layout)

layout Whitespace = [\ \t\n]*;
start syntax AB = "a" "b";

parseTreeViewer(#start[AB])
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Language AB2
layout Whitespace = [\ \t\n]*;
syntax A = "a";
syntax B = "b";
start syntax AB2 = A B;

parseTreeViewer(#start[AB2])
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Language C
layout Whitespace = [\ \t\n]*;
syntax A = "a";
syntax B = "b";
start syntax C = "c" | A C B;

parseTreeViewer(#start[C])
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Language E
layout Whitespace = [\ \t\n]*;            
lexical Integer = [0-9]+;
start syntax E = Integer
               | E "*" E
               | E "+" E
               | "(" E ")"
               ;

parseTreeViewer(#start[E])
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Language E: ambiguity

parseTreeViewer(#start[E])
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Language E: Using Parentheses

parseTreeViewer(#start[E])
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Language E1: Define Priority
layout Whitespace = [\ \t\n]*;
lexical Integer = [0-9]+;       
start syntax E1 = Integer
               | E1 "*" E1
               > E1 "+" E1
               | "(" E1 ")"
               ;

> defines that E1 “*” E1
has higher priority than

E1 “+” E1

parseTreeViewer(#start[E1])
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Language E2: Extra non-terminals
layout Whitespace = [\ \t\n]*;
lexical Integer = [0-9]+;
start syntax E2 = E2 "+" T | T;
syntax T = T "*" P | P;
syntax P = "(" E2 ")" | Integer;

parseTreeViewer(#start[E2])
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Language La0: 
List of zero or more a's

start syntax La0 = "a"*;

parseTreeViewer(#start[La0])
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Language La0: 
List of one or more a's

start syntax La1 = "a"+;

parseTreeViewer(#start[La1])
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Language LaS0: List of zero or more 
a's separated by comma's

start syntax LaS0 = {"a" ","}*;

parseTreeViewer(#start[LaS0])
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Language LaS1: List of one or more 
a's separated by comma's

start syntax LaS1 = {"a" ","}+;

parseTreeViewer(#start[LaS1])
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Language S: Statement-like

layout Whitespace = [\ \t\n]*;
                
lexical Integer = [0-9]+;
syntax E1 = Integer
          | E1 "*" E1
          > E1 "+" E1
          | "(" E1 ")"
          ;
lexical Id = [a-z][a-z0-9]*;
               
start syntax S =
     Id "=" E1 
   | "while" E1 "do" {S ";"}+ "od"
   ;

parseTreeViewer(#start[S])
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What is a grammar?

● A context-free grammar is 4-tuple G=(N,Σ,P,S)
● N is a set of nonterminals
● Σ is a set of terminals (literal symbols, disjoint 

from N)
● P is a set of production rules of the form (A, α) 

with A a nonterminal, and α a list of zero or 
more terminals or nonterminals. Notation:
● A ::= α (in BNF)

● syntax A = α; (in Rascal)

● S ε N, is the start symbol.



Grammars and Parsing 50

Derivations

● A grammar is a formal system with one proof 
rule:
● α A β ═> α γ β   if A ::= γ is a production
● A is a nonterminal, α,  β, γ possibly empty lists of 

(non)terminals
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Example

● N = {E}
● Σ = { +, *, (, ), -, a}
● S = E
● P = {E::=E+E, E::=E*E, E::=( E ), E::=-E, E::= a}
● A derivation:

● E  ═> - E  ═> - ( E )  ═> - ( E + E)  ═> - ( a + E)  ═> 
- ( a + a )

● A derivation generates a sentence from the 
start symbol
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Exercise

● Give a derivation for a + a * a
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Language defined by a Grammar

● Extend the one step derivation  ═> to
● ═>* derive in zero or more steps
● ═>+ derive in one or more steps

● The language defined by a grammar                 
G = (N,Σ,P,S) is:
● L(G) = { w ε Σ* | S ═>+  w }

● A sentence w ε L(G) only contains terminals
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Derivations

● At each derivation step there are choices:
● Which nonterminal will we replace?
● Which alternative of the selected nonterminal will 

we apply?

● Two choices:
● Leftmost: always select leftmost nonterminal
● Rightmost: always select leftmost nonterminal
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Examples

● Recall our -(a+a) example
● Leftmost derivation of -(a+a):

● E  ═> - E  ═> - ( E )  ═> - ( E + E)  ═>                       
          - ( a + E)  ═> - ( a + a )

● Rightmost derivation of -(a+a):
● E  ═> - E  ═> - ( E )  ═> - ( E + E)  ═>                       

          - ( E + a)  ═> - ( a + a )
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Derivation versus parsing

● A derivation generates a sentence from the 
start symbol

● A recognizer does the inverse: it deduces the 
start symbol from the sentence

● Leftmost derivation leads to a topdown 
recognizer (LL parser)

● Rightmost derivation leads to a bottom-up 
recognizer (LR parser)
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Recognizing versus Parsing

● Recognizer:
● Is this string in the language?

● Parser:
● Is this string in the language?
● If so, return a syntax tree

● Generalized Parser:
● Idem, but may return more than one tree
● Accepts larger class of grammars
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Recall Language E

parseTreeViewer(#start[E])
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General Parsing Approaches

● Top-Down (predictive)
● Predict what you want to parse, and verify the input
● Leftmost derivation

● Bottom-Up
● Recognize token by token and infer what you are 

recognizing by combining these tokens.
● Rightmost derivation

● The type of grammar determines the parsing 
techniques that can be used
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Parsing techniques

● Top-Down
● LL(1): Left-to-right, 

Leftmost derivation, 1 
symbol lookahead

● LL(k), k symbols 
lookahead

● ...

● Bottom-Up
● LR(1): Left-to-right, 

Rightmost, 1 symbol 
lookahead

● LR(k)
● LALR(k)
● SLR(k)
● ...
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assignment statement

identifier

expression

position :=

Integer

70

Top-Down Parser
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assignment statement

identifier

expression

position :=

Integer

70

Bottom-Up Parser
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How do we get a parser?

Write it by hand
● Pro: large flexibility
● Pro: each mixing of parsing with other actions

– Type checking
– Tree building

● Pro: specialized error messages/error recovery
● Con: more effort
● Con: reprogramming needed when grammar 

changes
● Con: unclear which language is recognized
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Example: Writing a Parser
syntax A = "a";
syntax B = "b";
start syntax C = "c" | A C B;

Idea: implement three functions
bool parseA()
bool parseB()
bool parseC()

that parse the corresponding non-
terminal
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Infrastructure
syntax A = "a";
syntax B = "b";
start syntax C = "c" | A C B;

str input = "";
int cursor = -1;

private void initParse(str s) { input = s; cursor = 0; }

private str lookahead() = cursor < size(input) ? input[cursor] : "$";

private void nextChar(){
     cursor += 1;
}

public bool endOfString() = lookahead() == "$";

public bool parseC(str s){
  initParse(s);
  return parseC() && endOfString();
}

input

cursor

lookahead()

nextChar()

$
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Parser
syntax A = "a";
syntax B = "b";
start syntax C = "c" | A C B;

public bool parseTerm(str term){
  if(lookahead() == term){
     nextChar();
     return true;
  }
  return false;
}

public bool parseA() = parseTerm("a");

public bool parseB() = parseTerm("b");

public bool parseC(){
   if(lookahead() == "c")
      return parseTerm("c");
   if(lookahead() == "a"){
      parseA();
      if(parseC()){
         if(lookahead() == "b"){
            return parseB();
         }
      }
   }
   return false;
}

rascal>parseC("aaacbbb")
bool: true

rascal>parseC("aaacbb")
bool: false
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Trickier Cases

● Fixed lookahead > 1 characters
● No fixed lookahead
● Alternatives overlap partially:

● Naive approach tries first alternative and then fails 
but another alternative may match.

● A backtracking approach tries each alternative and 
if it fails it restores the input position and tries other 
alternatives.

● Generalized parsing approach: try alternatives 
in parallel
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Automatic Parser Generation

Syntax of L

Parser
Generator

 Parser 
for L

L text
L

tree
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Some Parser Generators

● Bottom-up
● Yacc/Bison, LALR(1)
● CUP, LALR(1)
● SDF, SGLR

● Top-down:
● ANTLR, LL(k)
● JavaCC, LL(k)
● Rascal, GLL+

● Except SDF and Rascal, all depend on a 
scanner generator
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Assessment parser implementation

● Manual parser construction

+ Good error recovery

+ Flexible combination of parsing and actions

- A lot of work

● Parser generators

+ May save a lot of work

- Complex and rigid frameworks

- Rigid actions

- Error recovery more difficult
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Parser Generation Architecture
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Parser Generation Architecture
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Pragmatic Issues

● How do I get my grammar in a form accepted 
by the parser generator:
● Rewriting, refactoring, renaming, ...
● May be very hard (or impossible!)

● How does the scanner get its input?
● How are scanner and parser interfaced?
● How are actions attached to grammar rules?

● Semantic actions in C/Java code + Interface 
variables

● How to define error recovery?
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Parsing in Rascal

● Scannerless, GLL+ parser
● Grammars can easily be composed (this is not 

possible with other technologies)
● Parsing and executing Rascal code can be 

mixed.
● Work in progress: error recovery.
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Conclusions

● Parsing is a vital ingredient for many systems
● Formal languages, grammars, etc. are a well-

established but rather theoretical part of 
computer science. Learn the basic notions!

● Not always easy to get to grips with a specific 
parsing technology
● Grammar rewriting/refactoring is difficult

● Rascal's scannerless GLL+ parser makes this 
unnecessary.
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Grammar

Source 
Code

Source 
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< , >,
... }

Graph
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Source 
Code Parser

Parse Tree

Parser in a Bigger Picture
Compiler
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Rules
Rules
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Parse Tree Code
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Parse Tree

Parser in a Bigger Picture
Refactoring

Typechecker Refactor

Rules
Rules
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Parse Tree
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Program
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Further Reading

● http://en.wikipedia.org/wiki/Chomsky_hierarchy
● D. Grune & C.J.H. Jacobs, Parsing Techniques: 

A Practical Guide, Second Edition, Springer, 
2008

● Tutor/Rascalopedia (Grammar, Language, 

LanguageDefinition)
● Tutor/Rascal (Concepts/SyntaxDefinitionAndParsing, 

Declarations/Syntaxdefinition)
● Tutor/Recipes/Languages
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