
 Advanced Programming: Overview 1

Advanced Programming

Overview & Introduction

● Nice to Meet You!
● Plan of the Course
● What is expected of you?
● Focus: Meta-programming

 Advanced Programming: Overview 2

Nice to Meet You!

● My background
● Your background

● Name
● Some personal background
● What is your experience with programming?

– Languages
– Projects

● What do you expect to learn in this course?

My background

● Paul Klint (see www.cwi.nl/~paulk)
● Professor in Software Engineering, UvA
● Former Head of Software Engineering,

Centrum Wiskunde & Informatica (CWI);
Now: research fellow

● Director Master Software Engineering, UvA
● Visiting professor Univ. of London (Royal

Holloway)
● Project leader ATEAMS, INRIA, France

I am interested in

● Meta-programming
● Generic language technology
● Domain specific languages (DSLs)
● Analysis/transformation/renovation of software
● Interactive learning
● Patents
● Innovation (created 3 companies, most succesful:

Software Improvement Group, www.sig.eu)

 Advanced Programming: Overview 5

www.meta-environment.org

 Advanced Programming: Overview 6

 Advanced Programming: Overview 7

 Advanced Programming: Overview 8

www.rascal-mpl.org

 Advanced Programming: Overview 9

 Advanced Programming: Overview 10

 Advanced Programming: Overview 11

Your Background

● Name
● Some personal background.
● What is your experience with programming?

● Languages
● Projects

● What do you expect to learn in this course?

 Advanced Programming: Overview 12

Plan for this Course

“Better Software via Meta-Programming”

 Advanced Programming: Overview 13

Programme (1/2)

● Overview
● Quick intro to Rascal
● Quick intro to Visualization
● Lists
● Sets
● Relations
● Datatypes: Trees and Algebraic Datatypes

 Advanced Programming: Overview 14

Programme (2/2)

● Syntax and Parsing
● A simple expression language
● A Lisp interpreter
● Type checking
● Compilation
● A software engineering perspective on meta-

programming

 Advanced Programming: Overview 15

Tools and Background Material
● Rascal website: http://www.rascal-mpl.org/

● Downloading and installing:
http://www.rascal-mpl.org/Rascal/EclipseUpdate

● All Tutor courses: http://tutor.rascal-mpl.org/

● The concepts discussed in this course:
http://tutor.rascal-mpl.org/Courses/Rascalopedia/Rascalopedia.
html

● Ask all your questions about Rascal:
http://ask.rascal-mpl.org

● The blackboard site: http://blackboard.auc.nl, course
20112012Advanced Programming

http://www.rascal-mpl.org/
http://www.rascal-mpl.org/Rascal/EclipseUpdate
http://tutor.rascal-mpl.org/
http://tutor.rascal-mpl.org/Courses/Rascalopedia/Rascalopedia.html
http://tutor.rascal-mpl.org/Courses/Rascalopedia/Rascalopedia.html
http://ask.rascal-mpl.org/
http://blackboard.auc.nl/

 Advanced Programming: Overview 16

What is expected of You?

● Attend and actively participate in classes
● Ask questions
● Participate in discussions
● Present your results

● Install Rascal
● Turn in home work
● Participate in “photo wall”

 Advanced Programming: Overview 17

Computational Thinking

● See Jeannette Wing's paper:
http://www.cs.cmu.edu/afs/cs/usr/wing/www/publications/Wing06.pdf

● Key Idea: relate computer science ideas to daily
life.

● Objective: experiment to explore whether this
helps us to understand concepts.

http://www.cs.cmu.edu/afs/cs/usr/wing/www/publications/Wing06.pdf

 Advanced Programming: Overview 18

List

 Advanced Programming: Overview 19

Tree

 Advanced Programming: Overview 20

Set

 Advanced Programming: Overview 21

Credit: Tudor Girba

 Advanced Programming: Overview 22

Queue

 Advanced Programming: Overview 23

Credit: Tudor Girba

 Advanced Programming: Overview 24

Questions about using
computational thinking

● Do you find this an interesting approach?
● Do you want to try it?
● How can we organize it?

● In some exercises you are asked to find pictures
that illustrate a concept.

● You are at the constant lookout for related pictures.
● We maintain a photo wall somewhere (Facebook? A

Volunteer?)

Problem: The Software Volcano

Mt. Etna, Sicily, Italy

The Software Volcano: Languages

● For mainframe applications 80% is COBOL!
● Figures taken from Capers Jones (Software

Productivity Research)

Distribution of languages in use, worldwide

Language Used in % of total
 COBOL 30
 Assembler 10
 C 10
 C++ 10
 550 other languages 40

● The total volume of software is estimated at
 7 * 109 function points

● 1 FP = 128 lines of C or 107 lines of COBOL
● The volume of the volcano is

● 750 Giga-lines of COBOL code, or
● 900 Giga-lines of C code

Software Volcano: Volume

Printed on paper we can wrap planet Earth
9 times!

Software Volcano: Defects

● Observation:
● on average 5 errors (bugs) per function point
● includes errors in requirements, design, coding,

documentation and bad fixes

● The software volcano, world-wide, contains
 5 * 7 * 109 Bugs = 35 Giga Bugs

This means 6 bugs per human being on
planet Earth!

Work distribution of programmers
Year New projects Enhancements Repairs Total
1950 90 3 7 100
1960 8,500 500 1,000 10,000
1970 65,000 15,000 20,000 100,000
1980 1,200,000 600,000 200,000 2,000,000
1990 3,000,000 3,000,000 1,000,000 7,000,000
2000 4,000,000 4,500,000 1,500,000 10,000,000
2010 5,000,000 7,000,000 2,000,000 14,000,000
2020 7,000,000 11,000,000 3,000,000 21,000,000

Now: 60% of the programmers work on enhancement and
repair

In 2020: only 30% of all programmers will work on new
software

A “real” system

Message

● When an industry approaches 50 years of
age it takes more workers to perform
maintenance than to build new products (ex:
automobile industry)

● Maintenance and renovation of existing
software become more and more important:
avoid that the software volcano explodes

● Meta-programming is the technique of choice
to improve upon this situation.

Solution: Meta-Programming

● Normal programs:
● Read data
● Produce data

● Meta-programs:
● Read programs (and other info related to programs

such as version repositories, test data, ...)
● Produce other programs (refactoring) or data about

those programs (metrics, bug locations,
visualizations)

Assignments Week 1
due Friday 7, 16:00 via Blackboard

● Install Eclipse and Rascal
● Search for different definitions of “meta-

programming”; argue which one is best.
● Search for at least 3 different applications of meta-

programming; summarize each and relate to your
favorite definition.

● Explain advantages and disadvantages of meta-
programming

● Search for pictures that illustrate meta-programming.
● We will discuss your solutions in class

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

