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Software Engineering is about ...

● Building large software systems
● Using state-of-the-art scientific knowledge
● Using solid engineering practices
● Dealing with evolving software
● Controlling complexity
● Controlling quality
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Societal Relevance

● All parts of society essentially depend on 
software:
– Government (taxes, social security, ...)

– Healthcare

– Services (banking and insurance companies)

– Transportation, logistics, telecommunication

– Entertainment (games, animation)

– ...
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Facts about Software

● 50% of all software projects costs more than 
twice the original budget

● One-third of all projects has a delay of 200-
300%

● 80% of all projects fails
● Failing software costs in the US 56 billion $ 

per year
● 60% of all programmers works on 

maintenance
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Software Engineering has to 
reconcile

● The requirements of the stakeholders and 
users of a system

● The engineering of the system including 
designing, building, testing, and maintaining it

● The process how to organize all the above
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Requirements
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Requirements
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Requirements

● Interviews with stakeholders
● User stories and Use cases
● Mock ups
● Early prototypes
● “Customer on site”
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User Stories

● Pattern: As a <role>,I want <goal/desire>
● As a user, I want to search for my 
customers by their first and last 
names.

● As a user closing the application, I 
want to be prompted to save if I have 
made any change in my data since the 
last save.



 Introduction Software Engineering 13

Use Case
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Message Sequence Chart
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Mock-ups
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Engineering

● Software Architecture
● Software Design
● Software Construction
● Software Quality Assessment
● Software Maintenance
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Software Architecture and Design
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Sagrada Familia
Barcelona, Spain,
1883 -- ...
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Antoni Gaudi,
1852 -- 1926
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Why is Gaudi's Design Good?

● Forms inspired by nature
● Organic integration of parts
● Each facade a separate theme
● Unconventional
● Impressive

Note: miniature models were used to study the design
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Johnson Wax Headquarters 1936-1939
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Robie House 1908 --1910
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Frank Loyd Wright
1867 -- 1959
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Why are Loyd Wright's Designs 
Good?

● Clear lines and forms
● Simple
● Design has a perfect fit with the environment
● Careful consideration how light enters building



 Introduction Software Engineering 31Gasuniegebouw, Groningen, Alberts en Huut,
“Mooiste gebouw van Nederland”, Trouw,  2007.



 Introduction Software Engineering 32

What is Software Architecture?

The software architecture of a system is the set of 
structures needed to reason about the system, 
which comprise software elements, relations among 
them, and properties of both. 

The term also refers to documentation of a system's 
"software architecture." Documenting software 
architecture facilitates communication between 
stakeholders, documents early decisions about 
high-level design, and allows reuse of design 
components and patterns between projects

http://en.wikipedia.org/wiki/Structure
http://en.wikipedia.org/wiki/Software_system
http://en.wikipedia.org/wiki/Stakeholder_(corporate)
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Software Architecture
Client-server architecture
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Software Architecture
Service Bus
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What is Software Design?

Software design is a process of problem-
solving and planning for a software 
solution. After the purpose and 
specifications of software are determined, 
software developers will design or employ 
designers to develop a plan for a solution. 
It includes low-level component and 
algorithm implementation issues as well as 
the architectural view. Source: Wikipedia

http://en.wikipedia.org/wiki/Software
http://en.wikipedia.org/wiki/Software_developer
http://en.wikipedia.org/wiki/Design
http://en.wikipedia.org/wiki/Designer
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Software Design

● Design Patterns
● Algorithm Design
● Data design
● Unclear separation between high-level and 

low-level concerns
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SW Design is a “Wicked” Problem

● No definite formulation of the problem
● No stopping rule: we never reach “the” solution
● Solution not true/false but only good/bad. Many 

acceptable solutions
● Every solution may lead to other wicked 

problems
● Source: Van Vliet, Software Engineering
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Global SW Design Strategies

Top-down: start from problem domain 
– Pro: good fit with the requirements, global picture

– Con: unclear whether you can reach good (efficient) 
solution at the code level

Bottom-up: start from solutions domain
– Pro: good solution for local problems

– Con: unclear whether you will eventually satisfy the 
global requirements

YoYo: reconcile these strategies
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YoYo Design

● Start with global, top-down, design
● Do bottom-up design of selected parts to verify 

that detailed design is feasible
● Integrate with (and change) global design
● Repeat
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Software Construction

● Programming Languages
● Paradigms: imperative – OO – functional – ...
● Approaches:

– Design Patterns

– Domain-specific Languages (DSLs)

– Model-driven

– Aspect-oriented programming

● Tools: IDEs, debuggers, test tools, version 
management, ...
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Software Quality Assessment

● Software complies with requirements and is 
functionally correct?

● Non-functional quality aspects:
– Performance, reliability, security, maintainability, 

documentation, ease-of-use, ...

● Rule of thumb: the earlier a problem is found, 
the cheaper you can fix it:
– Requirements (1x); Post-release (100x)
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Code Review

● Interactive session, where a developer 
explains his/her code to colleagues

● Finds more errors than any other technique!
● Pair-programming (discussed later) supports 

this



 Introduction Software Engineering 43

The Word “bug”

● In relay-based machines 
little insects could disrupt 
machine operation

● Here a moth found in the 
Harvard Mark II

● Now used for software 
errors

● Debugging: removing 
errors
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Testing

● “Testing can only show the presence of bugs, not their 
absence” (Edsger Dijkstra)

● White-box testing
– During testing the implementation is known

● Black-box testing
– Implementation is unknown

● Test levels
– Unit

– Integration

– System
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Manual Unit Testing

● Manually write test cases that exercise a 
function for average values and boundary 
values

● Example: test cases for a list sort function:
– Empty list

– Non-empty, sorted, lists

– Non-empty, reversely sorted, lists

– Random lists of various sizes
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Automatic Unit Testing

● Write a predicate isSorted to test that a list is 
sorted.

● bool testSort(list[int] L) = isSorted(sort(L))
● Randomly generate lists and use testSort as 

oracle.
● This approach is called QuickCheck and is 

highly effective.
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Test Tools for the Rascal 
programmer

● test is a function modifier, currently for 
Boolean functions without parameters.

● Use :test on the command line to run all test 
functions

● A Master's project is well-advanced to add 
QuickCheck functionality to Rascal's test 
framework.
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Testing Rascal itself

● Thousands of tests for 
basic language 
elements and libraries

● Code examples in Tutor 
are also executed and 
also act as tests.

● Developer and tester 
should wear different 
“hats”
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Testing the Integer Operators
@Test
public void testInt()
{
assertTrue(runTest("1 == 1;"));
assertTrue(runTest("1 != 2;"));

assertTrue(runTest("-1 == -1;"));
assertTrue(runTest("-1 != 1;"));

assertTrue(runTest("1 + 1 == 2;"));
assertTrue(runTest("-1 + 2 == 1;"));
assertTrue(runTest("1 + (-2) == -1;"));

assertTrue(runTest("2 - 1 == 1;"));
assertTrue(runTest("2 - 3 == -1;"));
assertTrue(runTest("2 - -1 == 3;"));
assertTrue(runTest("-2 - 1 == -3;"));

assertTrue(runTest("2 * 3 == 6;"));
assertTrue(runTest("-2 * 3 == -6;"));
assertTrue(runTest("2 * (-3) == -6;"));
assertTrue(runTest("-2 * (-3) == 6;"));

assertTrue(runTest("8 / 4 == 2;"));
assertTrue(runTest("-8 / 4 == -2;"));
assertTrue(runTest("8 / -4 == -2;"));
assertTrue(runTest("-8 / -4 == 2;"));

assertTrue(runTest("7 / 2 == 3;"));
assertTrue(runTest("-7 / 2 == -3;"));
assertTrue(runTest("7 / -2 == -3;"));
assertTrue(runTest("-7 / -2 == 3;"));

assertTrue(runTest("0 / 5 == 0;"));
assertTrue(runTest("5 / 1 == 5;"));

assertTrue(runTest("5 % 2 == 1;"));
assertTrue(runTest("-5 % 2 == -1;"));
assertTrue(runTest("5 % -2 == 1;"));

assertTrue(runTest("-2 <= -1;"));
assertTrue(runTest("-2 <= 1;"));
assertTrue(runTest("1 <= 2;"));
assertTrue(runTest("2 <= 2;"));
assertFalse(runTest("2 <= 1;"));

assertTrue(runTest("-2 < -1;"));
assertTrue(runTest("-2 < 1;"));
assertTrue(runTest("1 < 2;"));
assertFalse(runTest("2 < 2;"));

assertTrue(runTest("-1 >= -2;"));
assertTrue(runTest("1 >= -1;"));
assertTrue(runTest("2 >= 1;"));
assertTrue(runTest("2 >= 2;"));
assertFalse(runTest("1 >= 2;"));

assertTrue(runTest("-1 > -2;"));
assertTrue(runTest("1 > -1;"));
assertTrue(runTest("2 > 1;"));
assertFalse(runTest("2 > 2;"));
assertFalse(runTest("1 > 2;"));

assertTrue(runTest("(3 > 2 ? 3 : 2) == 3;"));

}
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Testing Sort

@Test
public void sort() {

prepare("import List;");

assertTrue(runTestInSameEvaluator("{List::sort([]) == [];}"));
assertTrue(runTestInSameEvaluator("{sort([]) == [];}"));
assertTrue(runTestInSameEvaluator("{List::sort([1]) == [1];}"));
assertTrue(runTestInSameEvaluator("{sort([1]) == [1];}"));
assertTrue(runTestInSameEvaluator("{List::sort([2, 1]) == [1,2];}"));
assertTrue(runTestInSameEvaluator("{sort([2, 1]) == [1,2];}"));
assertTrue(runTestInSameEvaluator("{List::sort([2,-1,4,-2,3]) == [-2,-1,2,3, 4];}"));
assertTrue(runTestInSameEvaluator("{sort([2,-1,4,-2,3]) == [-2,-1,2,3, 4];}"));
}
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Test Driven Developmen (TDD)

● Write test cases first (they act as a 
specification)

● Then write the implementation of the code that 
is tested
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The Software Process
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Software Process

● All aspects of the software life cycle
● Two main styles:

– Waterfall

– Agile
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Waterfall Model

Requirements

Design

Implementation

Verification

Maintenance
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Waterfall Model

● All steps are traceable
● Solid engineering practices
● Long development cycles
● Not so easy to steer the project
● Much bureaucracy
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Agile Development

● Originally called Extreme Programming
● Agile Manifesto
● Agile Principles
● Agile Practices
● Large commercial interests in “selling” you 

agile methods
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Agile Principles
● Customer satisfaction by rapid delivery of useful software
● Welcome changing requirements, even late in development
● Working software is delivered frequently (weeks, not months)
● Working software is the principal measure of progress
● Sustainable development, able to maintain a constant pace
● Daily co-operation between business people and developers
● Face-to-face conversation is the best form of communication

    (co-location)
● Projects are built around motivated, trusted, individuals
● Continuous attention to technical excellence and good design
● Simplicity- The art of maximizing the amount of work not done

    - is essential
● Self-organizing teams
● Regular adaptation to changing circumstances
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Agile Practices

● Pair programming
● Design patterns
● Continuous Integration
● Test-driven development
● Automated unit testing
● Refactoring
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Agile Development

● Many agile approaches: SCRUM, Kanban, XP, 
DSDM

● There is no scientific proof that waterfall 
methods or agile methods are “better”
– We have done various studies; it is hard to obtain 

and compare data

● The influence of individual programmers is 
large (10x difference between individuals)
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Software Engineering

● At the core of
– Web technologies

– Mobile applications

– Gaming

– Big Data

– Scientific computing

● Many faces:
– Technical

– Human

– Organizational
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