Advanced Programming

Overview & Introduction

* Nice to Meet You!

* Plan of the Course . %
. What is expected of you?
* Focus: Meta-programming

Advanced Programming: Overview 1

Nice to Meet You!

* My background
e Your background

* Name
« Some personal background

 What is your experience with programming?
- Languages
- Projects

 What do you expect to learn in this course?

Advanced Programming: Overview

My background

* Paul Klint (see www.cwi.nl/~paulk)
* Professor in Software Engineering, UVA

* Former Head of Software Engineering,
Centrum Wiskunde & Informatica (CWI),
Now: research fellow

* Director Master Software Engineering, UvA

* Visiting professor Univ. of London (Royal
Holloway)

* Project leader ATEAMS, INRIA, France

| am interested In

* Meta-programming

* Generic language technology

 Domain specific languages (DSLs)

* Analysis/transformation/renovation of software
 |nteractive learning

« Patents

* |Innovation (created 3 companies, most succesful:
Software Improvement Group, www.sig.eu)

www.meta-environment.org

Menu

Home
Download
Documentation
FAQ

Screenshots

Community

License
Contributing
MailingLists
ReleaseNotes
OpenSource

Blog

Development
Subwversion

API

Continuous build
Bugs

DevelopmentTools

Blog Download ReleaseNotes Documentation

New developments

Please note that the team of The Meta-Environment has shifted its attention to the
development of Rascal, which is intended to fulfill all requirements ASF+S5DF users
have had and much more. This means that ASF+5DF Meta-Environment will be
distributed from this site for a while longer, but no active development is going on

i i

anymore, All the activity is at http://www.rascal-mpl.org

The Meta-Environment is

a framework for language development, source code analysis and source code
transformation consisting of:

» Syntax analysis tools.
» Semantic analysis and transformation tools.
» An interactive development environment.

The Meta-Environment is an open framework that

» can be easily extended with third-party components;
» can be easily tailored, modified, or extended;
» s supported by an open source community.

The Meta-Environment is a generalization of the ASF+5DF Meta-Environment that has
been successfully used in a wide variety of analysis, transformation and renovation
projects.

Usage scenarios

News

2010-01-19

The Future of
ASF+SDF and The
Meta-Environment

2009-10-22
Software Evolution

course at UvA uses

Rascal alpha
milestone 2

2009-07-15
The introduction of

Rascal at the GTTSE

Summerschool

2009-06-27

Rascal: Preparing for

take-off

2009-02-22
Rascal, the new kid

on the block

2008-11-13
ASF+SDF Meta-
Environment 2.0.3

released

2008-09-11

On_the difference
between a release
and a release
candidate

" Meta-Environment
File Cache Tools

RS

Modules rParsetree rDehugging |

] Bytes ald| 7
=T

Pico-eval
D EntesCon

D Comments :
D Integers ‘Value—en\rirnnments|
[MatCon :
D StrCon :
[strings Ew_es Plcn Values |P||:n S]rntax|

[whitespace \‘
¢ [containers :
D List ‘ |] Pico-Tvne

¥ emacs-x@tabla.sen.cwi.nl
[y Takle

¢ [languages File Edit Options Buffers Tools aActions Move Upgrade Help

[pico =
??lpjimerpreter E}W*G@“%"%@i@@@

[Fico-values ; % Hodule basic/Comments

D S Bnnleans

[walue-erviranmm| |
o= [syntax 5

M : Cummem_s BoolCon exports

3 lexical syntax
. B2 ”[‘\n]* A -% LATOUT
Impors g e [hWEWA]+ E" -» LAYOUT
imported by 1 Whitesy conkext-free restrictions
: LAYOUT? -/- [%%]

imports
basic/Whitespace

PR PR T T e T T e
[Errors [Info | Log |

UL JUN [#F 3073 — 45 — dons

01 Jun 14:30:23 - 45 - Opening languages[pico/interpreterfPico-Yalues

01 Jun 14:20:23 - 45 - done

01 Jun 14:30:25 - 45 — Opening containers{Table

01 Jun 14:20:24 - 45 - done

01 Jun 14:30:24 - 45 - Opening containers/fList

01 Jun 14:30:25 - 45 - done

01 Jun 14:30:25 - 45 - done

idle

7
--:-—— Cowments.sdf {Fundamental) --L1--&11
% For information shout the GNU Project and its goals, type C-h C-p.

ToolBus

Description

The ToolBus is a software application architecture that utilizes a scripting language based on process algebra to describe the
communication between software tools. A ToolBus script describes a number of processes that can communicate with each
other and with tools living ocutside the ToolBus. A language-dependent adapter that translates between the internal
ToolBus data format and the data format used by the individual tools makes it possible to write every tool in the language
best suited for the task(s) it has to perform.

The global architecture is as follows:

ToolBus Coordination
Representation
Tools ATerms Computation
comman
data exchange
format

The processes inside the ToolBus (red circles) take care of the coordination of the whole application. ATerms are used to
represent the data that is shipped between ToolBus and tools. The tools (blue boxes) carry ocut the actual work. They may
be implemented in different languages (C, Java, Perl, ASF+5SDF, ...} and may also run on different computers.

The ToolBus comes with a viewer that allows the debugging of large applications. This screenshot illustrates the ToolBus
viewer in action. It shows the Meta-Environment that has justed started up and a user has requested to open a module via

the MetaStudio user-interface.

www.rascal-mpl.org

Rascal - Meta Programming Language

Home
Download WEICOI'HE tO Rascal
GettingStarted
Documentalion Rascal is a domain specific language for source code analysis and manipulation a.k.a. meta-
Q&A E programming. It is currently being developed and tested at CWIl. No formal release has been made
Sl yet, but we do provide alpha quality "previews” on the Download page.
Bugreparting
Teaching Fnr.infnrmatiu.n pleasg contact: o . i _
Binries mailto:Paul. Klint@cewi.nl Jurgen Vinju@cwi.nl Tis.van.der.StormEcwi.nl
Facts Download it to try il
Developers Rascal is powerad by
SWN =« Java
Contributing o liself
« Eclipse IMP

Copyright © 2010, CWI; This site is maintained using TWiki

Advanced Programming: Overview

Available online at www.sciencedirect.com
g Science of

“=.” ScienceDirect Computer
Programming

ELSEVIER Science of Computer Programming 64 (2007) 264285

www.elsevier.com/locate/scico

About “trivial” software patents: The IsNot case™

Jan A. Bergstra®®, Paul Klint®**

2 Informatics Institute, University of Amsterdam, Netherlands
Y Faculty of Philosophy, University of Utrecht, Netherlands
¢ Centrum voor Wiskunde en Informatica (CWI), Software Engineering Department, Netherlands

Available online 30 October 2006

Abstract

So-called “trivial” software patents undermine the patenting system and are detrimental for innovation. In this paper we use
a case-based approach to get a better understanding of this phenomenon. First, we establish a baseline for studying the relation
between software development and intellectual property rights by formulating a life cycle for the patenting system as well as three
variations of the software life cycle: the defensive patent-aware software life cycle that prevents patent infringements, the more
offensive patent-based software life cycle that aims both at preventing infringements and at creating new patents, and the [PR-based
software life cycle that considers all forms of protection of intellectual property rights including copyright and secrecy.

Next, we study an application for a software patent concerning the inequality operator and a granted European patent on memory
management. We also briefly mention other examples of trivial patents. These examples serve to clarify the issues that arise when
integrating patents in the software life cycle.

In an extensive discussion, we cover the difference between expression and idea, the role of patent claims, software patents
versus computer implemented inventions, the role of prior art, implications of software patents for open source software, for
education, and for government-funded research. We conclude the discussion with the formulation of an “integrity axiom™ for
software patent authors and owners and sketch an agenda for software patent research.

We conclude that patents are too important to be left to lawyers and economists and that a complete reinterpretation of the
patenting system from a software engineering perspective is necessary to understand all ramifications of software patents. We end
with explicit conclusions and policy recommendations.

(© 2006 Elsevier B.V. All rights reserved.

Keywords: Software patents; Trivial patents; Intellectual property rights; Software engineering; Patent life cycle; Software engineering life cycle;
Open source software; Prior art; Patent claims; Patent policy

Paul Klint: Selected Publications

Disclaimer

This page contains links to files in Postscript (ps), Portable Document Format (pdf) or Hypertext Markup Language (html) of articles that may be covered by
copyright. Copying or distributing these files may violate copyright law. Please note that the definitive version of each paper is the published version. Please cite
that version instead of giving an URL to the version provided here. In some cases a link is given to an author's version of a document that only differs in editing
details from the published version. In other cases a link is given to a Digital Library for which subscription maybe required.

2012

Paul Klint and Atze van der Ploeg: Compositional 2D Graphics for Free, in preparation.

* Mark Hills, Paul Klint and Jurgen Vinju: Exploring PHP Feature Usage for Static Analysis, submitted for publication.

» Mark Hills, Paul Klint and Jurgen Vinju: Meta-Language Support for Type-Safe Access to External Resources, accepted for
publication in Software Language Engineering 2012 (SLE 2012), 2012.

» Mark Hills, Paul Klint and Jurgen Vinju: Scripting a Refactoring with Rascal and Eclipse, Fifth Workshop on Refactoring Tools
2012 (WRT 2012), To be published in the ACM Digital Library, 2012. pdf.

« Mark Hills, Paul Klint, and Jurgen J. Vinju: Program Analysis Scenarios in Rascal, 9th International Workshop on Rewriting
Logic and Its Applications (WRLA 2012), Invited Paper, To be published in LNCS, 2012, pdf

« Mark Hills, Paul Klint, Tijs van der Storm, Jurgen J. Vinju: A One-Stop-Shop for Software Evolution Tool Construction.
ERCIM News 2012(88). html

2011

P Klint, B. Lisser and A. van der Ploeg, Towards a One-Stop-Shop for Analysis, Transformation and Visualization of Software,
Proceedings Solftware Language Engineering, SLE2011. In: Proceedings of the Fourth International Conference on Software
Language Engineering (SLE 2011}, Editors: Saraiva, J. and ABmann, U. and Sloane, A .M.. Springer, 1-18,2011. pdf

« P Klint, Tijs van der Storm, Jurgen Vinju, EASY Meta-programming with Rascal, in Jodo M. Fernandes, Ralf Limmel, Joost
Visser and Jofo Saraiva (eds), Generative and Transformational Techniques in Software Engineering IIT International Summer
School, GTTSE 2009, Braga, Portugal, July 6-11, 2009, Revised Papers, LNCS Volume 6491,2011, 222--289, bib, pdf,

[Springer

Basten, H.J.S. - Klint, P. - Vinju, J.J.: Ambiguity Detection: Scaling to Scannerless In: Proceedings of the Fourth International
Conference on Software Language Engineering (SLE 2011), Editors: Saraiva, J. and ABmann, U. and Sloane, A M.. Springer,
303-323,2011. pdf

Bos, J. van den - Hills, M.A . - Klint, P. - Storm, T. van der - Vinju, J.J.: Rascal: From Algebraic Specification to Meta-
Programming In: Proceedings Second International Workshop on Algebraic Methods in Model-based Software Engineering
(AMMISE 2011), Series: Electronic Proceedings in Theoretical Computer Science, Vol. 56, pp. 15 - 32, Editors: Rusu, V and
Durén, F., 2011 pdf

« Klint, P. - Hills, M.A. - Storm, T. van der - Vinju, J.J.: A case of visitor versus interpreter pattern In: Proceedings of International
Conference on Objects, Models, Components and Patterns 2011 (49), 228-243,2011. pdf

Klint, P. - Vinju, J.J. - Hills, M.A .: RLSRunner: Linking Rascal with K for program analysis In: Proceedings of International
Conference on Software Language Engineering 2011, 344-353, Springer, 2011. pdf

» Hills, M.A. - Izamaylova, A. - Klint, P. - Ploeg, A., van der - Storm, T. van der - Vinju, J.J.: The Rascal meta-programming
language - a lab for software analysis, transformation, generation & visualization In: Proceedings of ICT .Open 2011, 353--358,
2011. pdf

2010 10

e P.Klint, T. van der Storm, J.J. Vinju: On the Impact of DSL Tools on the Maintainability of Language Implementations In:
Proceedings of Workshop on Language Descriptions, Tools and Applications 2010. ACM, 2010. bib, pdf, [ACM

Your Background

* Name
« Some personal background.

 What is your experience with programming?
 Languages
* Projects

* What do you expect to learn in this course?

Advanced Programming: Overview

11

Plan for this Course

“Better Software via Meta-Programming”

Advanced Programming: Overview

12

Programme (1/2)

Overview

Quick intro to Rascal

Quick intro to Visualization

Lists

Sets

Relations

Datatypes: Trees and Algebraic Datatypes

Advanced Programming: Overview

13

Programme (2/2)

* Syntax and Parsing

* A simple expression language
* A Lisp interpreter

* Type checking

« Compilation

* A software engineering perspective on meta-
programming

Advanced Programming: Overview

14

Tools and Background Material

 Rascal website: http://www.rascal-mpl.org/

 Downloading and installing:
http://www.rascal-mpl.org/Rascal/EclipseUpdate

o All Tutor courses: http://tutor.rascal-mpl.org/

 The concepts discussed in this course:
http://tutor.rascal-mpl.org/Courses/Rascalopedia/Rascalopedia.
html

* Ask all your questions about Rascal:
http://ask.rascal-mpl.org

 The blackboard site: nttp://blackboard.auc.nl, course
20112012Advanced Programmin

rogramming: Overview 15

http://www.rascal-mpl.org/
http://www.rascal-mpl.org/Rascal/EclipseUpdate
http://tutor.rascal-mpl.org/
http://tutor.rascal-mpl.org/Courses/Rascalopedia/Rascalopedia.html
http://tutor.rascal-mpl.org/Courses/Rascalopedia/Rascalopedia.html
http://ask.rascal-mpl.org/
http://blackboard.auc.nl/

What is expected of You?

* Attend and actively participate in classes

* Ask questions
« Participate in discussions
* Present your results

e |nstall Rascal
e Turn in home work
e Participate in “photo wall”

Advanced Programming: Overview

16

Computational Thinking

 See Jeannette Wing's paper:
http://www.cs.cmu.edu/afs/cs/usr/wing/www/publications/\Wing06.pdf

» Key ldea: relate computer science ideas to daily
life.

* Objective: experiment to explore whether this
helps us to understand concepts.

Advanced Programming: Overview 17

http://www.cs.cmu.edu/afs/cs/usr/wing/www/publications/Wing06.pdf

‘= Chart Posltion Weeks on Chart Biggest Jump Biggest Fall

List

Shawing:m11-20 2130 31-40 4150 51-60 6170 71-80 81-90 91-100 Nextchart

68% vd 3370 votes
464 conmens

We Found Love

Rihanna Featuring Calvin Harris

- We Found Love

. | News

. Rihanna's 'Love' Scores A Perf...

: Rihanna Renews 'Love’ Affair A...
. Rihanna Reveals Next Single: "...
. Rihanna's 'Love' Her Longest-L...
i Rihanna's 'Love' Matches HerL...

Set Fire To The Rain

Adele
Live at the Royal Albert Hall

Beyonce, Chris Brown, Adele Up...

Good Feeling

Flo Rida
Good Feeling

Rihanna's ‘Love’ Scores A Perf...

It Will Rain

Bruno Mars

| News

Beyonce, Chris Brown, Adele Up...

CQ

Sand Ringtona to Call

1 Also Charted On

#E68 R&B/MIp-Hop So...
#1 Pop Songs

#3 Latin Songs

#32 Dance/Club Pla...
#1 Radio Songs

o0

Send Ringtona to Call

>

Send Ringtona to Call

Send Ringtona to Call

18

Advanced Programming: Overview

19

Advanced Programming: Overview

20

Advanced Programming: Overview

Credit: Tudor Girba

21

Advanced Programming: Overview

22

State machine

.1' ¥
){h’ =

]

i

==

2

= 0

<

Credit: Tudor Girba

Advanced Programming: Overview 23

Questions about using
computational thinking

* Do you find this an interesting approach?
* Do you want to try it?

 How can we organize it?

* |n some exercises you are asked to find pictures
that illustrate a concept.

e You are at the constant lookout for related pictures.

* We maintain a photo wall somewhere (Facebook? A
Volunteer?)

Advanced Programming: Overview 24

Problem: The Software Volcano

Mt. Etna, Sicily, Italy

The Software Volcano: Languages

Distribution of languages n use, worldwide

Language Used 1 % of total
COBOL 30
Assembler 10
C 10
C++ 10
550 other languages 40

 For mainframe applications 80% is COBOL!

* Figures taken from Capers Jones (Software
Productivity Research)

Software Volcano: Volume

 The total volume of software is estimated at
7 * 10° function points

e 1 FP =128 lines of C or 107 lines of COBOL

e The volume of the volcano is

« 750 Giga-lines of COBOL code, or
* 900 Giga-lines of C code

Printed on paper we can wrap planet Earth
9 times!

Software Volcano: Defects

e Observation:

e on average 5 errors (bugs) per function point

 includes errors in requirements, design, coding,
documentation and bad fixes

 The software volcano, world-wide, contains
5*7*10° Bugs = 35 Giga Bugs

This means 6 bugs per human being on
planet Earth!

Work distribution of programmers

Year New projectsy Enhancements Repairs Total
1950 90 3 7 100
1960 8,500 500 1,000 10,000
1970 65,000 15,000 20,000 100,000
1980 1,200,000 600,000 200,000 2,000,000
1990 3,000,000 3,000,000 1,000,000 7,000,000
2000 4,000,000 4,500,000 1,500,000 10,000,000
2010 5,000,000 7,000,000 2,000,000 14,000,000
2020 7,000,000 11,000,000 3,000,000 21,000,000

Now: 60% of the programmers work on enhancement and

repair

In 2020: only 30% of all programmers will work on new

software

" system

“real

A

\
Y

S
"

Message

 WWhen an industry approaches 50 years of
age it takes more workers to perform
maintenance than to build new products (ex:
automobile industry)

* Maintenance and renovation of existing
software become more and more important:
avoid that the software volcano explodes

* Meta-programming is the technique of choice
to improve upon this situation.

Solution: Meta-Programming —

 Normal programs:

e Read data
* Produce data

* Meta-programs:

 Read programs (and other info related to programs
such as version repositories, test data, ...)

* Produce other programs (refactoring) or data about
those programs (metrics, bug locations,
visualizations)

Assignments Week 1
due Friday 7, 16:00 via Blackboard

* |nstall Eclipse and Rascal

e Search for different definitions of “meta-
programming”; argue which one is best.

» Search for at least 3 different applications of meta-
programming; summarize each and relate to your
favorite definition.

» Explain advantages and disadvantages of meta-
programming

« Search for pictures that illustrate meta-programming.
 We will discuss your solutions in class

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

