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C H A P T E R 1

Introduction

The subject of study in this thesis is the interaction between software components in

applications. In particular, I am interested in techniques that help developers build and

maintain complex applications built up from individual components, each potentially

written in a different programming language.

The overall question is how to make these components work together in a sys-

tematic way, such that when individual components of the application are changed,

the application as a whole does not collapse. The main technical issues addressed

in this thesis are the exchange of structured data between heterogeneous components,

systematically addressing compound functionality of an application by coordinating

individual components, and centralizing the user interaction of separate components.

The overall result of this research is a framework for the development of complex

applications, which offers developers type safe access to a space efficient data exchange

layer, a systematic way to describe the cooperation between individual components,

and a centralized graphical user interface for the user interaction with individual com-

ponents and the application as a whole.

In this introductory chapter, we layout the objectives and requirements of the soft-

ware engineering perspective of developing applications in a component based way.

We then introduce the technological background of this thesis: the component coordi-

nation architecture called ToolBus [13], and its application in the ASF+SDF Meta-En-

vironment [24]. We focus on two aspects of component coordination: data exchange

and component interaction. We identify research questions in both areas, and conclude

with a roadmap for the remaining chapters of this thesis.

1.1 Software re-use

Why re-invent the wheel, if there are plenty of wheels for sale, which can be equipped

with tires ready for every season? Most engineering disciplines focus their activities

around readily available components. Mechanical engineers use standard bolts and

nuts, electrical engineers use chips and circuits which have been tried and tested in

other systems, etc. Not only small components (bolts, chips) are re-used, the same

principle is applied to larger sub-systems, such as an engine. Computer manufacturers

3



Introduction CHAPTER 1

select a case, power supply, mainboard, processor, memory, and handful of storage

components to build a desktop.

The same principle of re-use can be applied to software engineering. Substitute

functions or methods for the nuts and bolts and you end up with a low-level kind of

software re-use. Substitute a text-editing component for the engine, and you have

an example of application re-use. Obviously there are benefits to reusing software

components, which [110] sums up as follows:

Increased dependability As re-used software has been tried and tested in other work-

ing systems, it should be more dependable than new software.

Reduced process risk The cost of existing software is known, but the costs of devel-

opment are a matter of judgement.

Effective use of specialists Application specialists can develop reusable software en-

capsulating their knowledge, rather than doing the same work over and over.

Standards compliance By reusing, e.g., user interface elements such as menu items,

applications offer a more consistent look and feel to application users, making it

less likely they make mistakes when presented with a familiar interface.

Accelerated development Re-use of software can speed up system production as both

development and validation time should be reduced. In a world where time

to market is often more important than overall development cost, development

speed is highly relevant.

The goal of software re-use is the reduction of overall development costs, faster

delivery of systems, and increased software quality.

However, re-use of almost every (software) component comes at a cost. One im-

mediate concern is always that of adaptation. How will we fit the re-used wheel fit our

chassis? But also more sociological issues may arise as software engineers may pre-

fer to write their own versions of components thinking they can improve on them (the

“Not-invented-here syndrome” [110]). Finally, finding the right software component

may not be as easy as selecting the right wheel for a car, as software components often

are not as well classified and catalogued as components in other engineering disciplines

are.

In this thesis, various chapters are concerned with elements of software re-use. The

ATerm-Library presented in Chapter 2 is an example of function re-use in the form

of a standard library. Chapter 3 describes how a program generation approach can

be used to reduce the adaptation cost of reusing a standard library. In Chapter 5 we

study how off-the-shelf components can be re-used in an application at minimal costs.

Finally, in Chapter 6 we study software architectures (“plugin frameworks”) that allow

for later extensions, thereby offering the entire application as reusable component to

the extension.

1.1.1 Software Architecture

A software architecture can be defined as follows [9]:

4



SECTION 1.1 Software re-use

The software architecture of a program or computing system is the struc-

ture or structures of the system, which comprise software elements, the ex-

ternally visible properties of those elements, and the relationships among

them.

The externally visible properties mentioned in this definition are assumptions which

other elements can make of an element, e.g., provided services, performance charac-

teristics, fault handling, etc.

In order to reason about the quality of a software architecture, [9] uses six criteria.

We summarize these as follows:

Availability Availability is concerned with system failure and its associated conse-

quences. How is system failure detected? What is the mean time to failure, and

in case of a failure how long does it take to repair the system?

Modifiability Modifiability is about the cost of change. The main concerns are: what

can change, when is it changed, and who makes the change? Changes can occur

to, e.g., the functionality of the system, the platform it exists on, protocols used to

communicate with the rest of the world, etc. Changes can be made by modifying

the source code, during compilation by changing compile-time switches, during

configuration, or during execution. Some of these changes (e.g., source code

changes) can only be performed by a developer, while others can be made by

end-users (e.g., changing the screen saver). Each change, once specified, leads

to design, implementation, testing, and deployment costs in terms of time and

money, which can be measured.

Performance Performance is all about timing. Events such as interrupts, incoming

messages, user requests, occur, and the system must respond to them. Basically,

performance is concerned with how long it takes the system to respond when

such an event occurs.

Security Security is a measure of the system’s ability to resist unauthorized usage

while still providing its services to legitimate users. Security breaches (“attacks”)

can take several forms, ranging from attempts to access or modify data or ser-

vices, to attempts to deny services to legitimate users.

Testability Software testability refers to the ease with which software can be made

to demonstrate its faults through testing. In particular, testability refers to the

probability (under the assumption that the software has at least one fault), that it

will fail on its next test.

Usability Usability is concerned with how easy it is for a user to accomplish a desired

task and the kind of user support the system provides. What can the system do

to make the task of learning the system to a user (who is unfamiliar with the

system) easier? What can the system do to make the user more efficient in its

operation? What can the system do so that a user error has minimal impact? How

can the user (or the system itself) adapt to make the user’s task easier? What kind

of feedback does the system give to help the user feel confident that the correct

action is being taken?
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The goals of creating a solid software architecture for a system are reduced develop-

ment and maintenance cost (in terms of time and money) of the system, and achieving

a higher quality of the software.

In this thesis, several chapters are related to modifiability. In particular, Chapter 5

deals with the question: How can an existing system be modified to use an off-the-

shelf component? And the extensibility framework in Chapter 6 discusses techniques

to make a software system more modifiable through the use of plug-ins.

1.1.2 Component-based software engineering

The insight that elements of software (routines) could be seen as components, and

that these components could be constructed and possibly re-used in a way similar to

hardware components already dates back to the late 60’s. McIlroy [97] shared his

early thoughts on how software components should be available in families arranged

according to precision, robustness, generality and time/space performance.

A central problem in component-based software engineering is how to arrange the

cooperation between different components. Components today are often available in

different forms. For example, one component could come in the form of a software

library which needs to be linked against the target application, which has local access

to the component. Another component could be available in the form of a webservice.

In this case, local requests are handled on a remote machine and some form of network

connection is needed to transfer the request and its subsequent result. Also, compo-

nents are usually implemented in different programming languages. They may differ

in (numerical) precision, or in the level of security and robustness they offer. This real

world component heterogeneity makes it hard to treat components as basic blocks the

way McIlroy sketched. They simply are not as standardized as nuts and bolts are in

civil engineering. Building up a system out of software components remains therefore

quite a challenge.

From the many interesting issues related to component based software engineer-

ing, in this thesis we focus mainly on two specific ones. Namely those of (efficient)

data exchange between heterogeneous components, and of coordinating the coopera-

tion between components. In both areas we consider software maintainability to be

very important. We are willing to accept a (minor) performance hit if we consider the

resulting software to be better maintainable.

1.1.3 Middleware

Merely having a collection of components is not enough to create a working software

system. Somehow all these components, whether they are available through re-use,

or have been developed specifically for the project, have to be connected. This is the

realm of middleware [18].

The term middleware is used in general to describe the software that connects vari-

ous elements of software. The granularity of these elements can range from very small

(e.g., objects in a object oriented language) to off-the-shelf components (e.g., a text

editor). Also, the implementation language of the components connected by the mid-

dleware can vary.
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Some examples of middleware are:

Remote Procedure Call (RPC) By using a RPC, a client-server relationship between

components can be established. The client component can invoke specific meth-

ods in a server component which may be located on another computer. The idea

behind RPC (network-based resource sharing) has been around since 1975 [126],

but it is still available today, e.g., as Java RMI (Remote Method Invocation),

and in Microsoft .NET.

Object Request Broker (ORB) A more general approach to distributed system de-

sign is to remove the distinction between a client requesting a service, and a

server providing it. Instead, each object provides an interface to a set of services

it provides. Other objects use these services via the middleware, which is called

an object request broker. An example is CORBA [49]: the Common Object

Request Broker Architecture.

Message Oriented Middleware (MOM) In RPC and ORB a synchronous request-

response mechanism is used, meaning the client blocks and waits for the request

to be completed. In MOM asynchronous communication is used between com-

ponents. Thus, the sending component does not block waiting for the recipient

to participate in the communication. If the middleware implements persistence

and reliability, the recipient component need not even be up and running when

the request is sent. Examples of MOM include IBM’s WebSphere MQ [125], the

ToolBus Coordination Architecture [13], and Manifold [95].

Structured database access (DBC) A database is often an important component in a

software system. Database Connectivity middleware allows scalable, structured

data access implementing object persistence and often allowing transactional

models for reliable data storage. The Open Database Connectivity (ODBC) pro-

vides a standard software API for using database management systems. Sun

Microsystems implements ODBC for Java (JDBC), and Microsoft designed

OLE-DB as an API for accessing various types of data stores in a uniform man-

ner as part of their Component Object Model (COM) architecture.

In this thesis, Chapter 4 addresses various message-based middleware issues fo-

cused around the ToolBus Coordination Architecture. The ToolBus is also used as

middleware implementation in Chapter 5 to connect off-the-shelf components to an

existing software system, and in the plug-in framework described in Chapter 6.

1.1.4 Software Product lines

Not just individual software components can be re-used, but we can also think about

the re-use of an entire software architecture across a family of related systems [75].

The idea is that by reusing the same architecture (and elements associated with that

architecture), substantial benefits can be enjoyed including a reduction in construction

cost and in time to market [9]. We call this a software product line, which [46] defines

as follows:
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a set of software-intensive systems sharing a common, managed set of

features that satisfy the specific needs of a particular market segment or

mission and that are developed from a common set of core assets in a

prescribed way.

As with components, product lines are also well known from industry. For example,

all major aircraft, car, and computer manufacturers, as well as military industry all use

product lines. Based on the same insight that there is such a thing as inter-product com-

monality which can be exploited, software product lines are now a common concept

in software engineering as well. With many customers having their own requirements,

flexibility on the part of manufacturers is a must. Here, software product lines can

help to simplify the creation of systems for (groups of) customers. Several companies,

e.g. Nokia, Motorola, and Hewlett-Packard are noted [9] to have experienced signif-

icant improvements in cost, time to market and productivity, after successfully using

software product lines.

In a product line approach, it is obviously helpful if all components can deal with

data (de-)serialization using the same base infrastructure. In this thesis, Chapters 2,

and 3 play a role in the context of software product lines, as they enable structured

data exchange between components using a central API to access the data. Also,

Chapter 6 demonstrates how individual components can be brought together in an

all-encompassing user interface. This relieves individual components of the burden

of having its own full-blown user interface. It is also useful to be able to connect a

range of similar components to the same base architecture, e.g., to facilitate testing

these components in a homogeneous way. In Chapter 5 we show how various similar

components, text editors in this case, can be used interchangeably in the same base

system.

1.1.5 Variability

The software product line approach relies on strategic or planned, rather than oppor-

tunistic, re-use [9] of software. Because ultimately not a single, but multiple, though

similar products are developed, variability of software components [6, 63] has to be

taken into account when designing the architecture to be used in a product line setting.

In this thesis, Chapter 5 studies how a variation point can be added to an existing

architecture, by removing the fixed text editing facilities in a development environment,

and replacing it by a user choice between several off-the-shelf editors.

Chapter 6 describes how variation points can be implemented in a software archi-

tecture by means of plug-ins.

In a software product line, there will be several features which can be included

or excluded in the various products. Obviously not all features will be able to co-

exist. One feature may depend on another, some features might be mutually exclusive,

etc. Dealing with large feature and constraint sets becomes a computational problem.

Although the ATerm-Library (Chapter 2) by itself does not directly contribute to the

domain of variability, its key feature of maximal subterm sharing can be used to keep

the memory footprint of feature set representations down [54, 31].
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1.2 The Decoupling Paradox

One way to look at a software system is to see it as a single “box” with some externally

observable behavior. For example: “a web browser is an application in which a user

enters the location of a web page, which is then displayed by the browser.”

Another way to look at the same software system, is to recognize that the box is

not a single computer program, but that it is in fact made up of several parts. These

parts perform some functionality on their own, but they also interact with other parts,

and together they form the application. The web browser may contain a user interface

part used to enter the location of the desired web page, a download mechanism to fetch

the page, a parser to interpret the contents of the page, and a rendering engine which

displays the structured document on the user’s screen.

As the system grows in complexity (e.g., caching functionality to speed up re-

peated viewings of the same web page, and security measures needed for electronic

shopping are added to the browser), it becomes more and more important to keep all

these concerns well separated. Failing to do so leads to a monolithic software system

with tangled functionality.

In order to keep these concerns well separated, and to keep the tangling to a min-

imum, we need to decouple [102] the individual parts of the system. Preferably, each

of these subcomponents is oblivious of the others, making it easier, for example, to re-

place the current implementation of security algorithms in our web browser, if a better

one becomes available.

The act of decoupling two subcomponents in a software system immediately leads

to the following question: When two subcomponents which work together in a software

system are decoupled, how will they work together in the new situation?

Working together means at the very least that the components need to exchange

information, and that one component can ask the other to perform some task. So in a

way, in order to decouple components, we need to couple them again in another way.

We call this the Decoupling Paradox.

Of course it is possible to come up with some ad hoc way to make two decoupled

components work together in a way that the system as a whole still functions as it did

before the decoupling. But what if the system contains tens or hundreds of components

that need to be decoupled? We would then have to come up with numerous of those

ad hoc solutions, resulting in a software system that is perhaps even less maintainable

than the original, monolithic version.

1.2.1 The UNIX pipeline

The UNIX operating system is an example of a software system which focuses on

strong decoupling of components. These components operate together via a standard-

ized communication mechanism. Each component has three channels: input, output,

and error. The basic connection operator is an invention by McIlroy from the 1970’s,

called a pipe, which links the output of one component as the input of the next. This ar-

chitecture is now known as the pipe-and-filter architecture [9]. Figure 1.1 (from [127])

shows an example of three cooperating components (programs) running in a text ter-

minal.
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Text terminal

Keyboard

Program1

    stdin

Display

stderr

Program2

          stdout | stdin

stderr Program3

          stdout | stdin

stderr   stdout

Figure 1.1: A pipeline of three programs run on a text terminal.

Note how each component has its error channel redirected to the GUI (text termi-

nal). The components are decoupled, but still need to be coupled. One coupling to

get the output of a component linked to the input of the next, and (in this case) one

coupling per component to get its errors displayed on the terminal. Finally, by default,

if the output of a component is not part of a pipeline to another component, it is also

redirected to the terminal.

The data exchanged between components is standardized to be in text format. This

means that each component pretty prints its output so that it is human readable in case

the output is sent to the terminal. And each component parses any input itself. The only

agreement is that data are exchanged in textual format. Other than that, nothing is fixed.

Components thus depend on knowledge of the output format of other components.

The way individual components interact and cooperate is programmed by means of

shell scripts. In its simplest form, such a script is nothing but a sequence of program

invocations, separated by pipelines. For example, cat /etc/passwd | wc -l

is a shell script that reads a file from the filesystem (in this case /etc/passwd) and

feeds the output into a program wc which can count words, lines, and characters in the

input. In this case it takes the -l parameter directing it to only output the line count.

Effectively, this shell script counts the number of entries in the password file.
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Coordination

Representation

Computation

ToolBus

Tools

ATerms ATerms

Figure 1.2: The ToolBus architecture

1.2.2 The ToolBus coordination architecture

In the ToolBus coordination architecture [13], a central, programmable software bus

coordinates the interaction between connected components. Similar to the unix exam-

ple above, it also promotes looking at components in a highly decoupled way. Where

the unix pipeline system is based on (unstructured) textual data exchange, the ToolBus

allows components to exchange structured information in the form of terms as well.

Each component in a ToolBus coordinated application uses a generic term library to

encode any data it exchanges with other components. This term library is implemented

in several programming languages to facilitate interoperability of tools written in var-

ious programming languages. Figure 1.2 shows how individual tools are connected to

the ToolBus, exchanging data (in the form of ATerms, detailed in Chapter 2) via the

ToolBus.

The way these components interact and cooperate is now programmed by means of

a ToolBus script. The primitives available in the ToolBus language are based on process

algebra, which are detailed in Chapter 4. In this example, we abstract from most of the

ToolBus details, and use only the dot (.) operator for sequential composition.

process ReadFile is

let

Filename: str,

CatTool: cat,

Contents: str

in

rec-msg(read-file(Filename?))
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. execute(cat, CatTool?)

. snd-eval(CatTool, read-file(Filename))

. rec-value(CatTool, Contents?)

. snd-msg(file-contents(Contents))

endlet

tool cat is { command = "/path/to/cat-tool" }

The ToolBus process ReadFile defines the behavior of the external tool

cat-tool. After receiving the read-file message parameterized by a specific

filename, the external tool is executed, and told to read the file. The cat-tool then

passes the result to the ToolBus, where the ReadFile process propagates the result

of reading the file. The last line in the example tells the ToolBus what the operating

system command is to start the tool. In this case it only mentions the location of our

tool on the filesystem.

In a similar way we can write a ToolBus process for a tool capable of counting

the number of lines in a given string. For this example, we will just assume it exists

and that it can be invoked by sending the message count-lines and receiving the

number of lines via a message line-count. With these two processes, we can now

mimic our example from Section 1.2.1 which prints out the number of entries in the

password file.

process CountPasswordEntries is

let

Contents: str,

Lines: int

in

snd-msg(read-file("/etc/passwd"))

. rec-msg(file-contents(Contents?))

. snd-msg(count-lines(Contents))

. rec-msg(line-count(LineCount?))

. printf("/etc/passwd has %d entries.\n", LineCount)

endlet

This process first sends a message via the ToolBus with the request to read the file

/etc/passwd, handled by the ReadFile process. After receiving the contents of

the file, it sends out another message requesting a line count of the contents. The result

is then printed to the terminal.

1.3 Research Context

The primary case study used to verify and validate the research described in this the-

sis is the ASF+SDF Meta-Environment. The ASF+SDF Meta-Environment [86] is an

interactive development environment for constructing language definitions and gener-

ating tools for them. A language definition typically includes a specification for its

syntax, as well as for type checking, pretty printing and executing programs in the

target language.
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The first implementation of the ASF+SDF Meta-Environment was written in

LELISP. After several years the application had developed into an amorphous blob

of functionality, too inflexible to be properly used for further development. For exam-

ple, an experiment to externalize the GUI and editor [8] failed due to deadlock issues

in the system which were too complex to be solved.

In order to solve these problems, a reimplementation of the ASF+SDF Meta-En-

vironment was started, this time designed to be a compound system of individual

functional components, plus a central component coordination architecture to coordi-

nate interaction between the components. To facilitate this, the ToolBus Coordination

Architecture [11] was developed. By identifying chunks of functionality in the origi-

nal application, and isolating them into individual components, a much more open and

untangled application results. Each individual component is connected to the Tool-

Bus. The interaction between components is described in the ToolBus in a formal way

by means of a scripting language which is based on process algebra [7]. The Tool-

Bus architecture advocates strict separation between computation which is done inside

components and coordination between components which is performed in the ToolBus

itself.

Splitting up a software system such as the Meta-Environment, an interactive soft-

ware development system, into independent components helps to untangle the software

system as a whole, but it also introduces new challenges. First of all, an investment is

needed for external components to adapt them to the specific coordination environment

used for the application. In particular, we wanted to use existing, off-the-shelf text ed-

itors such as GNU Emacs and Vim to implement the main text editing facilities of the

Meta-Environment. Of course, when a new version of the external component is re-

leased, we want as little maintenance as possible, preferably none at all, on our part to

keep using that component. This raises the question how external components can be

used in a component coordination driven application, without big investments or high

maintenance cost per component.

When components are decoupled, we can coordinate their cooperation in an en-

tirely decoupled way, but human users of the system will prefer to interact with it in a

centralized way. They want a single graphical user interface, not one separate window

per component. The Meta-Environment project also ran into this conflict of interests

where we want to have decentralized components, but with a centralized GUI. The

GUI was a separate tool, but as new functionality requiring user interaction was added

to the system, the interface of the GUI component grew bigger and bigger. This led us

to investigate how we could come up with a more modular user interface architecture

which itself has a fixed interface to the system, but with the ability to host plug-ins for

the various features of the system that require user interaction.

1.4 Research Questions

The work in this thesis is structured around two research questions which are both

related to the (re)structuring of the architecture of an interactive software development

environment.
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With the introduction of a component coordination architecture, and its accompa-

nying software engineering ideas to identify and separate functionality from a mono-

lithic program into individual components, an obvious question is how to facilitate data

exchange between the components:

Research Question 1: How can structured data be exchanged between het-

erogeneous components in a space efficient, type-safe way?

Another interesting study is to look at the impact of applying component coordina-

tion techniques to the redesign and implementation of an interactive application. With

portions of functionality now isolated into individual components, how do we describe

the functionality of the application as a whole? How does this affect central user inter-

action, what does it mean for the software developer? In general, we are interested in

the following question:

Research Question 2: What are the implications of using component coor-

dination techniques on the architecture of interactive software development

environments?

1.5 Related Work

There are several sections discussing related work in this thesis. Most are local dis-

cussions about work related to that in the chapter itself. In Section 2.6.1 we give an

overview of some of the work related to intermediate representations of tree-like data

structures like ATerms.

In Section 3.1.1 we give an overview of techniques similar to our generation of a

type-safe access layer on top of a generic, untyped data representation layer.

In the context of possible improvements to the current ToolBus architecture, we

briefly discuss several other remote method invocation frameworks in Section 4.5.4.

We also relate the call-by-value model currently used in the ToolBus, to models used

in other architectures.

In Section 5.1.2 we relate our approach to integrating off-the-shelf components into

a ToolBus coordinated IDE to similar projects. Our approach focuses on functional

integration, where other projects often achieve embedding, or visual integration.

In Chapter 6 we present a comprehensive overview of contemporary projects using

a plug-in mechanism to achieve some form of application extensibility We categorize

software system extensibility patterns found in these systems, and relate them to our

approaches in ToolBus based applications.

1.6 Outline and Origin of the Chapters

This thesis is divided into two parts, each dealing with one of the research questions.

Each part consists mostly of previously published chapters which are self-contained,

and can be read independently.
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In the first part of this thesis we study the lower level data management question.

Chapter 2 discusses the design and implementation of a generic, space efficient data

type for the exchange of structured data between heterogeneous components. Chapter 3

shows how an access layer can be generated that allows developers type-safe access to

the untyped generic data layer.

In the second part, we try to answer the higher level architectural question by means

of a series of case studies. In Chapter 4 we reflect on our coordination architecture

itself. In Chapter 5 we study how existing third party components can be deployed

in a component coordinated architecture in an off-the-shelf way. Finally, Chapter 6

studies how to have a centralized graphical user interface in an otherwise decentralized,

component based architecture.

For each of the chapters, the following list describes their origin, respective co-

authors, and acknowledgments.

Chapter 2: Efficient Annotated Terms was published in Software, Practice and Ex-

perience [30] and is joint work with P. Olivier, M.G.J. van den Brand, and P.

Klint.

Chapter 3: API Generation from Syntax Definitions was published in The Journal

of Logic and Algebraic Programming [79] and is joint work with P. Olivier.

Chapter 4: ToolBus: the Next Generation was presented in Formal Methods for

Components and Objects [77] and is joint work with P. Klint.

Chapter 5: My Favorite Editor Anywhere was presented at RISE 2004: First In-

ternational Workshop on the Rapid Integration of Software Engineering Tech-

niques [78] and is joint work with A.T. Kooiker.

Chapter 6: Software System Extensibility has not yet been submitted for publica-

tion. The overview and the initial ideas for our plug-in architecture were con-

tributed by me, the implementation and application in the Meta-Environment is

joint work with A.T. Kooiker.

1.7 About the Implementations

The work presented in this thesis is supported by a substantial implementation effort.

Initially written with the ASF+SDF Meta-Environment in mind, the software devel-

oped during my research has found several uses outside our research group as well.

Throughout the six years of research, development and maintenance of this software,

the focus of my contribution has shifted from implementation centric to a more archi-

tectural one. The openness and simplicity of the implementations are a key contribu-

tion, allowing future research to build on the fruits of our research. Implementing a

“real” version of an idea (as opposed to stopping at the proof-of-concept level) and

using it in your own software and having it used by other researchers immediately both

validates and challenges the foundations of the initial idea.
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The ATerm library (Chapter 2, [30]) The ATerm implementation has been a joint

effort of the author of this thesis with Pieter Olivier. The library we initially devel-

oped consisted of roughly 12,000 lines of C code and 5,000 lines of Java code. The

Java version was later improved by Pierre-Etienne Moreau, who factored out the max-

imal subterm sharing concept into a library for sharing any Java object (not necessar-

ily ATerms). The original mark-and-sweep garbage collector implemented by Pieter

Olivier and me was later replaced by a generational garbage collector developed by

Moreau and Zendra [99], resulting in an observed efficiency gain of 20-35%. In [31],

an overview can be found of various current applications of the ATerm library.

The type-safe access API generator ApiGen (Chapter 3, [79]) The ApiGen im-

plementation was also a joint effort of Pieter Olivier and me. The C code generator

was written in about 1,400 lines of Java code. The proof-of-concept Java code gen-

erator was about 1,000 lines of Java code. Both implementations use an ASF+SDF

specification of 275 lines of code to translate SDF specifications to the intermediate

format used by the generators. The Java generator was later improved significantly

by Pierre-Etienne Moreau. An overview of projects using ApiGen can again be found

in [31].

The ToolBus Next Generation (Chapter 4, [77]) studies have resulted in a re-

implementation in Java of the original ToolBus (written in C). The new Java version

currently counts about 11,000 lines of code, and (like the C version) was implemented

by Paul Klint. He is currently working towards a first release of the Java version to

replace the C ToolBus currently in use by the Meta-Environment.

The support for using third-party editors (Chapter 5, [78]) was developed by

Taeke Kooiker and me. The core functionality consists of about 2,500 lines of hand-

written code, and a C library generated by ApiGen for type-safe access on the data

exchanged between the core and the individual editor instances. An 80 line ToolBus

script describes how other ToolBus processes can use the editing functionality. The

third party editors were in use in the Meta-Environment for several years.

The plug-in architecture (Chapter 6) was first implemented by me in about 500

lines of Java proof-of-concept code. Together with Taeke Kooiker the version cur-

rently in use in the Meta-Environment was developed. The plug-in framework now

consists of about 1,500 lines of Java code and 50 lines of ToolBus code. The migra-

tion of existing user interface code from the monolithic Meta-Environment GUI into

individual plug-ins was a joint effort by me and Taeke Kooiker. At the same time new

plug-ins were added by Taeke Kooiker and Jurgen Vinju.
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C H A P T E R 2

ATerms

2.1 Introduction

Cut and paste operations on complex data structures are standard in most desktop soft-

ware environments: one can easily clip a part of a spreadsheet and paste it into a text

document. The exchange of complex data is also common in distributed applications:

complex queries, transaction records, and more complex data are exchanged between

different parts of a distributed application. Compilers and programming environments

consist of tools such as editors, parsers, optimizers, and code generators that exchange

syntax trees, intermediate code, and the like.

How is this exchange of complex data structures between applications achieved?

One solution is Microsoft’s Object Linking and Embedding (OLE) [45]. This is a

platform-specific, proprietary, set of primitives to construct Windows applications. An-

other, language-specific, solution is to use Java’s serialization interface [66]. This al-

lows writing and reading Java objects as sequential byte streams. Yet another solu-

tion is to use OMG’s Interface Definition Language (part of the Common Object Bro-

ker Architecture [107]) to define data structures in a language-neutral way. Specific

language-bindings provide the mapping from IDL data structures to language-specific

data structures.

All these solutions have their merits but do not really qualify when looking for an

open, simple, efficient, concise, and language independent solution for the exchange of

complex data structures between distributed applications. To be more specific, we are

interested in a solution with the following characteristics:

Open: independent of any specific hardware or software platform.

Simple: the procedural interface should contain 10 rather than 100 functions.

Efficient: operations on data structures should be fast.

Concise: inside an application the storage of data structures should be as small as

possible by using compact representations and by exploiting sharing. Between

applications the transmission of data structures should be fast by using a com-

pressed representation with fast encoding and decoding. Transmission should

preserve any sharing of in-memory representation in the data structures.
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Language-independent: data structures can be created and manipulated in any suitable

programming language.

Annotations: applications can transparently extend the main data structures with an-

notations of their own to represent non-structural information.

In this chapter we describe the data type of Annotated Terms, or just ATerms, that

have the above characteristics. They form a solution for our implementation needs in

the areas of interactive programming environments [86, 35] and distributed applica-

tions [15] but are more widely applicable. Typically, we want to exchange and process

tree-like data structures such as parse trees, abstract syntax trees, parse tables, gener-

ated code, and formatted source texts. The applications involved include parsers, type

checkers, compilers, formatters, syntax-directed editors, and user-interfaces written in

a variety of languages. Typically, a parser may add annotations to nodes in the tree de-

scribing the coordinates of their corresponding source text and a formatter may add font

or color information to be used by an editor when displaying the textual representation

of the tree.

The ATerm data type has been designed to represent such tree-like data structures

and it is therefore very natural to use ATerms both for the internal representation of

data inside an application and for the exchange of information between applications.

Besides function applications that are needed to represent the basic tree structure, a

small number of other primitives are provided to make the ATerm data type more gen-

erally applicable. These include integer constants, real number constants, binary large

data objects (“blobs”), lists of ATerms, and placeholders to represent typed gaps in

ATerms. Using the comprehensive set of primitives and operations on ATerms, it is

possible to perform operations on an ATerm received from another application without

first converting it to an application-specific representation.

First, we will give a quick overview of ATerms (Section 2.2). Next, we discuss

implementation issues (Section 2.3) and give some insight in performance issues (Sec-

tion 2.4). An overview of applications (Section 2.5) and an overview of related work

and a discussion (Section 2.6) conclude this chapter.

2.2 ATerms at a Glance

We now describe the constructors of the ATerm data type (Section 2.2.1) and the oper-

ations defined on it (Section 2.2.2).

2.2.1 The ATerm Data Type

The data type of ATerms (ATerm) is defined as follows:

• INT: An integer constant (32-bits integer) is an ATerm.1

• REAL: A real constant (64-bits real) is an ATerm.

1 We are currently upgrading the ATerm library to support 64-bit architectures as well.
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• APPL: A function application consisting of a function symbol and zero or more

ATerms (arguments) is an ATerm. The number of arguments of the function is

called the arity of the function.

• LIST: A list of zero or more ATerms is an ATerm.

• PLACEHOLDER: A placeholder term containing an ATerm representing the type

of the placeholder is an ATerm.

• BLOB: A “blob” (Binary Large data OBject) containing a length indication and

a byte array of arbitrary (possibly very large) binary data is an ATerm.

• A list of ATerm pairs may be associated with every ATerm representing a list of

(label,annotation) pairs.

Each of these constructs except the last one (i.e., INT, REAL, APPL, LIST,

PLACEHOLDER, and BLOB) form subtypes of the data type ATerm. These subtypes

are needed when determining the type of an arbitrary ATerm. Depending on the ac-

tual implementation language they will be represented as a constant (C, Pascal) or a

subclass (C++, Java).

The last construct is the annotation construct, which makes it possible to annotate

terms with transparent information2.

Appendix A.1 contains a definition of the concrete syntax of ATerms. The primary

reason for having a concrete syntax is to be able to exchange ATerms in a human-

readable form. In Section 2.3 we also discuss a compact binary format for the exchange

of ATerms in a format that is only suitable for processing by machine. We will now

give a number of examples to show some of the features of the textual representation

of ATerms.

• Integer and real constants are written conventionally: 1, 3.14, and -0.7E34

are all valid ATerms.

• Function applications are represented by a function name followed by an open

parenthesis, a list of arguments separated by commas, and a closing parenthesis.

When there are no arguments, the parentheses may be omitted. Examples are:

f(a,b) and "test!"(1,2.1,"Hello world!"). These examples show

that double quotes can be used to delimit function names that are not identifiers.

• Lists are represented by an opening square bracket, a number of list elements

separated by commas and a closing square bracket: [1,2,"abc"], [], and

[f,g([1,2]),x] are examples.

• A placeholder is represented by an opening angular bracket followed by a

subterm and a closing angular bracket. Examples are <int>, <[3]>, and

<f(<int>,<real>)>.

2Transparent in the sense that the result of most operations is independent of the annotations. This

makes it easy to completely ignore annotations. Examples of the use of annotations include annotating parse

trees with positional or typesetting information, and annotating abstract syntax trees with the results of type

checking.
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• Blobs do not have a concrete syntax because their human-readable form depends

on the actual blob content.

2.2.2 Operations on ATerms

The operations on ATerms fall into three categories: making and matching ATerms

(Section 2.2.2), reading and writing ATerms (Section 2.2.2), and annotating ATerms

(Section 2.2.2). The total of only 13 functions provide enough functionality for most

users to build simple applications with ATerms. We refer to this interface as the level

one interface of the ATerm data type.

To accommodate “power” users of ATerms we also provide a level two interface,

which contains a more sophisticated set of data types and functions. It is typically used

in generated C code that calls ATerm primitives, or in efficiency-critical applications.

These extensions are useful only when more control over the underlying implementa-

tion is needed or in situations where some operations that can be implemented using

level one constructs can be expressed more concisely and implemented more efficiently

using level two constructs. The level two interface is a strict superset of the level one

interface (see Appendix A.2 for further details).

Observe that ATerms are a purely functional data type and that no destructive up-

dates are possible, see Section 2.3.2 for more details.

Making and Matching ATerms

The simplicity of the level one interface is achieved by the make-and-match paradigm:

• make (compose) a new ATerm by providing a pattern for it and filling in the holes

in the pattern.

• match (decompose) an existing ATerm by comparing it with a pattern and de-

compose it according to this pattern.

Patterns are just ATerms containing placeholders. These placeholders determine

the places where ATerms must be substituted or matched. An example of a pattern is

"and(<int>,<appl>)". These patterns appear as string argument of both make

and match and are remotely comparable to the format strings in the printf/scanf

functions in C. The operations for making and matching ATerms are:

• ATerm ATmake(String p, ATerm a1, ..., ATerm an): Create a

new term by taking the string pattern p, parsing it as an ATerm and filling the

placeholders in the resulting term with values taken from a1 through an. If the

parse fails, a message is printed and the program is aborted. The types of the

arguments depend on the specific placeholders used in pattern. For instance,

when the placeholder <int> is used an integer is expected as argument and a

new integer ATerm is constructed.

• ATbool ATmatch(ATerm t, String p, ATerm *a1, ...,

ATerm *an):
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Match term t against pattern p, and bind subterms that match with placeholders

in p with the result variables a1 through an. Again, the type of the result variables

depend on the placeholders used. If the parse of pattern p fails, a message is

printed and the program is aborted. If the term itself contains placeholders these

may occur in the resulting substitutions. The function returns true when the

match succeeds, false otherwise.

• Boolean ATisEqual(ATerm t1, ATerm t2): Check whether two

ATerms are equal. The annotations of t1 and t2 must be equal as well.

• Integer ATgetType(ATerm t): Retrieves the type of an ATerm. This

operation returns one of the subtypes mentioned before in Section 2.2.1.

Reading and Writing ATerms

For reasons of efficiency and conciseness, reading and writing can take place in two

forms: text and binary. The text format uses the textual representation discussed earlier

in Section 2.2.1 and Appendix A.1. This format is human-readable, space-inefficient3,

and any sharing of the in-memory representation of terms is lost.

The binary format (Binary ATerm Format, see Section 2.3.5) is portable, machine-

readable, very compact, and preserves all in-memory sharing. The operations for read-

ing and writing ATerms are:

• ATerm ATreadFromString(String s): Creates a new term by parsing

the string s. When a parse error occurs, a message is printed, and a special error

value is returned.

• ATerm ATreadFromTextFile(File f): Creates a new term by parsing

the data from file f . Again, parse errors result in a message being printed and an

error value being returned.

• ATerm ATreadFromBinaryFile(File f): Creates a new term by read-

ing a binary representation from file f .

• Boolean ATwriteToTextFile(ATerm t, File f): Write the text

representation of term t to file f . Returns true for success and false for

failure.

• Boolean ATwriteToBinaryFile(ATerm t, File f): Write a bi-

nary representation of term t to file f . Returns true for success, and false

for failure.

• String ATwriteToString(ATerm t): Return the text representation of

term t as a string.

Either format (textual or binary) can be used on any linear stream, including files,

sockets, pipes, etc.

3 The unnecessary size explosion could be avoided by extending the textual representation with a mech-

anism for labeling and referring to terms. Instead of f(g(a),g(a)), one could then write f(1:g(a),

#1). The first occurrence of g(a) is labeled with “1”, and the second occurrence refers to this label (“#1”).
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Annotating ATerms

Annotations are (label,annotation) pairs that may be attached to an ATerm. Recall

that ATerms are a completely functional data type and that no destructive updates are

possible. This is evident in the following operations for manipulating annotations:

• ATerm ATsetAnnotation(ATerm t, ATerm l, ATerm a): Return

a copy of term t in which the annotation labeled with l has been changed into a.

If t does not have an annotation with the specified label, it is added.

• ATerm ATgetAnnotation(ATerm t, ATerm l): Retrieve the annota-

tion labeled with l from term t. If t does not have an annotation with the specified

label, a special error value is returned.

• ATerm ATremoveAnnotation(ATerm t, ATerm l): Return a copy of

term t from which the annotation labeled with l has been removed. If t does not

have an annotation with the specified label, it is returned unchanged.

2.3 Implementation

2.3.1 Requirements

In Section 2.1 we have already mentioned our main requirements: openness, simplic-

ity, efficiency, conciseness, language-independence, and capable of dealing with anno-

tations. There are a number of other issues to consider that have a great impact on the

implementation, and that make this a fairly unique problem:

• By providing automatic garbage collection ATerm users do not need to deallocate

ATerm objects explicitly. This is safe and simple (for the user).

• The expected lifetime of terms in most applications is very short. This means that

garbage collection must be fast and should touch a minimal amount of memory

locations to improve caching and paging performance.

• The total memory requirements of an application cannot be estimated in advance.

It must be possible to allocate more memory incrementally.

• Most applications exhibit a high level of redundancy in the terms being pro-

cessed. Large terms often have a significant number of identical subterms. Intu-

itively this can be explained from the fact that most applications process terms

with a fixed signature and a limited tree depth. When the amount of terms that is

being processed increases, it is plausible that the similarity between terms also

increases.

• In typical applications less than 0.1 percent of all terms have an arity higher than

5.

• Many applications will use annotations only sparingly. The implementation

should not impose a penalty on applications that do not use them.
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• In order to have a portable yet efficient implementation, the implementation lan-

guage will be C. This poses some special requirements on the garbage collection

strategy4.

With these considerations in mind, we will now discuss maximal (in-memory) shar-

ing of terms (Section 2.3.2), garbage collection (Section 2.3.3), the encoding of terms

(Section 2.3.4), and the Binary ATerm Format (Section 2.3.5).

2.3.2 Maximal Sharing

Our strategy to minimize memory usage is simple but effective: we only create terms

that are new, i.e., that do not exist already. If a term to be constructed already exists,

that term is reused, ensuring maximal sharing. This strategy fully exploits the redun-

dancy that is typically present in the terms to be built and leads to maximal sharing of

subterms. The library functions that construct terms make sure that shared terms are

returned whenever possible. The sharing of terms is thus invisible to the library user.

The Effects of Maximal Sharing

Maximal sharing of terms can only be maintained when we check at every term creation

whether a particular term already exists or not. This check implies a search through all

existing terms but must be fast in order not to impose an unacceptable penalty on term

creation. Using a hash function that depends on the internal code of the function sym-

bol and the addresses of its arguments, we can quickly search for a function application

before creating it. The terms are stored in a hash table. The hash table does not contain

the terms themselves, but pointers to the terms. This provides a flexible mechanism of

resizing the table and ensures that all entries in the table are of equal size. Hence the

(modest but not negligible) cost at term creation time is one hash table lookup.

Fortunately, we get two returns on this investment. First, the considerably reduced

memory usage also leads to reduced execution time. Second, we gain substantially

as the equality check on terms (ATisEqual) becomes very cheap: it reduces from

an operation that is linear in the number of subterms to be compared to a constant

operation (pointer equality).

Another consequence of our approach is less fortunate. Because terms can be

shared without their creator knowing it, terms cannot be modified without creating

unwanted side-effects. This means that terms effectively become immutable after cre-

ation. Destructive updates on maximally shared terms are not allowed. Especially in

list operations, the fact that ATerms are immutable can be expensive. It is often the

responsibility of the user of the library to choose algorithms that minimize the effect of

this shortcoming.

4We have implemented the library in Java as well. In this case, many of the issues we discuss in this

chapter are irrelevant, either because we can use built-in features of Java (garbage collection), or because we

just cannot express these low level concerns in Java.
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Searching for Shared Subterms

Maximal sharing of terms requires checking at term creation time whether this term

already exists. This search must be fast in order to ensure efficient term creation. A

hash function based on the addresses of the function symbol and the arguments of

a function application allows for a quick lookup in the hash table to find a function

application before creating it.

Collisions One issue in hash techniques is handling collisions. The simplest tech-

nique is linear chaining [88]. This requires one pointer in each object for hash chaining,

which in our implementation implies a memory overhead of about 25 percent. Other

solutions for collision resolution will either increase the memory requirements, or the

time needed for insertions or deletions (see [88]). We therefore use linear hash chaining

in our implementation.

Direct or Indirect Hashing Another issue is whether to store all terms directly in

the hash table, or only references. Storing the objects directly in the hash table saves

a memory access when retrieving a term as well as the space needed to store the refer-

ence. However, there are severe drawbacks to this approach:

• We cannot rehash old terms because rehashing means that we have to move the

objects in memory. When using C as an implementation language, moving ob-

jects in memory is not allowed because we can only determine a conservative

root set and therefore are not allowed to change the pointers to roots. This would

mean that the hash table could not grow beyond its initial size.

• Internal fragmentation is increased, because empty slots in the hash table are as

large as the object instead of only one machine word.

• We would need a separate hash table for each term size to decrease the internal

fragmentation.

Because of these problems, we use linear hash chaining combined with indirect

hashing. When the load of the hash table reaches a certain threshold, we rehash into a

larger table.

The user can increase the initial size of the hash table to save on resizing and rehash-

ing operations. The ATerm library provides facilities for defining hash tables as well.

This allows the implementation of a fast lookup mechanism for ATerms. User-defined

hash tables are used, for instance, to implement memo-functions in the ASF+SDF to

C compiler (see Section 2.5.3).

2.3.3 Garbage Collection

Which Technique?

The most common strategies for automatic recycling of unused space are reference

counting, mark-compact collection, and mark-sweep collection. In our case, reference

counting is not a valid alternative, because it takes too much time and space and is very
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hard to implement in C. Mark compact garbage collection is also unattractive because

it assumes that objects can be relocated. This is not the case in C where we cannot

identify all references to an object. We can only determine the root set conservatively

which is good enough for mark-sweep collection discussed below, but not for mark-

compact collection.

Mark-sweep Garbage Collection Mark-sweep garbage collection works using three

phases. In the first phase, all objects on the heap are marked as ‘dead’. In the second

phase, all objects reachable from the known set of root objects are marked as ‘live’. In

the third phase, all ‘dead’ objects are swept into a list of free objects.

Mark-sweep garbage collection can be implemented in C efficiently, and without

support from the programmer or compiler [21, 20]. Mark-sweep collection is more

efficient, both in time and space than reference counting [76]. A possible drawback is

increased memory fragmentation compared to mark-compact collection. The typical

space overhead for a mark-sweep garbage collection algorithm is only 1 bit per object,

whereas a reference count field would take at least three or four bytes.

Reusing an Existing Garbage Collector

A number of excellent generic garbage collectors for C are freely available, so why do

we not reuse an existing implementation?

We have examined a number of alternatives, but none of them fit our needs. The

Boehm-Weiser garbage collector [21] came close, but we face a number of unusual

circumstances that render existing garbage collectors impractical:

• The hash table always contains references to all objects. It must be possible to

instruct the garbage collector not to scan this area for roots.

• After an object becomes garbage, it must also be removed from the hash table.

This means that we need very low level control over the garbage collector.

• The ATerm data type has some special characteristics that can be exploited to

dramatically increase performance:

– Destructive updates are not allowed. In garbage collection terminology,

this means that there are no pointers from old objects to younger objects.

Although we do not exploit it in the current implementation, this character-

istic makes the use of a generational garbage collector very attractive.

– The majority of objects have an in-memory representation of 8, 12, or 16

bytes.

– Practical experience has shown that not many root pointers are kept in static

variables or on the generic C heap. Performance can be increased dramat-

ically if we eliminate the expensive scan through the heap and the static

data area for root pointers. The only downside is that we require the pro-

grammer to explicitly supply the set of roots that is located on the heap or

in static variables.
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These observations allow us to gain efficiency on several levels, using everything from

low level system ‘hacks’ to high-level optimizations.

Implementing the Garbage Collector

Considering both performance and the maintainability of the code that uses the ATerm

library, we have opted for a version of the mark-sweep garbage collector. Every object

contains a single bit used by the mark-sweep algorithm to indicate ‘live’ (marked)

objects. At the start of a garbage collection cycle, all objects are unmarked. The

garbage collector tries to locate and mark all live objects by traversing all terms that

are explicitly protected by the programmer (using the ATprotect function), and by

scanning the C run-time stack looking for words that could be references to objects.

When such a word is found, the object (and the transitive closure of all of the objects it

refers to) are marked as ‘live’.

This scan of the run-time stack causes all objects referenced from local variables

to be protected from being garbage collected. Our garbage collector is a conservative

collector in the sense that some of the words on the stack could accidentally have the

same bit pattern as object references. Because there is no way to separate these ‘fake’

bit patterns from ‘real’ object references, this can cause objects to be marked as ‘live’

when these are actually garbage. Note that bit patterns on the stack that do not point to

valid objects are not traversed at all. Only when a bit pattern represents an address that

is a valid object address it is followed to mark the corresponding object.

When all live objects are marked, a single sweep through the heap is used to store

all objects that are free in separate lists of free objects, one list for each object size.

As we shall see in Section 2.3.4, most objects consist of only a couple of machine

words. By restricting the maximum arity of a function, we can also set an upper bound

on the maximum size of objects. This enables us to base the memory management

algorithms we use on a small number of block sizes. Allocation of objects is now

simply a matter of taking the first element from the appropriate free-list, which is an

extremely cheap operation. If garbage collection does not yield enough free objects,

new memory blocks will be allocated to satisfy allocation requests.

2.3.4 Term Encoding

An important issue in the implementation of ATerms is how to represent this data type

so that all operations can be performed efficiently in time and space.

The very concise encoding of ATerms we use is as follows. Assume that one ma-

chine word consists of four bytes. Every ATerm object is stored in two or more machine

words. The first byte of the first word is called the header of the object, and consists of

four fields (see Figure 2.1):

• A field consisting of one bit used as a mark flag by the garbage collector.

• A field consisting of one bit indicating whether or not this term has an annotation.

• A field consisting of three bits that indicate the type of the term.
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Figure 2.1: The header layout

• A field consisting of three bits representing the arity (number of pointers to other

terms) of this object. When this field contains the maximum value of 7, the term

must be a function application and the actual arity can be found by retrieving the

arity of the function symbol (see below).

Depending on the type of the node (as determined by the header byte in the first

word) the remaining bytes in the first word contain either a function symbol, a length

indication, or they are unused.

The second word is always used for hashing, and links together all terms in the

same hash bucket.

The type of the node determines its exact layout and contents. Figure 2.2 shows the

encoding of the different term types which we will now describe in more detail.

INT encoding In an integer term, the third word contains the integer value. The arity

of an integer term is 0.

REAL encoding In an real term, the third and fourth word contain the real value

represented by an 8 byte IEEE floating point number. The arity of a real term is 0.

APPL encoding The remaining 3 bytes following the header in the first word are

used to represent the index in a table containing the function symbols. The words

following the second word contain references to the function arguments. In this way,

function applications can be encoded in 2 + n machine words, with n the arity of the

function application.

LIST encoding The binary list constructor can be seen as a special function appli-

cation with no function symbol and an arity of 2. The third word points to the first

element in the list, this is called the first field, the fourth word points to the remain-

der of the list, and is called the next field. The length of the list is stored in the three

bytes after the header in the first word. The empty list5 is represented using a LIST

object with empty first and next fields, and a length of 0.

After the function application, the list construct is the second most used ATerm

construct. A (memory) efficient representation of lists is therefore very important. Due

to the nature of the operations on ATerm lists, there are two obvious list representations:

an array of term references or a linked list of term references. Experiments have shown

that in typical applications quite varying list sizes are encountered. This renders the

5Due to the uniqueness of terms, only one instance of the empty list is present at any time.
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Figure 2.2: Encoding of the different term types

array approach inferior, because adding and deleting elements of a list would become

too expensive. Consequently, we have opted for the linked list approach. Lists are

constructed using binary list constructors, containing a reference to the first element

in the list and to the tail of the list. Each list operation must ensure that the list is

“normalized” again. This makes it very easy to perform the most commonly used

operations on list, namely adding or removing the first element of a list.

Other operations are more expensive, since we do not allow destructive updates.

Adding an element to the tail of a list for instance, requires n list creation operations,

where n is the number of elements in the newly created list.

PLACEHOLDER encoding The placeholder term has an arity of 1, where the third

word contains a pointer to the placeholder type.
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BLOB encoding The length of the data contained in a BLOB term is stored in the

three bytes after the header. This means that up to 16,777,200 bytes can be encoded in

a single BLOB term. A pointer to the actual data is stored in the third word.

Annotations In all cases, annotations are represented using an extra word at the end

of the term object. The single annotation bit in the header indicates whether or not an

annotation is present. Only when this bit is set, an extra word is allocated that points to

a term with type LIST, which represents the list of annotations.

2.3.5 ATerm Exchange: the Binary ATerm Format

The efficient exchange of ATerms between tools is very important. The simplest form

of exchange is based on the concrete syntax presented in Appendix A.1. This would

involve printing the term on one side and parsing it on the other. The concrete syntax is

not a very efficient exchange format however, because the sharing of function symbols

and subterms cannot be expressed in this way.

A better solution would be to exchange a representation in which sharing (both

of function symbols and subterms) can be expressed concisely. A raw memory dump

cannot be used, because addresses in the address space of one process have no meaning

in the address space of another process.

In order to address these problems, we have developed BAF, the Binary ATerm

Format. Instead of writing addresses, we assign a unique number (index) to each sub-

term and each symbol occurring in a term that we want to exchange. When referring

to this term, we could use its index instead of its address.

When writing a term, we begin by writing a table (in order of increasing indices)

of all function symbols used in this term. Each function symbol consists of the string

representation of its name followed by its arity.

ATerms are written in prefix order. To write a function application, first the index of

the function symbol is written. Then the indices of the arguments are written. When an

argument consists of a term that has not been written yet, the index of the argument is

first written itself before continuing with the next argument. In this way, every subterm

is written exactly once. Every time a parent term wishes to refer to a subterm, it just

uses the subterm’s index.

Exploiting ATerm Regularities

When sending a large term containing many subterms, the subterm indices can become

quite large. Consequently many bits are needed to represent these indices. We can

considerably reduce the size of these indices when we take into account some of the

regularities in the structure of terms. Empirical study shows that the set of function

symbols that can actually occur at each of the argument positions of a function appli-

cation with a given function symbol is often very small. A explanation for this is that

although ATerm applications themselves are not typed, the data types they represent

often are. In this case, function applications represent objects and the type of the object

is represented by the function symbol. The type hierarchy determines which types can

occur at each position in the object.
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We exploit this knowledge by grouping all terms according to their top function

symbol. Terms that are not function applications are grouped based on dummy func-

tion symbols, one for each term type. For each function symbol, we determine which

function symbols can occur at each argument position. When writing the table of func-

tion symbols at the start of the BAF file, we write this information as well. In most

cases this number of function symbol occurrences is very small compared to the num-

ber of terms that is to be written. Storing some extra information for every function

symbol in order to get better compression is therefore worthwhile.

When writing the argument of a function application, we start by writing the actual

symbol of the argument. Because this symbol is taken from a limited set of function

symbols (only those symbols that can actually occur at this position), we can use a very

small number to represent it. Following this function symbol we write the index of the

argument term itself in the table of terms over this function symbol instead of the index

of the argument in the total term table.

Example

As an example, we show how the term mult(s(s(z)),s(z)) is represented in

BAF. This term contains three function symbols: mult with arity two, s with arity

one, and z with arity zero. When grouping the subterms by function symbol we get:

0: mult 1: s 2: z

mult(s(s(z)),s(z)) s(s(z)) z

s(z)

When we look at the function symbols that can occur at every argument position (≥ 0)

we get:

position mult s z

0 s s, z

1 s

We start by writing this symbol information to file. To do this, we have to write the

following bytes6:

4 "mult" : The length (4) and ASCII representation of mult.

2 : The arity (2) of mult.

1 1 : There is only one symbol (1) that can occur at the first argument

position of mult. This is symbol s with index (1)

1 1 : At the second argument position, there is only (1) possible

6When the value of these numbers used exceeds 127, two or more bytes are used to encode them. Strings

are written as strings to improve readability.
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top symbol and that is s with index (1).

1 "s" : The length (1) and ASCII representation of s.

1 : The arity (1) of s.

2 1 2 : The single argument of s can be either of two (2) different top

function symbols: s with index (1) or z with index (2).

1 "z" : The length (1) and ASCII representation of z.

0 : The arity (0) of z.

Following this symbol information, the actual term mult(s(s(z)),s(z)) can be

encoded using only a handful of bits. Note that the first function symbol in the symbol

table is always the top function symbol of the term (in this case: mult):

: No bits need to be written to identify the function symbol s,

because it is the only possible function symbol at the first

argument position of mult.

0 : One bit indicates which term over the function symbol s is

written (s(s(z))). Because this term has not been written yet,

it is done so now.

0 : The function symbol of the only argument of s(s(z)) is s.

1 : s(z) has index 1 in the term table of symbol s.

1 : Symbol z has index 1 in the symbol table of symbol s.

: Because there is only one term over symbol z, no bits are

needed to encode this term. Now we only need to encode the

second argument of the input term, s(z).

: No bits are needed to encode the function symbol s, because

it is the only symbol that can occur as the second argument of mult.

1 : s(z) has index 1 in the term table of symbol s. Because

this term has already been written, we are done.

Only five bits are thus needed to encode the term mult(s(s(z)),s(z)). As

mentioned earlier, the amount of data needed to write the table of function symbols at

the start of the BAF file is in most cases negligible compared to the actual term data.

2.4 Performance Measurements

2.4.1 Benchmarks

How concise is the ATerm representation and how fast can BAF files be read and writ-

ten? Since results highly depend on the actual terms being used, we will base our

measurements on a collection of terms that cover most applications we have encoun-

tered so far.

Artificial Cases

Two artificial cases are used that have been constructed to act as borderline cases:
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Random-unique: a randomly generated term over a signature of 9 fixed function sym-

bols with arities ranging from 1 to 9 and an arbitrary number of constant symbols

(functions with arity 0). The terms are generated in such a way that all constants

are unique. These terms are the worst case for our implementation: there is no

regularity to exploit and there are many subterms with a relatively high arity.

Random: a randomly generated term over a signature of 10 function symbols with

arities ranging from 0 to 9. In these terms only a single constant can occur which

will be shared, but no other regularities can be exploited and there are many

subterms with a relatively high arity.

Real Cases

Several real-life cases are used that are based on actual applications:

COBOL Parse Table: a generated parse table for COBOL including embedded SQL

and CICS. The grammar consists of 2,009 productions and the generated automa-

ton has 6,699 states. The parse table contains an action-table (2,0947 non-empty

entries) and a goto-table (76527 non-empty entries). This is an example of an

abstract data type represented as ATerm.

COBOL System: a COBOL system consisting of 117 programs with a total of

247,548 lines of COBOL source code. It has been parsed with the above parse

table. The parse trees constructed for these COBOL programs are represented as

ATerms, see Section 2.5.1 for more details.

Risla Library: a parse tree of the component library for the Risla language, a domain

specific language for describing financial products [3]. This component library

consists of 10,832 lines of code.

LPO: a linear process operator (LPO) describing the “firewire” protocol with 1 bus

and 9 links [68, 94]. LPOs are the kernel of the µCRL ToolKit [51] which is a

collection of tools for manipulation process and data descriptions in µCRL (mi-

cro Common Representation Language) [69]. An LPO is a structured process,

where the state consists of an assignment to a sequence of typed data variables

and its behaviour is described by condition, action and effect functions. These

states are represented as ATerms, and are rather complex.

Casl specifications: a collection of abstract syntax trees represented as ATerms of 98

Casl files, the total number of lines of Casl code is 2,506. For more details on

Casl and the abstract syntax tree representation as ATerms we refer to Section

2.5.1.

lcc Parse Forest: a new back-end similar to the ASDL back-end [124] has been added

to the lcc compiler [71]. This back-end maps the internal format used by the lcc

compiler to ATerms. The ATerm representation and the ASDL representation of

a C program contain equivalent information.
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Term # nodes # unique Sharing Memory Bytes/

nodes (%) (bytes) Node

Artificial Cases

Random-unique 1,000,000 1,000,000 0.00 15,198,694 15.20

Random 1,000,000 92,246 90.81 2,997,120 3.00

Real Cases

COBOL Parse Table 961,070 97,516 89.85 2,836,529 2.95

COBOL System 31,332,871 470,872 98.50 12,896,609 0.41

Risla Library 708,838 40,073 94.35 960,170 1.35

LPO 8,894,391 225,229 97.47 3,701,438 0.42

Casl Specifications 34,526 11,699 66.12 235,655 6.83

lcc Parse Forest 360,829 86,589 76.00 1,547,713 4.29

S-expressions 593,874 283,891 52.20 9,111,863 15.34

Real Case Averages 82.07 4.51

Table 2.1: Memory usage of ATerms

Given this back-end the C sources of the lcc compiler itself are mapped to

ATerms. The lcc compiler consists of 34 source files, consisting of a total of

13,588 lines of source code.

S-expressions: a simple translator has been developed which transforms an S-

expression into an ATerm. This translator has been used to process an arbitrary

collection of “.el” files containing S-expressions found within the Emacs source

tree under Linux. The total number of “.el” files was 738, these files together

contained 286,973 lines of code.

In the cases of the COBOL System, Casl Specifications, lcc Parse Forest, and S-

Expressions the set of ATerms are combined into and processed as one ATerm. Mea-

surements were performed on an ULTRA SPARC-5 (270 MHz) with 256 Mb of mem-

ory. All times measured are the user CPU time for that particular job.

2.4.2 Measurements

In Table 2.1, we give results for the memory usage of our sample terms7. The five

columns give the total number of nodes in each term, the number of unique nodes

in each term, the sharing percentage, the amount of memory (in bytes) used for the

storage of the term, and the average number of bytes needed per node. As can be seen

in these figures, at least in our applications sharing does make a difference. By fully

exploiting the redundancies in the input terms, we can store a node using on the average

4.5 bytes, and still perform operations on them efficiently. The worst case behaviour is

15 bytes per node. The amount of sharing is clearly less high in case of abstract syntax

trees than in case of parse trees represented as AsFix terms. The AsFix terms contain

7Since we consider the Random-unique and Random cases to be unrepresentative, we only present the

averages for the real cases in this and the following tables.
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Figure 2.3: Sharing of a large number of COBOL parse trees

much redundant information which can be optimally shared. The amount of sharing

in the abstract syntax trees for Casl is lower, but this is due to the fact that the set

of Casl specifications is small and each specification tests another feature of the Casl

language, so not much sharing was to be expected. The S-expressions have the lowest

ratio of sharing, but this was to be expected: they represent ad hoc hand-written Lisp

programs while in the other cases the ATerms are obtained by a systematic translation

from source code. In the latter case, recurring patterns in the translation scheme result

in higher levels of sharing.

Figure 2.3 shows the amount of sharing with respect to the size of a large number

of COBOL programs. Three different sets of COBOL programs were considered. The

first system consists of 151 files, the second of 116 files, and the last of 98 files. From

this figure it can be concluded that the amount of sharing increases with the size of the

COBOL system. In all three systems, the percentage of sharing converges to slightly

over 90%. We find this high percentage in combination with the strong correlation

between size and sharing very remarkable and will analyze its causes and consequences

in further detail in a separate paper.

In Table 2.2 we give results for reading and writing our sample terms as ASCII text

files. The six columns give the size of the text representation of the test term in bytes,

the average number of bytes per node, the time needed to read the text file, the average

time needed to read a node, the time needed to write the text file, and the average time

needed to write a node. On the average, a node requires 6.2 bytes and reading and

writing requires 10.5 µs and 2.7 µs, respectively.
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Term ASCII Bytes/ Read Read/ Write Write/

Node Node Node

(bytes) (s) (µs) (s) (µs)

Artificial Cases

Random-unique 6,888,889 6.89 34.76 34.76 4.06 4.06

Random 6,200,251 6.20 15.90 15.90 3.67 3.67

Real Cases

COBOL Parse Table 4,211,366 4.38 6.33 6.95 2.30 2.29

COBOL System 135,350,005 4.32 199.43 6.36 65.02 2.08

Risla Library 2,955,964 4.17 4.25 6.00 1.40 1.98

LPO 41,227,481 4.64 81.90 9.21 29.16 3.28

Casl Specifications 217,958 6.31 0.36 10.43 0.08 2.32

lcc Parse Fores 2,132,245 6.22 3.13 9.14 0.86 2.51

S-expressions 7,954,550 13.39 15.09 25.41 2.49 4.19

Real Case Averages 6.20 10.50 2.66

Table 2.2: Reading and writing ATerms as ASCII text

In Table 2.3 we give results for reading and writing BAF files for the same set of

sample terms. The columns give in order: the size of the BAF files in bytes, the average

number of bytes needed per node, the time to read the BAF representation, the average

read time per node, the time to write the BAF representation, and the average write

time per node. Typically, we can read a node in 1.3 µs and write it in 2.4 µs.

Note that reading a BAF term is faster than writing the same term, whereas in

case of ASCII the writing is faster than reading. This is caused by the fact that read-

ing the ASCII representation of an ATerm involves numerous matching operations,

whereas reading the BAF representation can be done with less matching. On the other

hand, writing the BAF representation involves more calculations to encode the shar-

ing of terms, whereas writing the ASCII representation involves a straightforward term

traversal.

In Table 2.4 we show how the compression in BAF files compares to the compres-

sion of the standard Unix utility gzip. Considering the same set of examples, we give

figures for a straightforward dump of each term as ASCII text (column 1), the size of

the BAF version of the same term (column 2) and percentage of compression achieved

(column 3). Next, we give the results of compressing the ASCII version of each term

with gzip (column 4), and compression achieved (column 5). The compression fac-

tors are 85% for BAF and 92% for gzip. The worst case compression of gzip (66%)

is considerably better than the worst case compression using BAF (12%). No gains are

to be expected from using gzip instead of BAF, since this would imply first writing

the ATerm in textual format (an expensive operation which looses sharing) and then

compressing it with gzip.
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Term BAF Bytes/ Read Read/ Write Write/

Node Node Node

(bytes) (s) (µs) (s) (µs)

Artificial Cases

Random-unique 6,073,795 6.07 8.85 8.85 11.57 11.57

Random 567,419 0.57 2.06 2.06 2.76 2.76

Real Cases

COBOL Parse Table 370,450 0.39 0.63 0.66 1.75 1.82

COBOL System 2,279,066 0.07 4.88 0.16 20.76 0.66

Risla Library 141,946 0.20 0.22 0.31 0.75 1.06

LPO 1,106,661 0.12 1.86 0.21 9.40 1.06

Casl Specifications 32,083 0.93 0.05 1.45 0.15 4.34

lcc Parse Forest 358,318 0.99 0.34 0.99 0.95 2.77

S-expressions 4,438,229 7.47 3.31 5.57 10.49 6.23

Real Case Averages 1.45 1.32 2.42

Table 2.3: Reading and writing ATerms as BAF

Term ASCII BAF Comp. gzip Comp.

(bytes) (bytes) (%) (bytes) (%)

Artificial Cases

Random-unique 6,888,889 6,073,795 11.8 2,324,804 66.3

Random 6,199,981 567,419 90.9 439,293 92.9

Real Cases

COBOL Parse Table 4,211,366 370,450 91.2 230,297 94.5

COBOL System 135,350,005 2,279,066 98.3 3,072,774 97.7

Risla Library 2,955,964 141,946 95.2 80,009 97.3

LPO 41,227,481 1,106,661 97.3 804,521 98.0

Casl Specifications 217,958 32,083 85.3 20,767 90.5

lcc Parse Forest 2,244,691 358,318 84.0 244,502 89.1

S-expressions 7,954,550 4,438,229 44.2 1,858,366 76.6

Real Case Averages 85.1 92.0

Table 2.4: BAF versus gzip

Memory ASCII BAF

Size per node (bytes) 4.51 6.20 1.45

Read node (µs) 10.50 1.32

Write node (µs) 2.66 2.42

Table 2.5: Summary of measurements (based on Real Case averages)
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2.4.3 Summary of Measurements

These measurements are summarized in Table 2.5. For in-memory storage, 4.5 bytes

are needed per node. Using BAF, only 1.54 bytes are needed to represent a node. Also

observe that reading BAF is an order of magnitude faster than reading terms in textual

form. In case of parse trees represented as AsFix (COBOL System and Risla Library)

less than 2 bytes are needed to represent a node in memory and less than 2 bits (0.20

bytes) are needed to represent it in binary format.

2.5 Applications

ATerms have already been used in applications ranging from development tools for

domain specific languages [53] to factories for the renovation of COBOL programs

[40]. The ATerm data type is also the basic data type to represent the terms manipulated

by the rewrite engines generated by the ASF+SDF compiler [33] and they play a central

role in the development of the new ASF+SDF Meta-Environment [35].

2.5.1 Representing Syntax Trees: AsFix and CasFix

The ATerm data type proves to be a powerful and flexible mechanism to represent syn-

tax trees. By defining an appropriate set of function symbols parse trees and abstract

syntax trees can be represented for any language or formalism. We describe two exam-

ples: AsFix (a parse tree format for ASF+SDF, Section 2.5.1) and CasFix (an abstract

syntax tree format for Casl, Section 2.5.1).

AsFix

AsFix (ASF+SDF Fixed format) is an incarnation of ATerms for representing

ASF+SDF [72, 10, 52]. ASF+SDF is a modular algebraic specification formalism for

describing the syntax and semantics of (programming) languages. SDF (Syntax Defini-

tion Formalism) allows the definition of the concrete and abstract syntax of a language

and is comparable to (E)BNF. ASF (Algebraic Specification Formalism) allows the

definition of the semantics in terms of equations, which are interpreted as rewrite rules.

The development of ASF+SDF specifications is supported by an integrated program-

ming environment, the ASF+SDF Meta-Environment [86].

Using AsFix, each module or term is represented by its parse tree which contains

both the syntax rules used and all original layout and comments. In this way, the

original source text can be reconstructed from the AsFix representation, thus enabling

transformation tools to access and transform comments in the source text. Since the

AsFix representation is self-contained (all grammar information needed to interpret the

term is also included), one can easily develop tools for processing AsFix terms which

do not have to consult a common database with grammar information. Examples of

such tools are a (structure) editor or a rewrite engine.

AsFix is defined by an appropriate set of function symbols for representing com-

mon constructs in a parse tree. These function symbols include the following:
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• prod(T ) represents production rule T .

• appl(T1,T2) represents applying production rule T1 to the arguments T2.

• l(T ) represents literal T .

• sort(T ) represents sort T .

• lex(T1,T2) represents (lexical) token T1 of sort T2.

• w(T ) represents white space T .

• attr(T ) represents a single attribute.

• attrs(T ) represents a list of attributes.

• no-attrs represents an empty list of attributes.

The following context-free syntax rules (in SDF [72]) are necessary to parse the

input sentence true or false.

sort Bool

context-free syntax

true -> Bool

false -> Bool

Bool or Bool -> Bool {left}

The parse tree below gives the AsFix representation for the input sentence true

or false.

appl(prod([sort("Bool"),l("or"),sort("Bool")],sort("Bool"),

attrs([attr("left")])),

[appl(prod([l("true")],sort("Bool"),no-attrs),[l("true")]),

w(" "),l("or"),w(" "),

appl(prod([l("false")],sort("Bool"),no-attrs),[l("false")])

])

Two observations can be made about this parse tree. First, this parse tree is an

ordinary ATerm, and can be manipulated by all ATerm utilities in a completely generic

way.

Second, this parse tree is completely self-contained and does not depend on a sep-

arate grammar definition. It is clear that this way of representing parse trees contains

much redundant information. Therefore, both maximal sharing and BAF are essential

to reduce their size. In our measurements, AsFix only plays a role in the cases COBOL

System and Risla Library.

The annotations provided by the ATerm data type can be used to store auxiliary

information like position information derived by the parser or font and/or color infor-

mation needed by a (structure) editor. This information is globally available but can be

ignored by tools that are not interested in it.
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CasFix

Casl (Common Algebraic Specification Language) is a new algebraic specification for-

malism [48] developed as part of the CoFI initiative. It is a general algebraic specifica-

tion formalism incorporating common features of most existing algebraic specification

languages. In addition to the language itself, a set of tools is planned for supporting the

development of Casl specifications. Existing tools will be reused as much as possible.

In order to let the various tools, like parsers, editors, rewriters, and proof checkers,

communicate with each other an intermediate format was needed for Casl. ATerms

have been selected as intermediate format and a specialized version for representing the

abstract syntax trees of Casl has been designed (CasFix [32]). Contrast this with the

approach taken for AsFix, where the more concrete parse trees are used as intermediate

representation.

CasFix is obtained by defining an appropriate set of function symbols for represent-

ing Casl’s abstract syntax [48] and by defining a mapping from Casl’s concrete syntax

to its abstract syntax. For each abstract syntax rule an equivalent CasFix construct is

defined as in:

ALTERNATIVE ::= "total-construct" OP-NAME COMPONENTS*

=⇒

total-construct(<OP-NAME>,COMPONENTS*([<COMPONENTS>]))

In this example "total-construct" and "COMPONENTS*" are function sym-

bols and <OP-NAME> and <COMPONENTS> represent the subtrees of the correspond-

ing sort.

2.5.2 ASF+SDF Meta-Environment

The ASF+SDF Meta-Environment [86] is an interactive development environment for

writing language specifications in ASF+SDF. A new generation of this environment

is being developed based on separate components connected via the ToolBus [15]. A

description of this new architecture can be found in [35]. The new Meta-Environment

provides tools for parsing, compilation, rewriting, debugging, and formatting. ATerms

and AsFix play an important role in the new Meta-Environment:

• The parser generator [118] produces a parse table represented as ATerm.

• The parser uses this parse table and transforms an input string into a parse tree

which is represented as AsFix term.

• After parsing, the modules of an ASF+SDF specification are stored as AsFix

terms. Information concerning the specification such as the rewrite rules that

must be compiled are exchanged as AsFix terms.

• The ASF+SDF compiler (see next section) reads and writes AsFix terms.
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Specification ASF+SDF ASF+SDF Generated ASF+SDF C

C code compiler compiler

(equations) (lines) (lines) (sec) (sec)

ASF+SDF 1,876 8,699 85,185 216 323

compiler

Table 2.6: Some figures on the ASF+SDF compiler.

Application Time (sec) Memory (Mb)

ASF+SDF compiler (with sharing) 216 16

ASF+SDF compiler (without sharing) 661 117

Table 2.7: Performance with and without maximal sharing.

2.5.3 ASF+SDF to C compiler

The ASF+SDF to C compiler [33] is a compiler for ASF+SDF. It generates ANSI-C

code and depends on the ATerm library as run-time environment. All terms manip-

ulated by the generated C code are represented as ATerms thus taking advantage of

maximal subterm sharing and automatic garbage collection.

The optimized memory usage of ATerms has already been exploited in various

industrial projects [25, 34] where memory usage is a critical success factor. This

ASF+SDF compiler has, for instance, been applied successfully in projects such as

the development of a domain-specific language for describing interest products (in the

financial domain) [3] and a renovation factory for restructuring COBOL code [40].

The ASF+SDF compiler is an ASF+SDF specification and has been bootstrapped.

Table 2.6 gives some figures on the size of this specification and the time needed to

compile it. Table 2.7 gives an impression of the effect of compiling the ASF+SDF

compiler with and without sharing. More information on the compiler itself and on

performance issues can be found in [33].

2.5.4 Other Applications

Other applications are still under development and include:

• A tool for protocol verification [68]. The ATerms are used to represent the

states in the state space of the protocol. Because of the huge amount of states

(≥ 1,000,000) it is necessary to share as many states as possible.

• A tool for the detection of code clones in legacy code.

• The Stratego compiler [120].
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2.6 Discussion

2.6.1 Related Work

S-expressions in LISP Many intermediate representations are derived in some form

or another from the S-expressions in LISP. ATerms are no exception to this rule. The

main improvements of ATerms over S-expressions are

• ATerms support arbitrary binary data (Blobs, see Section 2.2.1).

• ATerms support annotations.

• ATerms support maximal sharing in a systematic way.

• ATerms support a concise, sharing preserving, exchange format that exploits the

implicit signature of terms.

• The ATerm library provides a comprehensive collection of access functions

based on the match-and-make paradigm.

Intermediate representations in compiler frameworks There exist numerous

frameworks for compilers and programming environments that provide facilities for

representing intermediate data. Examples are Centaur’s VTP [23], Eli [67], Cocktail’s

Ast [70], SUIF [128], ASDL [124], and Montana [83]. These systems either provide

an explicit intermediate format (Eli, Ast, SUIF) or they provide a programmable in-

terface to the intermediate data (VTP, Montana, ASDL). Lamb’s IDL [91] and OMG’s

IDL [107] are frameworks for representing intermediate data that are not tied to a spe-

cific compiler construction paradigm but have objectives similar to the systems already

mentioned.

These approaches typically use a grammar-like definition of the abstract syntax

(including attributes) and provide (generated) access functions as well as readers and

writers for these intermediate data. In most cases support exists for accessing the inter-

mediate data from a small collection of source languages.

The major difference between these approaches and ATerms is that they operate at

different levels of abstraction. ATerms just provide the lower-level representation for

terms (or more precisely directed acyclic graphs), while intermediate representations

for compilers are more specialized and give a higher-level view on the intermediate

data. They provide primitives for representing program constructs, symbol tables, flow

graphs and other derived information. In most cases they also provide a fixed format

for representing programs at different levels of abstraction ranging from call graphs to

machine-like instructions. ATerms are thus simpler and more general and they can be

used to represent each of these compiler’s intermediate formats.

Another difference is that most compiler frameworks use a statically typed interme-

diate representation. The major advantage is early error-detection. The disadvantages

are, however, less flexibility and the need to generate different access functions for

each different intermediate format. In the case of ATerms, a dynamic check may be

necessary on the intermediate data but only a single, generic, set of access functions is

needed.
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Term ASCII BAF ASDL pickle

COBOL Parse Table 4,211,366 370,450 5,262,426

Table 2.8: Sizes of the COBOL parse table (in bytes)

Term ASCII BAF ASDL pickle

lcc Parse Forest 2,246,436 624,091 1,290,595

Table 2.9: Sizes of abstract syntax trees (in bytes)

ASDL The abstract syntax definition language (ASDL) [124] is a language for de-

scribing tree data structures and is used as intermediate representation language be-

tween the various phases of a compiler [71]. We consider ASDL in more detail, be-

cause of its public availability and the fact that the goals of ASDL and ATerms are

quite similar as they are both used to exchange of syntax trees between tools, although

ATerms are more general in the sense that other types of information, such as unstruc-

tured binary objects and annotations, can also be represented as an ATerm. Everything

that can be represented by a grammar can be represented in ATerms as well as ASDL.

ASDL pickles and the BAF format for ATerms are comparable with respect to func-

tionality, both are binary representations of (among others) syntax trees. The pickle and

unpickle functions are generated from the ASDL description and are thus application

specific (this may be more efficient) whereas the reading and writing of BAF is entirely

generic (this avoids the proliferation of versions).

ASDL and ATerms can be compared at two different levels:

• Low level: ASDL pickle versus plain ATerms. By providing an ASDL definition

of ATerms we can compare the size of the same object as ATerm (ASCII and

BAF) and as ASDL pickle. This is done in Table 2.8 for the COBOL Parse

Table. In this case, the representation in BAF is an order of magnitude smaller

than the ASDL pickle.

• High level: compare at the level of parse trees or abstract syntax trees. ASDL

is typically used to represent abstract syntax trees while ATerms can be used to

represent both as we have discussed in Section 2.5.1. To make a meaningful

comparison, we compare the abstract syntax trees generated by the lcc back-end

in ATerm format (both in ASCII and BAF) and the corresponding ASDL pickles.

These figures are presented in Table 2.9 for the abstract syntax trees generated

for the lcc source files. In this case the BAF representation is 2 times smaller

than the ASDL pickle. Note that the figure for the BAF representation differs

from the figure in Table 2.3, this is caused by the fact that in Table 2.3 all files

are combined into one BAF term whereas in Table 2.9 each file is a separate BAF

term and their sizes are added.

XML The Extensible Markup Language [129] is a recently standardized format for

Web documents. Unlike HTML, XML makes a strict distinction between content and
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presentation. XML can be extended by adding user-defined tags to parts of a document

and by defining the overall structure of the document thus enabling well-formedness

checks on documents. Although the original objectives are completely different, there

are striking similarities between ATerms and XML: both serve the representation of

hierarchically structured data and both allow arbitrary extensions (adding tags versus

adding function symbols). There is also a straightforward translation possible between

ATerms and XML.

The main difference between the two is that XML is more verbose and does not

provide a simple mechanism to represent sharing, whereas ATerms provide the BAF

format. This may not be a problem for Web documents like catalogs and database

records, but it does present a major obstacle in our case when we need to exchange

huge terms between tools. We are currently considering whether some link between

ATerms and XML may be advantageous.

Data encodings As described in Section 2.3.5, we use a form of data encoding to

compress ATerms when they are exchanged between tools. Of course, encoding and

data compression techniques are in common use in telecommunications. For instance,

the ASN.1 standard gives detailed rules for data encoding [4].

In an earlier project in our group, the Graph Exchange Language (GEL) [82] has

been developed. It is similar in goals to BAF, but BAF can only represent acyclic

directed graphs, whereas GEL can represent arbitrary (potentially cyclic) graphs. The

technical approaches are different as well. GEL uses a binary-encoded postfix format

to represent the nodes in the graph and introduces explicit labels to reuse previously

constructed parts of the graph. BAF uses a prefix format augmented by generated

symbol tables.

A final difference is in the usage of both approaches. GEL was used as a separate

library that could be used in applications and the graph encoding was therefore visible

to the programmer using it. BAF is, on the other hand, completely integrated in the

ATerm implementation and is only used by the standard read and write functions for

ATerms. The BAF format is therefore never visible to programmers.

Hash consing In LISP, the success of hash consing [1] has been limited by the ex-

istence of the functions rplaca and rplacd that can destructively modify a list

structure. To support destructive updates, one has to support two kinds of list struc-

tures “mono copy” lists with maximal sharing and “multi copy” lists without maximal

sharing. Before destructively changing a mono copy list, it has to be converted to a

multi copy list. In the 1970’s, E. Goto has experimented with a Lisp dialect (HLisp)

supporting hash consing and list types as just sketched. See [115] for a recent overview

of this work and its applications.

A striking observation can be made in the context of SML [2] where sharing re-

sulted in slightly increased execution speed and only marginal space savings. On closer

inspection, we come to the conclusion that both methods for term sharing are different

and can not be compared easily. We share terms immediately when they are created:

the costs are a table lookup and the storage needed for the table while the benefits are

space savings due to sharing and a fast equality test (one pointer comparison). In [2]
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sharing of subterms is only determined during garbage collection in order to minimize

the overhead of a table lookup at term creation. This implies that local terms that have

not yet survived one garbage collection are not yet shared thus loosing most of the

benefits (space savings and fast equality test) as well.

2.6.2 History

Terms are so simple that most programmers prefer to write their own implementation

rather than using (or even looking for) an existing implementation. This is all right,

except when this happens in a group of cooperating developers as in our case.

A very first version of the ATerm library was developed as part of the ToolBus

coordination architecture [15]. It was used to represent data which were transported

between tools written in different languages running on different machines. Simulta-

neously, we were developing a formalism for representing parse trees [26]. In addition,

incompatible term formats were in use in various of our compiler projects [61]. Ob-

serving the similarities between all these incompatible term data types triggered the

work on ATerms as described here. The benefits are twofold. First, a common term

data type is used in more applications and investments in it are well rewarded. Second,

the mere existence of a common data type leads to new, unanticipated, applications.

For instance, we now use ATerms for representing parse tables as well.

2.6.3 Conclusions

As stated in the introduction, ATerms are intended to form an open, simple, efficient,

concise, and language independent solution for the exchange of (tree-like) data struc-

tures between distributed applications.

ATerms are open and language independent since they do not depend on any spe-

cific hardware or software platform. ATerms are simple: the level one interface consists

of only 13 functions. ATerms are efficient and concise as shown by the measurements

in Section 2.4. Last but not least, ATerms are also useful as shown on Section 2.5.

The ATerm format is supported by a binary exchange format (BAF) which provides

a mechanism to exchange ATerms in a concise way. This BAF format maintains the

in-memory sharing of terms and uses a minimal amount of bits to represent the nodes,

in case of AsFix terms only 2 bits are needed per node.

The most innovative aspects of ATerms are the simple procedural interface based

on the make-and-match paradigm, term annotations, maximal subterm sharing, and the

concise binary encoding of terms that is completely hidden behind high-level read and

write operations.
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C H A P T E R 3

Generation of Abstract

Programming Interfaces

from Syntax Definitions

3.1 Introduction

Since the development of the ATerm-Library [30] in 1999, its use for the implementa-

tion of tree-like data structures has become quite popular among developers of scan-

ners, parsers, rewrite engines and model checkers. Apart from its inevitable deploy-

ment in the tools of the Meta-Environment [86, 35, 24] for which it was specifically

designed, the ATerm-Library is used amongst others in: the ELAN system [38], the XT

Program Transformation Tools [80] which are based on the Stratego Language [119],

the CoFI Algebraic Specification Language CASL [48, 47], Strafunski [92]: a Haskell-

centered software bundle for generic programming and language processing, and the

µCRL ToolSet for Analyzing Algebraic Specifications [19]. ATerms include several

nice features: they are easy to manipulate yet very efficient; they come with a built-in

garbage collector (in the C library), and they have persistence support in the form of a

compact, sharing preserving serialization in both textual and binary representations.

As more and more tools in the Meta-Environment were converted to work with the

ATerm-Library, it became apparent that the tools had become inflexible with respect to

changes in the parse tree format (called AsFix), and were hard to maintain. The reason

behind this inflexibility was the fact that all tools used manually encoded structural

knowledge about the signature of the data types, i.e. the location of data elements

inside their ATerm representation. Hard-wiring such knowledge into the tools without

an explicit signature definition makes it difficult, if not impossible, to change the ATerm

representation of the data type.

The coding practice that uses such structural knowledge is not in any

way restricted to the realm of parse trees. In fact, anyone who has pro-

grammed with the ATerm-Library, will probably be familiar with patterns such as

and(<bool>,<bool>). And given such a pattern, what could be easier than writ-

ing a function that extracts the arguments of the expression? But as these patterns
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become longer and more intricate with a liberal sprinkling of quoted strings containing

backslash-escaped quotes, and as they begin to contain lists and annotations, the once

so simple make-and-match paradigm becomes a developer’s nightmare.

Shielding ATerm representation knowledge in access macros somewhat improves

the legibility of code that uses them, but it does not in any way remove the maintenance

issue. It restricts the knowledge to a specific set of macros, but these still need manual

maintenance. As a result, this approach only looks like representation hiding, but in fact

all programmers of different tools still need to know the exact ATerm representation

of the data being exchanged.

Motivated by the need to change AsFix and to avoid the herculean maintenance task

this operation would impose on our toolset, we decided to remove as much “ATerm-

handicraft” from the tools as possible by developing an API-generator that creates both

an interface and an implementation of data structures represented by ATerms.

While maintaining the advantages of the ATerm-Library (in our case most notably

its efficiency due to maximal subterm sharing1), applications built with this generated

API benefit from improved simplicity and readability, they are easier to maintain, and

they are more robust against changes in the underlying AsFix representation.

This chapter describes how an annotated grammar or syntax definition can be used

to generate a library of functions that provide access to the parse trees of terms over

this grammar. Such a library effectively turns a parse tree into an abstract data type,

providing a type-safe and systematic API to manipulate terms. In particular we de-

scribe how a SDF-specification commonly found when using the Meta-Environment is

used to collect the information into an annotated data type (ADT), necessary to build

a mapping between grammar productions and their ATerm-pattern in the underlying

AsFix parse tree, and how this mapping is subsequently used to generate C functions

that provide an API to these parse trees. A schematic overview is shown in Figure 3.1.

Although this chapter uses tools from the Meta-Environment as a running example,

the maintenance issues addressed here are not specific to parse trees at all. The issues

are fundamental to all applications that use ATerms as its data structure representation.

Moreover, many of these issues are also found in applications based on other generic

data representation formalisms like for instance XML.

We first relate our approach to other work in Section 3.1.1, and continue with some

introductory sections on the specification formalism ASF+SDF (Section 3.1.2), the

syntax of ATerms (Section 3.1.3), and AsFix (Section 3.1.4). Section 3.2 explains how

ATerm-based data types are typically accessed in tools and applications and we show

how this approach causes development and maintenance problems. We then describe

the actual generation scheme from SDF to an intermediate representation (Section 3.3)

and the subsequent generation into the target language (Section 3.4). The results of the

application of our generation technique on tools in the Meta-Environment are shown

in Section 3.5, followed by some conclusions (Section 3.6), a discussion (Section 3.7)

and future work (Section 3.8).

1Our strategy to minimize memory usage is simple but effective: we only create terms that are new, i.e.,

that do not exist already. If a term to be constructed already exists, that term is reused, ensuring maximal

(sub)term sharing.
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ATerm manipulation

Handcrafted Generated, typed

ADT library

ATerms ATerms
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generated
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Figure 3.1: Overview of an application before and after introduction of API-generation.

3.1.1 Related Work

The techniques described in this chapter both use the Meta-Environment and are used

to improve the tools therein and as such our work can be seen as one step towards

the implementation of [73]. We now briefly discuss some related work that deals with

the aspects we address in this chapter: applying generational techniques to create an

abstraction layer on top of a generic data exchange formalism.

Grammars as Contracts In [81] a generic framework is presented that includes the

generation of libraries from concrete syntax definitions. These libraries can then be

used to manipulate both parse trees and abstract syntax trees. Just like our work, the

instantiations are based on SDF as syntax definition formalism, in combination with

tool support from the Meta-Environment. Instantiations are described for generating

libraries in different languages including C, Java, Stratego, and Haskell.

The work described in our chapter can be seen as a refined instantiation of this

generic framework. Among the instantiations described in [81] generation of a C li-

brary for concrete syntax manipulation is missing, and our approach remedies this

situation. We also focus on generating more intuitive and readable API’s, at the cost of

extra annotation effort on the original syntax definition.

Zephyr ASDL The abstract syntax definition language (ASDL) [124] is a language

for describing tree data structures much like ATerms, and is used as intermediate rep-

resentation language between the various phases of a compiler [71].

The ASDL tools support the generation of accessor and serialization code. The

main differences with our approach are:

• ASDL works on abstract syntax definitions. The link between parser and ASDL

must be programmed manually;
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• ASDL supports a wide variety of languages including C, C++, Java, Standard

ML, and Haskell;

• ASDL offers a graphical browser and editor for data described in ASDL;

• ASDL does not support maximal subterm sharing;

• There is no garbage collection support for languages like C and C++.

(D)COM/Corba IDL compiler The two major commercial component architec-

tures, Microsoft’s (D)COM and OMG’s CORBA [49, 113], both provide IDL com-

pilers that take an interface definition written in their respective interface definition

languages (IDLs), and generate communication scaffolding code. The generated code

includes stubs and skeletons to make it easy to write clients and servers respectively.

The biggest difference with our work is that the target of these systems is to make

it easy for programmers to build components in a distributed setting while we focus on

providing an abstraction layer on top of a generic data exchange format. This means

that the IDL compilers generate code for marshaling arguments when calling remote

procedures and for unmarshaling their return values, while in our approach we keep

the data in the original “marshaled” form until it is actually used. In this sense, our

approach could be characterized as lazy and the DCOM/CORBA approach as eager.

XML data binding in Java A comparable approach to provide an abstraction layer

on top of a generic data exchange formalism is used in jaxb [74]. This is a tool that

generates a Java class hierarchy from an XML DTD. Besides accessor functions and

constructors, (de)serialization functions to and from XML are generated. The actual

code generation can be steered using a specification in XML. This makes it possible to

add e.g. interfaces and extra code to the generated classes.

In general this approach is called data binding, and several other initiatives in this

area are currently under way, including some open source initiatives [58, 59] and the

commercial initiative [42]. All these approaches offer tool support for generating Java

code from an XML Schema. The generated code can marshal and unmarshal XML

terms to Java objects with accessors to retrieve type safe (sub)elements.

Generative Programming Generative programming focuses on using domain engi-

neering to retrieve domain specific knowledge that can be incorporated into component

generators [50]. At first glance this “high level” view on generating software compo-

nents seems to be far removed from the low level view on source code generation we

have taken in this chapter. If we take a closer look, the two approaches are not as

disjoint as one might think. We believe any successful generic approach to generative

programming must be based on some abstract data type definition augmented with do-

main specific knowledge. In our case, the data type definitions are written in SDF, and

the domain specific knowledge consists of the mapping of such data types to concrete

AsFix representations.
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JJForester Another approach to generating code from an SDF definition is taken in

JJForester [90]. JJForester combines the parser generator and parser from the Meta-

Environment with a tree builder, and visitor generator for Java. The focus lies on the

generation of tree manipulation and especially tree traversal support. Especially nice

is the integration with JJTraveler [121], providing generic visitor combinator support.

3.1.2 ASF+SDF in a nutshell

The specification formalism ASF+SDF [10, 72] is a combination of the algebraic spec-

ification formalism ASF and the syntax definition formalism SDF. An overview can be

found in [52]. As an illustration, Figure 3.2 presents the definition of the Boolean data

type in ASF+SDF 2. ASF+SDF specifications consist of modules, where each module

has an SDF-part (defining lexical and context-free syntax) and an ASF-part (defining

equations).

SDF

The SDF part corresponds to signatures in ordinary algebraic specification formalisms.

However, syntax is not restricted to plain prefix notation but instead arbitrary context-

free grammars can be defined. SDF contains some interesting features that make it

possible to give concise definitions of context-free grammars:

• Both context-free and lexical syntax can be specified.

• Lexical syntax can be described using regular expressions.

• Associativity can be specified using attributes (left, right, non-assoc).

• Priority relations between productions can be specified in priority sections.

• Grammar specifications can be modular.

• Modules and sorts can be parameterized.

• A number of heavily used constructs are built-in including lists, separated lists,

alternatives, tuples, and function application.

The syntax defined in the SDF-part of a module can be used immediately when

defining equations, thus making the syntax used in equations user-defined.

The technology behind SDF is based on scannerless generalized LR parsing [39].

The term scannerless indicates that there is no separate scanning phase before parsing:

each character is a token. This approach has the advantage that the class of languages

that can be handled by the parser is not restricted by local tokenization decisions taken

by the scanner.

The term generalized means that the parser can handle ambiguous constructs and

in general yields a parse forest instead of a single parse tree.

2Note how in SDF left-hand and right-hand sides of a production have opposite meaning compared to

BNF notation. In SDF the elements of the LHS produce the RHS, in BNF notation the LHS is produced by

the elements of the RHS.
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module Bool

imports Layout

exports

sorts Bool

context-free syntax

"true" -> Bool

"false" -> Bool

"not" Bool -> Bool

Bool "and" Bool -> Bool {left}

Bool "or" Bool -> Bool {left}

hiddens variables

"Bool" -> Bool

equations

[not-1] not true = false

[not-2] not false = true

[and-1] Bool and false = false

[and-2] Bool and true = Bool

[or-1] Bool or true = true

[or-2] Bool or false = Bool

Figure 3.2: ASF+SDF specification of the Booleans

To implement scannerless parsing for SDF the SDF normalizer is used to trans-

form a SDF grammar into a simple character level grammar. One of the tasks of the

normalizer is to explicitly insert layout symbols between all symbols in context-free

syntax sections. For the syntax defined in Figure 3.2 this means that whitespace can be

inserted between keywords, for instance between not and true in equation not-1.

In this example, the actual definition of what constitutes whitespace is defined in the

module Layout that is not shown in the example.

ASF

The equations appearing in the ASF-part of a specification have the following distinc-

tive features:

• Conditional equations with positive and negative conditions.

• Non left-linear equations.

• List matching.

• Default equations.

It is possible to execute specifications by interpreting the equations as conditional

rewrite rules. The semantics of ASF+SDF are based on innermost rewriting. Default
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equations are tried when all other applicable equations have failed, either because the

arguments did not match or because one of the conditions failed.

The development of ASF+SDF specifications is supported by an interactive pro-

gramming environment, the Meta-Environment [24]. In this environment specifications

can be developed and tested. It provides syntax-directed editors, a parser generator, and

a rewrite engine. Given this rewrite engine terms can be reduced by interpreting the

equations as rewrite rules. For instance, the term

true or false

reduces to true when applying the equations of Figure 3.2.

3.1.3 Annotated Terms: the ATerm syntax

The definition of the concrete syntax of ATerms is given in Appendix A.1. Here are

a number of examples to (re-)familiarize the reader with some of the features of the

textual representation of ATerms:

• Integer and real constants are written conventionally: 1, 3.14, and -0.7E34

are all valid ATerms.

• Function applications are represented by a function name followed by an open

parenthesis, a list of arguments separated by commas, and a closing parenthesis.

When there are no arguments, the parentheses may be omitted. Examples are:

f(a,b) and "test!"(1,2.1,"Hello world!"). These examples show

that double quotes can be used to delimit function names that are not identifiers.

• Lists are represented by an opening square bracket, a number of list elements

separated by commas and a closing square bracket: [1,2,"abc"], [], and

[f,g([1,2],x)] are examples.

• A placeholder is represented by an opening angular bracket followed by a

subterm and a closing angular bracket. Examples are: <int>, <[3]>, and

<f(<int>,<real>)>.

3.1.4 ASF+SDF Parse Trees for Dummies: AsFix explained

From a SDF-specification, a parse table can be generated using the pgen tool from the

Meta-Environment. pgen consists of the normalizer discussed earlier combined with

a parse table generator. The resulting parse table can subsequently be used by sglr:

the scannerless, generalized LR parser to parse input terms over the syntax described

by the SDF-specification. The result of a successful parse is a parse forest, containing

parse trees. The data structure used to represent parse trees is called AsFix, and is

implemented using the ATerm-Library to exploit the maximal subterm sharing that is

commonly present in parse trees.

Because AsFix is a parse tree format (as opposed to an abstract syntax tree), lay-

out in the input term is preserved, and other syntax-derived facts such as associativity
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and constructor information is made available to any tool that has access to the AsFix

representation of the input term.

The definition of the concrete syntax of AsFix is given in Appendix B.1, but to

quickly familiarize the reader with AsFix, we show some of its idiosyncrasies by means

of some real life examples.

Example: grammar production "true" -> Bool The AsFix representation of

the SDF production

"true" -> Bool

is:

prod([lit("true")],cf(sort("Bool")),no-attrs)

The prod symbol declares this to be a grammar production. It has three arguments:

the first is a list of terminals and non-terminals that occur in the left-hand side of the

production, the second argument is the non-terminal of the right-hand side, and the

third argument contains the attributes (e.g. left associativity) of the production.

In this example, the literal (denoted by the symbol lit) true is the only ele-

ment in the left-hand side of the production. It is injected into the context-free (de-

noted by the symbol cf) non-terminal Bool. The production has no specific attributes

(no-attrs).

Example: grammar production Bool "and" Bool -> Bool {left} The

AsFix representation of the following grammar production:

Bool "and" Bool -> Bool {left}

is:

1 prod([cf(sort("Bool")),cf(opt(layout)),lit("and"),

2 cf(opt(layout)),cf(sort("Bool"))],

3 cf(sort("Bool")),

4 attrs([assoc("left")]))

• Lines 1 and 2 declare this to be a grammar production (prod), containing all

the elements of the left-hand side of the production. The SDF-normalizer has

inserted the context-free sort opt(layout) subterms at every location where

optional layout in the input term is allowed.

• Line 3 tells us that the result sort of this production is Bool.

• Line 4 shows the attributes associated with this production. In this case the only

attribute is left for left-associativity.
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Example: parsed term true and false When the input term true and

false is parsed, the resulting parse tree is the grammar production from the previ-

ous example, applied to the actual argument true and false. The layout in the

input term consists of exactly one space immediately before and after the keyword

and.

1 appl(

2 prod([cf(sort("Bool")),cf(opt(layout)),lit("and"),cf(opt(layout)),

3 cf(sort("Bool"))],cf(sort("Bool")),attrs([assoc("left")])),

4 [appl(prod([lit("true")],cf(sort("Bool")),no-attrs),[lit("true")]),

5 layout([" "]), lit("and"), layout([" "]),

6 appl(prod([lit("false")],cf(sort("Bool")),no-attrs),

7 [lit("false")])])

• Line 1 states that this tree is the application of a grammar production to a specific

term.

• Lines 2–3 show the representation of Bool "and" Bool -> Bool

{left} from the previous example.

• Line 4 shows the application of the production "true" -> Bool to the literal

true.

• Line 5 contains the instantiated optional layout terms. In this case the input term

contained exactly one space immediately before and just after the keyword and.

• Similar to line 4, lines 6–7 represent the literal "false".

The fact that many tools in the Meta-Environment need to operate on such parse

trees, raises the question of how best to access this ATerm representation of a data

type.

3.2 Accessing ATerm Data Types

The ATerm-Library provides two levels of access to ATerms. We briefly discuss both

of them (Sections 3.2.1 and 3.2.2) by showing some examples using the C implemen-

tation of the ATerm-Library. Similar statements are needed when using the Java

implementation.

Section 3.2.3 shows the typical way tools in the Meta-Environment used to access

AsFix parse trees. As AsFix terms are of impressive complexity to the human eye,

the code needed to access them becomes equally complex if it has to be written down

manually.

3.2.1 Accessing ATerms using the Level One interface

The first level of access functions is through the easy-to-learn make and match

paradigm which allows construction of terms by parsing their string representation.

Placeholders in these patterns are used to designate “holes” in the term which are to

be filled in by other variables, including other ATerms as well as native types (int,

string, etc.). Terms are constructed using ATmake, for example:

55



Generation of Abstract Programming Interfaces from Syntax Definitions CHAPTER 3

ATerm t = ATmake("person(name(<str>),age(<int>))", "Anthony", 7);

will result in term t being assigned the value:

person(name("Anthony"),age(7))

Note how the placeholders <str> and <int> are substituted by the values

Anthony and 7, respectively.

Elements from terms can be extracted using ATmatch, for example:

char *name;

int age;

if (ATmatch(t, "person(name(<str>),age(<int>))", &name, &age)) {

printf("name = %s, age = %d\n", name, age);

}

will result in the variables name and age being assigned the values Anthony and 7,

respectively. The output of this fragment would thus be:

name = Anthony, age = 7

In case we are only interested in extracting the age field and we do not care about

the actual value of name, we can pass NULL instead of the address of a local variable.

In this case, that particular subterm is still used during matching, but its actual value is

never assigned. This allows us to test if a specific term matches a given pattern, without

having to bind every placeholder in the pattern.

3.2.2 Accessing ATerms using the Level Two interface

The second level of access allows more direct manipulation of ATerms by means of

access-functions which operate directly on a term or its subterms. This way of access

is more efficient than using the level one interface, because there is no need to parse a

string pattern to find out which part of the (sub-)term is needed.

For example, consider the term from the previous section:

t = person(name("Anthony"),age(7))

We can get Anthony’s age by first extracting the age subterm from t, and sub-

sequently getting the actual 7 from this age term. Arguments in an ATerm function

application are numbered, starting at zero. So, to get to the actual value of 7 which

is embedded in the age function application, we need to extract argument number 1

from the person application, and then extract argument number 0 from this:

int age = ATgetInt(ATgetArgument(ATgetArgument(t, 1), 0));

Note that the exact location of the age field in the ATerm representation of the

person record is used. If the structure of the record were to change, e.g. a field for

the person’s last name is inserted between the name and the age fields, the example

code would be broken.

Also note that this code does not even check if the term t is of the right form, i.e.

if t satisfies the pattern person(name(<str>),age(<int>)). On an arbitrary

input term, the age-extraction code will most likely fail and dump core. But if only

correct input terms are given, it is the most efficient way to encode the extraction of the

age subterm in this ATerm representation of the person record.
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3.2.3 Accessing AsFix parse trees

This Section shows several ways in which AsFix terms can be accessed. The code

fragments are typical for the way parse trees are manipulated in the Meta-Environ-

ment.

First, we show the C code necessary to construct the boolean term true which,

when yielded by the parser, looks like this:

appl(prod([lit("true")],cf(sort("Bool")),no-attrs), [lit("true")])

Even for such a simple input term, its ATerm representation written as a C (or

Java) string is already quite complex. This is because we have to escape all the

double quotes (the " characters) from interpretation by the compiler. Also, because the

string representation of the match-pattern is long enough that it does not legibly fit on

a single line anymore, we have to resort to ANSI C string concatenation3 to span the

string over multiple lines.

ATerm true = ATparse(

"appl(prod([lit(\"true\")],cf(sort(\"Bool\")),no-attrs),"

"[lit(\"true\")])");

As another example, consider a C function that extracts the left-hand side from a

boolean conjunction. It needs to match the parse tree of the incoming term against the

pattern for the syntax production:

Bool "and" Bool -> Bool {left}

An implementation using the level one interface would need the pattern written as

a string, with a <term> placeholder at the correct spot. Because the pattern is written

inside a string, we once again need to escape all quotes.

ATerm extract_bool_lhs(ATerm t) {

ATerm lhs;

char *bool_and_lhs_pattern =

"appl(prod([cf(sort(\"Bool\")),cf(opt(layout)),"

"lit(\"and\"),cf(opt(layout)),cf(sort(\"Bool\"))],"

"cf(sort(\"Bool\")),attrs([assoc(\"left\")])),"

"[<term>,<term>,lit("and"),<term>,<term>])";

if (ATmatch(t, bool_and_lhs_pattern, &lhs, NULL, NULL, NULL)) {

return lhs;

}

return NULL;

}

Could there be a quote missing in the pattern? Are all the ), ], and } characters

where they should be? Did you expect four <term> placeholders in the pattern (to

account for the lhs, the rhs, as well as the optional layout before and after the literal

and)?

3Strings can be split over multiple lines by ending one line with a " and starting the next line with another

".

57



Generation of Abstract Programming Interfaces from Syntax Definitions CHAPTER 3

Keep in mind that:

• as long as it is a valid C string, the C compiler is not going to warn you if you

make a mistake (e.g. you wrote lit(and) instead of lit(\"and\"));

• as long as it is a valid ATerm-pattern, the ATerm parser is not going to warn

you if you make a mistake (e.g. you forgot to add <term> placeholders for the

optional layout);

• if you made any mistakes, your only hope to fix them lies in visually inspecting

the incoming term and the expected matching pattern, and figuring out why they

do not match!

An implementation using the level two interface encodes structural knowledge

about the exact location of the lhs in terms of direct ATerm access functions. In

particular, recalling that in AsFix we are dealing with appl(prod,[args]) pat-

terns, the args are always the second argument of the appl. If we look closely at the

AsFix pattern for our and-terms, we notice that the lhs is the first element in this list

of args. The extraction function can thus be simplified to the more efficient, but very

type-unsafe and obfuscated:

ATerm extract_bool_lhs(ATerm t) {

/* get arguments from AsFix "appl" */

ATermList args = ATgetArgument(t, 1);

/* lhs is the first of these args. */

return ATgetFirst(args);

}

After all, this function would work on any ATerm function application that has (at

least) two arguments, the first of which is a list with (at least) one element.

3.2.4 Maintenance issues

There are several fundamental maintenance issues inherent in the use of ATerms as a

data structure implementation in hand-crafted tools.

• The esoteric art of writing down multi-line, quote-escaped string patterns and

the subsequent substitution of parts of these patterns to contain the desired place-

holders at the correct locations, is so error prone that it is almost guaranteed to go

wrong at some point. Practical experience in the Meta-Environment has proven

this many times over. Handcrafted ATerm-patterns proliferate through numerous

versions of various tools, and after a while all sorts of “mysterious” bugs creep

up where one tool cannot handle the output of another tool, or simply bails out

reporting that deep down some part of an input term does not satisfy a particular

assertion. Obviously, these errors are often due to pattern mismatches, misplaced

placeholders, or ill-escaped quotes.
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• Even if the patterns are written down correctly, or when the Level Two interface

is used (which doesn’t use ATerm-patterns), there is much work to be done when

the application syntax changes.

Suppose for example that we want to change the syntax of our boolean conjunc-

tion from infix notation:

Bool "and" Bool -> Bool

into prefix notation:

"and" "(" Bool "," Bool ")" -> Bool

Conceptually nothing has changed: we mean exactly the same arguments when

we address them as lhs, rhs, and result terms in both productions. How-

ever, in the underlying parse tree the location of all three subterms has changed!

This in turn means that all tools that manipulate, e.g. the lhs of boolean terms,

have to be updated to reflect this structural change.

In fact, there is hardly any room for flexibility with respect to changes in the

syntax, unless the arguments happen to remain at their original position. Every

tool based on the modified application syntax has to be updated.

• With such inflexibility with respect to the application syntax in mind, imag-

ine what would happen if the structure of the parse trees (AsFix) itself were

to change. Every tool based on the representation of parse trees would have to

be updated to reflect the structural changes in the format. In our practical case of

the Meta-Environment where we wanted to rid AsFix of some legacy constructs,

this meant modification of virtually every tool — an arduous task indeed.

3.3 From syntax to API

Abstracting from implementation details about the facts that there is such a thing as a

parse tree format and that this format in turn is implemented using ATerms, it is easy

to name several operations a tool-builder would like, given a syntax definition.

As an example we consider the booleans again. Some of the typical things a tool-

builder would like to be able to do given the boolean syntax are:

• Use a type definition for booleans (it is better to have a specific type Bool than

to use the generic ATerm type);

• Create the basic booleans: true and false;

• Create a compound boolean term using basic and other compound boolean terms;

• Given an arbitrary term, test if it is a valid boolean term;

• Given an arbitrary boolean term, distinguish between a basic term and a com-

pound term, e.g. by testing if it has a lhs or rhs;
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• Extract the lhs and rhs of a given boolean term;

• Replace the lhs and rhs of a compound boolean term by another boolean term;

Obviously, this list is not exhaustive, but it does form a nice starting point. For-

tunately, all the necessary information can be extracted from an SDF-definition of the

grammar. In order to separate some concerns and simplify the generation framework,

we split the process into two steps (see Figure 3.3). First, we extract all the neces-

sary information from the SDF-definition, and store it in a convenient format. This

step takes care of the parsing and analysis of the grammar. The second step takes the

intermediate format and does the actual generation for a specific target language.

SDF ADT
[Bool,true,appl(prod([
lit("true")...]))]"true" −> Bool

C
isBoolTrue(Bool b) {...}

Java
class Bool {
boolean isTrue() {...}

}

Figure 3.3: Generation scheme: from SDF to ADT to code

We call the intermediate format annotated data type, or ADT for short.

It holds the minimal amount of information for each syntax rule in the original SDF

specification. In particular, for each rule we need:

• The sortname of the production. In our boolean syntax this is Bool;

• The alternative of the production. Our boolean syntax (from Figure 3.2) has five

alternatives: true, false, not, and, or.

• The actual ATerm-pattern representation of the rule. In this pattern, each field

(non-terminal in the syntax rule) is replaced by a typed placeholder containing

the sort of the non-terminal and a descriptive name. For the and rule we could

use lhs, and rhs, both of type Bool.

Since we are solving the maintenance problem of using ATerms as a data type

representation, we decided we could very well use an ATerm to represent the elements

of an ADT. The obvious advantage is that we get persistence (saving and loading of

an ADT) for free, and we do not need to construct a domain specific language (with its

own parser etc.) which would introduce undesired development-time overhead. Each

entry in the ADT consists of the three elements sortname, alternative, and term-pattern,

which we can easily represent as an ATerm-list. An entire ADT consists of nothing more

than a list of such lists. Instead of using a list, each single entry could also have been
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represented as a function with three arguments, but we opted for as little syntactic sugar

in the entries as possible, to simplify development-time debugging. Remember that an

ADT entry contains an ATerm pattern and they are hard enough to read, without the

introduction of an extra function-symbol around them.

As an example of the concrete representation of an ADT entry, let us look at the

boolean and. In this example, we know that the sortname of the production is Bool,

the alternative is called and. There are two operands, lhs and rhs, both of type

Bool. In the pattern we put typed placeholders <lhs(Bool)> and <rhs(Bool)>

at the location of the corresponding non-terminals. Also, because this is a parse tree

pattern, we have to allow layout (whitespace), which in this case can occur both after

the non-terminal lhs, and after the literal and. The ADT entry thus becomes:

1 [Bool,

2 and,

3 appl(prod(

4 [cf(sort("Bool")),cf(opt(layout)),lit("and"),cf(opt(layout)),

5 cf(sort("Bool"))],cf(sort("Bool")),attrs([assoc(left)])),

6 [<lhs(Bool)>,<ws-after-lhs(Layout)>,lit("and"),

7 <ws-after-and(Layout)>,<rhs(Bool)>])]

• Line 1 contains the sortname: Bool

• Line 2 shows the alternative: and

• Lines 3–5 show the prod of the AsFix function application.

• Lines 6–7 show the args part. Clearly visible are the typed placeholders for

lhs and rhs.

The two placeholders matching optional layout have the somewhat arbitrary names

ws-after-lhs, and ws-after-and. Section 3.3.1 elaborates on the naming

schemes used to generate legible, understandable names.

Given an ADT, which is generated from an SDF definition, but which could also

come from any other source, we no longer need to worry about any SDF peculiarities,

or parse tree specifics. Instead, we can concentrate on generating the desired func-

tionality for a given target language. In this chapter we concentrate on describing the

steps needed to produce legible, type-safe C code. Optimizations to the generated code

can easily be obtained by removing type-safety checks, resulting in a more efficient

production version of the code.

3.3.1 Deriving the ADT from a SDF specification

Now that we know what specific information we need in the ADT, how do we get it

from the SDF definition? If we look back at our SDF definition of the booleans, we

can derive two of the necessary elements immediately:

• The result sort of a syntax rule. It is explicitly mentioned at the end of each rule.

• The ATerm pattern. It can be constructed by following the exact same rules for

constructing AsFix terms that the SDF normalizer uses.
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This leaves us with the issue of coming up with a decent name for each alternative

production of the same sort, and we still need to figure out a way to give descriptive

names to the non-terminals in the grammar rule.

Naming the non-terminals Given our SDF rule for the boolean and, can we derive

a sensible name for each of the Bool non-terminals? The only information we have is

our syntax rule:

Bool "and" Bool -> Bool {left}

If we use heuristics to call them e.g. lhs and rhs, what do we do when we find

another syntax rule that has three, four or even more arguments? In syntax rules with

only one non-terminal, we could default to using the sort name of that non-terminal.

But in general, it is hard to come up with any kind of descriptive naming scheme. Keep

in mind that most tool-builders will not really be happy if they are confronted with

access functions that have arbitrarily complex names, or numbered arguments.

Instead of coming up with any kind of heuristic at all, we opted to use the labeling

mechanism present in SDF, which allows grammar writers to label each non-terminal.

This eliminates the need to invent a descriptive name altogether and provides an under-

standable link between items in a grammar rule and their generated access functions.

Suppose we like the abbreviations lhs, and rhs, we could label the syntax rule for

and to become:

lhs:Bool "and" rhs:Bool -> Bool {left}

Naming the alternatives Similarly, we need a solution for the alternative name. In

this case the literal and happens to be a name we could use. But what if there is

no literal at all? Or if there are multiple literals in a production, which one should

we pick? Should they be concatenated? What if the literal is some sort of baroque

lexical expression (think of the C and Java symbols && for conjunction). Again we

are saved by SDF, which provides a way to annotate syntax rules. In fact, we re-use an

annotation which is quite commonly used by SDF syntax writers to annotate the name

of the abstract syntax node that corresponds to this particular syntax rule. Traditionally

the cons annotation is used for this purpose. So, finally our and syntax rule becomes:

lhs:Bool "and" rhs:Bool -> Bool {left, cons("and")}

From which we can subsequently generate (e.g. C) type and function names as

shown in Figure 3.4.

3.4 Code generation from ADT to C

3.4.1 Generated types and functions

For each sortname in an ADT, we generate the following items (which are further ex-

plained in Subsection 3.4.2):
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argument type sortname alternative name argument name

 

−> Bool {left, cons("and")}

Bool getBoolLhs(Bool arg) {

if (isBoolAnd(arg)) {

  ...

}

}

−> Bool {left, cons("or")}

−> Bool {cons("not")}

−> Bool {cons("false")}

−> Bool {cons("true")}"true"

"false"

"not" arg:Bool

lhs:Bool "or" rhs:Bool

lhs:Bool "and" rhs:Bool

Figure 3.4: Using SDF elements to derive legible names.

• An opaque type definition to distinguish instances of this particular sort from

other ATerms.

• Conversion functions fromTerm and toTerm to interface with generic ATerm

functions, such as ATreadFromFile. These functions perform a type cast,

and as such they form the entry and exit points to type-safety.

• A validity function to test whether an instance of a sort is indeed valid, i.e. that it

indeed matches one of the ATerm-patterns defined as an alternative of this sort.

This is useful to assert the validity of an externally acquired instance of this sort,

e.g. if it has just been read from file.

• Constructor functions for each possible alternative for this sort to create instances

from scratch.

• An equality function to test equality with another instance of this sort.

• For each alternative of the sort, an isAlternative function that checks if the

current object is an instance of that particular alternative.

• For each field used in any of the alternatives of the sort, a hasField function

that checks if the current object is an instance of an alternative that has that non-

terminal.

• Similarly, a getField and setField method for each of the fields in a sort.
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3.4.2 Implementation

In order to address the maintenance issues associated with the proliferation of ATerm-

patterns, we decided it was a good idea to isolate them as much as possible from the

actual code. This is achieved by generating a separate dictionary file containing all the

ATerm patterns used by the library. This dictionary file declares a separate AFun vari-

able for each ATerm function symbol, and an ATerm variable for each possible pattern.

An initialization function is also generated which takes care of the proper initialization

of all these variables, and the necessary calls to ATprotect to shield them from the

built-in garbage collector. A verbatim dump of all the patterns is included in a com-

ment section in the generated code, to provide debugging feedback when necessary.

An example of a dictionary file can be found in Appendix B.2.

The actual implementation of the API functions is generated in its own C file, ac-

companied by a header file containing the signatures of all exported API functions.

We show abridged snippets of the generated code. The header file is straightforward,

containing merely the opaque type definition, and the declarations of the functions

contained in the C file.

Opaque type definition Defining Bool to be a pointer to a non-existent type (in this

case struct Bool, hides the underlying ATerm representation from the point of

view of API users. Instances of Bool can safely be passed around by functions, but

any attempt to dereference such a pointer results in a compile time error.

typedef struct _Bool *Bool;

Term convertors These functions perform no real operation, but take care of the

type casting between the generic ATerm type and the more specific Bool. They are

needed as entry and exit points to type-safety when ATerm-Library functions such as

ATreadFromFile are used, which yield an ATerm.

Bool BoolFromTerm(ATerm t) { return (Bool)t; }

ATerm BoolToTerm(Bool arg) { return (ATerm)arg; }

For improved efficiency, these functions could easily be replaced by macros which

perform the exact same type cast. Unfortunately, this irrevocably kills type-safety,

because macros are expanded during the pre-processor phase, without any form of

type checking on the arguments of the macro.

Equality test Because ATerms are used as implementation, we get the trivial equality

check based on memory address comparison for free. We only need to provide a type-

safe wrapper around ATisEqual.

ATbool isEqualBool(Bool arg0, Bool arg1) {

return ATisEqual((ATerm)arg0, (ATerm)arg1);

}

As with the convertor functions, the equality function can be replaced by a macro

definition (with the same concerns about the loss of type-safety) for improved effi-

ciency.
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Validity test Whenever an ATerm is acquired from an external source (e.g. by read-

ing it from file) and is converted to Bool, programmers might like to assert that the

term satisfies one of the alternatives for Bool. After all, any valid ATerm will hap-

pily be parsed by ATreadFromFile and subsequent conversion by TermToBool

is done without any verification. The isValidBool function checks whether a given

Bool argument is indeed an instance of one of the correct alternatives.

ATbool isValidBool(Bool arg) {

if (isBoolTrue(arg)) { return ATtrue; }

else if (isBoolFalse(arg)) { return ATtrue; }

else if (isBoolNot(arg)) { return ATtrue; }

else if (isBoolAnd(arg)) { return ATtrue; }

else if (isBoolOr(arg)) { return ATtrue; }

return ATfalse;

}

As checking the alternatives is expensive, the conversion functions themselves do

not directly invoke isValidBool. Efficiency of the BoolToTerm function could

be traded for even more robustness, by making it refuse to convert any ATerm that does

not satisfy isValidBool.

Also note that the isBoolX functions perform a shallow match: they do not check

the arguments of the alternative they test. For example, isBoolAnd does not check if

its lhs and rhs are actually valid booleans. It merely tests if the term is an instance of

the pattern for the and alternative. It would be possible to generate code that performs

a deep match, again at the cost of a considerable efficiency hit.

Inspector Inspecting a Bool to see if it is an instance of a specific alternative in-

volves matching the argument against the pattern for that particular alternative. Be-

cause matching is expensive, the result of the most recent match is cached. This caching

approach seems limited, but is useful when multiple subterms of the same argument are

accessed. In these cases, sequences of getBoolX and setBoolY all reuse (cached)

inspection results.

ATbool isBoolTrue(Bool arg) {

static ATerm cached_arg = NULL;

static int last_gc = -1;

static ATbool cached_result;

assert(arg != NULL);

if (last_gc != ATgetGCCount() || (ATerm)arg != cached_arg) {

cached_arg = (ATerm)arg;

cached_result = ATmatchTerm((ATerm)arg, patternBoolTrue);

last_gc = ATgetGCCount();

}

return cached_result;

}

Note that the cached ATerm is deliberately not protected from garbage collection.

Doing so would result in all inspector functions holding on to references of ATerms
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that could not be collected. These terms are potentially very large and the memory

behaviour would become extremely unpredictable. We therefore opted for a solution

where caching results are only valid until the next garbage collection. This is done

by comparing the current garbage collection count with the same count at the time the

cached result was calculated.

Query accessor The query accessor checks if a given argument has a specific field.

It is implemented by checking if the argument is an instance of any of the alternatives

which has the required field.

ATbool hasBoolLhs(Bool arg) {

if (isBoolAnd(arg)) { return ATtrue; }

else if (isBoolOr(arg)) { return ATtrue; }

return ATfalse;

}

Get accessor The getter is implemented much like the query accessor. It inspects

the incoming argument to find out of which alternative it is an instance. Upon finding

the right alternative, it returns the intended subterm by directly peeking into the ATerm

representation.

If the production has but a single alternative, no testing is needed and the requested

subterm can be returned immediately.

Bool getBoolArg(Bool arg) {

return (Bool)

ATelementAt((ATermList)ATgetArgument((ATermAppl)arg, 1), 2);

}

If there are multiple alternatives, each is tested in turn, until a single alternative

remains, which must be the right one (since none of the other alternatives matched, and

we assume a valid instance of one of the alternative productions).

Bool getBoolLhs(Bool arg) {

if (isBoolAnd(arg)) {

return (Bool)

ATgetFirst((ATermList)ATgetArgument((ATermAppl)arg, 1));

}

else

return (Bool)

ATgetFirst((ATermList)ATgetArgument((ATermAppl)arg, 1));

}

An obvious optimization would be to detect if there are alternatives that have the

requested field at the same location in the underlying ATerm representation. In this

case, the isBoolAnd test is redundant, because both alternatives of Bool that have a

lhs, have it at the exact same position. The condensed version would look much like

the previous getBoolArg and would be much cheaper since it does not have to do

any matching:

Bool getBoolLhs(Bool arg) {

return (Bool)

ATgetFirst((ATermList)ATgetArgument((ATermAppl)arg, 1));

}
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Set accessor The implementation of the setter is again along the same path as the

getter and the inspector. The main issue here stems from the fact that ATerms are

immutable. Consequently, all setters need to be of a functional nature. This means

that they cannot update the ATerm in situ, but instead need to construct a new ATerm,

reflecting the desired change.

Bool setBoolLhs(Bool arg, Bool lhs) {

if (isBoolAnd(arg)) {

return (Bool)

ATsetArgument((ATermAppl)arg, (ATerm)

ATreplace((ATermList)

ATgetArgument((ATermAppl)arg, 1),

(ATerm)lhs, 0), 1);

}

else if (isBoolOr(arg)) {

return (Bool)

ATsetArgument((ATermAppl)arg, (ATerm)

ATreplace((ATermList)

ATgetArgument((ATermAppl)arg, 1),

(ATerm)lhs, 0), 1);

}

ATabort("Bool has no Lhs: %t\n", arg);

return (Bool)NULL;

}

As the construction of a new ATerm is expensive to begin with, the gain of elimi-

nating the test for one of the alternatives (as implemented in the getters) is minimal,

which is why that particular optimization is omitted here. If no match was found after

exhaustively testing all the alternatives, the operation is aborted.

3.5 Software engineering benefits in the Meta-Environ-

ment

Our main motivation to start this work has been the desire to make changes to AsFix,

the parse tree format used by our tools in the Meta-Environment. Of particular interest

is the dramatic size reduction (in terms of lines of code) of the various tools after

refactoring them to use the new APIs.

This apification process consisted of the following stages:

• Reverse engineering the actual interfaces (and the corresponding term represen-

tations) that were needed in the Meta-Environment. This resulted in three ADTs:

– A handwritten ADT for our parse tree format AsFix, closely matching the

structure of the parse trees as they were produced by our parser;

– An ADT for SDF, generated from our SDF definition of SDF;

– An ADT for ASF, generated from a SDF definition of ASF.
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As a result, we ended up with a specification for the main three formats used in

the Meta-Environment. The main purpose of these specifications is to provide

an authoritative description of the formats used, and to generate a consistent API

as described in this chapter.

• Replacing all direct, untyped ATerm-manipulations by typed calls to the gener-

ated API. In practice, this often amounted to replacing large sections of code by

concise snippets or even a single invocation of the API, clearly demonstrating the

transition to a higher level of abstraction. The fact that we now operate in a typed

domain means that we are able to effectively track type-related problems using

the C compiler. We were even able to locate and fix a number of severe bugs in

the original code that had not yet manifested themselves.

After the apification process was complete, we achieved a significantly higher level

of maintainability of the code. We are now able to implement changes in the term

representation, which was one of our major goals. Moreover the higher level of ab-

straction allows us to implement new functionality which would otherwise be much

more time consuming and error prone. For example, it allowed us to quickly write an

ASF-checker which traverses ASF-equations looking for occurences of uninstantiated

variables.

In accordance with these subjective observations that the code has improved, is

the Lines of Code (LOC) metric. Comparing versions just before and immediately

after apification, we found out that we had been able to eliminate almost half of the

(manually written) code. The LOC metrics have been summarized in Table 3.1.

The components are: the runtime environment of the ASF+SDF compiler

(asc-runtime), the parse tree library (libasfix) and utilities (asfix-tools),

the actual ASF+SDF compiler (asf+sdf compiler), a collection of ASF manipu-

lation utilities (asf-tools), a structure editor for editing ASF+SDF speci-

fications, an evaluator for evaluating (rather than compiling) ASF equations, and fi-

nally a repository for parse tables and parsed ASF+SDF specifications (module-db).

Component Before (LOC) After (LOC) Reduction (%)

asc-runtime 2207 1752 21

libasfix 10419 2077 80

asfix-tools 466 603 -29

asf+sdf compiler 1866 1138 39

asf-tools 1303 589 55

structure editor 2861 1946 32

evaluator 4241 4009 5

module-db 1809 1244 31

Total 25172 13358 47

Table 3.1: Code Reduction

Understandably the biggest gain was achieved in libasfix, because most of this

library is now generated from the SDF definition of SDF itself. Only some high level

functionality that could not be generated remains in this library.
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3.6 Conclusions

Generating access libraries from SDF definitions offers a simple, consistent way of

developing and maintaining type-safe, efficient data types.

The application in the Meta-Environment of the techniques described in this chap-

ter resulted in the elimination of a significant portion of handcrafted code. The effect of

this elimination is amplified by the inherent nature of the affected code portions: hard

to read and write, difficult to maintain, and in general very error prone to handle at all.

The result of our generational approach is a type-safe replacement for manually

crafted libraries that provide access to compound data types implemented by ATerms.

Even though several optimization opportunities have not yet been fully explored, the

efficiency of the generated library is already comparable to its manually written prede-

cessor.

More generically speaking, the approach presented in this chapter is applicable

in situations where type safety is needed at a different (higher) abstraction level than

is offered by the underlying data format. This is especially true in situations where

representing the data at the higher abstraction level directly is unfeasible, e.g. due to

performance issues.

3.7 Discussion

Although this chapter shows how API generation was used in a very specific context

(generating ATerm manipulation code from an SDF specification), many of the issues

encountered are not ATerm or SDF specific at all. In fact any generic data exchange

formalism potentially suffers from the problem that generic manipulation functions are

inherently type unsafe. For instance if we look at XML, DOM based libraries for ma-

nipulating XML in a generic way suffer from many of the same problems as the ATerm

library. Recent techniques like XML data binding (discussed in Section 3.1.1) take the

same approach as we do in this chapter by generating accessor and manipulation func-

tions based on a signature description like XML schemas or DTDs.

In retrospect, one might ask why we ever developed code using direct ATerm ma-

nipulations in the first place. The answer lies partially in the power and attractiveness

of working with ATerms. Because it is so easy to write a tool that uses simple ATerm

patterns, several developers quickly started writing their own applications. Later, when

some of the tools demonstrated a need for speed, parts of the now grown-but-not-

restructured tools were rewritten to use the more efficient level two interface instead of

the matching interface, mostly in the form of ad hoc restructuring, driven by the output

of the gprof profiler. When prompted to implement changes in our parse tree format,

we realized the era of direct ATerm manipulation had to end, and we had to find a struc-

tural solution to representing data types by ATerms, or we would be unable to maintain

our toolset. Fortunately, the road of generating the access library as described in this

chapter works very well in the Meta-Environment. Since the introduction of what has

become known as APIGEN, we have been able to effectuate considerable changes in

AsFix, and we have gained the ability to experiment with the format, and quickly see

the results working in our tools.
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3.8 Future work

The future work of this project falls into two categories: increasing the efficiency of

the generated code and generalizing our approach to a wider application area.

Obvious optimizations include inlining (some of) the generated functions. By

rewriting the functions as C macros, the overhead of a function call is removed. As

noted before, the cost of this efficiency gain is that some type-safety is lost. This is

due to the fact that C macro expansion is performed by a pre-compiler, which does

not have access to type information and thus performs no type checks on macro argu-

ments. A typical approach would be to generate type-safe functions in the development

stage, and switch to the use of generated efficient macros for production code. This ap-

proach is comparable to the use of assert macro’s that are completely eliminated in

production versions of the software.

More interesting, however, are optimizations that take into account information

about the structure of the underlying ATerm representation. During the generation

phase information about common subterms and similarity between alternatives is as-

sembled, which could be exploited to generate more efficient matching and selection

code than the current ATmatch call, which is rather inefficient.

In a way the project described in this chapter can be seen as a case study in genera-

tive programming as described in Section 3.1.1. We want to extend this case study into

a more generic approach. This approach will be based on a modular generic generator

that takes a set of abstract data definitions and generates code for them. The code gener-

ator must be extensible with domain specific “modules” to generate extra functionality.

These modules should not only be able to add extra functions when needed, but they

should also be able to use Aspect Oriented Programming [84] to add functionality to

functions that are generated by other modules.

For example, one of the more basic modules (the “accessor” module) could gener-

ate the actual data representation (for instance simple attributes in an object oriented

setting) and accessors on this representation, while another module could add transpar-

ent persistency using a standard relational database by instrumenting all accessors.

The most important challenge in such an approach would be to create an environ-

ment where the threshold to create new generator modules is extremely low. In the

ideal situation software developers could add new modules to the generator just as easy

as to add new modules directly to the software system they are building.

Availability

Users interested in the more technical details (i.e. the actual implementation) or who

would like to deploy the tools we described, are encouraged to download the latest

distribution from:

http://www.cwi.nl/projects/MetaEnv/apigen
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C H A P T E R 4

ToolBus: the Next

Generation

4.1 Generic Language Technology

Our primary interest is generic language technology that aims at the rapid construction

of tools for a wide variety of programming and application languages. Its central notion

is a language definition of some programming or application language.

The common methodology is that a language is identified in a given domain, that

relevant aspects of that language are formally defined and that desired tools are gen-

erated on the basis of this language definition. This generative approach is illustrated

in Fig. 4.1. Using a definition for some language L as starting point, a generator can

produce a range of tools for editing, manipulating, checking or executing L programs.

Language aspects have to be defined, analyzed, and used to generate appropriate

tooling such as compilers, interpreters, type checkers, syntax-directed editors, debug-

gers, partial evaluators, test case generators, documentation generators, and more.

Language definitions are used, on a daily basis, in application areas as disparate as

Cobol renovation, Java refactoring, smart card verification and in application genera-

tion for domains including finance, industrial automation and software engineering. In

the case of Cobol renovation, the language in question is Cobol and those aspects that

are relevant for renovation have to be formalized. In the case of application generation,

the language in question is probably new and has to be designed from scratch.

4.1.1 One Realization: the ASF+SDF Meta-Environment

The ASF+SDF Meta-Environment [86, 24] is an incarnation of the approach just de-

scribed and covers both the interactive development of language definitions and the

generation of tools based on these language definitions.

In this chapter we are primarily interested in the software engineering aspects of

building such a system. Starting point is the ASF+SDF Meta-Environment as we had

completed it in the beginning of the 1990’s. This was a monolithic 200 KLOC Lisp

program that was hard to maintain. It had all the traits of a legacy system and was the

primary motivation to enter the area of system and software renovation.
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Generator

Formal definition

of language L

Dedicated environment for

editing, manipulating and executing

programsL

Figure 4.1: From language definition to generated programming environment

4.1.2 Towards a Component Based Architecture

We give a brief time line of the efforts to transform the old, monolithic, implementation

of the Meta-Environment into a well-structured, component-based, implementation.

In 1992, first, unsuccessful, experiments were carried out to decompose the system

into separate parts [8]. The idea was to separate the user-interface and the text editor

from the rest of the system. The user-interface was completely re-implemented as

a separate component and as text editor we re-used Emacs. In hindsight, we were

unaware of the fact that we made the transition from a completely sequential system

to a system with several concurrent components. Unavoidably, we encountered hard to

explain deadlocks and race conditions.

In 1993, a next step was to write a formal specification of the desired system behav-

ior [122] using PSF, a specification language based on process algebra and algebraic

specifications [96]. Simulation of this specification unveiled other, not yet observed,

deadlocks. Although this was clearly an improvement over the existing situation, this

specification approach also had its limitations and drawbacks:

• The specification lacked generality. It would, for instance, have been a major

change to add the description of a new component.

• The effort to write the PSF specification was significant and there was no way to

derive an actual implementation from it.

In 1994, the first version of the ToolBus was completed [11, 13]. The key idea

was to organize a system along the lines of a software bus and to make this bus pro-

grammable by way of a scripting language (TSCRIPT) that was based on ACP (Algebra

of Communicating Processes, [16]). Another idea was to use a uniform data format

(called ToolBus terms) to exchange data between ToolBus and tools. At the implemen-

tation level, TSCRIPTs were executed by an interpreter and communication between
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tools and ToolBus took place using TCP/IP sockets. In this way, multi-language, dis-

tributed, applications could be built with significantly less effort than using plain C and

sockets.

Based on various experiments [104, 51, 93, 56], in 1995 a new version of the Tool-

Bus was designed and implemented: the Discrete Time ToolBus [12, 14, 15]. Its main

innovations were primitives for expressing timing considerations (delay, timeout) and

for operating on a limited set of built-in data-types (booleans, integers, reals, lists).

The Discrete Time ToolBus has been used for the restructuring of the ASF+SDF Meta-

Environment [27]. A first version was released in 2001 [24].

In the meantime, the exchange format has also evolved from the ToolBus terms

mentioned above to ATerms [30]: a term format that supports maximal subterm sharing

and a very concise, sharing preserving, binary exchange format. ATerms decrease

memory usage thanks to sharing and they permit a very fast equality test since structural

equality can be replaced by pointer equality thanks to the maximal subterm sharing.

Another line of development is the ToolBus Integrated Debugging Environment

(TIDE) described in [105].

Today, beginning 2003, it turns out that the original software engineering goals

that triggered the development of the ToolBus have been achieved and that the Meta-

Environment can now be even further stretched than anticipated [36]. Therefore, it is

time for some reflection. What have we learned from this major renovation project and

what are the implications for the ToolBus design and implementation?

4.1.3 Plan of this Chapter

In Sect. 4.2 we discuss component coordination, representation and computation

and introduce the ToolBus: our component coordination architecture. Following, in

Sect. 4.3, we demonstrate some of the ToolBus-features by means of an example. In

Sect. 4.4 we show how we used the ToolBus in the ASF+SDF Meta Environment to

migrate from a monolithic to a distributed architecture. Then, in Sect. 4.5 we elaborate

on the various issues that we would like to tackle in a next generation of the ToolBus.

We conclude the chapter with an overview of the current status of our current imple-

mentation of this next generation ToolBus (Sect. 4.6) and some concluding remarks

(Sect. 4.7).

4.2 The ToolBus Architecture

In [65] it was advocated that the overall architecture of a software system can be im-

proved by separating coordination from computation. In addition to this, we also dis-

tinguish representation and use the following definitions:

• Coordination: the way in which program and system parts interact (using proce-

dure calls, remote method invocation, middleware, and others).

• Representation: language and machine neutral data exchanged between compo-

nents.
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Coordination

Single Component Single Component

Representation

Computation

Representation

Computation

Figure 4.2: Separating coordination from computation

• Computation: program code that carries out a specialized task.

The assumption is now that a rigorous separation of coordination, representation and

computation leads to flexible and reusable systems. This subdivision is sketched in

Fig. 4.2. Our ToolBus approach follows this paradigm and is illustrated in Fig. 4.3.

The goal of the ToolBus is to integrate tools written in different languages running

on different machines. This is achieved by means of a programmable software bus.

The ToolBus coordinates the cooperation of a number of tools. This cooperation is

described by a TSCRIPT that runs inside the ToolBus. The result is a set of concurrent

processes inside the ToolBus that can communicate with each other and with the tools.

Tools can be written in any language and can run on different machines. They exchange

data by way of ATerms.

A typical cooperation scenario is illustrated in Fig. 4.4. A user-interface (UI) and

a database (DB) are combined in an application. Pushing a button in the user-interface

leads to a database action and the result is displayed in the user-interface. In a tradi-

tional approach, the database action is directly connected to the user-interface button

by means of a call-back function. This implies that the user-interface needs some

knowledge about the database tool and vice versa. In the ToolBus approach the two

components are completely decoupled: pushing the button only leads to an event that is

handled by some process in the ToolBus. This process routes the event to the database

tool (likely via some intermediary process) and gets the answer back via the inverse

route. This implies that the configuration knowledge is now completely localized in

the TSCRIPT and that UI and DB do not even know about each others existence.

The primitives that can be used in TSCRIPTs are listed in Table 4.1.

4.3 An Example: the Address Book Service

To make the scenario from Fig. 4.4 more concrete, we describe the construction of

an address book holding (name, address) pairs. Typical uses include creating a new
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Coordination

Representation

Computation

ToolBus

Tools

ATerms ATerms

Figure 4.3: The ToolBus architecture

UI

UI and DB are

completely
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Configuration knowledge

only in ToolBus script

DB

DatabaseUser−interface

ToolBus

Figure 4.4: A typical cooperation scenario
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Primitive Description

delta inaction (“deadlock”)

+ choice between two alternatives (P1 or P2)

. sequential composition (P1 followed by P2)

* iteration (zero or more times P1 followed by P2)

create process creation

snd-msg send a message (binary, synchronous)

rec-msg receive a message (binary, synchronous)

snd-note send a note (broadcast, asynchronous)

rec-note receive a note (asynchronous)

no-note no notes available for process

subscribe subscribe to notes

unsubscribe unsubscribe from notes

snd-eval send evaluation request to tool

rec-value receive a value from a tool

snd-do send request to tool (no return value)

rec-event receive event from tool

snd-ack-event acknowledge a previous event from a tool

if . . . then . . . fi guarded command

if . . . then . . . else . . . fi conditional

expressions

|| communication-free merge (parallel composition)

let ... in ... endlet local variables

:= assignment

delay relative time delay

abs-delay absolute time delay

timeout relative timeout

abs-timeout absolute timeout

rec-connect receive a connection request from a tool

rec-disconnect receive a disconnection request from a tool

execute execute a tool

snd-terminate terminate the execution of a tool

shutdown terminate ToolBus

attach-monitor attach a monitoring tool to a process

detach-monitor detach a monitoring tool from a process

Table 4.1: Overview of ToolBus primitives
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address, finding an address based on the name, etc. First we consider some aspects

of the User Interface. An instance of the UI connects to the ToolBus and during the

subsequent session, the user can:

create a new entry in the address book database;

delete an existing entry from the database;

search for an entry in the database;

update an existing entry in the database.

Each of these use cases can be described as a ToolBus process which, together with

a process that explains how these use cases interact, form the ToolBus script describing

our Address Book Service.

4.3.1 ToolBus Processes for the Address Book Service

The ADDRESSBOOK process tells the ToolBus that an instance of our

address-book tool is to be executed, followed by a loop which invokes one of the

processes CREATE, DELETE, SEARCH or UPDATE in each iteration. This construc-

tion, using the + operator ensures that at this level, the sub-processes can be regarded

atomically. This means that for example no DELETE will happen during an UPDATE.

process ADDRESSBOOK is

let AB : address-book

in

execute(address-book, AB?) .

(

CREATE(AB) + DELETE(AB) + SEARCH(AB) + UPDATE(AB)

) * delta

endlet

The operating system level details of starting the tool are defined in a separate

section (one for each tool if multiple tools are involved):

tool address-book is {

command = "java-adapter -class AddressBookService"

}

In this case, the ToolBus is told that our tool is written in Java, and that the main

class to be started is called AddressBookService.

The CREATE process can be described as a ToolBus process as follows:

process CREATE(AB : address-book) is

let AID : int

in

rec-msg(create-address) .

snd-eval(AB, create-entry) .

rec-value(AB, new-entry(AID?)) .

snd-msg(address-created(AID))

endlet
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The request to create a new address book entry is received and delegated to the tool,

so it can update its state. In this case, our tool yields a unique id for reference to the

new entry, which is returned as the result of the creation message. Note that commu-

nication between processes involves the matching of the arguments of snd-msg and

rec-msg. The same holds for the communication between a process and a tool using

snd-eval and rec-value. In all these cases, a result variable of the form V? gets

a value assigned as the result of a successful match.

The DELETE process differs only from the CREATE process in that it does not need
a return value:

...

rec-msg(delete-address(AID?) .

snd-do(AB, delete-entry(AID)) .

snd-msg(address-deleted(AID))

...

The SEARCH process in our example implements but a single query: finding an ad-

dress book entry by name. It shows how different results from a tool-evaluation request

can be processed in much the same way that different messages are handled. Upon re-

ceiving a find-by-name message from another process, this request is delegated to

the tool. Depending on whether or not the entry exists in the database, the tool replies

with a found or a not-found message, respectively. This result is then propagated

to the process that sent the initial find-by-name message.

process SEARCH(AB : address-book) is

let

Aid : int,

Name : str

in

rec-msg(find-by-name(Name?)) .

snd-eval(AB, find-by-name(Name)) .

(

rec-value(AB, found(Aid?)) .

snd-msg(found(Aid))

+

rec-value(AB, not-found) .

snd-msg(not-found)

)

endlet

The UPDATE process is more interesting. It shows that each update of an address

entry is guarded. A process wanting to update an entry first has to announce this fact

by sending an update-entry message, before it can do one or more updates to

the entry. It then finishes the update by sending an update-entry-done message.

Because matching snd-msg and rec-msg messages are connected synchronously, it

is not possible for one update transaction to interfere with another. After a sender and

receiver of the update-entry message are connected, all other processes that want

to send a update-entry message have to wait until the receiving process is ready

to receive an update-entry message again. This message pair thus acts as a very
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primitive locking scheme. More elaborate schemes are very well possible, but are not

discussed in this chapter. Summarizing, the UPDATE process shows that outside the

implementation of the address book service, we can enforce the order in which certain

parts of the service are invoked, as well as mutual exclusion of some of its sections.

process UPDATE(AB : address-book) is

let

AID : int,

Name : str,

Address : str

in

rec-msg(update-entry(AID?)) .

( rec-msg(set-name(Name?)) .

snd-do(AB, set-name(AID, Name))

+ rec-msg(set-address(Address?)) .

snd-do(AB, set-address(AID, Address))

) *
rec-msg(update-entry-done(AID))

endlet

4.3.2 ToolBus Process for the User Interface

Because users can connect at any time to the ToolBus to start a session with the Address

Book Service, the ToolBus itself does not execute instances of the UI (as it did with

the address book tool). Instead UITool instances can connect, make zero or more

requests to the service, and disconnect at their convenience. A ui tool is declared to

exist, but no operating system level details are provided. The following definition of the

UI process shows how UI requests for the creation of a new entry and a name-change

can be realized:

tool ui is { /* the ToolBus does not execute ui-instances */ }

process UI is

let

UITool : ui,

AID : int,

Name : str

in

rec-connect(UITool?) .

(

rec-event(UITool, create-address) .

snd-msg(create-address) .

rec-msg(address-created) .

snd-ack-event(UITool, create-address)

+

rec-event(UITool, update-name(AID?, Name?)) .

snd-msg(update-entry(AID)) .

snd-msg(set-name(Name)) .

snd-msg(update-entry-done(AID)) .

snd-ack-event(UITool, update-name(AID, Name))

+

... /* more UI requests */

)

* rec-disconnect(UITool)

endlet
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Figure 4.5: Architecture of the ASF+SDF Meta-Environment

Language KLOC† Generated KLOC Total KLOC

ASF+SDF 12 170 (C)

C 80††

Java, Tcl/Tk 5

Makefiles, etc 5

TSCRIPT 5

Total LOC: 107 170 277

TSCRIPT 4.6% 1.8%
† Kilo Lines of Code excluding third party code such as emacs, dot, and the like.

†† This includes 10 KLOC (C code) for the ToolBus implementation itself.

Table 4.2: Facts concerning implementation languages

4.4 Application to the ASF+SDF Meta-Environment

As explained in Sect. 4.1.2, the ToolBus has been used to restructure the ASF+SDF

Meta-Environment. It consists of a cooperation of 27 tools ranging from a user-

interface, graph browser, various editors, compiler and interpreter, to a parser generator

and a repository for parse trees. A simplified view is shown in Fig. 4.5.

Our insight can be further increased by considering some statistics. Table 4.2

shows the relative sizes of the various implementation languages used in the Meta-

Environment. In the column language the various languages are listed. In column

KLOC the size (in Kilo Lines Of Code) is given for each language. The result is 107

KLOC for the whole system of which 4.6% are TSCRIPTs. If we consider the fact that

ASF+SDF specifications are compiled to C code, another view is possible as well: 12

KLOC of ASF+SDF generates 170 KLOC of C code. Taking this generated code into

account, the total size of the whole system amounts to 277 KLOC of which 1.8% are
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Primitive Number of occurrences

process definitions 104

tool definitions 27

. (sequential composition) 4343

+ (choice) 341

* (iteration) 243

|| (parallel composition) 3

snd-msg 555

rec-msg 541

snd-note 100

rec-note 24

snd-do/snd-eval 220

rec-event 56

create 58

Table 4.3: Facts concerning TSCRIPT primitives

TSCRIPTs. This is compatible with the expectation that TSCRIPTs are relatively small

and form high-level “glue” to connect much larger components.

Part of the generated C code is currently done by ApiGen [79]. This is an API

generator which takes an SDF grammar as input and generates a C library which gives

type-safe access to the underlying ATerm representation of the parse trees over this

grammar.

Another conclusion from these facts is that low-level information for building the

software (makefiles and configuration scripts) are of the same size as the high level

TSCRIPTs. This points into the direction that the level of these build scripts should be

raised. This conclusion will, however, not be further explored in this chapter.

Another view is given in Table 4.3 where the frequency of occurrence of TSCRIPT

primitives is shown. Clearly, sequential composition (.) is the dominant operator and

sending/receiving (snd-msg, rec-msg) messages is the dominant communication

mechanism, followed by communication with tools (snd-do, snd-eval). It may be

surprising that parallel composition (||) is used so infrequently. However, one should

be aware that at the top level all ToolBus processes run concurrently and that || is only

used for explicit concurrency inside a process. The level of concurrency is therefore

approximately 100 (104 process definitions and 3 explicit || operators).

Empirical evidence shows that:

• The ToolBus-based version of the ASF+SDF Meta-Environment is more flexible

as illustrated by the fact that clones of the Meta-Environment start to appear

for other languages than ASF+SDF. Examples are Action Semantics [100] and

Elan [38].

• Various components of the ASF+SDF Meta-Environment are being reused in

other projects [51, 19].
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4.5 Issues in a Next-Generation ToolBus

The ToolBus has been used in various applications of which the Meta-Environment is

by far the largest. Some of the questions posed by our users and ourselves are:

• I find it difficult to see which messages are requests and which are replies; can

you provide support for this? See Sect. 4.5.1.

• If a tool crashes, what is the best way to describe the recovery in the TSCRIPT?

See Sect. 4.5.2.

• I have huge data values that are exchanged between tools and the ToolBus be-

comes a data bottleneck; can you improve this? See Sect. 4.5.3.

• The ToolBus and tools are running as separate tasks of the operating systems.

Would it not be more efficient to run ToolBus and tools in a single task? See

Sect. 4.6.

4.5.1 Undisciplined Message Patterns

The classical pattern of a remote procedure call is shown in Fig. 4.6: a caller performs

a call to a callee. During the call the caller suspends execution and the callee executes

until it has computed a reply. At that point in time, the caller continues its execution.

Caller suspends

execution

Call and reply

occur pairwise

Caller Callee

reply

call

Figure 4.6: Communication pattern for remote procedure call

Compare this simple situation with general message communication as shown in

Fig. 4.7: the caller continues execution after sending a message msg1 to Callee1 and

may even send a message msg2 to Callee2. At a certain point in time Callee2 may

send message msg3 back to Caller. In this case, the three parties involved continue

their execution while messages are being exchanged and there is no obvious pairing of

calls and replies.
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No call/reply

regime
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msg1

msg3
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Figure 4.7: Communication pattern for general messages

In the ToolBus case, a snd-msg and a rec-msg can interact with each other if

their arguments match. A typical sequence is:

Process A: Process B:

snd-msg(calculate(E)) . rec-msg(calculate(E?)) .

... other actions ... ... actions that compute value V ...

rec-msg(value(E, V?)) snd-msg(value(E, V))

What we see here is that a form of call/reply regime is encoded in the messages: process

B returns the value V that it has computed as snd-msg(value(E, V)). The E is

completely redundant but serves as identification for process A to which message this

is an answer.

The call/reply regime is thus implicitly encoded in messages. This makes error

handling harder (which reply did not come?) and makes the TSCRIPTs harder to under-

stand. This is particularly so, since unstructured combinations of snd-msg/rec-msg

and sequential composition, choice, iteration and parallel composition are allowed.

The only solution for the above problems is to limit the occurrences of snd-msg or

rec-msg in such a way that a form of very general call/reply regime is enforced. Our

approach is to syntactically enforce that snd-msg/rec-msg or rec-msg/snd-msg

may only occur in (possibly nested) pairs and that in between arbitrary operations are

allowed. In fact, the matching snd-msg or rec-msg may be an arbitrary expression

provided that all its alternatives begin with a matching snd-msg or rec-msg.

We replace thus

snd-msg(req(E)) . arbitrary process expression .

rec-msg(ans(A?))

by the syntactic construct

snd-msg(req(E)) { arbitrary process expression }
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rec-msg(ans(A?))

and also allow more general cases like:

snd-msg(req(E)) { arbitrary process expression }
( rec-msg(ans(A?)) + rec-msg(error(M?) )

It is an interesting property of Process Algebra that every process expression can

be normalized to a so-called action prefix form: a list of choices where each choice

starts with an atomic action. An action prefix form has the following structure: a1.P1

+ a2.P2 +...+ an.Pn. Using this property we can formulate the most general

constraint that we impose on occurrences of snd-msg and rec-msg. Consider

P1 { Q } P2 and let P1’ and P2’ be the action prefix forms of P1 and P2, respec-

tively. Our requirement is now that each choice in P1’ starts with a snd-msg and

each choice in P2’ with a rec-msg, or vice versa. Note that this constraint can be

checked statically.

4.5.2 Exception Handling

Exception handling is notorious for its complexity and impact on the structure of pro-

gram code. The mainstream exception handling approach as used in, for instance, Java

associates one or more exception handlers with a specific method call. If the call com-

pletes successfully, the handlers are ignored. If the call raises an exception, it is checked

whether this exception can be handled locally by one of the given handlers. If not, the

exception is propagated to the caller of the current code. This model does, however,

not work well in a setting where multiple processes are active and the occurrence of an

exception may require recovery in several processes.

Local Exception Handling We start with the simpler case of local error handling

and introduce the disrupt operator (>>) proposed in LOTOS [43]. A process algebra

variant of this operator is described in [55]. It has the form P >> E, where P describes

the normal processing and E the exceptional processing. It adds the exception E as

alternative to each atomic action in P. If the action prefix form of P is

a1.P1 + a2.P2 + . . . + an.Pn

then

P >> E ≡ (a1 +E).(P1 >>E) + . . . + (an +E).(Pn >>E)

Global Exception Handling Global exception handling in distributed systems is

a very well-studied subject from the perspective of crash recovery and transaction

management in distributed databases. An overview of rollback-recovery protocols in

message-passing systems is, for instance, given in [57].
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In the context of system reliability, the notion of a recovery block has been intro-

duced by Randell [109]. Its purpose was to provide several alternative algorithms for

doing the same computation. Upon completion of one algorithm, an acceptance test

is made. If the test succeeds, the program proceeds normally, but if it fails a rollback

is made to the system state before the algorithm was started and one of the alternative

algorithms is tried. In [85] this idea is applied to backtracking in string processing

languages. It turns out that the preservation of the system state can be done efficiently

by only saving updates to the state after the last recovery point.

Recovery blocks also form the basis for Coordinated Atomic Actions described

in [130]. Recovery blocks are intended for the error recovery in a single process. They

can be generalized to conversations between more than one process: several processes

can enter a conversation at different times but they can only leave it simultaneously,

when all participating processes satisfy their acceptance test. In case one participant

fails to pass its test, each participant is rolled back to the state when it entered the

conversation.

We are currently studying this model since it can be fit easily in the ToolBus frame-

work and seems to solve our problem of global exception handling. It is helpful that

a backtrack operator similar to the one described in [85] has also been described for

Process Algebra [17]. What remains to be studied is how the recovery of tools has to

be organized. Most likely, we will add a limited undo request to the tool interface to

recover from the last few operations carried out by a tool.

4.5.3 Call-By-Value Versus Call-By-Reference

Background The concepts of call-by-reference and call-by-value are well-known in

programming languages. They describe how an actual parameter value is transmitted

from a procedure call to the body of the called procedure. In the case of call-by-

reference, a pointer to the parameter is transmitted to the body. Call-by-reference is

efficient (only a pointer has to be transmitted) and the parameter value can be changed

during execution of the procedure body (via the pointer). In the case of call-by-value,

a physical copy of the parameter is transmitted to the procedure body. Call-by value is

less efficient for large values and does not allow the called procedure to make changes

to the parameter value in the calling procedure.

These considerations also apply to value transmissions in a distributed setting, with

the added complication that values can be accessed or modified by more than one party.

Call by reference (Fig. 4.8) is efficient for infrequent access or update. It is the preva-

lent mechanism in, for instance, CORBA [49]. However, uncontrolled modifications

by different parties can lead to disaster.

Call-by-value (Fig. 4.9) is inefficient for large values and any sharing between calls

is lost. To us, this is of particular interest, because we need to preserve sharing in

huge parse trees. In the case of Java RMI [112], value transmission is achieved via

serialization and works only for communication with other Java components. Using

IIOP [103] communication with non-Java components is possible.

Current ToolBus approach Currently, the ToolBus provides a transport mechanism

based on call-by-value as shown in Fig. 4.10(a). It is transparent since the transmitted
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Component 1 Component 2 Component 3

Valueref ref

Figure 4.8: Call-by-reference in a distributed application

Value Value

Component 1 Component 2

Serialization

Figure 4.9: Call-by-value in a (Java-based) distributed application

values are ATerms (see Sect. 4.1.2) that can be exchanged with components written in

any language. Since pure values are exchanged, there is no need for distributed garbage

collection.

Note that the call-by-reference model can easily be mimicked in the ToolBus. For

instance, one tool can maintain a shared database and can communicate with other

tools using record keys and field names so that only the values of record fields have

to be exchanged (as opposed to complete records or even the complete database). In

this way the access control to the shared database can be spelled out in detail and

concurrency conflicts can be avoided. This solves one of the major disadvantages of

the pure call-by-reference model in a distributed environment.

The downside is, however, that the ToolBus becomes a data bottleneck when huge

values really have to be transmitted between tools. Currently, two workarounds are

used. A first workaround is to get temporary relief by sending compressed values

rather than the values themselves. A second workaround is to store the large value in

the filesystem and to send a file name rather than the file itself. It does scale, but it also

creates an additional inter-tool dependency and assumes that both tools have access to

the same shared file system.

We will now first discuss how related frameworks handle call-by-reference and then

we come back to implications for the ToolBus design. In particular, we will discuss

channel-based transmission as already shown in Fig. 4.10(b).

4.5.4 Related Frameworks: Java RMI, RMI-IIOP and Java IDL

Given our needs and desires for a next generation ToolBus it is interesting to see what

other solutions are applied in similar projects. In this section, we briefly look at three

related mechanisms:

• Java Remote Method Invocation (RMI) which connects distributed objects writ-

ten in Java;

88



SECTION 4.5 Issues in a Next-Generation ToolBus

ToolBus

Tools

(a) (b)

Figure 4.10: Value-based (a) versus channel-based (b) transmission in the ToolBus

• Java RMI over Internet Inter-ORB Protocol (IIOP) which is like RMI, but uses

IIOP as the underlying protocol;

• Java IDL which connects Java implementations of CORBA interfaces.

Java RMI Java Remote Method Invocation is similar to the ToolBus architecture in

the sense that it connects different tools, possibly running on different machines. It

differs from the ToolBus setting because it is strictly Java based: only components

written in Java can communicate via RMI.

For components to work together in RMI, first a remote interface is established.

This is a Java interface that has a “real” implementation in the tool (or server) and a

“stub” implementation on the client sides (Fig. 4.11). The interface is written by the

programmer as opposed to the generated interfaces in a ToolBus setting where they are

derived from the communication patterns found in the ToolBus script. The stubs in the

RMI setting are then generated from this Java interface using rmic: the RMI compiler.

Stubs act as a client-side proxy, delegating the method call via the RMI system to the

server object. In RMI, any object that implements a remote interface is called a remote

object.

In RMI, arguments to or return values from remote methods can be primitive data

(e.g. int), remote objects, or serializable objects. In Java, an object is said to be seri-

alizable if it implements the java.util.Serializable interface. Both primitive

data and serializable objects are passed by value using Java’s object serialization. Re-

mote objects are essentially passed by reference. This means that changes to them are

actually performed on the server, and updates become available to all clients. Only the

behavior that was defined in the remote interface is available to the clients.

RMI programmers should be aware of the fact that any parameters, return values

and exceptions that are not remote objects are passed by value. This makes it hard to

understand when looking at a system of RMI objects exactly which method calls will
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Figure 4.11: Client-server model in RMI framework.

result in a local (i.e. client side) state change, and which will have global (server side)

effect.

Consider, again, our address book example. If the AddressBookService is imple-

mented as a remote object in RMI, then client-side invocations of the setAddress

method will cause a global update. If, on the other hand, the AddressBookEntries are

made serializable and instances of this class are returned as the result of a query to the

AddressBookService, then updates on these instances will have a local state change

only.

Finally, before two RMI components can connect, the server side needs to regis-

ter itself with an rmiregistry, after which the client needs to explicitly obtain a

reference to the (remote) server object.

Java RMI over IIOP By making RMI programs conform to some restrictions, they

can be made available over the Internet Inter-ORB Protocol (IIOP). This means that

functionality offered by the RMI program can be made available to CORBA clients

written in any (CORBA supported) language. The restrictions are mostly namespace

oriented: programmers need to take special care not to use certain names that might

collide with CORBA generated names, but some reservations should also be made

regarding sharing preservation of object references. References to objects that are equal

according to the == operator in one component, need not necessarily be equal in a

remote component. Instead the equals method should be used to discern equality.

RMI over IIOP is best used when combining several Java tools for which the pro-

grammer would like to use RMI, and some tools written in another CORBA-supported

language need to use (some of) the services provided by the Java tools. The compo-

nent’s interface is established by writing a Java interface, just as in plain RMI.

Java IDL Apart from Java RMI, which is optimized for connecting components that

are all written in Java, there is also a connection from Java to CORBA using the Java

Interface Definition Language (IDL). This alternative to Java RMI is for Java program-

mers who want to program in the Java programming language, based on interfaces

defined in the CORBA Interface Definition Language.
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ToolBus RMI RMI-IIOP Java IDL

Architecture Component Client Client Client

coordination Server Client Server

Interface TSCRIPT Java Interface Java Interface IDL

GC yes yes no no

parameters / by-value local: by-value local: by-value depends on

return values remote: by-ref remote: by-ref signature

language any with only Java CORBA objects if any with

TB adapter interface in Java IDL binding

component yes no no no

coordination

Table 4.4: Related architectures: a feature overview.

Using this bridge, it becomes possible to let Java components communicate with

CORBA objects written in any language that has Interface Definition Language (IDL)

mappings.

Instead of writing a Java interface as is done in RMI, in Java IDL the definition

is written in IDL: a special purpose interface language used as the base for CORBA

implementations. This IDL definition is then used to generate the necessary stubs

(client side proxies to delegate method invocations to the server) and skeletons, holder

and helper classes (server side classes that hide low-level CORBA details).

Feature summary Table 4.4 shows some of the similarities and differences in Tool-

Bus, RMI, RMI-IIOP and Java IDL.

• RMI, RMI-IIOP and Java IDL make an explicit distinction between client and

server sides of a set of cooperating components. In the ToolBus setting all com-

ponents are considered equal (and none are more equal than others).

• In RMI and RMI-IIOP, the programmer writes a Java interface which describes

the component’s incoming and outgoing method signature, from which stubs

and skeletons are generated. In Java IDL a CORBA interface is written. In the

ToolBus setting, these signatures are generated from the ToolBus script which

describes much more of the component’s behavior in terms of method call inter-

action, rather than just method signatures.

• The ToolBus takes care of garbage collection of the ATerms that are used to

represent data as it is sent from one component to another. RMI allows program-

mers access to Java’s Distributed Garbage Collection API. In RMI-IIOP and Java

IDL however, this is not possible, because the underlying CORBA architecture

is used, which does not support (distributed) GC, but places this burden entirely

on the developer.

• In the ToolBus all data is sent by-value. RMI and RMI-IIOP use both pass-by-

value and pass-by-reference, depending on whether the relevant data is serializ-

able (it is a primitive type, or it implements Serializable) or is a remote
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object. In Java IDL the components abide by IDL prescribed interfaces. De-

termination of whether a parameter is to be passed by-value or by-reference is

made by examination of the parameter’s formal type (i.e. in the IDL signature

of the method it is being passed to). If it is a CORBA value type, it is passed

by-value. If it is an ordinary CORBA interface type (the “normal” case for all

CORBA objects), it is passed by-reference.

• The ToolBus allows components in any language for which a ToolBus adapter

exists. Programming languages such as C and Java are supported, but adapters

also exist for a wide range of languages and applications, including e.g., Perl,

Prolog, MySQL, Tcl and ASF+SDF. In RMI, only Java components can be con-

nected; in RMI-IIOP the service is implemented in Java, its functionality (client-

side) is available to CORBA clients. The Java IDL framework is fully CORBA

compliant.

• Only the ToolBus has coordination support for component interaction. In the

three other cases any undesired sequence of incoming and outgoing method calls

will have to be prohibited by adding code to the component’s internals. Whereas

RMI, RMI-IIOP and Java IDL just perform the wiring that connects the compo-

nents, the ToolBus also provides workflow support. In relation to this workflow

support, it would be interesting to compare the ToolBus to related workflow de-

scription languages such as the Business Process Modeling language [44] and

the Web Services Description Language [123].

Implications for the ToolBus Approach To overcome the problems of value-based

transmission, we envisage the introduction of channels as sketched in Fig. 4.10(b). This

model is inspired by the second workaround mentioned at the end of Sect. 4.5.3 and is

completely transparent for the user.

The idea is to stick to the strict call-by-value transmission model, but to implement

the actual value transmission by data communication between sending tool and receiv-

ing tool thus offloading the ToolBus itself. Via the ToolBus, only an identification of

the data value is transmitted between sender and receiver. The downside of this model

is that it introduces the need for distributed garbage collection, since a value may be

distributed to more than one receiving tool and the sender does not known when all

receivers have retrieved their copy. Adding expiration times to values or reference

counting at the ToolBus level may solve this problem.

4.6 Current Status

The current ToolBus was first specified in ASF+SDF and has then been imple-

mented manually in C. Its primary target was the renovation of the ASF+SDF Meta-

Environment.

The next generation ToolBus is being implemented in Java and aims at sup-

porting larger applications such as, for instance, a multi-user game site like www.

gamesquare.nl with thousands of users. High performance and recovery of
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crashed game clients are then of paramount importance. The Java implementation

is organized in such a way that the actual implementation of tools is as much hidden

as possible. This is achieved by introducing the interface ToolInterface that de-

scribes the required ToolBus/tool interaction. This interface can be implemented by a

variety of classes:

ClassicToolBusTool: this implements the ToolBus/tool communication as used

in current applications. The tool is executed as a separate, operating system level,

process and the ToolBus/tool communication is achieved using sockets.

JavaTool: this implements a new model that addresses one of the issues mentioned

in Sect. 4.5: when ToolBus and tool run on the same computer and the tool is

written in Java, then the tool can be loaded dynamically in the executing ToolBus,

e.g. using Java Threads. In this way, the overhead of interprocess communication

can be eliminated.

JavaRMITool: this is a special case where a Java tool runs on another computer.

SOAPTool: this implements communication with a tool that has a SOAP interface.

A prototype implementation is under development that allows experimentation with

the features mentioned in this chapter.

4.7 Concluding Remarks

In this chapter we have reflected on our experiences over the past years with the use

of the ToolBus as a means to refactor a previously monolithic system: the ASF+SDF

Meta Environment. This real test case of the ToolBus has taught us some of its short-

comings: its data bottleneck in case very large data items are sent using pass-by-value,

maintenance issues related to undisciplined message passing and questions such as how

to deal with exceptions caused by e.g. crashing tools.

Some of the ideas we showed in this chapter could be implemented by chang-

ing or extending the TSCRIPT (e.g. to implement a call-reply regime as discussed

in Sect. 4.5.1), others will also require extending the ToolBus and the tool-adapters

(e.g. to detect crashed tools in combination with exception handling as discussed in

Sect. 4.5.2).

We have also studied some related ideas and frameworks and we are now in a posi-

tion where we have a new prototype of the ToolBus in Java, with a very open structure

which allows for all sorts of experiments and case studies based on the experience we

have with the existing ToolBus and the ideas presented in this chapter.
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C H A P T E R 5

My Favorite Editor

Anywhere

5.1 Introduction

Many applications such as email clients, instant messengers, web browsers, and pro-

gramming environments provide editing facilities. Full fletched, off-the-shelf editing

solutions such as GNU Emacs [111] and Vim [98] are readily available, but many

application developers still choose to write their own editing software. Some utility li-

braries (e.g. Java’s JFC/Swing library) contain partial solutions in the form of reusable

editing widgets. Still, developing and extending your own editor to encompass the fea-

ture richness common in mature text editors is far from a rapid software engineering

exercise.

Offering a single built-in editor obviously also limits the user to this editor. This

poses no problem as long as the editing sessions are brief, e.g. during login or password

entry. However, when the editor is used for lengthy (programming) sessions, being

forced to use the keybindings dictated by an editor that is not your personal favorite

can easily lead to frustration.

This chapter describes how we reuse and integrate existing editors in a program-

ming environment. Although our implementation is based on needs we have in our

own environment, both the idea and most of the implementation can carry over to other

projects. Basically, projects that need editing support for structured documents and

where interactivity with these editing sessions is desirable, could benefit from the ar-

chitecture we describe.

The structure of this chapter is as follows. This section continues with some back-

ground, motivation and discussion of related work. Section 5.2 describes how we co-

ordinate simultaneous editing sessions, and we show the architecture used to deal with

various editors. Section 5.3 describes some of the implementation details of the archi-

tecture: the MULTIPLEXER which orchestrates simultaneous editing sessions and the

glue that is needed between the MULTIPLEXER and the various editor instances. We

conclude with a summary of our contribution and a discussion of ideas for future work

in Section 5.4.
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Figure 5.1: GNU Emacs and Vim used simultaneously by an IDE.

5.1.1 Background

The ASF+SDF Meta-Environment [24, 86] is a programming environment generator:

given a language definition consisting of a syntax definition (grammar) and tool de-

scriptions (using rewrite rules) a language specific environment is generated. Figure 5.1

shows a screenshot of the ASF+SDF Meta-Environment. A language definition typi-

cally includes such features as pretty printing, type checking, analysis, transformation

and execution of programs in the target language. The ASF+SDF Meta-Environment

is used to create tools for domain-specific languages and for the analysis and transfor-

mation of software systems.

The ASF+SDF Meta-Environment is used in several academic [28], industrial [25],

and financial projects [87, 117]. Presently, the ASF+SDF Meta-Environment is inten-

sively used in the software renovation oriented research project CaLCE: “Computer-

Aided Life Cycle Enabling”. This project is financed by the Dutch Ministry of Eco-

nomic Affairs and aims at the development of tooling to improve the overall quality of

systems deployed in the financial setting.

5.1.2 Related work

Some applications (e.g. the KDE and Gnome window managers) allow the configura-

tion of a foreign editor. Whenever a body of text needs to be edited, the application

executes the configured editor and waits for the user to complete the editing session.

During this session, there is no interaction between the main application and the foreign

editor: the editing session is unguided. In some applications instantiations of external

editors can be embedded. Some examples are KDE’s filemanager konqueror and

email reader kmail which can embed instances of a specially crafted version of the
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Vim text editor. In these cases, the host application (kmail) encapsulates the editor

(kvim) and shows its window as if the editor were part of the application. This gives

the user the feeling that his favorite editor is integrated in the application, even when

this integration is only visual and there is no real interaction between host application

and editor.

Our focus is not so much on the visual integration achieved by embedding the editor

instances. Instead we emphasize functional interaction during the editing session.

Another way to look at application-editor interaction is to look at the editor as the

main application, and to view external tools as subordinates of the editor. Especially

users of the Emacs family of editors find ways to link their email reader, spell-checker,

or other popular application into Emacs by writing support glue in Emacs LISP.

5.2 Design

In any IDE it is common to have multiple simultaneous editing sessions, as users start

and finish editing, switching from one file to another. To take care of any administrative

issues we have to deal with the following tasks:

Managing Using multiple editing sessions requires administration of open sessions

and addressing these editing sessions.

Executing Supporting several editors almost certainly results in different startup pro-

cedures for each editor. We provide an open and generic architecture for sup-

porting several editors.

Marshalling We need full interaction with the supported editors, which means that

data has to be transferred from the application to the editor instance and vice

versa.

We first have a look at the requirements (Section 5.2.1) and then split the design

into editor-independent (Section 5.2.2) and editor-specific (Section 5.2.3) details, and

we show how the components connect (Section 5.2.4) to form our multiplexing editor

architecture.

5.2.1 Requirements and considerations

Given our experience with editing issues in the Meta-Environment (Section 5.1.1) we

are interested in a solution which is:

Noninvasive We are strongly determined not to edit the source code of any particular

editor itself.

Simple Keep the number of methods in the editor interface low: 10 rather than 100

methods. Prefer implementation of these methods in established programming

languages (e.g. C or Java), rather than the editor’s (sometimes arcane) domain

specific scripting language.
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Open Both in terms of platform and language:

• Platform independence: although designed for a Unix environment, the im-

plementation should be independent of whether this is e.g. Linux, SunOS,

or Windows/Cygwin;

• Language independence: the architecture does not dictate any particular

programming language for the editor connectors.

From the Meta-Environment point of view, we are at least interested in the follow-

ing interesting editor actions and events:

Menu We want to add menu items in the editor which, when selected by the user, are

forwarded to the environment where they are handled.

Cursor Cursor positioning and text highlighting can be directed by the environment

(model) and rendered in the editor (view).

Modification The editor notifies the environment of any changes the user makes to the

file.

Save/Load The environment can request the editor to save its contents or re-read them

from the file system.

We start out with this restricted set, but we keep the design open to allow for later

extensions. The less demands, the more editors we can potentially support. If for

example an editor offers no support to add user-defined menus, we cannot set them

up from another application either. Although we could patch the editor sources to add

menu support we deliberately refrain from doing so.

5.2.2 Editor-independent design

The editor-independent design describes a generic way of managing and communicat-

ing with editor instances. Without knowledge of the actual editor instance, one can

provide an abstract level of communication by defining a common interface which

provides all necessary functionality to fulfill the requirements given in Section 5.2.1.

A tool that implements this design takes care of managing editing sessions, including

starting and shutting down sessions, and communication with these editing sessions.

The MULTIPLEXER described in Section 5.3.1 is a tool that implements this.

5.2.3 Editor-specific design

Managing editing sessions can be done in a generic way, but actual communication

and execution of editor instances has to be editor specific. This communication can

be done in various ways. While Vim makes use of an arcane syntax-based commu-

nication protocol via the commandline, OpenOffice for example can be controlled by

using an extensive API. These differences lead to different design implementations for

different editors. To prevent changes to the MULTIPLEXER for every editor that has to
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Figure 5.2: Overview showing how editors are connected to an application.

be supported we introduce a connector (see Section 5.3.2) mechanism which separates

communication with the actual editor instances from managing the editing sessions.

For each supported editor there has to be a corresponding connector. All editor-specific

communication details are known to this connector, while the MULTIPLEXER can be

implemented in a generic way. The generic interface provided by the MULTIPLEXER

has to be implemented by every connector.

5.2.4 Execution models

No two editor implementations are the same, and they are often written based on dif-

ferent designs. Editors based on the GNU Emacs philosophy prefer to interact with

external processes only if they are executed by the editor. Other editors are more easily

controlled by an external process.

We accomodate for this difference by allowing two execution models. Either the

MULTIPLEXER first launches the connector which launches the editor, or the MULTI-

PLEXER launches the editor instructing it to immediately launch the connector.

Independent of the execution model, the final state is the same: the MULTIPLEXER

communicates with the editor via a dedicated connector (Figure 5.2).

5.3 Implementation

Given the design from Section 5.2, we describe the MULTIPLEXER which contains

the editor-independent implementation in Section 5.3.1. This MULTIPLEXER invokes

interface methods which in turn are implemented in editor-specific connectors which

are detailed in Section 5.3.2. Finally, we explain how we glue it all together in Sec-

tion 5.3.3.

5.3.1 Editor Multiplexer

The editor MULTIPLEXER manages multiple simultaneous edit sessions by assigning

each session a unique ID. Subsequent calls to the edit session carry this ID as one of

the call’s parameters. This allows the MULTIPLEXER to uniquely identify to which

connected editor the request needs to be forwarded.

99



My Favorite Editor Anywhere CHAPTER 5

The MULTIPLEXER is currently implemented as a ToolBus tool, written in the C

programming language. The ToolBus coordination architecture is a middleware layer

with a process algebra based scripting language. [15] offers a comprehensive expla-

nation of the ToolBus scripting language. Because the entire Meta-Environment ar-

chitecture uses the ToolBus coordination architecture, making the MULTIPLEXER a

ToolBus tool is the obvious choice. For applications that do not use the ToolBus, an

implementation in the form of a C library would be equally feasible.

The choice for C as the implementation language was pragmatic. C offers direct ac-

cess to operating system functionality such as process duplication through the use of the

fork system call, execution of external processes using exec and has additional low

level support for sockets, pipes and file descriptors. Although we also experimented

with an implementation in Java during research in the context of connecting the Eclipse

IDE editor [41], we opted for C’s easy link to operating system functionality.

We show a simplified ToolBus interface definition of our MULTIPLEXER.

01 tool multiplexer is { command = "./editor-multiplexer" }

02

03 process EditorMultiplexer is

04 let

05 EM: multiplexer,

06 Editor, Filename: str,

07 SessionID, SL, SC, EL, EC: int,

08 MainMenu, SubMenu: str

09 in

10 execute(multiplexer, EM?)

11 .

12 (

13 rec-msg(edit-text(Editor?, Filename?))

14 . snd-eval(EM, Editor, Filename))

15 . rec-value(EM, SessionID?)

16 . snd-msg(edit-text(Editor, Filename, SessionID))

17 +

18 rec-msg(set-focus(SessionID?, SL?, SC?, EL?, EC?))

19 . snd-do(EM, set-focus(SessionID, SL, SC, EL, EC))

20 +

21 rec-event(EM, menu-selected(SessionID?, MainMenu?, SubMenu?))

22 . snd-msg(menu-selected(SessionID, MainMenu, SubMenu))

23 )

24 * delta

25 endlet

This example is limited to showing the execution (line 10) of the previously de-

clared multiplexer tool (line 01). Following the execution is a looping construct (lines

12-24). During each iteration exactly one of the declared scenarios can occur. First,

a request to start a new session is handled (lines 13-16). Second a request to set

the focus to a particular region delimited by start-line, start-column, end-line and end-

column (lines 18-19) to any existing editor can be handled. Finally, a menu event can

come in from one of the connected editors (lines 21-22).

Applications that do not use the ToolBus, could use e.g. pipes, sockets or library

calls to communicate with the MULTIPLEXER.

5.3.2 Editor Connectors

For each supported editor, we implement a small connector that translates the editor-

independent interface calls into the editor specific implementation. These connectors

100



SECTION 5.3 Implementation

are necessary because each editor has its own unique scripting facilities or program-

ming language (Vim uses Vim script, GNU Emacs uses Emacs Lisp), and because

communication with each editor is usually handled in a slightly different way. We

describe the connectors we implemented for Vim, GNU Emacs, and for a proprietary

implementation of an editor in JFC/Swing.

Vim

The Vim connector is implemented partially in C and partially in Vim’s scripting lan-

guage. The C functions implement the text editor interface. Commands from the MUL-

TIPLEXER to the editor are sent using Vim’s remote scripting feature.

For example, the implementation of the setCursor(int offset) method

looks like this:

01 static void gotoCursorAtOffset(int offset) {

02 char cmd[BUFSIZ];

03 sprintf(cmd, ":goto %d", offset);

04 sendToVim(cmd);

05 }

Events from the editor to the MULTIPLEXER, are initiated by Vim. E.g. Vim is

instructed to forward buffer changes resulting from user editing by means of the Vim

hook called BufWritePost:

01 func! EnableModificationDetection()

02 autocmd BufWritePost * :call BufModified()

03 endfunc

where BufModified is a function (in Vim script) that forwards this event to the

MULTIPLEXER.

Currently, the editor-specific glue for Vim is expressed in 501 lines of C code, and

77 lines of Vim script.

GNU Emacs

Similar to the sendToVim function, sendToEmacs is used to communicate from

the MULTIPLEXER to GNU Emacs. The difference is that where Vim lacks a regular

communication channel and we had to resort to using its remote scripting feature, with

GNU Emacs we can communicate using a a pipe.

01 static void sendToEmacs(int write_to_editor_fd, const char *cmd) {

02 write(write_to_editor_fd, cmd, strlen(cmd));

03 write(write_to_editor_fd, "\n", 1);

04 }

The communication channel may be simpler in this version, but not all comes easy

when dealing with GNU Emacs. The initial scripting necessary to setup the connector

is programmed in Emacs LISP:

01 (defun init (args)

02 (setq emacs-connector

03 (let ((process-connection-type nil))

04 (apply ’start-process "emacs-connector" "*Meta*" "emacs-connector"
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05 (split-string args))))

06 (set-process-filter emacs-connector ’multiplexer-input)

07 (process-kill-without-query emacs-connector)

08 (define-key global-map [mouse-1] ’mouse-clicked)

09 (add-hook ’after-change-functions ’buffer-modified () t)

10 )

Lines 02-08 execute the connector and register the LISP function

multiplexer- input as input handler for the connector. Line 10 registers

a mouse-click listener, and line 11 registers the buffer-modified function so it

gets invoked whenever user editing causes the buffer to change.

Currently, the editor-specific glue for GNU Emacs is expressed in 436 lines of C

code, and 108 lines of Emacs LISP.

JFC/Swing Editor

As an experiment and possible extension to the ASF+SDF Meta-Environment, we also

created an editor based on the GUI classes available in JFC/Swing. Again similar to

the previous implementations, we were able to connect this Java editor to the MULTI-

PLEXER. We do not show implementation details, but it is worthwhile to mention that

the connection to this editor is based on sockets, rather than pipes (as we used for the

GNU Emacs connector). Although we could have used the commonly accepted route

where the standard input and output streams are sacrificed and used for communication

via a pipe, we opted for the socket approach, just to add this route to our repertoire.

Currently, the editor-specific glue for our JFC/Swing editor is expressed in 411

lines of C code, and a 5 line shell script to invoke java with the correct classpath for the

editor.

5.3.3 Glueing it all together

Now that we have the editor-independent MULTIPLEXER, and the editor specific con-

nectors, we can finally glue them together to get a working system. We describe how

the MULTIPLEXER executes and communicates with an editor.

Executing an editor

The MULTIPLEXER executes the requested editor as follows. For each editor, we write

a small piece of (C) code that is loaded as a dynamic library. This mini library contains

a single startup function with three parameters: the filename to be edited and the

two file descriptors to be used for communication with the MULTIPLEXER. The startup

function for the Vim editor looks like this:

01 void startup(const char *filename, int readFromFD, int writeToFD) {

02 char fromMultiFD[10], toMultiFD[10]; /* file descriptors as string */

03

04 sprintf(fromMultiFD, "%d", readFromFD);

05 sprintf(toMultiFD, "%d", writeToFD);

06

07 execlp("gvim-connector", "gvim-connector",

08 "--read_from_multiplexer_fd", fromMultiFD,

09 "--write_to_multiplexer_fd", toMultiFD,

10 "--filename", filename,
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11 NULL);

12

13 perror("execlp:gvim/startup");

14 exit(errno);

15 }

The MULTIPLEXER invokes startup by using the dlopen and dlsym system

calls (not shown here) for interacting with dynamic libraries. We thus extend the MUL-

TIPLEXER with a single function per specific editor.

In the startup function, we choose one of the two execution models described in

Section 5.2.4. For Vim we execute (lines 07-11) the connector, thus following the

connector first execution model.

For GNU Emacs, we have a similar startup function. Only it was more conve-

nient to execute emacs first and have it fire up the connector instead. GNU Emacs is

then told to load the editor-specific startup script (in this case written in Emacs LISP)

and to begin by executing the function init:

01 void startup(const char *filename, int readFromFD, int writeToFD) {

02 char evalargs[BUFSIZ];

03 sprintf(evalargs,

04 "(init \"--read_from_fd %d --write_to_fd %d --filename %s\")",

05 readFromFD, writeToFD, filename);

06

07 execlp(EDITOR, EDITOR, filename, "-load", "gnu-emacs.el",

08 "-eval", evalargs, NULL);

... /* error handling code omitted */

11 }

Communicating with an editor

Depending on the functionality offered by each specific editor, we use different means

of setting up a communication channel with the editor. We have used different channels

ranging from a pipe (in GNU Emacs), to a socket (in the JFC/Swing editor), to the

more esoteric remote scripting feature offered by Vim.

Independent of the type of the available communication channel, we use the same

technique to marshal data over this channel. Instead of writing ad-hoc marshalling and

de-marshalling code in the MULTIPLEXER and the connectors, we use ApiGen [79].

ApiGen takes as input an abstract data type description (ADT) and generates a C library

or Java jar-file containing a.o. set, get and serialization methods.

Each command to and event from the editor is formalized in the text editor ADT.

From this specification ApiGen generates the API implementation which we use to

(de-)marshal communication between the MULTIPLEXER and editor.

5.4 Discussion and Future work

We have implemented a framework that allows reuse of off-the-shelf editors such

as GNU Emacs and Vim in the ASF+SDF Meta-Environment. By implementing as

much as possible of this framework in a generic, editor-independent way (our MULTI-

PLEXER), we can easily and rapidly add other editors to our environment. Deploying

code generation techniques (ApiGen), and an available (programmable) middleware

layer (ToolBus) ensures the solution is cheap in maintenance.
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Our editing solution is noninvase: we never change any editor internals, simple:

only a handful of lines of code in the editor’s own scripting language are needed, and

open: our editing support has been tested on various Linux platforms, and we have

both C and Java connectors.

Our editing framework was primarly designed for use in the Meta-Environment,

which relies heavily on the ToolBus as its middleware layer. However, our contribution

is not limited to using the ToolBus, and we plan to offer our results for use in a non-

ToolBus setting, as a downloadable package.

Another direction of interest is figuring out in which ways we can expand the text

editor interaction. We have already experimented with syntax highlighting (i.e. one

tool describes which part of the text gets which font attributes and colour and the ren-

dering is done by the text editor), and structured editing, but conceivably several more

applications can benefit from our support.

Obviously, the more complicated the things we demand, the fewer editors we will

be able to fully support. Vim, for example lacks atomic functionality to colour a spe-

cific region of characters, although it does offer complex syntax highlighting. This

leads to the following question: what is the set of text editing primitives small enough

to be covered by almost any editor, but large enough to be useful in most applications

that require editing?

Finally, as its name states, one of the MULTIPLEXER’s task is multiplexing simul-

taneous editing sessions. In a coordination architecture such as the ToolBus, the mul-

tiplexing concern could be applicable to other tools as well. If this notion were lifted

to a ToolBus primitive, any setting that launches multiple instances of a tool with the

same interface could possibly benefit.
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C H A P T E R 6

Software System

Extensibility

6.1 Introduction

In Section 1.1.1 we described six criteria by which the quality of a software architecture

can be measured [9]: availability, modifiability, performance, security, testability, and

usability. In this Chapter we focus on the modifiability of software systems.

From a software engineering perspective, answers to the following basic questions

can be useful in assessing the impact of the change to the system:

Who Who will make the change? Depending on whether the source is the developer, a

system administrator, or an end user, different forms of modifiability are needed.

What What needs to be changed? The changes to be made can be functional changes

(e.g., adding/removing a function, or changing an existing one). They can also

be changes to the qualities of a system, e.g., improving responsiveness or avail-

ability.

Where Where does the system need to be changed? Which part of the system has

to be adapted depends on the type of change. Changes can affect any part of

the system. They could, e.g., be local to the user interface (changing the menu

font), they could be part of the system’s persistence engine (switching from one

database system to another), or to the middleware used (switch from UNIX pipes

to CORBA).

When When can the change be made? Changes can be made at different moments in

the development and deployment of a system, e.g., during design time, compile

time, build time, initiation time, and runtime.

The obvious next question: Why should we make this change? is less interesting

from a modifiability point of view. Although debating the motivation for a particular

change may be (very) useful in discussions about a software system, we will assume a

change request as is.
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In [9] these who/what/where/when questions, along with a response to the change

request (whoever makes the change must understand how to make, test, and deploy

it), and a response measure (all possible responses take time and cost money) define

a modifiability scenario. These scenarios can then used to evaluate the modifiability

quality attribute of a software architecture. An example of such a scenario is “A de-

veloper wishes to change the user interface. This change will be made to the code

at design time, it will take less than three hours to make and test the change, and no

side-effect changes will occur in the behaviour.”

In this Chapter, we are primarily interested in modifications and extensions to a

software system which can be made by end users. We are interested in any kind of

changes they can make, without any a priori assumptions about what the change is, or

where it should be implemented, although we do realize that end users are unlikely to

change, e.g., the middleware used in an application. As for when the changes can be

implemented, we would like this to be as late as possible, to get as much flexibility as

possible.

6.1.1 Research Context

The ASF+SDF Meta-Environment [24] consists of several components, one of which

is the user interface. Unfortunately, in a way, the GUI has become a monolith of its

own. Taking care of the user interaction for all the other components, it has become

a central component with detailed knowledge about many parts of the system. This

makes it hard to add new components that require user interaction to the system. When

a new component is added, or when new functionality is added to the system using

existing components, the user interface has to be adapted to account for the new user

interaction.

In more general terms, we are concerned about the phenomenon that in a multi

component application, a single component ends up knowing about several (if not all)

otherwise independent subcomponents. How can we keep the system open and ex-

tensible? This phenomenon is not unique to the Meta-Environment, various popular

software systems also allow their product to be modified or extended by their users.

Some examples are:

Firefox, Thunderbird The Firefox web browser [60] and Thunderbird e-mail

client [116], can be extended to allow new functionality and their user interface

can be changed to allow for different ordering of menus or buttons on the tool

bar. The appearance of the user interface can be changed through the installation

of themes.

Eclipse The Eclipse IDE [62] can be extended through a plug-in mechanism. More-

over, these plug-ins can themselves be extended by other plug-ins.

Winamp, Windows Media Player Media players such as Winamp [114] and Mi-

crosoft Windows Media Player [108] can be extended to allow new media types

to be played which are not supported by default. Users can also add new anima-

tions which can be shown when the player is playing an audio only file.
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The extension mechanisms offered by these software systems are widely used. Fire-

fox, for example, has well over six hundred extensions written by members of the

Firefox user community. While the core of the software system is developed and main-

tained by the system’s own team of programmers, many extensions are developed by

independent (teams of) programmers.

One way to adapt or extend a software system, is to do so by actually changing the

existing source code. For example, aspect oriented software development [84] focuses

on isolating specific concerns of a software system, developing source code specific for

each of these aspect independent of the rest of the system, and finally weaving these

aspects into an existing body of source code. In a similar way, invasive software com-

position [5] regards software components as being distinct components initially, which

can be merged in a specific implementation. Both aspect oriented software develop-

ment and invasive software composition are centered around a standard programming

language (Java), and operate by changing (merging) a body of source code.

In the approach described in this Chapter, we target mainstream programming and

scripting languages, and try to achieve software system extensibility without changing

the source code of individual components in an invasive way.

6.1.2 Research Questions

From a technical point of view it is interesting to study the systems mentioned above,

and to compare their ingredients. How can we categorize plug-in systems? Which

implementation techniques are better suited for which category of plug-in system? In

particular, we are interested in answers to the following questions:

• How do current software systems achieve various levels of extensibility?

• How do they deal with consistency and interaction between the core of the sys-

tem and the plug-ins, and between different plug-ins?

• How do these plug-in mechanisms relate to a system using a component coordi-

nation architecture such as the ToolBus?

6.1.3 Overview

We study several extension mechanisms in popular software systems, and characterize

each of them. In Section 6.2 we look at three different extension mechanisms offered

by the Mozilla suite. Section 6.3 elaborates on the plug-in system implemented in the

Eclipse platform. In Section 6.4 we study the Java Plug-in Framework (JPF). Finally, in

Section 6.5 we have a look at the Winamp Media Player. Each section explains how the

extension mechanism works, and states some specific characteristics of that particular

system. In Section 6.6 we compare these characteristics and define some basic “Soft-

ware Extension System Categories”. In Section 6.7 we show how the use of a plug-in

framework we implemented made the Meta-Environment more open and extensible,

solving the monolithic GUI problems it suffered from. Section 6.9 summarizes this

chapter and discusses some conclusions.
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6.2 The Mozilla Software Suite

The Mozilla all-in-one Internet Application Suite [101] and its derivatives, the Firefox

web browser [60] and Thunderbird e-mail client [116], offer three ways to change the

way the components look and behave, each with its own specific goal:

themes A theme changes the look and feel of the user interface;

plug-ins A plug-in is the way to add support to Mozilla for proprietary document

formats, such as the Acrobat Reader for PDF documents by Adobe Systems;

extensions An extension is a small add-on that adds new functionality to Mozilla, or

that changes existing functionality. A popular example is Adblock which allows

advertisements to be blocked from view.

The Firefox download area hosts 114 themes, 7 plug-ins, and 673 extensions1. The

fact that there are almost one hundred times as many extensions as there are plug-ins

can be explained by their difference in complexity and the purpose they serve.

6.2.1 Mozilla Themes

Themes are skins for the Mozilla components. They allow users to change the look

and feel of the user interface. Themes do not add new functionality to Mozilla, and

are therefore not very interesting from an extensibility point of view. In fact, a Mozilla

theme is not really an extension, but merely a specific configuration of an otherwise

unchanged component.

6.2.2 Mozilla Plug-ins

The Mozilla system can be augmented by plug-ins which allow third parties to embed

new functionality into the core of the Firefox browser. This allows proprietary content

such as a specific document format to be rendered inside the browser. Examples include

the Acrobat Reader from Adobe Systems for displaying PDF documents inside the

Firefox browser, and the Java plug-in by SUN Microsystems which enables Firefox to

run applications that use Java technology.

Mozilla plug-ins are heavyweight components, requiring a solid understanding of

the internals of Mozilla. The existing plug-ins are written in C++. They are connected

using a cross platform framework similar to COM, called XPCOM, with a correspond-

ing interface definition language, called XPIDL. Without elaborating on the implemen-

tation details of plug-ins, it is clear that they are meant to add a significant chunk of

specific functionality to Mozilla: interaction with a specific type of web content.

Mozilla plug-ins are complete and closed, meaning a plug-in does not rely on the

existence of other plug-ins, nor is it intended to be extended itself by other plug-ins.

It plugs into its own niche in the system, being used only to interact with web content

it is meant for. Each plug-in registers which particular content type it supports, and

Mozilla invokes the plug-in whenever it encounters content of that type. Plug-ins do

not interfere or interact with other plug-ins.

1Data taken in September 2005.

108



SECTION 6.2 The Mozilla Software Suite

Mozilla Theme Mozilla Plug-in Mozilla Extension

Task Fixed Fixed Arbitrary

Implementation Graphics, CSS C++/ XPCOM Javascript

Initiative Framework Framework Both

Interaction None Independent Ad hoc

Extensibility None None By overriding

Table 6.1: Characteristics of the Theme, Plug-in , and Extension mechanisms of

Mozilla.

6.2.3 Mozilla Extensions

The Mozilla system can be augmented by extensions, which are small add-ons that

add new functionality to, or change existing functionality of the application. Exten-

sions differ widely in application domain as well as in which part of the browser the

extension modifies. Examples include Bookmark Synchronization to a central server,

automatically entering fields in web forms, blocking advertisements on a web page,

and enhancing the interaction with the Google Search Engine.

Obviously, Mozilla extensions are much more lightweight components than the

plug-in relatives. Where writing a plug-in requires a significant programming back-

ground, extensions can be written by anyone capable of toying around with Javascript.

6.2.4 Summary

Table 6.1 summarizes the characteristics of the theme, plug-in , and extension mecha-

nisms of Mozilla.

Task The themes and plug-ins are used to implement fixed tasks. Themes change

the look and feel of the user interface, plug-ins allow proprietary web content to be

displayed in the browser. Mozilla extensions, however have no fixed task. They can be

used to add arbitrary new functionality, or change existing functionality.

Implementation Themes contain images and cascading style sheets (CSS) and some

metadata package information. Plug-ins are implemented in C++ and the cross plat-

form XPCOM suite. Mozilla extensions are implemented in Javascript.

Initiative Mozilla takes the initiative to activate a certain theme. Themes do not

trigger any activity in Mozilla themselves. Similarly, the plug-ins are instantiated by

the framework when Mozilla delegates rendering of web content specific to the plug-in.

Plug-ins lie dormant in the framework, until activated. Mozilla extensions can take the

initiative and invoke parts of the framework.

Interaction Only one theme is active in Mozilla at any given time. Therefore, there

is no interaction between themes. Although there can be multiple plug-ins active in
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the system, each plug-in has a dedicated task, and for each instance of those tasks,

only one plug-in can be used. Plug-ins therefore neither interact nor interfere with

each other. Mozilla extensions are much less restricted. They can interact with the

framework itself, but by the very nature of their implementation (Javascript), can also

override functionality in other extensions. The framework does not enforce one exten-

sion manipulating the functionality of another.

Extensibility Themes cannot be extended. Likewise, the plug-ins currently available

are also closed components. Although they could be extended via the cross platform

COM architecture, this requires significant knowledge of the workings of the third

party plug-in. Mozilla extensions, however, are open to modification by other ex-

tensions. Their implementation in a script language makes it easy to see how other

extensions are implemented and promote ad hoc patching against a specific version of

another extension.

6.3 The Eclipse platform

The Eclipse IDE [62] provides an extensible development platform and application

frameworks for building software. In [22], the Eclipse platform is described as being

an extensible platform for building IDEs. It provides a core of services for controlling

a set of tools working together to support programming tasks. Tool builders can extend

the core by wrapping their tool in a pluggable component, called an Eclipse plug-

in. New plug-ins can add new processing elements to existing plug-ins. To this end,

plug-ins support the notion of extension point. Each plug-in can define one or more

extension points, and is itself responsible for dealing with other plug-ins that extend

these extension points. At the same time, a plug-in can declare itself to extend one or

more extension points in another plug-in.

Via the update manager functionality in the Eclipse IDE, a wide variety of plug-ins

can be installed. In fact, there are so many plug-ins and plug-ins can be so small, that a

number of plug-ins that depend on each other are grouped together into what is called a

feature. Users select which features they want to install, and all necessary plug-ins that

make up this feature are then downloaded and installed. There are about 75 features

available for installation from eclipse.org.

6.3.1 Extension participants and roles

Because plug-ins are pivotal in the extension mechanism of Eclipse, we take a close

look at its participants and the roles they play.

Extension point At the heart of the extension mechanism is the notion of extension

point. An extension point models the concept of “smallest undividable unit of exten-

sion”. For each plug-in the exact definition of what constitutes an extension point

will be different. The developer decides which level of granularity in “pluggability”

the plug-in will offer. For example, in a plug-in dealing with GUI menus, one defi-

nition of a “menu item extension point” would be to allow the insertion of individual
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menu items. Another definition could be to only allow the insertion of entire menus.

Depending on the application that the developer has in mind, either definition can be

considered equally well.

Extension Once defined, these extension points can be extended by what is called

an extension. A single extension points can be extended multiple times. For example,

multiple plug-ins can each add their own menu via the menu extension point we just

described. In fact, even a single plug-in can extend the same extension point multiple

times. In our example this can happen if a plug-in wants to add more than one menu.

Plug-in A plug-in is then a bundle consisting of a plug-in class, a number of “con-

ventional” Java classes, and a manifest file. The plug-in class acts as intermediary

between the Eclipse platform and the core functionality in the plug-in. The conven-

tional Java classes implement this core, abstracting from the fact that they are used

in a plug-in context. The manifest file describes information such as which extension

points are offered by this particular plug-in, which extension points from other plug-ins

are extended by this plug-in, and which classes in this plug-in are responsible for which

particular extension points.

The plug-ins and conventional classes now play one of three roles in the extension

mechanism: host plug-in , extender plug-in , and extension callback.

Host Plug-in The host plug-in of the extension provides extension point(s), and is

extended. Apart from any functionality the plug-in may already be able to perform

without any extension, the host plug-in also acts as the coordinator and controller of its

extensions.

Extender Plug-in The extender plug-in defines and implements the extension. Usu-

ally it makes its functionality available to the host plug-in by registering an extension

callback in the host plug-in for each extension.

Extension Callback The extension callback is a conventional Java object (i.e., it is

not a plug-in itself) that is registered in the host plug-in by the extender plug-in. It is

called by the host plug-in when an event specified in the corresponding extension point

contract occurs.

6.3.2 Example

An example of how host and extender plug-in work together is given in Figure 6.1

(taken from [22]). It shows how the Eclipse workbench UI menus are extended by the

Eclipse help system.

The host plug-in in this case is the Eclipse Workbench UI, which is identified as

org.eclipse.ui in the example. The host plug-in offers three extension points

called editors, views, and actionSets, respectively. The actionSets ex-

tension point is used in this example to add menus to the Workbench menu.
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... ......

HelpContentsActionclass:

class: OpenHelpSearchPageAction

plug−in id: org.eclipse.help.ui

Host plug−in

Extender plug−in

plug−in class

plug−in id:

WorkbenchPlugin

WorkbenchHelpPlugin

extension: actionSets

plug−in class

editors views actionSets

org.eclipse.ui

Extension points

action callback: Search −> Help menu item

action callback: Help −> Help Contents menu item

Figure 6.1: The Eclipse plug-in extension mechanism in action.
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Eclipse Plug-in

Task Arbitrary

Implementation Java

Initiative Framework Controlled

Interaction Plug-in controlled

Extensibility Plug-in controlled

Table 6.2: Characteristics of the Eclipse Plug-in extension architecture.

The extender plug-in in this case is the Eclipse Help System’s UI, identified as

org.eclipse.help.ui. It contains two extensions of the actionSets exten-

sion point. Both install a callback in the Workbench, one for the “Help → Help Con-

tents” menu item, and one for the “Search → Help” menu item. These callbacks are

subsequently invoked when the corresponding menu item is selected by the user.

6.3.3 Summary

The Eclipse plug-in model offers deployment time pluggable components. A plug-in

consists of a collection of Java classes implementing the plug-in functionality, and a

manifest file with details about the plug-in. This manifest file includes the extension

points the plug-in offers, and the extension points from other plug-ins, that this plug-

in uses, if any. The manifest file is interpreted at runtime by the Eclipse system to

instantiate the plug-in and relate it to other plug-ins.

Table 6.2 summarizes the characteristics of the Eclipse Plug-in extension architec-

ture.

Task Eclipse plug-ins can be used for arbitrary tasks.

Implementation Eclipse plug-ins are implemented in Java, with manifest files for-

malized in an XML document.

Initiative Each plug-in is fully responsible for delegating functionality of its exten-

sion points to its extenders. The framework itself is no exception to this rule, defining

several extension points and delegating authority to the extending plug-ins. Each plug-

in thus controls when a sub-plug-in comes into action.

Interaction Interaction is coordinated via the plug-in hierarchy, resulting in a chain

of command. The framework delegates to its immediate plug-ins, which can delegate to

sub-plug-ins. At each level, the plug-in at that level coordinates whether sub-plug-ins

of an extension point can work together, or whether they are independent.

Extensibility Each plug-in can define its own extension points, thus delegating part

of its functionality to other plug-ins.
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6.4 The Java Plug-in Framework

The Java Plug-in Framework (JPF) [106] intends to provide a standard plug-in infras-

tructure for existing or new Java projects. One way to look at the JPF plug-in archi-

tecture is to view it as Eclipse, but dressed down in functionality to only the plug-in

framework.

JPF thus elevates the plug-in architecture from the extension mechanism in Eclipse

to a loose plug-in framework intending to achieve modular and extensible Java appli-

cations in general.

JPF uses the same terminology as Eclipse for extension points. JPF also defines a

plug-in as a collection of Java classes bundled with a manifest file. Although conceptu-

ally the JPF framework is very close to the Eclipse framework, JPF was implemented

from scratch. Therefore, JPF differs from Eclipse mostly in terms of implementation

details.

The main conceptual difference with Eclipse is that JPF only offers the plug-in

architecture itself. It has none of the programming tools that come with Eclipse, nor

does it have a built-in graphical user interface.

One result from the fact that JPF is a re-implementation of the plug-in architecture

in Eclipse is that their plug-in manifest files are incompatible. Although both use an

XML file containing almost the same information about the plug-in, they don’t use

the same schema (or DTD) for the manifest file. As a result, Eclipse plug-ins cannot

trivially be used by JPF, or the other way around.

Because JPF is intended to be only the framework that offers basic functionality

to create your own application using a plug-in architecture, it offers no plug-ins on

its website. The idea is that each application using JPF will eventually host plug-

ins relevant to that application on its own website. The JPF project website currently

describes one successful application that uses JPF.

6.4.1 Summary

Conceptually, the plug-in architecture in JPF is equal to that in Eclipse. In fact, JPF

implements only the plug-in framework as is used in Eclipse. Consequently, the char-

acteristics of JPF shown in Table 6.3, are very similar to those found in Eclipse.

An interesting feature offered by JPF over Eclipse is that it has built-in integrity

checking of all registered plug-ins. Because in JPF plug-ins can be registered and

unregistered at run-time, it is useful that the system monitors inter-plug-in integrity, is-

suing warnings when a plug-in that is needed by another plug-in is about to be removed

from the system.

6.5 Winamp

Another group of software systems that rely on extensions to complete their function-

ality are the Media Players. A Media Player is a software system that allows audio

and video streams to be played on a computer. Winamp [114] and Windows Media

114



SECTION 6.5 Winamp

JPF Plug-in

Task Arbitrary

Implementation Java

Initiative Framework Controlled

Interaction Verified by Framework, Plug-in controlled

Extensibility Plug-in controlled

Table 6.3: Characteristics of the Java Plug-in Framework (JPF) architecture.

Player [108] are two popular Media Player. Media streams come in various formats,

e.g. MP3 or WAV for audio streams, and Divx or WMF for video streams.

One of the reasons to have extensions in a media player is to allow for easy “plug-

ging” of different encoding/decoding components, called Codecs for short. Each Codec

implements the encoding and decoding of a particular audio or video stream and thus

extends the generic functionality of the Media Player with support for that particular

type of media stream.

Another popular goal of plug-ins in Media Players is to have pluggable visualiza-

tion components for audio streams. When an audio stream is played, most of the user

interface is static and boring, and to liven up the looks of the application, a plug-in can

show an animation based on the audio stream currently played by the Media Player.

The Winamp website offers well over a thousand different plug-ins. In Sec-

tion 6.5.2 we give a rough break-down of the number of plug-ins per category.

6.5.1 Winamp Themes

Similar to Mozilla Themes (Section 6.2.1), Winamp also offers users a way to alter

the way the application looks and feels. In fact, Winamp adds the possibility to have

animations in the interface. But again, a Winamp Theme does not add new functionality

that is unavailable.

6.5.2 Winamp Plug-ins

According to the documentation, Winamp plug-ins are implemented as 32-bit Win-

dows Dynamically Linked Libraries (DLLs), with primary support for the Microsoft

Visual C++ platform. Each Winamp plug-in is always an instance of exactly one of

the following plug-in types:

Input Input plug-ins give Winamp the ability to play additional file types that are not

natively supported by the application. There are about 75 input plug-ins.

Output Output plug-ins allow Winamp to manifest audio data in different ways. There

are about 30 output plug-ins.

DSP/effect Digital signal processing (DSP) Plug-ins manipulate audio data before ac-

tually being sent to the speakers (or whatever the Output plug-in decides to do

with it). There are over a 100 effect plug-ins.
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Visualization Visualization Plug-ins display some sort of visual effect based on audio

as it is being decoded by Winamp. There are about 250 visualization plug-ins.

Language pack Language packs are used to internationalize Winamp to the language

of your choice. There are about 50 language packs available.

Media Library Media Library plug-ins extend the media library for instance, for

portable devices such as iPods, accessing Media Library databases, etc. There

are about 5 such plug-ins available.

General purpose Anything that needs to run continuously in the background or does

not require audio processing qualifies as a General purpose plug-in. There are

well over 500 general purpose plug-ins.

With the exception of the Language pack which only contains internationalization

strings for the textual representation of Winamp menu items, all other plug-in types

allow actual functionality changes and thus extend the behavior of Winamp in exactly

one of the defined types.

6.5.3 Summary

Table 6.4 summarizes the characteristics of the Winamp theme and plug-in extensions.

Task Both themes and plug-ins have specific tasks in Winamp. Each plug-in must be

of one of the defined plug-in types.

Implementation Winamp themes consist of a bundle of graphics files for the buttons

and menus, and XML files describing the layout of the user interface. The plug-

ins are implemented as Windows 32bit Dynamically Linked Libraries (DLLs)

and support is primarily offered for those plug-ins written in C++.

Initiative Themes are fully controlled by the framework. Plug-ins are invoked by the

framework when and where they are needed.

Interaction Only one theme is active at any given time, so there is never any interac-

tion between themes. As plug-ins serve independent roles, they do not interfere

with one another.

Extensibility Winamp themes and plug-ins are not extensible themselves.

6.6 Extension Mechanism Comparison

In this chapter, we studied several software systems that offer various extension mech-

anisms. One way to look at the characteristics of these systems, is to group them into

categories. The remainder of this Section describes four extension mechanism cate-

gories we observed in existing software systems: decoration (6.6.1), delegation (6.6.2),

mediation (6.6.3), and adaptation (6.6.4). Similar to the way software design patterns

are identified in [64], these names describe the primary use of that particular plug-in

pattern.
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Winamp theme Winamp Plug-in

Task Fixed Fixed

Implementation Graphics + XML Win32 DLL, C++

Initiative Framework Framework

Interaction None Independent

Extensibility None None

Table 6.4: Characteristics of the Winamp Media Player architecture.

6.6.1 Decoration

Definition 1 A Decoration extension changes the application in a cosmetic way, offer-

ing no new functionality relevant to the main goal of the system.

This category is the home of themes. Serving a fixed purpose, namely changing

the way the user interface looks and feels, they add no new functionality to the system.

Only a single theme is active at any given time, so themes do not interact with one

another. The framework is fully responsible for switching from one theme to another,

themes do not initiate functional activity of the framework. Themes are implemented

mostly using graphics files and some metadata describing how graphics, buttons, and

textual menus are laid out in the user interface. All added functionality, if any, is

restricted to user interface animation and signaling events to the framework.

Some examples of the use of decoration extensions are the themes used in Mozilla

and Winamp.

6.6.2 Delegation

Definition 2 The Delegation extension pattern is used to select a specific implementa-

tion for a pre-defined task in the system.

This category contains embedded plug-ins that are responsible for the implemen-

tation of a single task, such as decoding a specific kind of audio or video stream. In-

stances of different plug-ins possibly coexist in the same application, but because each

plug-in implements only a specific function, the instantiated plug-ins act independently

of each other. The framework invokes a well known entry point in the plug-in, supply-

ing it the relevant parameters. The framework thus delegates the specific implementa-

tion of a more generic concept to the plug-in.

Examples of the use of extensions by delegation are the Adobe Acrobat plug-in and

SUN Java plug-in in the Mozilla Suite.

6.6.3 Mediation

Definition 3 In the Mediation extension pattern, (almost) all core activity of the appli-

cation is achieved through the use of multiple cooperating extensions. The extension

framework plays a crucial, mediating role in the functioning of the entire system.
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GUI

Parse Eval

GUI
GUI

Parser Evaluator

CacheToolBus

(a) Hardwired GUI

Parser

GUI

Parse Eval

GUI

Evaluator

CacheToolBus

GUI

(b) Pluggable GUI

Figure 6.2: Component knowledge in the GUI: hardwiring versus plugging.

The frameworks in this category offer some basic functionality but, as a primary

goal, are highly extensible. In contrast to systems that use plug-ins as delegates for

specific tasks, the framework acts as a mediator between a number of cooperating

extensions.

Examples of the use of extensions through mediation are the Eclipse plug-in sys-

tem, and the Java Plug-in Framework.

6.6.4 Adaptation

Definition 4 In the Adaptation extension pattern, the system offers a way to adapt the

system without exercising strict control over the extension.

Some frameworks allow users to adapt its functionality, usually by means of (small)

scripts. The goal of these adaptations is not to add new chunks of functionality to the

system, but to make minor modifications given the already rich set of functionality

offered by the system.

An example of extension through adaptation is the Firefox Adblock extension.

6.7 A Plug-in Architecture for the Meta-Environment

Having studied various plug-in architectures, how does the Meta-Environment fit into

all of this? In Section 6.1 we noted that the GUI component in the Meta-Environment

has evolved into a monolith with knowledge about many other components.

Figure 6.2(a) shows a largely simplified view of the Meta-Environment consisting

of four components: a parser, an evaluator, a cache, and the GUI. These components

are interconnected using the ToolBus [15]: a component coordination architecture.

The ToolBus coordinates the connected components by means of a ToolBus script, a

scripting language based on process algebra. This script dictates all possible interaction

between any of the connected components.

In the example, the parser and the evaluator both require user interaction, the cache

remembers computationally expensive results from the parser and evaluator, but re-

quires no user interaction. Although the GUI is a separate component, the fact that two

other components need user interaction is reflected in the GUI. In this example, the GUI
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knows how to visualize parse trees (a result from the parser) and how to interactively

deal with the evaluator. If a new tool is added which also requires user interaction, the

source code of the GUI has to be adapted, to allow for the extra information needed to

deal with the new component.

The GUI contains identifiable chunks that deal with user interaction for specific

subcomponents of the Meta-Environment. It would be nice if smaller pieces of user

interaction related tasks could be encapsulated in their own GUI element. In our ex-

ample, we would like the parsing component to also be responsible for the part of the

GUI that deals with parsing, and the evaluator for the part of the GUI that deals with its

interaction. Figure 6.2(b) proposes a change to the architecture by removing the parser

and evaluator specific parts from the GUI, and replacing the GUI by a generic plug-in

capable one. The parser and evaluator specific portions of the GUI are then plugged

into the GUI, but are each themselves connected to the ToolBus, subjecting them to the

coordinating regime.

6.7.1 Extension mechanisms in the Meta-Environment

What are the architectural options to organize the GUI in the way we just described,

given the constraint that individual GUI elements should operate independently? We

consider the four extension mechanisms we identified and reflect on their use in the

Meta-Environment. What are they used for currently, and could they be used to reor-

ganize our GUI?

Decoration The Meta-Environment already uses some instance of the decoration

extension mechanism in that font types and sizes, as well as various color schemes are

supported through the use of a configuration manager. A property file binds

an abstract name such as menu.font.family used in the GUI implementation, to

a concrete value (e.g., “Helvetica, bold, 12pt”).

Delegation Each tool in the Meta-Environment serves a single purpose, and for each

purpose there usually is only a single implementation for each goal. Still, in a way the

Meta-Environment uses the delegation extension mechanism for all these tools, even

though each one only has a single implementation. The actual tool executed to perform

the task can be replaced by another implementation (even in another programming

language) as long as it abides by the same ToolBus interface of that tool. For example,

we have successfully reused a different term rewriting engine [37] in the Meta-Envir-

onment by simply executing the new rewriter instead of the default one. So, although

in reality we often only have a single implementation, the way these external tools

are connected to the system can be seen as an instance of the delegation extension

mechanism.

Mediation The mediation pattern appears to be the most useful extension mechanism

to use for the GUI. It allows us to have a central GUI tool with certain core functionality,

and it allows the GUI parts of other components to be installed in the core GUI, without

loosing control over the application.
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One way to implement this in the current Meta-Environment, would be to extract

GUI functionality specific to certain tools into plug-ins, and to replace the monolithic

GUI by a core with plug-in support.

To this end, we experiment with the Java primitives available for dynamically load-

ing external classes. We then connect these plug-ins to the ToolBus in the same way

other Java tools are connected to the ToolBus. In effect each plug-in thus becomes

a ToolBus tool, but since it is started from within the same Java virtual machine, it

has access to the GUI functionality offered by the GUI core. The framework needs to

be able to locate and instantiate a plug-in, and connect it to the ToolBus. It then offers

sufficient functionality to allow plug-ins to add a window in the core GUI.

Adaptation The ToolBus scripting language is used extensively in the Meta-Envir-

onment to connect all independent components. In fact, all functionality offered by the

application as a whole is expressed at the ToolBus script level in terms of cooperation

between otherwise functionally independent tools. Extending the Meta-Environment

can be done by editing the ToolBus scripts. This has already been done to extend the

Meta-Environment into an Elan [37] environment, and to incorporate Action Seman-

tics [100] to create an Action Semantics Environment [29]. So the interaction between

existing and new tools can be extended by adaptation of the ToolBus scripts, but this

mechanism is not suited to change the functionality inside the GUI.

6.7.2 The Basic GUI Framework

We will explain the GUI framework in two stages. First we show how the Java con-

tract between GUI and plug-in works, and then we show how the GUI and plug-ins are

connected to the ToolBus.

We start out with a GUI that is basically nothing more than an empty shell. All

it does is display an initial frame with a menu bar containing a single menu item:

File->Exit. The only possible user interaction is activating this menu item, or

clicking the close button on the frame.

The contract between GUI and plug-in is deliberately kept very small. Figure 6.3

shows the Gui and Plug-in interfaces as well as two simple implementations. A

plug-in is initialized using the initPlugin method, passing a reference to the GUI

instance as a parameter. The plug-in then adds its user interface elements, such as win-

dows, labels, buttons, etc., to the GUI using the add method from the Gui interface.

As our GUI implementation uses JFC/Swing we opted for the use of JComponent as

the base class of all user interface elements that can be added to the GUI by a plug-in.

Now that we have our basic GUI, and know what a plug-in looks like, how can we

actually instantiate and initialize a plug-in? Obviously, the GUI does not know in ad-

vance which plug-ins exist nor where to find the compiled Java code that implements

them. Our answer is to make the GUI a ToolBus tool. First, we give a ToolBus interface

definition for a TrivialGUI, which we will expand to allow the use of plug-ins.
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gui.add(new JLabel("Time:"));

public void add(JComponent c) {

  frame.add(c);

}

this.frame = new JFrame();

frame.addMenu(new JMenu("File", new JMenu("Exit")));

public interface Gui { public interface Plugin {

  void add(JComponent c);

}

  void initPlugin(Gui g);

}

Gui Plugin

initPlugin(Gui g)

MetaEnvGUI ClockPlugin

initPlugin(Gui g)

add(JComponent c)

JFrame frame

add(JComponent c)

public MetaEnvGUI() {

}

MetaEnvGUI()

Figure 6.3: The interface between GUI and plug-in at the Java implementation level.

process TrivialGUI is

let

GUI: gui

in

execute(gui, GUI?) .

(

rec-event(GUI, gui-close-event)

. snd-note(gui-close-request)

. snd-ack-event(GUI, gui-close-event)

) * delta

endlet

This TrivialGUI only starts the GUI and propagates any gui-close-events

it receives from the GUI.

Now, we need some uniform way to package all files belonging to a plug-in and

define a way to deliver this package to the GUI. A collection of compiled Java classes

are usually packaged in a Java ARchive (jar) file. Such a jar file also contains a

manifest file with meta information about the plug-in, including the name of the main

class of the archive. Therefore, such archives are very suitable to package plug-ins,

because it contains all necessary Java classes and extra information that we need, and

it is a mainstream way of packaging Java applications. We pass the location of the

jar file by means of a Uniform Resource Locator (URL) which allows both local (on

the user’s machine) and remote (anywhere on the web) plug-ins to be used.

We extend TrivialGUI with an add-plugin message that allows a plug-in

to be added by passing the location (URL) of the jar file of the plug-in. We call

this extended GUI PluggableGUI. Extensions to the previous script are given in

boldface.
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process PluggableGUI is

let

GUI: gui,

PluginURL: str

in

execute(gui, GUI?) .

(

rec-event(GUI, gui-close-event)

. snd-msg(gui-close-request)

. snd-ack-event(GUI, gui-close-event)

+

rec-msg(add-plugin(PluginURL?))

. snd-do(GUI, add-plugin(PluginURL))

) * delta

endlet

After extending the ToolBus interface, we need to implement the Java counter-

part of add-plugin. There we need to load the jar file and instantiate the plug-in.

Fortunately, Java comes with ample support for locating jar files via an URL, and

provides easy access to the jar file’s meta information, such as the fully qualified

name of the main class of the jar file. We show a simplified version, without any

exception handling details, of how this is done in the MetaEnvGUI. This version fo-

cuses on how a plug-in can be added to the GUI by loading a jar file and instantiating

its main class.

public class MetaEnvGUI implements Gui {

private JFrame frame;

public MyGui() { this.frame = new JFrame(); }

public void add(JComponent c) { frame.add(c); }

public void addPlugin(String pluginURL) {

new PluginLoader(pluginURL).newInstance().initPlugin(this);

}

}

class PluginLoader extends URLClassLoader {

private URL url;

public PluginLoader(String pluginURL) { url = new URL(pluginURL); }

private String getPluginMain() {

JarURLConnection juc = url.openConnection();

Attributes attrs = juc.getMainAttributes();

return attrs.getValue(Attributes.Name.MAIN_CLASS);

}

public Plugin instantiatePlugin() {

String pluginMain = getPluginMain();

Class pluginClass = loadClass(pluginMain);

return (Plugin) pluginClass.newInstance();

}

}
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location: /plugins/clock.jar

C

Initial state

contains:

Manifest

clock.jar 

Plug−in

Clock.class

State after executing

add−plugin("/plugins/clock.jar")

ToolBus

GUI

ToolBus

GUI C

Figure 6.4: The ToolBus instructs the Java GUI to instantiate the clock plug-in by

loading the corresponding jar file.

6.7.3 Example: simple clock

We now have all the ingredients for a simple example. Suppose we want to enrich our

bare GUI with a clock plug-in. This clock adds a label to the GUI showing the current

time. Figure 6.4 shows the loading of clock.jar in the GUI.

Without going into details on how to implement the actual clock functionality, our

clock class could look something like this:

public Class Clock implements Plugin, Runnable {

private JLabel label;

public void initPlugin(Gui gui) {

this.label = new JLabel();

gui.add(label);

new Thread(this).start();

}

public void run() {

while (true) {

label.setText("Time: " + getTime());

Thread.sleep(100);

}

}

}

Assuming that the clock’s jar is stored in the file /plugins/clock.jar, the

clock plug-in can now be activated from a ToolBus script as follows:

snd-msg(add-plugin("/plugins/clock.jar"))

6.7.4 Extension: Allowing communication to a plug-in

So far, we have loaded the plug-in in the GUI, but we have not yet facilitated a way

for later communication to (or from) the plug-in. As a next step, suppose that we want

to allow for external synchronization of the clock, e.g., to make it display time using a

different time zone offset.

In our MetaEnvGUI implementation we also abstracted from all ToolBus details.

But as MyGui is a ToolBus tool, the real implementation has a connection to the Tool-

Bus. We now extend the Gui interface by adding a connectToToolBus method
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which allows plug-ins to ask the GUI to create a separate ToolBus connection specifi-

cally for that plug-in. At this point, we also have to define the ToolBus interface of the

clock plug-in. It is no longer an independent plug-in, it now becomes part of the appli-

cation because it offers functionality (setting the time zone). The plug-in will have its

own connection to the ToolBus just as all other ToolBus tools have, and communication

to the plug-in also uses the same mechanism.

process Clock is

let

Clock: clock,

Timezone: str

in

rec-connect(clock, Clock?) .

(

rec-msg(set-timezone(Timezone?))

. snd-do(Clock, set-timezone(Timezone))

) * delta

endlet

We extend the Gui interface with a connectToToolBus method which will

allow plug-ins to request the GUI to connect them to the same ToolBus instance that

the GUI is connected to:

public interface Gui

public void add(JComponent c);

public void connectToToolBus(String toolName);

Next, we add the ToolBus interface file, containing the Clock process which de-

scribes all possible interaction between the clock tool and the ToolBus to the applica-

tion. And finally we change the initPlugin method of Clock.java so it actually

connects to the ToolBus:

public void initPlugin(Gui gui)

this.label = new JLabel();

gui.add(label);

gui.connectToToolBus("clock");

new Thread(this).start();

Note that although we extended the GUI with a mechanism to allow plug-ins to

connect to the ToolBus, none of this is specific to the clock application. No clock

specific knowledge enters the core GUI. The connection architecture is now as shown

in Figure 6.5.

6.7.5 Extension: Allowing communication from a plug-in

Having just added the ability to communicate to an instantiated plug-in, the next ob-

vious step is to define communication from the plug-in back to the ToolBus level. In

our clock example, we could use this to allow the clock to send an alarm signal to the

ToolBus.

We extend the clock’s ToolBus interface to allow for this new functionality:
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ToolBus

GUI C C

ToolBus

GUI

State after Clock.java executes

add−plugin("/plugins/clock.jar") gui.connectToToolBus("clock");

gui.idef gui.idef clock.idef

State after ToolBus snd−msg

Figure 6.5: After the Clock connects to the ToolBus, both GUI and Clock have their

own ToolBus connection, bound by GUI and Clock specific interfaces, respectively.

process Clock is

let

Clock: clock,

Timezone: str

in

rec-connect(clock, Clock?) .

(

rec-msg(set-timezone(Timezone?))

. snd-do(Clock, set-timezone(Timezone))

+

rec-event(Clock, alarm)

. snd-note(clock-alarm)

. snd-ack-event(Clock, alarm)

) * delta

endlet

Because the clock already has a ToolBus connection from our previous extension,

nothing has to be changed except the clock’s ToolBus interface and the implementation

inside the clock itself. This is exactly the same as when any other ToolBus tool changes

its functional interface. This keeps the distinction between plug-ins and non plug-ins

minimal: the only difference is that the plug-ins have access to the core GUI.

6.7.6 Extension: Allowing inter-plug-in communication

As a final extension to our clock example, we consider what happens when we want

to have two clocks, one clock with a digital display, and one with an analog display.

Suppose that both clocks offer user interaction to set the current time of the clock, how

can we keep both clocks synchronized? That is, if the user advances one of the clocks

by an hour, how do we get the other clock to update its notion of time and have it show

the same new time?

We extend the clock’s ToolBus interface by adding three things. First, the clock

subscribes to notes that will inform it of any time changes. Second, whenever it re-

ceives such a note, it propagates this to the tool which then updates its display. Finally,

whenever the clock tool fires an event signaling a time change, the Clock process
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sends out a note informing others of the event. The ToolBus code of the extended

Clock process is as follows:

process Clock is

let

Clock: clock,

Time: term

in

rec-connect(clock, Clock?)

. subscribe(time-changed(<term>))

.

(

rec-msg(set-timezone(Timezone?))

. snd-do(Clock, set-timezone(Timezone))

+

rec-event(Clock, alarm)

. snd-note(clock-alarm)

. snd-ack-event(Clock, alarm)

+

rec-note(time-changed(Time?))

. snd-do(Clock, set-time(Time))

+

rec-event(time-changed-event(Time?))

. snd-note(time-changed(Time))

. snd-ack-event(time-changed-event(Time))

) * delta

endlet

Assuming that the digital clock is in /plugins/digital-clock.jar and

the analog one in /plugins/analog-clock.jar, instantiating them in the GUI

is done by sending two similar ToolBus messages from anywhere in the ToolBus script.

For example, we can define a process StartClocks which starts both clocks:

process StartClocks is

snd-msg(add-plugin("/plugins/digital-clock.jar"))

. snd-msg(add-plugin("/plugins/analog-clock.jar"))

In this example, where we use subscribe and rec-note, all connected clocks

are kept up-to-date of any time changes by the asynchronous note mechanism offered

by the ToolBus. Whenever one clock receives an event from the GUI that the time

has changed, it broadcasts this to all connected clocks that use clock.idef causing

them to update their current time as well.

6.8 Current plug-ins in the Meta-Environment

To illustrate how the plug-in system we implemented works in the ASF+SDF Meta-

Environment, we now describe the plug-ins currently in use. We show some statistics

of these plug-ins in Section 6.8.1. As an example, we show the ToolBus interface

definition of one particular plug-in in Section 6.8.2. Finally, Section 6.8.3 elaborates

on one specific instance of plug-in interaction relevant to the Meta-Environment.

Figure 6.6 shows a screenshot of the ASF+SDF Meta-Environment, with running

instances of all GUI plug-ins currently available. We give a brief description and close-

up of each of these plug-ins.
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Figure 6.6: Screenshot of the plug-ins in the ASF+SDF Meta-Environment.
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The GRAPH plug-in (Figure 6.7) is capable of displaying multiple graph-like struc-

tures on a canvas in the GUI. In the Meta-Environment it is used to display the import

relations between active modules, and to show (parts of) parse trees selected by the

user. It is an interactive component: users can click on nodes in the graph and select

context sensitive menu items on those nodes.

Figure 6.7: The GRAPH plug-in interacts with arbitrary graph-like structures.

The NAVIGATOR plug-in (Figure 6.8) shows all active modules and their import re-

lations in a tree-like structure. Similar to the generic GRAPH plug-in which provides a

more global overview of the import relations, the NAVIGATOR plug-in allows the user

to address modules in a more structured way. It allows collapsing and expanding of the

tree nodes, and can have separate context sensitive menu items for each module in the

tree.

Figure 6.8: The NAVIGATOR plug-in allows interaction with modules opened in the

system.

The EDITOR plug-in (Figure 6.9) is used statically for the display of text files, and

dynamically for all editing sessions in the Meta-Environment. The Editor supports
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externally (i.e. by other components in the Meta-Environment) guided syntax high-

lighting, cursor placement, and context sensitive menus.

Figure 6.9: The EDITOR plug-in is used to allow user interaction with text files.

The DIALOG plug-in contains generic support for all kinds of dialogues between the

application and the user. Typical examples include a confirmation dialogue (“Are you

sure you want to delete this file?”), and a file/directory chooser (Figure 6.10).

Figure 6.10: The DIALOG plug-in is used for dialogues such as file selection.

The DETAILS plug-in (Figure 6.11) is used to render module specific properties of

the currently selected module in a table overview. Some examples of such properties

are the exact path on the filesystem to the module, whether or not the module is editable,

and the current status of the module (e.g. “parsed” or “parse error”).
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Figure 6.11: The DETAILS plug-in details module specific properties.

The ERROR plug-in (Figure 6.12) deals with all kinds of errors that may occur during

a session. It displays error messages as they are broadcast by various components, and

allows the user to interact with these errors. Each error contains structural information

about where it occurred. This means that errors can be displayed in a tree-like way,

allowing the user to get more information on a particular error by expanding the node

in the display. And it allows the system to “jump to” any location originally attached

to the error message by the component that generated the error.

Figure 6.12: The ERROR plug-in deals with all kinds of errors in the Meta-Environ-

ment.

The PROGRESS plug-in (Figure 6.13) can display a progress meter for a specific

(complex) task the system is currently busy working on. It can display the current state

of activity (e.g. “opening file”, “shutting down”, or “idle”), and for tasks that have

identifiable progress, it can show how much progress has been made so far (e.g. “56%

of the file has been parsed”).
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Figure 6.13: The PROGRESS plug-in keeps track of the progress of various actions.

6.8.1 Some plug-in statistics

Table 6.5 shows some statistics on the plug-ins just described. We noted the size of

the Java implementation of the plug-in itself, i.e., the GUI elements and the actual

functionality offered by the plug-in. The next statistic is the size of the ToolBus inter-

face definition file needed for the plug-in. This file contains the process responsible for

the interaction between the plug-in and the rest of the Meta-Environment, as well as

operational details, such as the location of the plug-in, and the classpath needed to run

it. The final two numbers in Table 6.5 are a count of the incoming and outgoing inter-

actions, respectively. Incoming messages request the plug-in to do something, e.g., to

display some data. Outgoing messages are notifications from the plug-in to the system,

such as the request for a context specific popup menu.

The source code of the Meta-Environment GUI as it was before the migration to

the plug-in architecture was about 4,800 lines of Java code. In this version, several

components which later migrated to plug-ins were already isolated in separate classes.

During the migration of these components, we ran into several instances of undesirable

tangling. The components were supposed to be separate, but sometimes one component

would receive a reference to another component in its constructor. This link to the

other component was then used in an ad-hoc manner to keep the component up-to-date

with specific state changes of the other. The result was an asymmetric situation where

some components were aware of (implementation) details of other components. In

Section 6.8.3 we show how we were able to break these links and restore a symmetric

situation where each component is again oblivious of any other component.

6.8.2 The ERROR plug-in interface

As an example, we now show the interface definition of the ERROR plug-in, responsible

for the interaction with all kinds of errors in the Meta-Environment.

process ErrorViewer is

let

T : error-viewer,

Error : term,

Location : term,

Path: str,

Producer : str,

Summary : term,
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Plug-in Impl. Interface # incoming # outgoing

(Java, LOC) (ToolBus,

LOC)

messages messages

GRAPH 1821 69 5 3

NAVIGATOR 1122 61 3 3

EDITOR 3031 133 14 8

DIALOG 575 122 6 3

DETAILS 304 26 1 0

ERROR 945 40 3 2

PROGRESS 363 35 3 0

Table 6.5: Size of plug-in implementations and their ToolBus interfaces, as well as

number of incoming (snd-do, snd-eval) and outgoing (rec-event) messages

to the plug-in.

SummaryId : str

in

StartErrorViewer()

. rec-connect(T?)

.

(

rec-msg(ui-show-error-summary(Summary?))

. snd-do(T, show-error-summary(Summary))

+

rec-msg(ui-remove-error-summary(Producer?, SummaryId?))

. snd-do(T, remove-error-summary(Producer, SummaryId))

+

rec-msg(ui-remove-error-summary(Path?))

. snd-do(T, remove-error-summary(Path))

+

rec-event(T, error-selected(Error?))

. snd-msg(ui-error-selected(Error))

. snd-ack-event(T, error-selected(Error))

+

rec-event(T, location-selected(Location?))

. snd-msg(ui-location-selected(Location))

. snd-ack-event(T, location-selected(Location))

)

*
rec-disconnect(T)

endlet

% Start the ErrorViewer by loading the jar-file containing its

% implementation. The second parameter is the classpath environment in

% which the plugin is loaded. In this case, the ErrorViewer has access

% to a (generated) data-type library for Errors.

process StartErrorViewer is

snd-msg(load-jar("file:///path/to/error-gui/error-viewer-1.2.jar",

"/path/to/error-support/error-api.jar"))

toolbus(ErrorViewer)
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Figure 6.14: Screenshot of the global and local NAVIGATOR views (left), and two

GRAPH views (right).

Errors are displayed in a tree-like GUI element (as shown in Figure 6.12), and when

the user double clicks on the location that is part of an error, this event is propagated

by the ERROR plug-in to the Meta-Environment, where it can be used, e.g., to bring up

the text editor (in the EDITOR plug-in) related to the error.

6.8.3 Plug-in interaction in the Meta-Environment

Figure 6.14 shows a picture of the ASF+SDF Meta-Environment system in a state

where some modules have been loaded, and the GUI presents the user with various

views on the import structure of these modules. In this picture, the GUI is divided

into four regions. The left-hand side shows a global and a local view rendered by the

NAVIGATOR, The right-hand side shows two views of graphs rendered by the GRAPH

component.

In this example GUI there are both specialized views (driven by the NAVIGATOR

component) and generic views (driven by the GRAPH component). The specialized

views deal with the concept of a currently selected module, whereas the generic com-

ponent deals with graphs and nodes, but is oblivious of the fact that its nodes are in

any way related to modules. This is demonstrated in the parse-tree view where

the graph nodes represent positions in a parse tree.

The conceptual difference in the notions (specific modules vs. generic nodes) used

by these two GUI components makes it interesting to reason about their interaction. Fo-

cusing on the notion of currently selected module in our example, we describe how to
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Figure 6.15: Architectural layers of the Plug-in-based GUI Framework.

keep the NAVIGATOR and GRAPH views synchronized, without either component know-

ing about the other.

Figure 6.15 shows how the architecture is divided into a framework layer and the

three layers known from the model/view/controller design pattern [64, 89]. Also shown

in Figure 6.15 is the relationship between these conceptual layers and their instances

in our NAVIGATOR and GRAPH example. Figure 6.16 shows that only the framework

itself and those parts of a plug-in that are in the control layer have a connection to

the ToolBus. The NAVIGATOR and GRAPH plug-ins have no direct connection to each

other, but they do have access to the GUI. Both framework and plug-ins have their own

connection to the ToolBus, each bound by their own ToolBus interface definition.

Framework The framework layer contains the basic architecture which allows an ar-

bitrary number of GUI components to be plugged into the system. Subsequent

interaction with those plug-ins is handled by the control layer.

Control The control layer bridges control of the individual instances between the

model of an instance and the ToolBus. Each plug-in controls an arbitrary number

of actual views. For example, the GRAPH plug-in is responsible for two different

graphs.

Model The model layer holds the data model for one or more views and translates

events from any of its views (e.g., a mouse event) into data specific events (e.g.,

a module event). In the example, the NAVIGATOR plug-in renders both a global

and a local view based on the same model.
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Figure 6.16: Connecting Framework and Plug-ins to the ToolBus.

View The view layer actually renders the data from the model in a GUI specific way,

and it allows interaction with the data (e.g., by passing mouse events on a tree

view).

Selecting a module, e.g., by clicking the mouse on a module name in the NAVIGA-

TOR, is now achieved in the following steps:

• The mouse-clicked event is received by one of the view components (in this case

the NAVIGATOR) and is forwarded to the model layer;

• The model layer translates the mouse-clicked event on a specific coordinate into

a module-clicked event on a specific module, which is passed to the control layer;

• In the control layer, which bridges the GUI framework to the ToolBus, the actual

event handling takes places via regular ToolBus processes and ToolBus commu-

nication;

• The control layer in the ToolBus sends out two notifications: one to update the

selected module in the NAVIGATOR, and one to update the selected node in the

Import Graph view of the GRAPH plug-in;

• The NAVIGATOR and GRAPH plug-in in the control layer forward the events to the

NAVIGATOR model and the Import Graph model, respectively;

• The NAVIGATOR model updates both of its views and the GRAPH view showing

the Import Graph updates its selected node.

The NAVIGATOR and GRAPH plug-ins deal with events and selections at their own

conceptual level. That is, the NAVIGATOR plug-in deals with modules, and the GRAPH

plug-in deals with nodes. The real interaction between the plug-ins is orchestrated, at
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00 process SetCurrentModule(Module: str) is

01 snd-msg(nav-select-module(Module))

02 . snd-msg(gp-select-node("import-graph", Module))

03

04

05 process NavigatorSelectionHandler is

06 let

07 Module: str

08 in

09 subscribe(nav-module-clicked(<str>)) .

10 (

11 rec-note(nav-module-clicked(Module?))

12 . SetCurrentModule(Module)

13 ) * delta

14 endlet

15

16 toolbus(NavigatorSelectionHandler)

17

18

19 process ImportGraphSelectionHandler is

20 let

21 Node: str

22 in

23 subscribe(gp-node-clicked("import-graph", <str>))

24 .

25 (

26 rec-note(gp-node-clicked("import-graph", Node?))

27 . SetCurrentModule(Node)

28 ) * delta

29 endlet

30

31 toolbus(ImportGraphSelectionHandler)

Figure 6.17: Plug-in interaction coordinated by ToolBus processes.
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the ToolBus level. Figure 6.17 shows the ToolBus script that notifies the NAVIGATOR

and GRAPH plug-ins when the currently selected module changes.

A noteworthy issue in Figure 6.17 is in lines 02 and 27 where nodes and modules are

treated as if they were the same thing. In the Meta-Environment a node in the Import

Graph and the module it refers to are identical, which allows this trivial “translation”

between nodes and modules. The example still holds if a more complex mapping is

needed, however. This translation would be applied just before line 02 to map a module

to a node, and its inverse mapping would be applied just before line 27 to map a node

to a module.

6.9 Summary and Conclusions

We have studied a number of popular, contemporary applications which all employ

some sort of extension mechanism to allow user modification. This study allowed us to

identify four main categories of “plug-in patterns”: decoration, delegation, mediation,

and adaptation. We described our lightweight plug-in architecture which we imple-

mented in the Meta-Environment, an instance of a mediating extension architecture.

We now return to the questions from Section 6.1.2 and try to answer them in the

remainder of this Section.

6.9.1 Plug-in Techniques

How do current software systems achieve various levels of extensibility?

For decoration purposes, a combination of graphics files and metadata files de-

scribing where in the application to deploy those graphics, are bundled. The use of the

resulting theme is then fully controlled by the application.

Applications that need to delegate specific functionality (e.g., the decoding of a

media stream) do so by invoking a method in plug-ins, which are embedded in the

application. Plug-ins are written in the same programming language as the application

itself (usually C++). The application does not allow arbitrary extension, but dictates

exactly where plug-ins can be hooked in, and what purpose they serve.

Application frameworks which have extensibility as one of their central goals (e.g.,

Eclipse) mediate these extensions by allowing them to register centrally controlled ex-

tension points. The framework can verify whether prerequisites of plug-ins are fulfilled

and releases control to the specific plug-in whenever the application uses one of the ex-

tension points. These plug-ins are written in the same programming language as the

application itself (usually Java). Extension points can be defined arbitrarily, the plat-

form does not dictate when or where plug-ins can allow themselves to be extended.

Finally, some applications (e.g., Mozilla) can be adapted to the user’s needs by

allowing extensions written in a scripting language (Javascript) to be interpreted

by the application. This class of extensions is not intended to be used to add a sig-

nificant portion of functionality to the application, but allows for minor modifications.

The scripting nature of adaptive extensions makes them feel more lightweight than the

compiled nature of their delegated and mediated cousins.
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6.9.2 Plug-in interaction

How do current software systems deal with consistency and interaction between the

core of the system and the plug-ins, and between different plug-ins?

The mediating frameworks we studied (Eclipse, JPF) allow for a hierarchy of plug-

ins. Once the framework releases control of the application to the plug-in, that plug-in

itself is responsible for its own (sub-)extension points. The plug-in uses the framework

to locate and instantiate these sub-plug-ins, but when and how to invoke them is left to

the plug-in itself.

Interaction between adaptive extensions is not explicitly dealt with by the frame-

work at all. Because of the freedom inherent in the scripting language, extensions can

dynamically override functionality in other extensions. This can easily lead to poten-

tial collisions when different extensions want to affect the same functionality of the

application in a conflicting way.

6.9.3 The ToolBus in a Plug-in Framework

How do current plug-in mechanisms relate to a system using a component

coordination architecture such as the ToolBus?

The ToolBus with its process algebra based scripting language to coordinate the

communication between independent component is very flexible. The plug-in patterns

that are most interesting from a coordination perspective, i.e., all but the decorative

pattern which does not affect the application’s functionality, can all be implemented

using the ToolBus.

In the adaptation and mediation systems we studied, plug-ins are always imple-

mented in the language of the application itself. In the adaptation systems we studied,

a special scripting language was used to write the plug-ins in. A system built on the

ToolBus architecture allows the plug-in to be implemented in the programming lan-

guage that is most suitable for the job. In the case of the Meta-Environment the GUI

parts are implemented in Java, but because each GUI part of the plug-in has its own

ToolBus connection, other tools could also be used in the implementation of the plug-

in.

Control between framework and plug-ins, as well as between different plug-ins is

all coordinated at the ToolBus level. The ToolBus scripting language is highly suited

for this job. Because coordination is centralized, the application maintains a firm grip

on how plug-ins interact, but it is flexible enough to allow arbitrary changes. The

rigorous separation of the coordination and computation concerns in a ToolBus appli-

cation allows plug-ins to be maximally oblivious of the rest of the application, and at

the same time allows the application fine grained control over its core behavior and any

extensions to it.

6.9.4 Impact on the ASF+SDF Meta-Environment

In order to understand the impact of applying the plug-in concepts we studied and our

implementation thereof in a ToolBus setting, we zoom out from the technical details

and show a higher level before-after scenario.
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Figure 6.18: ToolBus interface of the GUI before and after application of the plug-in

architecture.

Before using the plug-in architecture, the Meta-Environment was a collection of

tools, coordinated by a ToolBus script. The GUI was a single tool, and all user inter-

action with the system was in one way or another described in the ToolBus interface

definition of this central GUI. Whenever new functionality was added to the system,

the GUI had to be adapted, and its ToolBus interface extended to cope with the new

functionality. In a way, the complexity of the ToolBus connection to the GUI grew

bigger and bigger as the system evolved. Figure 6.18(a) shows a system before the

plug-in architecture using the ToolBus, two tools called A and B which each require

user interaction, and the monolithic GUI. The figure emphasizes how the ToolBus in-

terface of the GUI grows as more tools need access to a portion of the GUI. Whereas

the GUI should be just like any other tool, it in fact has become a bottleneck.

Now that we have implemented the plug-in architecture we presented here, the GUI

has a single, fixed ToolBus interface. All it does besides offering basic functionality to

shutdown the application, is facilitate arbitrary GUI units, called plug-ins to be instan-

tiated in the central visible GUI component. When user-interaction with the system

needs to be added, a new plug-in with its own ToolBus interface can be created and

added to the system, without intervention in any of the existing tools. Figure 6.18(b)

schematically shows how the GUI parts of our tools A and B, although plugged into

the GUI, now have their own ToolBus interface. The GUI interface no longer needs to

grow for each tool that is added to the system.

After the introduction of the plug-in architecture in the ASF+SDF Meta-Environ-

ment we were able to refactor and migrate the tool-specific portions of the GUI to

corresponding tools. By eliminating the dependency of the GUI on all other tools that

required user interaction, both the source code of the GUI as well as parts of the build

infrastructure (mainly Makefiles, and ant build scripts) were simplified. During this

refactoring we encountered several hidden and unwanted dependencies in portions of

the user interface where implementation details of one tool had emerged in another.

The strict separation into plug-ins reinforces the separation into tools that is already

present on the ToolBus level, but which had evaporated in the GUI.

Currently the ASF+SDF Meta-Environment has about ten plug-ins. So far, none of

these are optional. Each plug-in is important to the core functionality of the system.

Therefore, at present, the main advantage we gain from using a plug-in architecture
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is the much improved looseness in binding and coupling of the various parts of the

system. However, now that we have this open system, first of all we ourselves can build

extensions to the Meta-Environment more easily, and second it will finally be possible

to deal with third party extensions (e.g., developed by end-users of the system) in a

systematic way.

6.9.5 Contributions

The contributions of the plug-in architecture we presented in this chapter can be sum-

marized as follows:

• Application of the plug-in architecture solves the typical modularization bottle-

neck found in an omniscient GUI approach;

• In contrast to the Eclipse platform where plug-ins are entirely Java based, we

can implement plug-ins in various programming languages: only the part of the

plug-in that is rendered in the GUI is written in Java;

• Contrary to other architectures where plug-ins are free to do whatever they want

with the application, we keep a firm, global grip on all interaction between plug-

ins by having the ToolBus coordinate all the interaction.
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Conclusions

In the introduction (Chapter 1) we explained that the work in this thesis is structured

around two central research questions.

Then, in Chapters 2 and 3 we presented work related to the answer of the first

research question about space efficient data exchange and the type-safe access thereof.

Subsequently, in Chapters 4, 5, and 6 we showed the results of some studies done in

the context of the second research question about the implications of using component

coordination techniques to develop an interactive development environment.

In this chapter we reflect on the presented work, and summarize our findings and

try to answer the research questions.

7.1 Space efficient, type-safe data exchange

Research Question 1: How can structured data be exchanged between het-

erogeneous components in a space efficient, type-safe way?

In Chapter 2 we presented a design and implementation of the Annotated Term (ATerm)

data type, which utilizes maximal subterm sharing. This technique ensures a space ef-

ficient encoding for data that are structured in a tree like form. Not only are ATerms

represented in an efficient way in memory, they can also be exchanged between compo-

nents in a very compact way. By keeping the maximal subterm sharing in the serialized

representation, the actual amount of data that needs to be exchanged between compo-

nents is kept low, and the effort needed in the destination component to rebuild the

internal representation of the data is cheaper than if this component had to rediscover

the sharing present in the data itself.

In Chapter 3 we presented the design and implementation of a code generator which

generates a type-safe access layer on top of the generic, untyped ATerm data type. By

generating the method names based on descriptive names from the formal definition

(grammar) of the data type, instead of numbering arguments or using other heuristics,

developers can abstract from the underlying representation. By generating the access
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layer code for different programming languages, using the same data definition as con-

tract, the error prone marshalling and unmarshalling of data no longer has to be done

by the developer. The result is a software system that first of all contains less code that

needs to be maintained manually, and second is closer to the abstraction level of the

data description, than of its underlying representation.

In more general terms we developed a highly optimized low-level implementation

for a specific set of data types, yet we maintain an abstract view on this data type by

generating a high-level type safe access layer on top of the data representation.

7.2 Building an IDE using a coordination architecture

Research Question 2: What are the implications of using component coor-

dination techniques on the architecture of interactive software development

environments?

In an attempt to answer this research question, we studied three particular areas.

First, there is the impact on the coordination architecture itself. We looked at the

issues relevant to interactive software development environments, from a component

coordination architecture point of view. Section 7.2.1 details our findings.

The second area we studied is that of connecting off-the-shelf available compo-

nents to an IDE built with a component coordination architecture. In Section 7.2.2

we summarize our ideas on what kind of infrastructure is needed in order to be able

to use off-the-shelf components in a robust way, and to stay clear of changes in those

components as they develop over time.

The third area we studied is closely related to the decoupling paradox explained

in Section 1.2: after decoupling components, how can we have a single, centralized

graphical user interface that allows users to interact with the system, without this GUI

knowing about all the components. We reflect on how the plug-in architecture we

developed is a solution to this issue in Section 7.2.3.

7.2.1 Component coordination techniques for an IDE

In Chapter 4 we showed our experiences in using a component coordination archi-

tecture as the basic architecture to build an interactive software development environ-

ment. We showed how the use of the ToolBus coordination architecture resulted in a

more open implementation of the environment. Some of the individual components are

reused outside of the context of the Meta-Environment, but also other environments are

built using the same ToolBus based architecture.

Also in Chapter 4 we studied possible changes to both the ToolBus architecture

and the scripting language, based on the Meta-Environment case study. From these

results we can conclude that a scripting language based on process algebra, such as the

one used to model the application in the ToolBus environment, is powerful and expres-

sive enough to describe the coordination patterns found in an interactive application.

One area where the language currently lacks proper support is the handling of errors
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and exceptions. Although primitives are available to deal with errors, these are very

low-level. A higher abstraction level to deal with exceptions, such as is found in the

Java programming language, is desirable. This can be added without giving up the

fundamental process algebra nature of the ToolBus script language.

We realize that the pass-by-value way of passing data between components in the

ToolBus is a bottleneck, and studied how related architectures bypass this bottleneck.

However, having a central architecture that takes care of garbage collection helps avoid

the difficult problem area of distributed garbage collection. In the context of building

user interaction-bound applications (such as a software development environment), the

use of pass-by-value techniques does not pose too much of a performance issue. This

changes drastically if the ToolBus were to be used in a high-throughput system, e.g., to

coordinate webservices with high volumes of requests.

7.2.2 Using off-the-shelf components in a robust way

In Chapter 5 we studied the problem domain of connecting off-the-shelf components

to the ToolBus. Each foreign component needs some sort of glue to get it to work in a

particular architecture setting. Even if components have the same functional interface,

their behavioral interface need not be equal. In the context of reusing third party editing

facilities, we showed how a proxy component with a certain functional interface can be

used to adapt other components with the same functional interface, but with a different

behavioral interface. The proxy component hides operational details such as starting

up and communicating with the third party component. We showed how we can avoid

having to adapt the foreign component’s source code by using the proxy component

approach.

7.2.3 A central GUI for decoupled components

In Chapter 6 we have studied a phenomenon common in software applications with

user interaction using a (graphical) user interface. Where individual pieces of work

can be done in isolated components, the user interaction with all these components has

to be centralized. In a component coordination architecture setting where we strive

to decentralize computational components, we are faced with the paradox of having

a central component, the GUI, which needs to offer the user a view on the state of all

other components. We designed and implemented a central, open, GUI architecture that

allows separate pieces of the GUI to be plugged in during execution of the application.

In doing so, we separate user interaction concerned with the application at a higher

level (e.g., startup, shutdown, loading a plug-in) from user interaction targeted only at

a specific part of the application. We argue that this architecture is open for all sorts

of extensions to the application, but that our approach does not break the idea that the

central coordinator (the ToolBus in our case) is ultimately responsible for coordinating

component interaction.
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7.2.4 Applicability Considerations

Although the primary research context for the architecture described in this thesis has

been an academic one (the ASF+SDF Meta-Environment), the applicability of the ar-

chitecture is by no means restricted to just that environment. However, we do note that

there are various implementation issues related to the ToolBus, that would have to be

addressed before it can be realistically used in a non academic setting. For example,

security would have to be improved drastically for any conceivable deployment in, e.g.,

a banking or online commercial applications. Similarly, availability would have to be

improved for any uses in, e.g., health critical systems. For a web service, various opti-

mizations will be needed to ensure a timely response, even when thousands of requests

per second need to be handled.

However, with a solid base in fundamental Process Algebra [7], the ToolBus can

be a very powerful instrument in dealing with scenarios of components which would

otherwise be more difficult to solve. Interaction cycles, e.g., mutually recursive calls

between components, can be dealt with in ToolBus scripts in virtually the same way as

these concerns can be expressed in Process Algebra.

7.3 Future Work

In this section we describe some thoughts on future work. In particular we propose

some ideas on how the work on the generation of APIs described in this thesis can

be applied in a ToolBus setting to achieve more application wide type-safety in Sec-

tion 7.3.1. The work on our plug-in framework leads to some questions on the granu-

larity and dynamics of plug-ins, which we describe in Section 7.3.2.

7.3.1 Application wide type-safety

Data is exchanged between components using ATerms, a generic term representation.

Accessing this data inside components is done in a type-safe manner using the gen-

erated APIs. At the coordination level, in the ToolBus scripts, however, much of this

type-safety is lost. The focus is on coordinating message patterns between components,

and the data exchanged between components is usually referred to using generic term

patterns. Figure 7.1 illustrates how data-access in a ToolBus setting is roughly divided

into two layers. In the ToolBus scripts, variables of the generic type term are used to

refer to data that is in fact of a more application specific type. The tools use generated

access libraries (as described in Chapter 3) to access the same data in a much more

type-safe fashion.

Current practise in ToolBus scripts Consider the following example ToolBus

script, taken from the ASF+SDF Meta-Environment:

process ParseTreeHandler(ModuleId: term, Path: str) is

let

ErrorMessage: term,

ParseError: term,
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Figure 7.1: Generic data transfer in ToolBus and type-safe access in the tools.

ParseResult: term,

Pid: int,

Summary: term

in

Pid := process-id

.

(

(

rec-msg(parse-tree(Pid, ParseResult?))

. RemoveSummary("sglr", Path)

+

rec-msg(parse-forest(Pid, ParseResult?, ErrorMessage?))

. AddFilenameToSummary(ErrorMessage, Path, ParseError?)

. MakeErrorSummary("sglr", Path, [ParseError], Summary?)

. RemoveSummary("sglr", Path)

. DisplaySummary(Summary)

)

. snd-msg(parse-handler-done(Pid, ModuleId, ParseResult))

+

rec-msg(parse-error(Pid, ErrorMessage?))

. AddFilenameToSummary(ErrorMessage, Path, ParseError?)

. MakeErrorSummary("sglr", Path, [ParseError], Summary?)

. RemoveSummary("sglr", Path)

. DisplaySummary(Summary)

. snd-msg(parse-handler-done(Pid))

)

endlet
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All variable occurrences of type term have been highlighted in boldface. These

occurrences mark potential problem areas, because in principal any kind of data can be

passed through a term variable.

Current possibilities The term data type (supported by its implementation in sev-

eral programming languages) is a very useful part of the ToolBus architecture. It allows

components to exchange data in a generic way, without having to bother with issues

such as marshalling input and output by parsing (input) and pretty printing (output).

The open character of the term type allows access to the data exchanged exchanged

between components, not only at the component level, but also at the ToolBus script

level. This means the ToolBus script can inspect data (e.g., for debugging purposes),

annotate data (e.g., for statistical measurements), and even modify data (e.g., to con-

nect two components with similar, but not quite identical interfaces). In other words,

we strongly support the generic and open nature of the term data type.

However, the use of term typed variables in a ToolBus script is, in a way, equiv-

alent to using variables of type Object in Java, or using void * pointer variables

in a C program. In some programming languages (e.g. in C) the use of the generic

type is the only way to deal with generic implementations. Implementing a hashtable

in C for example, will rely on the use of void * pointers. However, in programming

languages that support strict typing, it is usually a good idea to use the strict types

whenever possible, as it allows static detection of programming errors related to type

errors.

Just as the implementation of a parser in Java would probably use types (classes)

like ParseTable, ParseTree, and ParseError, we would like to be able use

the same types in ToolBus scripts.

In particular, we would be interested in using the abstract data types discussed in

Chapter 3 in some form. This would allow us to use the exact same data type names in

ToolBus scripts, as we do in our tools.

Apart from the generic term type, the ToolBus already allows more strict typing,

but using such types relies on structural knowledge of the actual term representation,

rather than the mere name of the type. Instead of declaring a variable of type term, a

term pattern can be used. A match between a snd-msg and rec-msg with a result

variable declared to be of a specific term pattern will only succeed, if the sent value

matches the receiving term pattern.

For example, if a variable is declared as follows:

let B: book

and it is subsequently used to receive requests to store a book:

rec-msg(store-item(B?))

then only terms that match the signature

snd-msg(store-item(book(<term>)))
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will match. Note how the type of the variable (book) is used to restrict the matching

pattern.

In a similar way, more complex patterns can be used as the pattern for the variable.

let B: book(title(<str>), author(name(<str>)))

Recognizing the pitfall Unfortunately, by using this type mechanism, we have to

manually enter structural information about our data, and scatter this knowledge

throughout the entire script. As we discussed in Chapter 3, we consider this bad prac-

tise. Instead we would like to abstract from the data representation and use type names

instead. At the same time, we might be interested in having more of the type-safe ac-

cess functionality derived from the data type (again, similar to the practise described in

Chapter 3).

Suggested approach To this end, we propose to add to the existing sections in a

ToolBus script that deal with process definitions and tool definitions, a section that

reflects the data definitions used in the script. As an example, consider the following

script, where the data type related changes are given in boldface:

01 tool store is { command = "/path/to/store" }
02

03 data is { url = "http://www.cwi.nl/path/to/book.adt"}
04

05 process Store is

06 let

07 B: @Book,

08 S: store

09 in

10 execute(store, S?)

11 .

12 (

13 rec-msg(store-item(B?))

14 . snd-do(S, store-book-by-author(@GetBookAuthor(B), B))

15 +

16 ...

17 ) * delta

18 endlet

In line 03 we tell the ToolBus that it needs to include the data definition

(book.adt) specified at a given url. This ADT would be the same ADT that we

used throughout Chapter 3, so among others, it could be generated from a syntax def-

inition of the data type. Suppose for this example that book.adt contains the en-

try [Book, default, book(<title(str)>,<author(str)>)] then the

generated C library contains a definition for the type Book as well as access functions

similar to the following:

typedef struct Book *Book;

ATbool hasBookTitle(Book book);

char *getBookTitle(Book book);
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char *getBookAuthor(Book book);

Book setBookAuthor(Book book, char *author);

Similar to using the Book type and its access functions in C, we now declare a

variable of that type in our ToolBus script, as is done in line 07 above. In this example,

we prefixed the type with a syntactic marker (the @ sign) so the ToolBus knows it has

to lookup the data type Book in the ADT previously declared in the data section.

In line 14 we use an access method similar to the way we used it in Chapter 3. In

this case, it would extract the author from the Book typed parameter that was passed.

The fundamental change in the ToolBus with respect to the way it deals with data

is that, where we currently only deal with data in a very generic way, we will allow

an explicit data definition. Static type checking of the scripts should now take the data

types in the supplied data file into account. In the current situation (almost) every

parameter is of type term, meaning that errors due to type mismatches are either not

found at all, or at best detected at runtime because expected messages do not match. In

the new situation, parameterized processes can have strictly typed parameters, meaning

that more programming errors in the scripts can be found statically.

Implementation considerations Two approaches for the implementation can be

considered: a generational approach as we did in ApiGen in this thesis, or an inter-

pretative approach.

As the ToolBus has primitives to traverse the term structure, it would be possible

to generate ToolBus code that implements processes in the same way, the C and Java

implementations are generated by ApiGen.

Given that we have a ToolBus implementation in C and at least have a prototype

implementation in Java, an approach where we re-use the ApiGen-generated libraries

is perhaps more appealing. As Java has well defined reflection semantics and a rich

reflection API, it should be possible and fairly straightforward even, to map calls in the

ToolBus script (e.g. the @GetBookAuthor from the example) to the corresponding

method in the generated Java API. If it is desirable to have this functionality in the

current C implementation, the same link can be made by having a (generated) symbol

table which maps the ToolBus invocation to a specific function in the generated C

library.

Expected results By promoting type-safety in the ToolBus scripts, we effectively

raise the level of type-safety in the entire ToolBus driven application. Figure 7.2 illus-

trates how we arrive at an application which is mostly type-safe in both the individual

tools and the coordinating ToolBus script, but which still has the freedom to use generic

types where they are needed (e.g., to implement a generic term caching facility).

7.3.2 About ToolBus and plug-ins

The desire to leave more and more things in a software application open to changes

by the user, leads to the need for a system that is highly extensible and which offers

a means to change things on a varying scale of granularity. Sometimes only small

things need to be changed (e.g., the order of two menu items in a menu bar), and
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Generic terms

if/when needed
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ToolBus
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ToolBus script

Type−safety

in tools

Figure 7.2: Improved type-safety in the ToolBus coordinated application.

sometimes entire components need to be changed (e.g., switching the rendering engine

of a graphical application from one that only supports 2D graphics to one that supports

3D graphics as well). At the same time, it is of vital importance that consistency of the

software system as a whole is guaranteed.

Currently, the extensibility offered by our ToolBus driven plug-in architecture, is

of a fairly static nature. The ToolBus assumes a closed world of processes, tools (and

after the previous section, of data as well). Although it is fully dynamic in the sense

that new process instances can be created and that running processes can end at certain

points in the execution of a ToolBus script, their definition is fixed from the moment

the ToolBus is started. Our plug-in architecture is thus extensible in the sense that new

plug-ins (Java components possibly accompanied by ToolBus scripts) can be added

to the system, but the system has to be restarted whenever an extension is added.

Given the current nature (static, and large chunks of changes through plug-ins), we

are left with some interesting questions:

Plug-in dynamics What are the fundamental requirements of an extensibility archi-

tecture that can be dynamically extended and updated? It may be easy to understand

how we can build a software system that can add new components without needing a

restart, but what happens if currently running components need to be updated? What

happens when we try to remove such components, can we still guarantee consistent

behavior of the system? What role could existing transaction systems play in such a

framework?
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Plug-in granularity In our system, we are able to replace chunks of software at the

component level, as long as both components abide by the same functional (ToolBus)

and data (ADT) interface. For example, we could easily replace our C implementation

of the parser by one that is implemented in Java. We can replace the interaction

between existing components by adding, replacing, or removing parts of the ToolBus

script that guides the application. These are fairly course grained changes to the system.

But what happens if a user wants to change something small, such as the order in

the GUI menubar of two menu items which originate from two different plug-ins?

Currently the GUI part of the framework dictates that menu items are added in the

same order the plug-ins were loaded. In order to add this flexibility to our system, we

would currently have to change the architecture. Would it be possible to have these

kinds of system adaptations, without giving up our our central control model? How

small can the unit of extension become, without loosing control over the consistency

of the application?

Plug-ins as ToolBus primitive? The ToolBus Next Generation studies have resulted

in a new implementation of the ToolBus in Java. This implementation is nearing

completion just at the time where we introduced the GUI plug-in framework to the

Meta-Environment.

It would be very interesting to study if the plug-in framework can somehow be

merged into the ToolBus itself. And, if so, what the consequences would be for the

way we deal with with GUI interaction between plug-ins and the rest of the system.

Currently, the plug-in framework is implemented as a separate component. That

is, it is just an ordinary tool, like any other tool that is connected to the ToolBus.

However, especially in the context of using the ToolBus for applications that use a

GUI, it may be interesting to promote this functionality to a primitive similar to the

execute primitive which starts up an external tool.

Will integrating the GUI plug-in framework in the ToolBus be only a shift from ex-

ternal tool to ToolBus primitive? Or will it lead to the insight that it is indeed desirable

to have GUI concepts and primitives at the level of the coordination architecture itself?
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Syntax and Interface of

ATerms

This appendix lists the concrete syntax (in SDF) of ATerms, and the interface of

the ATerm library.

A.1 Concrete Syntax of ATerms

A formal definition of the concrete syntax of ATerms using the syntax definition for-

malism SDF [72] is presented here. Note that there is no concrete syntax defined for

blobs, because a humanly readable representation of blobs depends on the type of data

stored in the blob.

A.1.1 ATerms.sdf

module languages/aterm/syntax/ATerms

imports

languages/aterm/syntax/IntCon

languages/aterm/syntax/RealCon

basic/StrCon

basic/IdentifierCon

exports

sorts AFun ATerm Annotation

context-free syntax

StrCon -> AFun {cons("quoted")}

IdCon -> AFun {cons("unquoted")}

context-free syntax

IntCon -> ATerm {cons("int")}

RealCon -> ATerm {cons("real")}

fun:AFun -> ATerm {cons("fun")}

fun:AFun "(" args:{ATerm ","}+ ")" -> ATerm {cons("appl")}

"<" type:ATerm ">" -> ATerm {cons("placeholder")}

"[" elems:{ATerm ","}* "]" -> ATerm {cons("list")}

trm:ATerm Annotation -> ATerm {cons("annotated")}

context-free syntax

"{" annos:{ATerm ","}+ "}" -> Annotation {cons("default")}
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A.1.2 IntCon.sdf

module languages/aterm/syntax/IntCon

imports

basic/Whitespace

basic/NatCon

exports

sorts IntCon

context-free syntax

NatCon -> IntCon {cons("natural")}

pos:"+" NatCon -> IntCon {cons("positive")}

neg:"-" NatCon -> IntCon {cons("negative")}

A.1.3 RealCon.sdf

module languages/aterm/syntax/RealCon

imports

languages/aterm/syntax/IntCon

exports

sorts OptExp RealCon

context-free syntax

"e" IntCon -> OptExp {cons("present")}

-> OptExp {cons("absent")}

base:IntCon "."

decimal:NatCon

exp:OptExp -> RealCon {cons("real-con")}

A.1.4 StrCon.sdf

module basic/StrCon

exports

sorts StrCon StrChar

lexical syntax

"\\n" -> StrChar {cons("newline")}

"\\t" -> StrChar {cons("tab")}

"\\\"" -> StrChar {cons("quote")}

"\\\\" -> StrChar {cons("backslash")}

"\\" a:[0-9]b:[0-9]c:[0-9] -> StrChar {cons("decimal")}

˜[\0-\31\n\t\"\\] -> StrChar {cons("normal")}

[\"] chars:StrChar* [\"] -> StrCon {cons("default")}

A.1.5 IdentifierCon.sdf

module basic/IdentifierCon

exports

sorts IdCon
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lexical syntax

head:[A-Za-z] tail:[A-Za-z\-0-9]* -> IdCon {cons("default")}

lexical restrictions

IdCon -/- [A-Za-z\-0-9]

A.1.6 NatCon.sdf

module basic/NatCon

exports

sorts NatCon

lexical syntax

[0-9]+ -> NatCon {cons("digits")}

lexical restrictions

NatCon -/- [0-9]

A.1.7 Whitespace.sdf

module basic/Whitespace

exports

lexical syntax

[\ \t\n\r] -> LAYOUT {cons("whitespace")}

context-free restrictions

LAYOUT? -/- [\ \t\n\r]

A.2 Level 2 interface for ATerms

The operations described in Section 2.2 are not sufficient for all applications. Some

applications need more control over the underlying implementation, or need operations

that can be implemented using level one constructs but can be expressed more concisely

and implemented more efficiently using more specialized constructs.

We have therefore designed a level 2 interface that is a strict superset of the level 1

interface described in Section 2.2. Some new datatypes are introduced, as well as some

new operations on ATerms.

The level 2 interface introduces 7 new datatypes. Except for the auxiliary datatype

AFun for representing function symbols, they are subtypes of the ATerm datatype, and

implement the different term types. These subtypes allow us to introduce operations

that are only valid for one specific term type, instead of the general ATerm operations

described earlier.

ATermInt: This datatype represents integer terms. The operations on ATermInt are:

• ATermInt ATmakeInt(Integer v): Construct a new integer term corre-

sponding to the integer value v.
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• Integer ATgetInt(ATermInt i): Retrieve the value of an integer term.

ATermReal: This datatype represents real-number terms. The operations on

ATermReal are:

• ATermReal ATmakeReal(Real v): Construct a new real term.

• Real ATgetReal(ATermReal r): Retrieve the value of a real term.

AFun: An AFun consists of a string defining the function name, an arity, and an

indication whether the symbol name is quoted or not. The operations on symbols are:

• AFun ATmakeAFun(String nm, Integer ar, Boolean q): Con-

struct a new symbol. If a symbol with the given name nm, arity ar, and quotation

q already exists, the existing symbol is returned. Otherwise a new symbol is cre-

ated and returned. AFuns are also subject to garbage collection in order to avoid

long running (interactive) programs from slowly running out of symbols.

• String ATgetName(AFun s): Retrieve the name of symbol s.

• Integer ATgetArity(AFun s): Retrieve the arity of a symbol.

• Boolean ATisQuoted(AFun s): Check if a symbol is quoted.

ATermAppl: This datatype represents function applications consisting of a function

symbol and a number of arguments. The operations on this datatype are:

• ATermAppl ATmakeAppln(AFun f, ATerm a0, . . ., ATerm

an−1): This is a family of operations, one for each n between 0 and 6

(inclusive). These operations are used to construct a new function application

with the given function symbol f and arguments.

• ATermAppl ATmakeAppl(AFun f, ATermList as): Construct a

new function application with the given function symbol f and a list of argu-

ments args

• AFun ATgetFun(ATermAppl ap): Retrieve the function symbol of a

function application.

• ATerm ATgetArgument(ATermAppl ap, Integer n): Retrieve a

specific argument.

ATermList: This datatype represents the binary list constructor. Element indices

start at 0. Thus a list of length n has elements 0, . . . ,n−1. The operations on ATermList

are:

• ATermList ATmakeListn(ATerm e0, . . . , ATerm en−1): This is a

family of operations, one for each n between 0 and 6 (inclusive). These oper-

ations are used to quickly construct small lists of terms.
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• Integer ATgetLength(ATermList l): Retrieve the length of l.

• ATerm ATgetFirst(ATermList l): Retrieve the first element of list l.

• ATermList ATgetNext(ATermList l): Retrieve all but the first element

of list l.

• ATermList ATgetPrefix(ATermList l): Retrieve all but the last ele-

ment of list l.

• ATerm ATgetLast(ATermList l): Retrieve the last element from list l.

• ATermList ATgetSlice(ATermList l, Integer frm,

Integer to): Retrieve the portion of list l from position f rm through

to−1.

• Boolean ATisEmpty(ATermList l): Check if list l contains zero ele-

ments.

• ATermList ATinsert(ATermList l, ATerm e): Insert a single ele-

ment e at the start of list l.

• ATermList ATinsertAt(ATermList l, ATerm e, Integer i):

Insert a single element e at position i in list l.

• ATermList ATappend(ATermList l, ATerm e): Append a single el-

ement e to the end of list l.

• ATermList ATconcat(ATermList l1, ATermList l2): Concate-

nate lists l1 and l2.

• Integer ATindexOf(ATermList l, ATerm e, Integer i):

Search for an element e in list l and return the index of the first location where e

is present. Start searching at index i. If the element is not present, return −1.

• Integer ATlastIndexOf(ATermList l, ATerm e, Integer i):

Search backwards for element e in list l, and return the index of the last location

where the element is present. Start searching at index i. If the element is not

present, return −1.

• ATerm ATelementAt(ATermList l, Integer i): Retrieve element

at position i from list l.

• ATermList ATremoveElement(ATermList l, ATerm e): Remove

once occurrence of element e from list l.

• ATermList ATremoveElementAt(ATermList l, Integer i):

Remove the element at position i from list l.

157



Syntax and Interface of ATerms APPENDIX A

ATermPlaceholder: This datatype represents placeholder terms. The operations on

ATermPlaceholder are:

• ATermPlaceholder ATmakePlaceholder(ATerm t p): Construct a

new placeholder term.

• ATerm ATgetPlaceholder(ATermPlaceholder ph): Retrieve the

type of this placeholder.

ATermBlob: This datatype represents Binary Large OBject terms. The operations

on ATermBlob are:

• ATermBlob ATmakeBlob(Integer n, Data d): Construct a new

blob term of size n and containing data d.

• Integer ATgetBlobSize(ATermBlob b): Retrieve the size of blob b.

• Data ATgetBlobData(ATermBlob blob): Retrieve the data pointer

stored in blob b.

The memory management of blobs must be done explicitly by the application pro-

grammer.

Auxiliary: The level two interface provides functionality to create and manipulate

user-defined hash tables.
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B.1 Concrete Syntax of AsFix

A formal definition in SDF of the concrete syntax for parse trees in AsFix is presented

here. Imported modules not listed here are presented in Appendix A.1, as they are also

imported as part of the ATerms syntax.

B.1.1 Parsetree.sdf

module languages/asfix/syntax/Parsetree

imports

languages/asfix/syntax/Tree

languages/aterm/syntax/IntCon

exports

sorts ParseTree

context-free syntax

parsetree(top:Tree, amb-cnt:NatCon) -> ParseTree {cons("top")}

B.1.2 Tree.sdf

module languages/asfix/syntax/Tree

imports

languages/asfix/syntax/Annotations

languages/asfix/syntax/Symbol

languages/asfix/syntax/Attributes

exports

sorts Tree Args Production

context-free syntax

appl(prod:Production,args:Args) -> Tree {cons("appl")}

cycle(prod:Production) -> Tree {cons("cycle")}

amb(args:Args) -> Tree {cons("amb")}

character:NatCon -> Tree {cons("char")}

"[" {Tree ","}* "]" -> Args {cons("list")}
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prod(lhs:Symbols,

rhs:Symbol,

attributes:Attributes) -> Production {cons("default")}

list(rhs:Symbol) -> Production {cons("list")}

B.1.3 Annotations.sdf

module languages/asfix/syntax/Annotations

imports

languages/asfix/syntax/Tree

languages/aterm/syntax/ATerms

exports

context-free syntax

Tree Annotation -> Tree {cons("annotated")}

B.1.4 Symbol.sdf

module languages/asfix/syntax/Symbol

imports

basic/StrCon

basic/NatCon

exports

sorts Symbol Symbols CharRange CharRanges

context-free syntax

"empty" -> Symbol {cons("empty")}

lit(string:StrCon) -> Symbol {cons("lit")}

cf(symbol:Symbol) -> Symbol {cons("cf")}

lex(symbol:Symbol) -> Symbol {cons("lex")}

opt(symbol:Symbol) -> Symbol {cons("opt")}

alt(lhs:Symbol, rhs:Symbol) -> Symbol {cons("alt")}

seq(symbols:Symbols) -> Symbol {cons("seq")}

tuple(head:Symbol, rest:Symbols) -> Symbol {cons("tuple")}

sort(string:StrCon) -> Symbol {cons("sort")}

iter(symbol:Symbol) -> Symbol {cons("iter")}

iter-star(symbol:Symbol) -> Symbol {cons("iter-star")}

iter-sep(symbol:Symbol,

separator:Symbol) -> Symbol {cons("iter-sep")}

iter-star-sep(symbol:Symbol,

separator:Symbol) -> Symbol {cons("iter-star-sep")}

iter-n(symbol:Symbol,

number:NatCon) -> Symbol {cons("iter-n")}

iter-sep-n(symbol:Symbol,

separator:Symbol,

number:NatCon) -> Symbol {cons("iter-sep-n")}

func(symbols:Symbols,
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symbol:Symbol) -> Symbol {cons("func")}

varsym(symbol:Symbol) -> Symbol {cons("varsym")}

"layout" -> Symbol {cons("layout")}

char-class(CharRanges) -> Symbol {cons("char-class")}

strategy(lhs:Symbol, rhs:Symbol) -> Symbol {cons("strategy")}

parameterized-sort(

sort:StrCon,

parameters:Symbols) -> Symbol {cons("parameterized-sort")}

context-free syntax

"[" {Symbol ","}* "]" -> Symbols {cons("list")}

context-free syntax

"[" { CharRange ","}* "]" -> CharRanges {cons("list")}

context-free syntax

integer:NatCon -> CharRange {cons("character")}

range(start:NatCon, end:NatCon) -> CharRange {cons("range")}

B.1.5 Attributes.sdf

module languages/asfix/syntax/Attributes

imports

languages/aterm/syntax/ATerms

exports

sorts Attributes Attrs Attr Associativity

context-free syntax

"no-attrs" -> Attributes {cons("no-attrs")}

"attrs" "(" attributes:Attrs ")" -> Attributes {cons("attrs")}

context-free syntax

"[" {Attr ","}+ "]" -> Attrs {cons("many")}

context-free syntax

"assoc" "(" associativity:Associativity ")"

-> Attr {cons("assoc")}

"term" "(" aterm:ATerm ")" -> Attr {cons("term")}

"id" "(" module-name:StrCon ")" -> Attr {cons("id")}

"bracket" -> Attr {cons("bracket")}

"reject" -> Attr {cons("reject")}

"prefer" -> Attr {cons("prefer")}

"avoid" -> Attr {cons("avoid")}

context-free syntax

"left" -> Associativity {cons("left")}

"right" -> Associativity {cons("right")}

"assoc" -> Associativity {cons("assoc")}

"non-assoc" -> Associativity {cons("non-assoc")}
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B.2 Example generated dictionary file

An abbreviated version of the generated dictionary file for the parse tree syntax (AsFix)
of the boolean and. Multiple similar lines have been condensed (...).

#include "test_dict.h"

AFun afun0;

AFun afun1;

...

ATerm patternBoolAnd = NULL;

/*

* afun0 = appl(x,x)

* afun1 = prod(x,x,x)

* afun2 = cf(x)

* afun3 = sort(x)

* afun4 = "Bool"

* afun5 = opt(x)

* afun6 = layout

* afun7 = lit(x)

* afun8 = "and"

* afun9 = attrs(x)

* afun10 = assoc(x)

* afun11 = left

*

* patternBoolAnd = appl(prod([cf(sort("Bool")),cf(opt(layout)),lit("and"),

* cf(opt(layout)),cf(sort("Bool"))],cf(sort("Bool")),

* attrs([assoc(left)])),

* [<term>,<term>,lit("and"),<term>,<term>])

*

*/

static ATermList _test_dict = NULL;

#define _test_dict_LEN 239

static char _test_dict_baf[_test_dict_LEN] = {

0x00,0x8B,0xAF,0x83,0x00,0x11,0x33,0x03,0x3C,0x5F,0x3E,0x01,0x00,0x01,0x01,0x03,

0x05,0x5B,0x5F,0x2C,0x5F,0x5D,0x02,0x00,0x1A,0x0E,0x01,0x00,0x05,0x06,0x07,0x08,

0x09,0x0A,0x0B,0x0C,0x0D,0x0E,0x0F,0x10,0x02,0x01,0x02,0x02,0x5B,0x5D,0x00,0x00,

...

};

void init_test_dict()

{

ATermList afuns, terms;

_test_dict = (ATermList)ATreadFromBinaryString(_test_dict_baf, _test_dict_LEN);

ATprotect((ATerm *)&_test_dict);

afuns = (ATermList)ATelementAt(_test_dict, 0);

afun0 = ATgetAFun((ATermAppl)ATgetFirst(afuns));

afuns = ATgetNext(afuns);

afun1 = ATgetAFun((ATermAppl)ATgetFirst(afuns));

...

terms = (ATermList)ATelementAt(_test_dict, 1);

patternBoolAnd = ATgetFirst(terms);

terms = ATgetNext(terms);

}
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Samenvatting

Hoe bouw je een flexibel software systeem uit reeds bestaande en nieuw te ontwer-

pen componenten? Hoe wisselen deze componenten onderling relevante gegevens uit?

Hoe zorg je ervoor dat deze bundeling van aan elkaar “gelijmde” componenten, on-

danks grote onderlinge verschillen (heterogeniteit) in bijv. de gebruikte programmeer-

taal, leidt tot de gewenste applicatie? Hoe zorg je ervoor dat die applicatie dan ook

nog zo flexibel is dat er later nog uitbreidingen en veranderingen aan kunnen worden

aangebracht? Dit zijn enkele vragen waar dit proefschrift een antwoord op probeert te

geven. Hieronder volgt een samenvatting van de hoofdstukken uit dit proefschrift. Elk

van deze hoofdstukken speelt een rol in het bouwen van een flexibel software systeem

dat bestaat uit heterogene componenten.

Informatie uitwisseling Zodra een software systeem uit twee of meer componenten

bestaat, moet ook worden nagedacht hoe deze componenten onderling informatie uit-

wisselen. Om niet voor elke mogelijke uitwisseling opnieuw te hoeven verzinnen hoe

die tot stand moet komen, is het wenselijk hiervoor een algemene oplossing te ont-

werpen. In dit proefschrift wordt het ATerm data type beschreven, waarmee op een

generieke manier informatie tussen componenten kan worden uitgewisseld. Een be-

langrijke eigenschap van het ATerm data type is dat ze op een zeer compacte manier

kunnen worden gerepresenteerd, zodat zowel bewerkingen op de data, als overdracht

van data tussen componenten met minimale inspanning gerealiseerd kan worden.

Automatische vertalingen Wanneer applicatie-specifieke informatie in de ene com-

ponent overgestuurd moet worden naar een andere, gebruikmakend van een generiek

uitwisselingsformaat zoals een ATerm, zijn enkele vertaalslagen noodzakelijk. Speci-

fieke informatie in de ene component moet worden vertaald naar het algemeen toegan-

kelijke formaat om het op een generieke manier te kunnen oversturen. De ontvangende

component wil vervolgens weer op zijn eigen specifieke mannier met de ontvangen

informatie omgaan. De programmacode die deze noodzakelijke vertaalslagen bewerk-

stelligt, kan door middel van codegeneratie-technieken automatisch worden gebouwd.

Dit proefschrift laat zien hoe, door op een formele manier te beschrijven welke soort in-

formatie de componenten moeten kunnen uitwisselen, een programmabibliotheek kan

worden gegenereerd in verschillende programmeertalen. Deze bibliotheken worden

vervolgens gebruikt in de diverse componenten om in de brontaal van die component

de uit te wisselen gegevens op te bouwen, of te inspecteren.
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Zenuwstelsel Net zoals een zenuwprikkel in het menselijk lichaam via een stelsel

van verbonden zenuwen uiteindelijk de juiste plaats bereikt, moet er ook in een soft-

ware systeem dat bestaat uit verschillende componenten een soort zenuwstelsel zijn.

Dit stelsel, ook wel middleware, of coördinatie-architectuur genoemd, is ervoor ver-

antwoordelijk dat de diverse componenten in een applicatie met elkaar kunnen com-

municeren. In dit proefschrift wordt intensief gebruik gemaakt van de ToolBus, een

programmeerbaar “zenuwstelsel”. Deze coördinatie-architectuur zorgt er niet alleen

voor dat informatie (in de vorm van een ATerm) wordt overgedragen van de ene naar de

andere component, maar doordat de ToolBus programmeerbaar is, kan het gedrag van

de communicatie gestuurd worden. Zo kan bepaalde communicatie voorrang krijgen

boven andere, ondergeschikt geachte communicatie en bepaalde communicatiepatro-

nen kunnen worden verboden. Verder is het in de ToolBus mogelijk om exact aan te

geven of er één-op-één communicatie moet plaatsvinden tussen componenten, of dat

een bepaalde boodschap juist naar iedereen die erin is geı̈nteresseerd, moet worden

gestuurd. Naast intensief gebruik van de ToolBus in veel van de voorbeelden in dit

proefschrift, is ook een discussie opgenomen over mogelijke verbeteringen en uitbrei-

dingen aan dit programmeerbare zenuwstelsel voor software systemen.

Bestaande componenten Bij het bouwen van een software systeem, zou telkens de

vraag gesteld kunnen worden: “Bestaat dit niet al?”. Vaak is het antwoord op deze

vraag “Ja, maar . . .”, gevolgd door een uitleg waarom een bepaalde, reeds bestaande,

component bijna, maar net niet helemaal voldoet. Om toch een bestaande component

te kunnen (her-)gebruiken in een software systeem, is het interessant om te kijken hoe,

met minimale inspanning, zo’n component toch aan de coördinatie-architectuur gehan-

gen kan worden en hoe de nodige functionaliteit vervolgens aangeboden kan worden

aan de rest van de applicatie. In dit proefschrift is specifiek onderzocht hoe twee be-

staande en –in de informaticawereld– bekende tekstverwerkingscomponenten “Vim”

en “GNU Emacs” kunnen worden ingezet als tekstverwerker voor een programmeer-

omgeving. Door de voor deze programmeeromgeving noodzakelijke operaties op tekst

te definiëren, zoals “lees dit bestand in”, “ga naar regel X” en “kleur kolom X tot en

met Y blauw”, ontstaat een interface waaraan alle tekstverwerkers vervolgens moeten

voldoen. Voor elk van deze componenten wordt dan de minimale “componentlijm” ge-

programmeerd, die nodig is om de component aan deze interface te laten voldoen. Het

resultaat is dat een programmeeromgeving ontstaat, waarin mensen hun eigen welbe-

kende tekstverwerker kunnen (her-)gebruiken. Het doel om niet zelf weer zo’n pakket

te ontwikkelen en door hergebruik kostenbesparend een software systeem te bouwen,

is dan bereikt.

Uitbreidbaarheid Een boormachine kan tegenwoordig niet alleen boren, er zijn ook

opzetstukken voor te krijgen om allerhande schroeven in te draaien. Evenzo is de PC

niet af als hij thuis staat, we kunnen er uitbreidingskaarten (via de PCI bus) insteken,

apparaten aanhangen (USB of Firewire), of de ventilatoren ervan vervangen. In soft-

ware zien we ook steeds meer de wens doorschemeren, om na installatie nog van alles

te kunnen veranderen aan het systeem. De plug-ins zijn dan ook al niet meer weg te

denken uit internet browsers en muziek- of videoafspeelprogrammatuur. Waar bij de
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boormachine en PC de uitbreidingsmogelijkheden beperkt zijn, door bijv. voorgeschre-

ven maten, of electronische specificaties, is men in de software nog meer zoekende naar

de grenzen van uitbreidingen en veranderingen. Dit proefschrift bestudeert een aantal

van deze uitbreidingsarchitecturen en beschrijft hoe zo’n architectuur met behulp van

de ToolBus op een structurele wijze kan worden opgezet. Waar het in bestaande syste-

men soms onduidelijk is wat er moet gebeuren wanneer twee plug-ins op hetzelfde punt

in het systeem willen ingrijpen, kan in een programmeerbare coördinatie-architectuur

precies worden gespecificeerd wat het gewenste gedrag is.

Drempelverlagend Wil hergebruik van componenten bijdragen aan een goedkopere

manier van software ontwikkeling, dan zal er alles aan moeten worden gedaan om de

integratie en interactie van componenten zo eenvoudig en flexibel mogelijk te laten

zijn. Door drempels, die hergebruik van componenten in de weg staan, te verlagen,

draagt dit proefschrift bij aan het succesvol bouwen van flexibele software systemen,

opgebouwd uit heterogene componenten.
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