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Preface

This thesis presents results of four years of research that I performed at the
CWI and the University of Amsterdam (UvA). I started this research in 1998
at the UvA with a project on pretty-printing (or happy-printing as Margreet
Hovenkamp prefers to call it). The project was concerned with developing
generic pretty-print technology, and with integrating it in the ASF+SDF Meta-
Environment. Although I did develop the technology (which is presented in
Chapter 4), happy printing is still not a feature that the ASF+SDF Meta-En-
vironment supports. The reason is that reusing the pretty-print technology in
different applications (such as the ASF+SDF Meta-Environment) turned out to
be rather complicated.

Later, I realized that ever since my Master’s, I have been interested in this
reuse aspect of computer science. Therefore, it comes as no surprise that soft-
ware reuse forms the connection between my research projects. In this thesis
I present the techniques developed in these projects and I discuss how they
help to improve software reuse. Now they only have to be applied, in order to
integrate the pretty-print technology in the ASF+SDF Meta-Environment . . .

Many people contributed to the development of this thesis. Below I would
like to thank them.

First of all, I would like to thank Paul Klint, my promotor, who has offered
me a creative and inspiring research environment, both at the UvA and the
CWI. We first met when I was considering to move to the UvA, halfway my
study. He made this decision a very easy one. The move to Paul’s group,
awakened my general interest in academic research. In particular, my interest
in computer science was born, which inspired me in writing this thesis.

I am also grateful to my co-promotor, Arie van Deursen, who taught me
almost anything about writing good research papers. He assisted me during
the writing of most of the articles on which this thesis is based. I enjoyed the
pleasant discussions we had and appreciate his never-ending enthusiasm for
my ideas. We also wrote an article together (see Chapter 7) and I hope to
continue our cooperation in the future.

I thank the members of the reading committee: dr.ing. Krzysztof Czarnecki,
prof.dr. Jan Bosch, dr. Frank van der Linden, prof.dr. Jan Bergstra, prof.drs.
Maarten Boasson, and prof.dr. Peter Sloot, for carefully refereeing this thesis.
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Last but not least, he was my work mate. He co-authored Chapters 2 and 3,
but we also had plenty of other joint projects. I hope we will continue our
cooperation in the future.

Leon Moonen was my second room mate. I will never forget our hike in
Ireland. How we almost got lost in the rain and the mist, and how we had
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Eelco Visser has been an inspiring colleague who has supported my ideas
with much enthusiasm. He always had a solution at hand for any of my re-
search problems. Together with Joost Visser, we initiated XT (see Chapter 3),
perhaps the first bottom-up strategy for promoting the programming language
Stratego. I am also proud that I was Eelco Visser’s first Master’s student.

Ramin Monajemi has been a close friend and colleague since we became
partners as student assistants. We visited many of Amsterdam’s pubs, where we
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C H A P T E R 1

Introduction

1.1 Software reuse

Software reuse is a means to improve the practice of software engineering by
using existing software artifacts during the construction of new software sys-
tems [92]. Reuse aims at increasing the productivity and quality in large-scale
software development [130]. The productivity of software development can be
increased because for the development of a new system not all software needs
to be developed from scratch but existing artifacts can be used (as-is) [103].
The quality of software can be increased because “proven” technology can be
reused [73].

Software reuse is not limited to source code fragments, but may include
documentation, specification, design structures and so on [61, 92]. In this
thesis we concentrate on reuse of source code fragments and of pre-compiled
units such as executable programs and libraries.

The fundamental unit of software reuse is the component [11]. Compo-
nents can be used in different contexts and compositions to form different
software systems, giving rise to component-based software development. For
example, in Figure 1.1(a) the architecture of a component-based system called
the ASF+SDF Meta-Environment is depicted. This is an environment for lan-
guage prototyping and for the construction of program transformations [27].
Concepts in this application domain include parsing, pretty-printing, compil-
ing, and debugging.

The clear separation of functionality in the ASF+SDF Meta-Environment
ensures that its components can also be used to build additional systems with.
Typical applications in this domain require parsing and pretty-printing and can
reuse the parse and pretty-print components from the ASF+SDF Meta-Envir-
onment. For instance, the program transformation depicted in Figure 1.1(b)
first parses its input, then performs the transformation (elimination of goto
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Figure 1.1 Examples of component-based software systems. (a) Architecture of the
ASF+SDF Meta-Environment [27]. (b) Architecture of a component-based program
transformation.

statements in the example), and finally it transforms the resulting program to
plain text using a pretty-printer. This application can be constructed by reusing
the parse and pretty-print components from the ASF+SDF Meta-Environment.
The goto elimination itself is then the only application-specific component that
has to be developed.

An ultimate goal of software reuse is the rise of a large component indus-
try that delivers reusable, high-quality, well-tested components. Software con-
struction then becomes a collaborative development activity because different
parts of a system are developed by different people at different institutes.

In 1968 McIlroy was the first to recognize this and to distinguish manu-
facturers which are producers of reusable components and system builders that
use them [103]. He suggested mass-produced software components by a soft-
ware component sub-industry consisting of software manufacturers dedicated
primarily to the development of reusable software components. This distinc-
tion of manufacturers and system builders yields two complete development
cycles: development for reuse and development with reuse. The first cycle is
focused on developing families of systems rather than one-of-a-kind systems,
the second development cycle is concerned with building family members [51].

Despite its attractiveness, software reuse is difficult in practice [92, 11, 69].
Software construction with mass-produced software components, for instance
in the form of Commercial Off-The-Shelf (COTS) components, as well as collab-
orative software development are therefore not common practice yet. Software
reuse is difficult because it is hard to satisfy simple requirements on software
reuse. Krueger distinguishes four such requirements (which he calls reuse tru-
isms) [92]:

1. An effective reuse technique must reduce the cognitive distance between
an initial concept and its final executable implementation. That is, it
must provide proper abstractions for reusable artifacts.



2. It must be easier to reuse an artifact than to develop it from scratch.

3. To select an artifact for reuse, you must know what is does.

4. Finding a reusable artifact must be faster than developing it from scratch.

Truisms 1, 3, and 4 require a proper abstraction mechanism in order to obtain
a conceptual understanding of reusable artifacts. Truism 2 is concerned with
technical aspects that simplify software construction from individual compo-
nents.

To make software reuse more successful, techniques are needed that assist
manufacturers in building reusable software components, and system builders
in finding, selecting, and integrating them in composite software systems. The
above reuse truisms can be used to evaluate such techniques in order to judge
their effectiveness. Software reuse techniques involve ‘abstraction’, ‘component
composition’, and ‘component granularity’. These are the central themes of this
thesis and will be discussed in more detail in the next sections.

1.2 Abstraction

A component is an abstraction consisting of an abstraction specification or in-
terface that is externally visible, and an abstraction realization or implemen-
tation that is hidden [92, 11, 116, 36]. Observe that this is a much broader
definition than the one given in [132], where components are defined as bi-
nary units.

Abstractions are hard to define for generally reusable artifacts because we
do not have many universal abstractions available that go beyond the abstrac-
tion level of stacks, lists, trees etc. [19, 44, 92]. Consequently, the cognitive
distance of such domain-independent abstractions is high and the payoff for
reusing them is relatively small.

On the other hand, software reuse can be successful in case it is domain-
specific and the domain provides proper domain concepts for reusable artifacts
(typical one-word idioms) [132, 108]. Examples are math libraries for de-
velopers familiar with mathematical concepts, and domain-specific application
generators. These domain concepts describe artifacts in terms of “what” they
do rather then “how” they do it and allow a software developer to reason in
terms of these abstractions [92].

The functionality of a software component is usually not fixed. Rather, to
improve its usability, it is often adaptable for specific needs. A component in-
terface therefore consists of a variable part and a fixed part. The variable part
corresponds to possible variants in the component’s implementation and maps
to the collection of possible implementations, the fixed part expresses invari-
ant characteristics of the component [92]. Examples of such invariants are the
(fixed) parse algorithm used in a parse component (such as LR(1) parsing),
or the maximal line length that the parser accepts as input. An example of a



possible variant is the error routine that should be called by the parse com-
ponent to report syntax errors. Instantiating the variable part of a component
corresponds to component configuration.

Combining components to form a software system implies combining their
fixed and variable parts. Combining the variable parts may easily lead to a
combinatorial explosion of possible configurations. Many of these may not be
needed for the composite system, may not be useful, or not be meaningful (i.e.,
semantically incorrect) [51, 11].

As an example, assume the goto elimination of Figure 1.1(b) is used in a
larger transformation framework where it must be combined with additional
transformations. The variable parts of the three components of the goto elimi-
nation must then be combined with all the variable parts of all other transfor-
mations in the framework. Depending on the number of transformations in the
framework this leads to complicated configuration.

Clearly, such component compositions also require abstractions. The vari-
able parts of these abstractions are subsets (or sensible combinations) of the
individual variable parts at a higher level of abstraction. For instance, the
ASF+SDF Meta-Environment is an abstraction for the composition of the six
components parser, parser generator, compiler, editor, debugger, and pretty-
printer. It will (partially) instantiate the variable parts of these components and
it will have a variable part at a higher level of abstraction than these individual
components.

Such abstractions are called layered abstractions [92] because the abstrac-
tion specification of one layer forms the implementation of the next higher
layer. A challenge is to make layered abstractions compositional such that new
layers can easily be constructed [111]. Although various approaches exist (e.g.,
GenVoca [11], Koala [112]), there is a need for more general, language-
independent solutions. Moreover, configuration validation, for instance by
modeling configuration constraints, is needed to automatically detect and pre-
vent invalid component configurations [51, 8, 9].

Abstractions for component compositions can be domain-specific and are
either technical or consumer-related. The group of products (or systems) that
can be built from technical abstractions forms a product family [115] (or sys-
tem family). The group of products that can be built from consumer-related
abstractions forms a product line. These consumer-related abstractions have a
non-technical nature and correspond to the specific needs of a selected mar-
ket. Thus, a product line is based on marketing strategy rather than on tech-
nical similarities between products [51]. Observe that a product line need
not be a product family, although that is how its greatest benefits can be
achieved [45, 51].

For example, the components in Figure 1.1 are abstractions in the domain of
language processing. The corresponding product family includes the ASF+SDF

Meta-Environment and software renovations like goto elimination. A typical
product line would be a COBOL transformation factory, supporting the features



goto elimination and copybook expansion. Individual product instances can be
configured to feature one or more of these.

The abstractions used in product families constitute the problem space. The
variability of a product family is called the configuration space and defines the
possible group of products (i.e., its family members). Specifying individual
family members by instantiating the variable part of a product family is per-
formed using terminology (or abstractions) in the problem space. The solu-
tion space contains the corresponding implementation components of a product
family together with their possible configurations [51].

Components implement an abstract-to-concrete mapping [11], or, in the ter-
minology of [92], each abstraction specification has an abstraction realiza-
tion (i.e., implementation). The same holds for layered abstractions. Con-
sequently, the abstraction specification of a product family, constituting the
problem space, has a realization in the solution space.

A challenge is to automate this abstract-to-concrete mapping such that an
implementation can automatically be derived from a configuration in the prob-
lem space. Generative programming is a software engineering paradigm that
aims at this automated mapping [51].

1.3 Component composition

With software component reuse, software systems become composite systems
(i.e., collections or compositions of application-specific and reusable compo-
nents [11]), instead of monolithic systems. The functionality of such systems
is spread over the individual components and needs to be integrated to obtain
the desired behavior of the composite system.

Components that form a system thus function as building blocks and should
be designed for integration. Integration can occur at different moments in time,
each requiring a different integration mechanism. Some integration moments
that can be distinguished on this integration time line include:

Development-time integration It is concerned with assembling reuse reposi-
tories containing all source modules of the components that constitute a
composite software system. Source integration is a technique for assem-
bling such reuse repositories and will be discussed in more detail below.

Pre compile-time integration It is concerned with merging reusable function-
ality in the source code of the system under construction. The resulting
source can benefit from the type system of the programming language
being used, and from source code level optimizations. Pre compile-time
time integration may therefore reduce run-time overhead due to method
invocations of small reused functionality. By combining it with layers of
abstractions, it can help to reduce the difficulty of scaling reuse libraries
in size and feature variants (i.e., the library scaling problem [18]). A
promising technique for pre compile-time integration is Aspect Oriented



Programming (AOP), which is a technique to weave functionality (as-
pects) at explicit positions in source code (join points) [88].1

Compile-time integration Compile-time integration is the traditional way of
reusing functionality in applications. Reusable code is stored in libraries
and linked with application-specific code to the final executable applica-
tion. The functionality is accessed using function or method invocations.
This kind of integration is language-specific and makes integration of
components implemented in different languages difficult. Systems im-
plemented in strongly typed languages can benefit from the type system
to assure that the functional composition is valid.

Distribution-time integration Component integration at distribution-time is
concerned with packaging the components that form an application such
that it can be distributed as a unit, and with the installation process of
the application. This is also referred to as ‘content delivery’ [41]. Com-
ponents can be distributed in either source or binary form. If components
are distributed in source form, then distribution-time integration should
also address building the composite system. Package managers, such as
RPM [6], are often used to build distributions of applications and to in-
stall the applications on computer systems.

Run-time integration Components in the form of executable programs or dy-
namic loadable libraries can be integrated at run-time. A standard ex-
ample is the Unix programming environment, where little tools, each
designed to perform a simple task, can be combined to form advanced
programs [87]. Integration in the Unix environment usually takes place
in pipelines without type checking. More advanced run-time integra-
tion techniques are offered by component architectures such as COM [24,
124], CORBA [109], and EJB [102], or coordination architectures such
as the TOOLBUS [16]. Functionality is accessed via message passing and
type checking is based on component interface definitions, i.e., signatures
that define the services offered by a component. Language-independence
is an important benefit of run-time integration, although it is not sup-
ported by all run-time integration mechanisms.

As an example, Figure 1.1 shows the composition of reusable components in
two different systems. The ASF+SDF Meta-Environment in Figure 1.1(a) is an
interactive system that interacts with its user via a graphical user interface. The
‘goto elimination’ transformation depicted in Figure 1.1(b), on the other hand,
is non-interactive. It transforms programs without further user interaction. The
components of the ASF+SDF Meta-Environment are therefore integrated via a
bus architecture. Communication between components can take place in any

1Observe that weaving in AOP is not restricted to compile-time, but that it can occur at any
time, even at run-time.



order and is accomplished by sending messages over the bus. For the trans-
formation system, a pipeline architecture is used because all communication
between components takes place in a fixed left-to-right direction (the output
of a component to the left, forms the input of the component to its right).

Despite these conceptually different integration techniques, the figure does
not show how these components are integrated and when they have been in-
tegrated. For instance, the pipeline might be implemented at run-time using
Unix pipes, or at compile-time using the functional composition:

pretty-print(goto-elimination(parse(input)))

Components are most often designed with a single integration mechanisms
in mind. But for the construction of composite systems all integration mech-
anisms can be combined. To make component-based software development
successful, it should not be difficult to construct composite software systems
from a wide range of components with different integration techniques. To
that end, component interfaces [11, 116, 14] and standardized exchange for-
mats are essential. Component interfaces serve to make software components
interchangeable (plug compatible) by hiding their implementations. Standard-
ized exchange formats are inevitable to easily integrate different types of com-
ponents (such as executable programs or library functions) anywhere on the
integration time line and independently of an implementation language.

In addition to the integration techniques discussed thus far, which are con-
cerned with functional integration, source integration is another technique that
is important for successful software reuse. It is performed at development-time,
in advance of all other integration techniques and is concerned with merging
all source modules, all build instructions, and all compile-time configuration of
the components that constitute a software system.

Source integration is the opposite of decomposing a software system in
reusable, independent components. From a software engineering perspective,
decomposition complicates the software engineering process, because an appli-
cation built from individual pieces is organized as a collection of components
rather than as a single unit. Consequently, it is hard to develop, maintain,
configure, and distribute such systems as a whole. The purpose of source in-
tegration is to improve this situation by merging the source modules of reused
components, as well as corresponding configuration knowledge and build in-
structions, to reconstitute a single unit.

Source integration is of particular importance when software reuse extends
project or institute boundaries [83]. Typical examples are reuse of commercial
off-the-shelf (COTS) source components and open source software reuse [37].
To promote such “third-party” software reuse, source integration techniques
including release management [71] and proper abstraction mechanisms in the
form of source code components, are essential.

A challenge of component composition is to automatically obtain all com-
ponents that constitute a system, to configure them properly, and to assemble



the software system from them. Knowing how to make these components fit
together is another key challenge.

1.4 Component granularity

The granularity of a component is not well defined (e.g., it can be a function, a
module, or a complete software system), but it affects two important properties
of a component: the payoff or benefit that is gained by reusing the component,
and the general usefulness of the component. Development of reusable soft-
ware components (development for reuse) may therefore serve two different
goals:

• Increasing the ratio of reused versus newly developed software (i.e., the
reuse level [49, 118]) of composite software systems by developing com-
ponents that provide high payoff.

• Increasing the reuse of individual components by developing components
of general usefulness.

These goals can be formulated as: “to reuse or to be reused”.
To meet the first goal (increasing the reuse level), large collections of reus-

able components, providing high payoff to programmers using them, should
be available and easily accessible. Payoff, i.e., less lines of code that need to be
written, can be increased by using large-scale components [18, 111].

Unfortunately, large-scale components tend to be more specialized for the
application domain (i.e., domain-specific). Consequently, the probability of
being reused decreases as components increase in size [18, 111, 131]. An-
other problem is that large-scale components may themselves include more
general functionality, which does not come available for reuse outside the com-
ponent [69].

Thus, to meet the second goal (increasing the reuse of individual compo-
nents), components should be made more generally applicable by restricting
their size and reducing their functionality.

For example, Figure 1.1 shows examples of large-scale reusable components
in the domain of language processing (e.g., parsers and compilers). The coarse-
grained granularity of these high-level components hides lower level compo-
nentising with less domain specificity. Since one might expect that commonal-
ities also exist between the components within each application (for instance,
for data exchange and communication in case of the ASF+SDF Meta-Environ-
ment), the granularity of software reuse depicted in the figure is not optimal.
To achieve fine-grained software reuse, components should be split in smaller
reusable units, which have more general purpose applications. As an example,
Figure 1.2, shows a more detailed view of the ASF+SDF Meta-Environment
with fine-grained software reuse.
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Figure 1.2 Architecture of the ASF+SDF Meta-Environment at the implementation
level with extensive, fine-grained software reuse between functional components. Nodes
correspond to source code components, arrows denote reuse relations, dashed nodes
denote third-party components.

It is not difficult to imagine that the development process of an application
as composition of many small components is considerably more complicated
than an application assembled from a few large-scale, domain-specific com-
ponents. The reason is that large-scale components provide higher payoff for
application builders in terms of lines of code to write [18]. Furthermore, appli-
cation builders can benefit from large-scale component reuse because domain-
specific concepts are easier to understand than low-level, generally applicable
components [13, 92]. Finally, building, testing, distributing, and deployment
are relatively easy for an application consisting of only a single component but
become complex activities when the number of components increases.

Apparently, the reuse processes “development for reuse” and “development
with reuse” have conflicting goals [13, 108]. While the first process typically
would deliver small, flexible, generally applicable components, the latter pro-
cess demands large-scale, domain-specific components (see Table 1.1). The
trade-off between component size and reuse effort yields interesting software
engineering challenges. Existing techniques for development of reusable com-
ponents, such as layered abstractions [11] and domain-specific library devel-
opment [13], should be combined with generative techniques for automated
component integration at the functional and the source code level.



Quality Granularity
Coarse-grained Fine-grained

Payoff + −
Cognitive distance + −

Software construction process + −
General usability − +

Code duplication across components − +

Table 1.1 Component granularity affects reuse benefits due to different qualities of
coarse-grained and fine-grained components.

The challenge here is to combine both goals by finding good design princi-
ples and by developing proper integration and composition techniques. These
would allow large-scale components to be decomposed into small, general
components which are more widely applicable. These smaller components can
be composed and integrated easily to offer benefits of large-scale components.

1.5 Research questions

The objective of this thesis is to develop an architecture for effective software
reuse where components can be developed by different people at different insti-
tutes, and be integrated easily in composite software systems. To establish such
collaborative software development, we distinguish development for reuse and
development with reuse.

Our research therefore concentrates on reuse techniques for both develop-
ment cycles that satisfy the reuse requirements (reuse truisms) discussed in
Section 1.1. These techniques require answers to the following research ques-
tions related to abstraction, composition, and granularity.

1.5.1 Abstraction

Domain abstractions improve the reusability of software components because
they can reduce the cognitive distance between the initial concept of a system
and its final executable implementation [92, 13, 18]. Figure 1.1 shows some
large-scale components in the domain of language processing. This suggests
that this domain provides proper abstractions for building a family of language
tools from high-level reusable components.

Question 1

How can an effective software reuse practice in the domain of language pro-
cessing be established?



1.5.2 Composition

A productive component market would deliver a wide range of components,
designed for different integration mechanisms, programmed in different pro-
gramming languages, and located at a diverse number of places. True collabo-
rative software development demands that such diverse components can easily
be composed, retrieved, and configured. However, in practice achieving such
compositionality turns out to be rather complicated.

Question 2a

How can the compositionality of components be improved and the composi-
tion process be automated?

Different people and institutes use varying techniques and infrastructure
for software development. Potential reusable software components are there-
fore often entangled in project or institute-specific configuration management
(CM) systems [40, 112], or depend on local software. Since standardization
in CM systems is lacking [112, 151] and because build processes are often not
portable [7], reuse of these components over project and institute boundaries
is difficult [83]. This hampers collaborative software development.

Question 2b

How can project and institute-specific dependencies of software components
be removed in order to promote collaborative software development?

1.5.3 Granularity

Fine-grained software reuse of many small components helps to reduce code
duplication. However, it complicates system understanding [13] since the cog-
nitive distance is high [92]. Furthermore, managing build, configuration, and
distribution processes of many small components is complicated. Large-scale
components on the other hand, increase code duplication due to commonal-
ities between components, but they provide high payoff, decrease cognitive
distance, and simplify software engineering (see Table 1.1).

Question 3

Can the conflicting goals of many, small components (fine-grained reuse)
and large-scale components (high payoff and low cognitive distance) be com-
bined?



1.6 Overview

In this thesis we seek answers to the aforementioned research questions con-
cerning abstraction, composition, and granularity. To that end, we develop
techniques to facilitate effective software reuse.

The thesis consists of two parts. In the first part (Chapters 2–4) we ad-
dress “development for reuse”, which is concerned with developing reusable
components. We develop a comprehensive architecture for component-based
software development in the domain of language processing and instantiate it
with newly developed and existing domain-specific components. The instanti-
ated architecture forms a product family in the domain of language processing.

The second part (Chapters 5–7) addresses “development with reuse”. It is
concerned with building applications from reusable components. We demon-
strate how the instantiated architecture effectively reduces development time
of complex language tools. Further, we discuss automated construction of self-
contained systems from individual source components. Finally, we discuss tech-
niques for designing, implementing, and initiating product lines, as well as for
automated assembly of individual product members from feature selections.

Below is a summary of the subjects that will be presented in the subsequent
chapters.

Chapter 2, “Grammars as Contracts” This chapter presents a framework
for software reuse in the domain of language processing. The framework is
designed to separate development and use of language components. We also
present a corresponding model for language tool development which we called
Language-Centered Software Engineering (LCSE).

Chapter 3, “XT: a Bundle of Program Transformation Tools” This chapter
discusses a collection of generative components for LCSE which forms an in-
stantiation of the architecture developed in Chapter 2. We discuss the roles of
XT’s constituents in the development process of program transformation tools,
as well as some experiences with building program transformation systems
with XT. Furthermore, we discuss a mechanism for collecting reuse statistics,
which we use in this thesis to measure the effectiveness of our reuse techniques.

The components that are bundled with XT originate from several research
projects. My contributions to XT include: design of XT’s architecture, devel-
opment of techniques for building and distributing XT (this resulted in the
technique “Source Tree Composition”, discussed in Chapter 6), development
of several general-purpose language tools, design and initiation of the Online
Grammar Base, development of several SDF grammars, and the development of
generic pretty-print technology (see Chapter 4). Appendix A summarizes the
components to which I contributed, Appendix B contains a list of additional,
third-party components that are bundled with XT.



Chapter 4, “Pretty-Printing for Software Reengineering” Pretty-printing
forms an integral part of LCSE. To promote reuse of pretty-print components,
generic (i.e., language-independent) and customizable pretty-print technology
are needed. In this chapter we present the Generic Pretty-Printer GPP and dis-
cuss the techniques that it uses to fulfill requirements in the context of software
reengineering. GPP forms a generally reusable pretty-print component in our
language-centered architecture and is part of the XT bundle discussed in Chap-
ter 3.

Chapter 5, “Cost-Effective Maintenance Tools for Proprietary Languages”
This chapter discusses LCSE in practice using the techniques and language
tool components presented in Chapters 2–4. We discuss grammar reengineer-
ing and the construction of a documentation generator for a proprietary lan-
guage dialect. We show that with LCSE the development process of languages
and tools can be shortened and that a decrease in maintenance costs can be
achieved.

Chapter 6, “Source Tree Composition” A typical problem of component-
based applications is their complicated construction and distribution. These
tasks are complicated because the structuring of a system in components usu-
ally remains visible at construction and distribution-time. Consequently, each
constituent component has to be separately retrieved, compiled, installed and
so on.

This chapter solves this problem by merging the source trees of each com-
ponent to form a self-contained implementation of the system in which the
construction and distribution tasks of individual components are combined.
This process is called Source Tree Composition.

Chapter 7, “Feature-Based Product Line Instantiation using Source-Level
Packages” Chapter 6 addresses automated assembly and configuration of
software systems from low-level, technical source code components. This chap-
ter discusses software assembly at a higher level of abstraction using software
product lines, where software products are constructed from consumer-related
feature selections.

The chapter addresses variability management, feature packaging, and a
generic approach to make instantiated (customer-specific) variability accessible
in applications.

Chapter 8, “Conclusions” This chapter formulates answers to the four re-
search questions and it collects overall metrics for the reuse techniques that
will be discussed in this thesis.



1.7 Origins of the chapters

Most of the chapters in this thesis were published before as separate papers.
We list their origin.

Chapter 2, “Grammars as Contracts”, was co-authored with Joost Visser. It was
presented in 2000 at the second international conference on Generative and
Component-Based Software Engineering (GCSE) in Erfurt, Germany [85].

Chapter 3, “XT: a Bundle of Program Transformation Tools”, was co-autho-
red with Eelco Visser and Joost Visser. It was presented in 2001 at the first
workshop on Language Descriptions, Tools and Applications (LDTA) in Genova,
Italy [84].

Chapter 4, “Pretty-Printing for Software Reengineering”, was presented in 2002
at the International Conference on Software Maintenance (ICSM) in Montréal,
Canada [80].

Chapter 5, “Cost-Effective Maintenance Tools for Proprietary Languages”, was
co-authored with Ramin Monajemi. It was presented in 2001 at the Interna-
tional Conference on Software Maintenance (ICSM) in Florence, Italy [82].

Chapter 6, “Source Tree Composition”, was presented in 2002 at the 7th Inter-
national Conference on Software Reuse (ICSR) in Austin, Texas [81].

Chapter 7, “Feature-Based Product Line Instantiation using Source-Level Pack-
ages”, was co-authored with Arie van Deursen and Tobias Kuipers. It was pre-
sented in 2002 at the second Software Product Line Conference (SPLC) in San
Diego, California [52].
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C H A P T E R 2

Grammars as Contracts

This chapter presents a framework for software reuse in the domain of lan-
guage processing. The framework is designed to separate development and use
of language components. We also present a corresponding model for component-
based language tool development, called Language-Centered Software Engineering
(LCSE).

Component-based development of language tools stands in need of meta-tool
support. This support can be offered by generation of code – libraries or full-
fledged components – from syntax definitions. We develop a comprehensive archi-
tecture for such syntax-driven meta-tooling in which grammars serve as contracts
between components. This architecture addresses exchange and processing both
of full parse trees and of abstract syntax trees, and it caters for the integration of
generated parse and pretty-print components with tree processing components.

We discuss an instantiation of the architecture for the syntax definition formal-
ism SDF, integrating both existing and newly developed meta-tools that support
SDF. The ATERM format is adopted as exchange format. This instantiation gives
special attention to adaptability, scalability, reusability, and maintainability is-
sues surrounding language tool development. The work presented in this chapter
was published earlier as [85].

2.1 Introduction

A need exists for meta-tools supporting component-based construction of lan-
guage tools. Language-oriented software engineering areas such as develop-
ment of domain-specific languages (DSLs), language engineering, and auto-
matic software renovation pose challenges to tool-developers with respect to
adaptability, scalability, and maintainability of the tool development process.
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Figure 2.1 Architecture for meta-tool support for component-based language tool de-
velopment. Bold arrows are meta-tools. Grey ellipses are generated code.

These challenges call for methods and tools that facilitate reuse. One such
method is component-based construction of language tools, and this method
needs to be supported by appropriate meta-tooling to be viable.

Component-based construction of language tools can be supported by meta-
tools that generate code – subroutine libraries or full-fledged components –
from syntax definitions. Figure 2.1 shows a global architecture for such meta-
tooling. The bold arrows depict meta-tools, and the grey ellipses depict gen-
erated code. From a syntax definition, a parse component and a pretty-print
component are generated that take plain text into trees and vice versa. From the
same syntax definition a library is generated for each supported programming
language, which is imported by components that operate on these trees. One
such component is depicted at the bottom of the picture (more would clutter
the picture). Several of these components, possibly developed in different pro-
gramming languages can interoperate seamlessly, since the imported exchange
code is generated from the same syntax definition.

In this chapter we will refine the global architecture of Figure 2.1 into a
comprehensive architecture for syntax-driven meta-tooling. This architecture
embodies the idea that grammars can serve as contracts governing all exchange
of syntax trees between components and that representation and exchange of
these trees should be supported by a common exchange format. We call the
software engineering process using this architecture Language Centered Soft-
ware Engineering (LCSE). An instantiation of the architecture is available as
part of the transformation tools package XT which will be described in the next
chapter.



This chapter is structured as follows. In Sections 2.2, 2.3, and 2.4 we will
develop several perspectives on the architecture. For each perspective we will
make an inventory of meta-languages and meta-tools and formulate require-
ments on these languages and tools. We will discuss how we instantiated this
architecture: by adopting or developing specific languages and tools meeting
these requirements. In Section 2.5 we will combine the various perspectives
thus developed into a comprehensive architecture. Applications of the pre-
sented meta-tooling will be described in Section 2.6. Sections 2.7, and 2.8
contain a discussion of related work and a summary of our contributions.

2.2 Concrete syntax definition and meta-tooling

One aspect of meta-tooling for component-based language tool development
concerns the generation of code from concrete syntax definitions (i.e., gram-
mars). Figure 2.2 shows the basic architecture of such tooling. Given a con-
crete syntax definition, parse and pretty-print components are generated by
a parser generator and a pretty-printer generator, respectively. Furthermore,
library code is generated, which is imported by tool components (Figure 2.2
shows no more than a single component to prevent clutter). These compo-
nents use the generated library code to represent parse trees (i.e. concrete
syntax trees), and to read, process, and write them. Thus, the grammar serves
as an interface description for these components, since it describes the form of
the trees that are exchanged.

A key feature of this approach is that meta-tools such as pretty-printer and
parser generators are assumed to operate on the same input grammar. The
reason for this is that having multiple grammars for these purposes introduces
enormous maintenance costs in application areas with large, rapidly changing
grammars. A grammar serving as interface definition enables smooth inter-
operation between parse, pretty-print, and tree processing components. In
fact, we want grammars to serve as contracts governing all exchange of trees
between components, and having several contracts specifying the same agree-
ment is a recipe for disagreement.

Note that our architecture deviates from existing meta-tools in the respect
that we assume that full parse trees can be produced by parsers and consumed
by pretty-printers, not just abstract syntax trees (ASTs). These parse trees con-
tain not only semantically relevant information, as do ASTs, but they addition-
ally contain nodes representing literals, layout, and comments. The reason for
allowing such concrete syntax information in trees is that many applications,
e.g. software renovation, require preservation of layout and comments during
tree transformation.

In order to satisfy our adaptability, scalability and maintainability demands,
the concrete syntax definition formalism must satisfy a number of criteria. The
syntax definition formalism must have powerful support for modularity and
reuse. It must be possible to extend languages without changing the grammar
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Figure 2.2 Architecture for concrete syntax meta-tools. The concrete syntax definition
serves as contract between components. Components that import generated library
code interoperate with each other and with generated parsers and pretty-printers by
exchanging parse trees adhering to the contractual grammar.

for the base language. This is essential, because each change to a grammar
on which tooling is based potentially leads to a modification avalanche. Also,
the grammar language must be purely declarative. If not, its reusability for
different purposes is compromised.

In our instantiation of the meta-tool architecture, the central role of con-
crete syntax definition language is fulfilled by the Syntax Definition Formalism
SDF [68, 137]. Figure 2.3 shows an example of an SDF grammar. This example
definition contains lexical and context-free syntax definitions distributed over
a number of modules. Note that the orientation of productions is flipped with
respect to BNF notation.

2.2.1 Concrete syntax definition

SDF offers powerful modularization features. Notably, it allows modules to be
mutually dependent, and it allows alternatives of the same non-terminal to be
spread across modules. For instance, the syntax of a kernel language and the
syntaxes of its extensions can be defined in separate modules. Also, mutually
dependent non-terminals can be defined in separate modules. Renamings and
parameterized modules further facilitate syntax reuse.

SDF is a highly expressive syntax definition formalism. Apart from symbol
iteration constructors, with or without separators, it provides notation for op-
tional symbols, sequences of symbols, and more. These notations for building



definition
module Exp

exports
lexical syntax

[a-z] → Identifier
context-free syntax

Identifier → Exp {cons (“var”)}
Identifier “(” {Exp “,”}* “)” → Exp {cons (“fcall”)}
“(” Exp “)” → Exp {bracket }

module Let
exports

context-free syntax
let Defs in Exp → Exp {cons (“let”)}
Exp where Defs → Exp {cons (“where”)}

module Def
exports

aliases
{(Identifier “=” Exp) “,”}+ → Defs

module Main
imports Exp Let Def

exports
sorts Exp
lexical syntax

[\ \t\n] → LAYOUT
context-free restrictions

LAYOUT? -/- [ \ \t\n]

Figure 2.3 An example SDF grammar.1

compound symbols can be arbitrarily nested. SDF is not limited to a subclass
of context-free grammars, such as LR or LL grammars. Since the full class of
context-free syntaxes, as opposed to any of its proper subclasses, is closed un-
der composition (combining two context-free grammars will always produce a
grammar that is context-free as well), this absence of restrictions is essential to
obtain true modular syntax definition, and “as-is” syntax reuse.

SDF offers disambiguation constructs, such as associativity annotations and
relative production priorities, that are decoupled from constructs for syntax
definition itself. As a result, disambiguation and syntax definition are not tan-
gled in grammars. This is beneficial for syntax definition reuse. Also, SDF

grammars are purely declarative, ensuring their reusability for other purposes
besides parsing (e.g. code generation and pretty-printing).

1All code examples in this thesis are formatted using the generic pretty-printer GPP, which is
described in Chapter 4, “Pretty-Printing for Software Reengineering”.



SDF offers the ability to control the shape of parse trees. The alias construct
(see module Def in Figure 2.3) allows auxiliary names for complex sorts to be
introduced without affecting the shape of parse trees or abstract syntax trees.
Aliases are resolved by a normalization phase during parser generation, and do
not introduce auxiliary nodes.

2.2.2 Concrete meta-tooling

Parsing SDF is supported by generalized LR parser generation [122]. In con-
trast to plain LR parsing, generalized LR parsing is able to deal with (local) am-
biguities and thereby removes any restrictions on the context-free grammars. A
detailed argument that explains how the properties of GLR parsing contribute
to meeting the scalability and maintainability demands of language-centered
application areas can be found in [31]. The meta-tooling used for parsing in
our architecture consist of a parse table generator, and a generic parse compo-
nent, which parses terms using these tables, and generates parse trees [137].

Parse tree representation In our architecture instantiation, the parse trees
produced from generated parsers are represented in the SDF parse tree format,
called ASFIX [137]. ASFIX trees contain all information about the parsed term,
including layout and comments (see Figure 2.4). As a consequence, the exact
input term can always be reconstructed, and during tree processing layout and
comments can be preserved. This is essential in the application area of software
renovation.

Full ASFIX trees rapidly grow large and become inefficient to represent and
exchange. It is therefore of vital importance to have an efficient representation
for ASFIX trees available. Moreover, component-based software development
requires a uniform exchange format to share data (including parse trees) be-
tween components. The ATERM format is a term representation suitable as
exchange format for which an efficient representation exists. Therefore ASFIX

trees are encoded as ATERMS to obtain space efficient exchangeable parse trees
([28] reports compression rates of over 90 percent). In Section 2.3.2 we will
discuss tree representation using ATERMS in more detail.

Pretty-printing We use GPP, a generic pretty-printing toolset that will be dis-
cussed in Chapter 4, “Pretty-Printing for Software Reengineering”. This set
of meta-tools provides the generation of customizable pretty-printers for arbi-
trary languages defined in SDF. The layout of a language is expressed in terms
of pretty-print rules which are defined in an ordered sequence of pretty-print
tables. The ordering of tables allows customization by overruling existing for-
matting rules.

GPP contains a formatter which operates on ASFIX parse trees and supports
comment and layout preservation. An additional formatter which operates on
ASTs is also part of GPP.



Figure 2.4 Example of a parse tree represented in the SDF parse tree format ASFIX.
This figure depicts the parse tree for the expression ’f(a, b )’ according to the grammar
of Figure 2.3.

GPP is an open system which can be extended and adapted easily. Hence,
support for new output formats (in addition to plain text, LATEX, and HTML

which are supported by default), as well as language-specific formatters can be
incorporated with little effort.

2.3 Abstract syntax definition and meta-tooling

A second aspect of meta-tooling for component-based language tool develop-
ment concerns the generation of code from abstract syntax definitions. Fig-
ure 2.5 shows the architecture of such tooling. Given an abstract syntax def-
inition, library code is generated, which is used to represent and manipulate
ASTs. The abstract syntax definition language serves as an interface descrip-
tion language for AST components. In other words, abstract syntax definitions
serve as tree type definitions (analogous to XML’s document type definitions).
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Figure 2.5 Architecture for abstract syntax meta-tools. The abstract syntax definition,
prescribing tree structure, serves as a contract between tree processing components.

2.3.1 Abstract syntax definition

For the specification of abstract syntax we have defined a subset of SDF, which
we call ABSTRACTSDF. ABSTRACTSDF was obtained from SDF simply by omit-
ting all constructs specific to the definition of concrete syntax. Thus, AB-
STRACTSDF allows only productions specifying prefix syntax, and it contains
no disambiguation constructs or constructs for specifying lexical syntax. AB-
STRACTSDF inherits the modularity features of SDF, as well as the expressive-
ness concerning arbitrarily nested compound sorts. Figure 2.6 shows an exam-
ple of an ABSTRACTSDF definition.

The need to define separate concrete syntax and abstract syntax definitions
would cause a maintenance problem. Therefore, the concrete syntax definition
can be annotated with abstract syntax directives from which an ABSTRACTSDF

definition can be generated (see Section 2.3.3 below). These abstract syntax
directives consist of optional constructor annotations for context-free produc-
tions (the “cons” attributes in Figure 2.3) which specify the names of the cor-
responding abstract syntax productions.

2.3.2 Abstract syntax tree representation

In order to meet our scalability demands, we will require a tree representation
format that provides the possibility of efficient storage and exchange. How-
ever, we do not want a tree format that has an efficient binary instantiation
only, since this makes all tooling necessarily dependent on routines for binary
encoding. Having a textual instantiation keeps the system open to the ac-
commodation of components for which such routines are not (yet) available.
Finally, we want the typing of trees to be optional, in order not to preempt inte-
gration with typeless, generic components. For instance, a generic tree viewer
should be able to read the intermediate trees without explicit knowledge of
their types.



definition
module Exp

exports
syntax

“var”(Identifier) → Exp
“fcall”(Identifier, Exp*) → Exp

module Let
exports

syntax
“let”(Defs, Exp) → Exp
“where”(Exp, Defs) → Exp

module Def
exports

aliases
(Identifier Exp)+ → Defs

module Main
imports Exp Let Def

Figure 2.6 Generated ABSTRACTSDF definition.

ASTs are therefore represented in the ATERM format, which is a generic for-
mat for representing annotated trees (see Figure 2.7). In [28] a 2-level API is
defined for ATERMS. This API hides a space efficient binary representation of
ATERMS (BAF) behind interface functions for building, traversing and inspect-
ing ATERMS. The binary representation format is based on maximal subtree
sharing. Apart from the binary representation, a plain, human-readable repre-
sentation is available.

ABSTRACTSDF definitions can be used as type definitions for ATERMS by
language tool components. In particular, the ABSTRACTSDF definition of the
parse tree formalism ASFIX serves as a type definition for parse trees (see Sec-
tion 2.2). The ABSTRACTSDF definition of Figure 2.6 defines the type of ASTs
representing expressions. Thus, the ATERM format provides a generic (type-
less) tree format, on which ABSTRACTSDF provides a typed view.

2.3.3 Abstract from concrete syntax

The connection between the abstract syntax meta-tooling and the concrete syn-
tax meta-tooling can be provided by three meta-tools, which are depicted in
Figure 2.8. Central in this picture is a meta-tool that derives an abstract syntax
definition from a concrete syntax definition. The two accompanying meta-tools
generate tools for converting full parse trees into ASTs and vice versa. Evidently,
these ASTs should correspond to the abstract syntax definition, generated from
the concrete syntax definition to which the parse trees correspond.



fcall
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Figure 2.7 Example of an AST. The figure depicts the AST that is derived from the
parse tree of Figure 2.4.

An abstract syntax definition is obtained from a grammar in two steps.
Firstly, concrete syntax productions are optionally annotated with prefix con-
structor names. To derive these constructor names automatically, the meta-
tool sdfcons has been implemented. This tool basically collects keywords
and non-terminal names from productions and applies some heuristics to syn-
thesize nice names from these. Non-unique constructors are made unique by
adding primes or qualifying with non-terminal names. By manually supplying
some seed constructor names, users can steer the operation of sdfcons , which
is useful for languages which sparsely contain keywords.

Secondly, the annotated grammar is fed into the meta-tool sdf2asdf ,
yielding an ABSTRACTSDF definition. For instance, the ABSTRACTSDF defini-
tion in Figure 2.6 was obtained from the SDF definition in Figure 2.3. This
transformation basically throws out literals, and replaces mixfix productions
by prefix productions, using the associated constructor name.

Together with the abstract syntax definition, the converters parsetree2-
ast and ast2parsetree which translate between parse trees and ASTs are
generated. Note that the first converter removes layout and comment infor-
mation, while the second inserts empty layout and comments (see Chapter 4,
“Pretty-Printing for Software Reengineering”).

Note that the high expressiveness of SDF and ABSTRACTSDF, and their close
correspondence are key factors for the feasibility of generating abstract from
concrete syntax. In fact, SDF was originally designed with such generation
in mind [68]. Standard, YACC-like concrete syntax definition languages are
not satisfactory in this respect. Since their expressiveness is low, and LR re-
strictions require non-natural language descriptions, generating abstract syn-
tax from these languages would result in awkwardly structured ASTs, which
burden the component programmers (see Chapter 5, “Cost-Effective Mainte-
nance Tools for Proprietary Languages”).
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Figure 2.8 Architecture for meta-tools linking abstract to concrete syntax. The abstract
syntax definition is now generated from the concrete syntax definition.

2.4 Generating library code

In this section we will discuss the generation of library code (see Figures 2.2
and 2.5). Our architecture for LCSE contains code generators for several lan-
guages and consequently allows components to be developed in different lan-
guages. Since ATERMS are used as uniform exchange format, components im-
plemented in different programming languages can be connected to each other.

2.4.1 Targeting C

For the programming language C an efficient ATERM implementation exists as
a separate library [28]. This implementation consists of an API which hides
the efficient binary representation of ATERMS based on maximal sharing and
provides functions to access, manipulate, traverse, and exchange ATERMS.

The availability of the ATERM library allows generic language components
to be implemented in C which can perform low-level operations on arbitrary
parse trees as well as on abstract syntax trees.

A more high-level access to parse trees is provided by the code generator
asdf2c which, when passed an abstract syntax definition, produces a library
of match and build functions. These functions allow easy manipulation of parse
trees without having to know the exact structure of parse trees. These high-
level functions are type-preserving with respect to the ABSTRACTSDF definition.

More recently, the generator ApiGen has been developed [77]. It produces



efficient C library code from grammar definitions using a similar approach as
asdf2c . It has been used successfully in the development of the ASF+SDF

Meta-Environment [27] to eliminate approximately 47% of the amount of
handwritten code.

2.4.2 Targeting Java

Also for the JAVA programming language an implementation of the ATERM API
exists which allows JAVA programs to operate on parse trees and abstract syntax
trees. There is also a code generator for JAVA available which provides high
level access and traversals of trees similar to the other supported programming
languages. This generator is called JJForester [93] and represents syntax trees
as object trees. Tree traversals are supported by generated libraries of refinable
visitors. Additionally, JJTraveler [53], provides a JAVA library of generic visitor
combinators.

2.4.3 Targeting Stratego

Our initial interest was to apply our meta-tooling to program transformation
problems, such as automatic software renovation. For this reason we selected
the transformational programming language Stratego [138] as the first target
of code generation. Stratego offers powerful tree traversal primitives, as well
as advanced features such as separation of pattern-matching and scope, which
allows pattern-matching at arbitrary tree depths. Furthermore, Stratego has
built-in support for reading and writing ATERMS. Stratego also offers a notion
of pseudo-constructors, called overlays, that can be used to operate on full
parse trees using a simple AST interface.

Two meta-tools support the generation of Stratego libraries from syntax
descriptions. Libraries for AST processing are generated from ABSTRACTSDF

definitions by asdf2stratego . Libraries for combined parse tree and AST
processing are generated from SDF grammars by sdf2stratego . The latter
library subsumes the former.2

The Stratego code generation allows programming on parse trees as if they
were ASTs. Underneath such AST-style manipulations, parse trees are pro-
cessed in which hidden layout and literal information is preserved during trans-
formation. This style of programming can be mixed freely with programming
directly on parse trees. Since Stratego has native ATERM support, there is no
need for generating library code for reading and writing trees.

2.4.4 Targeting Haskell

Support for targeting HASKELL is provided by Tabaluga and Strafunski which
are discussed in [98, 97]. Code generated in this case is of various kinds.

2Code generation for Stratego has further been elaborated and applied in [148].



Firstly, the meta-tool sdf2haskell generates datatypes to represent parse
trees and ASTs. These datatypes are quite similar to the signatures generated
for Stratego. Secondly, the DrIFT-Strafunski code generator can be used to
generate exchange and traversal code from these datatypes. The generated ex-
change code allows reading ATERM representations into the generated Haskell
datatypes and writing them to ATERMS. The generated traversal code allows
composition of analyses and traversals from either updatable fold combinators
or functional strategy combinators. We developed the Haskell ATerm Library to
support input and output of ATERMS from HASKELL types.

Note that not only general purpose programming languages of various para-
digms can be fitted into our architecture, but also more specialized, possibly
very high-level languages. An attribute grammar system, for instance, would
be a convenient tool to program certain tree transformation components.

2.5 A comprehensive architecture

Combining the partial architectures of the foregoing subsections leads to the
complete architecture in Figure 2.9. This figure can be viewed as a refinement
of our first general architecture in Figure 2.1, which does not differentiate
between concrete and abstract syntax, or between parse trees and ASTs.

The refined picture shows that all generated code (libraries and compo-
nents), and the abstract syntax definition stem from the same source: the gram-
mar. Thus, this grammar serves as the single contract that governs the struc-
ture of all trees that are exchanged. In other words, all component interfaces
are defined in a single location: the grammar. (When several languages are
involved, there are of course equally many grammars.) This single contract ap-
proach eliminates many maintenance headaches during component-based de-
velopment. Of course, careful grammar version management is needed when
maintenance due to language changes is not carried out for all components at
once.

2.5.1 Grammar version management

Any change to a grammar, no matter how small, potentially breaks all tools
that depend on it. Thus, sharing grammars between tools or between tool
components, which is a crucial feature of our architecture, is potentially at
odds with grammar change. To pacify grammar change and grammar sharing,
grammar management is needed.

To facilitate grammar version management, we established a Grammar Base
(see Figure 2.10), in which grammars are stored.3 Furthermore, we sub-
jected the stored grammars to simple schemes of grammar version numbers
and grammar maturity levels.

3See Appendix A for information about the availability of the Grammar Base.
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Figure 2.9 Complete meta-tooling architecture. The grammar serves as the contract
governing all tree exchange.

To allow tool builders to unequivocally identify the grammars they are
building their tool on, each grammar in the Grammar Base is given a name
and a version number. To give tool builders an indication of the maturity of
the grammars they are using to build their tools upon, all grammars in the
Grammar Base are labeled with a maturity level. We distinguish the following
levels:

volatile The grammar is still under development.
stable The grammar will only be changed for minor bug fixing.

immutable The grammar will never change.

Normally, a grammar will begin its life cycle at maturity level volatile. To build
extensive tooling on such a grammar is unwise, because grammar changes are



to be expected that will break this tooling. Once confidence in the correctness
of the grammar has grown, usually through a combination of testing, bench-
marking, and code inspection, it becomes eligible for maturity level stable. At
this point, only very local changes are still allowed on the grammar, usually to
fix minor bugs. Tool-builders can safely rely on stable grammars without risk-
ing that their tools will break due to grammar changes. Only a few grammars
will make it to level immutable. This happens for instance when a grammar is
published, and thus becomes a fixed point of reference. If the need for changes
arises in grammars that are stable or immutable, a new grammar (possibly the
same grammar with a new version number) will be initiated instead of chang-
ing the grammar itself.

2.5.2 Connecting components

The connectivity to different programming languages allows components to be
developed in the programming language of choice. The use of ATERMS for
the representation of data allows easy and efficient exchange of data between
different components and it enables the composition of new and existing com-
ponents to form advanced language tools.

Exchange between components and the composition of components is sup-
ported in several ways. First, components can be combined using standard
scripting techniques and data can be exchanged by means of files. Secondly,
the uniform data representation allows for a sequential composition of compo-
nents in which Unix pipes are used to exchange data from one component to
another. Additionally, the TOOLBUS [16] coordination architecture can be used
to connect components and define the communication between them. This ar-
chitecture resembles a hardware communication bus to which individual com-
ponents can be connected. Communication between components only takes
place over the bus and is formalized in terms of process algebra [4]. Likewise,
component architectures such as CORBA [109] can be used.

2.6 Applications

We have used the meta-tooling presented in the previous sections in several
projects. We will present a selection of our experiences.

To start with, the meta-tooling has been applied for its own development,
and for the development of additional meta-tools that it is bundled with in the
Transformation Tools package XT (see Chapter 3). These bootstrap-flavored ap-
plications include the generation of an abstract syntax definition for the parse
tree format ASFIX from the grammar of SDF. From this abstract syntax defi-
nition, a modular Stratego library for transforming ASFIX trees was generated
and used for the implementation of some ASFIX normalization components.
Also, the tools sdf2stratego , sdfcons , asdf2stratego , sdf2asdf , and



Figure 2.10 Screendump of the Online Grammar Base, a collection of browsable, open
source SDF grammars. See Appendix A for information about the availability of the
Online Grammar Base.



many more meta-tools were implemented by parsing, AST processing in one or
more components, and pretty-printing.

Apart from SDF and ABSTRACTSDF, the domain-specific languages BOX (for
generic formatting), AUTOBUNDLE (for source tree composition), and BENCH

(for generating benchmark reports), have also been implemented with syntax-
driven meta-tooling.

The pretty-printer GPP, presented in Chapter 4, “Pretty-Printing for Soft-
ware Reengineering”, has been developed as a collection of reusable compo-
nents following the LCSE model. GPP reuses the grammars of SDF and BOX to
define a grammar for pretty-print tables. Furthermore, components operating
on BOX, programmed in different programming languages are combined.

We used LCSE in an industrial project to demonstrate its effectiveness for
industrial language tool development. This project, which we discuss in Chap-
ter 5, “Cost-Effective Maintenance Tools for Proprietary Languages”, involved
the development of a documentation generator for a proprietary language di-
alect.

The tool autobundle for automated source tree composition has been
implemented as a collection of syntax-driven components following LCSE. It
is accompanied with additional syntax-driven tooling for web-site generation.
These tools are discussed in Chapter 6, “Source Tree Composition”.

The generated transformation frameworks for Haskell are being applied to
software renovation problems. In [91], a COBOL renovation application is re-
ported. It involves parsing according to a COBOL grammar, applying a number
of function transformers to solve a data expansion problem, and unparsing the
transformed parse trees. The functional transformers have been constructed
by refining a transformation framework generated from the COBOL grammar.

The Stratego meta-tools have been elaborated and applied in the CobolX
project [148]. Transformations implemented in this project include data field
expansion, and goto-elimination with preservation of layout and comments.

2.7 Related work

Syntax-driven meta-tools for language tool development are ubiquitous, but
rarely do they address a combination of features such as those addressed in
this chapter. We will briefly discuss a selection of approaches some of which
attain a degree of integration of various features.

• Parser generators such as YACC [76] and JavaCC are meta-tools that
generate parsers from syntax definitions. Compared with SDF with its
supporting tools pgen and sglr , they offer poor support for modular
syntax definition, their input languages are not sufficiently declarative
to be reusable for the generation of other components than parsers, and
they do not generally target more than a single programming language.



• The language SYN [23] combines notations for specifying parsers, pretty-
printers and abstract syntax in a single language. However, the under-
lying parser generator is limited to LALR(1), in order to have both parse
trees and ASTs, users need to construct two grammars, and code the
mapping between trees by hand. Moreover, the expressiveness of the
language is much smaller than the expressiveness of SDF, and the lan-
guage is not modular. Consequently, SYN and its underlying system can
not meet our adaptability, scalability and maintainability requirements.

• Wile [150] describes derivation of abstract syntax from concrete syn-
tax. Like us he uses a syntax description formalism more expressive than
YACC’s BNF notation in order to avoid warped ASTs. Additionally, he pro-
vides a procedure for transforming a YACC-style grammar into a more
“tasteful” grammar. His BNF extension allows annotations that steer the
mapping with the same effect as SDF’s aliases. He does not discuss auto-
matic name synthesis.

• AsdlGen [147] provides the most comprehensive approach we are aware
of to syntax-driven support of component-based language tools. It gener-
ates library code for various programming languages from abstract syn-
tax definitions. It offers ASDL as abstract syntax definition formalism, and
pickles as space-efficient exchange format. It offers no support for dealing
with concrete syntax and full parse trees.

The choice of target languages, including C and JAVA, has presumably
motivated some restrictions on the expressiveness of ASDL. ASDL lacks
certain modularity features, compared to ABSTRACTSDF: no mutually de-
pendent modules are supported, and all alternatives for a non-terminal
must be grouped together. Furthermore, ASDL is much less expressive. It
does not allow nesting of complex symbols, it has a very limited range
of symbol constructors, and it does not provide module renamings or
parameterized modules.

Unlike ATERMS, the exchange format that comes with ASDL is always
typed, thus obstructing integration with generic components. In fact,
the compression scheme of ASDL relies on the typedness of the trees.
The rate of compression is significantly smaller than for ATERMS [28].
Furthermore, pickles have a binary form only.

• The DTD notation of XML [34] is an alternative formalism in which ab-
stract syntax can be defined. Tools such as HaXML[146] generate code
from DTDs. HaXMLoffers support both for type-based and for generic
transformations on XML documents, using Haskell as programming lan-
guage. Other languages are not targeted. Concrete syntax support is not
integrated.

XML is originally intended as mark-up language, not to represent abstract
syntax. As a result, the language contains a number of inappropriate con-



structs, and some awkward irregularities from an abstract syntax point of
view. XML also has some desirable features, currently not offered by AB-
STRACTSDF, such as annotations, and inclusion of DTDs (abstract syntax
definitions) in documents (abstract terms).

• Many elements of our instantiation of the architecture for LCSE were
originally developed as part of the ASF+SDF Meta-Environment [15, 68,
54, 27]. This is an integrated language development environment which
offers SDF as syntax definition formalism and the term rewriting lan-
guage ASF as programming language. Programming takes place directly
on concrete syntax, thus hiding parse and abstract syntax trees from the
programmers view. Programming, debugging, parsing, rewriting, and
pretty-printing functionality are all offered via a single interactive user
interface. Meta-tooling has been developed to generate ASF-modules for
term traversal from SDF definitions [30, 29].

The ASF+SDF Meta-Environment offers a single programming language
(ASF), programming on abstract syntax is not supported. Support for
component-based development is (currently) limited to gluing compiled
ASF programs that read and write flat terms.

To provide support for component-based tool development, we adopted
the SDF, ASFIX, and ATERM formats from the ASF+SDF Meta-Environ-
ment, as well as the parse table generator for SDF, the parser sglr , and
the ATERM library. To these we have added the meta-tooling required to
complete the instantiation of the architecture of Figure 2.9. In future,
some of these meta-tools might be integrated into the ASF+SDF Meta-
Environment.

2.8 Contributions

We have presented a comprehensive architecture for Language-Centered Soft-
ware Engineering (LCSE). This architecture consists of syntax-driven meta-
tooling supporting component-based language tool development. The architec-
ture embodies the vision that grammars can serve as contracts between com-
ponents under the condition that the syntax definition formalism is sufficiently
expressive and declarative, and the meta-tools supporting this formalism are
sufficiently powerful. We have presented our instantiation of such an architec-
ture based on the syntax formalism SDF. SDF and the tools supporting it have
agreeable properties with respect to modularity, expressiveness, and efficiency,
which allow them to meet scalability and maintainability demands of appli-
cation areas such as software renovation and domain-specific language imple-
mentation. We have shown how abstract syntax definitions can be obtained
from grammars. We discussed the meta-tooling which generates library code
for a variety of programming languages from concrete and abstract syntax def-



initions. Components that are constructed with these libraries can interoperate
by exchanging ATERMS that represent trees.
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valuable discussions.



C H A P T E R 3

XT: a Bundle of Program
Transformation Tools

This chapter discusses XT, a bundle of program transformation tools. It is a
collection of generative components for Language-Centered Software Engineering
(LCSE) and forms an instantiation of the architecture developed in the previous
chapter.

The purpose of the XT bundle is to bundle existing and newly created software
components into an open framework for easy development of component-based
program transformations. We discuss the roles of XT’s constituents in the develop-
ment process of program transformation tools, as well as some experiences with
building program transformation systems with XT. Furthermore, we discuss how
to measure software reuse in applications built with XT components. The work
presented in this chapter was published earlier as [84].

3.1 Introduction

Program transformation encompasses a variety of different, but related, lan-
guage processing scenarios, such as optimization, compilation, normalization,
and renovation. Across these scenarios, many common, or similar subtasks can
be distinguished, which opens possibilities for software reuse. To support and
demonstrate such reuse across program transformation project boundaries, we
have developed XT. XT is a bundle of existing and newly developed libraries and
tools useful in the context of program transformation for Language-Centered
Software Engineering (LCSE). It bundles its constituents into an open frame-
work for component-based transformation tool development, which is flexible
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and extendible. XT is distributed as open source under the GNU General Public
License [60].

In this chapter we will provide an overview of XT and an indication of what
is possible with it. Section 3.2 fixes terminology and discusses common pro-
gram transformation scenarios. Section 3.3 outlines the program transforma-
tion development process that we want to support. Section 3.4 discusses the
actual content of the XT bundle, and explains how its constituents can be used
to support program transformation development tasks. Section 3.5 summarizes
our experiences with XT so far, Section 3.6 discusses measurement of reuse lev-
els, and Section 3.7 wraps up with concluding remarks.

3.2 Program transformation scenarios

Program transformation is the act of changing one program into another.1 The
term program transformation is also used for a program, or any other descrip-
tion of an algorithm, that implements program transformation. The language
in which the program being transformed and the resulting program are writ-
ten are called the source language and target language respectively. Below we
will distinguish scenarios where the source language and target language are
different (translations) from scenarios where they are the same (rephrasings).

Program transformation is used in many areas of software engineering, in-
cluding compiler construction, software visualization, documentation gener-
ation, and automatic software renovation. At the basis of all these different
applications lie the main program transformation scenarios of translation and
rephrasing. These main scenarios can be refined into a number of typical sub-
scenarios.

Translation In a translation scenario a program is transformed from a source
language into a program in a different target language. Examples of translation
scenarios are synthesis, migration, compilation, and analysis. In program syn-
thesis an implementation is derived from a high-level specification such that the
implementation satisfies the specification. A prime example of program syn-
thesis is parser generation. In migration a program is transformed to another
language. For example, transforming a Fortran77 program to an equivalent
Fortran90 program. Compilation is a form of synthesis in which a program in a
high-level language is transformed to a program in a lower-level language. In
program analysis a program is reduced to some property, or value (i.e., trans-
lated to some aspect language). Type-checking is an example of program anal-
ysis.

Rephrasing In a rephrasing scenario a program is transformed into a different
program in the same language, i.e., source and target language are the same.

1See the Program Transformation Wiki at http://www.program-transformation.org .

http://www.program-transformation.org


Examples of rephrasing scenarios are normalization, renovation, refactoring,
and optimization. In a normalization a program is reduced to a program in a
sub-language. In renovation a program is changed in order to add new func-
tionality, or to improve some aspect of the program [43]. For example, repair-
ing a Y2K bug. A refactoring is a transformation that improves the design of a
program while preserving its functionality. An optimization is transformation
that improves the run-time and/or space performance of the program.

Most program transformations are (intended to be) semantics preserving, al-
though weaker notions of semantics preservation may be appropriate for some
scenarios. Renovation, for instance, typically changes semantics to improve
behavior of programs.

The list of sub-scenarios is not complete, and in practice many program
transformations are a combination of sub-scenarios. For example, a single
compiler may perform code optimization after transforming its input to a tar-
get language. In fact, XT supports component-based development of program
transformations, where each component might follow a different transforma-
tion scenario.

3.3 Transformation development

The development process of program transformation tools generally consists of
the following steps:

1. Obtain (syntax) definitions of the languages involved in the transforma-
tion. This may involve grammar engineering (i.e., (re)construction of
grammars, transformation of grammars, or assessment of existing gram-
mars; see Chapter 5, “Cost-Effective Maintenance Tools for Proprietary
Languages”).

2. Set-up a transformation framework. This may involve reusing generic
transformation libraries or generating language-specific transformation
libraries, generating parsers, and generating and refining pretty-printers.

3. Design a transformation pipeline. Generally, this pipeline consists of
parsers and pretty-printers as front and back-ends, and contains a va-
riety of rephrasing and translation components. The interfaces between
the components of the pipeline need to be established in this phase.

4. Implement the components of the pipeline. This involves choosing im-
plementation languages, designing algorithms, and coding.

5. Glue the components to create a complete transformation. For this pur-
pose, common scripting techniques can be used, or more advanced inter-
operation and communication techniques.

6. Test the individual transformation components and the complete pro-
gram transformation as a whole.



Of course, iteration over (some of) these steps is often necessary. To aid the de-
veloper in constructing program transformation systems, tool support is needed
for each of these steps.

3.4 The XT bundle

XT bundles tooling for the construction of program transformation systems. Its
purpose is to provide a development environment for LCSE with minimal in-
stallation effort, to verify that all components work together, and to provide ex-
tensive documentation and instructions about how to use this tooling together.
The following tool packages are bundled by XT:

• ATERMS [28] — This is a generic format for representing annotated trees
and is used within XT as common tree exchange format to connect indi-
vidual components to form transformation systems. There are three rep-
resentations for ATERMS: i) a human-readable, textual representation; ii)
a textual representation with subtree sharing; iii) a space efficient binary
representation based on maximal subtree sharing. Furthermore, a library
of functions for building, traversing, and inspecting ATERMS is available.

• SDF [68, 137] — All grammars bundled with XT are defined in the mod-
ular syntax definition formalism SDF. Parsing of arbitrary context-free
languages defined in SDF is supported by the parse table generator pgen
in combination with the generic parser sglr . The parser generator pro-
duces parse tables that are interpreted by sglr using the Scannerless
Generalized-LR parsing algorithm.

• GPP— Pretty-printing is supported by the generic pretty-print toolset GPP

(see Chapter 4, “Pretty-Printing for Software Reengineering”). It of-
fers language-independent pretty-print facilities based on customizable
pretty-print rules to specify the formatting of text. By default, GPP sup-
ports plain text, HTML, and LATEX. The system can be extended easily to
support more output formats.

• Grammar Base — The SDF Grammar Base contains a collection of syn-
tax definitions for a growing number of languages, including COBOL, C,
XML, SDL, YACC, and JAVA (see Chapter 2, “Grammars as Contracts”). The
purpose of the Grammar Base is to offer a reference for language defi-
nitions and to provide a collection of open source grammars that can be
downloaded for free and are ready for use.

• Grammar Tools — We developed a collection of tools for grammar anal-
ysis, grammar (re)construction, and tree manipulation. For example,
yacc2sdf (see Chapter 5, “Cost-Effective Maintenance Tools for Pro-
prietary Languages”) translates YACC grammars into SDF, and sdfcons
(see Chapter 2, “Grammars as Contracts”) is a rephrasing transformation
that adds synthesized constructor names to SDF grammars.



• Stratego [142] — This is a programming language for term rewriting
with strategies. It has been used as transformation language for the
implementation of many components of XT. An extensive library that
comes with the language supports term traversal in many flavors and
offers generic language processing algorithms [139].

Program transformation systems can be constructed by connecting compo-
nents from the different tool packages of XT together. This composition of
components (for instance in scripts or pipelines) is simple because all com-
ponents can be connected to each other via the common ATERMS exchange
format. Consistency of all components of the XT bundle is continuously mon-
itored using extensive unit and integration tests (see [83]). The XT docu-
mentation is organized and maintained with Wiki technology and contains
usage information of the individual tools as well as HowTo’s which describe
how these tools can be combined to perform specific transformation tasks.XT

is completely component-based, which means that it promotes extensive reuse
(see Figure 3.1 on page 47), that it can be extended with new components
supporting the ATERMS exchange format, and that existing components can
be replaced at any time. Language-centered software engineering by reusing
XT components and developing additional ones is demonstrated in Chapter 5,
“Cost-Effective Maintenance Tools for Proprietary Languages”, and Chapter 6,
“Source Tree Composition”.

3.5 Experience

In this section we describe some of our experiences with XT in various program
transformation projects. For each project we indicate which program trans-
formation scenarios needed to be addressed, and which XT constituents were
(re)used.

Compilation of Tiger programs A compiler for Appel’s Tiger language [2]
was developed as an exercise in compilation by transformation for a course on
High-Performance Compilers at Universiteit Utrecht [141]. The compiler trans-
lates Tiger programs to MIPS assembly code. This translation is achieved by
a number of transformations. Tiger abstract syntax is translated to an inter-
mediate representation. The intermediate representation is canonicalized by a
normalizing transformation. Canonicalized IR is translated to a MIPS program
by instruction selection. Finally, register allocation optimizes register use by
mapping temporary registers to actual machine registers. Optimizing transfor-
mations can be plugged in at various stages of compilation. These transforma-
tions have been implemented in Stratego. In addition, the compiler consists
of a parser generated from an SDF grammar, a type-checker implemented in
Stratego and a pretty-printer for Tiger built with GPP.



Warm fusion of functional programs An implementation of a transforma-
tion system for a subset of HASKELL incorporating the warm fusion algorithm
was undertaken as a case study in program transformation with rewriting
strategies [75]. The warm fusion algorithm rephrases explicitly recursive func-
tions as functions defined using catamorphisms to enable elimination of inter-
mediate data structures (deforestation) of lazy functional programs. By inlin-
ing functions rephrased in this manner, compositions of functions can be fused.
The bodies of all function definitions are simplified using standard reduction
rules for functional programs.

The transformation system consists of a parser, a normalization phase to
eliminate syntactic sugar, a type-checker, the warm fusion transformation itself
and a pretty-printer. The grammar for HASKELL98 has been semi-automatically
reengineered from a YACC grammar using the yacc2sdf tool. A pretty-printer
for HASKELL was built using GPP. The transformations have been implemented
in Stratego and make extensive use of the generic algorithms in the Stratego
library, in particular those for substitution, free variable extraction and bound
variable renaming.

Documentation generation for SDL A documentation generator for the spec-
ification and description language SDL was built in collaboration with Lucent
Technologies (see Chapter 5, “Cost-Effective Maintenance Tools for Proprietary
Languages”). AT&T’s proprietary dialect of SDL was reengineered by automat-
ically migrating an operational YACC definition to SDF. A suitable concrete
syntax of SDL and a corresponding abstract syntax were constructed by ap-
plying several refactorings and optimizations to the generated SDF definition.
Given the SDF definition, tools for documentation generation were constructed
consisting of transformations for SDL code analysis and for visualization of SDL

state transition graphs.
The SDL grammar was obtained from YACC using yacc2sdf , GPP was used

for pretty-printing, and sdfcons was used for abstract syntax generation. Fur-
thermore, the grammars used in addition to SDL where already available for
reuse in the Grammar Base. All programming was performed with Stratego.

3.6 Measuring software reuse2

The software that we developed as part of the research covered in this thesis
was developed with XT following the Language-Centered Software Engineering
(LCSE) model presented in Chapter 2, “Grammars as Contracts”.

To demonstrate the effectiveness of LCSE on software reuse, we present
reuse statistics in each chapter that describes the development of a software
package (i.e., a collection of components). These chapters contain a short para-
graph “components and reuse”, discussing component usage and software reuse

2This section is an extension to the originally published paper [84].



within that package. Components are considered to be executable programs
(also called tools), fitting in the model for LCSE. Chapter 8 summarizes soft-
ware reuse across all these packages in an overall picture.

Component usage Each paragraph “components and reuse” contains a fig-
ure displaying components that have been developed and components that are
reused. For instance, Figure 3.1 on page 47 shows component usage for the
XT package discussed in this chapter. Components are depicted as ellipses,
packages, which are distribution units (i.e., collections of components that are
collectively being developed and distributed) are denoted as boxes.

Light-grey boxes denote packages that have been developed during the re-
search projects described in this thesis. Dark-grey boxes denote third-party
packages. They originate from other projects in our group, such as the aterms
package [28], or from other institutes such as the graphviz package [63]. Pack-
ages that have been discussed in a chapter are depicted as framed boxes.

Edges denote reuse relations. The source of an edge denotes the reusing
component, the sink denotes the corresponding reused component. To reduce
the number of edges, reuse relations over package boundaries are only dis-
played per package, not per component. Consequently, components do not
have in or outgoing edges crossing package boundaries. The thickness of
edges between packages corresponds to the number of reused components.
The thicker an edge, the more components from a target package are reused.

Reuse levels Each paragraph also contains a table displaying information
about component sizes and measurements of software reuse. Component sizes
are indicated in lines of code (LOC). LOC as metric has known deficiencies but
is also a reliable indicator of software size [118, 134] and is recommended by
the Software Productivity Consortium [48]. Therefore, we will adopt this met-
ric to measure software size. A discussion about how we calculate LOC follows
shortly.

To quantify the amount of software reuse, we follow the de facto standard
in industry and measure a component’s reuse level as percentage:

reuse level =
Reused Software
Total Software

∗ 100%

An alternative, equivalent expression is reuse ratio [133], but we will keep up
with the terminology used in [118].

To make our measurements meaningful, we need to define exactly which
source lines we count and which not. Furthermore, to be able to compare
our measurements with reuse levels of other groups and institutes, we need to
conform to a standard counting model. To that end, we will use the notion of
Reused Source Instructions (RSI) and the reuse percent metric Reuse% [119],
which is defined as:

Reuse% =
RSI

Total Statements
∗ 100%



Thus, a Reuse% of 100% corresponds to programs consisting of solely reused
source code, while a Reuse% of 0% corresponds to programs that have been
written completely from scratch.

RSI corresponds to software that complies to a number of rules regarding
reuse.3 Its purpose is to provide a standard definition of what to measure as
reuse. Below we briefly enumerate some of these rules. The complete defini-
tion of RSI is discussed in [118].

1. RSI considers black-box reuse. White-box reuse in terms of modified
components is not counted.

2. RSI makes no distinction between different programming languages. As
a consequence, reusing a line of code in one language counts the same as
reusing a line of code in any other language.

3. Each component is counted only once. Only the first use of a component
therefore counts as reuse.

4. RSI measures complete components, even when a component’s function-
ality is only partly used.

5. Unreachable (or dead) code in a reused component is counted as reuse.

6. Transitive reuse through component invocation is counted.

To measure the reuse level of the software that is discussed in this thesis, we
will use the Reuse% metric, based on a slightly changed definition of RSI. Below
we indicate how we deviate from the definition in [118]:

• LOC is influenced by the way programs are visually formatted. When
software is reused from different institutes developed by a wide range
of developers, differences in program layout must be ignored in order
to calculate Reuse% accurately. Our measuring therefore involves pretty-
printing in order to measure equally formatted programs.

• Source modules may contain comments, which affect the LOC of a com-
ponent. The implications of comments in LOC comparisons is not dis-
cussed in [118]. To be independent from comments, we remove them
prior to our measurements.

• LOC counts between different programming languages cannot easily be
compared. Therefore, we measure software reuse for a single program-
ming language only.

• We only count code that is accessible from a component’s call graph.
Code that is unreachable from the call graph is considered dead, and
automatically removed prior to our measurements.

3Although its name might suggest that RSI is based on counting individual source instructions,
it is based on line counting.



Components that invoke (execute) other components, are called composite
components. Computation of Reuse% for a composite component therefore
involves the component itself, as well as all components that it transitively
invokes. Since, according to rule 4, we count complete components and not
just the functionality that is accessed, the outcome of the computation soon be-
comes too optimistic. General usable components, which are often very flexible
and contain much more functionality than is usually needed, make this miscal-
culation even worse. To make our measurements more realistic, we provide
two reuse levels. An optimistic (transitive) one, which counts RSI transitively
for a component and for all components that it invokes, and a pessimistic (non-
transitive) one, which counts RSI only for a single component.

Table 3.1 depicts reuse levels for the components of the XT package. The
first column shows the list of components that are part of the package. Columns
2–4 depict pessimistic measurements, corresponding to non-transitive reuse
(i.e., reuse within a single component). Columns 5 and 6 show optimistic
values, corresponding to transitive software reuse. The last row contains accu-
mulated reuse levels for all components together. If a component’s RSI equals
0 (such as for tohtml-sdf ), then the component is completely written from
scratch without reusing a single line of code. This might, for example, be
the case for tiny “glue” tools, which only invoke other components. It typi-
cally results in a high transitive, rather than a high non-transitive Reuse%. If
a component’s non-transitive reuse equals transitive reuse (as is the case for
the atermdiff component), then the component is completely self-contained
and does not invoke any other components.

We only measure reuse levels for Stratego [142]. This programming lan-
guage is used for the implementation of most components discussed in this
thesis. Reuse of components implemented in other languages is not counted,
although they are frequently used. These third-party components together
amount for more than 200,000 LOC and would completely obfuscate the reuse
levels of the software discussed in this thesis. As a consequence, the statis-
tics shown do not give a complete picture of actual software reuse. In reality,
software reuse is better than the tables suggest.

The numbers in the tables are obtained by automatic source code analysis.
Per component the total number of LOC and the number of RSI are calculated.
Line counting is based on equally formatted and normalized programs, dis-
carding code that is unreachable from a component’s call graph. Normalization
reduces the number of used language constructs by removing syntactic sugar.
Pretty-printing produces equally formatted modules by ignoring comments and
personal format conventions. Thus, normalization and pretty-printing improve
comparability of modules, which might have been implemented by different
persons in completely different styles. This makes line counting appropriate as
reuse statistic. Due to normalization and pretty-printing, LOC explodes 148%
on average. Thus, due to this explosion factor, component sizes are, on aver-
age, 1.48 times smaller then the tables indicate. The explosion factor does not



influence a component’s Reuse%.
The non-transitive number of LOC in the second column is determined as

follows. First, all Stratego source modules that are used by the implementation
of the component are collected and parsed to obtain an abstract syntax tree
(AST). Then, parts of the Stratego compiler are used to perform normalization
steps and to remove dead-code. The result is an AST of the normalized Stratego
program containing only used code. This AST is then transformed to plain text
using the generic pretty-printer GPP discussed in Chapter 4, “Pretty-Printing for
Software Reengineering”. Finally, empty lines are removed from the resulting
program and the number of lines is counted.

The non-transitive number of RSI in the third column is determined as fol-
lows. First, the set of component-specific Stratego modules is determined.
These are the modules that are used by a component and which are located
in the source directory of that component. They are parsed to obtain an AST
of component-specific Stratego code. Next, the number of component-specific
LOC is determined by normalizing and pretty-printing the AST as described
above. By subtracting this number from the total number of LOC, the number
of RSI is obtained.

The transitive number of LOC in the fifth column corresponds to the total
number of LOC of the component. It is determined by first computing the set
of components that is transitively invoked by a component, and then accumu-
lating the LOC of each of them including the component itself. The transitive
Reuse% in the last column is computed as:

LOCtransitive − (LOCnon-transitive − RSInon-transitive)
LOCtransitive

For the code analysis we used components from the Stratego compiler, the
pretty-printer GPP, and some newly developed components. The analysis is
therefore itself a language tool which demonstrates software reuse in the do-
main of language tooling. Thus, its development is an example of LCSE as
proposed in Chapter 2, “Grammars as Contracts”.

3.7 Concluding remarks

Availability XT and all its constituent components are distributed as open
source under the GNU General Public License [60], and anyone is allowed to
use, modify, and redistribute them.4 The distribution makes use of autobun-
dle , autoconf , and automake , which make installation a nearly trivial job
by merging the build and configuration processing of the individual compo-
nents (see Chapter 6, “Source Tree Composition”). XT is known to install and
run successfully on various platforms, among which SUN-Solaris, BSD-Unix,
Linux, and Windows.

4See Appendix A for information about the availability of the XT bundle.
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Figure 3.1 Components used for the implementation of XT.

Comparison to other frameworks XT shares its bundling infrastructure and
the SDF and ATERMS packages with a peer bundle: the ASF+SDF Meta-Envir-



Non-transitive reuse Transitive reuse
Component LOC RSI Reuse% LOC Reuse%

atermdiff 1,221 1,065 87% 1,221 87%
yacc2sdf 2,427 1,905 78% 2,427 78%
GraphXML2dot 1,054 863 81% 1,054 81%
sdf2asdf 1,294 929 71% 1,294 71%
sdf-label 1,652 1,500 90% 1,652 90%
sdf2sg 1,606 1,286 80% 1,606 80%
tohtml-sdf 7 0 0% 12,405 99%
sdf-doc 1,001 897 89% 1,001 89%
pack-sdf 1,504 1,352 89% 1,504 89%
sdf-bracket 868 775 89% 868 89%
sdf2text 47 0 0% 8,312 99%
sdf2sdf 672 567 84% 14,955 99%
sdf-wf 1,350 1,089 80% 1,350 80%
sdf-imports 1,410 1,107 78% 1,410 78%
sdf2stratego 2,300 1,319 57% 2,300 57%
implode-asfix 1,708 693 40% 1,708 40%
pp 76 0 0% 11,724 99%
parse 53 0 0% 1,873 97%
gbquery 112 0 0% 112 0%

Totals: 20,362 15,347 75% 68,776 92%

Table 3.1 Reuse table for a subset of the 70+ components from the XT bundle. The
table shows that for these components, a total of 5,015 new lines of code had to be
written.

onment [27]. This bundle integrates these packages with a compiler and inter-
preter for the ASF programming language, a structure editor, a GUI, and other
components into an interactive development environment for language defini-
tions and tools. By contrast, XT supports multiple programming languages,
and offers an extendible set of components that can combined in various ways.

Many tools and frameworks for program transformation, or for some of
its sub-scenarios, already exist. Among these are attribute grammar systems
(e.g. Elegant [3]), algebraic rewriting systems (e.g., ASF+SDF Meta-Environ-
ment [27], ELAN [20]), and object-oriented systems (e.g., the Smalltalk refac-
toring browser [123] and OPENC++ [42]). See [143] for a more complete
overview of transformation frameworks. Generally, these systems are closed
in the sense that they provide a fixed set of tightly-coupled components (such
as parser, pretty-printer, and transformation language), they have no support
for exchange or interoperation with other (competing) systems, and they are



biased towards a single programming language.
XT does not attempt to compete with these systems by providing yet an-

other closed transformation tool. Instead it reuses components from existing
systems, and demonstrates how they can be used in a completely open, ex-
tendible framework. Different constellations of transformation tool bundles
can be obtained by adding new components to XT, which can supplement or
replace the current ones. Also, one can use XT as a basis for the creation of
specific (possibly closed) transformation frameworks for particular application
areas, or for particular source and target languages (see for instance CODE-
BOOST, a framework for C++ program transformation [5]).

Components and reuse Figure 3.1 displays the packages bundled with XT

and their constituent components (see Section 3.6 on page 42 for more infor-
mation about component diagrams). XT bundles 14 packages containing 73
tool components as well as a collection of 36 grammars (only 9 grammars are
depicted to prevent clutter). The collection of packages includes 4 third-party
packages, containing 8 third-party components, as well as the gpp package
which will be discussed in the next chapter. The picture is not complete be-
cause, in order to prevent cluttering of the picture, we only included the most
important XT components. Moreover, since XT is evolving rapidly, the number
of packages and components is still growing.

Table 3.1 depicts component sizes and reuse levels of a subset of the XT

components. This table shows that these XT components consist of more than
20,300 lines of code, of which more than 15,300 lines are reused. This yields a
reuse level between 75% and 92%. All XT components of the light-grey pack-
ages together consist of 65,719 lines of code, of which 52,560 lines are reused
(see the summary of software reuse in Chapter 8 on page 139). This yields a
reuse level for XT between 80% and 91%. Section 3.6, “Measuring software
reuse”, justifies these numbers and describes how they are obtained by analyz-
ing component implementations. In Chapter 8, “Conclusions”, we will compare
these figures with reuse levels of other projects discussed in this thesis.
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C H A P T E R 4

Pretty-Printing for Software
Reengineering

Pretty-printing forms an integral part of Language-Centered Software Engineer-
ing (LCSE). To facilitate reuse, generic (i.e., language-independent) and customiz-
able pretty-print technology is needed. In this chapter we discuss such pretty-print
technology in the context of software reengineering.

A typical application domain of LCSE is software reengineering. Software
reengineering puts strong requirements on pretty-print technology. These include
layout and comment preservation, as well as customizable format definitions.
From a maintenance perspective, software reengineering requires reusability of
format engines and of format definitions.

In this chapter we present the Generic Pretty-Printer GPP and discuss the
pretty-print techniques that it uses to fulfill the requirements for software reengi-
neering. GPP forms a generally reusable pretty-print component in our language-
centered architecture and is part of the XT bundle discussed in the previous chap-
ter. Applications, such as COBOL reengineering and SDL documentation generation
(which will be discussed in the next chapter) show that our pretty-print techniques
are feasible and successful. The work presented in this chapter was published ear-
lier as [80].

4.1 Introduction

Software reengineering is concerned with changing and repairing existing soft-
ware systems. It is often language-dependent and customer-specific.

For instance, Dutch banks have to standardize their bank account numbers
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before the second quarter of 2004 [105]. To that end, a restructuring reengi-
neering [43] might be implemented for a particular Dutch bank to reengineer
his COBOL-85 dialect, by changing account numbers from 9 to 10 digits while
preserving his specific coding conventions. Although the reengineering itself
is of general use for all Dutch banks, this specific implementation is hard to
reuse.

When a reengineering company wants to develop such reengineerings for
different customers and different language dialects (for instance to support the
bank account number reengineering for some other of the 300 existing CO-
BOL dialects [95]), problematic reuse may easily lead to a significant mainte-
nance effort. A reengineering company would therefore benefit when reuse of
reengineerings could be improved, such that reengineerings for new customers
or language dialects can be developed rapidly from existing ones and time to
market can be decreased [114].

Developing reusable reengineerings requires advanced language technol-
ogy to easily deal with multiple customers and language dialects. The literature
contains many articles addressing flexible parsing and processing techniques.
Flexible, reusable pretty-printing techniques are not very well addressed and
are the subject of this chapter.

Pretty-printing in the area of software reengineering serves two purposes.
Firstly, for automatic software reengineering pretty-printing is used for source
(re-) generation, to transform the abstract representation of a reengineered
program back to human readable textual form. Usually, a pretty-printer is then
the last phase in a reengineering pipeline. Programs are first parsed, then
reengineered (for instance by transformation), and finally pretty-printed.

Secondly, for semi-automatic (or manual) software reengineering pretty-
printing is used for documentation generation [57]. In this case, the reengineer-
ing process requires user intervention and documentation generation is used to
make programs easily accessible. To that end, a pretty-printer is used to format
programs nicely and can be combined with additional program understanding
techniques to enable analysis and inspection of programs to determine where
and how reengineering steps are required. Examples are web-site generation
and document generation.

The area of software reengineering introduces challenging functional re-
quirements for pretty-printing:

• To support source generation and documentation generation, a pretty-
printer should be able to produce multiple output formats. We define for-
mattings independently of such output formats in pretty-print rules [106].

• The modifications made during software reengineering to the original
source text should be minimal [136]. Only the parts that need repair-
ing should be modified. This implies that comments and existing lay-
out should be preserved. To that end, we propose conservative pretty-
printing.



• Customer-specific format conventions should be respected. To yield a
program text that looks like the original one, a pretty-printer is required
that produces a customer-specific formatting. We propose customizable
pretty-printing to meet such specific conventions.

In order to cost-effectively develop pretty-printers for various programming
languages, tailored towards different customer-specific format conventions,
maintenance effort should be minimal. To reduce maintenance effort, reuse
across different pretty-printers should be promoted. To that end, we formulate
a number of technical requirements:

• A formatting definition should be reusable for a language, its dialects,
and for defining customized formattings. We propose to group pretty-
print rules in modular pretty-print tables, which allow a formatting to be
defined as a composition of new and existing pretty-print tables.

• Adding support for a new language should be easy. We propose using
generic formating engines, which can interpret pretty-print rules of arbi-
trary languages. Moreover, we simplify creating new formatting defini-
tions with pretty-print table generation.

• Software reengineering can be applied to different representations of pro-
grams each requiring specific pretty-print techniques. We address two
such representations (i.e., parse-trees and abstract syntax trees), and we
propose to reduce maintenance cost by sharing formatting definitions be-
tween the corresponding formatting engines.

In contrast to the existing literature, which usually concentrates on a specific
aspect of pretty-printing [79], this chapter strives to give a complete discus-
sion of pretty-printing in the area of software reengineering. We start with
a discussion of conceptual foundations of pretty-printing for software reengi-
neering. Then we describe the generic pretty-print framework GPP. Finally,
we cover existing reengineering projects conducted with GPP, including COBOL

reengineering and SDL documentation generation.

4.2 Pretty-printing

Pretty-printing is concerned with transforming abstract representations of pro-
grams to human readable form. Pretty-printing is like unparsing, but addi-
tionally, is concerned with producing nicely (pretty) formatted output. The
result of pretty-printing can be plain text which is directly human readable, or
a document in some markup language such as HTML.

In this chapter we consider two types of abstract representations: (full)
parse trees (see Figure 4.1) and abstract syntax trees (see Figure 4.2). Full
parse trees (also called concrete syntax trees) contain all lexical information,
including comments and ordinary layout.



Figure 4.1 Example of a full parse tree containing layout and comments. Layout nodes
are denoted by ‘ ’, comments start with ‘%’.

A parse tree (PT) can be pretty-printed progressively, which means that all
layout will be generated. For the PT of Figure 4.1 this implies that the comment
and ‘ ’ nodes are discarded and replaced by newly generated layout strings.
Generation of layout can also be less progressive by preserving (some or all) of
the existing layout nodes. We call this conservative pretty-printing.

An abstract syntax tree (AST) must always be pretty-printed progressively,
since it does not contain layout nodes. An extra challenge of AST pretty-
printing is that literals (i.e., the keywords of the program) should be recon-
structed.

Pretty-printing consists of two phases [113]. First, the abstract represen-
tation is transformed to an intermediate format containing formatting instruc-
tions. Then, the formatting instructions are transformed to a desired output
format.

The intermediate format that is obtained during the first phase of pretty-
printing can be represented as a tree (see Figure 4.3). The nodes of this format
tree correspond to format operators and denote how to layout the underlying
leafs (for example, H for horizontal, and V for vertical formatting). This phase
is thus basically a tree transformation in which an AST or PT is transformed to
a format tree. During the second phase, the format tree is used to produce the
corresponding layout in the desired output format.

We propose to define the transformation to a format tree as a mapping
from language constructs (grammar productions) to corresponding format con-
structs. As we will see in Section 4.4, such mappings can be shared for trans-
forming PTs and ASTs. This makes pretty-printing of both tree types, based on
a single transformation definition, possible. We will also see in Section 4.4 how
the construction of such language-specific mappings is simplified by generating
them from corresponding grammars.
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Figure 4.2 Example of an abstract syntax tree.

4.3 Pretty-printing for software reengineering

This section addresses requirements for pretty-printing in the context of soft-
ware reengineering as well as corresponding solutions.

4.3.1 Multiple output formats

Pretty-printing for software reengineering serves two purposes: i) as back-end
of an automated reengineering process; ii) as part of a documentation gen-
erator. In the first case a pretty-printer is used to transform a reengineered
program to plain text, such that it can be further developed, compiled etc.
In the latter case, it is used to produce a visually attractive representation of
programs for program understanding purposes.

Both purposes demand for different output formats: plain text in case the
pretty-printer serves as back-end, and a high-quality format (such as LATEX,
HTML, or PDF) for a documentation generator.

To limit maintenance cost of a pretty-printer due to code duplication we
divide a pretty-printer in two separate components, a format tree producer and
a format tree consumer. The first produces a language-specific formatting rep-
resented as format tree, while the latter transforms such a tree to an output
format. This division makes a producer independent of the output format and
a consumer independent of the input language.

A pretty-printer for input language i and output format o now consists of
the composition:

ppoi = format tree produceri + format tree consumero

By developing different format tree consumers, a format tree can be trans-
formed to multiple output formats. In Section 4.4 we discuss the implementa-
tion of three such consumers which produce plain text, HTML, and LATEX.

This architecture reduces maintenance effort because each format tree con-
sumer can be reused as-is in all pretty-printers. Once the pretty-print rules for
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Figure 4.3 Format tree produced by progressive pretty-printing.

a language have been defined, programs in that language can be formatted in
all available output formats without extra effort.

4.3.2 Layout preservation

An important function of layout is to improve the understandability of pro-
grams. Such layout is inserted by developers and does not always follow strict
format conventions. It may contain slight adaptations, for instance to group
certain lines of code together, or to make a statement fit nicely on a single line.

With standard (progressive) pretty-print techniques such formattings will
disappear. Consequently, layout occurring in program fragments that are not
even touched by the actual program reengineering will not survive.

Clearly, for serious software reengineering, it is essential that the formatting
of unaffected program parts will be preserved [136]. Only the affected parts
should be formatted automatically using a customized pretty-printer. Therefore
the use of conservative pretty-printing is inevitable.

Conservative pretty-printing produces a format tree which may contain
original layout nodes (such as the node ‘ ’ in Figure 4.1). Conservative pretty-
printing therefore only works on full parse trees because ASTs, in general, do
not contain layout nodes.

Conservative pretty-printing operates on PTs in which the layout nodes that
should be preserved are marked. We defined an algorithm for conservative
pretty-printing that consists of two steps. First, a PT is mapped to a format
tree using progressive pretty-printing. Second, the nodes that were marked in
the original PT are inserted in the format tree. To combine these layout nodes
with non-layout nodes, we introduce a special empty format operator ε. This
operator joins its sub-trees without producing any layout. For each layout node
that needs to be preserved, the insertion process is defined as follows:

1. The terminal symbol occurring left to a layout node is removed from the
format tree (e.g., the second ‘x’ in Figure 4.3 in case the layout string ‘ ’
between the symbols ‘x’ and ‘:=’ in Figure 4.1 has to be preserved).



Figure 4.4 Format tree in which existing layout ( ) is preserved.

2. The format tree right to that terminal symbol is determined and removed
(the node ‘:=’ in Figure 4.3).

3. The terminal symbol (‘x’), the layout node (‘ ’), and the format tree
(‘:=’) are then inserted into a new sub-tree which has the empty format
operator ε as root.

4. This tree is inserted in the original format tree, at the location of the
terminal symbol that was removed at step 1.

Applying these steps to the format tree of Figure 4.3 yields the tree as depicted
in Figure 4.4.

To transform a format tree with layout nodes to text, we use a format func-
tion f that operates on format expressions and produces text. It is defined as
follows:

f(ε(t1, . . . , tn)) = f(t1) · . . . · f(tn)
f(φ(t1, . . . , tn)) = f(t1) · lφ · f(t2) · . . . · lφ · f(tn)

for each format operator φ

f(s) = s for each non-terminal symbol s

f(w) = w for each layout string w

The operator ‘·’ denotes string concatenation, lφ denotes the layout string as
generated by the format operator φ. This definition states that sub-trees of ε
are only concatenated, while sub-trees of other operators are also separated by
layout strings.

For example, when we define lH = and lV = \n, then we can translate
the format tree of Figure 4.4 to text using the following derivation:

f(V (H(if, x, then),H(ε(x, , :=),0), fi)) =
f(H(if, x, then)) · lV · f(H(ε(x, , :=),0)) · lV · fi =



Figure 4.5 Format tree with preserved comments.

if · lH · x · lH · then · lV · f(ε(x, , :=)) · lH · 0 · lV · fi =
if · lH · x · lH · then · lV · x · · := · lH · 0 · lV · fi =

if x then\nx := 0\nfi

Since the ε operator produces no layout, the string that separates the two ad-
jacent terminal symbols ‘x’ and ‘:=’ is exactly the layout string that had to be
preserved. All other layout strings are generated according to the (customer-
specific) pretty-print rules.

4.3.3 Comment preservation

Like layout, comments also serve to improve the understandability of pro-
grams. Such information, which might include important descriptions and in-
structions to developers, should in all cases be preserved. Since an ordinary
progressive pretty-printer would destroy this information, a comment preserv-
ing pretty-printer is required for software reengineering.

Comment preservation is similar to layout preservation and is also only de-
fined on full parse trees. The ε operator is used to insert a comment into a for-
mat tree (like for inserting ordinary white space). In addition, we introduce a
new format operator γ to mark comments in format trees. This operator serves
documentation generation and literate programming [89]. It allows comments
to be formatted explicitly in non-text formats (for instance in a separate font).

The format tree that is obtained from Figure 4.3 by inserting ‘%a comment’
is depicted in Figure 4.5.

4.3.4 Customizability

When performing automatic software reengineering for a customer, the result-
ing programs should have a similar formatting as the original ones. When
different customers are served, this requires the availability of several format
engines, each producing the formatting of a particular customer. Developing



each of them from scratch is a lot of work and easily leads to undesired main-
tenance effort. Instead, reusing existing pretty-print engines and customizing
their behavior is preferable.

To make pretty-printers easily customizable, we advocate pretty-printing
using pretty-print rules [106]. Pretty-print rules are mappings from language
constructs to formatting constructs. Each mapping defines how a language
construct should be formatted. Pretty-print rules are defined declaratively and
interpreted by a formatting engine. Constructing a format tree from a PT or
AST now consists of a tree transformation in which the exact transformation is
defined by a set of pretty-print rules. Customization is achieved by supplying
different rules to a formatting engine.

By using this interpreted approach, the same formatting engine can be used
for every language and all customers. Only pretty-print rules have to be defined
to develop a pretty-printer for a language. Furthermore, existing rules can be
redefined to customize a formatting definition.

4.3.5 Modularity

Software reengineering requires pretty-print technology that makes dealing
with language dialects, embedded languages, and customer-specific format-
tings easy.

To facilitate this, development and maintenance time should be decreased
by allowing new pretty-printers to be constructed from existing ones. In Sec-
tion 4.3.4, we already pointed out how this can be achieved by separating
pretty-print rules and formatting engines. Pretty-print engines can be reused
for all different customers, only pretty-print rules have to be defined for each
of them.

However, only a small portion of an existing set of pretty-print rules needs
to be changed usually, when adding support for a new customer-specific for-
mat or language dialect. Pretty-printer construction would therefore be further
simplified when the unchanged pretty-print rules could also be reused. With
modular pretty-print tables this is achieved.

We therefore group pretty-print rules in pretty-print tables. By prioritizing
each table, pretty-print rules in a table with higher priority will override the
rules in tables of lower priority. The set of pretty-print rules ρ obtained by
combining two tables t1 and t2 (where t1 has highest priority), is defined as:

ρ = t1 ∪ (t2 \ t1)

Definition of formattings with modular pretty-print tables works as follows:

Language dialects Pretty-print rules corresponding to new or affected lan-
guage constructs are defined in a new set of pretty-print tables Tnew.
The complete formatting definition is obtained by merging Tnew with the
pretty-print tables of the existing (base) language. Thus, only the pretty-
print rules in Tnew have to be defined, the rest can be reused.



abstract
syntax tree

parse
tree

grammar

ppgen

pretty−
print table

tree
format

box

pt2box ast2box ...2box

box2text box2html box2latex box2...

Figure 4.6 Architecture of the generic pretty-printer GPP. Ellipses denote GPP compo-
nents, boxes and triangles denote data.

Embedded languages A formatting definition for a language L which embeds
Le is obtained by combining the format rules of L with the format rules
of Le. For instance, suppose you already have pretty-print rules for the
language COBOL and SQL, then building a pretty-printer for COBOL with
embedded SQL, amounts to combining both sets of pretty-print rules.

Customer specificity A customer-specific formatting definition for a language
L can be defined by combining customer-specific pretty-print rules and
standard pretty-print rules. Only the customer-specific rules have to be
defined which override the reused default rules.

An arbitrary number of pretty-print tables can be merged this way, which
makes extensive reuse of pretty-print rules possible. For instance, to define
a customer-specific formatting definition for an embedded language dialect.

4.4 GPP: a generic pretty-printer

GPP is a generic pretty-printer that implements the ideas and techniques dis-
cussed in Section 4.2 and 4.3.1 GPP’s architecture is shown in Figure 4.6. It

1See Appendix A for information about the availability of GPP.



context-free syntax
“if” EXP “then” STAT “fi” → STAT {cons (“IF”)}
ID “:=” EXP → STAT {cons (“ASSIGN”)}
ID → EXP {cons (“ID”)}
NAT-CON → EXP {cons (“NAT”)}
STR-CON → EXP {cons (“STR”)}

Figure 4.7 Grammar productions in the Syntax Definition Formalism SDF, correspond-
ing to the PT and AST of Figure 4.1 and 4.2.2

consists of the pretty-print table generator ppgen , two format tree producers
pt2box and ast2box (see Section 4.4.2), and the format tree consumers
box2text , box2html , and box2latex (see Section 4.4.3). Format tree
producers and consumers are implemented as separate components which ex-
change format trees represented in the markup language BOX. This architecture
can easily be extended by additional tools that produce or consume BOX format
trees (see Section 4.5).

4.4.1 Format definition

The first phase of pretty-printing consists of transforming a PT or AST to a
format tree. This section discusses how the transformation can be defined as
mapping from language productions in SDF to format constructs in BOX.

Syntax definition We use the Syntax Definition Formalism SDF [68, 137] to
define language productions (see Figure 4.7 for some examples). SDF allows
modular, purely declarative syntax definition. In combination with general-
ized LR (GLR) parser generation, the full class of context-free grammars is
supported.

SDF allows concise syntax definitions with syntax operators in arbitrary
nested productions. For instance, using the ‘()’ and ‘?’ operators which de-
note sequences and optionals, respectively, the if-construct of Figure 4.7 can be
extended with an optional else-branch as depicted in Figure 4.8.

Together with concrete syntax, corresponding abstract syntax can also be
defined in SDF. This is achieved by defining the constructor names of the ab-
stract syntax as annotations to the concrete syntax productions (the cons at-
tributes in Figure 4.7 and 4.8). These define the node names of abstract syntax
trees. Chapter 2, “Grammars as Contracts”, discusses generation of abstract
syntax from concrete syntax in more detail.

2Productions in SDF are reversed with respect to formalisms like BNF: on the right hand side of
the arrow is the non-terminal symbol that is produced by the symbols on the left-hand side of the
arrow.



context-free syntax
“if” EXP “then” STAT ( “else” STAT )? “fi” → STAT {cons (“IF”)}

Figure 4.8 Extending the if-construct of Figure 4.7 with an optional else-branch using
the SDF syntax operators ’()’ and ’?’.

As we will see shortly, constructor names also serve to identify productions
and to select proper pretty-print rules.

Format expressions We use the language BOX [33, 79] for defining format-
tings. BOX is a markup language which allows formatting definitions to be
expressed as compositions of boxes. Box composition is accomplished using
box operators (Table 4.1 lists available operators).

The language distinguishes positional and non-positional operators. Posi-
tional operators are further divided in conditional and non-conditional opera-
tors. Examples of non-conditional, positional operators are the H and V opera-
tors, which format their sub-boxes horizontally and vertically, respectively:

H [ B1 B2 B3 ] = B1 B2 B3

V [ B1 B2 B3 ] =

B1

B2

B3

Conditional operators take the available line width into account. An example
is the ALT operator:

ALT [ B1 B2 ] = B1 or B2

It either formats its first sub-box if sufficient width is available, or its second
otherwise.

The exact formatting of positional operators can be controlled using space
options. For example, to control the amount of horizontal space between boxes,
the H operator supports the hs space option:

Hhs=2 [ B1 B2 B3 ] = B1 B2 B3

The non-positional operators of the BOX language are used for cross refer-
encing and for specifying text attributes (such as font and color). They are
also used to structure text, for instance by marking parts as comment text, as
variable, or as keyword.

BOX does not have an explicit empty format operator ε, which is needed for
conservative pretty-printing (see Section 4.3.2). However, this operator can
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H hs Horizontal formatting of sub-boxes
V vs, is Vertical formatting of sub-boxes
HV hs, vs, is Horizontal and vertical formatting of sub-boxes,

taking line width into account
A hs, vs Formatting of sub-boxes in a tabular
R Grouping of rows in a tabular
ALT Conditional formatting depending on available

line width
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F Operator to specify fonts and font attributes
KW Font operator to format keywords
VAR Font operator to format variables
NUM Font operator to format numbers
MATH Font operator to format mathematical symbols
LBL Operator used to define a label for a box
REF Operator to refer to a labeled box
C Operator to represent lines of comments

Table 4.1 Positional and non-positional BOX operators, together with supported space
options (hs defines horizontal layout between boxes, vs defines vertical layout between
boxes, and is defines left indentation).

be mimicked using the H operator as Hhs=0 [ . . . ]. The comment operator γ
used for comment preservation (see Section 4.3.3) is represented using the C
operator in BOX.

Pretty-print rules We can now define pretty-print rules as mappings from
SDF productions to BOX expressions, and pretty-print tables as comma sepa-
rated lists of pretty-print rules (see Figure 4.9).

BOX expressions in pretty-print tables contain numbered place holders ( 1
and 2 in Figure 4.9) which correspond to non-terminal symbols in SDF produc-
tions. During pretty-printing, place holders are replaced by BOX-expressions
that are generated for these non-terminal symbols.

IF -- V[ H[ KW[ “if” ] 1 KW[ “then” ] ] 2 KW[ “fi” ] ],
ASSIGN -- H[ 1 KW[ “:=” ] 2 ],
ID -- 1,
NAT -- 1,
STR -- 1

Figure 4.9 A pretty-print table for the grammar of Figure 4.7.



IF -- V[ H[ KW[ “if” ] 1 KW[ “then” ] ] 2 3 KW[ “fi” ] ],
IF.3:opt -- 1,
IF.3:opt.1:seq -- KW[ “else” ] 1

Figure 4.10 Pretty-print table for the nested if-construct of Figure 4.8.

Constructor annotations of SDF productions serve as keys in pretty-print
tables. Since they are contained in the parse tree format that we use (see
Section 4.4.2) and (as node names) in ASTs (see Figure 4.2), they can be used
to format both tree types.

The pretty-print table of Figure 4.9 only contains pretty-print entries for flat
(non-nested) SDF productions. To enable the definition of a formatting for an
arbitrary nested SDF production, a separate pretty-print rule can be defined for
each nested symbol in a production. Such pretty-print rules are identified by
the path from the result sort of the production to the nested symbol.

For example, Figure 4.10 contains pretty-print entries for the nested SDF

production of Figure 4.8. The first rule has only the constructor name (IF)
as key and corresponds to the top-level sequence of symbols of the SDF pro-
duction (i.e., the sequence of children of the root node of the tree depicted
in Figure 4.11). The remaining pretty-print rules correspond to the nested
symbols. For each path from the root node in Figure 4.11 to a nested symbol
(denoted as grey ellipse), a pretty-print rule is defined.

All path elements contain indexes which are obtained by numbering the
non-terminal symbols contained in nested symbols. Symbol names are required
as part of path elements for pretty-printing ASTs. This is further discussed in
Section 4.4.2.

Pretty-print rule generation Writing pretty-print tables can be a time con-
suming and error-prone process, even for small languages. To simplify pretty-
print table construction, we implemented a pretty-print table generator (the
component ppgen in Figure 4.6). Given a syntax definition in SDF, this gen-
erator produces pretty-print rules for all SDF productions and for all paths to
nested symbols.

Literals in SDF productions are recognized as keywords and formatted with
the KW operator. Several heuristics are used to make a rough estimation about
vertical and horizontal formatting. This is achieved by recognizing several
structures of SDF productions and generating compositions of H and V boxes
accordingly. For most productions however, no explicit formatting definition
is generated. That is, a pretty-print rule is generated without positional BOX-
operators (such as the last two pretty-print rules in Figure 4.10). This makes
generated tables easy to understand and to adapt.

With the generator, a pretty-printer for a new language can be obtained
for free. Although the formatting definition thus obtained is minimal, it is di-
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Figure 4.11 Graphical structure of the nested SDF production of Figure 4.8. Grey
ellipses denote nested SDF symbols.

rectly usable. To improve the layout, we can benefit from the customizability of
pretty-print tables and incrementally redefine the formatting definition. Only
pretty-print rules that do not satisfy have to be redefined. Customized pretty-
print rules can be grouped in separate tables such that regeneration of tables
after a language change does not destroy the customized rules.

4.4.2 Format tree producers

This section discusses pt2box and ast2box which generate format trees from
PTs and ASTs, respectively.

Formatting parse trees Formatting PTs is implemented in pt2box which
supports conservative and comment preserving pretty-printing. It operates on
a universal PT format, called ASFIX (see Chapter 2, “Grammars as Contracts”).
This format can represent PTs for arbitrary context-free languages and contains
all lexical information including layout and comments. In addition, constructor
symbols are also available because each node in an ASFIX PT contains the com-
plete grammar production that produced the node (see Figure 2.4 on page 23
for an example of an ASFIX PT).

The format tree producer pt2box first collects all layout nodes from a PT.
Then it constructs a BOX-expression during a bottom-up traversal of the PT.
Finally, it inserts some of the collected layout nodes in the BOX-term. Layout
is inserted as follows: comments are always inserted; original non-comment
layout is only inserted when conservative pretty-printing is turned on; newly
created layout is never inserted (see Section 4.3.2 about layout insertion).

BOX expressions are constructed by obtaining and instantiating pretty-print
rules from pretty-print tables. Pretty-print rules can also be generated dynami-
cally because all information required for rule generation is available in ASFIX.
Part of the functionality of the pretty-print generator ppgen is therefore reused
in pt2box to dynamically generate pretty-print rules. This makes pretty-print
rules dispensable because rules that are missing are generated on the fly.



Formatting abstract syntax trees Generation of format trees from ASTs is
implemented in ast2box . Given a set of pretty-print rules, ast2box produces
the same format tree as pt2box , except for preserved layout strings. ASTs
do not contain layout and consequently, conservative nor comment preserving
pretty-printing is supported by ast2box .

Abstract syntax is generated from SDF definitions based on the constructor
annotations of grammar productions. These constructor annotations define the
node names of ASTs. See Chapter 2, “Grammars as Contracts”, for a discussion
about abstract syntax generation from concrete syntax definitions. Since con-
structor names also serve as keys in pretty-print tables, the name of a node
in an AST can be used to obtain the corresponding pretty-print rule (see Fig-
ures 4.2 and 4.9).

In an AST, certain types of symbols are indistinguishable although they re-
quire different formatting. The symbol names in the keys of pretty-print rules
serve to be able to always determine the types of symbols, such that the correct
formatting can be applied.

For instance, SDF supports comma separated lists which have the same ab-
stract syntax as ordinary lists. The separator symbols are not contained in
the abstract syntax and have to be reproduced during pretty-printing. Conse-
quently, comma separated lists require special treatment and should be distin-
guished form ordinary lists. This can be achieved with the information in the
paths of corresponding pretty-print rules.

Keywords are not contained in ASTs and have to be reproduced during
pretty-printing. ASTs also lack information to generate pretty-print rules con-
taining these keywords dynamically. In contrast to pt2box , it is therefore
essential for ast2box that pretty-print rules are defined for each constructor
in the AST.

4.4.3 Format tree consumers

The last phase of pretty-printing consists of transforming a format tree to an
output format. The architecture of GPP allows an arbitrary number of such
format tree consumers. We implemented three of them which produce plain
text, LATEX, and HTML as output format, respectively. PDF can also be generated
but indirectly from generated LATEX code.

From BOX to text The box2text component transforms a format tree to
plain text. It fully supports comment preservation and conservative pretty-
printing. The transformation consists of two phases. During the normalization
phase all non-positional operators (except the C comment operator) are dis-
carded, and positional operators are transformed to H and V boxes. A normal-
ized BOX-term only contains non-conditional operators and absolute, rather
then relative offsets as space options. Then, during the second phase, the
normalized BOX-term is transformed to text. This amounts to producing non-



terminal symbols and layout strings. The latter are computed based on the
absolute space options.

From BOX to LATEX For the translation to LATEX we defined LATEX environments
which provide the same formatting primitives of BOX in LATEX [78]. The box-
2latex consumer translates BOX-operators to corresponding environments,
latex is then used to do the real formatting. An additional feature is the
ability to improve the final output by defining translations from BOX strings to
native LATEX code. This feature can be used for example, to introduce math-
ematical symbols that were not available in the original source text (e.g., to
introduce the symbol ‘φ′ for the word phi ). All code examples in this thesis
(such as Figures 4.7–4.10) are generated with GPP using the box consumer
box2latex .

From BOX to HTML Boxes are translated by box2html to a nested sequence
of HTML tables. Representing BOX in HTML is difficult because HTML only con-
tains primitives to structure text logically (as title, heading, paragraph etc.), not
as composition of horizontal and vertical boxes. Only with HTML tables (where
rows correspond to horizontal boxes and tables to vertical boxes) we can cor-
rectly represent BOX-operators in HTML. Figure 2.10 on page 32 and Figure 5.5
on page 85 contain examples of HTML pages as produced by box2html .

4.5 Applications

This section addresses several applications of the generic pretty-printer GPP in
practice.

4.5.1 The Grammar Base

The Grammar Base (GB) is a collection of reusable Open Source language def-
initions in SDF. This collection includes grammars for XML, C, COBOL, JAVA,
FORTRAN, SDL, and YACC.

In addition to language definitions, GB also contains pretty-print tables for
each language. Together with generated parsers, GB thus offers a large collec-
tion of format tree producers and consumers for software reengineering sys-
tems for free.

The pretty-printer generator is used to generate initial pretty-print tables for
new languages. By using this generator, pretty-print support can be guaranteed
for each language without any effort. The generator is integrated in the build
process of GB to automatically build a pretty-print table for a language unless
a customized table exists.

We initiated the Online Grammar Base to make the grammars in GB acces-
sible and browsable via Internet. GPP is used to produce the web pages by
formatting all language definitions and representing them in HTML. The screen



dump in Figure 2.10 on page 32 gives an impression of the Online Grammar
Base and the use of GPP as formatting engine.

4.5.2 Integration of GPP and GB in XT

GPP and GB are highly integrated in XT (see Chapter 3, “XT: a Bundle of Pro-
gram Transformation Tools”), by the general pretty-print tool pp. This tool
combines all pretty-print components from GPP, with all pretty-print tables
from GB. The result is a tool that can pretty-print any language contained in GB

(currently more then 30 languages and 10 dialects) in any format supported
by GPP (currently 3). The tool can format either PTs or ASTs.

With this tool, pretty-printing reduces to selecting an input language, an
input format (plain text, PT, or AST), and an output format (plain text, HTML,
or LATEX).

4.5.3 A documentation generator for SDL

In the next chapter, we will discuss the development of a documentation gener-
ator for the Specification and Description Language (SDL) in corporation with
Lucent Technologies. This documentation generator produces a web-site that
provides different views on SDL programs and formed an application of GPP in
industry.

We used ppgen to obtain an initial pretty-print table for SDL and added
pretty-print rules to customize this generated formatting definition. We used
pt2box to obtain a BOX format tree for SDL programs, containing labels and
references for several language constructs. Depending on the view that was
being constructed, a separate program connects the labels and references of
relevant language constructs, for instance state transitions to corresponding
state definitions. All HTML pages are produced by box2html .

We also developed utilities that produce BOX-terms for data types, such
as lists. These tools made it very easy to transform such data types to HTML

without the extra effort of developing an abstract syntax and pretty-print tables
first. This illustrates that besides the format tree producers described thus far,
also additional ones can easily be integrated with GPP.

The documentation generator also integrates other views of SDL programs,
such as a graphical view on state transitions. These views can be accessed from
the generated HTML representation of SDL programs and vice versa.

4.5.4 Pretty-printing COBOL

GPP is currently being used in an industrial experiment concerned with COBOL

reengineering. The goal of this experiment is to bring the results of academic
research into practice to build automated reengineering systems. The experi-
ment combines rewriting with layout [32] and conservative, comment preserv-
ing pretty-printing to leave the layout of transformed programs in tact.



The transformations in this project are performed on full PTs and imple-
mented in ASF [15, 54], an algebraic specification formalism based on rewrit-
ing. Transformation rules are interpreted by an engine that preserves layout
during rewriting. Layout nodes that are created during rewriting are marked
as new. The result is a PT that contains original layout nodes wherever possible,
and nodes marked as new, where layout nodes had to be created. Consequently,
only the parts of a COBOL program that were affected by the transformation are
re-formatted by GPP, the rest of a program remains unchanged.

To use GPP in this experiment, we first generated a pretty-print table from
the COBOL grammar using ppgen . Then we customized the generated pretty-
print rules. Since pretty-printing occurs conservatively and the transformations
make only local changes, few layout nodes have to be generated by the pretty-
printer. Consequently, only a few pretty-print rules had to be customized to
obtain a proper formatting of the transformed program parts.

Thus, although the COBOL grammar is large (about 350 nested productions)
and the corresponding generated pretty-print table is huge (about 1200 pretty-
print rules), only a few pretty-print rules had to be customized by hand (3
in the experiment that we performed) in order to use GPP successfully in this
COBOL reengineering system.

4.6 Discussion

We only support conservative pretty-printing for PTs because AST do not con-
tain layout. However, defining a tree format based on ASTs with layout, and to
implement conservative pretty-printing for it, would not be difficult.3

We use pretty-print rule interpreters to transform PTs and ASTs into format
trees. This has the advantage that the interpreters are language-independent
and that pretty-printers can be customized at any time. Alternatively, language-
specific format tree producers can be generated from pretty-print rules. This
would increase performance at the cost of reduced flexibility.

In our approach, the rules that transform a PT or AST to a format tree are
defined per language production. This transformation can also be based on
pattern matching in which case the tree structure is taken into account to de-
termine a proper formatting of program fragments [33, 106]. This gives more
expressiveness because it is context sensitive. However, reuse of format defi-
nitions for formatting PTs and ASTs would be complicated due to the usually
different tree structures.

3See for instance [148], which discusses layout preserving reengineerings defined on abstract
syntax trees with layout.



4.7 Concluding remarks

Related work We refer to [79] for a general overview of existing work in
pretty-printing.

An early approach to comment preserving pretty-printing was discussed
in [26]. In this approach, the original program text is needed during pretty-
printing in order to retrieve comments and to determine the location where to
insert comments in BOX-like formatting expressions.

Van De Vanter emphasizes the importance of comments and white space for
the comprehensibility and maintainability of source code [136]. Like we, he
advocates the need to preserve this crucial aspect. He describes the difficulties
involved in preserving this documentary structure of source code, which is
largely orthogonal to the formal linguistic structure, but he does not provide
practical solutions.

In [125] another conservative pretty-print approach is described which only
adjusts code fragments that do not satisfy a set of language-specific format
constraints. This approach is useful for improving the formating of source code
by correcting format errors. However, it cannot handle completely unformatted
(generated) text and does not support comment preservation. Furthermore, it
adapts existing layout (in case format errors are detected), which makes it not
useful in general for software reengineering.

Pretty-printing as tree transformation is also discussed by [67, 106]. They
do not address typical requirements for software reengineering such as cus-
tomization and reuse of transformation rules, and layout preservation. Also
transforming different types of trees and producing different output formats is
not addressed.

Components and Reuse Figure 4.12 displays the gpp package, its constituent
components, and the components it reuses (see Section 3.6 on page 42 for in-
formation about component diagrams). The gpp package implements 8 com-
ponents and reuses 6 components from 6 different packages. The reused com-
ponents are part of XT and are described in more detail in Chapter 3, “XT: a
Bundle of Program Transformation Tools”.

Table 4.2 depicts component sizes and reuse levels of the gpp package. The
table shows that the implementation consists of approximately 12,100 lines
of code, of which more than 8,400 lines are reused. This yields a reuse level
between 69% and 85%. Section 3.6 justifies these numbers and describes how
they are obtained by analyzing component implementations.

Contributions In this chapter, we discussed pretty-printing in the context
of software reengineering and described techniques that make pretty-printing
generally applicable in this area. These techniques help to decrease develop-
ment and maintenance effort of reengineering systems, tailored towards par-
ticular customer needs, and supporting multiple language dialects. The tech-
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Figure 4.12 Components used by the GPP package. This picture will be filled in the
remaining chapters with additional software packages. This leads to a complete picture
of component usage, which is depicted in Figure 8.2 on page 145.



Non-transitive reuse Transitive reuse
Component LOC RSI Reuse% LOC Reuse%

abox2html 1,436 783 54% 1,436 54%
abox2latex 1,782 895 50% 1,782 50%
abox2text 1,226 805 65% 1,226 65%
abox-format 755 676 89% 755 89%
asfix2abox 3,617 2,883 79% 5,325 86%
ast2abox 1,714 1,382 80% 3,422 90%
ppgen 1,415 984 69% 1,415 69%
tohtml 233 0 0% 10,988 97%

Totals: 12,178 8,408 69% 26,349 85%

Table 4.2 Reuse table for the gpp package. The table shows that for this package, a
total of 3,770 new lines of code had to be written.

niques addressed in this chapter include i) customizable pretty-printing to adapt
a pretty-printer to customer-specific format conventions, ii) conservative pretty-
printing to preserve layout and comments during pretty-printing, iii) modular
pretty-print tables to make formattings reusable, and iv) pretty-printing of PTs
and ASTs using a single format definition. Furthermore, we implemented these
techniques in the generic pretty-printer GPP which transforms PTs and ASTs
to plain text, HTML, and LATEX, using a single format definition. Finally, we
demonstrated that these techniques are feasible by using GPP for a number of
non-trivial applications, including COBOL reengineering and SDL documenta-
tion generation.

Acknowledgments We thank Arie van Deursen, Jan Heering, and Paul Klint
for reading drafts of the chapter.



P A R T II

Development with Reuse

73





C H A P T E R 5

Cost-Effective Maintenance
Tools for Proprietary Languages

This chapter addresses Language-Centered Software Engineering (LCSE) in
practice using the techniques and language tool components presented in Chap-
ters 2–4.

This chapter describes a case study, carried out in cooperation with Lucent
Technologies, concerned with decreasing the maintenance costs of proprietary lan-
guage tooling. The case study was concerned with Lucent’s proprietary SDL dialect
and involved reengineering their dialect and developing a documentation genera-
tor for it. We show that by using LCSE and the components from the XT bundle,
the development process of languages and tools can be simplified and a decrease in
maintenance costs can be achieved. Further, we show that the development time
of the documentation generator was relatively short because a significant amount
of code was reused as-is or generated by the program generators that are bundled
with XT. The work presented in this chapter was published earlier as [82].

5.1 Introduction

Many companies in industry use proprietary programming languages or lan-
guage dialects for the development of their software products. Consequently,
such companies are faced with a maintenance effort for their software prod-
ucts and for the language and corresponding tooling. Maintenance costs of the
language and tooling are usually high because a language change has great
impact on the corresponding tooling [55].
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To overcome such maintenance problems of language tools, a company has
four options:

1. It might decide to stop the development of the language and tooling. This
is a short term solution however, because knowledge of the tooling will
gradually disappear which eventually may lead instead to an increase of
maintenance costs.

2. Migrate its software products and implement them in a similar, interna-
tional, standardized programming language (if available). After migra-
tion, commercially available language tooling can be used and the com-
pany can benefit from main stream language development. Of course,
this approach can be very difficult, and may also have great impact on
the development process of the software products and its developers, de-
pending on the amount of discrepancies between the standard and the
proprietary language.

3. Outsource the development and maintenance of its language tooling.
This is a transfer of the problem to a third-party, the maintenance prob-
lem still remains. Furthermore, it usually is extremely expensive and it
makes the company dependent on a third party.

4. Decrease maintenance costs by simplifying the development process of
language tooling. This can be achieved, either by increasing the amount
of generated, language-specific code, or by increasing the number of
reused (language-independent) components.

In this chapter we explore the last option. We describe a case study carried out
in co-operation with Lucent Technologies in which we used Language-Centered
Software Engineering (LCSE) as discussed in Chapter 2, “Grammars as Con-
tracts”, for the development of maintainable, inexpensive language tools for
incremental documentation generation.

This case study was concerned with Lucent’s proprietary dialect of the Spec-
ification and Description Language (SDL), a language for the specification of the
behavior of telecommunication systems. Lucent based its dialect on an early
draft of the international standard, which only slightly differed from the final
standard which appeared in 1988 [72]. To limit maintenance and development
costs, Lucent Technologies decided long ago to ‘freeze’ their proprietary SDL

dialect. Since adaptations to their SDL tool set were no longer required, knowl-
edge of these tools disappeared gradually. This eventually led to increased de-
velopment costs of new language tools and unavailability of existing tools due
to the dependency on now obsolete hardware. Clearly, Lucent’s early approach
of reducing maintenance costs by freezing language and tool development has
turned out to be counter-productive on the long term.

To demonstrate that LCSE simplifies language tool construction and that it
can decrease maintenance costs, we started the development of a new tool



environment for code browsing and visualization. This environment helps
maintaining Lucent’s SDL code because it improves accessibility of SDL code by
providing access to the source code at different levels of abstraction and from
different points of view. Since the environment can easily be extended, mainte-
nance of SDL code can further be improved by connecting additional documen-
tation and visualization components. Without preliminary knowledge about
SDL, we developed a prototype tool environment in only a few man months
time. After building some basic SDL components together, Lucent constructed
its own language tooling using the techniques described in this chapter.

The chapter is organized as follows. We address LCSE in Section 5.2. That
section motivates, amongst other things, the use of SDF for syntax definition.
Section 5.3 discusses how an SDF grammar for SDL can be reengineered from
an operational YACC grammar. This SDF grammar is used in Section 5.4 where
we develop an SDL documentation generator for code browsing and inspec-
tion. Sections 5.5 and 5.6 contain a discussion of related work, a summary of
contributions, and directions for future work.

5.2 Language-centered software engineering1

Grammars form an essential part of language tools, not only because they are
used to derive parsers and pretty-printers from, but also because they greatly
influence the shape of corresponding parse trees. Consequently, all parts of a
software system that operate on parse trees depend on the grammar.

Different language tools perform several common sub-tasks, such as pars-
ing, pretty-printing, and tree traversal. To optimize the software development
process by minimizing code duplication, it is necessary that the code perform-
ing these tasks is shared between different language tools. Moreover, being
free to choose a programming language that best suits the needs of an applica-
tion is necessary as well. Sharing functionality between applications based on
source code reuse only is therefore not sufficient. In addition to source code
reuse, component-based software construction is required to share common
tasks between applications written in different programming languages.

LCSE, which was presented in Chapter 2, emphasizes the central role of
grammars and the need for components in the software engineering process.
It supports generation of stand-alone components and libraries from grammars
as well as easy integration of off-the-shelf reusable components. LCSE is based
on the following key concepts.

Contracts Building applications by connecting reusable, generated, as well as
application-specific components requires agreement on the type and structure
of data exchanged between these components. Further, a uniform exchange

1Language-Centered Software Engineering (LCSE) was discussed before in Chapter 2, “Gram-
mars as Contracts”, and in Chapter 3, “XT: a Bundle of Program Transformation Tools”. This section
contains a brief overview of the techniques and tools presented there.
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Figure 5.1 Grammars serve as contracts between different components (a) and for
generation of language-specific code (b).

format is needed in order to connect such components easily. Since language
tools typically transfer parse trees or abstract syntax trees between different
components, the language itself describes the structure of the data that is trans-
ferred. In Chapter 2 we described an architecture of component-based software
development where grammars serve as contracts between components (see Fig-
ure 5.1(a)).

Library generation Since the structure of trees processed by language tools
depends on the grammar, the code to traverse such trees also depends on
the same grammar. Obviously, writing such code by hand is time consum-
ing, error prone, and yields a maintenance problem because this code needs
to be adapted over and over again whenever the grammar changes. Moreover,
this programming effort has to be repeated for each programming language
in use. Generation of libraries containing tree access and traversal functions
from the grammar for each programming language in use (the small circles in
Figure 5.1(b)) therefore helps cost effective language tool development.

Component generation In addition to generating programming language-
specific libraries, a grammar can also be used to generate language-specific,
stand-alone components, which can be reused as-is to construct new applica-
tions (the large circles in Figure 5.1(b)). Such components include parsers and
pretty-printers, as well as tools to convert parse trees into abstract syntax trees
and vice versa.

Language technology LCSE requires state-of-the-art language technology for
language definition and parsing. Reusability and maintainability of grammars
are essential to fully benefit from LCSE. To meet these requirements, language
technology is needed that:



• Accepts the full class of context-free grammars. This allows for clear
encodings of languages, which do not have to be manipulated to fit in a
restricted class of grammars.

• Offers a purely declarative syntax definition formalism. This prevents
pollution of grammars with (application-specific) semantic actions that
would hamper reuse and maintainability of grammars.

• Supports modular syntax definitions. Modularization allows language
dialects to be defined as grammar extensions in separate modules. This
prevents duplication of grammar definitions.

These requirements are fulfilled by the syntax definition formalism SDF [68,
137] together with generalized LR parsing [122, 137]. We used this technology
in the case study presented here for SDL syntax definition and parsing.

LCSE helps to decrease the development time of language tools because
it minimizes the amount of language-specific code that has to be written by
hand. Once a grammar exists, language-specific, stand-alone components and
libraries are generated, which, together with off-the-shelf reusable compo-
nents, help to build new language tools easily. LCSE also improves software
maintenance because due to code generation and component reuse, only a rel-
ative small part of an application requires manual adaptation after a language
change.

LCSE is supported by the tool bundle XT, which we presented in Chap-
ter 3. XT, which stands for ‘Program Transformation Tools’, bundles various
related transformation tool packages into a single distribution. These packages
include a generalized LR parser and parser generator [137], The ATERMS uni-
form exchange format [28], the transformational programming language Stra-
tego [138], and the generic pretty-printer GPP (see Chapter 4, “Pretty-Printing
for Software Reengineering”). Furthermore, XT contains an extensive collec-
tion of grammar related tools and the Grammar Base, a collection of reusable
grammars. XT is distributed as open source and requires minimal installation
effort.

5.3 SDL grammar reengineering

In Section 5.2 we discussed the requirements that LCSE puts on language tech-
nology and we motivated the use of SDF and generalized LR parse techniques.
To benefit from these in order to build maintainable tools for SDL, we derived
an SDF grammar from the EBNF definition and operational YACC grammar that
were available for Lucent’s SDL dialect. This section describes the systematic
process that we followed to obtain a cleaned up grammar of this SDL dialect in
SDF.
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5.3.1 From YACC to SDF

Although SDF in combination with LR parsing offers advanced language tech-
nology which decreases maintenance costs of grammars and promotes their
reuse, far more grammars have already been developed in YACC, many of which
are operational and extensively tested. Since the development of a grammar
from scratch is difficult and expensive, we propose systematic grammar reengi-
neering, in which an SDF grammar is (semi-automatically) obtained from an
operational (legacy) YACC grammar, yielding a grammar that is as correct as
the originating one.

We divided this grammar reengineering process in four phases in order to
make a clear distinction between different types of transformations (see Fig-
ure 5.2). During the first transformation phase, an SDF grammar is obtained
from the YACC grammar. The remaining phases define source to source trans-
formations on SDF in which a more natural encoding of the language is ob-
tained. Since only the first two phases of the reengineering process are YACC-
specific and only the first phase actually depends on the YACC syntax, this
reengineering approach can also be defined for other syntax definition for-
malisms (like BNF and ANTLR [117]). Only a front-end which transforms a
syntax definition to SDF, and a transformer which removes system-specific con-
structs need to be defined.

YACC to SDF phase The YACC to SDF phase is completely automated and ba-
sically consists of the following transformation:

S : Si . . .Si+k
| Sj . . .Sj+n

...
;

=⇒
Si . . .Si+k → S
Sj . . .Sj+n → S

...

Observe that each alternative in the YACC definition yields a separate produc-
tion in SDF, and that the productions are reversed with respect to formalisms



like BNF. Furthermore, since SDF only allows syntax definition, all semantic
related issues from the original YACC definition are removed during this phase.
This includes removal of YACC’s error handling mechanism using the reserved
token “error”.

Since we are interested in reengineering grammars only, we ignore seman-
tic actions here. This holds for semantic actions that control the shape of parse
trees as well as for semantic actions related to error recovery and error re-
porting. We use a generic parse tree format and consider modifying the shape
of parse trees for particular needs as a separate phase after parsing. For er-
ror reporting and recovery we depend on generic mechanisms provided by our
parser.

De-yaccification phase An SDF grammar specification obtained in the previ-
ous phase is isomorphic to the grammar defined in YACC and therefore still con-
tains YACC-specific idioms. These include lists expressed as left-recursive pro-
ductions and productions introducing non-terminal symbols which only serve
disambiguation (by encoding precedence and associativity in grammar produc-
tions).

In order to obtain a more natural specification of the language in SDF, we
remove these YACC idioms, a process called de-yaccification [127]. We consider
the following transformations:

• Introduction of ambiguous productions by flattening the productions that
only serve disambiguation. This transformation also includes the addi-
tion of priority rules for disambiguation.

• Replacement of left-recursive list encodings by explicit list constructs.

• Joining lexical and context-free syntax by unfolding terminal symbols in
context-free productions.

These transformations are performed automatically and have been implemen-
ted in the algebraic specification formalism ASF+SDF [15, 68, 54], a formalism
supporting conditional rewrite rules based on concrete syntax. Its recent ex-
tension with traversal functions simplified the construction of transformation
systems significantly [29]. The system provides default bottom-up traversals
and the programmer provides rewrite rules only for those constructs that need
transformation. Since the individual de-yaccification transformations only af-
fect a small part of the SDF grammar (which itself is quite large), only a few
rewrite rules are needed to implement the transformations. Each transforma-
tion is defined as a separate ASF+SDF specification which can be executed in
sequence to remove YACC-specific idioms step by step.

SDF refactoring phase After the de-yaccification process, the grammar looks
already more natural. The grammar still does not benefit from the power-
ful features of SDF however. The next step in the reengineering process is to



decision : decisionStart decisionBody ENDDECISION
| decisionStart error
;

decisionStart : DECISION decisionValue endStmt
| DECISION error
;

decisionBody : caseList
| caseList elseAnswer caseTransition
;

caseList : case
| caseList case
;

Figure 5.3 YACC fragment of SDL Decision construct.

refactor the grammar to introduce such special SDF constructs which shorten
the syntax definition and improve its readability. We consider the following
transformations:

• Introduction of optionals.

• Introduction of SDF constructs for separated lists.

• Grammar decomposition by modularization.

We developed ASF+SDF specifications to automate the first two transforma-
tions. We do not have tool support for automatic modularization of grammars
yet, but heuristics for grammar decomposition are described in [122, 128].

Beautification phase The previous transformations are general language-
independent grammar transformations most of which can be automated. The
transformations operate globally on the grammar and transform productions
that match general patterns.

During the last phase of the reengineering process, the grammar can be
fine tuned by performing transformations operating on specific grammar pro-
ductions. What transformations to perform largely depends on personal taste.
An operator suite designed for expressing this kind of grammar transformations
and applying them automatically is described in [94, 90].

5.3.2 SDL grammar reengineering

Lucent’s proprietary SDL dialect is closely related to the SDL standard known
as SDL 88 [72]. It was derived from an early (yet incomplete) draft of this
standard. The absence of block constructs in the SDL dialect was the major



difference with SDL 88. After SDL 88 many new language constructs have been
defined in additional SDL standards of which SDL 2000 is the most recent one.
Lucent’s dialect did not benefit from these language progressions.

Both the syntax and semantics of Lucent’s proprietary SDL dialect have been
clearly defined in internal technical reports. Like standard SDL, the dialect ex-
ists in two forms: a graphical form (SDL-GR) and a textual form (SDL-PR). Since
a mapping exists between both, we only considered the textual representation
for the reengineering project that we carried out. The lexical and context-free
syntax of this language was defined in a single EBNF definition. In addition to
the technical documentation we also had an operational YACC definition avail-
able which has been in use for years in the original SDL toolset. We considered
this definition as ultimate starting point for reengineering the SDL grammar.
Unfortunately, the lexical analyzer that was also available turned out to be use-
less for this reengineering process because the lexical syntax was directly coded
in C procedures and consequently, hard, if not impossible, to reengineer.

The reengineering process therefore consisted of a (semi-) automatic deri-
vation of the context-free syntax from the YACC definition, and a manual def-
inition of the lexical syntax. Thanks to the clear EBNF definition the mapping
from the EBNF lexical syntax definition to SDF was straight forward (it was only
a matter of minutes) and is not further addressed here.

After the transformation to SDF was complete, we added constructor names
to the context-free productions of the SDL grammar which are used to derive
an abstract syntax definition (see Section 5.4). This annotated SDL grammar,
allows tooling to operate on full parse trees (for example comment preserving
pretty-printers), and on abstract syntax trees.

While testing the reengineered grammar, we discovered that in existing SDL

code slightly different lexical constructs were used as were defined in Lucent’s
EBNF definition. Since SDF definitions are modular, we were able to develop
an extension to the SDL lexical syntax in a separate module to accept these
constructs without affecting the lexical syntax definition that corresponds to
the EBNF definition.

The reengineering process transformed the YACC fragment of Figure 5.3 to
the SDF fragment of Figure 5.4. The semantic actions that were attached to
most of the syntax productions in the original YACC definition are not shown.
Observe that the reengineered fragment contains fewer productions, that key-
words are contained in the productions, and that SDF constructs such as op-
tionals and lists are introduced.

The complete reengineered SDL grammar is defined in 23 modules each
defining particular SDL constructs. The number of non-terminals has been re-
duced from 254 to 104, the number of productions from 490 to 190.



context-free syntax
“DECISION” DecisionValue “;” DecisionBody “ENDDECISION”
→ Decision {cons (“Decision”)}

Case+ ( ElseAnswer CaseTransition )?
→ DecisionBody {cons (“DecisionBody”)}

Figure 5.4 Reengineered SDL Decision construct of Figure 5.3 in SDF.

5.4 An SDL documentation generator

This section addresses the development of an extensible documentation gen-
erator for SDL in textual form (SDL-PR). We did not consider SDL in graphical
form (SDL-GR). The generator produces HTML documentation from SDL code.
It uses extractors to collect specific information from SDL code which is used
to provide different ways for code browsing. The documentation consists of
a state name list and a pretty-printed SDL program. When clicking on a state
name, the corresponding state definition is presented. A screen dump of gen-
erated documentation is depicted in Figure 5.5.

The documentation generator is based on the SDL grammar as developed
in the previous section. From this grammar, we generate a parser which pro-
duces parse trees in the SDF parse tree format, called ASFIX [137]. ASFIX trees
contain all information about parsed terms, including layout and comments.
This enables the exact reconstruction of the original input term and the ability
to process parse trees while preserving comments and layout (see Chapter 2,
“Grammars as Contracts”). From the grammar also an abstract syntax defini-
tion can be derived, as well as pretty-print tables and Stratego signatures (see
below).

Abstract syntax From the concrete syntax definition, an abstract syntax def-
inition can be derived based on the prefix constructor names defined as an-
notations of grammar productions (the cons attributes in Figure 5.4). These
constructor names define the names of abstract syntax productions and can
be added to the grammar manually or be synthesized automatically using the
sdfcons tool (see Chapter 2, “Grammars as Contracts”). Abstract syntax trees
can be derived from ASFIX parse trees because the constructor name informa-
tion is contained in ASFIX trees. Language tooling can be developed to operate
on parse trees or on abstract syntax trees depending on particular needs. The
components of the documentation generator that we implemented operate on
abstract syntax trees because they only require a subset of the information that
is contained in the parse trees. The comment preserving pretty-printer that we
reuse for pretty-printing SDL code on the other hand operates on parse trees.



Figure 5.5 Generated SDL documentation.

Pretty-print tables Parse trees and abstract syntax trees can be transformed
into human-readable form by the generic pretty-printer GPP. This pretty-printer
can produce several formats including plain text, LATEX, and HTML. Precise,
language-specific formattings are expressed in pretty-print tables which define
mappings from language constructs (denoted by their constructor names) to
BOX. GPP and BOX were discussed in Chapter 4, “Pretty-Printing for Software
Reengineering”.

BOX is a language-independent markup language designed to define the in-
tended formatting of text. Pretty-print tables can be generated from a grammar
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Figure 5.6 SDL documentation generation process.

and customized to define the desired formatting. For example, a formatting for
the Decision construct of Figure 5.4 can be specified using the following pretty-
print rule:

Decision -- V [H [ “DECISION” 1 “;”] 2 “ENDDECISION”]

This rule specifies that the keyword DECISION, the non-terminal DecisionVa-
lue and the semi-colon should be formatted horizontally. This horizontal box,
together with the box representing the pretty-printed non-terminal Decision-
Body, and the keyword ENDDECISION should be formatted vertically.

BOX supports labels in pretty-print rules which are translated to HTML an-
chors by the box2html formatter. With this labeling mechanism, we can add
links to SDL language constructs in the generated HTML documentation. For the
SDL documentation generator we are interested in state definitions such that
we can jump in SDL code to the start of state definitions. Therefore, we use
the LBL construct of BOX to define labels in the pretty-print rule of the State
construct:

State -- V [H [ “STATE” LBL [ “STATE” 1 ] “;”] 2 H [“ENDSTATE” 3 “;”]]

Afterwards, an SDL-specific tool (mk-labels ) replaces the label names as gen-
erated by the box generator (STATE in the example above) by unique names.
Since the pretty-printer is language-independent it cannot be used here for this
language-specific synthesis of label names.

After the generated pretty-print table for SDL has been customized to define
appropriate formatting and labels for state definitions, generic tooling can be
used to translate a parse tree to BOX and subsequently to one of the output



formats. For the documentation generator we only use HTML, but the genera-
tion of documentation with richer formatting is supported via the box2latex
back-end.

Stratego We used the programming language Stratego for the implementa-
tion of the SDL-specific components. Stratego [138] is a program transfor-
mation language based on term rewriting with strategies. It has an extensive
library of strategies for term traversals and transformations. Stratego also sup-
ports the common exchange format ATERMS, which enables processing of parse
trees and abstract syntax trees as produced by the SDL parser. In order to en-
able special term traversals and transformations, language-specific signatures
are required by Stratego. These signatures which describe the shape of abstract
syntax trees are generated from an SDF definition by the tool sdf2sig .

The SDL-specific mk-labels tool, which inserts unique label names in a
BOX term to denote the start of state definitions in SDL programs, is imple-
mented in Stratego as follows:

module mk-labels.r
strategies

mk-labels = topdown(try(mk-label))

state-name2str = getfirst(mk-string)
rules

mk-string : S(str) → str

mk-label : LBL(“\”STATE\“”, abox) → LBL(name, abox)
where
<concat-strings>[“state:”, <state-name2str> abox] ⇒ name

This program performs a top-down traversal of a BOX term, and tries to apply
the rule mk-label to each node. This rule replaces the first argument of label
nodes of the form LBL(“\”STATE\“”, abox) by the state name, preceded by the
string “state:”. The state name is retrieved from the second argument of the
LBL term using the strategy state-name2str. This strategy retrieves the first of
a list of names that is given to a state definition, and makes a string from it.
The program thus transforms a term

LBL("\"STATE\"", [S("my_state")])

into the term

LBL("state:my_state",[S("my_state")])

Once appropriate label names have been inserted by the tool mk-labels , the
BOX term can be translated to HTML using the box2html back-end. The result-
ing HTML pages contain anchors at the start of state definitions.
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Figure 5.7 Architecture of the FSM graph generator.

Extraction The documentation generator generates a web-site which displays
an SDL program to the user and allows him to browse this code in different
ways. One way to browse the code is by offering a list of state names which,
when clicked on, jump to the start of the corresponding state definition. To
implement this, a code extractor needs to be implemented to collect a list of
states from an SDL program. This is easily implemented in Stratego by travers-
ing over the abstract syntax tree and collecting all nodes that correspond to
state definitions:

module collect-states
strategies

collect-states = collect(get-state-name)
rules

get-state-name : State(StateList(names), , ) → <Hd> names

get-state-name : State(StateList(), , ) → “?”

This program matches state nodes and distinguishes ordinary state definitions
and default states (‘?’ states). For ordinary state definitions, the first of the
list of state names is returned (with <Hd>names). For default states, ‘?’ is
returned as state name.

Collection of states is a simple extraction but when combined with other
(more advanced) extractors, a rich SDL toolset can be constructed. A more
complex example is the state transition extractor which is discussed later.

Connection to the documentation generator To integrate the state collec-
tor in the documentation generator, its output should be represented in HTML

as a list of hyper-links each pointing to the start of the corresponding state def-
inition in a pretty-printed SDL file. These hyper-links should use the same label
names as generated by the mk-labels tool described above. We consider
transforming the output of the state collector to HTML as a separate step to be



performed by a separate component. Therefore, the state collector does not
produce HTML directly and, as a result, can also be used in different settings.

To obtain an HTML representation of the list of states, we can construct a
grammar for the output format and a pretty-print table to define the mapping
to HTML. Because this approach has some overhead (it requires an additional
grammar and extra parsing of the list of states), we followed a different ap-
proach and developed a small component that transforms the output directly
to a BOX term (more precisely it produces an abstract syntax tree of a BOX

term). This term can be passed to box2html to obtain the desired HTML rep-
resentation.

Integration of components All ingredients of an initial documentation gen-
erator have now been developed. We can format SDL programs in HTML by
parsing a program and transforming the parse tree to BOX using the SDL pretty-
print table. Then we can insert unique label names in the BOX term and trans-
form it to HTML. The HTML list of state names (which link to state definitions)
can be obtained by first parsing an SDL program and transforming the parse
tree to an abstract syntax tree. Then we can collect all state names and trans-
late the resulting list of states to BOX and finally to HTML. Figure 5.6 contains
an overview of all components involved in this documentation generation pro-
cess and shows how both the HTML state list and the pretty-printed SDL code
are produced. Grey ellipses denote generated or reused components.

A FSM graph generator The documentation generator is extendible and ex-
tra tooling can be developed to provide additional documentation and infor-
mation of SDL programs. In addition to the state collector, we developed a
finite state machine (FSM) graph generator. This generator produces, given an
SDL model, the graph representation of the underlying FSM. In Figure 5.7 a
detailed overview of the graph generator is depicted. Grey ellipses denote the
components that are generated.

In addition to the SDL grammar, two more grammars are used for this tool.
DOT [63] is a low level graph representation, which we used because off-the-
shelf graph visualization tools for this representation were available for reuse.
GRAPHXML [70] is a high-level graph representation language in XML in which
a graph can be represented in terms of its mathematical description (i.e. in
terms of edges and transitions). The grammars for DOT and GRAPHXML are
available in the Grammar Base and reused here as off-the-shelf language com-
ponents.

The only thing that needs to be implemented for the FSM visualizer is part
of a single Stratego program (the left-most Stratego program in Figure 5.7),
which is responsible for the extraction of the FSM information from SDL code
and the generation of a graph representation in GRAPHXML. The tool that
transforms GRAPHXML to DOT and the DOT visualizer were reused as-is. Both
Stratego components share the generated grammar signatures. In Figure 5.8



a generated FSM graph is depicted that was extracted from a real-world SDL

program of approximately 30,000 lines of code. This figure shows transitions
from states (denoted as ellipses) and from procedures (denoted as diamonds).
The corresponding procedure call graph was extracted in a similar fashion and
is depicted in Figure 5.9.

The FSM state generator is another example of an extractor and can easily
be integrated in the SDL documentation generator. This is achieved by auto-
matically converting the graph into a clickable image such that clicking on a
node in the graph jumps to the corresponding state definition.

Maintainability Thanks to component reuse and code generation, the docu-
mentation generator could be implemented with little programming effort. All
components together required 165 lines of Stratego code.2 Maintenance costs
of these components is low because due to the generic term traversals of Stra-
tego, language dependence of the components is limited, reducing the amount
of code that needs to be adapted after a language change. For instance, the
collect-states tool only depends on two SDL language constructs related
to state definitions. Only when these constructs are changed in the language,
the tool needs modification. Together with the modularization mechanism of
SDF, this also greatly simplifies the simultaneously development of components
for multiple SDL dialects. Additionally, component reuse and code generation
also makes extending the generator relatively easy.

5.5 Related work

In [96], a semi-automated grammar recovery project is described where a com-
plete grammar for VS COBOL II is constructed from an online manual. Gram-
mar recovery from BNF definitions is discussed in [128]. In contrast to our
approach based on an operational YACC definition, these approaches require
grammar correction because they are based on non-operational language de-
scriptions which often contain errors. A reengineering approach similar to ours,
not requiring grammar correction is described in [127]. They also derive an
SDF grammar from an operational YACC definition but their approach yields
grammars which are not optimal for software development. Heuristics for
de-yaccification are described in [150]. The authors focus on abstract syntax
derivation from concrete syntax which benefits from a clear natural encoding
of a language. Formalization of grammar transformations is addressed in [94].
They describe an operator suite for grammar adaptation which is derived from
a few fundamental grammar transformations and supplemental notions like
focus, constraint, and yielder.

In addition to the SDL grammar and bottom-up, generalized LR parser that
we described here, the development of a top-down parser for SDL 2000 using

2These are real-written lines of Stratego code (i.e., they are not normalized or pretty-printed as
was done to obtain the numbers in Table 5.1 on page 93).
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Figure 5.8 A generated FSM graph depicting transitions from states (denoted by el-
lipses) and from procedures (denoted by diamonds). The corresponding procedure call
graph is depicted in Figure 5.9.
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Figure 5.9 Call graph corresponding to the FSM graph of Figure 5.8.

ANTLR [117] as parser generator is described in [126]. Another approach using
recursive descent parsing with backtracking is described in [49].



Non-transitive reuse Transitive reuse
Component LOC RSI Reuse% LOC Reuse%

cluster 898 775 86% 898 86%
collect-states 806 773 95% 806 95%
collect-transitions 897 788 87% 897 87%
mk-labels 730 673 92% 730 92%
sdl-doc 45 0 0% 17,821 99%
states2abox 608 571 93% 608 93%
transitions2gxml 1,059 907 85% 1,059 85%

Totals: 5,043 4,487 88% 22,819 97%

Table 5.1 Reuse table for the sdl-tools package. The table shows that for this package,
a total of 556 new lines of code had to be written.

In addition to XT, many environments and tools exist for program trans-
formation. The online survey of program transformation [143] strives to give
a comprehensive overview of program transformation and transformation sys-
tems.

Hypertext for software documentation is discussed in several papers [38,
120, 25, 121]. The SDL documentation generator, presented in this chapter,
was inspired by DOCGEN [57], a generator for interactive, hyperlinked docu-
mentation about legacy systems. They use Island Grammars (i.e. partial syntax
definitions) for code extraction instead of full grammars as we do. A less pre-
cise extraction approach based on lexical analysis only is discussed in [107].

5.6 Concluding remarks

Contributions This chapter addressed grammar reengineering and the con-
struction of maintenance tools for proprietary languages and dialects. The
chapter demonstrates that Language-Centered Software Engineering (LCSE)
decreases development time of such language tools: once an SDF grammar
for SDL was developed, implementing the tools described in this chapter re-
quired only limited effort. This is because language-dependent components
and libraries are generated and because existing (third-party) components can
be used and integrated easily. Semi-automatic grammar reengineering brings
LCSE into reach because it significantly reduces the effort to move to essential
state-of-the-art language technology. We demonstrated that modular syntax
definitions, the generation of language-specific code, and language indepen-
dence of Stratego programs help maintaining multiple language dialects. At
the time of this writing, the techniques presented in this chapter are being



used within Lucent Technologies to further develop the SDL documentation
generator and related tools.

Components and reuse The SDL documentation generator is contained in
the sdl-tools package. Figure 5.10 displays this package, its constituent compo-
nents, and the components it reuses (see Section 3.6 on page 42 for informa-
tion about component diagrams). The sdl-tools package implements 7 compo-
nents and reuses 12 components from 13 different packages. Observe that this
figure extends Figure 3.1 on page 47 with additional SDL-related components.
This demonstrates reusability and compositionality of components developed
following the LCSE model.

Table 5.1 depicts component sizes and reuse levels of the sdl-tools package.
The table shows that the implementation consists of approximately 5,000 lines
of code, of more than 4,400 lines are reused. This yields a reuse level between
88% and 97%. Section 3.6 justifies these numbers and describes how they are
obtained by analyzing component implementations.
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Figure 5.10 Components used by the sdl-tools package.





C H A P T E R 6

Source Tree Composition

A typical problem of component-based applications is their complicated con-
struction and distribution because the internal structuring in components usually
remains visible at construction and distribution-time. For example, it is not easy
to deliver the SDL documentation generator from Chapter 5, “Cost-Effective Main-
tenance Tools for Proprietary Languages”, as a unit to a customer, or to configure
and build it as a unit. Consequently, each constituent component of a software
system has to be separately retrieved, compiled, installed and so on.

This chapter tackles this problem by providing techniques for automated as-
sembly of composite software systems from their constituent source code compo-
nents. This process is called Source Tree Composition and involves integration of
source trees, build processes, and configuration processes. The result is a software
system that hides its internal structuring in components and, consequently, can be
managed as a single unit.

Application domains of source tree composition include generative program-
ming, product line architectures, commercial off-the-shelf (COTS) software en-
gineering, and Language-Centered Software Engineering (LCSE). The work pre-
sented in this chapter was published earlier as [81].

6.1 Introduction

The classical approach of component composition is based on pre-installed
binary components (such as pre-installed libraries). This approach however,
complicates software development because: (i) system building requires ex-
tra effort to configure and install the components prior to building the sys-
tem itself; (ii) it yields accessibility problems to locate components and corre-
sponding documentation [99]; (iii) it complicates the process of building self-
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contained distributions from a system and all its components. Package man-
agers (such as RPM [6]) reduce build effort but do not help much to solve the
remaining problems. Furthermore, they introduce version problems when dif-
ferent versions of a component are used [99, 135]. They also provide restricted
control over a component’s configuration. All these complicating factors ham-
per software reuse and negatively influence granularity of reuse [112].

We argue that source code components (as alternative to binary compo-
nents) can improve software reuse for component-based software develop-
ment.1 Source code components are source files divided in directory structures.
They form the implementation of subsystems. Source code component compo-
sition yields self-contained source trees with single integrated configuration
and build processes. We called this process source tree composition.

The literature contains many references to articles dealing with component
composition on the design and execution level, and with build processes of
individual components (see the related work in Section 6.9). However, tech-
niques for composition of source trees of diverse components, developed in
different organizations, in multiple languages, for the construction of systems
which are to be reusable themselves and to be distributed in source, are under-
exposed and are the subject of this chapter.

The chapter is organized as follows. Section 6.2 motivates the need for ad-
vanced techniques to perform source tree composition. Section 6.3 describes
terminology. Section 6.4 describes the process of source tree composition. Sec-
tions 6.5 and 6.6 describe abstraction mechanisms over source trees and com-
posite software systems. Section 6.7 describes automated source tree composi-
tion. It discusses the tool autobundle , online package bases, and product line
architectures. Section 6.8 describes experiences with source tree composition.
Related work and concluding remarks are discussed in Sections 6.9 and 6.10.

6.2 Motivation

The source code components that form a software system are often tightly
coupled: the implementation of all subsystems is contained in a single source
tree, a central build process controls their build processes, and a central con-
figuration process performs their static (compile-time) configuration. For ex-
ample, a top-level Makefile often controls the global build process of a soft-
ware system. A system is then built by recursively executing make [59] from
the top-level Makefile for each source code component. Often, a global GNU
autoconf [100] configuration script performs system configuration, for in-
stance to select the compilers to use and to enable or disable debugging sup-
port.

Such tight coupling of source code components has two main advantages:
(i) due to build process integration, building and configuring a system can be

1Please note that despite the advantages that source code components provide, binary compo-
nents may still be mandated, for instance, to protect intellectual property.



performed easily from one central place; (ii) distributing the system as a unit is
relatively easy because all source is contained in a single tree (one source tree,
one product).

Unfortunately, tight coupling of source code components also has several
drawbacks:

• The composition of components is inflexible. It requires adaption of the
global build instructions and (possibly) its build configuration when new
components are added [99]. For example, it requires adaption of a top-
level Makefile to execute make recursively for the new component.

• Potentially reusable code does not come available for reuse outside the
system because entangled build instructions and build configuration of
components are not reusable [112]. For example, as a result of using
autoconf , a component’s configuration is contained in a top-level con-
figuration script and therefore not directly available for reuse.

• Direct references into source trees of components yield unnecessary file
system dependencies between components in addition to functional de-
pendencies. Changing the file or directory structure of one component
may break another.

To address these problems, the constituent source code components of a system
should be isolated and be made available for reuse (system decomposition).
After decomposition, new systems can be developed by selecting components
and assembling them together (system composition). This process is depicted
in Figure 6.1.

For system composition not only source files are required, but also all build
knowledge of all constituent source code components. Therefore, we define
source tree composition as the composition of all files, directories, and build
knowledge of all reused components. To benefit from the advantages of a
tightly coupled system, source tree composition should yield a self-contained
source tree with central build and configuration processes, which can be dis-
tributed as a unit.

When the reuse scope of software components is restricted to a single Con-
figuration Management (CM) [17] system, source tree composition might be
easy. This is because, ideally, a CM system administrates the build knowledge
of all components, their dependencies, etc., and is able to perform the compo-
sition automatically.2

When the reuse scope is extended to multiple projects or organizations,
source tree composition becomes harder because configuration management
(including build knowledge) needs to be untangled [40, 112]. Source tree
composition is further complicated when third party components are reused,
when the resulting system has to be reusable itself, and when it has to be

2Observe that in practice, CM systems are often confused with version management systems.
The latter do not administrate knowledge suitable for source tree composition.
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software systems).

distributed as source. This is because: i) standardization of CM systems is
lacking [112, 151]; ii) control over build processes of third party components is
restricted; iii) expertise on building the system and its constituent components
might be unavailable.

Summarizing, to increase reuse of source code components, source tree
composition should be made more generally applicable. This requires tech-
niques to hide the decomposition of systems at distribution time, to fully in-
tegrate build processes of (third party) components, and to minimize config-
uration and build effort of the system. Once generally applicable, source tree
composition simplifies assembling component-based software systems from im-
plementing source code components.

Suppliers of Commercial Off-The-Shelf (COTS) source code components
and of Open Source Software (OSS) components can benefit from the tech-
niques presented in this chapter because integration of their components is



simplified, which makes them suitable for widespread use. Moreover, as we
will see in Section 6.7.3 and in Chapter 7, “Feature-Based Product Line In-
stantiation using Source-Level Packages”, product line architectures, which are
concerned with assembling families of related applications, can also benefit
from source tree composition.

6.3 Terminology

System building is the process of deriving the targets of a software system (or
software component) from source [47]. We call the set of targets (such as
executables, libraries, and documentation) a software product, and define a
software package as a distribution unit of a versioned software system in either
binary or source form.

A system’s build process is divided in several steps, which we call build ac-
tions. They constitute a system’s build interface. A build action is defined in
terms of build instructions which state how to fulfill the action. For exam-
ple, a build process driven by make typically contains the build actions all ,
install , and check . The all action, which builds the complete software
product, might be implemented as a sequence of build instructions in which an
executable is derived from C program text by calling a compiler and a linker.

System building and system behavior can be controlled by static configu-
ration [51]. Statically configurable parameters define at compile-time which
parts of a system to build and how to build them. Examples of such parame-
ters are debug support (by turning debug information on or off), and the set
of drivers to include in an executable. We call the set of statically configurable
parameters of a system a configuration interface.

We define a source tree as a directory hierarchy containing all source files of
a software (sub) system. A source tree includes the sources of the system itself,
files containing build instructions (such as Makefiles), and configuration files,
such as autoconf configuration scripts.

6.4 Source tree composition

Source tree composition is the process of assembling software systems by put-
ting source trees of reusable components together. It involves merging source
trees, build processes, and configuration processes. Source tree composition
yields a single source tree with centralized build and configuration processes.

The aim of source tree composition is to improve reusability of source code
components. To be successful, source tree composition should meet the follow-
ing two requirements:

Repeatable To benefit from any evolution of the individual components, it is
essential that an old version of a component can easily be replaced by a



package
identification

name=CobolSQLTrans
version= 1.0

location= http://www.coboltrans.org
info= http://www.coboltrans.org/doc

description= ’Transformation framework for COBOL with embedded SQL’
keywords= cobol, sql, transformation, framework

configuration interface
layout-preserving ’Enable layout preserving transformations.’

requires
cobol 0.5 with lang-ext=SQL
asf 1.1 with traversals=on
sglr 3.0
gpp 2.0

Figure 6.2 An example package definition.

newer. Repeating the composition should therefore take as little effort as
possible.

Invisible A source distribution of a system for non-developers should be of-
fered as a unit (one source tree, one product), the internal structuring
in source code components should not necessarily be visible. Integrating
build and configuration processes of components is therefore a prerequi-
site.

Due to lacking standardization of build and configuration processes, these re-
quirements are hard to satisfy. Especially when drawing on a diverse collection
of software components, developed and maintained in different institutes, by
different people, and implemented in different programming languages. Com-
position of source trees therefore often requires fine-tuning a system’s build
and configuration process, or even adapting the components themselves.

To improve this situation, we propose to formalize the parameters of source
code packages and to hide component-specific build and configuration pro-
cesses behind interfaces. A standardized build interface defines the build ac-
tions of a component. A configuration interface defines a component’s config-
urable items. An integrated build process is formed by composing the build
actions of each component sequentially. The configuration interface of a com-
posed system is formed by merging the configuration interfaces of its con-
stituent components.



6.5 Definition of single source trees

We propose source code packages as unit of reuse for source tree composition.
They help to: i) easily distinguish different versions of a component and to
allow them to coexist; ii) make source tree composition institute and project-
independent because versioned distributions are independent of any CM sys-
tem; iii) allow simultaneous development and use of source code components.

To be effectively reusable, software packages require abstractions [92]. We
introduce package definitions as abstraction of source code packages. We de-
veloped a domain-specific language to represent them, of which an example is
depicted in Figure 6.2. It defines the software package CobolSQLTrans which is
intended to develop transformations for COBOL with embedded SQL.

Package definitions define the parameters of packages, which include pack-
age identification, package dependencies, and package configuration.

Package identification The minimal information that is needed to identify
a software package are its name and version number. These, as well as the
URL where the package can be obtained, a short description of the package,
and a list of keywords are recorded in a package’s identification section (see
Figure 6.2).

Package configuration The configuration interface of a software package is
defined in the configuration interface section. In Figure 6.2, the configuration in-
terface defines a single configuration parameter and a short usage description
of this parameter. With this parameter, support for layout preserving transfor-
mations in the CobolSQLTrans package can be turned on or off. Partial config-
uration enforced by other components and composition of configuration inter-
faces is discussed in Section 6.6.

Package dependencies To support true development with reuse, a package
definition can list the packages that it reuses in the requires section. Pack-
age definitions also allow to define a (partial) static configuration for required
packages. Package dependencies are used during package normalization (see
Section 6.6) to synthesize the complete set of packages that form a system. For
example, the package of Figure 6.2 requires at least version 0.5 of the cobol
package and configures it with embedded SQL. Further package requirements
are the Algebraic Specification Formalism (ASF) as programming language with
support for automatic term traversal, a parser (sglr ), and a pretty-printer
(GPP).



bundle
name=CobolSQLTrans-bundle version= 1.0
configuration interface

layout-preserving
’Enable layout preserving transformations.’

boxenv
’Location of external boxenv package.’

bundles
package

name=sdf version= 2.1
configuration

package
name=sql version= 0.2
configuration

package
name=cobol version= 0.5
configuration

lang-ext=SQL
package

name=aterm version= 1.6.3
configuration

package
name=asf version= 1.1
configuration

traversals=on
package

name=sglr version= 3.0
configuration

package
name=gpp version= 2.0
configuration

package
name=CobolSQLTrans version= 1.0
configuration

Figure 6.3 Bundle definition obtained by normalizing the package definition of Fig-
ure 6.2. This definition has been stripped due to space limitations.

6.6 Definition of composite source trees

A software bundle is the source tree that results from a particular source tree
composition. A bundle definition (see Figure 6.3) defines the ingredients of a
bundle, its configuration interface, and its identification. The ingredients of a
bundle are defined as composition of package definitions.

A bundle definition is obtained through a process called package normaliza-



CobolSQLTrans-1.0

cobol-0.5 asf-1.1 sglr-3.0 gpp-2.0

sdf-2.1

sql-0.2 aterm-1.6.3 boxenv-1.8

Figure 6.4 A package dependency graph for the COBOL transformation package of
Figure 6.2. The dashed node denotes an unresolved package dependency.

tion which includes package dependency and version resolution, build order
arrangement, configuration distribution, and bundle interface construction.

Dependency resolution Unless otherwise specified, package normalization
calculates the transitive closure of all required packages and collects all cor-
responding package definitions. The list of required packages follows directly
from the bundle’s package dependency graph (see Figure 6.4). For instance,
during normalization of the package definition of Figure 6.2, dependency upon
the aterm package is signaled and its definition is included in the bundle defini-
tion. When a package definition is missing (see the dashed node in Figure 6.4),
a configuration parameter is added to the bundle’s configuration interface (see
below).

Version resolution One software bundle cannot contain multiple versions of
a single package. When dependency resolution signals that different versions
of a package are required, the package normalization process should decide
which version to bundle.

Essential for package normalization is compatibility between different ver-
sions of a package (see [149, 47, 151] for a discussion of version models). In
accordance with [110], we require backwards compatibility to make sure that a
particular version of a package can always be replaced by one of its successors.
When backwards compatibility of a package cannot be satisfied, a new pack-
age (with a different name) should be created. Our tooling can be instantiated
with different version schemes allowing experimenting with other (weakened)
version requirements.

Build order arrangement Package dependencies serve to define the build or-
der of composite software systems: building a package should be delayed until



all of its required packages have been built. During package normalization,
the collected package definitions are correctly ordered linearly according to a
bottom-up traversal of the dependency graph. Therefore, the cobol package
occurs after the sql package in the bundle definition of Figure 6.3. Circular de-
pendencies between packages are not allowed. Such circularities correspond
to bootstrapping problems and should be solved by package developers (for
instance by splitting packages or by creating dedicated bootstrap packages).

Configuration propagation Each package definition that is collected during
package normalization contains a (possibly empty) set of configurable param-
eters, its configuration interface. Configurable parameters might get bound
when the package is used by another package imposing a particular configura-
tion. During normalization, this configuration is determined by collecting all
the bindings of each package. For example, the CobolSQLTrans package of Fig-
ure 6.2 binds the configurable parameter lang-ext of the cobol package to SQL,
the parameter traversals of the asf package is bound to on (see Figure 6.3).
A conflicting configuration occurs when a single parameter gets bound differ-
ently. As an example, consider a software bundle that bundles packages A
(which has a debug configuration switch), B, and C. A configuration conflict
occurs when package B uses the debug switch of package A to turn debug sup-
port on, while package B uses it to turn debugging off. Such configuration
conflicts can easily be detected during package normalization.

Bundle interface construction The configuration interface of a bundle is
formed by collecting all unbound configurable parameters of bundled pack-
ages. In addition, it is extended with parameters for unresolved package re-
quirements and for packages that have been explicitly excluded from the pack-
age normalization process. These parameters serve to specify the installation
locations of missing packages at compile-time. The configuration interface of
the CobolSQLTrans package (see Figure 6.3) is formed by the layout-preserving
parameter originating from the CobolSQLTrans package, and the boxenv param-
eter which is due to the unresolved dependency of the gpp package (see Fig-
ure 6.4).

After normalization, a bundle definition defines a software system as col-
lection of software packages. It includes package definitions of all required
packages and configuration parameters for those that are missing. Further-
more, it defines a partial configuration for packages and their build order. This
information is sufficient to perform a composition of source trees. In the next
section we discuss how this can be automated.



Makefile.am Top-level automake Makefile that integrates build
processes of all bundled packages.

configure.in An autoconf configuration script to perform central
configuration of all packages in a software bundle.

pkg-list A list of the packages of a bundle, their versions, and
download locations.

collect A tool that downloads, unpacks, and integrates the
packages listed in pkg-list .

README A file that briefly describes the software bundle and its
packages.

acinclude.m4 A file containing extensions to autoconf functional-
ity to make central configuration of packages possible.

Table 6.1 Files that are contained in a generated software bundle.

6.7 Automated source tree composition

We automated source tree composition in the tool autobundle . In addition,
we implemented tools to make package definitions available via online package
bases. Online package bases form central meeting points for package devel-
opers and package users, and provide online package selection, bundling, and
contribution via Internet. These techniques can be used to automate system
assembling in product line architectures.

6.7.1 Autobundle

Package normalization and bundle generation are implemented by autobun-
dle .3 This tool produces a software bundle containing top-level configuration
and build procedures, and a list of bundled packages with their download lo-
cations (see Table 6.1).

The generated bundle does not contain the source trees of individual pack-
ages yet, but rather the tool collect that can collect the packages and in-
tegrate them in the generated bundle automatically. The reason to generate
an empty bundle is twofold: i) since autobundle typically runs on a server
(see Section 6.7.2), collecting, integrating, and building distributions would
reduce server performance too much. By letting the user perform these tasks,
the server gets relieved significantly. ii) It protects an autobundle server from
legal issues when copyright restrictions prohibit redistribution or bundling of
packages because no software is redistributed or bundled at all.

To obtain the software packages and to build self-contained distributions,
the build interface of a generated bundle contains the build actions collect ,
to download and integrate the source trees of all packages, and bundle to also

3See Appendix A for information about the availability of autobundle .



all Build action to build all targets of a source code package.
install Build action to install all targets.
clean Build action to remove all targets and intermediate re-

sults.
dist Build action to generate a source code distribution.
check Build action to verify run-time behavior of the system.

Table 6.2 Build actions of the standardized build interface required by autobundle .
In addition, a tool configure for static configuration is also required.

put them into a single source distribution.
The generated bundle is driven by make [59] and offers a standardized

build interface (see Table 6.2). The build interface and corresponding build in-
structions are generated by autoconf [100] and automake [101]. The tool
autoconf generates software configuration scripts and standardizes static
software configuration. The tool automake provides a standardized set of
build actions by generating Makefiles from abstract build process descriptions.
Currently we require that these tools are also used by bundled packages. We
used the tools because they are freely available and in widespread use. How-
ever, they are not essential for the concept of source tree composition. Es-
sential is the availability of a standardized build interface (such as the one
in Table 6.2); any build system that implements this interface would suffice.
Moreover, when a build system does not implement this interface, it would not
be difficult to hide the package-specific configuration and build instructions
behind the standardized build interface.

After the packages are automatically collected and integrated, the top-level
build and configuration processes take care of building and configuring the
individual components in the correct order. The build process also provides
support for generating a self-contained source distribution from the complete
bundle. This hides the structuring of the system in components and allows
a developer to distribute his software product as a single unit. The complete
process is depicted in Figure 6.5.

6.7.2 Online package bases

Resolution of package dependencies is performed by searching for package def-
initions in package repositories. We developed tools to make such repositories
browsable and searchable via Inter/Intranet, and we implemented HTML form
generation for interactive package selection. The form constitutes an online
package base and lists packages and available versions together with descrip-
tions and keywords. The form can be filled out by selecting the packages of
need. By pressing the “bundle” button, the autobundle server is requested
to generate the desired bundle. Anyone can contribute by filling out an online
package contribution form. After submitting this form, a package definition is



generation
(3) Build−environment(2) Package normalization(1) Package selection

(5b) Bundling / Distribution(5a) System building(4) Source tree composition

Figure 6.5 Construction and distribution of software systems with source tree compo-
sition. (1) Packages of need are selected. (2) The selected set of packages is normalized
to form a bundle definition. (3) From this definition an empty software bundle is gener-
ated. (4) Required software packages are collected and integrated in the bundle, after
which the system can be built (5a), or be distributed as a self-contained unit (5b).

generated and the online package base is updated. This is the only required
step to make an autoconf /automake -based package available for reuse with
autobundle .

Online package bases can be deployed to enable and control software reuse
within a particular reuse scope (for instance, group, department, or company
wide). They make software reuse and software dependencies explicit because a
distribution policy of software components is required when source code pack-
ages form the unit of reuse.

6.7.3 Product line architectures

Online package bases allow the software engineer to easily assemble systems
by selecting components of need. An assembled system is partly configured
depending on the combination of components. Remaining variation points can
be configured at compile-time. This approach of system assembly is related to
the domain of product line architectures.

A Product Line Architecture (PLA) is a design for families of related ap-
plications; application construction (also called product instantiation [66]) is
accomplished by composing reusable components [10]. The building blocks
from which applications are assembled are usually abstract requirements (con-



sisting of application-oriented concepts and features). For the construction
of the application, corresponding implementation components are required.
To automate component assembly, configuration knowledge is required which
maps between the problem space (consisting of abstract requirements) and the
solution space (consisting of implementation components) [50].

We believe that package definitions, bundle generation, and online package
bases serve implementing a PLA by automating the integration of source trees
and static configuration. Integration of functionality of components still needs
to be implemented in the components themselves, for instance as part of a
component’s build process.

Our package definition language can serve as a configuration DSL (Domain-
Specific Language) [51]. It then serves to capture configuration knowledge
and to define mappings from the problem space to the solution space. Abstract
components from the problem space are distinguished from implementation
components by having an empty location field in their package definition. A
mapping is defined by specifying an implementation component in the requires
section of an abstract package definition.

System assembling can be automated by autobundle . It normalizes a set
of abstract components (features) and produces a source tree containing all
corresponding implementation components and generates a (partial) config-
uration for them. Variation points of the assembled system can be configured
statically via the generated configuration interface. An assembled system forms
a unit which can easily be distributed and reused in other products.

Definitions of abstract packages can be made available via online package
bases. Package bases then serve to represent application-oriented concepts and
features similar to feature diagrams [86]. This makes assembling applications
as easy as selecting the features of need.

Using source tree composition for product lines is further explored in Chap-
ter 7, “Feature-Based Product Line Instantiation using Source-Level Packages”.

6.8 Case studies

System development We successfully applied source tree composition to the
ASF+SDF Meta-Environment [27], an integrated environment for the develop-
ment of programming languages and tools, which has been developed at our
research group. Source tree composition solved the following problems that
we encountered in the past:

• We had difficulties in distributing the system as a unit. We were using
ad-hoc methods to bundle all required components and to integrate their
build processes.

• We were encountering the well-known problem of simultaneously devel-
oping and using tools. Because we did not have a distribution policy for



individual components, development and use of components were often
conflicting activities.

• Most of the constituent components were generic in nature. Due to their
entangling in the system’s source tree however, reuse of individual com-
ponents across project boundaries proved to be extremely problematic.

After we started using source tree composition techniques, reusability of our
components greatly improved. This was demonstrated by the development of
XT, a bundle of program transformation tools (see Chapter 3). It bundles com-
ponents from the ASF+SDF Meta-Environment together with a diverse collec-
tion of components related to program transformation. Currently, XT is assem-
bled from 25 reusable source code components developed at three different
institutes.4

For both projects, package definitions, package normalization, and bundle
generation proved to be extremely helpful for building self-contained source
distributions. With these techniques, building distributions of the ASF+SDF

Meta-Environment and of XT became a completely automated process. Defin-
ing the top-level component of a system (i.e., the root node in the system’s
package dependency graph) suffices to generate a distribution of the system.

Online Package Base To improve flexibility of component composition, we
defined package definitions for all of our software packages, included them in
a single package repository and made that available via Internet as the Online
Package Base (see Figure 6.6).

With the Online Package Base (OPB), building source distributions of XT

and of the ASF+SDF Meta-Environment becomes a dynamic process and re-
duces to selecting one of these packages and submitting a bundle request to the
autobundle server. The exact contents of both distributions can be controlled
for specific needs by in/excluding components, or by enforcing additional ver-
sion requirements of individual components. Similarly, any composition of our
components can be obtained via the OPB.

Although it was initiated to simplify and increase reuse of our own software
packages, anyone can now contribute by filling out a package contribution form.
Hence, compositions with third-party components can also be made. For exam-
ple, the OPB contains several package definitions for GNU software, the graph
drawing package graphviz from AT&T, and components from a number of other
research institutes.

Stratego compiler Recently, the Stratego compiler [140] has been split up in
reusable packages (including the Stratego run-time system). The constituting
components (developed at different institutes) are bundled with autobundle
to form a stand-alone distribution of the compiler. With autobundle also

4See Appendix A for information about the availability of the Online Package Base.



more fine-grained reuse of these packages is possible. An example is the distri-
bution of a compiled Stratego program with only the Stratego run-time system.
The Stratego compiler also illustrates the usefulness of nested bundles. Though
a composite bundle, the Stratego compiler is treated as a single component by
the XT bundle in which it is included.

Product line architectures We have investigated the use of autobundle
and online package bases in a commercial setting to transform the industrial
application DOCGEN [57] into a product line architecture [52]. DOCGEN is a
documentation generator which generates interactive, hyperlinked documen-
tation about legacy systems. Documentation generation consists of generic and
specific artifact extraction and visualization in a customer-specific layout. It is
important that customer-specific code is not delivered to other customers (i.e.,
that certain packages are not bundled).

The variation points of DOCGEN have been examined and captured in a Fea-
ture Description Language (FDL) [56]. We are analyzing how feature selection
(for instance the artifacts to document and which layout to use) can be per-
formed via an online package base. Package definitions serve to map selected
features to corresponding implementing components (such as specific extrac-
tors and visualizators). Such a feature set is normalized by autobundle to
a bundle of software packages, which are then integrated into a single source
tree that forms the intended customer-specific product. In Chapter 7, “Feature-
Based Product Line Instantiation using Source-Level Packages”, we will further
discuss the DOCGEN product line.

6.9 Related work

Many articles, for instance [39, 35, 46], address build processes and tools to
perform builds. Tools and techniques are discussed to solve limitations of tra-
ditional make [59], such as improving dependency resolution, build perfor-
mance, and support for variant builds. Composition of source trees and build
processes is not addressed.

Gunter [65] discusses an abstract model of dependencies between software
configuration items based on a theory of concurrent computations over a class
of Petri nets. It can be used to combine build processes of various software
environments.

Miller [104] motivates global definition of a system’s build process to allow
maximal dependency tracking and to improve build performance. However,
to enable composition of components, independence of components (weak
coupling) is important [149]. For source tree composition this implies inde-
pendence of individual build processes and therefore contradicts the approach
of [104]. Since the approach of Miller entangles all components of the system,
we believe that it will hamper software reuse.



Figure 6.6 Automated source tree composition at the Online Package Base. See Ap-
pendix A for information about the availability of the Online Package Base.



This chapter addresses techniques to assemble software systems by inte-
grating source trees of reusable components. In practice, such components are
often distributed separately and their installation is required prior to building
the system itself. This extra installation effort is problematic [135], even when
partly automated by package managers (like RPM [6]). Although source tree
composition simplifies software building, it does not make package manage-
ment superfluous. The use of package managers is therefore still advocated
to assist system administrators in installing (binary) distributions of assembled
systems.

The work presented in this chapter has several similarities with the compo-
nent model Koala [112, 110]. The Koala model has a component description
language like our package definition language, and implementations and com-
ponent descriptions are stored in central repositories accessible via Internet.
They also emphasize the need for backward compatibility and the need to un-
tangle build knowledge from an SCM system to make components reusable.
Unlike our approach, the system is restricted to the C programming language,
and merging the underlying implementations of selected components is not
addressed.

In [71], a software release management process is discussed that documents
released source code components, records and exploits dependencies amongst
components, and supports location and retrieval of groups of compatible com-
ponents. Their primarily focus is component release and installation, not de-
velopment of composite systems and component integration as is the case in
this chapter.

6.10 Concluding remarks

This chapter addresses software reuse based on source code components and
on software assembly using the technique source tree composition. Source tree
composition integrates source trees and build processes of individual source
code components to form self-contained source trees with single integrated
configuration and build processes.

Contributions We provided an abstraction mechanism for source code pack-
ages and software bundles in the form of package and bundle definitions. By
normalizing a collection of package definitions (package normalization) a com-
position of packages is synthesized. The tool autobundle implements pack-
age normalization and bundle generation. It fully automates source tree com-
position. Online package bases, which are automatically generated from pack-
age repositories, make package selection easy. They enable source code reuse
within a particular reuse scope. Source tree composition can be deployed to
automate dynamic system assembly in product line architectures.



asfix-tools
implode-asfix

asfix-tools-lib

asfix-yieldvisamb aterm-tools
atermdifftreeviz

stratego
        

ssl

srts

sc

sdf-tools

sdf-tools-lib sdf2asdf

sdf-bench

pack-sdf

unpack-sdf

sdf-cons

sdf-label

sdf2textsdf-bracket

sdf-normalize

sdf-doc

sdf2sg

sdf-wf

tohtml-sdf

sdf-imports

fdl2sdf

sdf2sdf

gpp

asfix2abox

gpp-lib

ast2abox abox2textabox2html abox2latex

ppgenabox-formattohtml

graph-tools

graph-tools-lib

graphxml-analysisgraphxml2dotgraphterms2graphxml

sglr
sglr

graphviz
dottred

gpr

grammar-recovery
asfix2sdfdtd2sdf

yacc2sdf

happy2yacc

autobundle
pkg-searchpkgs2form

bundle2pkglist bundle2configure bundlegen

autobundle

sdl-tools

states2abox collect-states collect-transitions transitions2gxml cluster mk-labels

sdl-doc

stratego-tools

stratego-tools-lib

sdf2stratego rsdf2sdf

sdf2sig

stratego-imports

tohtml-stratego

xt

xt-lib

gbquery

parse

pp

sdf-docvisamb

gb
abnfsdlc

cobolfortran

javasdfxmlyacc

aterms

aterm-lib

trm2bafbaf2trmbaffle

pgen
sdf2table

Figure 6.7 Components used for the implementation of autobundle .

Components and reuse The implementation of autobundle and the tools
for generating online package bases follows the Language-Centered Software



Non-transitive reuse Transitive reuse
Component LOC RSI Reuse% LOC Reuse%

autobundle 175 0 0% 4,062 95%
bundle2configure 950 780 82% 950 82%
bundle2pkglist 576 541 93% 576 93%
bundlegen 2,361 1,505 63% 2,361 63%
pkgs2form 1,451 1,082 74% 1,451 74%
pkg-search 873 779 89% 873 89%

Totals: 6,386 4,687 73% 10,273 83%

Table 6.3 Reuse table for the autobundle package. The table shows that for this
package, a total of 1,699 new lines of code had to be written.

Engineering (LCSE) model as discussed in Chapter 2, “Grammars as Contracts”.
For the implementation a significant amount of code is reused from the XT

bundle, including generators for obtaining language-specific libraries and full-
fledged components for parsing and pretty-printing.

Figure 6.7 displays the autobundle package, its constituent components, and
the components it reuses (see Section 3.6 on page 42 for information about
component diagrams). The autobundle package implements 6 components and
reuses 10 components from 6 different packages.

Table 6.3 depicts component sizes and reuse levels of the autobundle pack-
age. The table shows that the implementation consists of approximately 6,300
lines of code, of which more than 4,600 lines are reused. This yields a reuse
level between 73% and 83%. Section 3.6 justifies these numbers and describes
how they are obtained by analyzing component implementations.

Future work We depend on backwards compatibility of software packages.
This requirement is hard to enforce and weakening it is an interesting topic
for further research. The other requirement that we depend on now, is the
use of autoconf and automake , which implement a standard configuration
and build interface. We have ideas for a generic approach to hide component-
specific build and configuration procedures behind standardized interfaces, but
this still requires additional research.

Acknowledgments We thank Arie van Deursen, Paul Klint, Leon Moonen,
and Joost Visser for valuable discussions and feedback on earlier versions of
this chapter.



C H A P T E R 7

Feature-Based Product Line
Instantiation using

Source-Level Packages

Chapter 6, “Source Tree Composition”, discussed automated assembly and con-
figuration of software systems from low-level, technical source code components.
This chapter discusses software assembly at a higher level of abstraction using
software product lines.

We discuss the construction of software products from consumer-related feature
selections. We address variability management with the Feature Description Lan-
guage (FDL) to capture variation points of product line architectures. We describe
feature packaging using the autobundle tool discussed in Chapter 6. Feature
packaging covers selection, packaging, and configuration of implementation com-
ponents according to feature selections. Finally, we discuss a generic approach to
make instantiated (customer-specific) variability accessible in applications.

The solutions and techniques presented in this chapter are based on our expe-
rience with the product line architecture of the commercial documentation gener-
ator DOCGEN. The work presented in this chapter was published earlier as [52].

7.1 Introduction

This chapter deals with three key issues in software product lines: variability
management, feature packaging, and product line instantiation. It covers these
topics based on our experience in the design, implementation, and deployment
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of DOCGEN, a commercial product line in the area of documentation generation
for legacy systems.

Like many product lines, DOCGEN started out as a single product dedicated
to a particular customer. It was followed by modifications of this product for a
series of subsequent customers, who all wanted a similar documentation gener-
ator, specialized to their specific needs. Gradually a kernel generator evolved,
which could be instantiated to dedicated documentation requirements. DOC-
GEN is still evolving, and each new customer may introduce functionality that
affects the kernel generator. This may involve the need for additional variation
points in DOCGEN, or the introduction of functionality that is useful to a broad
range of customers meriting inclusion in the standard DOCGEN setup.

The business model we use to accommodate such an evolving product line
specialized to the needs of many different customers is based on subscription:
customers can install a new DOCGEN version on a regular basis, which is guar-
anteed to be compatible with that customer’s specializations. For the customer
this has the advantage of being able to benefit from DOCGEN extensions; For
the supplier it has the advantage of a continuous revenue flow instead of harder
to predict large lump sums when selling a particular product.

The technological challenges of this business model and its corresponding
evolutionary product line development are significant. In particular, product
line evolution must be organized such that it can deal with many different
customers. In this chapter, we cover three related issues that we experienced
as very helpful to address this problem.

Our first topic is managing the variation points, which are likely to change
at each release. When discussing the use of DOCGEN with a potential customer,
it must be clear what the variability of the current system is. The new customer
may have additional wishes which may require the creation of new variation
points, extending or modifying the existing interfaces. Moreover, marketing,
customer support, or the product manager may come up with ideas for new
functionality, which will also affect the variability. In Section 7.3 we study the
use of the Feature Description Language FDL described in [56] to capture such a
changing variability.

The second issue we cover is managing the source code components imple-
menting the variability. The features selected by a customer should be mapped
to appropriately configured software components. In Section 7.4 we describe
our approach, which emphasizes developing product line components sepa-
rately, using internally released software packages. Assembling a product from
these packages consists of merging the sources of these packages, as well as
the corresponding build processes – a technique called source tree composition
that was presented in Chapter 6. Packages can either implement a feature, or
implement functionality shared by other packages.

The third topic we address is managing customer code, that is, the instan-
tiated variability. The same feature can be implemented slightly differently for
different customers. In Section 7.5 we propose an extension of the abstract



factory to achieve appropriate packaging and configuration of customer code.
In Section 7.6 we summarize our approach, contrast it with related work,

and describe future directions. Before we dive into that, we provide a short
introduction to the DOCGEN product line in Section 7.2.

7.2 A documentation generation product line

In this section we introduce the product line DOCGEN [57, 58], which we will
use as our case study throughout the chapter. Our discussion of DOCGEN fol-
lows the format used by Bosch to present his software product line case stud-
ies [21].

7.2.1 Company background

DOCGEN is the flagship product of the Software Improvement Group (SIG), an
Amsterdam, The Netherlands, based company offering solutions to businesses
facing problems with the maintenance and evolution of software systems. SIG
was founded in 2000, and is a spin-off of academic research in the area of
reverse and reengineering conducted at CWI from 1996 to 1999. This research
resulted in, amongst others, a prototype documentation generator described
by [57], which was the starting point for the DOCGEN product family now
offered by SIG.

7.2.2 Product family

SIG delivers a range of documentation generation products. These products
vary in the source languages analyzed (such as SQL, COBOL, JCL, 4GL’s, propri-
etary languages, and so on) as well as the way in which the derived documen-
tation is presented.

Each DOCGEN product operates by populating a repository with a series of
facts derived from legacy sources. These facts are used to derive web-based
documentation for the systems analyzed. This documentation includes textual
summaries, overviews, various forms of control flow graphs, architectural in-
formation, and so on. Information is available at different levels of abstraction,
which are connected through hyperlinks.

DOCGEN customers have different wishes regarding the languages to be
analyzed, the specific set of analyses to be performed, and the way in which the
collected information should be retrieved. Thus, DOCGEN is a software product
line, providing a set of reusable assets well-suited to express and implement
different customized documentation generation systems.



7.2.3 Technology

At present, DOCGEN is an object-oriented application framework written in
JAVA. It uses a relational database to store facts derived from legacy sources.
It provides a range of core classes for analysis and presentation purposes. In
order to instantiate family members, a JAVA package specific to a given cus-
tomer is created, containing specializations of core classes where needed, in-
cluding methods called by the DOCGEN factory for producing the actual DOC-
GEN instantiation. DOCGEN consists of approximately 850 JAVA classes, 750
JAVA classes generated from language definitions, 250 JAVA classes used for
continuous testing, and roughly 50 shell and Perl scripts.

In addition to the key classes, DOCGEN makes use of external packages, for
example for graph drawing purposes.

7.2.4 Organization

Since SIG is a relatively small company, the development team tries to work
as closely together as possible. For that reason, there is no explicit separation
between a core product line development team and project teams responsible
for building bespoke customer products. Instead, these are roles, which are
rotated throughout the entire team.

For each product instantiation, a dedicated person is assigned in order to
fulfill the customer role. This person is responsible for accepting or rejecting
the product derived from DOCGEN for a particular customer.

7.2.5 Process

The construction of DOCGEN is characterized by evolutionary design (the sys-
tem is being developed following the principles of extreme programming [12]).
DOCGEN started as a research prototype described by [57]. This prototype was
not implemented as a reusable framework; instead it just produced documen-
tation as desired by one particular customer. As the commercial interest in ap-
plications of DOCGEN grew, more and more variation points were introduced,
evolving DOCGEN into a system suitable for deriving many different documen-
tation generation systems.

With the number of customer configurations growing, it is time to rethink
the way in which DOCGEN product instantiations are created, and what sort of
variability the DOCGEN product line should offer.

7.3 Analyzing variability

7.3.1 Feature descriptions

To explore the variability of software product lines we use the Feature Descrip-
tion Language FDL discussed by [56]. This is essentially a textual representa-



tion for the feature diagrams of the Feature Oriented Domain Analysis method
FODA [86].

A feature can be atomic or composite. We will use the convention that names
of atomic features start with a lower case letter and names of composite fea-
tures start with an upper case letter. Note that atomic and composite features
are called features, respectively, subconcepts in [51].

An FDL definition consists of a number of feature definitions: a feature name
followed by “: ” and a feature expression. A feature expression can consist of:

• atomic features;

• composite features: named features with separate definitions;

• optional features: feature expressions followed by “?”;

• mandatory features: lists of feature expressions enclosed in all();

• alternative features: lists of feature expressions enclosed in one-of();

• feature selections:1 lists of feature expressions enclosed in more-of();

• incomplete specified feature sets of the form “. . . ”.

An FDL definition generates all possible feature configurations (also called prod-
uct instances). Feature configurations are flat sets of features of the form
all(a1, . . . , an), where each ai denotes an atomic feature. In [56] a series of
FDL manipulations is described, to bring any FDL definition into a disjunctive
normal form defined as:

one-of( all(a11, . . . , a1n1), . . . , all(am1, . . . , amnm ))

By bringing an FDL definition in disjunctive normal form, a feature expression
is obtained that lists all possible configurations.

Feature combinations can be further restricted via constraints. We will
adopt the following constraints:

• A1 requires A2: if feature A1 is present, then feature A2 should also be
present;

• A1 excludes A2: if feature A1 is present, then feature A2 should not be
present.

Such constraints are called diagram constraints since they express fixed, inher-
ent, dependencies between features in a diagram.

1Called “or-features” in [51].



DocGen :
all(Analysis, Presentation, Database)

Analysis :
all(LanguageAnalysis, versionManagement?, subsystems?)

LanguageAnalysis :
more-of( Cobol, jcl , sql , delphi , progress, ...)

Cobol :
one-of( ibm-cobol , microfocus-cobol , ...)

Presentation :
all(Localization, Interaction, MainPages, Visualizations?)

Localization :
more-of( english, dutch)

Interaction :
one-of( static, dynamic)

MainPages :
more-of( ProgramPage, copybookPage, StatisticsPage, indexes, searchPage,

subsystemPage, sourcePage, sourceDifference, ...)
ProgramPage :

more-of( program-summary , files-used , programs-called , activation, ...)
StatisticsPage :

one-of( statsWithHistory , statsNoHistory)
Visualizations :

more-of( performGraph, conditionalPerformGraph, jclGraph, subsystemGraph,
overviewGraph, ...)

Database :
one-of( db2, oracle, mysql , ...)

Figure 7.1 Some of the configurable features of the DOCGEN product line expressed
in the Feature Description Language (FDL).

7.3.2 DOCGEN features

A selection of the variable features of DOCGEN and some of their constraints
are shown in Figures 7.1 and 7.2. The features listed describe the variation
points in the current version of DOCGEN. One of the goals of constructing the
FDL specification of these features is to search for alternative ways in which to
organize the variable features, in order to optimize the configuration process
of DOCGEN family members. Another goal of an FDL specification is to help
(re-) structuring the implementation of product lines.

The features listed focus on just the Analysis and Presentation configura-
tion of DOCGEN, as specified by the first feature definition of Figure 7.1. The
Database feature in that definition will not be discussed here.

The Analysis features show how the DOCGEN analysis can be influenced by
specifying source languages that DOCGEN should be able to process. The per-
language parsing will actually populate a data base, which can then be used



%% Some constraints
subsystemPage requires subsystems
subsystemGraph requires subsystems
sourceDifference requires versionManagement
%% Some source language constraints
performGraph requires cobol
conditionalPerformgraph requires cobol
jclGraph requires jcl
%% Mutually exclusive features
static excludes annotations
static excludes searchPage

Figure 7.2 Constraints on variable DOCGEN features.

for further analysis.

Other features are optional. For example, the feature versionManagement
can be switched on, so that differences between documented sources can be
seen over time. When a system to be documented contains subsystems which
need to be taken into account, the subsystems feature can be set.

The Presentation features affect the way in which the facts contained in the
repository are presented to DOCGEN end-users. As an example, the Localiza-
tion feature indicates which languages are supported (English or Dutch). At
compile-time, one or more supported languages can be selected; at run-time,
the end-user can use a web-browser’s localization scheme to actually select a
language.

The Interaction feature determines the moment the HTML pages are gener-
ated. In dynamic interaction, a page is created whenever the end-user requests
a page. This has the advantage that the pages always use the most up-to-date
information from the repository and that interactive browsing is possible. In
static mode, all pages are generated in advance. This has the advantage that no
web-server is needed to inspect the data and that they can easily be viewed on
a disconnected laptop. As we will see, the Interaction feature puts constraints
on other presentation features.

The MainPages feature indicates the contents of the root page of the derived
documentation. It is a list of standard pages that can be reused, implemented
as a many-to-one association to subclasses of an abstract “Page” class. Of these,
the ProgramPage consists of one or more sections.

In addition to pages, presentation includes various Visualizations. These
are all optional, allowing a customer to choose to have plain (HTML) docu-
mentation (which requires less software to be installed at the client side) or
graphically enhanced documentation (which requires plug-ins to be installed).



7.3.3 DOCGEN feature constraints

Figure 7.2 lists several constraints restricting the number of valid DOCGEN con-
figurations of the features listed in Figure 7.1.

The pages that can be presented depend on the analyses that are conducted.
If we want to show a subsystemGraph, we need to have selected subsystems.
Some features are language-specific: a jclGraph can only be shown when jcl is
one of the analyzed languages.

Last but not least, certain features are in conflict with each other. In par-
ticular, the annotations feature can be used to let the end-user interactively
add annotations to pages, which are then stored in the repository. This is only
possible in the dynamic version, and cannot be done if the Interaction is set to
static. The same holds for the dynamic searchPage.

7.3.4 Evaluation

Developing and maintaining a feature description for an existing application
gives a clear understanding of the variability of the application. It can be used
not only during product instantiation, but also when discussing the the design
of the product line. As an example, discussions about the DOCGEN feature
description have resulted in the discovery of several potential inconsistencies,
as well as suggestions for resolving them.

One of the problems with the use of feature descriptions is that feature
dependencies can be defined in multiple ways, for instance as a composite
feature definition or as a combination of a feature definition and constraints.
We are still experimenting with using these different constructs in order to
develop heuristics about when to use which construct.

7.4 Software assembly

7.4.1 Source tree composition2

Source tree composition is the process of assembling software systems by merg-
ing reusable source code components. A source tree is defined as a collection
of source files, together with build instructions, divided in a directory hierar-
chy. We call the source tree of a particular part of a product line architecture
a source code component. Source code components can be developed, main-
tained, tested, and released individually.

Source tree composition involves merging source trees, build processes, and
configuration processes. It results in a single source tree with centralized build
and configuration processes.

Source tree composition requires abstractions over source code components
which are called package definitions (see Figure 7.3). A package definition

2This section is a summary of Chapter 6, “Source Tree Composition”.



package
identification

name=extract-programs-called
version= 3.20

location= http://www.cwi.nl/˜mdejonge/docgen
info= http://www.cwi.nl/˜mdejonge/docgen

description= ’DocGen program-called extraction’
keywords= cobol, extraction, extract programs called

configuration interface
statistics ’Toggle collection of programs-called statistics (cross cutting)’

requires
docgen-base 1.0
extract-program 1.0
database 1.0
file-io 1.0 with file-extension=cob

Figure 7.3 Example of a concrete package definition for DOCGEN. The ‘configuration
interface’ section lists configurable items together with corresponding short descrip-
tions. The ‘requires’ section defines package dependencies and their configuration.

captures information about a component, such as dependencies on other com-
ponents, and configuration parameters. Package definitions as the one in Fig-
ure 7.3 are called concrete package definitions because they correspond directly
to an implementing source code component. Abstract package definitions, on
the other hand, do not correspond to implementing source code components.
They only combine existing packages and set configuration options. Abstract
package definitions are distinguished from concrete package definitions by hav-
ing an empty location field (see Figure 7.4).

After selecting components of need, a software bundle (containing all corre-
sponding source trees) is obtained through a process called package normaliza-
tion. This process includes package dependency and version resolution, build
order arrangement, configuration distribution, and bundle interface construc-
tion.

Package definitions are stored centrally in (online) package repositories (see
Figure 6.6 on page 113). They can be accessed by developers to search for
reusable packages. They are also accessed by the tool autobundle (see be-
low) to resolve package dependencies automatically when assembling product
instances.

Source tree composition is automated by the tool autobundle . Given a
set of package names, it (i) obtains their package definitions from package
repositories; (ii) calculates the transitive closure of all required packages; (iii)
calculates a (partial) configuration of the individual packages; (iv) generates a
self-contained source tree by merging the source trees of all required packages;
(v) integrates the configuration and build processes of all bundled packages.



package
identification

name=programs-called
version= 1.0

location=
info= http://www.software-improvers.com/

description= ’Cobol presentation displaying program call graph.’
keywords= cobol, presentation, Program-Page, programs-called

configuration interface
localization ’Selection of supported languages (cross cutting)’
customer ’Name identifying customer-specific issues (cross cutting)’

requires
extract-programs-called 3.20 with statistics=on
display-programs-called 1.7 with statistics=on
program-page 1.9

Figure 7.4 Example of an abstract package definition for the ‘programs-called’ feature.
It forms a mapping from the problem to the solution space.

7.4.2 Source tree composition in product lines

With the help of autobundle , assembling products on a product line can be-
come as simple as selecting the necessary packages from online package bases.
By pressing the “bundle” button, autobundle is instructed to generate a self-
contained customer-specific source distribution from the selected packages and
those that are required by them.

By manually selecting concrete packages from an online package base, a
developer maps a selection of features to a corresponding selection of imple-
menting source code components. This is called product configuration. Manual
selection of packages forms an implicit relation between features (in the prob-
lem space) and implementation (in the solution space).

This relation between problem and solution space is a many-to-many re-
lation: a single feature can be implemented in more than one source code
package; a single source code package can implement multiple features. Se-
lecting a feature therefore may yield a configuration of a single source code
package that implements multiple features (to turn the selected feature on), or
it may result in bundling a collection of packages that implement the feature
together.

The relation between problem and solution space can be defined more ex-
plicitly in abstract package definitions. Abstract package definitions then cor-
respond directly to features according to the feature description of a product
line architecture (see Figure 7.4). The ‘requires’ section of abstract packages
defines dependencies upon abstract and/or concrete packages. The latter de-
fine how to map (part of) a feature to an implementation component. During



Figure 7.5 The online feature base for DOCGEN, containing customer-related features
according to the feature definition of Figure 7.1. Product instances can be assembled
by selecting features of need and pressing the ‘bundle’ button.



package normalization, all mappings are applied, yielding a collection of im-
plementation components.

Like concrete package definitions, also abstract package definitions can be
made available at online package bases. Package bases containing only abstract
package definitions are called feature bases and serve to represent application-
oriented concepts and features (see Figure 7.5). With online feature bases,
assembling product instances reduces to selecting the features of need.

7.4.3 Source tree composition in DOCGEN

To benefit from source tree composition to easily assemble different product
instances, the source tree of the DOCGEN product line needs to be split up.
Different parts of the product line then become separate source code compo-
nents. Every feature as described in the feature description language should
be contained in a single package definition. These package definitions may de-
pend on other features, or on core or library packages that do not implement
an externally perceivable feature, but implement general functionality.

Implementing each feature as a separate package promises a clean sepa-
ration of features in the source code. Whether one feature (implementation)
depends on another can be easily seen in the feature description. Currently the
coupling between the feature selection and the selected packages is an infor-
mal one. More experience is needed to be able to decide whether this scheme
will always work.

The source code components that implement a feature or general function-
ality are internally released as source code packages, i.e., versioned distributions
of source code components as discussed in Section 7.4.1. These packages are
subjected to an explicit release policy. Reuse of software in different product
instances is based only on released source code components. This release and
reuse policy allows different versions of a component to coexist seamlessly.
Furthermore, it allows developers to control when to upgrade to a new version
of a component.

Apart from the packages that implement the individual features, there are
several packages implementing general functionality. Of these, the docgen
package implements the user interface of the software analysis side of DOCGEN,
as well as the infrastructure to process files and read them from disk. It also
implements the Application Service Provider interface where customers offer
their sources over the Internet.

In order to generate the final presentation of DOCGEN in HTML, a package
html-lib provides us with the grammar of HTML and a number of interfaces
to generate files in HTML. The various graphical representations used in DOC-
GEN are bundled in the package graph which knows how to present generic
graphs as PDF files.

The DOCGEN source code components, corresponding to customer-related
features, are stored in the DOCGEN feature base (see Figure 7.5) from which
customer-specific source trees are assembled. Compilation of such assembled



source trees is performed at the Software Improvement Group to obtain cus-
tomer products in binary form. The so obtained products are then packaged
and delivered to our customers.

7.4.4 Evaluation

Source tree composition applied to a product line such as DOCGEN results in a
number of benefits. Probably the most important one is that by using source
tree composition, it is much easier to exclude functionality from the product
line. This may be necessary if customers only want to use a “low budget” edi-
tion. Moreover, it can be crucial for code developed specifically for a particular
customer: such code may contain essential knowledge of a customer’s business,
which should not be shared with other customers.

A second benefit of using packages for managing variation points is that
it simplifies product instantiation. By using a feature base, features can be
easily selected, resulting in the correct composition of appropriately configured
packages.

Another benefit is that by putting variable features into separate pack-
ages, the source tree is split into a series of separate source code compo-
nents that can be maintained individually and independently. This solves var-
ious problems involved in monolithic source trees, such as: i) Long develop-
ment/test/integration cycles; ii) Limited possibilities for safe simultaneous de-
velopment due to undocumented dependencies between parts of the source
tree; iii) Lack of version management and release policy for individual compo-
nents. Explicitly released packages having explicitly documented dependencies
help to resolve these issues.

Special attention should be paid to so-called cross cutting features. An ex-
ample is the aforementioned localization feature, which potentially affects any
presentation package. Such features result in a (global) configuration switch
indicating that the feature is switched on. Observe that the implementation of
these features can make use of existing mechanisms to deal with cross cutting
behavior, such as aspect-oriented programming [88]: the use of source tree
composition does not prescribe or exclude any implementation technique.

7.5 Managing customer code

7.5.1 Customer packages

Instantiating the DOCGEN product line for a customer amounts to:

• Selecting the variable features that should be included;

• Selecting the corresponding packages and setting the appropriate config-
uration switches;



package docgen;
public class Layout
{

...
String backgroundColor = “white”;
...
}

Figure 7.6 Part of the default Layout class

• Writing the customer-specific code for those features that cannot be ex-
pressed as simple switches.

As the number of different customers increases, it becomes more and more im-
portant to manage such product instantiations in a controlled and predictable
way. The first step is to adopt the source tree composition approach discussed
in Section 7.4, and create a separate package for each customer. This package
first of all contains customer-specific JAVA code. Moreover, it includes a pack-
age definition indicating precisely which (versions of) other DOCGEN packages
it relies on, and how they should be configured.

7.5.2 Customer factories

Customer package definitions capture the package dependencies and configu-
ration switches. In addition to this, the JAVA code implementing the packages
should be organized in such a way that it can easily deal with many different
variants and specializations for different customers. This involves the following
challenges:

• DOCGEN core functionality must be able to create customer-specific ob-
jects, without becoming dependent on these;

• The overhead in instantiating DOCGEN for a new customer should be
minimal;

• It must be simple to keep the existing customer-code running when new
DOCGEN variation points are created.

A partial solution is to adopt the abstract factory design pattern in order to deal
with a range of different customers in a unified way [62]. Abstract factory “pro-
vides an interface for creating families of related or dependent objects without
specifying their concrete classes”. The participants of this pattern include:

• An abstract factory interface for creating abstract products;

• Several concrete factories, one for each customer, for implementing the
operations to create customer-specific objects;



package docgen.customers.greenbank;
public class Layout extends docgen.Layout
{

String backgroundColor = “green”;
}

Figure 7.7 The Layout class for customer Green Bank

• A range of abstract products, one for each type of product that needs to
be extended with customer-specific behavior;

• Several concrete products: per abstract product there can be different con-
crete products for each customer;

• The client uses only the interfaces declared by the abstract factory and
abstract products. In our case, this is the customer-independent DOCGEN

kernel package.

The abstract factory solves the problem of creating customer-specific objects.
Adoption of the pattern as-is to a product line, however, is problematic if there
are many different customers. Each of these will require a separate concrete
factory. This can typically lead to code duplication, since many of these con-
crete factories will be similar.

To deal with this, we propose customer factories as an extension of the ab-
stract factory design pattern. Instead of creating a concrete factory for each
customer, we have one customer factory which uses a customer name to find
customer-specific classes. Reflection is then used to create an instance of the
appropriate customer-specific class.

As an example, consider the class Layout in Figure 7.6, in which the default
background color of the user interface is set to “white”. This class represents
one of the abstract products of the factory pattern. The specialized version for
customer Greenbank is shown in Figure 7.7. The name of this class is the same,
but it occurs in the specific greenbank package. Note that this is a JAVA package,
which in turn can be part of an autobundle source code package.

Since the Layout class represents an abstract product, we offer a static
getInstance factory method, which creates a layout object of the suitable type.
We do this for every constructor of Layout.

As shown in Figure 7.8, this getInstance method is implemented using a
static method located in a class called CustomerFactory. A key task of this
method is to find the actual class that needs to be instantiated. For this, it uses
the customer’s name, which is read from a centralized property file. It first tries
to locate the class

docgen.customers.<current-customer-name>.Layout



package docgen;
public class Layout
{

...
public static Layout getInstance()
{

return ( Layout)CustomerFactory.getProductInstance(
docgen.Layout.class, new Object[]{});

}
...
}

Figure 7.8 Factory code for the Layout class.

If this class does not exist (e.g., because no customization is needed for this
customer) the Layout class in the specified package is identified.

Once the class is determined, JAVA’s reflection mechanism is used to invoke
the actual constructor. For this, an array of objects representing the arguments
needed for object instantiation is used. In the example, this array is empty.

7.5.3 Evaluation

The overall effect of customer packages and customer factories is that

• One package definition is created for each customer, which exactly indi-
cates what packages are needed for this customer, and how they should
be configured;

• All customer-specific JAVA code is put in a separate JAVA package, which
in turn is part of the source code package of the customer;

• Adding new customers does not involve the creation of additional con-
crete factories: instead, the customer package is automatically searched
for relevant class specializations;

• Turning an existing class into a variation point, to allow customer-specific
overriding, is a local change. Instead of an adaptation to the abstract
factory used by all customers, it amounts to adding the appropriate get-
Instance method to the variation class.

A potential problem of the use of the customer factory pattern is that the heavy
use of reflection may involve an efficiency penalty. For DOCGEN this has proven
not to be a problem. If it is, prototype instances for each class can be put in a
hash table, which are then cloned whenever a new instance is needed. In that
case, the use of reflection is limited to the construction of the hash table.



7.6 Concluding remarks

7.6.1 Contributions

In this chapter we combined three techniques to develop and build a product
line architecture. We used these techniques in practice for the DOCGEN appli-
cation, but they might be of general interest to build other product lines.

Feature descriptions They live at the design level of the product line and
serve to explore and capture the variability of a product line. They define
features, feature interactions, and feature constraints declaratively. A feature
description thus defines all possible instances of a product line architecture. A
product instance is defined by making a feature selection which is valid with
respect to the feature description.

Feature descriptions are also helpful in understanding the variability of a
product during the development of a product line architecture. For instance,
when migrating an existing software system into a product line architecture,
they can help to (re)structure the system into source code components as we
discussed in Section 7.4.3.

To assist developers in making product instances, an interactive graphical
representation of feature descriptions (for instance based on feature diagrams
or Customization Decision Trees (CDT) [74]), would be of great help. Ideally,
constructing product instances from feature selections should be automated.
The use of autobundle to automatically assemble source trees (see below),
is a first step in this direction. Other approaches are described in [74, 51].

Automated source tree composition At the implementation level, we pro-
pose component-based software development and structuring of applications
in separate source code components. This helps to keep source trees small
and manageable. Source code components can be developed, maintained, and
tested separately. An explicit release policy gives great control over which ver-
sion of a component to use. It also helps to prevent a system from breaking
down when components are simultaneous being used and developed. To as-
sist developers in building product instances by assembling applications from
different sets of source code components, we propose automated source tree
composition. The tool autobundle can be used for this. Needed components
can be easily selected and automatically bundled via online feature bases.

Package definitions can be made to represent features of a product on a
product line. By making such (abstract) packages available via online fea-
ture bases, product instantiation becomes as easy as selecting the necessary
features. After selecting the features, a self-contained source tree with an inte-
grated build and configuration process is automatically generated.



Customer configuration When two customers want the same feature, but
require slightly changed functionality, we propose the notion of customer spe-
cializations. We developed a mechanism based on JAVA’s reflection mechanism
to manage such customer-specific functionality.

This mechanism allows an application to consist of a core set of classes,
after source tree composition, that implement the features as selected for this
particular product instance. Customer specificity is accomplished by specializ-
ing the classes that are deemed customer-specific based on a global customer
setting. When no particular specialization is needed for a customer, the system
will fall back on the default implementation. This allows us to only implement
the actual differences between each customer, and allows for maximal reuse of
code.

We implemented the customer-specific mechanism in JAVA. It could easily
be implemented in other languages as well.

7.6.2 Related work

RSEB, the Reuse-driven Software Engineering Business covers many organiza-
tional and technical issues of software product lines [73]. They emphasize an
iterative process, in which an application family evolves. Variation points are
distinguished both at the use case and at the source component level. Com-
ponents are grouped into component systems, which are similar to our abstract
packages. In certain cases component systems implement the facade design pat-
tern, which corresponds to a facade package in our setting containing just the
code to provide an integrated interface to the constituent packages.

FeatuRSEB [64] is an extension of RSEB with an explicit domain analysis
phase based on FODA [86]. The feature model is used as a catalog of feature
commonality and variability. Moreover, it acts as configuration roadmap pro-
viding an understanding of what can be combined, selected, and customized
in a system.

Generative programming aims at automating the mapping from feature com-
binations to implementation components through the use of generator technol-
ogy [51], such as C++ template meta-programming or GenVoca [10]. They
emphasize features that “cross cut” the existing modularization, affecting many
different components. Source tree composition could be used to steer such gen-
erative compositions, making use of partially shared configuration interfaces
for constituent components.

Customization Decision Trees are an extension of feature diagrams proposed
by Jarzabek et al. [74]. Features can be annotated with scripts specifying the ar-
chitecture modifications needed to realizing the variant in question. In our set-
ting, this could correspond to annotating FDL descriptions with package names
implementing the given features.

Bosch analyzes the use of object-oriented frameworks as building blocks
for implementing software product lines [21]. One of his observations is that
industrial-strength component reuse is almost always realized at the source



code level. “Components are primarily developed internally and include func-
tionality relevant for the products or applications in which it is used. Ex-
ternally developed components are generally subject to considerable (source
code) adaptation to match, e.g., product line architecture requirements” [21,
p. 240]. Source tree composition as proposed in this chapter provides the sup-
port required to deal with this product line issue in a systematic and controlled
way.

In another paper, Bosch et al. list a number of problems related to prod-
uct instantiation [22]. They recognize that it is hard to exclude component
features. Our proposed solution is to address this by focusing on source-level
component integration. Moreover, they observe that the initialization code is
scattered and hidden. Our approach addresses this problem by putting all ini-
tialization code in the abstract factory, so that concrete factories can refine this
as needed. Finally, they note the importance of design patterns, including the
abstract factory pattern for product instantiation.

The use of design patterns in software product lines is discussed by Sharp
and Roll [129]. This chapter deals with one design pattern in full detail, and
proposes an extension of the abstract factory pattern for the case in which there
are many different customers and product instantiations.

The abstract factory is also discussed in detail by Vlissides, who proposes
pluggable factories as an alternative [144, 145]. The pluggable factory relies on
the prototype pattern (creating an object by copying a prototypical instance)
in order to modify the behavior of abstract factories dynamically. It is suitable
when many different, but similar, concrete factories are needed.

Anastasopoulos and Gacek discuss various techniques for implementing
variability, such as delegation, property files, reflection and design patterns [1].
Our abstract factory proposal can be used for any of their techniques, and ad-
dresses the issue of packaging the variability in the most suitable way.

The use of attributed features to describe configured and versioned sets of
components is covered by Zeller and Snelting [151]. They deal with configu-
ration management only: an interesting area of future research is to integrate
their feature logic with the feature descriptions of FODA and FDL.
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C H A P T E R 8

Conclusions

The objective of this thesis was to develop an architecture for effective soft-
ware reuse where components can be developed by different people at different
institutes, and be integrated easily in composite software systems. This objec-
tive posed a number of questions about reuse techniques concerning abstraction,
composition, and granularity. These questions were formulated and motivated in
Section 1.5 on page 10. Section 1.6 on page 12 gave a brief overview of the re-
search topics covered in the subsequent chapters of this thesis. In this concluding
chapter, we will reflect on the research questions, summarize the reuse techniques
that we developed, and draw some conclusions. Furthermore, we will discuss the
effectiveness of our architecture for software reuse.

8.1 Abstraction

Question 1

How can an effective reuse practice in the domain of language processing be
established?

To answer this question, we developed an architecture for component-based
software development in Chapter 2–4, and tested its effectiveness in Chapter 5.

In Chapter 2, “Grammars as Contracts”, we developed the model “Langu-
age-Centered Software Engineering” (LCSE) for component-based software de-
velopment in the domain of language processing. Components in this model
are stand-alone programs that can be connected via the standard exchange
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Technique (chapter) Truism
I II III IV

Grammar Base (2) X X X
Library Generation (2) X X
Program Generation (2) X X
Generic Tools (2) X X
Grammars as contracts (2) X X
Standardized exchange formats (2) X
Abstract from concrete syntax (2) X
XT bundle (3) X X X X
Generic pretty-printing (4) X X
Source tree composition (6) X
Build interfaces (6) X X
Configuration interfaces (6) X X
Package definitions (6) X X
Online package base (6) X X X X
Feature definition language (7) X
Customer factories (7) X
Online feature base (7) X X X X

I A reuse technique must reduce the cognitive distance.
II Reusing an artifact must be easier than developing it.

III To select an artifact you must know what it does.
IV Finding an artifact should be fast.

Figure 8.1 Summary of the reuse techniques that have been discussed in this thesis,
together with the chapter were they have been introduced, and the reuse truisms that
are satisfied by them (see Section 1.1 on page 2).

format ATERMS. The model is language-independent and allows easy integra-
tion of third-party components. Applications can be constructed from compo-
nents that are reused as-is, or from components that are partly or completely
generated using library and program generators. Currently, library genera-
tion support is provided for the programming languages C, HASKELL, JAVA, and
STRATEGO.

Grammars play a central role in this model and serve as contracts between
components. They also drive generators in order to produce compositional
components that operate on uniform data structures. Grammars are stored in
the Grammar Base, which is a central access point for reusable, open source
language definitions. The grammar base functions as a repository of contracts,
as a standard reference for language definitions, and as a starting point for
application and component development.

Typical abstractions in the domain of language processing are parsers, com-
pilers, tree transformers, and pretty-printers. XT bundles implementations for



these abstractions together with a collection of library and program generators.
Chapter 3, “XT: a Bundle of Program Transformation Tools”, motivates its de-
velopment as to form an open framework for component-based transformation
tool development, which is flexible and extendible.

The use of LCSE and of XT in practice was discussed in Chapter 5, “Cost-
Effective Maintenance Tools for Proprietary Languages”. We demonstrated that
the development time of language applications was decreased thanks to effec-
tive reuse of generators and generic language components from the XT bundle.
The effectiveness of software reuse was demonstrated by a reuse level between
88% en 97%. In addition to Chapter 5, we used LCSE throughout this thesis
for all software development activities. Each of these chapters concludes with
a discussion of reuse statistics. Section 8.4 summarizes these results.

The individual reuse techniques that we developed in Chapters 2–5 satisfy
several reuse truisms. Table 8.1 contains a summary of these techniques and
indicates which reuse truisms are satisfied by them. These techniques are com-
bined in the XT bundle. XT therefore satisfies all four truisms and can be used
to establish an effective reuse practice in the domain of language processing
(see Section 8.4).

8.2 Composition

Question 2a

How can the compositionality of components be improved and the composi-
tion process be automated?

To answer this question, we developed techniques for functional composition,
source composition, and feature composition.

The composition of functional components was discussed in Chapter 2,
“Grammars as Contracts”. We discussed the use of grammars as contracts be-
tween language tool components and explained that the compositionality of
components can be improved with centralized grammar management. We dis-
cussed meta-tooling that generates library code for a variety of programming
languages from concrete and abstract syntax definitions. Thanks to centrally
managed grammars, generated library code is guaranteed to operate on uni-
form structured trees. In combination with the ATERMS format for represent-
ing and exchanging trees, components that are constructed with these libraries
can easily be connected. The use of ATERMS as exchange format makes our
architecture open and language-independent. It allows composition of compo-
nents from arbitrary origin, implemented in different programming languages.
Table 8.1 summarizes the techniques introduced in Chapter 2 and the reuse
truisms that are satisfied by them. These techniques are combined in the XT

bundle, which forms an architecture that satisfies all reuse truisms. Automated



composition of functional components was only briefly addressed in Chapter 7,
“Feature-Based Product Line Instantiation using Source-Level Packages” and is
subject of ongoing research.

Composition of source components was discussed in Chapter 6, “Source
Tree Composition”. We discussed abstractions for source trees and synthesis of
composite trees using source tree composition. We introduced build and config-
uration interfaces as mechanisms to make source components compositional.
They serve to integrate build processes as well as configuration processes of
all the source components that constitute a software system. Source tree com-
position is automated in the tool autobundle . Online package bases make
source component composition as easy as selecting the components of need.
The reuse truisms that are satisfied by the techniques presented in Chapter 6
are summarized in Table 8.1. The table indicates that online package bases
satisfy all truisms. As we will see below, they form a successful technique for
software reuse.

Composition of features was discussed in Chapter 7, “Feature-Based Prod-
uct Line Instantiation using Source-Level Packages”. This chapter focused on
developing product lines and on automating the assembly process of product
instances. To that end, we used FDL to capture configuration knowledge and
to define the features of a product line. We proposed an explicit mapping from
features to source components using abstract package definitions. Thanks to
this mapping, a product (defined as a composition of features) can be assem-
bled with source tree composition and the tool autobundle can be used to
automate this process. Product assembly is further simplified by storing fea-
tures in online package bases. Assembling a product then involves selecting
the features of the product and pressing a button to start the assembly process.
To allow behavioral adaptations to product instances according to customer-
specific needs, we presented customer factories. This is a flexible mechanism
for component configuration that does not put restrictions on component com-
positionality. Table 8.1 summarizes the reuse techniques presented in Chap-
ter 7 and the reuse truisms that are satisfied by them. Like online package
bases, online feature bases satisfy all truisms and are a powerful means for
software reuse.

Question 2b

How can project and institute-specific dependencies of software components
be removed in order to promote collaborative software development?

In Chapter 6, “Source Tree Composition”, we proposed software reuse based on
source packages. A source package is a distribution unit of a source code com-
ponent that is independent of a CM system. To deal with variation over time
(which is a major task of CM systems), source packages are subject to explicit
release and version management. Obviously, implicit dependencies on locally



installed software are not allowed because source packages are intended for
distribution. Source packages thus restrict institute-specificity of source com-
ponents because they are independent of a CM system and because component
developers are encouraged to drop dependencies on local installed software.

Build and configuration interfaces were proposed to standardize the build
and configuration processes of source packages. They make collaborative soft-
ware development easier because the software construction process becomes
uniform, and because build processes as well as configuration processes of dif-
ferent components can easily be integrated.

Package definitions, which are abstractions for source packages, provide
information about source components. This information helps to reduce the
cognitive distance and to improve the understanding of components. Online
package bases serve to make components widely available, and to easily find
and retrieve components of need. Anybody within a reuse scope can contribute
to the collaborative software development process by filling out a package con-
tribution form at an online package base.

As part of our research, we initiated the Online Package Base (see Ap-
pendix A), which forms a central meeting point for developers and users of
source packages. It provides online package selection, bundling, and contribu-
tion via Internet. Anyone can contribute additional source packages by filling
out a package contribution form. As of this writing, the Online Package Base
contains 274 packages, corresponding to 66 source code components in differ-
ent variants (versions), developed at 8 institutes.

8.3 Granularity

Question 3

Can the conflicting goals of many, small components (fine-grained reuse)
and large-scale components (high payoff and low cognitive distance) be com-
bined?

In Chapter 6, “Source Tree Composition”, we discussed a technique to assemble
composite source trees from individual source code components. Assembling
composite source trees involves merging source files and directories, as well as
integrating build and configuration processes. The result is a single source tree
with a single integrated build and configuration process.

Build and configuration interfaces were introduced to improve composi-
tionality of source code components by making configuration and construction
uniform activities. We introduced package definitions as abstractions for source
code components. They capture information about components, including de-
pendencies upon other source code components.



With build interfaces, configuration interfaces, and package definitions,
coarse-grained components can easily be splitted up in smaller source code
components. A package definition then serves to define a composition of
smaller components. Build and configuration interfaces ensure that build and
configuration processes of these components can easily and automatically be
integrated.

With source tree composition, these fine-grained components can also be
used in alternative compositions. Furthermore, composite components can
function as building blocks themselves to form even larger components. Thus,
source tree composition allows the construction of components of varying gran-
ularity.

The ability to construct components of different granularity promotes fine-
grained software reuse because reusable software can be made available in
small source code components. Additionally, high payoff and low cognitive dis-
tance can be achieved by making different component compositions, forming
coarse-grained, domain-specific components. Package normalization ensures
that common components in component compositions are always shared.

Since source tree composition is automated, the internal structuring of com-
posite components is of no importance for component users. The autobundle
tool takes care of obtaining and integrating the fine-grained components that
constitute the intended software system. Consequently, source tree composi-
tion is almost invisible for users of composite systems and components, and the
overhead is relative small.

8.4 Components and reuse

Figure 8.2 contains a complete picture of the packages developed in Chap-
ters 3, 4, 5, and 6, their constituent components, and the component reuse
relations (see Section 3.6 for information about component diagrams). The
picture shows 16 packages, including 4 third-party packages, and 89 tool com-
ponents.

Table 8.1 summarizes sizes and reuse levels for all the light-grey colored
packages. This table shows that the complete implementation of the packages
consists of approximately 77,100 lines of code, of which more than 61,700
lines are reused. Thus, the total implementation of the packages discussed
in this thesis consists of 15,400 LOC. If we take the explosion factor of 1.48
into account (as discussed in Section 3.6), we end up with a total of 10,400
lines of real-written Stratego code. This yields a reuse level between 80% and
91%. Section 3.6 on page 42 justifies these numbers and describes how they
are obtained by analyzing component implementations.

Recall from Section 3.6 that these numbers only depict reuse levels for
components implemented in Stratego. Reuse of third-party components (con-
tained in dark-grey boxes in Figure 8.2), implemented in other programming
languages (such as the parser sglr , or the ATERMS library), is not depicted.
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Figure 8.2 This picture shows the source code components and corresponding reuse
relations for all the applications that have been discussed in this thesis.



Non-transitive reuse Transitive reuse
Component LOC RSI Reuse% LOC Reuse%

aterm-tools 3,616 2,999 82% 3,616 82%
autobundle 6,386 4,687 73% 10,273 83%
gpp 12,178 8,408 69% 26,349 85%
grammar-recovery 7,871 6,382 81% 7,871 81%
graph-tools 3,002 2,646 88% 3,002 88%
sdf-tools 23,700 20,601 86% 61,186 94%
stratego-tools 8,667 7,091 81% 8,667 81%
xt 243 0 0% 29,445 99%
asfix-tools 6,442 4,433 68% 6,442 68%
sdl-tools 5,043 4,487 88% 22,819 97%

Totals: 77,148 61,734 80% 179,670 91%

Table 8.1 Reuse table for the packages discussed in this thesis. The table shows that
for these packages, a total of 15,414 new lines of code had to be written.

Consequently, software reuse is even better than the table suggests since these
components are extensively used as well.

Experience reports about software reuse are discussed, amongst others,
in [118] and [14]. The first contains a summary of published industrial expe-
riences about the benefits of software reuse and reports reuse levels between
17% and 90% (55% on average). The second is concerned with an 8 year re-
search project performed at AT&T and reports a reuse level of 85% on average.
Thus, with a reuse level between 80% and 91% on average (see Table 8.1), our
techniques can easily compete with the most successful ones discussed in these
reports.



A P P E N D I X A

Contributed Software Packages

In this thesis we reported on the development of several software packages that
implement the presented ideas and techniques for software reuse and collabo-
rative software development. Most of them are freely available and distributed
as open source. This section contains a summary of these packages which can
all be downloaded from the Online Package Base (see below).

Online Package Base The packages listed below, as well as tens of other
packages from several different institutes, are available from the Online Pack-
age Base, which is located at:

http://www.program-transformation.org/package-base

The Online Package Base is also available at:

http://www.cwi.nl/˜mdejonge/package-base

To obtain software from the Online Package Base you first select one or more
of the packages, then you press the “bundle” button. This will generate a
self-contained software bundle for you with the packages you selected and
those that are required by them. In order to build the software bundle, the
README file that is contained in the generated bundle should be consulted
for instructions about the easy three-step installation procedure. The Online
Package Base was discussed in Chapter 6, “Source Tree Composition”.

GPP This is a collection of tools for generic pretty-printing. The package
contains a pretty-printer generator, and format engines operating on parse-
trees and abstract syntax-trees, supporting different output formats. GPP was
discussed in Chapter 4, “Pretty-Printing for Software Reengineering”.
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XT This is a bundle of tools for building program transformations. It bundles
several components from the ASF+SDF Meta-Environment [27], the generic
pretty-printer GPP, the transformational programming language Stratego, and
various library generators, and transformation components (see Chapter 3,
“XT: a Bundle of Program Transformation Tools”, for a more complete overview
of its ingredients). Obtaining and installing XT is simple because binary and
source distributions are available in several formats. XT distributions and doc-
umentation are available at the XT web-site:

http://www.program-transformation.org/xt

The maintainers of XT are Merijn de Jonge, Eelco Visser, and Joost Visser.

Autobundle This software package contains tools for automated source tree
composition and for managing online package bases. It includes the auto-
bundle tool for generating self-contained software bundles, as well as tools for
querying package repositories, for initiating online package bases, for web-site
generation, and for handling user requests via a CGI interface. Autobundle
was discussed in Chapter 6, “Source Tree Composition”.

GB The Grammar Base is a collection of open source language definitions in
the syntax definition formalism SDF. They can be used to drive generators from
the XT bundle and as contracts between language tool components for LCSE. It
is available online at:1

http://www.program-transformation.org/gb

From this site, you can browse and download individual grammars. The com-
plete collection of grammars is also available at the Online Package Base (see
below). The Grammar Base was discussed in Chapter 2, “Grammars as Con-
tracts”.

Many people have contributed to the Grammar Base. Its maintainers are
Merijn de Jonge, Eelco Visser, and Joost Visser.

1Also available at http://www.cwi.nl/˜mdejonge/gb

http://www.program-transformation.org/xt
http://www.program-transformation.org/gb
http://www.cwi.nl/~mdejonge/gb


A P P E N D I X B

Additional Software Packages

Apart from the software packages that we developed during our research, we
also list a selection of additional software packages that we made use of. All
these packages are open source and, in addition to the indicated locations, they
are also available at the Online Package Base. From there, they can easily be
retrieved and bundled with other software packages.

The ASF+SDF Meta-Environment The ASF+SDF Meta-Environment is an
interactive development environment for language prototyping and for devel-
oping program transformations. It supports combined definition of syntax and
semantical aspects of (programming) languages using the syntax definition for-
malism SDF and the term rewriting language ASF, respectively. It as available
from:

http://www.cwi.nl/projects/MetaEnv

The ATerm Library The ATerm format is used by all our tooling as standard
exchange format and is the standard data format of the Stratego program-
ming language. The ATerm Library is therefore an important component in our
Language-Centered Software Engineering model. It includes the ATerm API,
which is used by for constructing and inspecting ATerms, as well as, a collec-
tion of tools for ATerm processing. The ATerm library is available from:

http://www.cwi.nl/projects/MetaEnv/aterm

Autoconf Autoconf is a tool for generating configuration scripts for software
packages. These configuration scripts perform system checks and offer switches
to activate or configure parts of a package. The generated configuration scripts
provide a standardized configuration interface, which autobundle uses for
the composition of configuration processes. Autoconf is available at:
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http://www.gnu.org/directory/GNU/autoconf.html

Automake Automake is a tool for generating Makefiles from high-level Make-
file templates. The generated Makefiles provide a standardized build interface,
which autobundle uses for the composition of build processes. Automake is
available at:

http://www.gnu.org/directory/GNU/automake.html

Graphviz This package provides a collection of tools for manipulating graph
structures and generating graph layouts. The tools operate on the graph draw-
ing language DOT. The package is available at:

http://www.research.att.com/sw/tools/graphviz
http://www.graphviz.org

SDF parse table generator and generalized LR parser The parse table gen-
erator pgen and the scannerless generalized LR parser sglr that consumes
these tables are the primary tools that support the syntax definition formalism
SDF. They are available from:

http://www.cwi.nl/projects/MetaEnv/pgen
http://www.cwi.nl/projects/MetaEnv/sglr

Stratego Stratego is the primary programming language that we used for the
implementation of the tools presented in this thesis. It is a modular language
for the specification of fully automatic program transformation systems based
on the paradigm of rewriting strategies. The Stratego distribution is available
at:

http://www.stratego-language.org

http://www.gnu.org/directory/GNU/autoconf.html
http://www.gnu.org/directory/GNU/automake.html
http://www.research.att.com/sw/tools/graphviz
http://www.graphviz.org
http://www.cwi.nl/projects/MetaEnv/pgen
http://www.cwi.nl/projects/MetaEnv/sglr
http://www.stratego-language.org


Bibliography

[1] M. Anastasopoulos and C. Gacek. Implementing product line variabili-
ties. In Proceedings of the 2001 Symposium on Software Reusability, pages
109–117. ACM, 2001. SIGSOFT Software Engineering Notes 26(3).

[2] A. W. Appel. Modern Compiler Implementation in ML. Cambridge Uni-
versity Press, 1998.

[3] L. Augusteijn. The elegant compiler generator system. In P. Deransart
and M. Jourdan, editors, Attribute Grammars and their Applications, vol-
ume 461 of Lecture Notes in Computer Science, pages 238–254. Springer-
Verlag, September 1990.

[4] J. C. M. Baeten and W. P. Weijland. Process Algebra. Cambridge Tracts in
Theoretical Computer Science 18. Cambridge University Press, 1990.

[5] O. S. Bagge, M. Haveraaen, and E. Visser. CodeBoost: A framework for
the transformation of C++ programs. Technical Report UU-CS-2001-
32, Institute of Information and Computing Sciences, Utrecht University,
2001.

[6] E. C. Bailey. Maximum RPM. Red Hat Software, Inc., 1997.

[7] S. Bailliez et al. Apache Ant 1.5 Manual. Apache Software Founda-
tion, 1.5 edition, 2002. Available at http://jakarta.apache.org/
ant/manual/ .

[8] D. Batory and B. J. Geraci. Validating component compositions in soft-
ware system generators. In M. Sitaraman, editor, Proceedings of the
Fourth International Conference on Software Reuse, pages 72–81. IEEE
Computer Society Press, 1996.

[9] D. Batory and B. J. Geraci. Composition Validation and Subjectivity in
GenVoca Generators. IEEE Transactions on Software Engineering (special
issue on Software Reuse), pages 62–87, 1997.

151

http://jakarta.apache.org/ant/manual/
http://jakarta.apache.org/ant/manual/


[10] D. Batory, C. Johnson, B. MacDonald, and D. von Heeder. Achieving
extensibility through product-lines and domain-specific languages: A
case study. ACM Transactions on Software Engineering and Methodology,
11(2):191–214, 2002.

[11] D. Batory and S. O’Malley. The design and implementation of hierarchi-
cal software systems with reusable components. ACM Transactions on
Software Engineering and Methodology, 1(4):355–398, October 1992.

[12] K. Beck. Extreme Programming Explained. Embrace Change. Addison
Wesley, 1999.

[13] M. Becker and J. Diaz-Herrera. Creating Domain Specific Libraries: A
Methodology and Design Guidelines. In Proceedings of the Third Inter-
national Conference on Software Reuse, pages 158–168, 1994.

[14] D. Belanger and B. Krishnamurthy. Practical software reuse: An interim
report. In W. Frakes, editor, Proceedings: 3rd International Conference on
Software Reuse, pages 53–63. IEEE Computer Society Press, 1994.

[15] J. A. Bergstra, J. Heering, and P. Klint. The algebraic specification for-
malism ASF. In J. A. Bergstra, J. Heering, and P. Klint, editors, Algebraic
Specification, ACM Press Frontier Series, pages 1–66. The ACM Press in
co-operation with Addison-Wesley, 1989.

[16] J. A. Bergstra and P. Klint. The ToolBus coordination architecture. In
P. Ciancarini and C. Hankin, editors, Coordination Languages and Models
(COORDINATION’96), volume 1061 of Lecture Notes in Computer Sci-
ence, pages 75–88. Springer-Verlag, 1996.

[17] R. H. Berlack. Software Configuration Management. Wiley and Sons,
New York, 1991.

[18] T. J. Biggerstaff. The library scaling problem and the limits of concrete
component reuse. In W. Frakes, editor, Proceedings: 3rd International
Conference on Software Reuse, pages 102–109. IEEE Computer Society
Press, 1994.

[19] T. J. Biggerstaff and C. Richter. Reusability Framework, Assessment,
and Directions. In T. J. Biggerstaff and C. Richter, editors, Software
Reusability, volume I — Concepts and Models, chapter 1, pages 1–17.
ACM press, 1989.
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[96] R. Lämmel and C. Verhoef. Semi-automatic Grammar Recovery.
Software—Practice & Experience, 31(15):1395–1438, December 2001.

[97] R. Lämmel and J. Visser. Typed combinators for generic traversal. In
PADL 2002: Practical Aspects of Declarative Languages, volume 2257
of Lecture Notes in Computer Science, pages 137–154. Springer-Verlag,
2002.
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Summary in Dutch /
Samenvatting

Het Onderzoek

Softwarehergebruik is een manier om de praktijk van softwareontwikkeling te
verbeteren, door bij de ontwikkeling van nieuwe systemen gebruik te maken
van reeds bestaande en getestte onderdelen (componenten). Dit versnelt de
ontwikkeling van nieuwe softwaresystemen, aangezien minder software nieuw
hoeft te worden ontwikkeld. Tevens verhoogt het de kwaliteit van softwaresys-
temen omdat onderdelen van erkende kwaliteit kunnen worden gebruikt.

Al sinds de jaren zestig denkt men na over een ‘ideale’ softwarewereld, die
softwareontwikkelaars verdeelt in twee groepen: componentontwikkelaars en
componentgebruikers (systeemontwikkelaars). De eerste groep houdt zich be-
zig met de ontwikkeling van kwalitatief hoogstaande en algemeen bruikbare
componenten, ook wel aangeduid als “development for reuse” (ontwikkeling
ten dienste van hergebruik). De tweede groep houdt zich bezig met de ontwik-
keling van component-gebaseerde (component-based) softwaresystemen. Daar-
bij wordt gebruik gemaakt van door de eerste groep geleverde componenten.
Deze aktiviteit noemt men “development with reuse” (onwikkeling met herge-
bruik). Aanbod van en vraag naar softwarecomponenten vinden elkaar, ideali-
ter, op een uitgebreide componentenmarkt.

Tot op heden wordt deze ideale softwarewereld slechts op kleine schaal, in
enkele specifieke toepassingsgebieden (domeinen), benaderd. Van een alge-
mene componentenmarkt is dan ook nog lang geen sprake, want hoewel veel-
belovend, blijkt succesvol hergebruik van softwarecomponenten erg moeilijk
in de praktijk te brengen.

Om softwarehergebruik succesvoller te maken zijn specifieke technieken
nodig die componentontwikkelaars helpen bij het bouwen van herbruikbare
componenten en componentgebruikers bij het zoeken, selecteren en integreren
ervan. Deze technieken voor softwarehergebruik dienen te voldoen aan vier
criteria, ze moeten:

1. een voldoende mate van abstractie bieden voor herbruikbare onderdelen;
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2. hergebruik van onderdelen eenvoudiger maken dan het opnieuw ontwik-
kelen ervan;

3. duidelijkheid verschaffen over de functionaliteit van herbruikbare onder-
delen;

4. het vinden van herbruikbare onderdelen sneller en eenvoudiger maken
dan het opnieuw ontwikkelen ervan.

Dit proefschrift beschrijft onderzoek dat ten doel heeft om effectief software-
hergebruik mogelijk maken. Daartoe worden hergebruiktechnieken ontwik-
keld die aan de bovengenoemde criteria voldoen. De drie centrale thema’s die
hierbij een rol spelen zijn: abstractie, compositie en granulariteit.

Abstractie Diverse studies tonen aan dat softwarehergebruik in de praktijk
moeilijk is. De reden is een gebrek aan algemene abstracties, anders dan lijs-
ten (lists), stapels (stacks), wachtrijen (queues) etc. Wanneer men zich echter
richt op een specifiek toepassingsdomein, dan zijn (domein-specifieke) abstrac-
ties vaak wel duidelijk te onderscheiden. Binnen zo’n domein zou software-
hergebruik derhalve succesvol kunnen zijn. In dit proefschrift onderzoeken
we deze hypothese en proberen we binnen het domein van taalverwerking
(language processing) een effectieve hergebruikpraktijk te ontwikkelen. Typi-
sche abstracties die in dit domein een rol spelen zijn: ontleden (parsing), ver-
talen (compiling), transformeren (transforming) en opmaken (pretty-printing).

Compositie De ontwikkeling van softwaresystemen door middel van her-
bruikbare componenten impliceert softwarecompositie. Immers, vanwege her-
gebruik kan een softwaresysteem niet als één enkel geheel beschouwd wor-
den. In plaats daarvan vormt het een compositie van enerzijds hergebruikte
en anderzijds specifiek-geschreven onderdelen. Componenten kunnen in ver-
schillende programmeertalen geschreven zijn. Componenten kunnen daar-
naast verschillende compositiemomenten hebben. Deze compositiemomen-
ten leiden tot een onderscheid in verschillende typen componenten, bijvoor-
beeld: broncodecomponenten die tijdens compilatie samengevoegd worden en
binaire componenten die pas tijdens de executie van een applicatie samen-
gevoegd worden tot één geheel. Het is wenselijk dat applicaties eenvoudig
gebruik kunnen maken van componenten die in verschillende programmeer-
talen zijn geschreven én dat verschillende compositiemomenten gecombineerd
kunnen worden. Daartoe ontwikkelen we in dit proefschrift een architectuur
die verschillende integratiemomenten van componenten, geschreven in diverse
programmeertalen, ondersteunt. Tevens onderzoeken we hoe de compositio-
naliteit van componenten verhoogd kan worden door instituut-specifieke af-
hankelijkheden te vermijden en door het compositieprocess te automatiseren.



Granulariteit Hoe groot moet een component zijn, hoeveel functionaliteit
moet het bevatten en hoe specifiek moet die functionaliteit zijn? Deze vra-
gen met betrekking tot componentgranulariteit zijn niet eenduidig te beant-
woorden. Granulariteit bepaalt echter in grote mate de herbruikbaarheid van
componenten. Zo neemt grofkorrelig hergebruik de componentgebruiker veel
werk uit handen omdat componenten relatief groot zijn en veel specialistische
functionaliteit bevatten. Deze vorm van hergebruik kan dan ook eenvoudig tot
kostenbesparingen leiden. Helaas is het aantal toepassingen van zulke specia-
listische componenten beperkt. Ook is de kans op codeduplicatie groot omdat
potentieel herbruikbare onderdelen vast verweven kunnen zitten in een com-
ponent en derhalve niet herbruikbaar zijn.

Tegenover grofkorrelig hergebruik staat fijnkorrelig hergebruik. Hierbij zijn
componenten relatief klein en hebben beperkte, algemeen bruikbare functiona-
liteit. Dit verhoogd de herbruikbaarheid van componenten en het kan codedu-
plicatie helpen te verminderen. De voordelen van fijnkorrelig hergebruik zijn
voor een componentgebruiker echter geringer vanwege de beperkte functiona-
liteit die per component hergebruikt wordt en vanwege het algemene karakter
van die functionaliteit. Daarnaast groeit de complexiteit van het softwareont-
wikkelprocess naarmate het aantal gebruikte componenten toeneemt.

De titel van dit proefschrift, “To Reuse or To Be Reused”, heeft betrekking
op deze tegenstrijdigheid: grofkorrelig hergebruik, dat specifieke voordelen
biedt voor componentgebruikers en fijnkorrelig hergebruik, dat juist aan de
componentontwikkelaar voordelen biedt. In dit proefschrift onderzoeken we
of deze tegenstrijdigheid opgeheven kan worden om zo de voordelen van grof-
en fijnkorrelig hergebruik te combineren.

De Hoofdstukken

Dit proefschrift bestaat uit twee delen. Het eerste deel (“onwikkeling ten dien-
ste van hergebruik”) richt zich op de componentontwikkelaar. Het behan-
delt onderzoek ter verbetering van de herbruikbaarheid van softwareonder-
delen (componenten). Het domein van taalverwerking is hierbij gekozen als
specifiek toepassingsdomein omdat het, zo is de aanname, voldoende domei-
nabstracties biedt voor succesvol hergebruik. In hoofdstuk 2, “Grammars as
Contracts”, ontwikkelen we een raamwerk voor componenthergebruik waarbij
grammatica’s een centrale rol vervullen. Enerzijds definiëren zij de gegevens-
structuren van informatie die componenten onderling uitwisselen. Anderzijds
dienen zij om taalafhankelijke onderdelen te genereren om zodoende onder-
houd aan componenten, als gevolg van taalwijzigingen, te minimaliseren. Het
hoofdstuk presenteert tevens een softwareontwikkelmodel voor de ontwikke-
ling van component-gebaseerde taalgereedschappen. Dit ontwikkelmodel heet
“Language-Centered Software Engineering” (taal-georiënteerde softwareont-
wikkeling), of kortweg, LCSE. Hoofdstuk 3 beschrijft de componentenbundel
XT die de implementatie van het raamwerk vormt. XT is een verzameling com-



ponenten gericht op de ontwikkeling van programmatransformatiesystemen
volgens het ontwikkelmodel van LCSE. Naast XT zelf, beschrijft het hoofdstuk
ook een methode om hergebruik van XT componenten te meten. Deze meet-
methode wordt gedurende het hele proefschrift gebruikt om de effectiviteit van
de diverse hergebruiktechnieken te achterhalen. Hoofdstuk 4, “Pretty-Printing
for Software Reengineering”, beschrijft onderzoek op het gebied van pretty-
printing, d.w.z. het opmaken van programmateksten. Pretty-printing vormt
een integraal onderdeel van LCSE. Dit stelt harde eisen aan pretty-print com-
ponenten wat betreft herbruikbaarheid. Het hoofdstuk onderzoekt deze spe-
cifieke eisen en presenteert de benodigde technieken om aan deze eisen te
voldoen.

Deel twee van dit proefschrift (“ontwikkeling met hergebruik”) richt zich
op de componentgebruiker. Onderzocht wordt of de in deel één ontwikkelde
technologieën succesvol zijn en hoe assemblage en configuratie van samen-
gestelde softwaresystemen geautomatiseerd kunnen worden. In hoofdstuk 5,
“Cost-Effective Maintenance Tools for Proprietary Languages”, worden de ont-
wikkelde technieken uit deel één in de praktijk toegepast in een industrieel
samenwerkingsverband voor de ontwikkeling van een documentatiegenerator.
Onderzocht wordt of, zoals LCSE belooft, softwarehergebruik- en generatie
de ontwikkeling van taal-georiënteerde softwaresystemen kan bespoedigen en
vereenvoudigen. Hoofdstuk 6, “Source Tree Composition”, stelt dat naast func-
tionele compositie, ook compositie van broncodemodulen, softwarebouw- en
configuratiepocessen nodig is voor de ontwikkeling van component-gebaseerde
softwaresystemen. Daartoe wordt de techniek “Source Tree Composition” ge-
presenteerd die deze vorm van compositie definieert en automatiseert. Source
tree compositie heeft ten doel om automatische assemblage van softwaresyste-
men binnen handbereik te brengen. Hierbij is selectie van gewenste systeem-
onderdelen voldoende om automatisch de bijbehorende implementatieonder-
delen te vinden en te integreren. Hoofdstuk 7, “Feature-Based Product Line
Instantiation using Source-Level Packages”, diept het onderwerp van automati-
sche softwareassemblage verder uit. Dat hoofdstuk onderzoekt algemene tech-
nieken voor het opzetten en implementeren van software produktlijnen. Deze
technieken behelzen het automatisch vertalen van klant-specifieke, marktge-
relateerde produkteigenschappen (features) naar technische aspecten die de
corresponderende implementatie vormen. De omzetting van de commerciële
documentatiegenerator DOCGEN naar een produktlijnarchitectuur vormt het
uitganspunt van dit onderzoek.

De Resultaten

In hoofdstuk 8 worden de resultaten van dit proefschrift beschreven aan de
hand van de onderzoeksvragen die betrekking hebben op de drie centrale
thema’s van dit proefschrift: abstractie, compositie en granulariteit. Hieron-
der volgt een korte samenvatting van de behaalde resulaten. Tabel 8.1 op



bladzijde 140 geeft een overzicht van de ontwikkelde hergebruiktechnieken,
de hoofdstukken waar ze worden gepresenteerd, alsmede de hergebruikcrite-
ria waaraan ze voldoen.

Abstractie Effectief softwarehergebruik in het domein van taalverwerking is
mogelijk. Hoofdstuk 5, “Cost-Effective Maintenance Tools for Proprietary Lan-
guages”, demonstreert dat softwarehergebruik met behulp van het in hoofd-
stuk 2, “Grammars as Contracts”, beschreven ontwikkelmodel en de in hoofd-
stuk 3, “XT: a Bundle of Program Transformation Tools”, beschreven compo-
nenten, efficiënte softwareonwikkeling in het domein van taalverwerking mo-
gelijk maakt.

Compositie Voor effectief softwarehergebruik zijn geschikte compositietech-
nieken onontbeerlijk. Het onderzoek dat ten grondslag ligt aan dit proefschrift
heeft geresulteerd in compositietechnieken op drie verschillende vlakken. In
hoofdstuk 2, “Grammars as Contracts”, beschrijven we compositietechnieken
op het functionele vlak binnen het taalverwerkingsdomein. De meest opval-
lende techniek is het gebruik van grammatica’s als kontrakt tussen compo-
nenten. Source tree compositie, gepresenteerd in hoofdstuk 6, is een com-
positietechniek op het vlak van broncodecomponenten, gericht op automati-
sche softwareassemblage. Tenslotte worden in hoofdstuk 7, “Feature-Based
Product Line Instantiation using Source-Level Packages”, technieken gepresen-
teerd voor de compositie van produkteigenschappen. Deze vorm van compo-
sitie behelst het samenstellen van markt-gerelateerde produkteigenschappen
(features) tot operationele softwareprodukten.

Granulariteit Door de korrelgrootte van softwarecomponenten variabel te
maken kunnen de voordelen van fijn- en grofkorrelig hergebruik gecombi-
neerd worden. De in hoofdstuk 6, “Source Tree Composition”, gepresenteerde
techniek ondersteunt zo’n variabele korrelgrootte voor broncodecomponenten.
Enerzijds staat deze techniek componentontwikkelaars toe om kleine, alge-
meen bruikbare, componenten te ontwikkelen. Anderzijds staat het compo-
nentgebruikers toe om grote componenten her te gebruiken die intern echter
een fijnkorrelige structuur kunnen hebben.

De effectiviteit van de in dit proefschrift beschreven technieken voor soft-
warehergebruik wordt aangetoond aan de hand van hergebruikpercentages die
in de diverse hoofdstukken zijn berekend. Tabel 8.1 op bladzijde 146 bevat een
overzicht van deze meetresultaten. Het gemeten hergebruikpercentage tussen
80 en 91 procent is hoog in vergelijking met andere studies en toont aan dat
de technieken die in dit proefschrift beschreven zijn een nuttige aanvulling
vormen op bestaande hergebruiktechnieken.
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