
A Quick Overview of
 Software Engineering

Paul Klint

 Introduction Software Engineering 2

Apologies for q
uoting

some Dutch

newspapers

 Introduction Software Engineering 3

 Introduction Software Engineering 4

 Introduction Software Engineering 5

Software Engineering is about ...

● Building large software systems
● Using state-of-the-art scientific knowledge
● Using solid engineering practices
● Dealing with evolving software
● Controlling complexity
● Controlling quality

 Introduction Software Engineering 6

Societal Relevance

● All parts of society essentially depend on
software:
– Government (taxes, social security, ...)

– Healthcare

– Services (banking and insurance companies)

– Transportation, logistics, telecommunication

– Entertainment (games, animation)

– ...

 Introduction Software Engineering 7

Facts about Software

● 50% of all software projects costs more than
twice the original budget

● One-third of all projects has a delay of 200-
300%

● 80% of all projects fails
● Failing software costs in the US 56 billion $

per year
● 60% of all programmers works on

maintenance

 Introduction Software Engineering 8

Software Engineering has to
reconcile

● The requirements of the stakeholders and
users of a system

● The engineering of the system including
designing, building, testing, and maintaining it

● The process how to organize all the above

 Introduction Software Engineering 9

Requirements

 Introduction Software Engineering 10

Requirements

 Introduction Software Engineering 11

Requirements

● Interviews with stakeholders
● User stories and Use cases
● Mock ups
● Early prototypes
● “Customer on site”

 Introduction Software Engineering 12

User Stories

● Pattern: As a <role>,I want <goal/desire>
● As a user, I want to search for my
customers by their first and last
names.

● As a user closing the application, I
want to be prompted to save if I have
made any change in my data since the
last save.

 Introduction Software Engineering 13

Use Case

 Introduction Software Engineering 14

Message Sequence Chart

 Introduction Software Engineering 15

Mock-ups

 Introduction Software Engineering 16

Engineering

● Software Architecture
● Software Design
● Software Construction
● Software Quality Assessment
● Software Maintenance

 Introduction Software Engineering 17

Software Architecture and Design

 Introduction Software Engineering 18

Sagrada Familia
Barcelona, Spain,
1883 -- ...

 Introduction Software Engineering 19

 Introduction Software Engineering 20

 Introduction Software Engineering 21

 Introduction Software Engineering 22

 Introduction Software Engineering 23

 Introduction Software Engineering 24

Antoni Gaudi,
1852 -- 1926

 Introduction Software Engineering 25

Why is Gaudi's Design Good?

● Forms inspired by nature
● Organic integration of parts
● Each facade a separate theme
● Unconventional
● Impressive

Note: miniature models were used to study the design

 Introduction Software Engineering 26

Johnson Wax Headquarters 1936-1939

 Introduction Software Engineering 27Fallingwater, 1935

 Introduction Software Engineering 28
Robie House 1908 --1910

 Introduction Software Engineering 29

Frank Loyd Wright
1867 -- 1959

 Introduction Software Engineering 30

Why are Loyd Wright's Designs
Good?

● Clear lines and forms
● Simple
● Design has a perfect fit with the environment
● Careful consideration how light enters building

 Introduction Software Engineering 31Gasuniegebouw, Groningen, Alberts en Huut,
“Mooiste gebouw van Nederland”, Trouw, 2007.

 Introduction Software Engineering 32

What is Software Architecture?

The software architecture of a system is the set of
structures needed to reason about the system,
which comprise software elements, relations among
them, and properties of both.

The term also refers to documentation of a system's
"software architecture." Documenting software
architecture facilitates communication between
stakeholders, documents early decisions about
high-level design, and allows reuse of design
components and patterns between projects

http://en.wikipedia.org/wiki/Structure
http://en.wikipedia.org/wiki/Software_system
http://en.wikipedia.org/wiki/Stakeholder_(corporate)

 Introduction Software Engineering 33

Software Architecture
Client-server architecture

 Introduction Software Engineering 34

Software Architecture
Service Bus

 Introduction Software Engineering 35

What is Software Design?

Software design is a process of problem-
solving and planning for a software
solution. After the purpose and
specifications of software are determined,
software developers will design or employ
designers to develop a plan for a solution.
It includes low-level component and
algorithm implementation issues as well as
the architectural view. Source: Wikipedia

http://en.wikipedia.org/wiki/Software
http://en.wikipedia.org/wiki/Software_developer
http://en.wikipedia.org/wiki/Design
http://en.wikipedia.org/wiki/Designer

 Introduction Software Engineering 36

Software Design

● Design Patterns
● Algorithm Design
● Data design
● Unclear separation between high-level and

low-level concerns

 Introduction Software Engineering 37

SW Design is a “Wicked” Problem

● No definite formulation of the problem
● No stopping rule: we never reach “the” solution
● Solution not true/false but only good/bad. Many

acceptable solutions
● Every solution may lead to other wicked

problems
● Source: Van Vliet, Software Engineering

 Introduction Software Engineering 38

Global SW Design Strategies

Top-down: start from problem domain
– Pro: good fit with the requirements, global picture

– Con: unclear whether you can reach good (efficient)
solution at the code level

Bottom-up: start from solutions domain
– Pro: good solution for local problems

– Con: unclear whether you will eventually satisfy the
global requirements

YoYo: reconcile these strategies

 Introduction Software Engineering 39

YoYo Design

● Start with global, top-down, design
● Do bottom-up design of selected parts to verify

that detailed design is feasible
● Integrate with (and change) global design
● Repeat

 Introduction Software Engineering 40

Software Construction

● Programming Languages
● Paradigms: imperative – OO – functional – ...
● Approaches:

– Design Patterns

– Domain-specific Languages (DSLs)

– Model-driven

– Aspect-oriented programming

● Tools: IDEs, debuggers, test tools, version
management, ...

 Introduction Software Engineering 41

Software Quality Assessment

● Software complies with requirements and is
functionally correct?

● Non-functional quality aspects:
– Performance, reliability, security, maintainability,

documentation, ease-of-use, ...

● Rule of thumb: the earlier a problem is found,
the cheaper you can fix it:
– Requirements (1x); Post-release (100x)

 Introduction Software Engineering 42

Code Review

● Interactive session, where a developer
explains his/her code to colleagues

● Finds more errors than any other technique!
● Pair-programming (discussed later) supports

this

 Introduction Software Engineering 43

The Word “bug”

● In relay-based machines
little insects could disrupt
machine operation

● Here a moth found in the
Harvard Mark II

● Now used for software
errors

● Debugging: removing
errors

 Introduction Software Engineering 44

Testing

● “Testing can only show the presence of bugs, not their
absence” (Edsger Dijkstra)

● White-box testing
– During testing the implementation is known

● Black-box testing
– Implementation is unknown

● Test levels
– Unit

– Integration

– System

 Introduction Software Engineering 45

Manual Unit Testing

● Manually write test cases that exercise a
function for average values and boundary
values

● Example: test cases for a list sort function:
– Empty list

– Non-empty, sorted, lists

– Non-empty, reversely sorted, lists

– Random lists of various sizes

 Introduction Software Engineering 46

Automatic Unit Testing

● Write a predicate isSorted to test that a list is
sorted.

● bool testSort(list[int] L) = isSorted(sort(L))
● Randomly generate lists and use testSort as

oracle.
● This approach is called QuickCheck and is

highly effective.

 Introduction Software Engineering 47

Test Tools for the Rascal
programmer

● test is a function modifier, currently for
Boolean functions without parameters.

● Use :test on the command line to run all test
functions

● A Master's project is well-advanced to add
QuickCheck functionality to Rascal's test
framework.

 Introduction Software Engineering 48

Testing Rascal itself

● Thousands of tests for
basic language
elements and libraries

● Code examples in Tutor
are also executed and
also act as tests.

● Developer and tester
should wear different
“hats”

 Introduction Software Engineering 49

Testing the Integer Operators
@Test
public void testInt()
{
assertTrue(runTest("1 == 1;"));
assertTrue(runTest("1 != 2;"));

assertTrue(runTest("-1 == -1;"));
assertTrue(runTest("-1 != 1;"));

assertTrue(runTest("1 + 1 == 2;"));
assertTrue(runTest("-1 + 2 == 1;"));
assertTrue(runTest("1 + (-2) == -1;"));

assertTrue(runTest("2 - 1 == 1;"));
assertTrue(runTest("2 - 3 == -1;"));
assertTrue(runTest("2 - -1 == 3;"));
assertTrue(runTest("-2 - 1 == -3;"));

assertTrue(runTest("2 * 3 == 6;"));
assertTrue(runTest("-2 * 3 == -6;"));
assertTrue(runTest("2 * (-3) == -6;"));
assertTrue(runTest("-2 * (-3) == 6;"));

assertTrue(runTest("8 / 4 == 2;"));
assertTrue(runTest("-8 / 4 == -2;"));
assertTrue(runTest("8 / -4 == -2;"));
assertTrue(runTest("-8 / -4 == 2;"));

assertTrue(runTest("7 / 2 == 3;"));
assertTrue(runTest("-7 / 2 == -3;"));
assertTrue(runTest("7 / -2 == -3;"));
assertTrue(runTest("-7 / -2 == 3;"));

assertTrue(runTest("0 / 5 == 0;"));
assertTrue(runTest("5 / 1 == 5;"));

assertTrue(runTest("5 % 2 == 1;"));
assertTrue(runTest("-5 % 2 == -1;"));
assertTrue(runTest("5 % -2 == 1;"));

assertTrue(runTest("-2 <= -1;"));
assertTrue(runTest("-2 <= 1;"));
assertTrue(runTest("1 <= 2;"));
assertTrue(runTest("2 <= 2;"));
assertFalse(runTest("2 <= 1;"));

assertTrue(runTest("-2 < -1;"));
assertTrue(runTest("-2 < 1;"));
assertTrue(runTest("1 < 2;"));
assertFalse(runTest("2 < 2;"));

assertTrue(runTest("-1 >= -2;"));
assertTrue(runTest("1 >= -1;"));
assertTrue(runTest("2 >= 1;"));
assertTrue(runTest("2 >= 2;"));
assertFalse(runTest("1 >= 2;"));

assertTrue(runTest("-1 > -2;"));
assertTrue(runTest("1 > -1;"));
assertTrue(runTest("2 > 1;"));
assertFalse(runTest("2 > 2;"));
assertFalse(runTest("1 > 2;"));

assertTrue(runTest("(3 > 2 ? 3 : 2) == 3;"));

}

 Introduction Software Engineering 50

Testing Sort

@Test
public void sort() {

prepare("import List;");

assertTrue(runTestInSameEvaluator("{List::sort([]) == [];}"));
assertTrue(runTestInSameEvaluator("{sort([]) == [];}"));
assertTrue(runTestInSameEvaluator("{List::sort([1]) == [1];}"));
assertTrue(runTestInSameEvaluator("{sort([1]) == [1];}"));
assertTrue(runTestInSameEvaluator("{List::sort([2, 1]) == [1,2];}"));
assertTrue(runTestInSameEvaluator("{sort([2, 1]) == [1,2];}"));
assertTrue(runTestInSameEvaluator("{List::sort([2,-1,4,-2,3]) == [-2,-1,2,3, 4];}"));
assertTrue(runTestInSameEvaluator("{sort([2,-1,4,-2,3]) == [-2,-1,2,3, 4];}"));
}

 Introduction Software Engineering 51

Test Driven Developmen (TDD)

● Write test cases first (they act as a
specification)

● Then write the implementation of the code that
is tested

 Introduction Software Engineering 52

The Software Process

 Introduction Software Engineering 53

Software Process

● All aspects of the software life cycle
● Two main styles:

– Waterfall

– Agile

 Introduction Software Engineering 54

Waterfall Model

Requirements

Design

Implementation

Verification

Maintenance

 Introduction Software Engineering 55

Waterfall Model

● All steps are traceable
● Solid engineering practices
● Long development cycles
● Not so easy to steer the project
● Much bureaucracy

 Introduction Software Engineering 56

Agile Development

● Originally called Extreme Programming
● Agile Manifesto
● Agile Principles
● Agile Practices
● Large commercial interests in “selling” you

agile methods

 Introduction Software Engineering 57

 Introduction Software Engineering 58

Agile Principles
● Customer satisfaction by rapid delivery of useful software
● Welcome changing requirements, even late in development
● Working software is delivered frequently (weeks, not months)
● Working software is the principal measure of progress
● Sustainable development, able to maintain a constant pace
● Daily co-operation between business people and developers
● Face-to-face conversation is the best form of communication

 (co-location)
● Projects are built around motivated, trusted, individuals
● Continuous attention to technical excellence and good design
● Simplicity- The art of maximizing the amount of work not done

 - is essential
● Self-organizing teams
● Regular adaptation to changing circumstances

 Introduction Software Engineering 59

Agile Practices

● Pair programming
● Design patterns
● Continuous Integration
● Test-driven development
● Automated unit testing
● Refactoring

 Introduction Software Engineering 60

Agile Development

● Many agile approaches: SCRUM, Kanban, XP,
DSDM

● There is no scientific proof that waterfall
methods or agile methods are “better”
– We have done various studies; it is hard to obtain

and compare data

● The influence of individual programmers is
large (10x difference between individuals)

 Introduction Software Engineering 61

Software Engineering

● At the core of
– Web technologies

– Mobile applications

– Gaming

– Big Data

– Scientific computing

● Many faces:
– Technical

– Human

– Organizational

 Introduction Software Engineering 62

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62

