
Techniques for Understanding Legacy
Software Systems

About the cover: A man unreels in front of him a portion of a reel of punched pa-
per tape. A B220 computer installation can be seen in the background behind him.
Picture from the Burroughs Corporation Collection (CBI 90), Charles Babbage
Institute, University of Minnesota, Minneapolis.

The work reported in this thesis has been carried out at the Center for Mathemat-
ics and Computer Science (CWI) in Amsterdam under the auspices of the research
school IPA (Institute for Programming research and Algorithmics). The publi-
cation of this thesis was made possible in part through support of the Software
Improvement Group.

Techniques for Understanding Legacy Software Systems

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Universiteit van Amsterdam
op gezag van de Rector Magnificus

prof. mr. P. F. van der Heijden
ten overstaan van een door het

college voor promoties ingestelde commissie,
in het openbaar te verdedigen

in de Aula der Universiteit
op dinsdag 26 februari 2002, te 10.00 uur

door Tobias Kuipers
geboren te Vleuten, Nederland

Promotor: Prof. dr. P. Klint
Copromotor: Dr. A. van Deursen
Faculteit: Faculteit der Natuurwetenschappen, Wiskunde en Informatica

Contents

Preface 9

1 Introduction 13
1.1 Maintaining Legacy Systems . 14

1.1.1 Software Engineering for Maintenance 15
1.2 Changing Legacy Systems . 17

1.2.1 Minor Change . 18
1.2.2 Structural Change . 18

1.3 Research Questions . 19
1.4 Reader’s Roadmap . 21

2 Rapid System Understanding 23
2.1 Introduction . 23
2.2 Tool Architecture . 24
2.3 Cases Investigated . 25
2.4 Collected Data . 26

2.4.1 System inventory . 26
2.4.2 Program call graph . 27
2.4.3 Database usage . 27
2.4.4 Field usage . 29
2.4.5 Section call graph . 31
2.4.6 Further experiments . 32

2.5 Interpreting Analysis Results . 32
2.5.1 Understanding copybooks 32
2.5.2 Call graph and reusability 33
2.5.3 Understanding data usage 34
2.5.4 Reusability assessment 34

2.6 Related Work . 35
2.7 Conclusions . 36
2.8 Future Work . 37

6 CONTENTS

3 Building Documentation Generators 39
3.1 Introduction . 39
3.2 Source Code Analysis . 41

3.2.1 Lexical analysis . 41
3.2.2 Syntactic Analysis . 42
3.2.3 Island Grammars . 43
3.2.4 Parse Tree Analysis . 45

3.3 Extracting Documentation . 45
3.3.1 Manual versus Automated Extraction 45
3.3.2 System Decomposition 46
3.3.3 Aggregation and Use Relations 46
3.3.4 System and Subsystem Partitioning 47
3.3.5 Program Descriptions . 47
3.3.6 Section Descriptions . 47
3.3.7 Batch Job Dependencies 48

3.4 Presenting Documentation . 49
3.5 Business Case . 50

3.5.1 Background . 50
3.5.2 Documentation Wishes 51
3.5.3 Derived Documentation 51
3.5.4 Evaluation . 53

3.6 Concluding Remarks . 54

4 Identifying Objects using Cluster and Concept Analysis 57
4.1 Introduction . 57
4.2 Related Work . 59
4.3 Field and Program Selection . 60
4.4 Cluster analysis . 61

4.4.1 Overview . 61
4.4.2 Experimental Testbed . 64
4.4.3 Experiments . 65
4.4.4 Assessment . 67

4.5 Concept Analysis . 68
4.5.1 Basic Notions . 68
4.5.2 Experimental Testbed . 70
4.5.3 Experiments . 70

4.6 Clustering and Concepts Compared 72
4.7 Object Identification . 74
4.8 Concluding Remarks . 76

4.8.1 Acknowledgments . 76

CONTENTS 7

5 Types and Concept Analysis for Legacy Systems 77
5.1 Introduction . 77
5.2 Type inference for COBOL . 78
5.3 Concept Analysis . 83

5.3.1 Basic Notions . 84
5.4 Combine Types and Concepts . 85

5.4.1 Data for Concept Analysis 86
5.4.2 Experiments Performed 86

5.5 Refinement of Concepts . 90
5.5.1 Operations on concept lattices 90
5.5.2 Relation with source . 91

5.6 Implementation . 91
5.7 Related Work . 94
5.8 Concluding remarks . 94

5.8.1 Future work . 95

6 Object-Oriented Tree Traversal with JJForester 97
6.1 Introduction . 97
6.2 JJForester . 99

6.2.1 Overview . 99
6.2.2 SDF . 100
6.2.3 Code generation . 102
6.2.4 Programming against the generated code 104
6.2.5 Assessment of expressiveness 107

6.3 Case study . 108
6.3.1 The Problem . 108
6.3.2 T-scripts explained . 109
6.3.3 Analysis using JJForester 111

6.4 Concluding remarks . 118
6.4.1 Contributions . 118
6.4.2 Related Work . 118
6.4.3 Future Work . 119

7 Legacy to the Extreme 121
7.1 Introduction . 121
7.2 Tools Make It Possible . 122

7.2.1 The Legacy Maintenance Toolbox 123
7.2.2 More Tools . 125

7.3 Adopting XP Step by Step . 126
7.4 XP on Legacy Code . 128
7.5 Conclusions . 131

8 CONTENTS

8 Conclusions 133
8.1 Reduce Search Space . 133
8.2 Information for Structural Change 134
8.3 Altering the Software Engineering Process 134

Summary 145

Samenvatting 149

Preface

The work presented in this thesis was performed over a period of four years at the
Center for Mathematics and Computer Science (CWI) in Amsterdam, The Nether-
lands. Over this period, more and more interest in our group’s research was ex-
pressed by various companies. A number of people in the group had been toying
with the idea of starting a company to aid in the technology transfer of the CWI re-
search for some years, and this seemed like the ideal situation to actually start this
company. I am very fortunate to have been part of both the research group, and the
start-up company. In fact, I moved from CWI to the Software Improvement Group
(the startup) after my four years at CWI, when all I had to do to finish this thesis
was to “write the preface”.

It took me over a year to actually finish it, and the fact that I did can hardly
be attributed to me. I would like to thank the people who it can be attributed to
profoundly: Arie van Deursen was the project leader of the project I first joined
at CWI. He was my mentor, and taught me how to write research papers. He
has become a good friend and (less important) a partner in the aforementioned
company. Paul Klint taught me how to finish a thesis, mainly by not asking when
I was going to finish it. Apart from that, he was one of the most accessible thesis
advisors I know, and has been an inspiration. I fondly remember the seemingly
random state-of-the-world talks we had (and still have).

Other people at CWI that need to be applauded are Joost Visser, who knows
how to separate the important stuff from the less important stuff, thus making
you go twice as fast on a good day. Especially our long discussions over dinner
(after long discussions on where to eat) have been very educational (We need more
coasters!). Leon Moonen has been there since we started, we shared a room as
assistants at the UvA. Leon prefers rooms at least 5 degrees colder than I do, so we
didn’t share rooms at CWI. We did have a lot of very productive discussions, over
even more coffee, however (Let’s go skating when I’m done). Merijn de Jonge
was an instrumental part of the team who always asked whether what you were
doing couldn’t be done better. He has written a number of very elegant software
packages I use everyday. Furthermore, he got us home when we went sailing and
the rudder fell off.

10 CONTENTS

Dinesh was my first roommate, and the first to go. Dinesh showed me that it
was okay to have non-conventional ideas (at least for him). He has become a good
friend, at which point he packed his stuff and moved half way across the world. I
did visit him in California, after which he moved to yet another continent. Let’s
see what happens when I visit him there. Jeroen Scheerder showed me lots of cool
Mac stuff, which made me buy the one I’m typing this on now. Apart from that,
he produced some of the software that was needed to do the research in this thesis.
Jurgen Vinju took my place as the weekly talk organizer. He manages to buy all the
nice gadgets at the right time, although he should be legally barred from buying
cars. He, too, wrote some of the software I still use everyday. I hope he keeps
calling me telling me he bought me a ticket to this cool show at the Paradiso (Hou
het werkelijk!).

I enjoyed working at CWI and like to thank the rest of the group for providing
such a nice environment: Mark van den Brand, Ralf Lämmel, Jan Heering, Pieter
Olivier and Hayco de Jong, thanks!

I need to congratulate Eelco Visser on becoming a daddy, and need to thank
him for being instrumental in my pursuing a research job in the first place. Let’s
do something together, now that I have a bit more time.

Over at the Software Improvement Group, I have to thank you all! Guys, we
are doing good! Marjo Wildvank has taught me more about business then I ever
thought I’d wanted to know. He is a master story teller, and I am starting to believe
that his stories are true, too. Alex van den Bergh has rescued me on more than one
occasion. Thank you for putting up with me, and for the great work you do, even
though being cool is not a part-time job. Visit checkdef.com! Other SIG people:
Steven Klusener, Gerard Kok, Indra Polak, Ernst Verhoeven, and more recently
Albertine Frielinck, thank you very much for your sense of humor, and for your
nice work (and the bedrijfsuitjes).

Fortunately, I still seem to have sort of a life, which is largely due to various
friends calling and demanding to go have a beer somewhere, or come over for
dinner. You know who you are.

Rap9 is such an institution that I almost feel I don’t need to mention it. I am
grateful that I can be part of a football team with such a history, and such brilliant
players. We will become champions, although I fear who will tattoo what where,
when it happens.

My Mom and Dad were there first, and apparently will support me, no matter
what. What can I do in return, but to install and fix their computer? The fact
that they moved to just a couple of blocks from our place make my visits more
frequent and always fun, especially when dinner is involved (I still haven’t had the
worteltjesspaghetti!). I also thank my little big brother for being my brother. Let’s
hang out more.

Johan Prins and Maria Sindram, thank you having me visit you in the US, lastly
in Charleston, S.C., where part of this thesis was written.

CONTENTS 11

Finally, the one person who actually did all the work, supported me throughout
my time at CWI and SIG, while graduating, starting her own career, getting a new
job, taking me on beautiful holidays to Britanny and finding the time to actually
marry me in between... Maartje, thank you for making me a better person.

12 CONTENTS

Chapter 1

Introduction

Every software system that is being used needs to be maintained. Software is only
finished when it is no longer in use. However, the rate of change may vary wildly
from system to system. The number of releases for a new internet application that
needs to stay ahead of the competition by adding features every week may be very
high. It is typically low for embedded systems software, because of the high cost
of retrofitting for instance your television with new software.

There are three main reasons for changing software, the so-called software
maintenance categories [Swa76].

Corrective maintenance The first reason software needs to be changed is fault
repair (or bug fixing). No software is delivered fault free, and during the
lifetime of the software some of those faults will become apparent and need
to be fixed.

Perfective maintenance A second reason software needs to be changed is of
commercial nature. When a company brings out a software product in a
competitive market, then the competition may want to change their product
to stay competitive. Software may also need change to reflect the business
process of a particular company. The software used inside large services or-
ganizations may be modeled upon the structure of the organization. If there
is a division “Regional offices” then that division usually has its own sys-
tems, as has the division “Foreign offices”. Were the company to reorganize,
and these two divisions to be merged into a new division “Offices”, then this
has consequences for the two software systems.

Adaptive maintenance Finally, systems may need to change for legal or techni-
cal reasons. The system may need to run on different hardware or it may
need to be upgraded to run on a different operating system. Legal changes
could include the modification of currencies on which the system operates,

14 Introduction � 1

or a change in the time during which historical data is stored by the sys-
tem. After the change the system will perform the same task as before, with
hardly any visible change for the user.

An overview of different measurement studies presented in [Pig97] shows that
on average about 80% of maintenance cost is in either perfective or adaptive main-
tenance (or non-corrective maintenance) and about 20% in corrective maintenance.

1.1 Maintaining Legacy Systems

When, for whatever reason, an existing system needs to be modified, it will in-
variably be seen as a legacy system (at least in part). That is, the system is the
legacy of the people who have created it, or have modified it previously. In the
ideal situation the original development team will stay on as maintainers of the
system throughout its lifetime. This way, everyone who was ever involved in the
design and building of the system is available to change it. Unfortunately, this is
never the case. Traditional software engineering distinguishes strongly between
developers or creators of a system, and maintainers of the same system. This fol-
lows the traditional manufacturing model, where a product, for instance a car, is
developed and built by a team of people. Once the car is finished and delivered,
the maintenance of the car will be performed by a different team.

The process of keeping a software system in tune with the needs of its users is
referred to as software evolution. In order to be able to evolve a system, its main-
tainers need to know, in some detail, the inner workings of that system. Because
they did not design nor develop the system, this knowledge does not come to them
naturally. In an ideal case, there is ample knowledge about the system available
outside of it in the form of design documents, both functional and technical, and
actual technical documentation of the source code of the system. What’s more,
the original designers and developers of the system may be available to answer
questions. Unfortunately, for the original development team there is no need to
produce accurate, factual, and concise design documents, because they can build
the system without them. Moreover, in a traditional software engineering environ-
ment, the designers of a system will produce a design document that cannot be
implemented as is. All sorts of details in a design will be deemed “implementa-
tion details”, and will be left to the developers to sort out. In order to sort out the
implementation details, the developers may need to (and will) stretch the design a
little to accommodate for their best solution. This is not a problem as long as the
intention of the original design was clear to both designer and developer, because
then the chosen solution will be a common one. Unfortunately, the slight change
in the design is only documented in the head of the developer who made it. Dur-
ing the development of a non-trivial system there are hundreds, if not thousands
of such implementation details to decide about, and each one may warrant their

1.1 � Maintaining Legacy Systems 15

own slight design change. These can add up to quite major changes which are not
documented anywhere.

Software developers get away with this (as opposed to car developers) because
there is no intrinsic need for these documents. Software developers in general build
a single software system, which, once it is finished, can be copied an infinite num-
ber of times for negligible cost. This single copy is built by a single development
team. This is as true for both mass distributed software as it is for single-purpose
custom built software. Building a single car in the contemporary car market can
never be cost effective. The volume production of cars is what keeps a car manu-
facturer going, so the need for documents that trace the exact steps to create a car is
paramount. Not only do all cars need to be built from scratch, there is not a single
development team. A single car model may be built on several sites distributed all
over the world, and at each site they may be built by several teams.

1.1.1 Software Engineering for Maintenance

The previous paragraph should have started with the sentence “software developers
get away with this temporarily”, because in most of the cases software developers
do not get away with it over time. Unlike cars, the finished software product
can be changed to become a slightly changed, or even radically different software
product. As described above, these changes are almost impossible to make without
an understanding of the inner workings of the system, and may still be very hard
with such an understanding.

A number of methods have been proposed and applied in the past to allow for
people new to the system to understand it in the amount of detail they need to do
their work. These people have been called “Software Immigrants” in the literature
[SH98].

The source code of a software system can be seen as a document that describes
exactly what the system does, by definition. Unfortunately, this is done in such
enormous detail that it is hard for any individual to keep an overview of the whole
system. In order to maintain an overview, and help introduce “software immi-
grants” to the system, some other, less detailed, source of information is needed.
The methods described below all propose a different way to create, and maintain
that other source of information about the system.

Traditional Software Engineering The traditional “waterfall” software engi-
neering model starts from the premonition that software is only developed once,
and that, once it is developed, it will enter into a maintenance state. When the
software enters from the development stage into the maintenance stage, a number
of documents should be delivered as well. Different methodologies here require
different documents, but in general there should be a functional design document,
which describes the overall functionality of the system, there should be a technical

16 Introduction � 1

design document, which describes the overall technical layout of the system, there
should be in-depth technical documentation on a per-module, or per-program level,
and the source code itself could be required to adhere to certain coding standards
and contain information about the code.

Evidence suggests that the average software system designed and built follow-
ing this method spends about 70% of it’s time and effort and cost in the mainte-
nance stage[Pig97], and in that stage the system may be changed quite drastically.
However, after 5 years of maintenance, only the documents from the date of de-
livery are available, which tend to be horribly outdated, particularly the technical
documentation.

More cyclical methodologies have been developed, to iterate over the design
and development phase. Errors discovered during the development phase can be
reset in the following design refinement phase. Unfortunately, these methodolo-
gies, for example Boehm’s Spiral Model [Boe88], also end with the implementa-
tion phase, and do not consider themselves with maintenance at all.

What is apparent in these models is that a strict dichotomy exists between the
actual software system that is running on a computer (the combined source code)
and the documents available about the system. That is, the actual software system
may or may not do what is in the documentation, and there is no way to guarantee
that the two are in any way related.

Literate Programming Literate programming [Knu84] has been proposed as a
solution for this problem: literate programming requires the developer to have a
single document containing both the program text, as well as the documentation
that describes the program text. In fact, literate programming in its purest form re-
quires the developer to produce a book describing the problem the software system
is going to solve, how this problem can be broken down into smaller problems, and
how all these small problems can be solved individually by a very small piece of
software, which is so small that it can be printed in the book and understood in-
stantaneously. The advantage of having both documentation and code in the same
document is that the engineer who has to modify the code has the documentation
right there on his screen. When he needs to modify the system, he should first de-
cide where the error is: Is it in the narrative of the book? Then he needs to fix the
narrative, and then the source code. If the narrative is correct, then there somehow
is a fault in the code, and he should fix it. This method requires a lot of disci-
pline from developers to fix the narrative before the code. Even though the two are
in the same document, the relation between the two is purely circumstantial: the
narrative may tell a completely different story from the code.

Executable Specifications Another proposed solution comes in the form of ex-
ecutable specifications. Here the design of a system is laid down in a formal sys-
tem specification document. The actual implementation of the system is then de-

1.2 � Changing Legacy Systems 17

rived from that specification automatically. Because the specification language is,
in fact, a (very) high-level programming language, the design, or specification,
cannot skip over the already mentioned implementation details. This means that
formal specifications of non-trivial problems may contain much more detail than
would be written down in a natural language design document. To introduce a new
engineer to the system, natural language documents are needed, and the advan-
tage of formal specifications over “regular” programming languages with respect
to understandability and maintainability are lost.

Domain Specific Languages Domain Specific Languages are usually extremely
high level languages that borrow parts of their syntax from the vocabulary of a
certain problem domain. Having “programmers” who are well-versed in this par-
ticular problem domain solves the problem of having software immigrants. Being
domain experts, these people are already familiar with the same vocabulary that
the domain specific language is built from. Having, or creating a domain specific
language is, by definition, only feasible in a situation where the problem domain
is extremely well defined. Furthermore, having a domain specific language can
only be profitable if a number of systems will be developed in the same problem
domain, to warrant the initial investment in the development of the domain specific
language itself [DK98].

Extreme Programming The most extreme solution is provided by the aptly
named Extreme Programming (XP) methodology. XP does not distinguish at all
between design, testing, development, or maintenance stages. Instead, a team of
engineers produces a tiny, but working system in a couple of weeks, and keeps
modifying and extending that system into the system that is actually requested by
the customer. There are no design documents, or at least no persistent design doc-
uments; the design of the system is the source code itself. Because all engineers
that are maintaining the system have helped develop and design it, their knowledge
about the system comes naturally. Writing documentation or commenting code is
actually discouraged, because it will be outdated the moment someone changes
the code. Understandability should be achieved by creating readable code. Be-
cause all code is written in rotating pairs, there is no one engineer with exclusive
knowledge of (part of) the system.

1.2 Changing Legacy Systems

Even though there is a lack of documentation and a lack of people with insight into
the system, the legacy system still needs to be changed. The changes that can be
made to a legacy system can fall into one of two categories. Both types of changes
have their particular reasons, and both require a different type of knowledge about

18 Introduction � 1

the system to be available for the engineer. Of course the difference between the
two types of change is not always clear; the two categories can be seen as the two
ends of a change spectrum.

1.2.1 Minor Change

Minor changes in a software system are usually operational in nature: a system
terminates on unexpected or illegal input, or it produces the wrong results for a
particular input. An engineer is called in to repair the program as soon as possible,
to get it up and running again. Large batch processes on mainframe computers
typically run at night, with a single engineer standing by to fix things when they
go wrong. It is impossible for this one engineer to know very much about all
the systems that may be running at any given night. When the system breaks
down, the engineer needs access to information about the system very fast, and will
not be bothered by the amount of detail the information contains. The first goal
of the information available should be to decrease the search space in which the
problem can be found. If at a given night 25 systems are running, and each system
consists of 200 modules, then having information available that within minutes
pinpoints the error in one of the 5000 modules is invaluable. Further information
that narrows the error down even further to a particular section of a module may
be useful, but if the information takes half an hour to retrieve then its usefulness is
rather limited, because an engineer can probably read the whole module in about
half an hour.

Minor changes occur where an otherwise working system breaks down. Ob-
viously, this is not a definition but rather a vague description: If a system breaks
down on January 1st, 2002, because it cannot process the Euro currency, hardly
any software engineer will tell you that fixing this problem would involve only a
minor change.

1.2.2 Structural Change

Fixing an error such as being incapable of processing the Euro may not lead to
structural change per se: The engineer could just change every occurrence of the
guilder or the mark into an occurrence of the Euro. Although this may affect a
large part of the system (and typically will, in legacy systems) the actual structure
of the program may not have to be changed. If however the engineer decides to fix
the problem once and for all, then he may decide to put all occurrences of money in
a single part of the system, and have all other parts of the system reference this part
if necessary. Then, at the introduction of the global unified currency he will only
have to change his one money part, and the rest of the system will be unaffected,
thus the problem will be reduced to a minor change.

The process of finding and relocating all references to (in this case) parts of the
system that relate to the processing of a particular currency is deemed structural

1.3 � Research Questions 19

change. The information needed to perform such a change is much more detailed
and harder to obtain than the information needed for minor changes. For example,
in the previous section, it didn’t matter very much if the information available only
lead to the first occurrence of the problem: the aim of the engineer was to get the
system running again. The second occurrence of the same problem may not appear
that night, or only hours later: in the mean time, valuable computations might have
been performed that may not have been performed if the engineer spent his time
looking for other occurrences of the same problem.

When performing a structural change, the engineer would definitely have to
find any and all references to currencies: if he would miss a single database re-
trieval operation, then guilder amounts may be subtracted from euro amounts or
vice versa with all commercial and possibly legal consequences that may have.

When performing structural changes, time is usually less of a constraint than
with minor changes. Accuracy is instead of extreme importance. Especially con-
sidering that the above example is one of the less complex forms of structural
change.

More complex structural changes would be to change a system consisting of
an online and a batch subsystem (for instance a checking account management
system) into a client/server system. Here all the parts of the system that have to do
with batch processing (typically the transferral of money from one account to the
other) and the parts that have to do with online querying (balance retrieval, adding
and removal of transfers, etcetera) are separated completely. At a certain moment
each day (say 7 PM) the system moves from online mode to batch mode. At that
time, balances can no longer be requested, and transfers can no longer be added or
removed. Changing such a software system to (for instance) a client/server system
that does not have harsh restrictions on which action can be performed at what
time is a very complex structural change.

A final example of complex structural change of a software system is a change
of implementation language. Legacy systems are typically implemented in lan-
guages that lack certain features that make software written in modern languages
better understandable and maintainable. A form of modernization can be to re-
implement the system in a different language.

1.3 Research Questions

This thesis does not deal with producing better software. It does not try to help
people deliver fault-free software, or software that does not have to be changed.
Instead it tries to help in making existing systems more flexible by supporting the
engineers who need to change them with the appropriate technology. The concrete
research questions that this thesis tries to answer are:

� How can we reduce the search space when searching for a particular artifact

20 Introduction � 1

in a legacy software system?

� How can we obtain sufficiently detailed information about a legacy software
system to perform a structural change (semi-)automatically?

� How can we alter the software engineering process such that we no longer
produce legacy systems?

Reduce Search Space The process of relating a certain externally perceivable
feature of a software system to an internal artifact (the traceability of a feature) is
one of the most frequently occurring activities in software maintenance. When a
system contains millions of lines of code, automatically reducing the search space
for a particular artifact can save hours if not days per search. Ideally, the search
space is decreased to exactly those parts of the system that do something with the
externally perceived feature.

Information for Structural Change Getting detailed information out of a legacy
system per se is not necessarily hard. The problem is that the amount of detailed
information may be (and usually is) so enormous, that it is useless unless pro-
cessed (semi-)automatically. That is, the raw data extracted from a legacy system
should be processed somehow to diminish in volume, but to increase in usefulness.
An example could be that retrieving all database operations from a legacy system
returns an enormous amount of data. Cross-referencing all the operations with the
database schema, and filtering out only the operations on numbers gives back less
data. If it would be possible somehow to filter the operation out even further to get
only operations on numbers that represent a certain currency, then this would be
the exact data needed for a currency conversion project.

Altering the Software Engineering Process As was described in Section 1.1.1
traditional software engineering hardly concerns itself with maintenance explicitly.
If it does, it is seen as a completely separate activity from software development,
to be performed by different people than the original developers. There are no
practical steps in the software engineering process to prevent a system from be-
coming a legacy system. In fact, some people state that “programming leads to
legacy systems” [Vis97b]. From that thesis follows that one way to prevent your
system from becoming a legacy system is to never program it in the first place.
However, there may be a slightly less drastic modification that can be made in the
software engineering process to get rid of legacy systems.

1.4 � Reader’s Roadmap 21

1.4 Reader’s Roadmap

As stated earlier, there is a sliding scale from performing a minor change on a
software system to performing a structural change. This thesis concerns itself with
these two types of changes and the information required to perform them.

The first chapters, “Rapid System Understanding” (Chapter 2) and “Building
Documentation Generators” (Chapter 3) deal with retrieving and presenting infor-
mation from a legacy software system in such a way that a maintenance engineer
can retrieve a particular artifact in the system with maximum speed.

The next chapter, “Identifying Objects with Cluster and Concept Analysis”
(Chapter 4) examines what data from a legacy system is required to derive a so-
called object oriented design from that system. In an object-oriented design, pro-
cedures and the data they operate on are logically grouped. Chapter 4 examines
two methods of automatically performing such a grouping and examines the pros
and contras of each method.

One of the methods examined in Chapter 4 is used in the next chapter (“Types
and Concept Analysis for Legacy Systems”, Chapter 5) to group data in a different
way. Here, data is grouped based on the way it is used to calculate new data.
This way, we can get answers to questions like: what pieces of data in this system
represent a monetary value, or what pieces of data represent a date, or an account
number.

Where Chapters 4 and 5 mainly deal with the presentation and filtering of
already extracted data from a system, Chapter 6 (“Object-Oriented Tree Traversal
with JJForester”) shows a technique for retrieving the actual detailed elements
from the source code in an elegant and easy way.

Chapter 7 sketches a possible scenario of what could happen when a team of
software maintainers tries to adopt the software engineering methodology called
Extreme Programming.

The final chapter (Chapter 8) draws conclusions and examines how the re-
search questions posed here have been answered.

22 Introduction � 1

Sources of the Chapters

Chapter 2, “Rapid System Understanding”, was co-authored by Arie van Deursen.
It was published earlier as:

A. van Deursen and T. Kuipers. Rapid system understanding: Two
COBOL case studies. In S. Tilley and G. Visaggio, editors, Sixth In-
ternational Workshop on Program Comprehension; IWPC’98, pages
90–98. IEEE Computer Society, 1998.

Chapter 3, “Building Documentation Generators”, was co-authored by Arie van
Deursen. It was published earlier as:

A. van Deursen and T. Kuipers. Building documentation generators.
In International Conference on Software Maintenance, ICSM’99, pages
40–49. IEEE Computer Society, 1999.

Chapter 4, “Identifying Objects with Cluster and Concept Analysis”, was co-
authored by Arie van Deursen. It was published earlier as:

A. van Deursen and T. Kuipers. Identifying objects using cluster
and concept analysis. In 21st International Conference on Software
Engineering, ICSE-99, pages 246–255. ACM, 1999.

Chapter 5, “Types and Concept Analysis for Legacy Systems”, was co-authored
by Leon Moonen. It was published earlier as:

T. Kuipers and L. Moonen. Types and concept analysis for legacy sys-
tems. In Proceedings of the International Workshop on Programming
Comprehension (IWPC 2000). IEEE Computer Society, June 2000.

Chapter 6, “Object-Oriented Tree Traversal with JJForester”, was co-authored by
Joost Visser. It was published earlier as:

T. Kuipers and J. Visser. Object-oriented Tree Traversal with JJ-
Forester. In Proceedings of the First Workshop on Language De-
scriptions, Tools and Applications 2001 (LDTA’01). Electronic Notes
in Theoretical Computer Science 44(2). Elsevier Science Publishers,
2001.

Chapter 7 “Legacy to the Extreme”, was co-authored by published earlier in “Ex-
treme Programming Examined”, published by Arie van Deursen and Leon Moo-
nen. It was published earlier as:

A. van Deursen, T. Kuipers, and L. Moonen. Legacy to the extreme.
In M. Marchesi and G. Succi, editors, eXtreme Programming Exam-
ined. Addison-Wesley, Reading, Massachusetts, May 2001.

Chapter 2

Rapid System Understanding

This chapter describes the rapid extraction of facts from a legacy
software system. When an engineer tries to relate a feature of a soft-
ware system to an artifact inside that same system, he would like to
know what parts of the system to look for, and what parts of the system
to ignore. Rapid System Understanding investigates the techniques
necessary to achieve that goal.1

2.1 Introduction

Rapid system understanding is the process of acquiring understanding of a legacy
software system in a short period of time. Typical tasks that require rapid system
understanding are:

� Assessing the costs involved in carrying out a European Single Currency or
year 2000 conversion;

� Estimating the maintainability of a system, for example when deciding about
accepting or issuing a maintenance outsourcing contract;

� Investigating the costs and benefits of migrating a system to an object-oriented
language, in order to increase its flexibility and maintainability;

� Determining whether legacy code contains potentially reusable code or func-
tionality.

1This chapter was published earlier as: A. van Deursen and T. Kuipers. Rapid system understand-
ing: Two COBOL case studies. In S. Tilley and G. Visaggio, editors, Sixth International Workshop on
Program Comprehension; IWPC’98, pages 90–98. IEEE Computer Society, 1998.

24 Rapid System Understanding � 2

Lexical Analysis

Relational DatabaseSyntax Analysis

Dataflow Analysis

Report Generation

Cross Referencing
Metrics, Style,
Comments, ...

Cluster Analysis
Groups of Data/
Functionality, ...

Visualization Call Graph
Perform Graph

Database Usage, ...

Program Sources

Figure 2.1: Architecture of tool set used

Performing these tasks should be cheap: one expects a cost estimate of, say,
a year 2000 conversion to be significantly less expensive than carrying out that
conversion. This is where rapid system understanding differs from more tradi-
tional system understanding. Accepting a less detailed understanding and slightly
inaccurate results, a first assessment can be made quickly.

We assume that the engineer who needs to acquire understanding of a legacy
system has negligible previous experience with it. He may be unfamiliar with
some of the languages or dialects used in the legacy code. The systems involved
are typically large, multi language, over 10 years old, and written by different
programmers.

In this paper, we take two 100 KLOC COBOL systems from the banking area
as our starting point. We address a number of related questions: What tools or
techniques can be used in rapid system understanding? How well do they work for
our case studies? What information can be extracted from legacy source code, and
how should this information be interpreted?

The paper is organized as follows. In Section 2.2 we explain what tools and
techniques can be used, and how these cooperate. In Section 2.3 we list the char-
acteristics of the two COBOL systems under study. In Section 2.4 we describe
the kind of information we extracted from the legacy code, while in Section 2.5
we discuss the possible interpretation of this data. In Sections 2.6, 2.7 and 2.8 we
summarize related work, conclusions and future work.

2.2 Tool Architecture

Rapid system understanding implies summarizing of data. In order to understand
a large legacy system, it is necessary to quickly find the “essence” of such a sys-
tem. What constitutes this essence largely depends on the reasons for trying to
understand the system.

Our approach is to analyze the code using generic tools that have no a-priori
knowledge of the system. The results of this analysis are then fed into a central

2.3 � Cases Investigated 25

repository. In turn, this repository can then be queried, printed, visualized, etc.
The querying of the repository leads to a certain degree of understanding of the
system. We can exploit this understanding by creating analysis techniques that
do contain (a degree of) specific knowledge of the system. This will lead to data
in the repository that is more suited for our specific goals. Again, this data can
be visualized, queried, etc., to gain a greater understanding of the system. This
process is repeated until the engineer who tries to understand the system has gained
sufficient knowledge of it.

The general architecture of our tool set consists of three main parts, as shown
in Figure 2.1. The first part is the code analysis part, the second the repository, and
the third the tools that manipulate and present data from the repository.

For the code analysis part lexical, syntactic or other forms of analysis can be
used. The figure distinguishes lexical, syntactic [dBSV97a], and data flow analy-
sis. For the purpose of rapid system understanding, it will generally suffice to use
lexical analysis. It can be performed faster than syntactic analysis, and is much
more flexible [MN96].

To extract a number of relations from COBOL legacy systems, we have de-
veloped a simple Perl [WS91] script called ������������� . It knows about COBOL’s
comment conventions, keywords, sectioning, etc. It can be used to search the
sources for certain regular expressions, and to fill tables with various relations, for
example pertaining to the usage of databases, call structure, variable usage, etc.
The data extracted for COBOL is discussed in full detail in Section 2.4.

We store the analysis results as comma-separated-value (CSV) files. Such files
can be easily queried and manipulated by Unix tools such as 	�
 � [AKW88] and ����� , and can be read by arbitrary relational database packages enabling us to use
SQL for querying the data extracted from the sources. These tools can also be
used to generate reports, for example on the usage frequency of certain variables,
or containing the fan-in/fan-out metric of sections of code.

Many relations stored in the repository are graphs. We use the graph drawing
package � ��� [GKNV93] for visualizing these relations.

2.3 Cases Investigated

Central in our research are two COBOL systems from the banking area, which in
this paper we will refer to as Mortgage and Share. Mortgage is a relation admin-
istration subsystem of a mortgage system. Share is the order-input (OI) subsystem
of the ABN-AMRO stockbroking system. The respective owners of these systems
are in general satisfied with their functionality, but less satisfied with their plat-
form dependency. They are interested in extracting the essential functionality of
these systems, in order to incorporate it into a more flexible, object-oriented, ar-
chitecture. Thus, questions of interest include: Do these systems contain reusable

26 Rapid System Understanding � 2

Mortgage no LOC avg

copybooks 1103 49385 44
programs 184 58595 318
total 1288 107980 83

Share no LOC avg

copybooks 391 16728 42
programs 87 104507 1201
total 479 121235 253

Figure 2.2: System inventory.

code? What fraction of the code is platform specific? Which data fields represent
business entities? Which procedures or statements describe business rules?

The sizes of the two systems are summarized in Figure 2.2. Mortgage is a
COBOL/CICS2 application using VSAM3 files. It is partly on-line (interactive),
partly batch-oriented, and in fact only a subsystem of a larger (1 MLOC) system.
Share is an IMS4 application which uses both DL/I5 (for accessing an IMS hier-
archical database) and SQL (for accessing DB2 databases).

For Mortgage, we had system-specific documentation available, explaining
the architecture and the main functionality of the programs. The documentation
marked several programs as “obsolete”: some of these were included in the version
distributed to us, however. For Share, no specific documentation was available:
we only had a general “style guide” explaining, for example, the naming conven-
tions to be used for all software developed at the owner’s site.

2.4 Collected Data

In this section, we discuss how we used the tool set of Section 2.2 to extract data
from the Mortgage and Share sources, and how we displayed this data in a com-
prehensible manner. The results of the analysis will be discussed in Section 2.5.

2.4.1 System inventory

The system inventory table summarizes available files, sizes, types (copybook,
program), and languages used (COBOL, CICS, SQL, DL/I, ...). The copybook ta-
ble indicates how copybooks are included by programs (a simple lexical search for
the arguments of the

�������
command). If appropriate, for certain files (copybooks)

2CICS is Customer Information Control System, a user interface and communications layer
3VSAM is Virtual Storage Access Method, an access method for records
4IMS is Information Management System, a database and data communication system
5DL/I is Data Language 1, a database management language

2.4 � Collected Data 27

it can be detected that they were generated, for example if they contain certain
types of comment or keywords. The system inventory derived for Mortgage and
Share was used to obtain Figure 2.2.

2.4.2 Program call graph

The call relation is a first step in understanding the dependencies between the
programs in Mortgage and Share. Deriving the call graph for COBOL programs
(see Figure 2.3 for the batch call graph of Mortgage) is not entirely trivial. First
of all, the argument of a CALL statement can be a variable holding a string value,
i.e., it can be dynamically computed. The most desirable solution to this problem
is to have some form of constant propagation. In our case, for Mortgage it was
sufficient to search for the values of certain variables or, in Share, for strings
matching a certain lexical pattern.

In Share, we encountered further complications. Rather than a regular CALL
statement, each call is in fact a call to some assembler utility. One of the arguments
is a string encoding the name of the program to be called, as well as the way in
which that program is to be loaded. The assembler routine subsequently takes
care of loading the most recent version of this program. Once we understood this
mechanism, it was relatively easy to derive the call graph using lexical pattern
matching.

In Mortgage, the use of CICS provides further possibilities of calling pro-
grams. The first is the CICS LINK statement, which is similar to a CALL state-
ment. The second is the CICS XCTL statement. This takes care of invoking a
program just before or after an end-user has filled in a screen as presented in an
on-line session. In Mortgage, the XCTL calls could be extracted by tracing the
value of a specific variable.

Observe that these special call conventions imply that commercial reengineer-
ing tools should be sufficiently flexible to allow such organization-specific ex-
tensions. We have looked at two of the most advanced COBOL reengineering
tools currenly available, Reasoning/COBOL [MNB

�

94] and MicroFocus/Revolve
[Mic96]. Both support call graph extraction from abstract syntax trees, but neither
is able to produce the on-line call graph of Mortgage or the batch call graph of
Share. They can be adapted to produce these graphs, but that will be more time
consuming than specifying a simple lexical search, making the latter option more
attractive in a rapid system understanding setting.

2.4.3 Database usage

A viable starting point for locating data entities of interest is the data that the
system reads from or stores in persistent databases. In Mortgage, VSAM files
are used, and both COBOL as well as CICS constructs to access them. In Share,

28 Rapid System Understanding � 2

R
A

09

A
A

04
A

A
05

R
A

10

A
A

02

R
A

12

R
A

20

H
A

03

R
A

22

R
A

36
R

A
41

R
A

24

R
A

40
R

A
25

R
A

26
R

A
27

R
A

31

H
A

02
R

A
37

R
A

38
R

A
39

R
A

42
R

A
80

R
A

81

R
A

83

R
A

89
R

A
90

Figure 2.3: CALL graph for the batch part of Mortgage.

2.4 � Collected Data 29

VSAM, hierarchical IMS and relational DB2 tables are used, and COBOL I/O
statements, SQL and DL/I to access them.

In an SQL system, a datamodel listing all tables with their field names and
types is explicitly available. The ������������� tool can be used to extract this model
from the source. In a non-SQL application such as Mortgage, this datamodel is
not available. What can be derived, though, is the COBOL record definition used
when writing to or reading from files.

Share uses 36 different tables, with in all 146 different field names. The num-
ber of fields per table varies from 1 to 40 – suggesting that many tables share
certain fields. To make this visible we generated a 60-page LATEX document. For
each table we have one section listing the fields and their types, as well as the pro-
grams in which the table was declared. We then used � 	 � ����� � ��� to generate an
index, indicating at what pages the tables, fields, types, and programs were used.

The CRUD — create, read, update, delete — matrix indicates how databases
are manipulated by programs. As viewing a CRUD matrix of a large system is
cumbersome, we use the graphical representation of Figure 2.4. The left-hand
column contains records read, the right-hand one records written, and the middle
column lists the programs involved. An arrow from a record to a program indicates
a read, and an arrow from a program to a record indicates a write.

2.4.4 Field usage

The database usage and datamodel provide a rough overview of the database op-
erations per program. In many cases, it is useful to look at the table field level as
well.

In order to expose shared use of database fields, we collect all occurrences of
database field identifiers per section per program. From this table, we derive a list
as shown in Figure 2.5. In Mortgage essentially 35 datafields are contained in
one large table. Figure 2.5 shows how many of these datafields are used in each
section. Of particular interest are those sections dealing with a small number (less
than, say, 10) of data fields only.

We extracted the field usage relation using lexical analysis only. From the
database declarations we extracted the field names. We then matched on section
declarations to find section boundaries, and identified a field usage if one of the
lines in a section contains a field name as substring. Clearly, this is an approxi-
mative method, relying on systematic naming conventions: the more accurate way
would be to parse the source and do dataflow analysis to follow field usage through
the code. For the two cases studied, though, the results obtained by lexical analysis
were sufficiently accurate, at least for rapid system understanding purposes.

30 Rapid System Understanding � 2

R
E

A
D

PR
O

G
R

A
M

W
R

IT
E

H
A

R
00

3

R
A

05
01

0R
R

A
32

01
0R

H
A

R
00

6

R
A

01
23

0U
R

A
33

01
0R

H
A

R
00

6
R

A
R

00
1

R
A

R
00

2

R
A

R
00

1

R
A

01
01

0R
R

A
01

33
0U

R
A

01
41

0U
R

A
10

C
R

A
31

C
R

A
35

03
0U

R
A

R
00

4
R

A
R

00
9

R
A

R
01

3

R
A

R
00

2
R

A
R

00
4

R
A

09
C

R
A

R
00

5
R

A
R

00
7

R
A

03
01

0R

R
A

R
00

9
R

A
R

01
1

R
A

82
01

0R
R

A
82

02
0R

R
A

89
C

R
A

90
C

R
A

R
01

2
R

A
R

01
3

H
A

R
00

3
R

A
R

00
5

R
A

R
00

7
R

A
R

01
1

R
A

R
01

2

R
A

03
02

0U
R

A
12

C

Figure 2.4: Graphical representation of the CRUD matrix of Mortgage.

2.4 � Collected Data 31

Program Section # vars
RA01330U B200-UPDATE-UIT-FIB 35
RA01230U B200-UPDATE-UIT-FIB 35
RA01010R C100-VUL-FIB 34
RA31C R300-MBV-RELATIENR 32
RA31 R300-MBV-RELATIENR 32
RA20 R220-VERWERK-30-31 26
RA20 R210-VERWERK-20-21 25
RA20 R200-VERWERK10 25
RA35010R B300-VALIDATIE 16
RA33010R B300-VALIDATIE 16
RA20 R500-SPAARHYPOTHEEK 13
...

Figure 2.5: Number of record fields used per section.

Program Section Fan-in Fan-out
RA20 R320-LEES-HAB006 23 1
RA20 R330-DATUM 16 2
RA83 R995-CLOSE-FILES 12 0
RA22 R995-CLOSE-FILES 12 0
RA80 R30-PRINT-REGEL 10 0
RA23 R995-CLOSE-FILES 9 0
RA20 R995-CLOSE-FILES 8 0
RA24 R995-CLOSE-FILES 7 0
RA80 R70-WRITE-RAB011S 5 0
RA38 R300-VERTAAL-GROOT-KLEIN 5 0
...
RA26 R995-CLOSE-FILES 3 0
RA23 R60-REDSEQ-RAB008 3 1
RA20 R212-VUL-OUD 3 3

Figure 2.6: Sections sorted by fan-in and fan-out.

2.4.5 Section call graph

A last relation we experimented with was the call graph at the section and para-
graph level (the PERFORM graph). The perform relation can be used to visualize
the calling structure of sections in individual programs. Since there are many pro-
grams, this is only useful if a selection of interesting programs is made beforehand
(e.g. using the CALL graph).

Apart from visualizing the perform graph per program, all sections of the sys-
tem can also be listed and sorted according to some metric. Figure 2.6 shows all
sections with a fan-in of at least 3, and a fan-out of at most 3. It can be used to
search for sections with an attractive fan-in/fan-out ratio.

At the system level, the sections included in copybooks are of particular inter-
est. These sections were designed to be reusable, and therefore are natural can-
didates for further reuse. Figure 2.7 lists some of these sections for Mortgage,
together with the number of other programs and sections containing a call to that
section (fan-in).

32 Rapid System Understanding � 2

Section Performed Sections Programs
Y800-PRINT 145 17 12
Y998-HANDLE-ERROR 92 92 92
Y010-40-AIB 89 89 89
Y010-00-AIB 81 81 81
Y502-MASKER 80 25 25
Y020-00-FIB 79 79 79
Y020-40-FIB 66 66 66
...
Z610-82-RAB011 7 5 4
Z610-80-RAB011 7 6 5
Y675-STD-STRAAT 7 4 2
Y625-ELF-PROEF 7 6 6
Y415-INFO-SCHONEN-NIT 7 3 3
Z610-03-RAB011 6 4 4
Y750-STD-NAAM 6 5 3

Figure 2.7: Sections performed by different sections and programs.

2.4.6 Further experiments

While finding out how to extract the various relations from the sources, we also
used ������������� as an enhanced COBOL lexer. The � ����������� script contains several
functions to ignore COBOL comment columns and lines, to split lines into strings,
numbers, identifiers, keywords, and other tokens, to search for arguments of key-
words, to expand copybooks, to record information encountered in earlier lines,
and to store results into tables. These functions were fruitfully used to acquire an
understanding of conventions used, relevant data, etc.

2.5 Interpreting Analysis Results

In this section, we discuss how the graphs and reports derived in the previous
section helped us to actually understand the two COBOL systems under study.

2.5.1 Understanding copybooks

Rapid system understanding is a mixture between looking at global system in-
formation like the call graph and looking in more detail at a specific program in
order to obtain a feeling of its particularities. One of the aims during rapid system
understanding is to reduce the number of programs that need to be studied in de-
tail. Having the copybook relation explicitly available will help to avoid looking
at copybooks that are in fact never included.

For Share, 136 of the 391 (35%) copybooks were not used; for Mortgage 673
of the 1103 (61%) were not used. These large numbers can partly be explained
as Mortgage is part of a larger system: for safety, all copybooks were included.
Likewise, Share relies on general utilities used at the owner’s site; to be safe many

2.5 � Interpreting Analysis Results 33

of these were included. We have not yet looked at other forms of dead code, such
as sections or programs never called. To detect the latter, one should also have all
JCL6 scripts available, which we did not have for our case studies.

Another use of the copybook relation is to identify patterns in the copybook
inclusions. It turned out, for example, that the batch and the on-line part of Mort-
gage use two almost disjoint sets of copybooks.

2.5.2 Call graph and reusability

The batch call graph for a part of Mortgage is shown in Figure 2.3. This graph
shows particularly well that we can identify:

� Programs with a high fan-out. From inspection we know that these are typ-
ically “control” modules. They invoke a number of other programs in the
appropriate order. In Figure 2.3, they are mostly grouped in the left-hand
column.

� Programs with a very high fan-in, i.e., called by most other programs. These
typically deal with technical issues, such as error handling. From inspection
it is clear that they are tightly connected to legacy architecture, and are not
likely to contain reusable code. In Figure 2.3, they are grouped in the right-
hand column.

� Programs with a fan-in higher than their fan-out, yet below a certain thresh-
old. These programs can be expected to contain code that is reusable by
different programs. In Figure 2.3, they are mostly in the middle column.
These programs form the starting point when searching for candidate meth-
ods when trying to extract an object-oriented redesign from legacy code.

For the batch part of Mortgage, this categorization worked remarkably well.
The call graph based on CICS LINK commands (not shown) contains the re-

maining calls. Due to the presence of error handling modules, this call graph was
difficult to understand. Removing all modules with fan-in higher than a certain
threshold (say 10), we obtained a comprehensible layout.

For Mortgage, this analysis of the call graph led to the identification of 20
potentially reusable programs that performed a well-defined, relatively small task.

For Share, only 50% of the programs were contained in the call graph; the
remaining programs are called by JCL scripts, which we did not have available.
Therefore, for Share further ways of identifying reusable code will be required.

At a finer granularity, analysis of the PERFORM graph will be an option. In
principle, the same categorization in control, technical, and potentially reusable
code can be made. The derived table of Figure 2.6 can help to find sections of an

6JCL is Job Control Language, a shell-like system for MVS.

34 Rapid System Understanding � 2

acceptable fan-in. Clearly, this list is rather large, and not all sections will be rele-
vant: we decide to inspect the code of a section based on its name. For example, we
could probably ignore CLOSE-FILES, but should take a look at VERTAAL-GROOT-
KLEIN7, especially since this section occurs in three different programs.

Analysis of the sections included in copybooks as shown in Figure 2.7 will
proceed along the same lines: based on the number of perform statements and
the name of the section (for example, STD-STRAAT, indicating processing of a
STRAAT, i.e., street), we will inspect code of interest. Surprisingly, Share does
not use any sections defined in copybooks.

2.5.3 Understanding data usage

The tools provide three ways to understand the data usage. The first is the index
of tables, attributes, types and programs derived from SQL data definitions. This
index can be used to detect, for example, sets of attributes that occur in several
different tables and hence may be (foreign) keys.

The second aid is the CRUD matrix, which shows which programs read or
write certain tables. We used Figure 2.4, which shows the database usage for
Mortgage, to identify databases that are only read from (for example the “zip-
code book”, shown in the top-left corner of Figure 2.4) or only written to (logging,
shown in in the top-right corner), databases used by many programs, or programs
using many databases. We also used this figure to identify those databases that are
used by most other programs. For Mortgage, there are only three such databases.
The tools indicate which (level 01 COBOL) record definitions are used to access
these, and the fields in these records we considered as the essential business data
of Mortgage.

The third possibility aims at finding out how these data fields are used through-
out the system, using Figure 2.5. It can help to group data fields based on their
shared use, or to locate sections of interest, potentially containing core business
functionality. Again, we will use this list to select sections of interest manually.
Examples are sections called VALIDATIE, which contain code for checking the
validity of fields entered via screens.

2.5.4 Reusability assessment

In the preceding sections, we have discussed how certain information can be ex-
tracted from COBOL sources using lexical analysis methods (Section 2.4) and
how we can use this information to understand the legacy system at hand (Sec-
tion 2.5). Does this acquired understanding help us to answer the questions posed
in Section 2.3?

7Dutch for map-upper-lower

2.6 � Related Work 35

� Do the systems contain reusable code? Based on the call graph several
programs and sections were identified which, after inspection, turned out to
contain well-isolated reusable functionality.

� Which data fields represent business entities? The tools help to identify
those data fields that are written to file and used by most programs: the in-
dexed representation helps to browse these fields and filter out certain fields
that are perceived as “non-business”.

� Which statements describe business rules? An inventory of the data fields
used is made per section: those dealing with several fields are likely to de-
scribe business-oriented procedures.

� What fraction of code is platform-specific? Of the 340 sections of Share
177 (approximately 50%), refer to at least one data field. Thus, an initial
estimate is that the other 50% is likely to contain platform-specific code. For
Mortgage, 510 of the 2841 sections (only 18%) refer to the data items stored
on file. Thus, 82% appears to be platform-oriented rather than business
oriented. Inspection of the functionality shows that this is the case: a large
part of Mortgage deals with CICS-specific details (implementing a layer on
top of CICS).

Evidently the answers to these questions are approximative. If a full reuse,
reengineering, or re-implementation project is to be started, this project will re-
quire a more detailed answer to these questions. In order to decide to embark upon
such a project, fast answers, such as those discussed in this section, obtained at
minimal costs, are required.

2.6 Related Work

Lexical analysis of legacy systems Murphy and Notkin describe an approach
for the fast extraction of source models using lexical analysis [MN96]. This ap-
proach can be used for the “analysis” phase (as showed in Figure 2.1), in stead of
��������� ��� . Murphy and Notkin define an intermediate language to express lexical
queries. Queries composed in this language are generally short and concise. Un-
fortunately, the tool was not available, so we were not able to use this tool for our
COBOL experiments.

An interesting mixture between the lexical approach of AWK and matching
in the abstract syntax tree is provided by the TAWK language [GAM96]. Since
TAWK is not (yet) instantiated with a COBOL grammar, however, we could not
use it for our experiments.

36 Rapid System Understanding � 2

Reengineering tools There are a number of commercial reengineering tools that
can analyze legacy systems, e.g. [Mic96, MNB

�

94]. They are either language-
specific (mainly COBOL), or otherwise based on lexical analysis. Lexical analysis
provides a level of language independence here, and makes the system easier to
adapt to new languages and dialects.

The COBOL specific reengineering tools have built-in knowledge of COBOL:
They work well if the application at hand conforms to the specific syntax supported
by tool, usually the union of several COBOL dialects.

Examples of language-independent tools are Rigi [MOTU93] or Ciao [CFKW95].
Many papers report on tools and techniques for analyzing C code. We found

it difficult to transfer these to the COBOL domain and to apply them to our case
studies. COBOL lacks many C features, such as types, functions, and parameters
for procedures. Moreover, approaches developed for C tend not to take advantage
of typical COBOL issues, such as the database usage for business applications.

Finding reusable modules Part of our work is similar in aims to the RE
�

project,
in which candidature criteria have been defined to search for functional abstrac-
tions, data abstractions, and control abstractions [CV95]. The RE

�

approach has
been applied to COBOL systems by Burd et al. [BMW96, BM97].

Neighbors [Nei96] analyzes large Pascal, C, assembly, and Fortran systems
consisting of more than a million lines of code. One of his conclusions is that
in large systems, module names are not functional descriptions, but “architectural
markers”. This agrees with our observation that we could not use module names
to locate reusable code, while section names proved helpful in many cases.

2.7 Conclusions

Rapid system understanding, in which fast comprehension is more important than
highly accurate or detailed understanding, plays an important role in the planning,
feasibility assessment and cost estimating phases of system renovation projects.

System understanding tools require an architecture in which it is easy to exploit
a wide range of techniques. The architecture discussed in Section 2.2 distinguishes
analysis of source code, a central relational database to store analysis results, and
various forms of presenting these results such as report generation and graph visu-
alization.

The datamodel used by the relational database, and the analysis and visualiza-
tion techniques used, depend on the rapid system understanding problem at hand.
The paper discusses an instantiation for identifying reusable business logic from
legacy code.

Lexical analysis, using only superficial knowledge of the language used in the
sources to be analyzed, is sufficiently powerful for rapid system understanding.

2.8 � Future Work 37

An important advantage is its flexibility, making it possible to adapt easily to par-
ticularities of the system under consideration. (See, for example, the derivation of
the call graph of Share as discussed in Section 2.4).

In order to assess the validity of the architecture proposed, the emphasis on lex-
ical analysis, and the instantiation used for identifying business logic from legacy
code, we studied two COBOL case studies from the banking area. The two case
studies show that (1) lexical methods are well-suited to extract the desired data
from legacy code; (2) the presentation forms chosen help us to quickly identify
business data fields and chunks of code manipulating these fields; (3) the proposed
approach is capable of finding answers to the reusability questions posed in Sec-
tion 2.3.

We consider the results of this case study to be encouraging, and believe the ap-
proach to be viable for a range of system understanding and reusability assessment
problems. The limitations of our approach are:

� Lexical analysis cannot take advantage of the syntactic structure of the sources.
In our cases, for example, it is difficult to extract those variables that are used
in, say, conditions of if-then-else statements.

� Identification of business data is based on the assumption that this data is
stored in databases.

� Identification of data field usage is based on textual searches for the field
names. This works on the assumption of systematic variable naming. A
more accurate, yet also much more involved, method would be to follow the
database field usage through the dataflow.

The latter two assumptions are reasonable and will generally hold, but certainly
not for all systems.

2.8 Future Work

While developing the rapid system understanding tools and techniques, and while
applying them, several further research questions emerged. We are in the process
of investigating the following topics.

Use of metrics Our work bears a close relationship with the area of metrics. A
question of interest is what metrics are indicative for reusability in the two COBOL
systems we studied. Another relevant question is which metrics can be computed
sufficiently easily, in order to make them applicable in a rapid system understand-
ing setting.

38 Rapid System Understanding � 2

Code cloning While analyzing Mortgage we observed a high degree of du-
plicated code. We intend to investigate whether lexical methods are suitable for
detecting the clones present in Mortgage.

Restructuring and modularization We are currently experimenting with ap-
plying cluster analysis methods to remodularization of legacy code [DK97].

Comprehension models Searching through code using lexical analysis can be
viewed as browsing in order to answer questions and verify hypotheses. Recent
studies in system and program understanding have identified code cognition mod-
els emphasizing this hypothesis verification aspect [Bro83, MV96, MV97]. From
our experience with the two COBOL cases we observed that many of our actions
were aimed at reducing the search space. Thus, rather than verifying hypothesis
immediately, we started by organizing the set of programs such that the chance
of looking at less relevant programs was minimized. It seems interesting to study
how this search space reduction fits in some of the existing code cognition models.

As a last remark, the present year 2000 crisis may be an ideal opportunity to ex-
perimentally verify the validity of cognition models for rapid system understand-
ing.8 Many “year 2000 solution providers” start by performing a “quick scan” in
order to determine the costs of the year 2000 conversion project, and almost all of
these scans are based on lexical analysis. A successful cognition model should be
able to describe most of the methods used by these solution providers, and might
be able provide hints for improvements for methods not taking advantage of this
model.

8This chapter was written and published before 2000. In the interim, the Y2K crisis has come
and gone. The remark, however, still stands: Problems similar to Y2K keep cropping up and keep
forming a fertile testbed for verification of cognition models. Large scale minor change problems in
the foreseeable future include expansion of bank account numbers in The Netherlands, the expansion
of internet protocol (IP) numbers, the standardization of measurement units (e.g. from cubic meters to
kilowatts in the natural gas industry) and many more.

Chapter 3

Building Documentation
Generators

This chapter integrates the analysis results presented in the previ-
ous chapter. It adds hypertext as a presentation form, which allows an
engineer to browse through a system, moving from general overview
to detailed information with a couple of mouse clicks. Retrieving facts
from the legacy system is facilitated by the use of island grammars,
an analysis technique which couples the flexibility of lexical analysis
with the thoroughness of syntactic analysis.1

3.1 Introduction

The documentation of a system is needed to understand that system at a certain
level of abstraction, in a limited amount of time. It is needed, for instance, if a
system is migrated or re-engineered. It can be used to map functional modification
requests as expressed by end users onto technical modification requests, and to
estimate the cost of such modifications. Finally, documentation will help in the
process of outsourcing maintenance or when engineers that are new to the system
need to learn about the system.

The source code of a system can be viewed as its most detailed level of doc-
umentation: All information is there, but usually we do not have enough time to
comprehend all the details. Luckily, we do not usually need to know all the details.
Instead, we would like to have enough information so that we can build a mental

1This chapter was published earlier as: A. van Deursen and T. Kuipers. Building documentation
generators. In International Conference on Software Maintenance, ICSM’99, pages 40–49. IEEE
Computer Society, 1999.

40 Building Documentation Generators � 3

model of the system, and zoom in to the specific details we are interested in. The
level of detail (or abstraction) we are interested in depends very much on what we
intend to do with the system.

This flexibility should be reflected in the documentation, which, therefore,
should adhere to four criteria:

1. Documentation should be available on different levels of abstraction.

2. Documentation users must be able to move smoothly from one level of ab-
straction to another, without loosing their position in the documentation
(zooming in or zooming out).

3. The different levels of abstraction must be meaningful for the intended doc-
umentation users.

4. The documentation needs to be consistent with the source code at all times.

Unfortunately, these criteria are not without problems. Criterion 4 implies that
documentation is generated from the source code. In practice this is seldomly
done. Consequently, it is violated by many legacy systems, which are modified
continuously without updating the accompanying technical documentation.

Criterion 3 makes documentation generation hard. Meaningful abstractions
can benefit immensely from design information which is usually not present in the
source code itself. Such information needs to be added manually to the documen-
tation.

For new systems, mechanisms like literate programming [Knu84] provide sys-
tematic ways of putting design information in the source code. For legacy systems
this would involve a significant manual updating of program comments. Besides,
design information is more often than not lost for legacy systems.

In this paper, we study ways in which we can update the documentation of
legacy systems such that all four criteria are met. We propose a combination of
manual and automatic (re)documentation. Whatever documentation can be gener-
ated from the sources is derived automatically. This then is combined with infor-
mation provided by hand. Depending on the state of the system, and the knowl-
edge about the system, either one of those activities can play the predominant role
in the final documentation that is delivered. Figure 3.1 shows the architecture of
the documentation generators that are built this way.

The remainder of this paper is organized as follows. In the next section, we
introduce island grammars, the technology we use for extracting facts from a sys-
tem’s source code. In Section 3.3 we discuss what information should be con-
tained in documentation, and how we can derive it from the legacy sources. In
Section 3.4 we explain how the information extracted can be presented at what
level of abstraction, using graph visualization and hypertext as primary tools. In
Section 3.5 we describe a real-world Cobol legacy system, what its documentation

3.2 � Source Code Analysis 41

Hand-written
documentation

Formatter

Documentation

System
sources

Automated fact
extractor

Manual fact
extractor

Repository

Figure 3.1: Deriving documentation from legacy sources. Solid lines indicate
automatic processing, augmented with manually derived information indicated by
dashed lines.

problems were, and how we applied the techniques described in this paper to build
a documentation generator for that system. We end the paper with related work, a
summary of the main contributions, and suggestions for future work.

3.2 Source Code Analysis

In order to generate documentation from a system, we need to analyze the source
code of that system. We have tried several analysis approaches. In this section we
will discuss these approaches in detail. In later sections we discuss how we have
used these approaches.

3.2.1 Lexical analysis

When generating documentation for a system, only a few constructs in the source
code are of interest. After all, the documentation should be a useful abstraction
of the system. The constructs of a language that are of interest very much depend
on the type of documentation that should be generated. If these constructs have an
easily recognizable lexical form, lexical analysis is an efficient way to find them.
If, for instance, we are looking for files that are opened for reading in a Cobol
source, we simply look for the string “open input” and take the word directly
following that string as the file handle that has been opened.

The advantage of this approach is that we do not need to know the full syntax
of the language we want to analyze. Another advantage is that lexical analysis is
very efficient. This allows us to analyze large numbers of files in a short time, and

42 Building Documentation Generators � 3

also allows us to experiment with different lexical patterns: If a pattern does not
yield the correct answer, the analysis can be easily changed and rerun.

The main disadvantage of lexical analysis is that it is (in general) not very
precise, and that some language constructs are much harder to recognize lexically
than others. For example, for the case study later discussed in this paper we need
to find the files that were executed from a DCL program, the DEC job control lan-
guage for VAX VMS. In DCL, we can look for the string “run”, which is the DCL

keyword for execution. If, on the other hand, we would want to know which files
are executed from a Bourne shell script, we would need to specify all built-in func-
tions of the Bourne shell language. There is no special keyword for execution in
the shell, rather, it attempts to execute all words that are not built-in functions.

Strings such as “open input” and “run” obviously can occur in different con-
texts, and may mean completely different things in each context. These strings
could occur in comment, for example, or inside a quoted string. Because we need
to recognize different contexts in most cases, much of the original simplicity of the
lexical pattern is gone. Furthermore, as long as we do not specify the full syntax
of a language, there is the risk that we may have overlooked particular contexts in
which a pattern can or cannot occur.

Most commonly used for lexical analysis are Unix tools such as � ����� , 	�

�

, and
������� . Murphy and Notkin [MN96], describe LSME, a system which allows for the
lexical specification of contexts of patterns, as well as the patterns themselves. For
the analysis of Cobol, we have developed ������������� [DK98], which keeps track
of the global structure of Cobol, and allows the user to specify patterns typically
required in a program understanding context.

3.2.2 Syntactic Analysis

More precise analysis of source code can be achieved by taking the syntactic struc-
ture of the code into account, analyzing the abstract syntax tree instead of the in-
dividual source code lines. This makes the context in which a particular construct
occurs explicitly available. Moreover, it abstracts from irrelevant details, such as
layout and indentation.

Unfortunately, most legacy systems are written in languages for which parsers
are not readily available. Developing a grammar from which to generate such a
parser requires a significant investment. As an example, Van den Brand et al.
[dBSV97b] report a period of four months needed to develop a fairly complete
Cobol grammar.

For program understanding and documentation purposes, however, only a hand-
ful of language constructs are needed, so it seems too much work to have to specify
the full grammar of a legacy language. Therefore, we propose the use of “island
grammars”, in which certain constructs are parsed in full detail, whereas others are
essentially ignored.

3.2 � Source Code Analysis 43

syntax

��������� � 	�
����
����
(3.1)

��� ��� � ��� ��� � � �������
(3.2)��������� ��� � �"!$#&%(')��*,+�#&% ��-.���,/10�2��

� � � �)�3!$#$%54)���6%87:9���!&��*<;=� � � � �������
(3.3)4)���6%>�@?A�./�����BDCFE���#&GH%I� 7:9��J!$��*
(3.4)K + � �"!&#$%54:���6%
(3.5)K + � 4)���L%
(3.6)K + � E���#$G.%
(3.7)K + � �"!&#$%5':��*H+�#$%
(3.8)

� -NM=O �P� -NM=O�QRMTS � � ;U� K +
(3.9)

priorities

��������� ��� � �"!$#&%(')��*,+�#&% ��-.���,/10�2��
� � � �)�3!$#$%54)���6%87:9���!&��*<;=� � � � ���V�1�XW

��� ��� � �Y� ��� � � ���V�1�

Figure 3.2: An example island grammar

3.2.3 Island Grammars

An island grammar consists of (1) detailed productions for the language constructs
we are specifically interested in (2) liberal productions catching all remaining con-
structs; and (3) a minimal set of general definitions covering the overall structure
of a program.

As an example, suppose we have a simple language Z . Programs in Z consist
of a list of one or more statements. For documentation generation purposes we
are only interested in one statement, the “SELECT” statement. The definition of
the island grammar is in Figure 3.2. We use the grammar definition language
SDF2 [Vis97b] for our definition.2 We can distinguish the following groups of
productions:

� The definition of the statement of interest is on line (3), defining a a state-
ment to be produced by the keywords “SELECT”, a FileHandle, “ASSIGN”,
“TO”, a FileName, a possibly empty list of Options, terminated with a “.”
character. Productions (4–9) define the details of the other non-terminals.

2Please note that productions in SDF2 are reversed with respect to languages like BNF. On the right-
hand side of the arrow is the non-terminal symbol that is produced by the symbols on the left-hand side
of the arrow.

44 Building Documentation Generators � 3

� The liberal production catching all remaining constructs is on line (2), de-
fined as any character that is not a “.” (the tilde negates the character class
containing the period), followed by a period.

Obviously, this grammar is ambiguous, because a “SELECT” statement can
be produced by both productions (2) and (3). To resolve this, Figure 3.2
defines priorities preferring production (3) to (2).

� Line (1) defines the overall structure of a program, which is defined as a list
of statements.

The reason for using this grammar development technique, is that we signifi-
cantly reduce the grammar development time. Another advantage is that the parse
tree that is returned by the parser only contains the relevant information. We do not
have to weed through dozens of complicated structures to get to the information
we look for.

By far the biggest advantage is the flexibility of the technique. Although some
legacy languages have a proper language definition, we have yet to see a legacy
system that does not use compiler specific extensions, or locally developed con-
structs. Furthermore, most parsers for legacy systems are quite liberal in checking
their input, so although a program is not syntactically correct according to the lan-
guage definition, it does parse, compile, and run. Using our grammar development
technique, we can either ignore these specifics (by writing a catch-all production
such as (2) above), or add a production particular to a certain extension of the
legacy system at hand.

In principle, island grammars can be used in combination with any parser gen-
erator, the best known ones being Yacc and Bison. We benefited from the use of
SDF2, which has a number of attractive characteristics.

First, SDF2 is based on scannerless parsing, in which the distinction between
lexical scanning and parsing has disappeared. Hence, the user of SDF2 is not
restricted to regular expressions for defining lexical tokens. Moreover, explicit
lexical disambiguation is permitted in the formalism.

Second, parsers for SDF2 are implemented using generalized LR parsing [Vis97a],
which accepts arbitrary context-free grammars, not just LALR grammars accepted
by Yacc and Bison. This avoids the notorious shift reduce conflicts inherent to the
use of LALR grammars. A priority mechanism can be used to deal with ambigui-
ties that may arise due to the use of arbitrary context-free grammars.

Last but not least, because SDF2 is a modular syntax definition language, we
can specify an island grammar in different modules. This way, for each analysis we
can have a different grammar that is an extension of a common core language. This
helps to keep the grammars as small and concise as possible. Consider the island
grammar developed above. Here, productions (1), (2), and (5–9) can be viewed as
being part of the core of language Z . These can be put in a separate module. Then,

3.3 � Extracting Documentation 45

the only productions needed for our “SELECT” analysis are productions (3–4),
and the priority rule, which should be defined in a different module.

3.2.4 Parse Tree Analysis

The parser generated from the grammar in the previous section will return parse
trees that can be easily analysed. The parse trees are encoded in aterm format
[dBKV96]. This parse tree can be read in by a Java framework we wrote, thus
giving access to the parse tree as a Java object. The framework implements the
visitor design pattern [GHJV94], via a visitor class that can be specialized to per-
form a particular analysis on the tree. This is simplified by the fact that the Java
framework has full knowledge of the island grammar that has been specified, and
contains methods for matching patterns of productions in the grammar to corre-
sponding nodes in the tree.

The analysis results that are of interest can be written to a repository, and from
there they can be combined, queried and used in the rest of the documentation
generation process. All extractions described in Section 3.3 were performed using
this Java parse tree analysis framework. The data extracted were put in a repos-
itory. The presentations described in Section 3.4 were then generated from that
repository.

This way of analyzing source code is similar in concept to a number of other
systems, e.g. CIAO [CFKW95], in the sense that there is a chain of analysis, filter,
and presentation events. In our approach, however, we start filtering the data dur-
ing the first (analysis) phase, because we only deal with those language constructs
defined in the island grammar.

3.3 Extracting Documentation

In this section, we will discuss the sort of information that should be contained in
software documentation, and how this information can be identified in the legacy
sources.

3.3.1 Manual versus Automated Extraction

Given the choice between manual or automatic extraction of information from
source code automatic extraction (for example using island grammars) is the pre-
ferred option: it is consistent with the actual source code, and can be easily main-
tained by automatic regeneration.

If generation is not feasible, the facts needed to construct the documentation
can be provided by hand. This may take the form of a list of programs and a one or
two line description of their functionality. Whenever documentation is generated,
data from this list is included as well. Moreover, automatic checks as to whether all

46 Building Documentation Generators � 3

Level Documentation

system overall purpose, list of subsystems

subsystem
purpose, list of modules, batch jobs,
databases, screens, ...

batch job
programs started, databases accessed, fre-
quency, ...

program
behavior, programs called, databases read or
written, invoked by, parameters, ...

section
functionality, external calls, sections per-
formed, conditions tested, variables used, ...

Figure 3.3: Cobol system hierarchy, with associated documentation requirements

programs are indeed contained in the lists can be made whenever documentation
is regenerated, encouraging programmers to keep the descriptions up to date. The
integration of manual and automated extraction is illustrated in Figure 3.1, which
also shows how additional forms of externally available documentation can be
included in the resulting documentation.

3.3.2 System Decomposition

We can decompose a large software system into several layers of abstraction, rang-
ing from individual procedures up to the overall system. At each level, we need
documentation, helping us to answer questions about the purpose (why?) of a com-
ponent, the subcomponents it consists of (part-of relationships), the components
it needs to perform its tasks (uses relationships), the way in which it performs its
tasks (how?), the way in which the component can be activated (usage conditions),
the system requirements the component corresponds to, etc.

The actual splitting in layers of abstraction, and the corresponding documen-
tation requirements, will differ from system to system. The hierarchy with associ-
ated documentation requirements we use for Cobol systems is shown in Figure 3.3.

3.3.3 Aggregation and Use Relations

The parts-of and uses relationships discussed in the previous section can be easily
derived from the source code. In general, it is relatively straightforward to extract
facts about calls, database usage, screens used, etc.

A factor complicating this extraction is that many legacy systems use non-
standard conventions for, e.g., calling or database access. We have seen calling
conventions in which all calls were redirected via an assembly utility, and database
access conventions hiding all SQL operations via a set of Cobol modules. The

3.3 � Extracting Documentation 47

flexibility of island parsing makes it particularly easy to tailor the extractors to
such conventions.

3.3.4 System and Subsystem Partitioning

At the system level, the directory structure of program files or the naming con-
ventions used usually provide a candidate partitioning into subsystems. If these
are absent, or perceived as inadequate, we use automatic subsystem classification
techniques to arrive at a better partitioning [Lak97, DK99b]. Such alternatives can
then be added to the documentation, helping the user to see component relations
that do not immediately follow from the actual partitioning.

In addition to the decomposition of the overall system, short descriptions of the
individual subsystems as well as of the overall behavior are needed in the docu-
mentation. In many cases, such top level documentation may already be available,
in which case it can be included in the documentation generation process. If it is
not, a description of the various subsystems should be added by hand.

3.3.5 Program Descriptions

In many systems, coding standards are such that each program or batch job starts
with a comment prologue, explaining the purpose of this component, and its in-
teraction with other components. If available, such a comment prologue is a very
useful documentation ingredient which can be automatically extracted from the
source. Observe that it is generally not a good idea to extract all comment lines
from a program’s source into its documentation: many comment lines are tightly
connected to specific statements, and meaningless in isolation. Moreover, in many
cases obsolete pieces of code have been “commented out”, which clearly should
not appear in system documentation.

3.3.6 Section Descriptions

For the sections (local procedures) of a Cobol program, it is usually not as easy to
extract a description as it is for Cobol programs starting with a comment prologue.
On the positive side, however, section names are generally descriptive and mean-
ingful, explaining the purpose of the section. This is unlike Cobol program names,
which generally have a letter/number combination as name indicating which sub-
system it is part of, not what its purpose is.

Since we encountered an actual need for the documentation of sections that
consisted of more than just the name, but at the same time was more abstract
than simply the complete source code, we decided to search for ways in which to
select the essential statements from a section. In terms of the theory of program
comprehension as proposed by Brooks [Bro83], we try to select those statements

48 Building Documentation Generators � 3

PVP550407GN.DAT

PVP550101BS.COB

PVM550103PR.DAT
PVM550102PR.DAT

PVP550406GN.DAT

PVP550406GN.COB

PVP550405GN.DAT

PVP550404GN.DAT

PVP550404GN.COB

PVM500901GN.DAT
PVM500801GN.DAT
PVM500701GN.DAT
PVM500401GN2.DAT
PVM500401GN1.DAT
PVM500501GN.DAT
PVM500301GN1.DAT
PVM501201GN.DAT

PVP500101BS.COB

PVP500101XX.DAT

PVM400406PR_ZO.DAT
PVM400406PR_G.DAT
PVM400406PR_W.DAT
PVM400406PR_T.DAT

PVM400406PR_NO.DAT

PVP550401SL.DAT

PVP550409GN.COB PVP550408GN.COB

PVP550409GN.DAT

PVP550408GN2.DAT
PVP550408GN1.DAT

PVP550401SL.COB

PVM500301GN2.DAT

PVP500102BS.COB

PVM400701SL.DAT

PVP400401BS.COB

PVM400501SL.DAT

UNRESOLVED: HERSTELDE_GEG

PVP500101XX.COB

UNRESOLVED: TE_HERSTELLEN_GEG

PVP400101IN1.DAT

Figure 3.4: An example of the visualization of data dependencies in a DCL job

that act as beacons for certain understanding tasks, such as finding out under what
condition a certain piece of code is being executed.

Statements we include in such section descriptions are the conditions checked
in control statements, calls to external programs, database access operations, calls
to other sections, statements containing arithmetic computations, and comment
lines. This explicitly excludes the frequently occurring MOVE statement, which
in Cobol is an assignment from one variable to another. As it does nothing “inter-
esting” (no computation) leaving it out of the documentation directs the reader’s
attention to those statements that do perform some task of interest.

Following this strategy, the length of a summarized section is about one third
of the length of its full source code. To make the summary as comprehensible
as possible, we reuse indentation of the original source code, giving the reader a
sense of the nesting level.

3.3.7 Batch Job Dependencies

For a Cobol mainframe application, the batch jobs determine which programs are
started every day or night, and how datafiles used for communication purposes
are sorted, renamed, etc. In many cases, the batch jobs are the least understood
components of a Cobol system, in spite of their importance for the daily data pro-
cessing. Documentation should help in understanding such batch jobs. We have
experimented with visualizing the data dependencies in such batch jobs.

Finding the data dependencies for a batch job is a three step process. First, we
identify the Cobol programs executed in a batch job. Second, we analyze these
Cobol programs, determining which data files are read and which ones are written.

3.4 � Presenting Documentation 49

Third, we return to the batch files, to see whether these data files occur in them,
for example for sorting or renaming.

Recognizing these dependencies involves two island grammars: one for the job
control language, finding the execution, sort and renaming statements, and one for
Cobol, identifying the data file manipulation statements.

Once the data dependencies are found, they can be visualized. The visualiza-
tion of an example batch job is shown in Figure 3.4. The resulting graph only
shows the functional dependencies: Dynamic dependencies, such as the order of
execution, are not explicitly visible. Also observe that in some cases, it will be
impossible to determine the name of a data file, because it is determined at run
time. Special nodes in the graph are used to mark such file names.

3.4 Presenting Documentation

Once we have decided which information to put into the documentation, we can
decide how to present that information to the user. Hypertext has been proposed as
a natural way of presenting software documentation [Bro91, Raj97] as the hyper-
links can be used to represent, for example, part of and uses relationships between
between the documented components.

The most natural way of organizing all the information derived is to follow
the system hierarchy, producing essentially one page per component. For Cobol
this would result in pages corresponding to the full system, subsystems, programs,
batch jobs, and sections, following the decomposition of Figure 3.3.

If a user knows what programs he wants to read about, finding an initial node
to start browsing is simple. In many cases, however, there may not be such a
straightforward starting point. Therefore, we provide various indexes with entry
points to the hypertext nodes, such as:

� Alphabetic index of program names;

� Keyword search on documentation contents;

� Graphs representing use relationships. In particular, navigating through a
call graph may help to find execution starting points or modules frequently
used. We have used the graph drawing package � ��� [GKNV93] to inte-
grate clickable image maps for various call graphs and data-dependency
graphs into generated documentation. In order to prevent visual cluttering
of graphs, we have applied node concentration on them, as can be seen in
Figure 3.4.

� Hand-written index files, establishing links between requirements and source
code elements.

50 Building Documentation Generators � 3

Many presentation issues are not specific to software documentation. By using
a standard format such as HTML, the generated documentation can benefit from
various future developments of the Web, such as search engines, page clustering
based on lexical affinity, link generation from textual documentation files, the use
of XML to establish a better separation content from presentation, etc.

3.5 Business Case

We have used all the techniques and ideas discussed in this paper in a commer-
cial project aiming at redocumenting a Cobol legacy system. In this section, we
describe our findings.

3.5.1 Background

PensionFund is a system for keeping track of pension rights of a specific group of
people in the Netherlands. It consists of approximately 500 Cobol programs, 500
copybooks, and 150 DEC DCL batch jobs, totaling over 600,000 lines of code.
The main tasks of the system are processing pension contributions and pension
claims.

Several years after the initial delivery, the organization responsible for Pen-
sionFund decided to outsource all maintenance activities to a division of Dutch
software house ROCCADE, specializing in software management and maintenance.
In order to make a realistic estimate of the anticipated maintenance costs involved
before accepting maintenance commitments, ROCCADE performed a system scan
in which a number of key factors affecting maintainability are estimated.

One of the outcomes of the scan was that the documentation for PensionFund
was not adequate. In fact, documentation was not kept up to date: for exam-
ple, although in 1998 a number of major PensionFund modifications were imple-
mented, the documentation was never updated accordingly. Very little documenta-
tion maintenance had been performed, although the need for documentation grew
as more and more programmers who had participated in the original design of
PensionFund moved to other projects.

The lack of proper documentation resulted in:

� A growing backlog of major and urgent modification requests, which by
early 1999 had risen to 12.

� Difficulty in carrying out adequate year 2000 tests, since the documentation
did not help to identify the sources of errors encountered during testing.

� Difficulty in mapping modification requests, phrased in terms of desired
functionality modifications, onto changes to be made in actual programs.

3.5 � Business Case 51

� Difficulty in splitting the large number of daily batch jobs into clusters that
could be run independently and in parallel, which was becoming necessary
as the increasing number and size of the batch jobs caused the required daily
compute time to grow towards the upper limit of 24 hours.

3.5.2 Documentation Wishes

To remedy these PensionFund problems, a redocumentation project was planned.
The plan was to compose a number of MS-Word documents, one per program,
containing:

� A short description

� Calls made (from other Cobol programs or batch jobs) to this program, and
calls made from this program;

� Database entities as well as flat files read and written;

� Dataflow diagram;

� Description of functionality in pseudo-code.

Apart from the per program documentation, per batch file one dataflow chart
was planned for. Management was willing to make a significant investment to
realize this documentation.

Initially, the idea was to write this documentation by hand. This has the ad-
vantage that documentation writers can take advantage of their domain or system
knowledge in order to provide the most meaningful documentation. Unfortunately,
hand-written documentation is very costly and error prone. Because it is not a job
many people like to do, it is difficult to find skilled documentation writers.

Therefore, it was decided to try to generate the documentation automatically.
This has the advantages that it is cheap (the tools do the job), accurate, complete,
and repeatable. If necessary, it was argued, it could be extended with manually
derived additional information.

3.5.3 Derived Documentation

The contents requirements of the PensionFund documentation corresponds to the
wishes discussed the previous section. The specific information derived per pro-
gram is shown in Figure 3.5. Arriving at this list and determining the most de-
sirable way of presentation was an interactive process, in which a group of five
PensionFund maintenance programmers was involved.

The fact extraction phase mainly involved finding the structure of PERFORM,
CALL, and database access statements, and was implemented using island parsing.
For those extraction steps for which a line by line scan was sufficient (for example,

52 Building Documentation Generators � 3

Header Content

Summary Name, lines of code, two-line description
Activation Batch jobs or Cobol programs called by
Parameters List of formal parameters
Data Databases and flat files read or written
Screens List of screens sent or received
Calls Modules and utilities called
Overview Clickable conditional perform graph
Sections Clickable outline for each section

Figure 3.5: Contents of the HTML document derived for each PensionFund pro-
gram.

Cobol comment extraction), or for the ones which required the original layout and
indentation (summarizing sections) lexical analysis was implemented using Perl.

The result of the fact extraction was a set of relations, which were combined
into the required relations per program using Unix utilities such as join and AWK.
The final production of HTML code from the resulting relation files was written
using Perl.

All the documentation per program could be generated automatically. Even
the the two-line description per program could be generated, as this was an easily
recognizable part of the prologue comment. Had this not been the case, this would
have required a manual step. As top level indices we generated alphabetic lists,
lists per subsystem, and clickable call graphs. Moreover, we composed one index
manually, grouping the programs based on their functionality.

As a separate top level view, we used the data dependency visualization we de-
rived from the batch files. For each DCL file, we used the techniques described in
Section 3.2 to find all Cobol programs that are executed. We then analyzed these
Cobol programs to find the data files they read and write to. Using static analy-
sis it is impossible to find all the data file names, because, in this system, some
file names were obtained dynamically. This occurs especially in error conditions,
where the name of the file to write the error data to is somehow related to the kind
of error. The files we could not find names for are only a small fraction of all
data files. In order to visualize these unnamed files at a later stage, we introduced
special filenames for these files. In Figure 3.4 these unresolved filenames can be
seen on the left side, and are clearly marked: “unresolved”.

The list of data files was then matched against the DCL files again, to see
whether the data was manipulated there. In the PensionFund system, we looked
at the ����� � statement, which takes one file and a number of sort parameters, and
writes to a different file. They are visualized as diamonds in the figure.

An example browsing session trough the generated documentation is shown
in Figure 3.6. A typical session would be a maintenance programmer trying to

3.5 � Business Case 53

Figure 3.6: Browsing through the documentation generated for PensionFund.

find out why a particular batch job did not work as expected. He starts browsing
the visualization of the data dependencies in the batch job, follows the links to a
specific program, reads the purpose of that program, searches the perform graph
for relevant sections, ending in the section responsible for the incorrect system
behavior.

3.5.4 Evaluation

As we have demonstrated in the previous section, the documentation generator
we have built for PensionFund exactly fulfills the wishes the PensionFund owners
had. Furthermore, the documentation that is generated adheres to the four criteria
mentioned in first section of this paper. Compared to the initial plan of manually
deriving all documentation, significant cost savings were achieved by employing
documentation generators, even if the time needed for configuring the documenta-
tion generators is taken into account.

A question of interest is whether this approach is applicable to other legacy
systems as well. Our approach takes the good properties of a system in to account.
For PensionFund, these are the systematic coding style which meant that certain

54 Building Documentation Generators � 3

properties (such as program descriptions) were automatically derivable from the
source. Furthermore, the programs were relatively short, which made them a nat-
ural starting point for documentation generation. Another result is that the (con-
ditional) perform graphs are not too big, making them easily comprehensible. Fi-
nally, the fact that the sections were relatively short made the section summaries
feasible.

Although other systems may not share the desirable properties of PensionFund,
they usually have some of these and possibly other strong points. Apart from the
program description, all other documentation can be generated for any (Cobol)
system. Program descriptions could then be added by hand once, such that subse-
quent generation steps have this information available. It is part of our future work
to see how the generation of the documentation as described here is useful in other
systems. We may decide for other systems, that certain levels of documentation
are of no use, and new ones are more natural.

We believe the techniques described in this paper are flexible enough to en-
able us to build different types of documentation generators for different types of
systems rather easily.

3.6 Concluding Remarks

Related Work Chikofski and Cross define redocumentation as the creation of a
semantically equivalent representation of a software system within the same level
of abstraction. Common tools include pretty printers, diagram generators, and
cross-reference listing generators [CC90]. Landis et al. discuss various documen-
tation methodologies, such as Nassi Schneiderman charts, flow charts and Jackson
diagrams [LHGF88].

Wong et al. emphasize structural redocumentation, which, as opposed to docu-
mentation in-the-small, deals with understanding architectural aspects of software.
They use Rigi for the extraction, querying, and presentation, using a graph editor
for manipulating program representations. Several views of the legacy system can
be browsed using the editor. Our approach also focuses on the structural aspects
of documentation. Rather than using a dedicated graph editor, we use standard
HTML browsers for viewing the documentation. We determine the required views
in advance, via discussion with the team of maintenance programmers.

The software bookshelf [FHK
�

97] is an IBM initiative building upon the Rigi
experience. In the bookshelf metaphor, three roles are distinguished: the builder
constructs (extraction) tools; the librarian populates repository with meaningful
information using the building tools or other (manual) ways, and the patron is
the end user of the bookshelf. For the building phase, the parsing is like our island
approach, in that only constructs of interest are recognized. The parsers are written
in Emacs macros, without using an explicit grammar. The parsing code directly
emits the HTML code.

3.6 � Concluding Remarks 55

Several papers report on the use of hypertext for the purpose of documenting
software [Bro91, Raj97, dOBvSdPL98]. Of these, [dOBvSdPL98] follows the
literate programming [Knu84] approach as also used in, for example, Javadoc,
enabling the programmer to control the generation of HTML by manually adding
dedicated comment tags.

The need for flexible source code extraction tools was also recognized by, for
example, LSME [MN96], as discussed in Section 3.2.1. Another approach of
interest is TAWK [GAM96], which uses an AWK like language to match abstract
syntax trees.

Contributions In this paper, we have described our contributions to the field of
documentation generation. Specific to our approach are:

� The systematic integration of manual documentation writing with automated
documentation generation in a redocumentation setting.

� The integration of different levels of documentation abstractness, and the
smooth transition between the different levels of documentation.

� The island grammar approach to software fact extraction

� A method for building documentation generators for systems in the Cobol
domain.

� The automatic visualization of data-dependencies in mainframe batch jobs.

� The application of the contributions listed above in a commercial environ-
ment.

We have shown how we can build documentation generators which adhere to at
least the first three criteria from the introduction. The fourth criterion (documen-
tation needs to be consistent with the source code) can only be achieved by elim-
inating the need for manual documentation. By combining automatically derived
documentation and manually derived documentation, and by keeping the input for
the two well separated, our documentation generators only need little human input
to adhere to all four criteria.

Future Work At the time of writing, we are finalizing the PensionFund case
study. Moreover, we are in the process of initiating other commercial redocumen-
tation projects, which will help us to identify additional documentation needs and
new ways of presenting the data extracted from the sources.

On the extraction side, we plan to elaborate the ideas underlying island gram-
mars. In particular, we will take a close look at the best way of expressing the
required analysis of the abstract syntax tree.

56 Building Documentation Generators � 3

Chapter 4

Identifying Objects using
Cluster and Concept Analysis

The amount of facts retrieved from a legacy system by perform-
ing the analyses described in the previous two chapters is enormous.
Particularly when the goal of the analysis is to perform a structural
change on the system, the retrieved facts need to be filtered, prefer-
ably in an automated way. A possible change may be to move from
a procedural system to an object-oriented one. This chapter explores
two ways of filtering and interpreting the facts as obtained in the pre-
vious two chapters in such a way that they become the starting point
for an object-oriented redesign of the system.1

4.1 Introduction

In 1976, Belady and Lehman formulated their Laws of Program Evolution Dy-
namics [BL76]. First, a software system that is used will undergo continuous
modification. Second, the unstructuredness (entropy) of a system increases with
time, unless specific work is done to improve the system’s structure. One possi-
ble way of doing this is to migrate software systems to object technology. Object
orientation is advocated as a way to enhance a system’s correctness, robustness,
extendibility, and reusability, the key factors affecting software quality [Mey97].

The migration of legacy systems to object orientation, however, is no mean
task. A first, less involved, step includes merely the identification of candidate ob-
jects in a given legacy system. The literature reports several systematic approaches

1This chapter was published earlier as: A. van Deursen and T. Kuipers. Identifying objects using
cluster and concept analysis. In 21st International Conference on Software Engineering, ICSE-99,
pages 246–255. ACM, 1999.

58 Identifying Objects using Cluster and Concept Analysis � 4

to object identification, some of which can be partially automated. (In Section 4.2
we provide a summary). There are several problems, however, with the application
of these approaches to actual systems.

1. Legacy systems greatly vary in source language, application domain, database
system used, etc. It is not easy to select the identification approach best-
suited for the legacy system at hand.

2. It is impossible to select a single object identification approach, since legacy
systems typically are heterogeneous, using various languages, database sys-
tems, transaction monitors, and so on.

3. There is limited experience with actual object identification projects, making
it likely that new migration projects will reveal problems not encountered
before.

Thus, when embarking upon an object identification project, one will have to se-
lect and compose one’s own blend of object identification techniques. Moreover,
during the project, new problems will have to be solved. This is exactly what hap-
pened to us when we tried to construct an object-oriented redesign of Mortgage,
a real life legacy Cobol system.

For many business appliations written in Cobol, the data stored and processed
represent the core of the system. For that reason, the data records used in Cobol
programs are the starting point for many object identification approaches (such as
[CDDF99, NK95, FRS94]).

Object identification typically consists of several steps: (1) identify legacy
records as candidate classes; (2) identify legacy procedures or programs as can-
didate methods; (3) determine the best class for each method via some form of
cluster analysis [Lak97]. This approach gives good results in as far as the legacy
record structure is adequate. In our case study, however, records consisted of up
to 40 fields. An inspection of the source code revealed that in the actual use of
these records, many of the fields were entirely unrelated. Making this record into
a single class would lead to classes with too many unrelated attributes.

In this paper, we report on our experience with the application of some of the
techniques proposed for object identification, most notably cluster and concept
analysis, to Mortgage. Moreover, we discuss in full detail how the unrelated-
record-fields problem – not covered by any of the existing object identification
approaches – can be addressed in general. Our approach consists of clustering
record fields into coherent groups, based on the actual usage of these fields in the
procedural code. We not only use traditional cluster analysis [KR90, Lak97] for
this, but also the recently proposed concept analysis [SR97, LS97].

The principal new results of this paper include:

� A proposal for usage-based record structuring for the purpose of object iden-
tification;

4.2 � Related Work 59

� Significant practical experience with the use of cluster and concept analysis
for object identification;

� A discussion of a number of problems (and solutions) involving the use of
cluster and concept analysis in general;

� A comparison of the use of cluster and concept analysis for the purpose of
object identification.

4.2 Related Work

A typical approach to finding classes in legacy code is to identify procedures and
global variables in the legacy, and to group these together based on attributes such
as use of the same global variable, having the same input parameter types, return-
ing the same output type, etc. [OT93, LW90, CCM96, Sch91]. A unifying frame-
work discussing such subsystem classification techniques is provided by Lakhotia
[Lak97].

Unfortunately, many of these approaches rely on features such as scope rules,
return types, and parameter passing, available in languages like Pascal, C, or For-
tran. Many data-intensive business programs, however, are written in languages
like Cobol that do not have these features. As a consequence, these class extrac-
tion approaches have not been applied successfully to Cobol systems, as was also
observed by Cimitile et al. [CDDF99].

Other class extraction techniques have been developed specifically with lan-
guages like Cobol in mind. They take specific characteristics into account, such as
the close connection with databases.

Newcomb and Kotik [NK95] take all level 01 records as a starting point for
classes. They then proceed to map similar records to single classes, and find sec-
tions that can be associated as methods to these records. Their approach exhibits
a high level of automation, and, as a consequence, results in an object-oriented
program that stays close to the original Cobol sources.

Fergen et al. [FRS94] describe the MOORE tool, which analyses Cobol-85
code, and provides the engineer with a set of class proposals. All records are
given a weight, which indicates the number of references made to that record. No
attempt is made at splitting up large records into smaller structures. Proposals for
methods consist of Cobol paragraphs which use or modify one of the record fields,
again ranked by the weight of the fields in that paragraph. To reduce the total
number of classes, every time a new candidate class is found, a numeric similarity
measure is used to see whether already existing classes can be used to build this
new candidate class.

De Lucia et al. [DDF
�

97, CDDF99] describe the ERCOLE paradigm for mi-
grating RPG programs to object-oriented platforms. It consists of several steps,
one of which is “abstracting an object-oriented model.” This step is centered

60 Identifying Objects using Cluster and Concept Analysis � 4

around the persistent data stores. Batch programs, subroutines, or groups of call-
related subroutines are candidate methods. Data stores and methods are combined
in such a way that certain object-oriented design metrics get optimal values.

Sneed and Nyáry [SN95] present a tool, OBJECT-REDOC, that can be used
to derive documentation automatically from legacy sources. The documentation
itself is “object-oriented”, in that it takes an object-oriented view on the legacy
system. Sneed also provides a systematic method, REORG, to transform Cobol
programs to object-oriented frames in a largely manual manner [Sne92].

Tan and Ling [TL95] present a domain-specific approach to reengineering
data-intensive business programs. They propose the use of an augmented object
model, which is an extension of the object modeling technique OMT. Their model
recovery procedure takes constants, user inputs, retrieved and updated database
records, and user outputs as its starting point. However, they make no attempt at
splitting up records in smaller structures.

Wiggerts et al. [WBF97] describe three different scenarios for object iden-
tification. Their function-driven scenario takes legacy functionality (subsystems
performing a certain task) as starting point for class extraction. The data-driven
approach starts by searching for (persistent) data elements, which are likely to de-
scribe business entities. The object-driven approach, finally, does not start from
the legacy system itself, but starts by building an object model of the application
domain.

4.3 Field and Program Selection

Legacy systems contain data and functionality that are useful in a given applica-
tion domain. Unfortunately, the legacy system also contains a significant amount
of code of a technical nature, closely tied to the implementation language, oper-
ating system, database management system, etc. When migrating legacy systems
to object technology, such technical code is of significantly less interest than the
domain-related code, for example because the object-oriented platform is likely
provide facilities for dealing with the technicalities in an entirely different manner.

Therefore, a first important step in any object identification activity must be to
filter the large number of programs, procedures, records, variables, databases, etc.,
present in the legacy system.

One of the main selection criteria will be whether a legacy element is domain-
related or implementation-specific. This is a criterion that is not easy to derive
from structural code properties alone. Consequently, this step may require human
interaction, in order to take advantage of domain knowledge, application knowl-
edge, systematic naming conventions, meaningful identifiers, comments, etc.

In many cases, though, structural code properties will be able to provide a
meaningful selection of legacy data elements and procedures. Selection criteria to
be used may include the use of metrics, such as requiring a McCabe complexity

4.4 � Cluster analysis 61

metric between a given minimum and maximum as discussed in [CB91]. Others
may include the classification of variables, for example according to the type they
belong to [DM98] or according to whether a variable is used to represent data
obtained from persistent data stores [CDDF99].

Our own experience with selecting domain-related data and functionality is
described in [DK98]. In this paper, we will use two guidelines, one for selecting
data elements and one for selecting programs. These helped to find objects in our
Mortgage case study, and we expect them to work well for other systems too.

First, in Cobol systems the persistent data stores (following the terminology of
[CDDF99]) contain the essential business data. Hence, the selection to be made on
all records in a Cobol program is to restrict them to those written to or read from
file. This selection can be further improved by taking the CRUD (Create, Read,
Update, Delete) matrix for the system into account. Threshold values can be given
to select those databases that are read, updated, deleted, or written by a minimal or
maximal number of different programs.

Second, it is important to select the programs or procedures containing domain-
related functionality. An analysis of the program call graph can help to identify
such programs. First, programs with a high fan-out, i.e., programs calling many
different programs, are likely to be control modules, starting up a sequence of
activities. Second, programs with a high fan-in, being called by many different
programs, are likely to contain functionality of a technical nature, such as error
handling or logging. Eliminating these two categories reduces the number of pro-
grams to deal with. In many cases, the remaining programs are those containing a
limited, well described functionality.

4.4 Cluster analysis

The goal of this paper is to identify groups of record fields that are related func-
tionally. Cluster analysis is a technique for finding related items in a data-set. We
apply cluster analysis to the usage of record fields throughout a Cobol system,
based on the hypothesis that record fields that are related in the implementation
(are used in the same program) are also related in the application domain.

In this section we will first give a general overview of the cluster analysis
techniques we used. Then we give an overview of the cluster analysis experiments
we performed. We end the section with an assessment of our cluster experiments
and the usage of cluster analysis for object identification in general.

4.4.1 Overview

We will explain the clustering techniques we have used by going through the clus-
tering of an imaginary Cobol system. This system consists of four programs, and
uses one record containing nine fields. The names of these fields are put into the

62 Identifying Objects using Cluster and Concept Analysis � 4

��� ��� ��� ���
NAME 1 0 0 0
TITLE 1 0 0 0

INITIAL 1 0 0 0
PREFIX 1 0 0 0

NUMBER 0 0 0 1
NUMBER-EXT 0 0 0 1

ZIPCD 0 0 0 1
STREET 0 0 1 1

CITY 0 1 0 1

Table 4.1: The usage matrix that is used as input for the cluster analysis

N T I P N NE Z S C
N 0
T 0 0
I 0 0 0
P 0 0 0 0
N

� 	 � 	 � 	 � 	
0

NE
� 	 � 	 � 	 � 	

0 0
Z

� 	 � 	 � 	 � 	
0 0 0

S
�
 �
 �
 �

1 1 1 0
C

�
 �
 �
 �

1 1 1

� 	
0

Table 4.2: The distance matrix from Table 4.1

set of cluster items. For each of the variables in the set, we determine whether or
not it is used in a particular program. The result of this operation is the matrix of
Table 4.1. Each entry in the matrix shows whether a variable is used in a program
(1) or not (0).

Distance Measures

Because we want to perform cluster analysis on these data, we need to calculate
a distance between the variables. If we see the rows of the matrix as vectors,
then each variable occupies a position in a four dimensional space. We can now
calculate the Euclidean distance between any two variables.

If we put the distances between any two variables in a matrix, we get a so-
called distance (or dissimilarity) matrix. Such a distance matrix can be used as
input to a clustering algorithm. The distance matrix for Table 4.1 is shown in
Table 4.2. Note that any relation the variables had with the programs ���� � � � �����
has become invisible in this matrix.

An overview of different distance calculations for clustering can be found
in [Wig97].

4.4 � Cluster analysis 63

N
A

M
E

 T
IT

LE

 IN
IT

IA
L

 P
R

E
F

IX

 N
U

M
B

E
R

 N
U

M
B

E
R

-E
X

T

 Z
IP

C
D

 S
T

R
E

E
T

 C
IT

Y

0.
0

0.
5

1.
0

1.
5

H
ei

gh
t

Clustering tree of agnes(mat1)

Figure 4.1: The resulting clustering from Table 4.2

Agglomerative Clustering

We use an agglomerative hierarchical clustering algorithm (AGNES, from [KR90]).
This algorithm starts by putting each element in its own cluster, and then proceeds
by creating new clusters that contain two (or more) clusters that are closest to one
another. Finally, only one cluster remains, and the algorithm terminates. All inter-
mediate clusterings can be seen as branches on a tree, in a dendrogram. Figure 4.1
shows the dendrogram that results from clustering the data in Table 4.1.

The actual clusters found by this algorithm are identified by drawing a hori-
zontal line through the dendrogram, at a user defined height. In our example here,
that line would typically be drawn at height 1.3, thus producing two clusters. The
first cluster contains NAME, TITLE, INITIAL, and PREFIX. The second con-
tains NUMBER, NUMBER-EXT, ZIPCD, CITY, and STREET. These clusters are

64 Identifying Objects using Cluster and Concept Analysis � 4

likely candidates to become classes, containing the named fields as their member
variables.

Explanation of Dendrogram

In Figure 4.1, the axis labelled “height” shows the relative distance the clusters
have from each other. The variables NAME, TITLE, INITIAL, and PREFIX have
a relative distance of zero (see Table 4.2), and thus form one cluster. We will call
this cluster � � . NUMBER, NUMBER-EXT and ZIPCD also have distance zero.
We will call this cluster � � . No other clusters with members that have distance 0
exist.

The clustering algorithm uses “average linkage” to measure the distance be-
tween two clusters. This means that the distance between two clusters is the aver-
age of the distances between all nodes of the one cluster, and all nodes of the other
cluster. (See [Wig97] for a discussion of this and other linkage methods.) Using
this linkage method, the closest element to cluster � � is either CITY, or STREET.
They both have a distance of 1 to � � . The clustering algorithm nondeterministi-
cally chooses one of CITY or STREET. In our case it chooses CITY. � � and CITY
together form cluster ��� .

The element closest to ��� is STREET. It has a distance of
� �

to CITY, and a
distance of 1 to all elements of � � . So, on average, the distance between STREET
and � � is

� ��� �

� �
	 � 	 . This new cluster we will call � � .
Now, only two clusters remain: � � and � � . The distance between these two

clusters is
���� � � � � � � � � ���

����� ��	 ����� .

4.4.2 Experimental Testbed

The input data for our cluster experiments was generated from Cobol source code,
using lexical analysis tools. The data from these tools was fed into a relational
database. We wrote a tool to retrieve the data from the database, and to format it
for our cluster tools. The source code was from Mortgage, a 100.000 LOC Cobol
system from the banking area. It uses VSAM files for storing data. The toolset
used for the generation of data, and the architecture of those tools is described
in more detail in [DK98]. The Mortgage system is described in more detail in
[DK98, WBF97].

For our cluster experiments we used S-PLUS, a statistical analysis package
from MathSoft. The cluster algorithms described in [KR90] are implemented as
part of S-PLUS.2

All experiments were performed on a SGI O2 workstation.

2The implementation is available from http://win-www.uia.ac.be/u/statis/programs/clusplus
readme.html

4.4 � Cluster analysis 65

4.4.3 Experiments

As already described in Section 4.3, we selected a number of variables and pro-
grams from Mortgage to perform our cluster experiments on. In this section we
will describe our main experiment, which was executed in three steps. The results
of the clustering experiments are shown in Figure 4.2. As stated before, we are
looking for clusters of functionally related record fields. In order to validate the
use of cluster analysis for this purpose, we need to validate the clusters found. We
have asked engineers with an in-depth knowledge of the system to validate the
clusters for us.

The (variable) names mentioned in the dendrograms of Figure 4.2 are in Dutch.
We will translate the names as we explain the three dendrograms of that figure.

1. We restricted the variables to be clustered to only those occurring in the three
main records of Mortgage. This led to the dendrogram of Figure 4.2(a).
There are a number of groups that seem meaningful, such as STRAAT, POSTKD,
WOONPL and HUISNR (street, zip code, city and street number), or the
cluster containing STREEK, LANDKD, and GEMKD (region, country code,
county code). In short, this dendrogram does illustrate which variables are
used together frequently, and which could therefore be grouped together.

Unfortunately, there are also a number of fields with a position that is not
so easy to explain. These are in particular the ones with a “higher” posi-
tion, such as INCWZ, AARD, NAAM or AANTL (payment, kind, name, and
occurrence). Also, the grouping of contact persons (KONTKT-PERS) with
telephone numbers (everything starting with TLF) is unclear.

2. The next step is to restrict the number of programs involved. Figure 4.2(b)
shows the clustering results when only programs from the group of “relevant
programs” (as described in Section 4.3) were taken into account.

The result is promising, and has a simpler tree structure. However, there is
an unattractively large group of fields that are lumped together, which does
not look very meaningful. The reason for this is that there are two programs
in the group of relevant programs which use all variables. Therefore their
discriminating capabilities in the clustering are very low.

3. We repeated the same experiment, but now without the programs which use
all variables. The result is the dendrogram of Figure 4.2(c). This is a very
satisfying cluster result.

Note that the last dendrogram contains significantly less field names than the first.
This makes it easier to comprehend the clusters, but also means that we have to
inspect all removed variables manually for inclusion in one (or none) of the gener-
ated clusters.

66 Identifying Objects using Cluster and Concept Analysis � 4

IN
G

D
T

M

 V
O

O
R

N
M

 G
E

S
LA

C
 B

G
S

T
K

D

 G
E

B
D

T
M

 G
E

B
P

LT

 T
LF

P
R

I-
N

E
T

 T
LF

P
R

I-
A

B
O

N
N

 T
LF

Z
A

K
-N

E
T

 T
LF

Z
A

K
-A

B
O

N
N

 K
O

N
T

K
T

-P
R

S
1

 K
O

N
T

K
T

-P
R

S
2

 S
T

R
E

E
K

 L
A

N
D

K
D

 A
A

N
H

E
F S

R
T

-A
D

R
E

S

 A
A

R
D

 R
E

LA
T

IE
N

R

 W
IJ

Z
IG

-D
A

T

 IN
C

W
Z

 B
E

T
IN

S
-S

O
O

R
T B

A
N

K
-G

IR
O

N
R

 B
E

T
IN

S
-N

A
A

M
 W

O
O

N
P

L-
B

A
N

K
 G

IR
O

N
R

-B
A

N
K

 H
Y

P
N

R
 H

Y
P

V
LG

N
R

 T
IT

LK
D

 V
O

O
R

V
G

 V
O

O
R

LT

 H
U

IS
N

R
-T

O
E

V
 A

A
N

T
L

 N
A

A
M

 S
T

R
A

A
T

 G
E

M
K

D

 H
U

IS
N

R

 P
O

S
T

K
D

 W
O

O
N

P
L

0
1

2
3

4
5

H
ei

gh
t

Clustering tree of agnes(del2)

(a) Clustering using variables from three
main records of Mortgage.

W
IJ

Z
IG

-D
A

T

 H
Y

P
N

R
 H

Y
P

V
LG

N
R

 R
E

LA
T

IE
N

R

 A
A

R
D

 V
O

O
R

N
M

 G
E

S
LA

C
 B

G
S

T
K

D
 G

E
B

D
T

M
 G

E
B

P
LT

 T
LF

P
R

I-
N

E
T

 T
LF

P
R

I-
A

B
O

N
N

 T
LF

Z
A

K
-N

E
T

 T
LF

Z
A

K
-A

B
O

N
N

 K
O

N
T

K
T

-P
R

S
1

 K
O

N
T

K
T

-P
R

S
2

 IN
C

W
Z

 G
IR

O
N

R
-B

A
N

K
 B

E
T

IN
S

-N
A

A
M

 W
O

O
N

P
L-

B
A

N
K

 B
A

N
K

-G
IR

O
N

R
 B

E
T

IN
S

-S
O

O
R

T

 A
A

N
T

L

 H
U

IS
N

R
-T

O
E

V
 S

T
R

E
E

K
 S

R
T

-A
D

R
E

S
 L

A
N

D
K

D
 A

A
N

H
E

F

 T
IT

LK
D

 V
O

O
R

V
G

 N
A

A
M

 V
O

O
R

LT

 P
O

S
T

K
D

 W
O

O
N

P
L

 S
T

R
A

A
T

 G
E

M
K

D
 H

U
IS

N
R

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

H
ei

gh
t

Clustering tree of agnes(del3)

(b) As Figure 4.2(a), but restricted to the
relevant programs (with low fan-in and
fan-out).

A
A

N
T

L

 B
A

N
K

-G
IR

O
N

R

 B
E

T
IN

S
-N

A
A

M

 W
O

O
N

P
L-

B
A

N
K

 G
IR

O
N

R
-B

A
N

K

 B
E

T
IN

S
-S

O
O

R
T

 IN
C

W
Z

 R
E

LA
T

IE
N

R

 H
Y

P
V

LG
N

R

 W
IJ

Z
IG

-D
A

T

 H
Y

P
N

R

 T
IT

LK
D

 V
O

O
R

V
G

 N
A

A
M

 V
O

O
R

LT

 P
O

S
T

K
D

 W
O

O
N

P
L

 S
T

R
A

A
T

 G
E

M
K

D

 H
U

IS
N

R

0.
0

0.
5

1.
0

1.
5

2.
0

H
ei

gh
t

Clustering tree of agnes(del4)

(c) As Figure 4.2(b), but without the pro-
grams which use all variables from the
three records.

Figure 4.2: Sequence of more and more refined clustering

4.4 � Cluster analysis 67

4.4.4 Assessment

We have identified two fundamental problems when using cluster analysis this
way:

1. When clustering, all items end up in exactly one cluster. However, some-
times one item (one variable) is equally likely to end up in more than one
cluster. For instance, two records may use the same key field. If all other
fields of the records are disjoint, and are used disjointly, we end up with
three clusters: one containing the fields of the first record, without the key
field, one with the fields of the second record without the key field, and one
with only the key field. It is unclear whether this is the most desirable result.
Perhaps we would rather have two clusters, corresponding exactly to the two
records. Unfortunately, as items can only occur in exactly one cluster, this
is not possible using cluster analysis.

2. As we have demonstrated in our example, when we are building the cluster
hierarchy, sometimes there is more than one closest cluster. Assume we have
a cluster

�
, which has the same distance to both clusters � and � (e.g., in

our example, both CITY and STREET had a distance of 1 to cluster � �). The
algorithm at that point chooses one, arbitrarily. Say the algorithm chooses
cluster � , thus forming cluster

���
. Now cluster

���
has a particular distance

to cluster � which may be very different from the distance it had had if the
algorithm had chosen � and

�
to form

� �
. If this happens near the leaves

of the dendrogram, the results of an arbitrary decision can be drastic.

We have partly solved these problems as follows:

1. The fields most likely to end up in more than one cluster are fields that are
used together with a lot of other fields. Or, in short, the fields that are used
most often. The system we experimented with demonstrated this property.
The above mentioned key field is obviously used quite often, because it
uniquely identifies a record. We have overcome the restrictions of the cluster
algorithm by removing these variables from our cluster set before starting
the cluster analysis. This proved to be a satisfactory method.

Automatic variable selection procedures in cluster algorithms have been pro-
posed in the literature [FGK88]. It is a topic of future research to incorporate
these procedures in our clustering experiments.

2. We have tried to resolve the second problem by changing the distance met-
rics and the linkage methods between clusters. We experimented with all
metrics and methods described in [Wig97]. However, although changing
these parameters indeed resulted in different clusters, it did not necessarily
result in better clusters. The problem here is that it often is unclear which
of the choices is the better choice, and indeed the choice is arbitrary. What

68 Identifying Objects using Cluster and Concept Analysis � 4

sometimes is clear is that a particular sequence of choices is to be preferred
above another sequence. We have not tried to incorporate this notion into our
cluster algorithm. This would probably require some type of backtracking
mechanism, or a multiple pass algorithm, and is a topic of further research.

In conclusion we can say that cluster analysis can be used for restructuring records,
given a number of restrictions. First, the number of fields to be clustered cannot
be too large. Second, the fields to be clustered should be occurring selectively in
the system (i.e., they should not be omnipresent fields, for these generate noise).
Finally, there needs to be some external way to validate the clustering.

4.5 Concept Analysis

Recently, the use of mathematical concept analysis has been proposed as a tech-
nique for analyzing the modular structure of legacy software [LS97, SR97, Sne98,
ST98]. As with cluster analysis, we use concept analysis to find groups of record
fields that are related in the application domain.

Concept analysis and cluster analysis both start with a table indicating the fea-
tures of a given set of items. Cluster analysis then partitions the set of items in a
series of disjoint clusters, by means of a numeric distance measure between items
indicating how many features they share.

Concept analysis differs in two respects. First, it does not group items, but
rather builds up so-called concepts which are maximal sets of items sharing cer-
tain features. Second, it does not try to find a single optimal grouping based on
numeric distances. Instead it constructs all possible concepts, via a concise lattice
representation.

As we will see in the next paragraphs, these two differences can help to solve
the two problems with clustering discussed in the previous section. In this section,
we will first explain the basics of concept analysis. Then we will discuss its appli-
cation to our Mortgage case study in full detail, followed by a comparison with
the clustering results.

4.5.1 Basic Notions

We start with a set
�

of items, a set � of features,3 and a feature table (relation)��� ��� � indicating the features possessed by each item. If we reuse the data of
Table 4.1 as running example, the items are the field names, the features are usage
in a given program, and the feature table corresponds to the matrix entries having
value 1.

3The literature generally uses object for item, and attribute for feature. In order to avoid confusion
with the objects and attributes from object orientation we have changed these names into items and
features.

4.5 � Concept Analysis 69

name extent intent

top
�
NAME, TITLE, INITIAL, PREFIX, NUMBER,

NUMBER-EXT, ZIPCD, STREET, CITY �
�

c1
�
NAME, TITLE, INITIAL, PREFIX � � � � �

c2
�
NUMBER, NUMBER-EXT, ZIPCD, STREET, CITY � � ��� �

c3
�
STREET � � ���

,
��� �

c4
�
CITY � � � �

,
� � �

bot
� � � �

,
���

,
���

,
��� �

Table 4.3: All concepts in the example of Table 4.1

For a set of items � � � , we can identify the common features, written � ? � B ,
via:

� ? � B����
	�� ������ � ��� ? � � 	 B�� ���
For example, � ?��1O,/ � ��� � � ��� ��� � � B���� � � � .

Likewise, we define for � � � the set of common items, written � ? � B , as:

� ? � B���� � � � �� 	 � �!� ? � � 	 B�� ���

For example, � ?�� � � ��� � � B���� � �"� ��� � � .
A concept is a pair

? � �#� B of items and features such that � � � ? � B and � �
� ? � B . In other words, a concept is a maximal collection of items sharing common
features. In our example,

?$�52�-"%�� � � / � ��� � / 2 / � / -�� � ��� �"& /
' � � � � � � B

is the concept of those items having feature � � , i.e., the fields used in program � � .
All concepts that can be identified from Table 4.1 are summarized in Table 4.3.
The items of a concept are called its extent, and the features its intent.

The concepts of a given table form a partial order via:

? � � �(� � B�) ? � � �(� �
B+* � � � � �

* � �
� � �

As an example, for the concepts listed in Table 4.3, we see that bot
) �-,) � �)

top.
The subconcept relationship allows us to organize all concepts in a concept

lattice, with meet . and join / defined as

? � � �(� � B . ? � � �(� �
B0� ? � �21 � � �(� ? � ��1 � �

B
? � � �(� � B / ? � � �(� �

B0� ? � ? � ��1 � �
B �(� �31 � �

B

The visualization of the concept lattice shows all concepts, as well as the sub-
concept relationships between them. For our example, the lattice is shown in Fig-
ure 4.3. In such visualizations, the nodes only show the “new” items and features

70 Identifying Objects using Cluster and Concept Analysis � 4

per concept. More formally, a node is labelled with an item � if that node is the
smallest concept with � in its extent, and it is labelled with a feature

	
if it is the

largest concept with
	

in its intent.
The concept lattice can be efficiently computed from the feature table; we refer

to [LS97, SR97, Sne98, ST98] for more details.

4.5.2 Experimental Testbed

To perform our concept analysis experiments, we reused the Cobol analysis archi-
tecture explained in Section 4.4. The analysis results could be easily fed into the
����� ����� � tool developed by C. Lindig from the University of Braunschweig.4 We
particularly used the option of this tool to generate input for the graph drawing
package � � 	 � � � � 	 ��� in order to visualize concept lattices.

4.5.3 Experiments

We have performed several experiments with the use of concept analysis in our
Mortgage case study. As with clustering, the choice of items and features is a
crucial step in concept analysis. The most interesting results were obtained by
using exactly the same selection criteria as discussed in Section 4.3: the items are
the fields of the relevant data records, and the programs are those with a low fan-in
and fan-out. The results of this are shown in Figure 4.4, which shows the concept
lattice for the same data as those of the dendrogram of Figure 4.2(b). In order to
validate the use of concept analysis, we need to validate the results of the concept
analysis. Again, these results were validated by systems experts.

In Figure 4.4 each node represents a concept. The items (field names) are
names written below the concept, the features (programs using the fields) are writ-
ten as numbers above the concept. The lattice provides insight in the organization
of the Mortgage legacy system, and gives suggestions for grouping programs and
fields into classes.

The row just above the bottom element consists of five separate concepts, each
containing a single field. As an example, the leftmost concept deals with mortgage
numbers stored in the field

% � ��� 0�2 �
. With it is associated program �

S �
, which

according to the comment lines at the beginning of this program performs certain
checks on the validity of mortgage numbers. This program only uses the field% � ��� 0�2 �

, and no other ones.
As another example, the concept

� �"� ��� �
(at the bottom right) has three differ-

ent programs directly associated with it. Of these, �
Q

and �
Q �

compute a certain
standardized extract from a street, while program ��� takes care of standardizing
street names.

4The ���
	������ tool is available from http://www.cs.tu-bs.de/softech/people/lindig/.

4.5 � Concept Analysis 71

top

P4

c2

ZIPCD NUMBER
NUMBER-EXT

P2

c4

CITY

P3

c3

STREET

PREFIX NAME

P1

c1

TITLE INITIAL

bot

Figure 4.3: Lattice for the concepts of Table 4.3

72 Identifying Objects using Cluster and Concept Analysis � 4

If we move up in the lattice, the concepts become larger, i.e., contain more
items. The leftmost concept at the second row contains three different fields: the
mortgage sequence number

% � ��� ��� � 2 �
written directly at the node, as well as the

two fields from the lower concepts connected to it,
% � ��� 0�2 �

and
� ����2 �

. ProgramQ�S
uses all three fields to search for full mortgage and relation records.
Another concept of interest is the last one of the second row. It represents the

combination of the fields
O,/ � ���

(zip code), � ��� ��� (house number), and
� / � � ���

(city code), together with
� �"� ��� �

and
� / � �

. This combination of five is a sepa-
rate concept, because it actually occurs in four different programs (�

S �
, �
S
, � � � ,

� �). However, there are no programs that only use these variables, and hence this
concept has no program associated with it.

The largest concepts reside in the top of the lattice, as these collect all fields
of the connected concepts lower in the lattice. For example, the concept with pro-
grams � � and � � � consists of a range of fields directly attached with it (

& / � � � 2"%
,

...), as well as of all those in the three downward links below it. It corresponds
to almost all fields of one particularly large record, holding the data of so-called
relations (people and companies that play a role when a mortgage is set up). These
fields are then processed by programs � � and � � � . Only one field,

% � ��� � - �
(mod-

ification date), is part of that relations record but not used in � � and � � � .
Another large concept of interest is the one with programs �

S �
and �

S
. The

fields in this concept all come from the Dutch zip code book, holding data for all
Dutch addresses and their zip codes. As can be seen from Figure 4.4, the fields of
this concept are largely disjoint with those of the relations concept (with programs
� � and � � �). However, these two concepts also share five fields, namely those
of the

O,/ �����
concept. These fields can be used (in various combinations) as the

lookup key for the zip code book.

4.6 Clustering and Concepts Compared

The application of both concept and cluster analysis to Mortgage highlights the
differences listed below. From them, we conclude that concept analysis is more
suitable for object identification than cluster analysis.

Multiple partitionings Having a hierarchy of clusterings rather than a single
partitioning result, is attractive as it allows one to select the most suitable cluster-
ing.

At first sight, a dendrogram seems to provide exactly such a hierarchy. Un-
fortunately, as we have seen in Section 4.4, the actual clusters built in the final
iterations of an agglomerative analysis strongly depend on clustering decisions
made earlier in the analysis. It is certainly not the case that a dendrogram shows
all possible clusterings.

Concept analysis, by contrast, shows all possible groupings that are meaning-
ful given the feature table. In our experience, this is more helpful for the engineer

4.6 � Clustering and Concepts Compared 73

40C 40 38

STREET

37C 37

CITY

ZIPCD HOUSE CITYCD

89C 89

STR-ORD PROV-CD IND-CTY ODD ...

42

NAME

36C 36

PREFIX INITL TITLCD

29C

RELNR

19C

MORTGNR

09

MORTSEQNR

09C

BANK-GIRONR

CITY-BANK P-RELNR PAY GIRONR-BANK ...

COUNT

31C 31

FIRSTNM TELB-AREA TELB-NR TELP-AREA ...

10

MOD-DAT

10C

Figure 4.4: Concept lattice showing how persistent fields are used in programs in
the Mortgage case study.

74 Identifying Objects using Cluster and Concept Analysis � 4

trying to understand a legacy system.
Items in multiple groups With cluster analysis, the result is a partitioning, i.e.,

each item is placed in exactly one cluster. In some cases, however, it is important
to group items in multiple clusters. For our type of experiments, for example,
database key fields may occur in multiple records: once as primary key, and in
potentially multiple other records as foreign key.

With concept analysis, unlike clustering, this is possible. In our experiments,
key fields occur as separate concepts, with separate upward links to those concepts
using them as either primary or foreign key. In Figure 4.4, the zip code concept is
an example of such a key concept.

Moreover, if concept analysis is used, it still is possible to obtain a partitioning,
following an algorithm discussed in [SR97].

Features and Clusters For class extraction purposes, it is important to under-
stand which features were responsible for the creation of certain clusters. With
cluster analysis, this is virtually impossible, as the analysis is solely based on the
distance matrix (see Table 4.2), in which no feature appears.

The absence of features also makes dendrograms more difficult to interpret
than concept lattices. For example, in Figure 4.4 it is clear that program �

Q
is

responsible for the special status of
% � � � � - �

, but in Figure 4.2(b) it is not at all
obvious why

� �"� -�- �
(street) appears at the top of the dendrogram.

Selection of input data The appropriate selection of input data stronly affects
the results of both cluster and concept analysis. Cluster analysis turns out to be
very sensitive to items that possess all features. As a result, we have derived two
extra selection steps for cluster analysis: Remove programs that use all fields from
the input data, and remove record fields that are used in all programs from the
input data.

Concept anlaysis is also sensitive to the selection of input data, but less so:
therefore, we were able to derive the concept lattice of Figure 4.4 from the data
used for the dendrogram in Figure 4.2(b), rather than from the more restricted
dataset used in Figure 4.2(c).

4.7 Object Identification

The final object identification step is to use the cluster and concept analysis re-
sults to build object-oriented classes. Although some degree of automation may
be possible for this step, meaningful classes can be expected only if it is done inter-
actively by a software engineer equipped with experience in object-oriented design
as well as some knowledge of the application domain and the legacy system. The
role of cluster and concept analysis, then, is to reduce the overwhelming number
of 100,000 lines of code to a number of high-level design decisions.

When using cluster analysis, the engineer will have to decide at which height
the clusters are to be chosen in a given dendrogram. This determines how many

4.7 � Object Identification 75

clusters exist, how large they are, and what is contained in them. Each cluster
represents a candidate class, having the fields in the cluster as its attributes. The
cluster hierarchy present in a dendrogram also gives pointers for relations between
the classes. If a large cluster � is obtained by merging clusters � � � �&�$� � � � , the cor-
responding class � will typically be composed from the classes for � � � �&�$� � � � via
aggregation (� will have � attributes for fields of type � � � �$�&� � � �). In some cases,
inheritance or association may be more appropriate, but the dendrogram itself pro-
vides no clues for making this decision. Cluster analysis provides no information
on which methods to attach to each of the classes identified.

When using concept analysis, the engineer can take advantage of the presence
of the programs (as features) in the lattice. An important use of the lattice is as
a starting point for acquiring understanding of the legacy system. As illustrated
by the discussion of the Mortgage experiment in Section 4.5, the engineer can
browse through the lattice, and use it to select programs at which to look in more
detail.

Each concept is a candidate class. The smallest concept introducing a field
corresponds to the class having that field as attribute. The largest concept with a
given program as feature corresponds to the class with that program attached as
method to it. This is reflected in the way the concepts are labeled with items and
features in the concept lattice. Classes close to the bottom are the smallest classes
(containing few attributes).

The subconcept relationship corresponds to class relations. Typically, a class
for a concept � is composed via aggregation from the classes of the subconcepts
of � . Alternatively, if a concept � has a subconcept � � , � may be composed from� � via inheritance. As an example, the concept with field

2�-"%��
(and program � �

)
in Figure 4.4 deals with names of persons. A natural refinement of this class is
the concept above it, which extends a person’s name with his prefixes, initials, and
title code. Independent “columns” in the concept lattice correspond to separate
class hierarchies.

A final question of interest is whether the classes found this way are “good”
classes. For Mortgage, an independent, manually developed, object-oriented re-
design exists (which is partly described by [WBF97]). A good semi-automatic
approach should get as close as possible to this redesign. The lattice of Figure 4.4
does not yield the complete redesign, but the concepts in the lattice constitute the
core classes of the independent redesign. One difference is that certain large “con-
tainer” classes are not present in the lattice. A second difference is that in the
redesign domain knowledge was used to further refine certain classes (for exam-
ple, a separate “bank address” class was included). However, this separation was
not explicitly present in the legacy system. For that reason, it was not included in
the concept lattice, as this only serves to show how fields are actually being used
in the legacy system.

76 Identifying Objects using Cluster and Concept Analysis � 4

4.8 Concluding Remarks

In this paper we have studied the object identification step of combining legacy
data structures with legacy functionality. We have used both cluster and concept
analysis for this step. Concept analysis solves a number of problems encountered
when using cluster analysis.

Of utmost importance with both concept and cluster analysis is the appropriate
selection of the items and features used as a starting point, in order to separate the
technical, platform-specific legacy code from the more relevant domain-related
code. The selection criteria we used are discussed in Section 4.3.

When searching for objects in data-intensive systems (which is the typically
the case with Cobol systems), records are a natural starting point. We have argued
that it is first necessary to decompose the records into smaller ones, and we have
proposed a method of doing so by grouping record fields based on their actual
usage in legacy programs.

We have used this grouping problem to contrast cluster analysis with concept
analysis. We identified the following problems with cluster analysis (see Sec-
tion 4.6): (1) cluster analysis only constructs partitionings, while it is often nec-
essary to place items in multiple groups; (2) a dendrogram only shows a subset
(a hierarchy) of the possible partionings, potentially leaving out useful ones; (3) a
dendrogram is difficult to explain, as it is based on numeric distances rather than
actual features; (4) cluster analysis tends to be sensitive to items possessing all
features.

These limitations are inherent to clustering, and independent of the distance
measures chosen, or the sort of items used to cluster on.

These problems are dealt with in a better way by concept analysis, making it
therefore more suitable for the purpose of object identification. Concept analysis
finds all possible combinations, and is not just restricted to partitionings. More-
over, the features are explicitly available, making it easier to understand why the
given concepts emerge.

4.8.1 Acknowledgments

We thank the members of the Object and Component Discovery Resolver task
group: Hans Bosma, Erwin Fielt, Jan-Willem Hubbers, and Theo Wiggerts. Fi-
nally, we thank Andrea De Lucia, Jan Heering, Paul Klint, Christian Lindig, and
the anonymous referees for commenting on earlier versions of this document.

Chapter 5

Types and Concept Analysis
for Legacy Systems

In the previous chapter a starting point for an object-oriented re-
design was obtained by looking at the different data elements used in
a system. In this chapter, this notion is refined. Not the individual
data elements are used to perform concept analysis on, but rather the
inferred types of the data elements. Type inference tries to identify a
group of data elements which are of the same type, i.e., represent the
same notion in a system. Using type inference, a large group of data
elements can be reduced to a smaller group of data types.

As this chapter has been published as a separate article earlier,
we ask the reader to bear with us as some paragraphs in this chapter
overlap with paragraphs in the previous chapter.1

5.1 Introduction

Most legacy systems were developed using programming paradigms and languages
that lack adequate means for modularization. Consequently, there is little explicit
structure for a software engineer to hold on to. This makes effective maintenance
or extension of such a system a strenuous task. Furthermore, according to the
Laws of Program Evolution Dynamics, the structure of a system will decrease by
maintenance, unless special care is taken to prevent this [BL76].

Object orientation is advocated as a way to enhance a system’s correctness,

1This chapter was published earlier as: T. Kuipers and L. Moonen. Types and concept analysis
for legacy systems. In Proceedings of the International Workshop on Programming Comprehension
(IWPC 2000). IEEE Computer Society, June 2000.

78 Types and Concept Analysis for Legacy Systems � 5

robustness, extendibility, and reusability, the key factors affecting software qual-
ity [Mey97]. Many organizations consider migration to object oriented platforms
in order to tackle maintenance problems. However, such migrations are hindered
themselves by the lack of modularization in the legacy code.

A software engineer’s job can be relieved by tools that support remodulariza-
tion of legacy systems, for example by making implicit structure explicitly avail-
able. Recovering this information is also a necessary first step in the migration of
legacy systems to object orientation: identification of candidate objects in a given
legacy system.

The use of concept analysis has been proposed as a technique for deriving
(and assessing) the modular structure of legacy software [DK99b, LS97, SR97].
This is done by deriving a concept lattice from the code based on data usage by
procedures or programs. The structure of this lattice reveals a modularization that
is (implicitly) avaliable in the code.

For many legacy applications written in Cobol, the data stored and processed
represent the core of the system. For that reason, many approaches that sup-
port identification of objects in legacy code take the data structures (variables and
records) as starting point for candidate classes [CDDF99, FRS94, NK95]. Un-
fortunately, legacy data structures tend to grow over time, and may contain many
unrelated fields at the time of migration. Furthermore, in the case of Cobol, there
is an additional disadvantage: since Cobol does not allow type definitions, there
no way to recognize, or treat, groups of variables that fulfill a similar role. We
can, however, infer types for Cobol automatically, based on an analysis of the
use of variables [DM98]. This results in types for variables, program parameters,
database records, literal values, and so on, which are used during analysis.

In this paper, we use the derived type information about the legacy system as
input to the concept analysis. This way, the analysis is more precise than when we
use variables or records as inputs. The concept analysis is used to find candidate
classes in the legacy system. External knowledge of the system can be used to
influence the concepts that are calculated through ConceptRefinery, a tool we have
implemented for this purpose.

All example analyses described are performed on Mortgage, a relation admin-
istration subsystem of a large mortgage software system currently in production at
various banks. It is a 100.000 LOC Cobol system and uses VSAM files for storing
data. The Mortgage system is described in more detail in [DK98, DM99].

5.2 Type inference for COBOL

Cobol programs consist of a procedure division, containing the executable state-
ments, and a data division, containing declarations for all variables used. An exam-
ple containing typical variable declarations is given in Figure 5.1. Line 6 contains
a declaration of variable

�����������
. Its physical layout is described as picture �
	����� ,

5.2 � Type inference for COBOL 79

which means “a sequence of 18 characters” (characters are indicated by picture
code �). Line 18 declares the numerical variable � ����� with picture � 	���� , which is
a sequence of three digits (picture code �).

The variable � ��� ��� � in line 3 is a record variable. Its record structure is indi-
cated by level numbers: the full variable has level � � , and the subfields 	 � 	 � 	�
� � ,
�
�� � , and

� ���������
, are at level ��� . Line 12 declares the array
�������� ��� : it is a single

character (picture �
	�� ���) occurring 40 times, i.e., an array of length 40.
When we want to reason about types of variables, Cobol variable declarations

suffer from a number of problems. First of all, it is not possible to separate type
definitions from variable declarations. As a result, whenever two variables have
the same record structure, the complete record construction needs to be repeated.2

Such practices do not only increase the chance of inconsistencies, they also make
it harder to understand the program, since a maintainer has to check and compare
all record fields in order to decide that two records indeed have the same structure.

In addition, the absence of type definitions makes it difficult to group variables
that are intended to represent the same kind of entities. On the one hand, all
such variables will share the same physical representation. on the other hand, the
converse does not hold: One cannot conclude that whenever two variables share
the same byte representation, they must represent the same kind of entity.

Besides these problems with type definitions, Cobol only has limited means
to indicate the allowed set of values for a variable (i.e., there are no ranges or
enumeration types). Moreover, Cobol uses sections or paragraphs to represent
procedures. Neither sections nor paragraphs can have formal parameters, forcing
the programmer to use global variables to simulate parameter passing.

To remedy these problems, we have proposed to infer types for Cobol auto-
matically, by analyzing their use in the procedure division. In the remainder of
this section, we summarize the essentials of Cobol type inferencing: a more com-
plete presentation is given in [DM98]. First, we describe the primitive types that
are distinguished. This is followed by a description of the type relations that can
be derived from the statements in a single Cobol program, and how this approach
can be extended to system-level analysis leading to inter-program dependencies.
Finally, we show how the analysis can be extended to include types for literals,
discuss the notion of pollution, and conclude with an example.

Primitive Types The following three primitive types are distinguished: (1) ele-
mentary types such as numeric values or strings; (2) arrays; and (3) records. Every
declared variable gets assigned a unique primitive type. Since variable names qual-
ified with their complete record name must be unique in a Cobol program, these
names can be used as labels within a type to ensure uniqueness. We qualify vari-
able names with program or copybook names to obtain uniqueness at the system

2In principle the COPY mechanism of Cobol for file inclusion can be used to avoid code duplication
here, but in practice there are many cases in which this is not done.

80 Types and Concept Analysis for Legacy Systems � 5

� ���������	��
�����������
� �������������������! �"�#�$�����#��%#�&���'����%#�������(���$��)�
* +��-,�.�/�������
0 +�*1�%�	�%������2� ,���354)67+�8�9:�
8 +�*�����;�. ,���354)6<��=�9:�
> +�*����/�.�.�� ,���354)6?��@�9:�
= �����
@ �������������������! �"�#�$�����#��%#�&1 �A����1��������B1"�C1����#�&�$�A10�+ED
F �1���HG������I���I�������������I �"�'�#�$������)�
��+ +��-����J�+�+�+K�
��� +�*!��+�+�L�����;�.�L�,���/����
��� +�8!��+�+�L�,��� ,���354)67+���9M��3�3�N�/�!0�+K�
��* +�*!��+�+�L�;���4 ,���3I�FE67+�*�9O3���;�,�L�*�
���2�N�.10�+K�
��0 +�*!��+�+�L�P���2�2�.��Q,���3I�FE67+�*�9O3���;�,�L�*�
���2�N�.1+K�
��8 �����
��> �1"�$�A����R �"�'�#�$�������(��� ���������(I��������G�A������)�
��= +��-��+�+�+K�
��@ +�*�����+�+ ,���3I�FE67+�*�9O3���;�,�L�*�
���2�N�.1+K�
��F +�*�����+�+ ,���3I�FE67+�*�9O3���;�,�L�*�
���2�N�.1+K�
��+
��� ,�/���3�.���N�/�.!�	��
�����������
��� �!S���"� ���(�'�����(��������%#�&!G���$�AT�%#���$��������E�
��* /�����+�L��%���%������2��.�3��	�������
��0 ;���
�.U�%���%������2�����I��+�+�L�����;�.�L�,���/����
��8 ,�.�/�P���/�;�/�*�+�+�L�3���;�,����.�L�����;�.V�
��>
��= �!S���"� ���(�'�����(��������%#�&!G���$�AU������$�#���W����)�
��@ /���*�+�L�����;�.1�.�3����������
��F ;���
�.I����;�.�������+�+�L�����;�.�L�,���/��V�
�+ ,�.�/�P���/�;�/��+�+�L�3���;�,����.�L�����;�.V�
*��
*�� �!S���"� ���(�'����HC�"��X �"�W�S�'�$���#�&I�������%'���$I��������(
� �1"�#I$�A��!������'���"�C1$�A��!��+�+�L�����;�.�L�,���/����
*�0 �!N������!��+�+�L�P	��2�2�.���DY��+�+�L�;���4EDY��#�(�����+�+
*�8 ��C�"��1��������B1��#�(���Z���#�&K�
�> /��+�+�L�3���;�,����.�L�����;�.I�.�3��	�������
*�= �����
*�@ ,�.�/�P���/�;!N�������2!����+�+I[���+�+�L�;���4
*�F �����
0�+ �%PI��+�+�L�P���2�2�.��1\I����+�+
0�� �����

Figure 5.1: Excerpt from one of the Cobol programs analyzed (with some explana-
tory comments added).

5.2 � Type inference for COBOL 81

level. In the remainder we will use
� � to denote the primitive type of variable

�
.

Type Equivalence From expressions that occur in statements, an equivalence
relation between primitive types is inferred. We consider three cases: (1) relational
expressions: such as � ���

or �)��
, result in an equivalence between

���
and
���

;
(2) arithmetic expressions: such as � �	� or � ;�� , result in an equivalence between� �

and
� �

; (3) array accesses: two different accesses to the same array, such as
 � � � and
 � � � , result in an equivalence between
� �

and
� �

.
When we speak of a type, we will generally mean an equivalence class of

primitive types. For presentation purposes, we will also give names to types based
on the names of the variables part of the type. For example, the type of a variable
with the name � ��������� � ���� 	 � � 	 � � will be called � � ���� 	 � � 	 � � -type.

Subtyping From assignment statements, a subtype relation between primitive
types is inferred. Note that the notion of assignment statements corresponds to
Cobol statements such as � ����� ,

�� ����� ��� , ����� � 	 ����� , etc. From an assignment of
the form � � ���

we infer that
���

is a subtype of
���

, i.e., � can hold at least all the
values

�
can hold.

System-Level Analysis In addition to type relations that are inferred within indi-
vidual programs, we also infer type relations at the system-wide level: (1) Types of
the actual parameters of a program call (listed in the Cobol � � 	 ��� clause) are sub-
types of the formal parameters (listed in the Cobol � 	 ���
 � � section). (2) Variables
read from or written to the same file or table have equivalent types.

To ensure that a variable that is declared in a copybook gets the same type in all
programs that include that copybook, we derive relations that denote the origins of
primitive types and the import relation between programs and copybooks. These
relations are then used to link types via copybooks.3

Literals An extension of our type inference algorithm involves the analysis of
literals that occur in a Cobol program. When a literal value � is assigned to a
variable � , we infer that the value � must be a permitted value for the type of
� . Likewise, when � and � are compared, value � is considered to be a permitted
value for the type of � . Literal analysis infers for each type, a list of values that
is permitted for that type. Moreover, if additional analysis indicates that variables
in this type are only assigned values from this set of literals, we can infer that the
type in question is an enumeration type.

3Another (possibly more precise) approach would be to derive a common supertype for all versions
that appear in different programs. Our case studies, however, showed no need for such an approach.

82 Types and Concept Analysis for Legacy Systems � 5

Aggregate Structure Identification When the types of two records are related
to each other, types for the fields of those records should be propagated as well.
In our first proposal [DM98], we adopted a rule called substructure completion,
which infers such type relations for record fields whenever the two records are
identical (having the same number of fields, each of the same size). Since then,
both Eidorff et al. [EHM

�

99] and Ramalingam et al. [RFT99] have published an
algorithm to split aggregate structures in smaller “atoms”, such that types can be
propagated through record fields even if the records do not have the same structure.

Pollution The intuition behind type equivalence is that if the programmer would
have used a typed language, he or she would have chosen to give a single type
to two different Cobol variables whose types are inferred to be equivalent. We
speak of type pollution if an equivalence is inferred which is in conflict with this
intuition.

Typical situations in which pollution occurs include the use of a single variable
for different purposes in disjunct program slices; simulation of a formal parameter
using a global variable to which a range of different variables are assigned; and the
use of a � � 	 � � ��� 	 � � string variable for collecting output from various variables.

The need to avoid pollution is the reason to introduce subtyping for assign-
ments, rather than just type equivalences. In [DM99], we have described a range
of experimental data showing the effectiveness of subtyping for dealing with pol-
lution.

Example Figure 5.1 contains a Cobol fragment illustrating various aspects of
type inferencing. It starts with a data division containing the declaration of vari-
ables. The second part is a procedure division containing statements from which
type relations are inferred.

In line 40, variable
������ � 	 ��� � � is compared to � ����� , which in line 38 is com-
pared to
���������
�� . This results in an equivalence class between the primitive types
of these three variables. Observe that these three variables are also declared with
the same picture (in lines 13, 14, and 18).

In line 29, we infer from the assignment that the type of �
�� � is a subtype of
the type of �
�� � ����
 ��� . From line 24, we infer that 	 � 	 � 	�
�� � is a subtype of of
�
�� � ����
 ��� as well, thus making �
�� � � ��
 ��� the common supertype of the other
two. Here the three variables are declared with different pictures, namely strings
of different lengths. In fact, �
� � ����
 ��� is a global variable simulating a formal
parameter for the

� ������� �� ��� ��� � � �
�� � (Cobol does not support the declaration of
parameters for procedures). Subtyping takes care that the different sorts of actual
parameters used still have different types.

5.3 � Concept Analysis 83

Items
�

Features � � � � � � � �
NAME �
TITLE �
INITIAL �
PREFIX �
CITY � �
STREET � �
NUMBER �
NUMBER-EXT �
ZIPCD �

Table 5.1: The list of items and their features

items features
0 zipcd number-ext number street city prefix initial

title name
1 zipcd number-ext number street city p4
2 street p4 p3
3 city p4 p2
4 prefix initial title name p1
5 p4 p3 p2 p1

Table 5.2: All concepts identified for Table 5.1.

5.3 Concept Analysis

Concept analysis4 is a mathematical technique that provides a way to identify
groupings of items that have common features [GW99]. It starts with a context:
a binary table (relation) indicating the features of a given set of items. From that
table, the analysis builds up so-called concepts which are maximal sets of items
sharing certain features. The relations between all possible concepts in a binary
relation can be given using a concise lattice representation: the concept lattice.

Recently, the use of concept analysis has been proposed as a technique for
analyzing legacy systems [Sne98]. One of the main applications in this context is
deriving (and assessing) the modular structure of legacy software [DK99b, LS97,
SR97, ST98]. This is done by deriving a concept lattice from the code based
on data usage by procedures or programs. The structure of this lattice reveals
a modularization that is (implicitly) available in the code. In [DK99b], we used
concept analysis to find groups of record fields that are related in the application
domain, and compared it with cluster analysis.

In the remainder of this section we will explain concept analysis in more detail.

4This section overlaps with Section 4.5, because both chapters were published as separate articles.

84 Types and Concept Analysis for Legacy Systems � 5

5.3.1 Basic Notions

We start with a set
�

of items, a set � of features,5 and a binary relation (table)� � � � � indicating the features possessed by each item. The three tuple? � � � � � B is called the context of the concept analysis. In Table 5.1 the items are
the field names, and the features are usage in a given program. We will use this
table as example context to explain the analysis.

For a set of items � � � , we can identify the common features, written � ? � B ,
via:

� ? � B2��� 	 � � �� � � ��� ? � � 	 B�� ���
For example, � ?�� O,/ � ��� � � �"� ��� � � B���� ��� � .

Likewise, we define for � � � the set of common items, written � ? � B , as:

� ? � B2� � � � � �� 	�� � � ? � � 	 B�� � �

For example, � ?�� � � � � � � B���� � �"� ��� � � .
A concept is a pair

? � �(� B of items and features such that � � � ? � B and � �
� ? � B . In other words, a concept is a maximal collection of items sharing common
features. In our example,

?�� ��� �"& /
' � / 2 / � /(-�� � � / � ��� � 2�-�%�� � � � � � � B

is the concept of those items having feature � � , i.e., the fields used in program
� � . All concepts that can be identified from Table 5.1 are summarized in Table 5.2.
The items of a concept are called its extent, and the features its intent.

The concepts of a given table are partially ordered via:

? � � �(� � B�) ? � � �#� �
B * ? � � � � �

* � �
� � � B

As an example, for the concepts shown in Table 5.2, we see that
� � � �) � ,)

� 	
) ��� ��� .
This partial order allows us to organize all concepts in a concept lattice, with

meet . and join / defined as

? � � �(� � B . ? � � �#� �
B � ? � � 1 � � �(� ? � � 1 � �

B
? � � �(� � B / ? � � �#� �

B � ? � ? � � 1 � �
B �#� � 1 � �

B

The visualization of the concept lattice shows all concepts, as well as the rela-
tionships between them. For our example, the lattice is shown in Figure 5.2.

In such visualizations, the nodes only show the “new” items and features per
concept. More formally, a node is labeled with an item � if that node is the smallest

5The literature generally uses object for item, and attribute for feature. In order to avoid confusion
with the objects and attributes from object orientation we have changed these names into items and
features.

5.4 � Combine Types and Concepts 85

c0
features:
items:

c1
features: P4

items: ZIPCD
NUMBER-EXT

NUMBER

c4
features: P1

items: PREFIX
INITIAL
TITLE
NAME

c2
features: P3

items: STREET

c3
features: P2
items: CITY

c5
features:
items:

Figure 5.2: Lattice for the concepts of Table 5.2.

255

256258262 436

437454492

511

520

709

767

769

780

0

1

2 5

12

15

1623

3536

37

38

39

44 52

72

83

89

91

98

125

129

131

135

142

185

187

189

191

192

196

202

204 205208

211

212

214226

232

233

235

260 275

281

296

298

326

332

343

358

364

367

371

373

376

378

383

429

450

452 479

538

540

543

554

568

613

657

667

668

690 693

771

776

803

905 907 953 956 957

257259

267

439

440496512

513

518

733

768

783

4 6

43

184 190195 197261

268

442

539

735

966

3 779

86102

115

122

285

335

931 932935

269

444

514

515516

833

770

18

19

47 123

287

325

369

270

446517 524 531834

772773

8

10

21 48

941

835

778

782

271

451522525836

774777 788

210

263

272

677

519521

847

789

689

274

628

683

527

850

775

802

9

688

264

266

553

528852

902

1434

265

602 533

860

952

11 13

277

608

526866

817

186279

330

632

523

534867

779

849

374

638

535868

375

641

529

870

781

946

643

871

818

17 25

45 4954

93221

294

848

276

656

872

27

273679

873

784

20 28

46 58222 282

680

874

785

50

685

530

532

875

786

787

944

29

289

942

876

22 3059

290

536

877

51

278 338

878

3160

372879

790

791 792798

24231

280 382880797

799

26

881

283306

537

897

793

794 795

293

284

425

951

796 883

939940

888

32216

541

892

291

286542

658

33

288

426

427

692

695

697

700

659

544

557

607

327 380

545 547

705

800

801

947

292

546

548

706

428

549701

124

665

649

717

804

911912

550

718

805

913 295

713721

41

90

106

130

143 198 200 206 209

307309

551

558

603

806

807 962963 40

53 6177

92

138

146

161

300 313

323

334405

423

737

926

552560 604 808

950 42

73

141304 297 331

561 605 810

111144147 310

305

562 724

809

920119

148

299 385

555 728

301

556

811

812

75

317389

76

302

559

813

82

303311

814

337

312 328

655

815

74

321

633725816

859

55

6294

324

329

642726

56 95

316

420

691 694699

727

57 63308

318

563

564 579

819

431

379

565 580

820

64

84 419433

927

319 386567 583

821

67

320 390

566

581 589

734

822

65

78

322 399

582

592

823

824

825

80

401

569

6681

314

570 572 576

614 68

315

571 574 577

826

6987430

575

578 615

730

827

71 88

573

616

744

828

424

594

829

96

830

831

97

595

731

117

619

832

70 104

463

105

620

732 743

107

622

745

894 895896

116600

837

118

601

838584

839

586 588739

840

585

841

598741

842

99

410

587

843

100

333

898

593 611 844

449

590

645

845

101

406

591

846

336

934

599

103

612742

85

112 422661339

340

341361

596

851

120

342

363

597 617

113

618 853

114

625 854

344

355

402

408

855

357

403

414

653746

856 365366

345

346

350

353

606

857

347

485

749

858

434

348349

487

637

395

435

351

483

488

490

646

861

354

652

862

352

623

750 863

751

864

960

609

610

865

384

356

621

109

396445

110

359 624

360

869

901

362

108

411 441

387

412

413 443

388

368

391 370377

121

392

626

627 647 648

882

933 936

381

629630

884

929

631

885

930

634

651

886

636

887

509

889

945

639

890

635

891

640

126

127

893

128 188

644

393

183

394

397

132

236

670

671

416

447

899

133948

398448

900

134

136

152156

162

217 237

481

137

153

155

163

218

238

432

698

400

903

165170

178

223 242

904

164 166

180

225243

650

139175

407

421

404

906140

409 145

908

150415

909

417

654

910

151

154

418

959

149

660

167

914

168

915

174

662 663

916

177

917

918

160

919

157

664

921

158

666

922

159169

462

672

669

923171510675

924

172456

673

925

173458 938

949

674686

928

484

486

176

676 681702

182

489

678682703 707

684

943

964

453

714

937

179

715 719

696

460

461

687

753

759

711

491

181

438 455

465 472

493

729

494

457495

474

497498

499 500 954

459501

955

502

203

503

704 504

958

194

478505

708755 762

193 207

506716

507

961

199

508

480

710720

965

201

722

466 473

712

723

464467

469

766 470

475

482

468

476

477

213

471

215

234

219239

752

758

220

224

240

227 229

241

254 244

230

245

246

736 756

247

228248

738

740748

249

250

747

251

252

253

757

754 760761

764765

763

Figure 5.3: Types as items, program using type as feature

concept with � in its extent, and it is labeled with a feature
	

if it is the largest
concept with

	
in its intent.

For a thorough study of the foundations of concept analysis we refer the reader
to [GW99].

5.4 Combine Types and Concepts

In [DK99b] concept analysis was used to find structure in a legacy system. The
variables of a Cobol system were considered items, the programs features, and the
“variable used in program” property as a relation. Table 5.1 is an example of such a

86 Types and Concept Analysis for Legacy Systems � 5

relation, and Figure 5.2 show the corresponding lattice. This lattice can be seen as a
candidate object oriented design of the legacy system. The concepts are individual
classes and related concepts can be seen as subclasses or class associations.

The identification of variables in different programs was performed by compar-
ing variable names, and variable declarations. If two variables shared a particular
substring they were considered equal. This works well for systems that employ a
coding standard which forces similar names for similar variables but fails horribly
for systems where variable names are less structured. In this paper this problem
is solved by taking the types (as described in Section 5.2) of these variables, and
relating them to programs in various ways.

5.4.1 Data for Concept Analysis

Before describing the concept experiments performed, first the relations derived
from the legacy source will be explained. The four extracted relations are varUsage,
typeEquiv, transSubtypeOf and formalParam. varUsage is the relation be-
tween a program and the variables that are used in that program. typeEquiv is the
relation between a type name (the name of a type equivalence class) and a variable
that is of this type. transSubtypeOf is the relation between a type and the tran-
sitive closure of all its supertypes, i.e. between two types where the second is in
the transitive closure of all the supertypes of the first. formalParam is the relation
between a program and the types of its formal parameters. An overview of these
relations is given in Table 5.3.

In the remainder of this section the set of all programs, variables, and types in
a system will be denoted � ,

�
, and
�

, respectively.

5.4.2 Experiments Performed

Type Usage

The first experiment performed is exactly the experiment performed in [DK99b],
as described earlier. The type usage per program is taken as the context relation,
instead of variable usage. This results in a lattice where the programs that use
exactly the same set of types will end up in the same concept, programs that use

Relation name Name of relation element
varUsage program variable
typeEquiv type variable
transSubtypeOf sub super
formalParam program type

Table 5.3: Derived and inferred relations

5.4 � Combine Types and Concepts 87

0

1

26

4712

3 8

9

5

1011

13 14

15

items features
0
1 1.firstnm[] 1.telb-area

1.telb-nr 1.telp-area 1.telp-nr
1.contact-prs2 1.contact-prs1
1.sex 1.plbirth 1.cvlcd
1.openg

31c
31

2 10c
3 10
4 4.city-bank 4.pay

4.acctnr-bank 4.pay-type
4.paysoc-name 4.acctnr
1.city-bank 1.acctnr-bank
1.pay-type 1.paysoc-name
1.acctnr

5 4.mortseqnr 4.mortgnr 09
09c

6 1.variable[] 22
7 1.region[] 1.street[]

1.addr-type[] 1.zipcd[]
1.countrycd[] 1.house-ext[]
1.citycd[] 1.birthdt 1.type
1.count

8
9 1.mod-dat
10 4.relnr 1.p-relnr
11 1.city[] 1.house[] 89c

89
12 1.prefix 1.initl 1.titlcd 36c

36
13 1.fixed 1.name
14 1.startdt[] 12c
15

Figure 5.4: Concepts involving relevant programs

less types will end up in a concept below, and programs that use more types will
end up in a concept above that concept.

In order to arrive at the type usage concept lattice the varUsage table is taken
as a starting point. For each variable, its type is selected from typeEquiv such
that the result is a set of relations

���������
	���������������
��	��
varUsage

�������
��	��
typeEquiv � . Then the types are considered items, and the programs features and
the concept analysis is performed. For the example Mortgage system, the result-
ing concept lattice is shown in Figure 5.3. The list of items and features is not
shown for (obvious) lack of space.

Filtering This picture may not be as insightful as we might hope. A way to de-
crease the complexity of this picture is by filtering out data before performing the

88 Types and Concept Analysis for Legacy Systems � 5

concept analysis. A selection of relevant programs from all programs in a Cobol
system can be made as described in [DK98]. Cobol systems typically contain a
number of programs that implement low-level utilities such as file I/O, error han-
dling and memory management. These programs can in general be left out of the
analysis, particularly when we are only interested in the general structure of the
system.

Filtering out insignificant variables is also possible. Typically, certain records
in a Cobol system contain all data that has to do with customers (and therefor is
probably relevant) while other records may only be used as temporary storage.

Suppose a list of relevant programs is selected and only the data that originated
from a certain set of records is deemed interesting. The first step, filtering out the
uninteresting programs, is easy. All tuples from varUsage that have an irrelevant
program as their program element are simply ignored. Suppose � ����� with � ����� �
� is the set of relevant programs which is derived in some way. Then all types
that are related to the interesting variables need to be determined. Suppose

� �����
with

� ����� � �
is the set of all relevant variables. From the relation typeEquiv all

types that are related to a relevant variable are selected. If
� ����� with

� ����� ��� is
the set of all relevant types:

��� � � ?	� � � B � typeEquiv � � � � ����� � Then the type
equivalent variables that are used in the selected relevant programs are selected:��? � ��
 B�� � ����� � � ����� ? � � ��
 B�� varUsage � ?	� � � � B�� typeEquiv � ��� � ����� �

The result of the experiments with filtered data are much more comprehensible
than those without filtering, basically because there are less concepts to try to un-
derstand. Figure 5.4 shows the concept lattice for the same system as in Figure 5.3,
but with irrelevant programs filtered out according to [DK98]. The relevant data
are the fields of the two records describing the persistent data in the system.

The lattice in Figure 5.4 contains some unexpected combinations. Concept 7
for instance, contains items that have to do with locations and addresses, but also
a birth date. Close inspections reveals that this is not a case of type pollution, but
these variables are really used in both program 31(c) (from concept 1) and program
22 (from concept 6). A possible explanation could be that these programs send
birthday cards.

It is important to have some way to validate these lattices externally, to perfect
the filter set. For our example system, one program implements a utility routine
through which a lot of variables are passed, causing one type to contain a remark-
able large number of variables. When we filtered out that program, the resulting
lattice was much more intuitive.

Parameter Types

Experiments have been performed on another concept analysis context; the con-
text that has programs as items and the types of their formal parameter as features.
When concept analysis is performed on this data set, all programs that share ex-
actly the same set of parameter-types end up in the same concept. If two programs

5.4 � Combine Types and Concepts 89

0

1 2 3 4 5

6

items features

0
1 41 1.1.city[]
2 40 1.1.street[]
3 36c 35030u 31c 10c 05010r 01410u 01330u 01230u 1.1.record
4 36 1.1.fixed
5 31 10 09 1.1.p-relnr
6

Figure 5.5: Programs as items, parameters as features

share some parameter-types, but not all, the shared parameter types will end up in
the same concept. These will then form an excellent basis for developing an object
oriented view on the system, as the shared types can be seen as the attributes of a
class sharing programs as methods.

In its simplest version the items and features for these concepts are computed
by just taking formalParam and ignoring the subtype relationship.

As was described in Section 5.2, the relation between actual parameter types
and formal parameter types is inferred as a subtype relation. If the subtype rela-
tionship is ignored, then variables can only be identified as having the same type
in different programs, when they are “passed” through a copybook. That is, if a
variable is included in two different programs from the same copybook, it is con-
sidered type equivalent in the two programs. Obviously, this is not the intuition
we have when looking at formal parameters, where we would like to know how
the types used in the calling program propagate to the called program. Therefor,
subtyping is considered as type equivalence when looking at parameter types.

The context for parameter type usage per program while considering super-
types as equivalent is derived as follows:��?

�� � B � � � � ?
 � �DB � formalParam � ?D?J?	� � � �DB � transSubtypeOf . ?�� � � � B �
typeEquiv

B / ?	� � � B � typeEquiv
B �

.
As described in the previous section, data may be filtered on either relevant

programs or relevant data elements. In that case the context is arrived at as fol-
lows:

��?

 � � B � � ����� � � ����� ?
 � � � B � formalParam,

?J?D?	� � � �DB � transSubtypeOf
. ?�� � � � B � typeEquiv

B / ?�� � � B � typeEquiv
B �

for some externally determined
value of � ����� and

� ����� .

90 Types and Concept Analysis for Legacy Systems � 5

An example of a concept lattice showing program as items and the types they
use as formal parameters as features (when supertypes are considered type equiv-
alent) filtered for the same set of relevant variables as Figure 5.4 is shown in Fig-
ure 5.5.

In this lattice, concept 3 is remarkable, because it contains by far the most
programs. This turns out to be caused by the fact that these programs all use
“record” as input parameter. Inspection of the source reveals that “record” is a
rather large record, and that only some fields of this record are actually used in the
programs. It is subject of future work to look at these types of parameters in more
detail.

5.5 Refinement of Concepts

When concept analysis is used for analyzing software systems, there will be a
point where a user might want to modify an automatically derived concept lattice.
For example, consider the applications of concept analysis to remodularization of
legacy systems. A maintainer that performs such a task is likely to have knowledge
of the system that is being analyzed. Based on that knowledge, he or she might
have certain ideas to improve the modularization indicated by the derived lattice
by combining or ignoring certain parts of that lattice.

To facilitate the validation of such ideas, we have developed ConceptRefinery,
a tool which allows one to manipulate parts of a concept lattice while maintain-
ing its consistency. ConceptRefinery defines a set of generic structure modifying
operations on concept lattices, so its use is not only restricted to the application do-
main of remodularization or reverse engineering. Figure 5.6 shows the application
of ConceptRefinery on the data of Table 5.1.

5.5.1 Operations on concept lattices

We allow three kinds of operations on concept lattices. The first is to combine
certain items or certain features. When we consider the context of the concept
analysis, these operations amount to combining certain rows or columns in the
table and recomputing the lattice.

The second operation is to ignore certain items or features. When we consider
the analysis context, these operations amount to removing certain rows or columns
and recomputing the lattice.

The third operation is combining two concepts. This operation has the follow-
ing rationale: when we consider concepts as class candidates for an object-oriented
(re-)design of a system, the standard concept lattice gives us classes where all
methods in a class operate on all data in that class. This is a situation that rarely
occurs in a real world OO-design and would result a large number of small classes

5.6 � Implementation 91

that have a lot of dependencies with other classes. The combination of two con-
cepts allows us to escape from this situation.

On the table underlying the lattice the combination of two concepts can be
computed by adding all features of the first concept to the items of the second and
vice versa.

5.5.2 Relation with source

When a concept lattice that was previously derived from a legacy system is manip-
ulated, the relation between that lattice and the code will be weakened:

� Whenever features, items or concepts are combined, the resulting lattice will
represent an abstraction of the source system.

� Whenever features or items are ignored, the resulting lattice will represent a
part of the source system.

The choice to allow such a weakening of this relation is motivated by the fact
that we would rather be able to understand only part of a system than not being able
to understand the complete system at all. However, in order for ConceptRefinery
to be useful in a real-world maintenance situation, we have to take special care to
allow a maintainer to relate the resulting lattice with the one derived directly from
the legacy code. This is done by maintaining a concise log of modifications.

5.6 Implementation

We have developed a prototype toolset to perform concept analysis experiments.
An overview of this toolset is shown in Figure 5.7. The toolset separates source
code analysis, computation and presentation. Such a three phase approach makes
it easier to adapt to different source languages, to insert specific filters, or to use
other ways of presenting the concepts found [DK98, DM98].

In the first phase, a collection of facts is derived from the Cobol sources.
For that purpose, we use a parser generated from the Cobol grammar discussed
in [dBSV97a]. The parser produces abstract syntax trees that are processed using
a Java package which implements the visitor design pattern. The fact extractor is a
refinement of this visitor which emits facts at every node of interest (for example,
assignments, relational expressions, etc.).

From these facts, we infer types for the variables that are used in the Cobol
system. This step uses the Cobol type inferencing tools presented in [DM99]. The
derived and inferred facts are stored in a MySQL relational database [YRK99].

In the next phase, a selection of the derived types and facts is made. Such
a selection is an SQL queries that results in a table describing items and their
features. A number of interesting selections were described in Section 5.4. The

92 Types and Concept Analysis for Legacy Systems � 5

Figure 5.6: Screendump of ConceptRefinery.

5.6 � Implementation 93

Cobol
sources

Fact
Extraction

Facts

Type
Inference

Item/Feature
Selection

Types Repository

Concept
Analysis

Concept
Lattice

Concept
Refinement

Concept
Visualisation

Figure 5.7: Overview of the toolset.

results of these selections are stored in a repository. Currently, this is just a file on
disk.

In the final phase, the contents of the repository are fed into a concept analysis
tool, yielding a concept lattice. We make use of the concept analysis tool that was
developed by C. Lindig from the University of Braunschweig.6 The concept lattice
can be visualized using a tool that converts it to input for dot [GKNV93], a system
for visualizing graphs. The lattices in Figures 5.2, 5.5, 5.3 and 5.4 were produced
this way.

Furthermore, the lattice can be manipulated using ConceptRefinery. This tool
allows a user to select items, features or concepts and perform operations on that
selection. These operations result in updates of the repository. We distinguish the
following manipulations and describe the actions that are carried out on the repos-
itory: (1) combining items or features is done by merging corresponding columns
or rows in the repository; (2) ignoring items or features is done by removing cor-
responding columns or rows in the repository; (3) combining concepts is done by
adding all features of the first concept to the items of the second and vice versa.
The user interface of ConceptRefinery is shown in Figure 5.6. On the left hand
side a visualization of the concept lattice is given. The items, features or concepts
that need to be modified can be selected in this lattice. The right hand side shows
all available operations. ConceptRefinery is implemented in Tcl/Tk [Ous94] and
Tcldot: an extension for Tcl/Tk that incorporates the directed graph facilities of
dot into Tcl/Tk and provides a set of commands to control those facilities.

6The tool “ ���
	������ � ” is available from http://www.cs.tu-bs.de/softech/people/lindig/.

94 Types and Concept Analysis for Legacy Systems � 5

5.7 Related Work

Several methods have been described for modularizing legacy systems. A typical
approach is to identify procedures and global variables in the legacy, and to group
these together based on attributes such as use of the same global variable, hav-
ing the same input parameter types, returning the same output type, etc. [CCM96,
LW90, OT93, Sch91]. A unifying framework discussing such subsystem classifi-
cation techniques is provided by Lakhotia [Lak97].

Many of these approaches rely on features such as scope rules, return types,
and parameter passing, available in languages like Pascal, C, or Fortran. Many
data-intensive business programs, however, are written in languages like Cobol
that do not have these features. As a consequence, these class extraction ap-
proaches have not been applied successfully to Cobol systems [CDDF99]. Other
class extraction techniques have been developed specifically with languages like
Cobol in mind. They take specific characteristics into account, such as the struc-
ture of data definitions, or the close connection with databases [CDDF99, FRS94,
NK95]. The interested reader is referred to [DK99b] for more related work on
object identification.

Concept analysis has been proposed as a technique for analyzing legacy sys-
tems. Snelting [Sne98, Sne00] provides an overview of various applications. Ap-
plications in this context include reengineering of software configurations [Sne96],
deriving and assessing the modular structure of legacy software [LS97, SR97], ob-
ject identification [DK99b], and reengineering class hierarchies [ST98].

The extract-query-view approach adopted in our implementation is also used
by several other program understanding and architecture extraction tools, such as
Ciao [CFKW95], Rigi [WTMS95], PBS [SCHC99], and Dali [KC99].

New in our work is the addition of the combination of concept analysis and
type inferencing to the suite of analysis techniques used by such tools. Our own
work on type inferencing started with [DM98], where we present the basic theory
for Cobol type inferencing, and propose the use of subtyping to deal with pollu-
tion. In [DM99], we covered the implementation using Tarski relational algebra,
as well as an assessment of the benefits of subtyping for dealing with pollution.
Type-based analysis of Cobol, for the purpose of year 2000 analysis, is presented
by [EHM

�

99, RFT99]: both provide a type inference algorithm that splits aggre-
gate structures into smaller units based on assignments between records that cross
field boundaries. The interested reader is referred to [DM98, DM99] for more
pointers to related work on type inferencing.

5.8 Concluding remarks

In this paper we have shown that the combination of facts derived from legacy
source code, together with types inferenced from those facts, forms a solid base

5.8 � Concluding remarks 95

for performing concept analysis to discover structure in legacy systems. This ex-
tends and combines our previous work on type inferencing for legacy systems and
object identification using concept analysis. We implemented a prototype toolset
for performing experiments. From these experiments, we can conclude that the
combination of type inference and concept analysis provides more precise results
than our previous concept analyses which did not involve types.

The combinations discussed in this paper are the following concept analysis
contexts:

1. type usage per program

2. types of parameters per program

The latter analysis appears to be particularly suitable as a starting point for an
object oriented redesign of a legacy system.

When performing concept analysis to gain understanding of a legacy system, it
proves very helpful if the reengineer is able to manipulate the calculated concepts
to match them with his knowledge of the system, or to remove parts he know to be
irrelevant. We have implemented ConceptRefinery, a tool that allows a software
engineer to consistently perform this kind of modifications while maintaining a
relation with both the original calculated concepts, and the legacy source code.

5.8.1 Future work

We would like to extend ConceptRefinery to propose a grouping of concepts to
the human engineer to consider when refining the lattice. To this end, we will to
experiment with applying cluster analysis algorithms to the concept lattice.

We have discussed two particular concept analysis contexts in this paper. We
would like to see whether we could use the results of one of these concept analyses
to improve the results of the other. I.e. to take the concept found by looking at
the parameter types of programs and somehow use those to mark relevant and
irrelevant concepts from the variable usage analysis.

Acknowledgments The many pleasant discussions we had about this paper with
Arie van Deursen are greatly appreciated. We thank Joost Visser for his comments
on earlier drafts of this paper.

96 Types and Concept Analysis for Legacy Systems � 5

Chapter 6

Object-Oriented Tree
Traversal with JJForester

The results presented in the previous chapter can only be achieved
with data obtained from highly detailed analyses. In Chapter 3, is-
land grammars were introduced to facilitate these analyses. However,
when a system is parsed using a parser generated from a (island) gram-
mar, the resulting parse tree needs to be analyzed. In this chapter, a
technique for traversing and analyzing parse trees is developed. Fur-
thermore, a case study of how to use the technique for the analysis of
a software system is presented.1

6.1 Introduction

JJForester is a parser and visitor generator for Java that takes language defini-
tions in the syntax definition formalism SDF [HHKR89, Vis97b] as input. It gen-
erates Java code that facilitates the construction, representation, and manipula-
tion of syntax trees in an object-oriented style. To support generalized LR pars-
ing [Tom85, Rek92], JJForester reuses the parsing components of the ASF+SDF
Meta-Environment [Kli93].

The ASF+SDF Meta-Environment is an interactive environment for the devel-
opment of language definitions and tools. It combines the syntax definition formal-
ism SDF with the term rewriting language ASF [BHK89]. SDF is supported with
generalized LR parsing technology. For language-centered software engineering

1This chapter was published earlier as: T. Kuipers and J. Visser. Object-oriented Tree Traversal
with JJForester. In Proceedings of the First Workshop on Language Descriptions, Tools and Appli-
cations 2001 (LDTA’01). Electronic Notes in Theoretical Computer Science 44(2). Elsevier Science
Publishers, 2001.

98 Object-Oriented Tree Traversal with JJForester � 6

applications, generalized parsing offers many benefits over conventional parsing
technology [dBSV98]. ASF is a rather pure executable specification language that
allows rewrite rules to be written in concrete syntax.

In spite of its many qualities, a number of drawbacks of the ASF+SDF Meta-
Environment have been identified over the years. One of these is its unconditional
bias towards ASF as programming language. Though ASF was well suited for
the prototyping of language processing systems, it lacked some features to build
mature implementations. For instance, ASF does not come with a strong library
mechanism, I/O capabilities, or support for generic term traversal. Also, the closed
nature of the meta-environment obstructed interoperation with external tools. As a
result, for a mature implementation one was forced to abandon the prototype and
fall back to conventional parsing technology. Examples are the ToolBus [BK98],
a software interconnection architecture and accompanying language, that has been
simulated extensively using the ASF+SDF Meta-Environment, but has been imple-
mented using traditional Lex and Yacc parser technology and a manually coded C
program. For Stratego [VBT99], a system for term rewriting with strategies, a sim-
ulator has been defined using the ASF+SDF Meta-Environment, but the parser has
been hand coded using ML-Yacc and Bison. A compiler for RISLA, an industrially
successful domain-specific language for financial products, has been prototyped in
the ASF+SDF Meta-Environment and afterwards re-implemented in C [dB

�

96].
To relieve these drawbacks, the Meta-Environment has recently been re-implemented

in a component-based fashion [B
�

00]. Its components, including the parsing tools,
can now be used separately. This paves the way to adding support for alternative
programming languages to the Meta-Environment.

As a major step into this direction, we have designed and implemented JJ-
Forester. This tool combines SDF with the main stream general purpose program-
ming language Java. Apart from the obvious advantages of object-oriented pro-
gramming (e.g. data hiding, intuitive modularization, coupling of data and accom-
panying computation), it also provides language tool builders with the massive
library of classes and design patterns that are available for Java. Furthermore, it
facilitates a myriad of interconnections with other tools, ranging from database
servers to remote procedure calls. Apart from Java code for constructing and rep-
resenting syntax trees, JJForester generates visitor classes that facilitate generic
traversal of these trees.

The paper is structured as follows. Section 6.2 explains JJForester. We discuss
what code it generates, and how this code can be used to construct various kinds of
tree traversals. Section 6.3 provides a case study that demonstrates in depth how a
program analyzer (for the Toolbus language) can be constructed using JJForester.

6.2 � JJForester 99

grammar
in SDF

pgen javac

term

AST

input

generated
Java code

user−supplied
Java code

sglr | implode
Sort.parse("file")

result

Java
byte code

JVM

parse
table

compile time
run time

JJForester

Figure 6.1: Global architecture of JJForester. Ellipses are tools. Shaded boxes are
generated code.

6.2 JJForester

JJForester is a parser and visitor generator for Java. Its distinction with respect to
existing parser and visitor generators, e.g. Java Tree Builder, is twofold. Firstly, it
deploys generalized LR parsing, and allows unrestricted, modular, and declarative
syntax definition in SDF (see Section 6.2.2). These properties are essential in the
context of component-based language tool development where grammars are used
as contracts [JV00]. Secondly, to cater for a number of reoccuring tree traversal
scenarios, it generates variants on the Visitor pattern that allow different traversal
strategies. In this section we will give an overview of JJForester. We will give
a brief introduction to SDF which is used as its input language. By means of a
running example, we will explain what code is generated by JJForester and how to
program against the generated code.

6.2.1 Overview

The global architecture of JJForester is shown in Figure 6.1. Tools are shown
as ellipses. Shaded boxes are generated code. Arrows in the bottom row depict
run time events, the other arrows depict compile time events. JJForester takes a
grammar defined in SDF as input, and generates Java code. In parallel, the parse
table generator PGEN is called to generate a parse table from the grammar. The
generated code is compiled together with code supplied by the user. When the
resulting byte code is run on a Java Virtual Machine, invocations of parse methods

100 Object-Oriented Tree Traversal with JJForester � 6

will result in calls to the parser SGLR. From a given input term, SGLR produces a
parse tree as output. These parse trees are passed through the parse tree implosion
tool implode to obtain abstract syntax trees.

6.2.2 SDF

The language definition that JJForester takes as input is written in SDF. In order to
explain JJForester, we will give a short introduction to SDF. A complete account
of SDF can be found in [HHKR89, Vis97b].

SDF stands for Syntax Definition Formalism, and it is just that: a formalism
to define syntax. SDF allows the definition of lexical and context-free syntax in
the same formalism. SDF is a modular formalism; it allows productions to be
distributed at will over modules. For instance, mutually dependent productions
can appear in different modules, as can different productions for the same non-
terminal. This implies, for instance, that a kernel language and its extensions
can be defined in different modules. Like extended BNF, SDF offers constructs to
define optional symbols and iteration of symbols, but also for separated iteration,
alternatives, and more.

Figure 6.2 shows an example of an SDF grammar. This example grammar
gives a modular definition of a tiny lambda calculus-like language with typed
lambda functions. Note that the orientation of SDF productions is reversed with
respect to BNF notation. The grammar contains two context-free non-terminals,
Expr and Type, and two lexical non-terminals, Identifier and LAYOUT. The latter
non-terminal is used implicitly between all symbols in context-free productions.
As the example details, expressions can be variables, applications, or typed lambda
abstractions, while types can be type variables or function types.

SDF’s expressiveness allows for defining syntax concisely and naturally. SDF’s
modularity facilitates reuse. SDF’s declarativeness makes it easy and retargetable.
But the most important strength of SDF is that it is supported by Generalized LR
Parsing. Generalized parsing removes the restriction to a non-ambiguous subclass
of the context-free grammars, such as the LR(k) class. This allows a maximally
natural expression of the intended syntax; no more need for ‘bending over back-
wards’ to encode the intended grammar in a restricted subclass. Furthermore,
generalized parsing leads to better modularity and allows ‘as-is’ syntax reuse.

As SDF removes any restriction on the class of context-free grammars, the
grammars defined with it potentially contain ambiguities. For most applications,
these ambiguities need to be resolved. To this end, SDF offers a number of dis-
ambiguation constructs. The example of Figure 6.2 shows four such constructs.
The left and right attributes indicate associativity. The bracket attribute indicates
that parentheses can be used to disambiguate Exprs and Types. For the lexical
non-terminals the longest match rule is explicitly specified by means of follow
restrictions. Not shown in the example is SDF’s notation for relative priorities.

6.2 � JJForester 101

� � ����� ���	����

����� ��
 � �

���
	������ ����	
�� � ��� 	��������� �	�������� ��
 	���	����
�� ���
	 ������� ��
 �� "!
�	����
#�	����
 	���	����
�� ���
	 �����%$ � � � ���� '& � ��� � !�"(()� ��� �	�������� ��
 �'*��,+	� � � �'-�� �	����

	���	����
�� ���
	 �����%. � ��/ � � �� "!����� �	����
 �� �� 	���	����
�� /
�� �"0 ��� !
� � ����� � +	� � �
����� ��
 � �

���
	������ ����	
�� � ��� 	��������� �	�������� ��
 	� +	� � ��� ���
	 �����%+�� ��
 �� "!+	� � � � 	� �,+	� � � 	� +	� � ��� ���
	 �����%$
	
 ��1 �� '&
���2�3�� !�����,+	� � � �� �� 	� +	� � ��� /
�� �"0 ��� !
� � ����� � ��� �	�������� ��

����� ��
 � �

� �������� � ��� 	������4 $ �5	���6�7��8�9	:;	� ��� �	�������� ��
� �������� �
�� � �	
���
���
�
	 �

��� �	�������� ��
<	=	 4 $ �5	���6�7��8�9
� � ����� � . � � � � �
����� ��
 � �

� �������� � ��� 	������4 (�(� (�9>	� .	$�?�@�A�+
���
	������ ����	
�� �#
�� � �	
���
���
�
	 �

.	$�?�@�A�+�B 	=	 4 (�(� (�9

Figure 6.2: Example SDF grammar.

102 Object-Oriented Tree Traversal with JJForester � 6

In the example grammar, each context-free production is attributed with a con-
structor name, using the cons(..) attribute. Such a grammar with constructor
names amounts to a simultaneous definition of concrete and abstract syntax of
the language at hand. The implode back-end turns concrete parse trees emanated
by the parser into more concise abstract syntax trees (ASTs) for further processing.
The constructor names defined in the grammar are used to build nodes in the AST.
As will become apparent below, JJForester operates on these abstract syntax trees,
and thus requires grammars with constructor names. A utility, called sdf-cons is
available to automatically synthesize these attributes when absent.

SDF is supported by two tools: the parse table generator PGEN, and the scan-
nerless generalized parser SGLR. These tools were originally developed as com-
ponents of the ASF+SDF Meta-Environment and are now separately available as
stand-alone, reusable tools.

6.2.3 Code generation

From an SDF grammar, JJForester generates the following Java code:

Class structure For each non-terminal symbol in the grammar, an abstract class
is generated. For each production in the grammar, a concrete class is generated that
extends the abstract class corresponding to the result non-terminal of the produc-
tion. For example, Figure 6.3 shows a UML diagram of the code that JJForester
generates for the grammar in Figure 6.2. The relationships between the abstract
classes Expr and Type, and their concrete subclasses are known as the Composite
pattern.

Lexical non-terminals and productions are treated slightly differently: for each
lexical non-terminal a class can be supplied by the user. Otherwise, this lexical
non-terminal is replaced by the pre-defined non-terminal

/
� ��� � � � ����� , for which

a single concrete class is provided by JJForester. This is the case in our example.
When the input grammar, unlike our example, contains complex symbols such

as optionals or iterated symbols, additional classes are generated for them as well.
The case study will illustrate this.

Parsers Also, for every non-terminal in the grammar, a parse method is gen-
erated for parsing a term (plain text) and constructing a tree (object structure).
The actual parsing is done externally by SGLR. The parse method implements
the Abstract Factory design pattern; each non-terminal class has a parse method
that returns an object of the type of one of the constructors for that non-terminal.
Which object gets returned depends on the string that is parsed.

Constructor methods In the generated classes, constructor methods are gener-
ated that build language-specific tree nodes from the generic tree that results from

6.2 � JJForester 103

Apply Var Lambda TVar Arrow

expr0

expr1

type0

type1
Type

Visitor

visit

...

Visitable

accept_bu
accept_td

Expr

Identifier

identifier0

identifier0identifier0

type1expr2

visitExpr
visitApply

accept_bu(Visitor v){

 expr0.accept_bu(v);

 expr1.accept_bu(v);

}

 visitApply(this);

Figure 6.3: The UML diagram of the code generated from the grammar in Fig-
ure 6.2.

the call to the external parser.

Set and get methods In the generated concrete classes, set and get methods are
generated to inspect and modify the fields that represent the subtrees. For example,
the Apply class will have � ���

�
� � � Q and ����� � � � � Q methods for its first child.

Accept methods In the generated concrete classes, several accept methods are
generated that take a Visitor object as argument, and apply it to a tree node. Cur-
rently, two iterating accept methods are generated: 	 � ��� � � � � and 	 � ����� � ���

,
for top-down and bottom-up traversal, respectively. For the Apply class, the bottom-
up accept method is shown in the Figure 6.3.

Visitor classes A Visitor class is generated which contains a visit method for
each production and each non-terminal in the grammar. Furthermore, it contains
one unqualified visit method which is useful for generic refinements (see below).
These visit methods are non-iterating: they make no calls to accept methods of
children to obtain recursion. The default behavior offered by these generated visit
methods is simply to do nothing.

Together, the Visitor class and the accept methods in the various concrete
classes implement a variant of the Visitor pattern [GHJV94], where the respon-

104 Object-Oriented Tree Traversal with JJForester � 6

sibility for iteration lies with the accept methods, not with the visit methods. We
have chosen this variant for several reasons. First of all, it relieves the program-
mer who specializes a visitor from reconstructing the iteration behavior in the visit
methods he redefines. This makes specializing visitors less involved and less error-
prone. In the second place, it allows the iteration behavior (top-down or bottom-
up) to be varied. In Section 6.4.3 we will comment on the possibilities of offering
even more control over iteration behavior.

Apart from generating Java code, JJForester calls PGEN to generate a parse table
from its input grammar. This table is used by SGLR which is called by the gener-
ated parse methods.

6.2.4 Programming against the generated code

The generated code can be used by a tool builder to construct tree traversals
through the following steps:

1. Refine a visitor class by redefining one or more of its visit methods. As
will be explained below, such refinement can be done at various levels of
genericity, and in a step-wise fashion.

2. Start a traversal with the refined visitor by feeding it to the accept method of
a tree node. Different accept methods are available to realize top-down or
bottom-up traversals.

This method of programming traversals by refining (generated) visitors provides
interesting possibilities for reuse. Firstly, many traversals only need to do some-
thing ‘interesting’ at a limited number of nodes. For these nodes, the programmer
needs to supply code, while for all others the behavior of the generated visitor
is inherited. Secondly, different traversals often share behavior for a number of
nodes. Such common behavior can be captured in an initial refinement, which is
then further refined in diverging directions. Unfortunately, Java’s lack of multiple
inheritance prohibits the converse: construction of a visitor by inheritance from
two others (but see Section 6.4.3 for further discussion). Thirdly, some traversal
actions may be specific to nodes with a certain constructor, while other actions are
the same for all nodes of the same type (non-terminal), or even for all nodes of any
type. As the visitors generated by JJForester allow refinement at each of these lev-
els of specificity, there is no need to repeat the same code for several constructors
or types. We will explain these issues through a number of small examples.

Constructor-specific refinement Figure 6.4 shows a refinement of the Visitor
class which implements a traversal that counts the number of variables occurring
in a syntax tree. Both expression variables and type variables are counted.

6.2 � JJForester 105

���������	�
�	������� � �� �� ����� � �	����� � ��	����������� � �	����� �
�
���	�������
������� � �������	
� ���
���	��������� � ���������	��� � �� 	 � �� � � �
� � �������	�!�! �"

���	��������� � ���������	��� ��� �� 	 ��� ���� � �
� � �������	�!�! �"

"

Figure 6.4: Specific refinement: a visitor for counting variables.

�	���������#�	������� � �	�� �� ����� � ������� � $�	�	��������� � ������� � ��
���	�������
������� � �������	 � ���
���	��������� � ���������	��� � �	�� 	 � �	���� � �
� � �������	�!�! �"

"

�	���������#�	������� � � ��� �� ����� � ������� � $�	�	��������� � ������� � ��
���	�������
������� � �������	 � ���
���	��������� � ���������	��� 	 � �&%	�&��� � � �
� � �������	�!�! �"

"

Figure 6.5: Generic refinement: visitors for counting expressions and nodes.

This refinement extends Visitor with a counter field, and redefines the visit
methods for Var and TVar such that the counter is incremented when such nodes
are visited. The behavior for all other nodes is inherited from the generated Visitor:
do nothing. Note that redefined methods need not restart the recursion behavior
by calling an accept method on the children of the current node. The recursion is
completely handled by the generated accept methods.

Generic refinement The refinement in the previous example is specific for par-
ticular node constructors. The visitors generated by JJForester additionally allow
more generic refinements. Figure 6.5 shows refinements of the Visitor class that
implement a more generic expression counter and a fully generic node counter.
Thus, the first visitor counts all expressions, irrespective of their constructor, and
the second visitor counts all nodes, irrespective of their type. No code duplication
is necessary.

106 Object-Oriented Tree Traversal with JJForester � 6

visitExpr
visitApply
...

visitVar

Set

visit

Visitor

add
remove

GetVarsVisitor

vars

visitLambda

FreeVarsVisitor

...
v = new FreeVarsVisitor();

...
expr.accept_bu(v);

Example of usage:

}
 vars.add(var.getIdentifier());
visitVar(Var var) {

visitLambda(Lambda lambda) {
 vars.remove(var.getIdentifier());
}

Figure 6.6: UML diagram for user code.

Step-wise refinement Visitors can be refined in several steps. For our example
grammar, two subsequent refinements of the Visitor class are shown in Figure 6.6.
The class GetVarVisitor is a visitor for collecting all variables used in expressions.
It is defined by extending the Visitor class with a field ������� initialized as the empty
set of variables, and by redefining the visit method for the Var class to insert each
variable it encounters into this set. The GetVarVisitor is further refined into a
visitor that collects free variables, by additionally redefining the visit method for
the Lambda class. This redefined method removes the variables bound by the
lambda expression from the current set of variables. Finally, this second visitor
can be unleashed on a tree using the ���	��
��� ��� method. This is illustrated by an
example of usage in Figure 6.6.

Note that the visitors in Figures 6.4 and 6.5 can be refactored as refinements
of a common initial refinement, say CountVisitor, which contains only the field
counter.

Of course, our running example does not mean to suggest that Java would be
the ideal vehicle for implementing the lambda calculus. Our choice of example
was motivated by simplicity and self-containedness. To compare, an implemen-
tation of the lambda calculus in the ASF+SDF Meta-Environment can be found
in [DHK96]. In Section 6.3 we will move into the territory for which JJForester is
intended: component-based development of program analyses and transformations
for languages of non-trivial size.

6.2 � JJForester 107

6.2.5 Assessment of expressiveness

To evaluate the expressiveness of JJForester within the domain of language pro-
cessing, we will assess which program transformation scenarios can be addressed
with it. We distinguish three main scenarios:

Analysis A value or property is distilled from a syntax tree. Type-checking is a
prime example.

Translation A program is transformed into a program in a different language.
Examples include generating code from a specification, and compilation.

Rephrasing A program is transformed into another program, where the source
and target language coincide. Examples include normalization and renova-
tion.

For a more elaborate taxonomy of program transformation scenarios, we refer
to [V

�

]. The distinction between analysis and translation is not clear-cut. When
the value of an analysis is highly structured, especially when it is an expression in
another language, the label ‘translation’ is also appropriate.

The traversal examples discussed above are all tree analyses with simple accu-
mulation in a state. Here, ‘simple’ accumulation means that the state is a value or
collection to which values are added one at a time. This was the case both for the
counting and the collecting examples. However, some analyses require more com-
plex ways of combining the results of subtree traversals than simple accumulation.
An example is pretty-printing, where literals need to be inserted between pretty-
printed subtrees. In the case study, a visitor for pretty-printing will demonstrate
that JJForester is sufficiently expressive to address such more complex analyses.
However, a high degree of reuse of the generated visit methods can currently only
be realized for the simple analyses. In the future work section (6.4.3), we will
discuss how such reuse could be realized by generating special visitor subclasses
or classes that model updatable many-sorted folds [LVK00].

Translating transformations are also completely covered by JJForester’s ex-
pressiveness. As in the case of analysis, the degree of reuse of generated visit
methods can be very low. Here, however, the cause lies in the nature of transla-
tion, because it typically takes every syntactic construct into account. This is not
always the case, for instance, when the translation has the character of an analysis
with highly structured results. An example is program visualization where only
dependencies of a particular kind are shown, e.g. module structures or call graphs.

In the object-oriented setting, a distinction needs to be made between destruc-
tive and non-destructive rephrasings. Destructive rephrasings are covered by JJ-
Forester. However, as objects can not modify their self reference, destructive mod-
ifications can only change subtrees and fields of the current node, but they cannot
replace the current node by another. Non-destructive rephrasings can be imple-

108 Object-Oriented Tree Traversal with JJForester � 6

��� ��� ��� � � � ���

	�
�
	�
�

ToolBus:

� � � � � � � ���

eval
do

ack-event

value

event

Tools:

Adapters:

Figure 6.7: The Toolbus architecture. Tools are connected to the bus through
adapters. Inside the bus, several processes run in parallel. These processes com-
municate with each other and the adapters according to the protocol defined in a
T-script.

mented by refining a traversal that clones the input tree. A visitor for tree cloning
can be generated, as will be discussed in Section 6.4.3.

A special case of rephrasing is decoration. Here, the tree itself is traversed, but
not modified except for designated attribute fields. Decoration is useful when sev-
eral traversals are sequenced that need to share information about specific nodes.
JJForester does not cover decoration yet.

6.3 Case study

Now that we have explained the workings of JJForester, we will show how it
is used to build a program analyzer for an actual language. In particular, this
case study concerns a static analyzer for the ToolBus [BK98] script language. In
Section 6.3.1 we describe the situation from which a need for a static analyzer
emerged. In Section 6.3.2 the language to be analyzed is briefly explained. Finally,
Section 6.3.3 describes in detail what code needs to be supplied to implement the
analyzer.

6.3.1 The Problem

The ToolBus is a coordination language which implements the idea of a software
bus. It allows applications (or tools) to be “plugged into” a bus, and to communi-
cate with each other over that bus. Figure 6.7 gives a schematic overview of the
ToolBus. The protocol used for communication between the applications is not
fixed, but is programmed through a ToolBus script, or T-script.

A T-script defines one or more processes that run inside the ToolBus in parallel.
These processes can communicate with each other, either via synchronous point-

6.3 � Case study 109

to-point communication, or via asynchronous broadcast communication. The pro-
cesses can direct and activate external components via adapters, small pieces of
software that translate the ToolBus’s remote procedure calls into calls that are na-
tive to the particular software component that needs to be activated. Adapters can
be compiled into components, but off-the-shelf components can be used, too, as
long as they possess some kind of external interface.

Communication between processes inside the ToolBus does not occur over
named channels, but through pattern matching on terms. Communication between
processes occurs when a term sent by one matches the term that is expected by
another. This will be explained in more detail in the next section. This style of
communication is powerful, flexible and convenient, but tends to make it hard to
pinpoint errors in T-scripts. To support the T-script developer, the ToolBus runtime
system provides an interactive visualizer, which shows the communications taking
place in a running ToolBus. Though effective, this debugging process is tedious
and slow, especially when debugging systems with a large number of processes.

To complement the runtime visualizer, a static analysis of T-scripts is needed
to support the T-script developer. Static analysis can show that some processes
can never communicate with each other, that messages that are sent can never
be received (or vice versa), or that two processes that should not communicate
with each other may do so anyway. Using JJForester, such a static analyzer is
constructed in Section 6.3.3.

6.3.2 T-scripts explained

T-scripts are based on ACP (Algebra of Communicating Processes) [BV95]. They
define communication protocols in terms of actions, and operations on these ac-
tions. We will be mainly concerned with the communication actions, which we
will describe below. Apart from these, there are assignment actions, conditional
actions and basic arithmetic actions. The action operators include sequential com-
position (
 � �), non-deterministic choice (
 � �

), parallel composition (
 �), and
repetition (
 ; �). The full specification of the ToolBus script language can be
found in [BK94].

The T-script language offers actions for communication between processes and
tools, and for synchronous and asynchronous communication between processes.
For the purposes of this paper we will limit ourselves to the most commonly used
synchronous actions. These are � � �

� � � ��� ��� and ����� � � � ��� ��� for sending and
receiving messages, respectively. These actions are parameterized with arbitrary
data

�
, represented as ATerms [BJKO00]. A successful synchronous communica-

tion occurs when a term that is sent matches a term that is received. For instance,
the closed term ��� �

� � � ��� � � 	
���

can match the closed term ����� � � � ��� � � 	
���

or
the open term ����� � � � ��� � � �	�	�
� . At successful communication, variables in the
data of the receiving process are instantiated according to the match.

110 Object-Oriented Tree Traversal with JJForester � 6

S���"� ������H,�'�W�SX���
����$�� � �%#�$
�%#
6Y���� �L�W���&E6<�� �$�������$��E6 ����9�9E�
���� �L�W���&E6<"�#	9E�
��#�(�L�W���&E6 ����S�"���$)6 � 9�9

9��
(�����$��
��#�(�����$

S���"� ������!��S�������$�"��R���
����$13 � �%#�$)D � � �%#�$)D

,���B�W���#�$ � �%#�$)D ��W�"�'�#�$ � �%#�$
�%#
6Y���� �L�W���&E6 ������'�����$)6 ��� D73���9�9:�
,���B�W���#�$ � \��V�
��#�(�L�W���&E6 �� %A���(�'����E6 ,���B�W���#�$)D73�9�9:�
���� �L�W���&E6 ������'���$)6 ����9�9:�
��W�"�'�#�$ � \1�%'���6 ,���B�W���#�$)D � 9:�
��#�(�L�W���&E6 ����W	��$)67��W�"�'�#�$�9�9

9��
(�����$��
��#�(�����$
S���"� �������3�'���$�"�W����R���
����$
3 � �%#�$)D � � �%#�$
�%#
3 � \�S���"� �������L���(K�
� � \R��+K�
�%#�(�L�W���&E6 S�����S���BE6 �KD73�9�9:�
���� �L�W���&E6 "
	���BE6<3�9�9:�
�%#�(�L�W���&E67$�'���#�L�"�#	9:�

S�����#�$�C)6
� 3�'���$�"�W�������(!'	���%#�&�S�'�W�S��#���D
3�9:�

���� �L�W���&E6?��$�"�S	9E�
���� �L�W���&E6? %A���#�&��:6 ����9�9:�
S�����#�$�C)6
� 3�'���$�"�W�������(I&�"�$�����(1 %A���#�&����#��	D
3)D �	9

��#�(�����$

S���"� ��������������$���$���"�#R���
����$
� � ��#�$)D 3 � �%#�$
�%#
6Y���� �L�W���&E6 S�����S���BE6 ��� D73���9�9:�
��#�(�L�W���&E6 ������'�����$)6 �KD73�9�9��� ���� �L�W���&E6 �� %A���(�'����E6 ��� D73���9�9:�
��#�(�L�W���&E6<�� �$�������$��E6 �	9�9:�
��#�(�L�W���&E6<"
	���BE673�9�9��� ���� �L�W���&E6 $�'���#�L�"�#	9E�
��#�(�L�W���&E6<"�#	9��� ���� �L�W���&E6 ����S�"���$)6 ����9�9:�
��#�(�L�W���&E6 ��$�"�S	9:�
��#�(�L�W���&E6 ������'���$)6 � 9�9��� ���� �L�W���&E6 ����W	��$)6 ����9�9:�
��#�(�L�W���&E6 %A���#�&��:6 � 9�9

9��
(�����$��
��#�(�����$

$�"�"�����'�� 6��������$���$���"�#�D ,�'�W�S�D
3�'���$�"�W����)D73�'	��$�"�W����)D<��S�������$�"��	9

Figure 6.8: The T-script for the gas station with control process.

To illustrate, a small example T-script is shown in Figure 6.8. This exam-
ple contains only processes. In a more realistic situation these processes would
communicate with external tools, for instance to get the input of the initial value,
and to actually activate the gas pump. The script’s last statement is a mandatory
��� � � ��� � ����� � statement, which declares that upon startup the processes GasSta-
tion, Pump, Customer and Operator are all started in parallel. The first action of
all processes, apart from Customer, is a ����� � � � � action. This means that those
processes will block until an appropriate communication is received. The Cus-
tomer process starts by doing two assignment statements. � ������� � � � � � (a built-in
variable that contains the identifier of the current process) is assigned to

�
, and 10

to
�

. The first communication action performed by Customer is a � � �
� � � � of the

term � � ��� 	�� � ��� ��� . This term is received by the GasStation process, which in turn
sends the term ��� � � � � � � ��� ��� message. This is received by Operator, and so on.

The script writer can use the mechanism of communication through term match-
ing to specify that any one of a number of processes should receive a message,
depending on the state they are in, and the sending process does not need to know
this. It just sends out a term into the ToolBus, and anyone of the accepting pro-

6.3 � Case study 111

toString

visitIdTerm
visitIterStarSepTerm_
visitOptVar
visitStringTerm
visitVnameVar

send receive

currProcess

processNametheStack

...

visitProcDef
visitProcDefArgs

Stack

push
pop

Set

add
remove

String

...

...

visit

Visitor

visitFunTerm
visitProcDef

...

SendReceiveAction

match

visitFunTerm

TermToStringVisitor SendReceiveDB

addSendAction
printMatchTable

addReceiveAction

storeMatchTable

SendReceiveVisitor

visitFunTerm srdb

Figure 6.9: UML diagram of the ToolBus analyzer.

cesses can “pick it up”. Unfortunately, when incorrect or too general terms are
specified, communication will not occur as expected, and the exact cause will be
difficult to trace. The static analyzer developed in the next section is intended to
solve this problem.

6.3.3 Analysis using JJForester

We will first sketch the outlines of the static analysis algorithm that we imple-
mented. It consists of two phases: collection and matching. In the collection
phase, all send and receive actions in the T-script are collected into a (internal,
non-persistent) database. In the matching phase, the send and receive actions in
the database are matched to obtain a table of potential matching events, which
can either be stored in a file, or in an external, persistent relational database. To
visualize this table, we use the back-end tools of a documentation generator we
developed earlier (DocGen [DK99a]).

We used JJForester to implement the parsing of T-scripts and the representation
and traversal of T-script parse trees. To this end, we ran JJForester on the grammar
of the ToolBus2 which contains 35 non-terminals and 80 productions (both lexi-
cal and context-free). From this grammar, JJForester generated 23 non-terminal
classes, 64 constructor classes, and 1 visitor class, amounting to a total of 4221
lines of Java code.

We will now explain in detail how we programmed the two phases of the anal-
ysis. Figure 6.9 shows a UML diagram of the implementation.

2This SDF grammar can be downloaded from the GrammarBase, at http://www.
program-transformation.org/gb.

112 Object-Oriented Tree Traversal with JJForester � 6

� � ��������� � � ��������	���&���� �� � ���&��� � � � ���&�	� � ��� � � �	� � � � ���&��� � �	��
��� � � ���&��� � � � ��� � ��� 	 � �� � � � � � � � "� �� � ���&��� � � � ���&�	� � ��� � � 	 � � � �� � �&�	� �	�
� "�� � � �� ��� � � � ������� � �	��
��� � � ���&��� � � � ��� � ��� 	 � �� � � � � �
 ���� � � "

Figure 6.10: The syntax of process definitions.

�����&����� � � ���������	��� � � � � � � 	 �� � � � � � ��� � ��� ���&� � � � �
� ��� � � ���&����� ��� � ��������� � �������	� 	 ��������� � ���	 � 	�� � � ��� �� ����� 	 � �"

�����&����� � � ���������	��� � � � � � �
 ���� 	 �� � � � � �
 �������� � ��� ����� � � � �
� ��� � � ���&����� ��� � ��������� � �������	� 	 ��������� � ���	 � 	�� � � ��� �� ����� 	 � �"

Figure 6.11: Specialized visit methods to extract process definition names.

The collection phase

We implemented the collection phase as a top-down traversal of the syntax tree
with a visitor called SendReceiveVisitor. This refinement of the Visitor class has
two kinds of state: a database for storing send and receive actions, and a field that
indicates the name of the process currently being analyzed. Whenever a term with
outermost function symbol snd-msg or rec-msg is encountered, the visitor will add
a corresponding action to the database, tagged with the current process name. The
current process name is set whenever a process definition is encountered during
traversal. Since sends and receives occur only below process definition in the parse
tree, the top-down traversal strategy guarantees that the current process name field
is always correctly set when it is needed to tag an action.

To discover which visit methods need to be redefined in the SendReceiveVis-
itor, the ToolBus grammar needs to be inspected. To extract process definition
names, we need to know which syntactic constructs are used to declare these
names. The two relevant productions are shown in Figure 6.10. So, in order to ex-
tract process names, we need to redefine � � � ��� � ����� � � �

and � � � � � � ����� � � � - � � �

in our specialized SendReceiveVisitor. These redefinitions are shown in Figure 6.11.
Whenever the built-in iterator comes across a node in the tree of type � ����� � � �

,
it will call our specialized � � � � � � � ��� � � �

with that � �����
� � �

as argument. From
the SDF definition in Figure 6.10 we learn that a � ����� � � �

has two children: a
ProcessName and a ProcessExpr. Since ProcessName is a lexical non-terminal,
and we chose to have JJForester identify all lexical non-terminals with a single
type

/
� ��� � �

� � ��� , the Java class � ����� � � �
has a field of type

/
� ��� � �

� ����� and
one of type

� ������� � �
�
� � � . Through the � ��� / � ��� � � � � ��� Q � � method we get the

actual process name which gets converted to a String so it can be assigned to
� � � � � ������� � � .

6.3 � Case study 113

� � �����	��� � � ��������	�������� ���
� � ��� � �� ��� � � � 	 � �	����� � � �� � � "� �� ��� � ��� � �� ��� � � � 	 � �&�� � � "� �� � � � ��� � ��� � �� ��� � � � 	 � � ��� � �� � � "� ��� � �� ��� � �	 � ��� � � � 	 � �������&�� � �	 � � � "
	 � ��� � �	 � ��� � � � 	 � ��� � �	 � � � "
	 � � 	 � � �� � � ����� � � � ��� � �	 � ��� � � � 	 � � ��� � �� � � � "
� � �� � �	��� "�� ��� � �	 � � ��������� � � � 	 � ���	 � � �&�� � � "� �	 � ���
 � � � ��� � � � 	 � ���	 �
 � � � � � "

Figure 6.12: Syntax of relevant ToolBus terms.

�	����������� � �������	����� � �	� � �	 � 	 � ��� � �	 � ���	 � � �� ����� � �&���&�����
 ���&� � � ������� � �����&���� ����� � �&���������
 ����� � � 	 ����� � � ���&�	� � ���	 � �����	� � �	 � ���	��� � 	���� �
� � 	 ���	 � �����	� 	 ��������� � ���	 � 	�� � ���	���	��� 	 ��� � � ��� � � ��� � ��� ��� �
������ � ����� � �����
 ����� � � 	 ������� � � � �" ������� � � 	 ���	 � �����	� 	 ��������� � ���	 � 	�� � ���	���	��� 	 ��� � ���� � � � � � ��� ��� �
������ � ����� � �&���&�����
 ���&� � � 	 ������� � � � �"

"

Figure 6.13: The visit method for send and receive messages.

Now that we have taken care of extracting process names, we need to ad-
dress the collection of communication actions. The ToolBus grammar allows for
arbitrary terms (‘Atoms’ in the grammar) as actions. Their syntax is shown in
Figure 6.12.

Thus, send and receive actions are not distinct syntactical constructs, but they
are functional terms (

� � � � ��� � s) where the
/
� child has value � � �

� � � � or �����
� � � � .

Consequently, we need to redefine the � � � � � & � � � ��� � method such that it inspects
the value of its first child to decide if and how to collect a communication action.
Figure 6.13 shows the redefined method.

The visit method starts by constructing a new
� ��� � � ������� ��� - � � ����� . This is

an object that contains the term that is being communicated and the process that
sends or receives it. The process name is available in the

� ��� � � ������������� � � � � ���

in the field � � � � � � ����� � � , because it is put there by the � � � � � � ����� � � �
methods

we just described. The term that is being communicated can be selected from
the

� � � � ��� � we are currently visiting. From the SDF grammar in Figure 6.12
it follows that the term is the second child of a

� � � � ��� � , and that it is of type� ��� � � � � � . Therefore, the method � ��� � ��� � ��� � � � will return it.
The newly constructed action is added to the database as a send action, a re-

ceive action, or not at all, depending on the first child of the
� � � � ��� � . This child

is of lexical type
/
� , and thus converted to an

/
� ��� � �

� ����� type in the generated

114 Object-Oriented Tree Traversal with JJForester � 6

���������	�
���&�����	� � � ��� � ����� 	 � �������� ��� ������ � ���� � ��� � ������ � ����������� � �$�� ���� ������� � �	�	�
�������� � � � �� ����&����������� � ���� ����� � ������������ �������� 	 ��� � ���	� � �� ����� � �&���&����� � ���	��� � ������	����� � � �&��� � ����� � �&���&����� � ������� � 	�� �
���&� � �������� � ����������������� 	 ������	����� � � � ��� � � ���	�&���&� � �
���������
������	����� � � ����	��� � � � ����	� ��� � �����	� � �����	� 	 � �
��� � �����	� ���������������
"

Figure 6.14: The main() method of the ToolBus analyzer.

Java classes. The
/
� ��� � � � ����� class contains an � � � 	 � � � � � � ��� � � method, so we

use string comparison to determine whether the current
� � � � ��� � has “snd-msg”

or “rec-msg” as its function symbol.
Now that we have built the specialized visitor to perform the collection, we

still need to activate it. Before we can activate it, we need to have parsed a T-
script, and built a class structure out of the parse tree for the visitor to operate on.
This is all done in the � 	 ��� �

�
method of the analyzer, as shown in Figure 6.14.

The main method shows how we use the generated parse method for
� � � � � � � to

build a tree of objects. Tscript.parse() takes a filename as an argument and tries to
parse that file as a Tscript. If it fails it throws a ParseException and displays the
location of the parse error. If it succeeds it returns a

� � � � � � � . We then construct a
new

� ��� � � ������������� � � � � ��� as described in the previous section. The
� � � � � � � is

subsequently told to accept this visitor, and, as described in Section 6.2.4 iterates
over all the nodes in the tree and calls the specific visit methods for each node.
When the iterator has visited all nodes, the

� ��� � � ������� ����� � � ������� contains a filled� ��� � � ������� ��� � � . The results in this database object can then be processed further,
in the matching phase. In our case we call the method ����� � � � � � � % 	 � � � � 	 � � � � �
which is explained below.

The matching phase

In the matching phase, the send and receive actions collected in the
� ��� � � ������� ��� � �

are matched to construct a table of potential communication events, which is then
printed to file or stored in a relational database. We will not discuss the matching
itself in great detail, because it is not implemented with a visitor. A visitor im-
plementation would be possible, but clumsy, since two trees need to be traversed
simultaneously. Instead it is implemented with nested iteration over the sets of
send and receive actions in the database, and simple case discrimination on terms.
The result of matching is a table where each row contains the process names and
data of a matching send and receive action.

We focus on an aspect of the matching phase where a visitor does play a role.
When writing the match table to file, the terms (data) it contains need to be pretty-
printed, i.e. to be converted to

� � � � � � . We implemented this pretty-printer with a

6.3 � Case study 115

�	����������� � �������	����� 	 ���	 � �&�� � ��� � �	 � � 	 �����	 � �&�� � ��� � �� � �$���� � � � �� �&��� �
���#���	 � � � ���	� � �� � � 	�� �� ���� ��������
� �&��� � �������� 	�� �� � 	 ��������� � � � � ��� ������� 	�� � ��!�! � �
� � 	 ��� � � � �
����
!�� � ���

�"
�����!�� 	 � �������� � ���&� � ������� � � � � 	�� �"

���&� � �&����� � ��� �	� 	 ���� � �"

Figure 6.15: Converting a list of terms to a string.

bottom-up traversal with the
� ��� � � � � � � � � � � � � � ����� . We chose not to use gener-

ated ��� � � � ��� � methods of the constructor classes, because using a visitor leaves
open the possibility of refining the pretty-print functionality.

Note that pretty-printing a node may involve inserting literals before, inbe-
tween, and after its pretty-printed children. In particular, when we have a list of
terms, we would like to print a “,” between children. To implement this behavior,
a visitor with a single

� � � ��� � field in combination with a top-down or bottom-up
accept method does not suffice. If JJForester would generate iterating visitors and
non-iterating accept methods, this complication would not arise. Then, literals
could be added to the

� � � ��� � field in between recursive calls.
We overcome this complication by using a visitor with a stack of strings as

field, in combination with the bottom-up accept method. The visit method for
each leaf node pushes the string representation of that leaf on the stack. The visit
method for each internal node pops one string off the stack for each of its children,
constructs a new string from these, possibly adding literals in between, and pushes
the resulting string back on the stack. When the traversal is done, the user can
pop the last element off the stack. This element is the string representation of the
visited term. Figure 6.15 shows the visit method in the

� ��� � � � � � � � � � � � � � � ���

for lists of terms separated by commas3. In this method, the Vector containing
the term list is retrieved, to get the number of terms in this list. This number of
elements is then popped from the stack, and commas are placed between them.
Finally the new string is placed back on the stack. In the conclusion we will return
to this issue, and discuss alternative and complementary generation schemes that
make implementing this kind of functionality more convenient.

After constructing the matching table, the ����� � � � � � � % 	 � � � � 	 � � � method
writes the table to file or stores it in an SQL database, using JDBC (Java Database

3The name of the method reflects the fact that this is a visit method for the symbol
� + ��
 � ��&%� ��� ,

i.e. the list of zero or more elements of type Term, separated by commas. Because the comma is an
illegal character in a Java identifier, it is converted to an underscore in the method name.

116 Object-Oriented Tree Traversal with JJForester � 6

Sender Receiver
Pump report(D) GasStation report(D?)
GasStation change(D) Customer change(D?)
Customer prepay(D,C) GasStation prepay(D?,C?)
GasStation okay(C) Customer okay(C)
Operator remit(Amount) GasStation remit(D?)
GasStation result(D) Operator result(D?)
GasStation activate(D) Pump activate(D?)
GasStation stop Customer stop
Customer turn-on GasStation turn-on
Operator schedule(Payment,C) GasStation schedule(D?,C?)
GasStation request(D,C) Operator request(D?,C?)
GasStation on Pump on

Pump

GasStation

report(D?) activate(D?) on

Operator

result(D?) request(D?,C?)

Customer

change(D?) okay(C) stopschedule(D?,C?) remit(D?) prepay(D?,C?) turn-on

Figure 6.16: The analysis results for the input file from Figure 6.8.

Connectivity). We used a visualization back-end of the documentation generator
DocGen to query the database and generate a communication graph. The result of
the full analysis of the T-script in Figure 6.8 is shown in Figure 6.16.

Evaluation of the case study

We conducted the ToolBus case study to learn about feasibility, productivity, per-
formance, and connectivity issues surrounding JJForester. Below we briefly dis-
cuss our preliminary conclusions. Apart from the case study reported here, we
conducted a case study where an existing Perl component in the documentation
generator DocGen was re-implemented in Java, using JJForester. This case study
also corroborates our findings.

Feasibility At first glance, the object-oriented programming paradigm may seem
to be ill-suited for language processing applications. Terms, pattern-matching,
many-sorted signatures are typically useful for language processing, but are not
native to an object-oriented language like Java. More generally, the reference se-
mantics of objects seems to clash with the value semantics of terms in a language.
Thus, in spite of Java’s many advantages with respect to e.g. portability, maintain-
ability, reuse, its usefulness in language processing is not evident.

6.3 � Case study 117

The case study, as well as the techniques for coping with traversal scenarios
outlined in Section 6.2, demonstrate that object-oriented programming can be ap-
plied usefully to language processing problems. In fact, the support offered by
JJForester makes object-oriented language processing not only feasible, but even
easy.

Productivity Recall that the Java code generated by JJForester from the ToolBus
grammar amounts to 4221 lines of code. By contrast, the user code we developed
to program the T-script analyzer consists of 323 lines. Thus, 93% of the application
was generated, while 7% is hand-written.

These figures indicate that the potential for increased development productiv-
ity is considerable when using JJForester. Of course, actual productivity gains
are highly dependable on which program transformation scenarios need to be ad-
dressed (see Section 6.2.5). The productivity gain is largly attributable to the sup-
port for generic traversals.

Components and connectivity Apart from reuse of generated code, the case
study demonstrates reuse of standard Java libraries and of external (non-Java)
tools. Examples of such tools are PGEN, SGLR and implode, an SQL database, and
the visualization back-end of DocGen. Externally, the syntax trees that JJForester
operates upon are represented in the common exchange format ATerms. This ex-
change format was developed in the context of the ASF+SDF Meta-Environment,
but has been used in numerous other contexts as well. In [JV00] we advocated the
use of grammars as tree type definitions that fix the interface between language
tools. JJForester implements these ideas, and can interact smoothly with tools that
do the same. The transformation tool bundle XT [JVV00] contains a variety of
such tools.

Performance To get a first indication of the time and space performance of ap-
plications developed with JJForester, we have applied our T-script analyzer to a
script of 2479 lines. This script contains about 40 process definitions, and 700 send
and receive actions. We used a machine with Mobile Pentium processor, 64Mb of
memory, running at 266Mhz. The memory consumption of this experiment did
not exceed 6Mb. The runtime was 69 seconds, of which 9 seconds parsing, 55
seconds implosion, and 5 seconds to analyze the syntax tree. A safe conclusion
seems to be that the Java code performs acceptably, while the implosion tool needs
optimization. Needless to say, larger applications and larger code bases are needed
for a good assessment.

118 Object-Oriented Tree Traversal with JJForester � 6

6.4 Concluding remarks

6.4.1 Contributions

In this paper we set out to combine SDF support of the ASF+SDF Meta-Environment
with the general-purpose object-oriented programming language Java. To this end
we designed and implemented JJForester, a parser and visitor generator for Java
that takes SDF grammars as input. To support generic traversals, JJForester gener-
ates non-iterating visitors and iterating accept methods. We discussed techniques
for programming against the generated code, and we demonstrated these in detail
in a case study. We have assessed the expressivity of our approach in terms of the
program-transformation scenarios that can be addressed with it. Based on the case
study, we evaluated the approach with respect to productivity, and performance
issues.

6.4.2 Related Work

A number of parser generators, “tree builders”, and visitor generators exist for
Java. JavaCC is an LL parser generator by Metamata/Sun Microsystems. Its input
format is not modular, it allows Java code in semantic actions, and separates pars-
ing from lexical scanning. JJTree is a preprocessor for JavaCC that inserts parse
tree building actions at various places in the JavaCC source. The Java Tree Builder
(JTB) is another front-end for JavaCC for tree building and visitor generation. JTB
generates two iterating (bottom-up) visitors, one with and one without an extra ar-
gument in the visit methods to pass objects down the tree. A version of JTB for
GJ (Generic Java) exists which takes advantages of type parameters to prevent
type casts. Demeter/Java is an implementation of adaptive programming [PXL95]
for Java. It extends the Java language with a little (or domain-specific) language
to specify traversal strategies, visitor methods, and class diagrams. Again, the
underlying parser generator is JavaCC. JJForester’s main improvement with re-
spect to these approaches is the support of generalized LR parsing. Concerning
traversals, JJForester is different from JJTree and JTB, because it generates iterat-
ing accept methods rather than iterating visitors. JJForester is less ambitious and
more lightweight than Demeter/Java, which is a programming system rather than
a code-generator.

ASDL (Abstract Syntax Definition Language [WAKS97]) comes with a visitor
generator for Java (and other languages). It generates non-iterating visitors and
non-iterating accept methods. Thus, traversals are not supported. ASDL does
not incorporate parsing or parser generation; it only addresses issues of abstract
syntax.

In other programming paradigms, work has been done on incorporating sup-
port for SDF and traversals. Previously, we have combined the SDF support of the
ASF+SDF Meta-Environment with the functional programming language Haskell [KLV00].

6.4 � Concluding remarks 119

In this approach, traversal of syntax trees is supported with updatable, many-sorted
folds and fold combinators [LVK00]. Recently, support for generic traversals has
been added to the ASF interpreter. These traversals allow concise specification
of many-sorted analyses and rephrasing transformations. Stepwise refinement or
generic refinement of such traversals is not supported. Stratego [VBT99] is a lan-
guage for term rewriting with strategies. It offers a suite of primitives that allow
programming of (as yet untyped) generic traversals. Stratego natively supports
ATerms. It is used extensively in combination with the SDF components of the
ASF+SDF Meta-Environment.

6.4.3 Future Work

Concrete syntax and subtree sharing Currently, JJForester only supports pro-
cessing of abstract syntax trees. Though the parser SGLR emits full concrete parse
trees, these are imploded before being consumed by JJForester. For many program
transformation problems it is desirable, if not essential, to process concrete syntax
trees. A prime example is software renovation, which requires preservation of lay-
out and comments in the source code. The ASF+SDF Meta-Environment supports
processing of concrete syntax trees. In order to broaden JJForester’s applicability,
and to ensure its smooth interoperation with components developed in ASF, we
consider adding concrete syntax support.

When concrete syntax is supported, the trees to be processed are significantly
larger. To cope with such trees, the ASF+SDF Meta-Environment uses the ATerm
library which implements maximal subtree sharing. As a Java implementation
of the ATerm library is available, subtree sharing support could be added to JJ-
Forester. We would like to investigate the repercusions of such a change to tree
representation for the expressiveness and performance of JJForester.

Decoration and aspect-orientation Adding a Decoration field to all generated
classes would make it possible to store intermediate results inside the object struc-
ture inbetween visits. This way, a first visitor could calculate some data and store
it in thee object structure, and then a second visitor could “harvest” these data and
perform some additional calculation on them.

More generally, we would like to experiment with aspect-oriented techniques
[KL

�

97] to customize or adapt generated code. Adding decoration fields to gen-
erated classes would be an instance of such customization.

Object-oriented folds and strategies As pointed out in Sections 6.2.5 and 6.3.3,
not all transformation scenarios are elegantly expressible with our generated vis-
itors. A possible remedy would be to generate additional instances of the visitor
class for specific purposes. In particular, visitors for unparsing, pretty-printing,
and equality checking could be generated. Also, the generated visitors could offer

120 Object-Oriented Tree Traversal with JJForester � 6

additional refinable methods, such as � � � � � � � � ��� � and � � � � � - � � ��� . Another
option is to generate iterating visitors as well as non-iterating ones. Several of
these possibilities have been explored in the context of the related systems dis-
cussed above. Instead of the visitor class, an object-oriented variation on updat-
able many-sorted folds could be generated. The main difference with the visitor
pattern would be that the arguments of visit functions are not (only) the current
node, but its children, and only a bottom-up accept method would be available.
More experience is needed to establish which of these options would best suit our
application domains.

The Visitor pattern, both in the variant offered by JJForester, where iteration is
in the accept methods, and in the more common variant where iteration is in the
visit methods, is severely limited in the amount of control that the user has over
traversal behaviour. Generation of classes and methods to support folding would
enrich the traversal repertoire, but only in a limited way. To obtain full control
over traversal behaviour, we intend to transpose concepts from strategic rewriting,
as embodied by Stratego and the rewriting calculus [CK99], to the object-oriented
setting. In a nutshell the approach comes down to the following. Instead of doing
iteration either in visit or accept methods, iteration would be done in neither. In-
stead, a small set of traversal combinators can be generated for each grammar, in
the form of well-chosen refinements of the Visitor class. These traversal combina-
tors would be direct translations of the strategy combinators in the aforementioned
rewriting languages. For instance, the sequence combinator
�� � can be modelled
as a visitor with two fields of type Visitor, and visit methods that apply these two
argument visitors one after another. Using such combinators, the programmer can
program generic traversal strategies instead of merely selecting one from a fixed
set. As an additional benefit, such combinators would remove the need for multiple
inheritance for combining visitors. We intend to broaden JJForester’s generation
scheme to generate traversal combinators, and to explore programming techniques
with these.

Availability JJForester is free software, distributed as open source under the
GPL license. It can be downloaded from http://www.jjforester.org.

Acknowledgements We would like to thank Arie van Deursen for his earlier
work on building visitors for structures derived from SDF, and the discussions
about this work. Ralf Lämmel and Paul Klint provided us with useful comments
on a draft version.

Chapter 7

Legacy to the Extreme

In this chapter the relation of the techniques developed earlier in
this thesis with a software development process called “Extreme Pro-
gramming” is examined. Extreme programming is billed as a devel-
opment method, i.e., a method to develop new software systems. This
chapter examines the feasibility of applying this method to the main-
tenance of legacy systems.1

7.1 Introduction

In this paper, we explore the relationship between legacy systems and extreme
programming. We explain how the use of (reverse engineering) tools can help to
reduce the cost of change in a legacy setting, and illustrate the use of these tools.
Subsequently, we discuss how and which XP practices can be incorporated into
the maintenance of legacy software systems, and we analyze how and why the
positive effects for regular and legacy XP projects are different. We conclude with
an episode in which a pair of XP programmers face the task of changing hostile
Cobol code (examples included), and are able to do so thanks to their tools and
bag of XP practices.

One of the key elements of extreme programming (XP) is design for today,
so that the system is equally prepared to go any direction tomorrow. As Beck
argues, one of the reasons XP gets away with this minimalist approach because
it exploits the advances in software engineering technology, such as relational
databases, modular programming, and information hiding, which all help to re-
duce the cost of changing software [Bec99]. The result of this is that the software

1This chapter was published earlier as: A. van Deursen, T. Kuipers, and L. Moonen. Legacy to the
extreme. In M. Marchesi and G. Succi, editors, eXtreme Programming Examined. Addison-Wesley,
Reading, Massachusetts, May 2001.

122 Legacy to the Extreme � 7

developer does not need to worry about future changes: the change-cost curve is
no longer exponential, but linear. Making changes easily is further supported by
XP in various ways:

� Releases are small and frequent, keeping changes small as well;

� The code gets refactored every release, keeping it concise and adaptable;

� Testing is at the heart of XP, ensuring that refactored code behaves as it
should.

The assumption that the system under construction is easily modifiable rules
out an overwhelming amount of existing software: the so-called legacy systems,
which by definition resist change [BS95]. Such systems are written using technol-
ogy such as Cobol, IMS or PL/I, which does not permit easy modification. (As
an example, we have encountered a 130,000 lines of code Cobol system contain-
ing 13,000 go-to statements.) Moreover, their internal structure has degraded after
repeated maintenance, resulting in systems consisting of duplicated (but slightly
modified) code, dead code, support for obsolete features, and so on. The extreme
solution that comes to mind is to throw such systems away — unfortunately, it
takes time to construct the new system, during which the legacy system will have
to be maintained and modified.

Now what if an extreme programmer were to maintain such a legacy system?
(Which probably means he was either forced to do so or seduced by an extreme
salary). Should he drop all XP practices because the legacy system resists change?
We will try to demonstrate in this paper why he should not. He could write test
cases for the programs he has to modify, run the tests before modification, refactor
his code after modification, argue for small releases, ask for end-user stories, and
so on, practices that are all at the heart of XP.

7.2 Tools Make It Possible

Refactoring legacy source code is, in principle, no different from refactoring “reg-
ular” source code. Refactoring is done to improve the code, whether improving
can mean many things. Modifications can be made to improve adaptability, read-
ability, testability, or efficiency.

There are some things particular to refactoring legacy code. In order to make
sure that a refactoring does not alter the functionality of the system, unit tests are
run before and after the refactoring. In a legacy setting there are no unit tests
beforehand, so they need to be written specifically for the refactoring.

Refactoring also requires the developers to have a great deal of detailed knowl-
edge about the system. A good example of this is the modification of the transac-
tion interface as described by [Bec99, Chapter 5]. This knowledge can come from

7.2 � Tools Make It Possible 123

someone who knows the system intimately, or can be provided by tools that allow
a developer to get to these details quickly and accurately.

Modern development systems in general provide those details. They provide
all sorts of development-time and run-time information which allows hunches to
be verified within seconds. Most legacy maintenance (and development) is done
on a mainframe however, and the mix of JCL, Cobol and others has to be controlled
without advanced development tools. Usually, even basic search tools such as grep
are not available. The development team manages to get by, only because part of
the team has been working on the system for years (ever since that mainframe was
carried into the building). New team members are introduced to the system on a
need-to-know basis.

More and more often, these systems get “outsourced”, (the development
team is sold off to another company, and the maintenance of the system is then
hired from this new company). After such an outsourcing the original develop-
ment/maintenance team usually falls apart, and knowledge of the system is lost.
And it is still running on that same mainframe, without grep.

Consequently, maintenance on these systems will be of the break-down variety.
Only when things get really bad, someone will don his survival suit and venture
inside the source code of the system, hoping to fix the worst of the problems. This
is the state most administrative systems in the world are in [BL76].

7.2.1 The Legacy Maintenance Toolbox

We have been developing a toolset over the last few years which integrates a num-
ber of results from the areas of reverse engineering and compiler construction.
The toolset is the Legacy Maintenance Toolbox (LMT). It consists of a number
of loosely coupled components. One of the components is DocGen [DK99a], (so
called because of its basic ability to generate documentation from the source code).
DocGen generates interactive, hyperlinked documentation about legacy systems.
The documentation is interactive in that it combines various views of the system,
and different hierarchies, and combines those with a code browser (see Figure 7.1
for an example session). DocGen shows call graphs for the whole system, but also
per program. It shows database access, and can visualize data dependencies be-
tween different programs. Here, we try to provide the programmer with as much
information as we can possibly get from the source. (One of the problems is that
the source may be written in a vendor specific dialect of a more conventional lan-
guage, of which no definition is published.)

We augment the DocGen code browsing facility with TypeExplorer [DM99], a
system which infers types for variables in an untyped language (typically Cobol),
and lets the programmer browse the code using those types. TypeExplorer can
be used, for instance, to aid in impact analysis sessions. When the requirements
of a financial system change from “make sure all amounts are British Pounds” to

124 Legacy to the Extreme � 7

Figure 7.1: An example DocGen session.

7.2 � Tools Make It Possible 125

“make sure all amounts are Euros” this will inevitably have an impact on all data
(both variables in the code, and data in databases) which are of type “amount”.
Because TypeExplorer can come up with a list of all variables that are in the same
type equivalence class, the programmer only has to identify a single variable which
deals with amounts to identify all variables in the same type equivalence class (and
therefore also dealing with amounts).

The combination of DocGen and TypeExplorer proves to be a powerful tool
for gaining insight into the details of a system. DocGen and TypeExplorer get
their information from a repository, which is filled by a combination of parsing (if
we have a grammar for the legacy system’s language) and lexical analysis. This
repository can also be queried directly, using standard SQL queries.

One of the key properties of LMT is that it is open: external tools can be easily
integrated. An example tool is CloneDr, from Semantic Designs, which detects
(near) clones (or “copy-paste code”) in sources, and removes them (by replacing
them with a single procedure and a number of calls to that procedure, for instance)
[BYM

�

98]. Code clone removal can be seen as an automated refactoring opera-
tion that adheres to the XP principle of say it once and only once. Apart from the
obvious benefit of reducing the amount of code to be understood, a less expected
benefit comes from having to give a name to the newly created procedure. This
obviously is a human activity, and helps to focus the thoughts of a maintainer on
a particular piece of code, which, since it was duplicated in the original program,
must be of some use � �5�

Newer (less developed) components of LMT are concept analysis, which aids
in the remodularization of legacy systems [DK99b, KM00], and data flow analysis
which aids in tracking data through the system [Moo97].

Using LMT, maintenance programmers can learn about the legacy system.
They gain confidence about their knowledge by verifying that for instance a database
table is only written to and never read from, and therefore it can be removed. They
can see that two variables do not occur in the same type equivalence class, so val-
ues of the first variable never get passed to the second, and so on. As they use
LMT initially to hunt down specific problems, they automatically increase their
knowledge of the system, much like they would have when they were brought in
during the development of the system.

7.2.2 More Tools

LMT is the result of research in the area of reverse engineering and program un-
derstanding, and builds upon related work in those areas (see [DK99b, DM99]
for a detailed comparison). Two tools that are similar in nature to LMT are Rigi
[WTMS95] and PBS [BHB99], which also can extract various pieces of data from
the sources, and which can present them in various ways. Rigi and PBS have been
used more for C then for Cobol, which involves significant differences (for exam-

126 Legacy to the Extreme � 7

ple, the lack of types and a parameter mechanism in Cobol, and the data-intensive
nature of typical Cobol systems). On the commercial side, related Cobol tools
are Viasoft’s Existing Systems Workbench, Reasoning’s InstantQA tools, and Mc-
Cabe’s testing and understanding tools. These tools tend to be closed, making it
not only difficult to integrate them with other tools, but also to deal with customer
or application-specific issues (think of dialects, coding conventions, I/O utilities,
and so on), which occur very frequently in Cobol applications. Outside the Cobol
arena there are various tools to analyze C, C++, or Java code, such as TakeFive’s
Sniff+ tools.

7.3 Adopting XP Step by Step

Adopting the XP-approach in a legacy setting can only mean one thing: aim at
simplicity. How does this affect us when we decide to introduce XP in an existing
legacy maintenance project?

First of all, we have to get a picture of the existing code base. This means that
we generate online, hyper-linked documentation, using the DocGen technology
discussed in the previous section. This allows us to browse through the legacy
system, and to ask queries about the usage of programs, copybooks (the Cobol
variant of an included source file), databases, and so on. Moreover, it can be re-
generated after any modification, thus ensuring up-to-dateness and consistency.

Next, we have to get into contact with the end-user. We need to collect end-user
stories for modification requests. Given the current state of the system, such modi-
fication requests are likely to include technical requests as well, such as increasing
the stability of the system.

Then we have to divide the modification stories into small iterations. For each
modification, we identify the affected code, and estimate the effort needed to im-
plement the request. Observe that such an “impact analysis” can only be done with
some understanding of the code, which is provided by the TypeExplorer technol-
ogy presented in the previous section. As in regular XP, the effort estimates are
made by the developers, whereas the prioritization (which story first) is done by
the end-user.

We then start working release by release. Each release goes through a series of
steps:

� We write test cases for the code that is to be affected by the change request,
and run the tests.

� We refactor the affected code so that we can work with it, using the reverse
engineering tools described earlier. This means removing extreme ugliness,
duplicated functionality, unnecessary data, copy-paste clones, standardizing
the layout, and so on. We then re-run the test cases just constructed, in order
to make sure that no damage has been done while refactoring.

7.3 � Adopting XP Step by Step 127

� After that, the code is in such a shape that we feel sufficiently confident that
we can modify it. If necessary, we adapt the test cases to reflect the modified
features, implement the modification request, and re-run the test cases.

� Finally we refactor again, re-test, and re-generate the system documentation.

For XP-programmers these steps will sound extremely familiar. So what are
the differences with regular XP?

First of all, the productivity per iteration is lower than in regular XP. This is
because (1) there are no test cases, which will have to be added for each refactoring
and modification; (2) the code has not been previously refactored; and (3) the pro-
gramming technology used is inherently more static than, for example, Smalltalk.

Second, the code base itself is not in its simplest state. This means that program
understanding, which constitutes the largest part of actually changing a program,
will take much more time. Luckily, XP-programmers work in pairs, so that they
can help each other in interpreting the code and the results from invoking their tool
set. The code not being in its simplest state also means that while studying code
(during impact analysis, for example), the pair is likely to identify many potential
ways of refactoring, for example when encountering dead code.

One might consider doing a one-shot, up front refactoring of the entire legacy
system to avoid such problems. However, successful refactoring is not an auto-
matic process but requires human intervention. Moreover, there are no test cases
available a priori. Last but not least, a total refactoring may be unnecessary any-
way if parts of the system do not need modification or are likely to be removed
(simplicity requires us not to worry about things we are not going to need).

Another observation is that in normal XP the positive effects of refactoring are
accumulated – keeping the system flexible at all times. When applying XP to a
legacy system, only after starting to follow XP principles parts of the system get
refactored. The accumulated effect of this is much lower than in regular XP.

A final question to ask is whether the scenario sketched is realistic. If it is
so good, why has it not been done before? Reasons may be a lack of awareness
of the XP-opportunities, fear of the overwhelming amount of legacy code lead-
ing to paralysis, confusion with the expensive and unrealistic one-shot refactoring
approach, or the plain refusal to invest in building test cases or refactoring. The
most important reason, however, is that it is only during the last few years that
reverse engineering technology has become sufficiently mature to support the XP
approach sketched above. Such technology is needed to assist in the understanding
needed during planning and modification, and to improve existing code just before
and after implementing the modification.

128 Legacy to the Extreme � 7

Figure 7.2: An example accept-giro

7.4 XP on Legacy Code

So how would all of this benefit a bunch of maintenance programmers facing a
mountain of Cobol code? We will try to answer that question by describing a
concrete step-by-step maintenance operation. The example is from the invoicing
system of a large administrative system (from the banking/insurance world). All
code used in this example is real. We have changed it slightly as to camouflage
actual amounts and account numbers.

But first, some culture: In the Netherlands, bill paying is largely automated
with companies sending out standardized, optically readable forms called “accept-
giro” (see Figure 7.2 for an example). Normally, all information including the
customers account number, the companies account number and the amount to be
paid, is preprinted on these accept-giros, and all the customer has to do is sign
them and send them back to accept the mentioned amount being charged off his
account. These forms then are read automatically by a central computer operated
by all associated Dutch banks, and the appropriate amount is transfered from one
account to the next, even between different banks.

The task at hand for the programmers is: we have changed banks/account num-
bers, and all invoices printed from next month should reflect that. That is, all bills
should be paid to our new account number.

Once the team understands the task, they start to work. First they need to
find out what file is being printed on the blank forms. They know that their system
only creates files, and that these files are then dumped to a specialized high volume
printer somewhere. After asking around and looking at the print job descriptions,
it turns out that all data for the invoices is in a file called INVOP01. As INVOP01

7.4 � XP on Legacy Code 129

�������� �����
� � � � ��� � � ����� ��� �	�������� ��� � � � � � � � �

����� ���

��� � � �
�� � �
��� � � ��� � �
������� ��� ��� ��� 	 � �

����� � � � � � � ����� � � � � � �
��
 � � � ��
 � � � �� � � ��� � � �
�� ������� ��
��

� �����	��������� � � � ����� � �&! ��������� ��! ����� � � � � ! �����

Figure 7.3: INVOP01 from the initial system

is the end product of this particular task, the team runs the system on their test data
and keep a copy of the resulting INVOP01 file. Now they know that when they are
finished with the task, the INVOP01 file they generate should be the same as the
current INVOP01, apart from the account number. The INVOP01 on the test data
can be seen in Figure 7.3.

Because they have the system analysis tools described earlier, the team can
now check what programs do something with the INVOP01 print file. Figure 7.4
shows all facts that have been derived for INVOP01.

It turns out that the only program operating on INVOP01 is INVOMA2. The
information derived from INVOMA2 shows that this program only uses one in-
put file: INVOI01. Executing the system on the test data reveals that INVOI01
does not contain account numbers, rather it contains the names and addresses of
customers. If the account number is not read from file, and INVOMA2 does not
access any databases, then the account number should be in the code! The team
does a find on the string 5551212 in the code, and they find the code as shown in
Figure 7.5.

(Note the old account number commented out in the three lines starting with
an asterisk ...) They change the account number to 1212555 (the new account
number) and run the system using the test data. Much to their surprise, the test
version of INVOP01 comes out like shown in Figure 7.6.

The last line of the test file shows the correct account number, together with
the � ���	� that is also visible in the code. This is the part of the form that will be
read optically. However, the part of the form that is meant for humans still shows
the old account number. The team look at each other, shake their heads, and do a
find on
�
�
 � � � � � �

in the source code. What shows up is in Figure 7.7.

130 Legacy to the Extreme � 7

Figure 7.4: All facts derived for file INVOP01
�����������	��
�����	�	�	�������	�������������
��� ������� �	���� 	�"!$#�!%�
��� ��������&(')�+*,�	���� 	��-����	���.�
��� �

/ ��0 �������1&32+*4�	���� 	�52�0�6	��7	8	91�
/ ��0 ������� �	���� 	�"!$#�!%�
/ ��� ��������&:7�*4�	���� 	�"!;8�0	<�!%�

��0 �������1&3���+*,�	���� 	�������+'=9+'=91�
��� ��������&:7�*4�	���� 	�"!$#�8�0	<�!%�

Figure 7.5: Code found by searching for 5551212
>�>�>�>�?�?�?�?
@�@�@�@�A�A�A�A ')���B��� >�>�>�>C?�?�?�?�@�@�@�@�A�A�A�A

'$�������

����-����	��D��5�
����-���-��E')9
���������������F-��	�F�)��G

�����1�H'=9��H')9 �������H'=91�H'=9
�	���	��� ���������5�������.�
�	�����.� ��DF-�������	��D

� >�>�>�>�?�?�?�?�@�@�@�@�A�A�A�A # ')������� > #+'=9+'=��������#�8�0�<

Figure 7.6: Test version of INVOP01 after modification

7.5 � Conclusions 131

��� � �����
 �
� � � 	 �
	 � ��� �
���� � � ��
 �� �
� � � 	 �
	������ �
���� � � ����� � � � � � � � �

��� � ���� � �
� � � 	 �
	������ �
���� � � ����� � � � � � � � �
� � � 	 �
	������ �
���� � � ��
 �� �
� � � 	 �
	 ������
���� � � ��
 � � � �� � � � � �

Figure 7.7: Code found by searching for 555.12.12

They change the two(!) account numbers and run the test again. Now every-
thing comes out as expected. They write a todo item that this part of the code
needs urgent refactoring, or maybe they immediately implement a procedure that
formats account numbers. Or maybe the system can be left to die and they can
spend their time on an XP reimplementation of the whole system.

7.5 Conclusions

In this paper we have looked at extreme programming from the viewpoint of legacy
systems. We observed that the programming environment used for regular XP
projects provides capabilities not available for most mainframe-based legacy sys-
tems. At the same time we described progress in the area of reverse engineering
tools that can be used to overcome these limitations. We used these findings to
come up with a way to adopt XP practices during legacy system software mainte-
nance.

132 Legacy to the Extreme � 7

Chapter 8

Conclusions

In the introduction to this thesis, three research questions have been posed. They
were:

� How can we reduce the search space when searching for a particular artifact
in a legacy software system?

� How can we obtain sufficiently detailed information about a legacy software
system to perform a structural change (semi-)automatically?

� How can we alter the software engineering process such that we no longer
produce legacy systems?

8.1 Reduce Search Space

In Chapter 2, it was shown how we can use a number of analysis techniques,
lexical analysis being the prime one, to derive facts from a legacy system. A tool
architecture for performing such analyses was described. Using these techniques,
a call-dependency analysis, or a data-usage analysis can be made of a system.
The results from such an analysis reduce the search space of someone looking
for a particular artifact because, for instance, they are looking for a module that
modifies a particular piece of data.

Chapter 3 builds on those results by integrating all analyses in a compact,
browseable presentation format. This way, all analysis results are readily available,
and are all linked to each other. An engineer can move easily from an overview
of all modules in a system, to an overview of all modules that operate on a piece
of data, to an overview of all modules that actually modify that piece of data, and
so on. Building these documentation generators gets facilitated by so-called island
grammars, an analysis technique which borrows from lexical analysis its flexibil-
ity, and from syntactic analysis its thoroughness.

134 Conclusions � 8

8.2 Information for Structural Change

Since legacy systems are usually very large, the amount of facts extracted from
them is usually large too. Somehow, this information needs to be filtered, prefer-
ably automatically. One way of automatically filtering is to try to derive an object-
oriented design from an existing, non-object-oriented system. Once this design is
derived, the actual structural change can be performed manually. Chapter 4 exam-
ines two methods that can be used for the automatic derivation of objects. These
methods use exactly the facts that can be derived using the techniques developed
in the earlier chapters. Although deriving an object-oriented design completely
automatically from a legacy system turns out to be undesirable, if not impossible,
the techniques examined in this chapter do support the human engineer in auto-
matically relating data and procedures. Having this information available is a very
good starting point for an actual object-oriented redesign.

Another way to interpret the derived facts is by automatically grouping the
data in a system by the concept they are related to. That is, to group data of the
same type. Chapter 5 uses a technique called type-inference to infer the type of a
variable in a system. Using type inference, a variable can be determined to hold
either a date, or a monetary value, or a social-security number, etcetera. Using the
concept analysis from Chapter 5 on programs and the inferred type of the variables
they use appears to give a better starting point for an object-oriented redesign than
using just the variables.

When we are looking for detailed information, even syntactical analysis in it-
self will not, in general be enough. Usually, a number of syntactical analyses need
to be performed to get the right fact out of the system. More often than not, these
analyses have a conditional dependency, and they use each others results as in-
put. Having a system that allows for the elegant and concise development of such
combinations of analyses is the topic of Chapter 6. In it, a form of parse tree traver-
sal is developed that can be used to perform exactly the kinds of interdependent
syntactical analyses as described.

8.3 Altering the Software Engineering Process

New insights have improved the software engineering process over the last decades.
These improvements are usually only applied to software development (the build-
ing of new software systems), not to software maintenance. In Chapter 7 the re-
lation of the techniques developed earlier in this thesis to a software development
process called “Extreme Programming” is examined. Furthermore, the feasibility
of applying this process to the maintenance of legacy systems is discussed. Using
this, or a similar methodology, and supported by the right analysis techniques, a
team of engineers can maintain a legacy system in such a way that it stops being
a legacy system, and becomes an understandable, modifiable, and maintainable
system, once again.

Bibliography

[AKW88] A. V. Aho, B. W. Kernighan, and P. J. Weinberger. The AWK Program-
ming Language. Addison-Wesley, 1988.

[B
�

00] M.G.J. van den Brand et al. The ASF+SDF Meta-Environment: a
component-based language development environment. Submitted for
publication, 2000.

[Bec99] K. Beck. Extreme Programming Explained. Embrace Change. Addison
Wesley, 1999.

[BHB99] I. T. Bowman, R. C. Holt, and N. V. Brewster. Linux as a case study:
Its extracted software architecture. In 21st International Conference on
Software Engineering, ICSE-99, pages 555–563. ACM, 1999.

[BHK89] J. A. Bergstra, J. Heering, and P. Klint. The algebraic specification
formalism asf. In Algebraic Specification, chapter 1, pages 1–66. The
ACM Press in coöperation with Addison-Wesley, 1989.

[BJKO00] M.G.J. van den Brand, H.A. de Jong, P. Klint, and P.A. Olivier. Ef-
ficient Annotated Terms. Software, Practice & Experience, 30(3):259–
291, 2000.

[BK94] J. A. Bergstra and P. Klint. The ToolBus: a component interconnection
architecture. Technical Report P9408, University of Amsterdam, Pro-
gramming Research Group, 1994. Available from http://www.science.
uva.nl/research/prog/reports/reports.html.

[BK98] J. A. Bergstra and P. Klint. The discrete time ToolBus – a software coor-
dination architecture. Science of Computer Programming, 31(2-3):205–
229, July 1998.

[BL76] L. A. Belady and M. M. Lehman. A model of large program develop-
ment. IBM Systems Journal, 15(3):225–252, 1976.

136 BIBLIOGRAPHY

[BM97] E. Burd and M. Munro. Enriching program comprehension for soft-
ware reuse. In International Workshop on Program Comprehension;
IWCP’97. IEEE Computer Society, 1997.

[BMW96] E. Burd, M. Munro, and C. Wezeman. Extracting reusable modules
from legacy code: Considering the issues of module granularity. In
3rd Working Conference on Reverse Engineering; WCRE’96, pages 189–
196. IEEE Computer Society, 1996.

[Boe88] B. W. Boehm. A spiral model of software development and enhancement.
IEEE Computer, 21(5), 1988.

[dB
�

96] M. G. J. van den Brand et al. Industrial applications of ASF+SDF. In
Algebraic Methodology and Software Technology (AMAST’96), volume
1101 of LNCS, pages 9–18. Springer-Verlag, 1996.

[dBKV96] M. G. J. van den Brand, P. Klint, and C. Verhoef. Core technologies
for system renovation. In K.G. Jeffery, J. Král, and M. Bartos̆ek, edi-
tors, SOFSEM’96: Theory and Practice of Informatics, volume 1175 of
LNCS, pages 235–255. Springer-Verlag, 1996.

[dBSV97a] M. G. J. van den Brand, A. Sellink, and C. Verhoef. Generation of
components for software renovation factories from context-free gram-
mars. In Fourth Working Conference on Reverse Engineering; WCRE’97,
pages 144–155. IEEE Computer Society, 1997.

[dBSV97b] M. G. J. van den Brand, M. P. A. Sellink, and C. Verhoef. Obtaining a
Cobol grammmar from legacy code for reengineering purposes. In Pro-
ceedings of the 2nd international workshop on the theory and practice of
algebraic specifications, Electronic workshops in computing. Springer
Verlag, 1997.

[dBSV98] M. G. J. van den Brand, M. P. A. Sellink, and C. Verhoef. Current pars-
ing techniques in software renovation considered harmful. In Proceed-
ings of the sixth International Workshop on Program Comprehension,
pages 108–117. IEEE, 1998.

[Bro83] R. Brooks. Towards a theory of the comprehension of computer pro-
grams. Int. Journal of Man-Machine Studies, 18:543–554, 1983.

[Bro91] P. Brown. Integrated hypertext and program understanding tools. IBM
Systems Journal, 30(3):363–392, 1991.

[BS95] M. L. Brodie and M. Stonebraker. Migrating Legacy Systems: Gateways,
interfaces and the incremental approach. Morgan Kaufman Publishers,
1995.

BIBLIOGRAPHY 137

[BV95] J. C. M. Baeten and C. Verhoef. Concrete process algebra. In Hand-
book of Logic in Computer Science, volume 4, pages 149–268. Claren-
don Press, Oxford, 1995.

[BYM
�

98] I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier. Clone
detection using abstract syntax trees. In International Conference on
Software Maintenance, ICSM’98, pages 368–377. IEEE Computer Soci-
ety Press, 1998.

[CB91] G. Caldiera and V. R. Basili. Identifying and qualifying reusable software
components. IEEE Computer, pages 61–70, February 1991.

[CC90] E. J. Chikofsky and J. H. Cross. Reverse engineering and design recov-
ery: A taxonomy. IEEE Software, 7(1):13–17, 1990.

[CCM96] G. Canfora, A. Cimitile, and M. Munro. An improved algorithm
for identifying objects in code. Software—Practice and Experience,
26(1):25–48, 1996.

[CDDF99] A. Cimitile, A. De Lucia, G. A. Di Lucca, and A. R. Fasolino. Identi-
fying objects in legacy systems using design metrics. Journal of Systems
and Software, 44(3):199–211, 1999.

[CFKW95] Y.-F. Chen, G. S. Fowler, E. Koutsofios, and R. S. Wallach. Ciao:
A graphical navigator for software and document repositories. In
G. Caldiera and K. Bennett, editors, Int. Conf. on Software Maintenance;
ICSM 95, pages 66–75. IEEE Computer Society, 1995.

[CK99] Horatiu Cirstea and Claude Kirchner. Introduction to the rewriting cal-
culus. Rapport de recherche 3818, INRIA, December 1999.

[CV95] A. Cimitile and G. Visaggio. Software salvaging and the call dominance
tree. Journal of Systems Software, 28:117–127, 1995.

[DDF
�

97] A. De Lucia, G. A. Di Lucca, A. R. Fasolino, P. Guerra, and
S. Petruzzelli. Migrating legacy systems towards object-oriented plat-
forms. In International Conference on Software Maintenance; ICSM’97,
pages 122–129. IEEE Computer Society, 1997.

[DK97] A. van Deursen and T. Kuipers. Finding classes in legacy code using
cluster analysis. In S. Demeyer and H. Gall, editors, Proceedings of
the ESEC/FSE’97 Workshop on Object-Oriented Reengineering. Report
TUV-1841-97-10, Technical University of Vienna, 1997.

138 BIBLIOGRAPHY

[DK98] A. van Deursen and T. Kuipers. Rapid system understanding: Two
COBOL case studies. In S. Tilley and G. Visaggio, editors, Sixth In-
ternational Workshop on Program Comprehension; IWPC’98, pages 90–
98. IEEE Computer Society, 1998. Also published as Chapter 2 of this
thesis.

[DHK96] A. van Deursen, J. Heering, and P. Klint, editors. Language Prototyp-
ing: An Algebraic Specification Approach, volume 5 of AMAST Series in
Computing. World Scientific Publishing Co., 1996.

[DK98] A. van Deursen and P. Klint. Little languages, little maintenance? Jour-
nal of Software Maintenance, 10(2):75–92, 1998.

[DK99a] A. van Deursen and T. Kuipers. Building documentation generators.
In International Conference on Software Maintenance, ICSM’99, pages
40–49. IEEE Computer Society, 1999. Also published as Chapter 3 of
this thesis.

[DK99b] A. van Deursen and T. Kuipers. Identifying objects using cluster and
concept analysis. In 21st International Conference on Software Engi-
neering, ICSE-99, pages 246–255. ACM, 1999. Also published as Chap-
ter 4 of this thesis.

[DM98] A. van Deursen and L. Moonen. Type inference for COBOL systems. In
I. Baxter, A. Quilici, and C. Verhoef, editors, Proc. 5th Working Conf. on
Reverse Engineering, pages 220–230. IEEE Computer Society, 1998.

[DM99] A. van Deursen and L. Moonen. Understanding COBOL systems using
types. In Proceedings 7th Int. Workshop on Program Comprehension,
IWPC’99, pages 74–83. IEEE Computer Society, 1999.

[dOBvSdPL98] Ch. de Oliveira Braga, A. von Staa, and J. C. S. do Prado Leite.
Documentu: A flexible architecture for documentation production based
on a reverse-engineering strategy. Journal of Software Maintenance,
10:279–303, 1998.

[EHM
�

99] P. H. Eidorff, F. Henglein, C. Mossin, H. Niss, M. H. Sorensen, and
M. Tofte. Anno Domini: From type theory to Year 2000 conversion tool.
In 26th Annual Symposium on Principles of Programming Languages,
POPL’99. ACM, 1999. To appear.

[FGK88] E. B. Fowlkes, R. Gnanadesikan, and J. R. Kettenring. Variable selection
in clustering. Journal of Classification, 5:205–228, 1988.

[FHK
�

97] P. J. Finnigan, R. C. Holt, I. Kalas, S. Kerr, K.Kontogiannis, H. A.
Müller, J. Mylopoulos, and S. G. Perelgut. The software bookshelf. IBM
Systems Journal, 36(4):564–593, 1997.

BIBLIOGRAPHY 139

[FRS94] H. Fergen, P. Reichelt, and K. P. Schmidt. Bringing objects into
COBOL: MOORE - a tool for migration from COBOL85 to object-
oriented COBOL. In Proc. Conf. on Technology of Object-Oriented Lan-
guages and Systems (TOOLS 14), pages 435–448. Prentice-Hall, 1994.

[GAM96] W. G. Griswold, D. C. Atkinson, and C. McCurdy. Fast, flexible syn-
tactic pattern matching and processing. In Fourth Workshop on Program
Comprehension; IWPC’96. IEEE Computer Society, 1996.

[GHJV94] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley, 1994.

[GKNV93] E. R. Gansner, E. Koutsofios, S. North, and K-P. Vo. A technique for
drawing directed graphs. IEEE Transactions on Software Engineering,
19(3):214–230, 1993.

[GW99] B. Ganter and R. Wille. Formal Concept Analysis: Mathematical Foun-
dations. Springer, 1999.

[HHKR89] J. Heering, P. R. H. Hendriks, P. Klint, and J. Rekers. The syn-
tax definition formalism SDF — Reference manual. SIGPLAN Notices,
24(11):43–75, 1989.

[JV00] M. de Jonge and Joost Visser. Grammars as contracts. In Generative
and Component-based Software Engineering (GCSE), Erfurt, Germany,
October 2000. CD-ROM Proceedings. To be published in Lecture Notes
in Computer Science (LNCS), Springer.

[JVV00] M. de Jonge, Eelco Visser, and Joost Visser. XT: a bundle of program
transformation tools. Submitted for publication, 2000.

[KC99] R. Kazman and J. Carrière. Playing detective: Reconstructing software
architecture from available evidence. Automated Software Engineering,
6:107–138, 1999.

[KL
�

97] Gregor Kiczales, John Lamping, et al. Aspect-oriented programming.
In Proceedings of ECOOP’97, number 1241 in LNCS. Springer Verlag,
1997.

[Kli93] P. Klint. A meta-environment for generating programming environments.
ACM Transactions on Software Engineering and Methodology, 2:176–
201, 1993.

[KLV00] Jan Kort, Ralf Lämmel, and Joost Visser. Functional transformation
systems. In 9th International Workshop on Functional and Logic Pro-
gramming, Benicassim, Spain, September 2000.

140 BIBLIOGRAPHY

[KM00] T. Kuipers and L. Moonen. Types and concept analysis for legacy sys-
tems. In Proceedings of the International Workshop on Programming
Comprehension (IWPC 2000). IEEE Computer Society, June 2000. Also
published as Chapter 5 of this thesis.

[Knu84] D.E. Knuth. Literate programming. The Computer Journal, 27(2):97–
111, 1984.

[KR90] L. Kaufman and P. J. Rousseeuw. Finding Groups in Data: An Introduc-
tion to Cluster Analysis. John Wiley, 1990.

[Lak97] A. Lakhotia. A unified framework for expressing software subsystem
classification techniques. Journal of Systems and Software, pages 211–
231, March 1997.

[LHGF88] L. D. Landis, P. M. Hyland, A. L. Gilbert, and A. J. Fine. Documen-
tation in a software maintenance environment. In Proc. Conference on
Software Maintenance, pages 66–73. IEEE Computer Society, 1988.

[LS97] C. Lindig and G. Snelting. Assessing modular structure of legacy code
based on mathematical concept analysis. In 19th International Confer-
ence on Software Engineering, ICSE-19, pages 349–359. ACM, 1997.

[LVK00] Ralf Lämmel, Joost Visser, and Jan Kort. Dealing with large bananas.
In Johan Jeuring, editor, Workshop on Generic Programming, Ponte de
Lima, July 2000. Technical Report, Universiteit Utrecht.

[LW90] S. S. Liu and N. Wilde. Identifying objects in a conventional proce-
dural language: An example of data design recovery. In International
Conference on Software Maintenance; ICSM’90, pages 266–271. IEEE
Computer Society, 1990.

[MV96] A. von Mayrhauser and A. M. Vans. Identification of dynamic compre-
hension processes during large scale maintenance. IEEE Transactions on
Software Engineering, 22(6):424–438, 1996.

[MV97] A. von Mayrhauser and A. M. Vans. Hypothesis-driven understanding
processes during corrective maintenance of large scale software. In Inter-
national Conference on Software Maintenance; ICSM’97, pages 12–20.
IEEE Computer Society, 1997.

[Mey97] B. Meyer. Object-Oriented Software Construction. Prentice Hall, second
edition, 1997.

[Mic96] Micro Focus Revolve user guide. Burl Software Laboratories Inc., USA,
1996.

BIBLIOGRAPHY 141

[MN96] G. C. Murphy and D. Notkin. Lightweight lexical source model ex-
traction. ACM Transactions on Software Engineering Methodology,
5(3):262–292, 1996.

[MNB
�

94] L. Markosian, P. Newcomb, R. Brand, S. Burson, and T. Kitzmiller.
Using an enabling technology to reengineer legacy systems. Communi-
cations of the ACM, 37(5):58–70, 1994. Special issue on reverse engi-
neering.

[Moo97] L. Moonen. A generic architecture for data flow analysis to support re-
verse engineering. In A. Sellink, editor, Theory and Practice of Algebraic
Specifications; ASF+SDF’97, Electronic Workshops in Computing, Am-
sterdam, September 1997. Springer-Verlag.

[MOTU93] H. A. Müller, M. A. Orgun, S. R. Tilley, and J. S. Uhl. A reverse
engineering approach to subsystem structure identification. Journal of
Software Maintenance, 5(4):181–204, 1993.

[Nei96] J. M. Neighbors. Finding reusable software components in large systems.
In 3rd Working Conference on Reverse Engineering; WCRE’96, pages
2–10. IEEE Computer Society, 1996.

[NK95] P. Newcomb and G. Kottik. Reengineering procedural into object-
oriented systems. In Second Working Conference on Reverse Engineer-
ing; WCRE’95, pages 237–249. IEEE Computer Society, 1995.

[OT93] C. L. Ong and W. T. Tsai. Class and object extraction from imperative
code. Journal of Object-Oriented Programming, pages 58–68, March–
April 1993.

[Ous94] J. K. Ousterhout. Tcl and the Tk Toolkit. Addison-Wesley, 1994.

[Pig97] T. M. Pigoski. Practical Software Maintenance – Best Practices for Man-
aging Your Software Investment. John Wiley and Sons, 1997.

[PXL95] Jens Palsberg, Cun Xiao, and Karl Lieberherr. Efficient implementation
of adaptive software. ACM Transactions on Programming Languages
and Systems, 17(2):264–292, March 1995.

[Raj97] Vaclav Rajlich. Incremental redocumentation with hypertext. In 1st Eu-
romicro Working Conference on Software Maintenance and Reengineer-
ing CSMR 97. IEEE Computer Society Press, 1997.

[Rek92] J. Rekers. Parser Generation for Interactive Environments. PhD thesis,
University of Amsterdam, 1992.

142 BIBLIOGRAPHY

[RFT99] G. Ramalingam, J. Field, and F. Tip. Aggregate structure identification
and its application to program analysis. In 26th Annual Symposium on
Principles of Programming Languages, POPL’99. ACM, 1999. To ap-
pear.

[Sch91] R. W. Schwanke. An intelligent tool for re-engineering software modu-
larity. In 13th International Conference on Software Engineering, ICSE-
13, pages 83–92. ACM, 1991.

[SCHC99] S. E. Sim, C. L. A. Clarke, R. C. Holt, and A. M. Cox. Browsing and
searching software architectures. In Int. Conf. on Software Maintenance,
ICSM’99, pages 381–390. IEEE Computer Society, 1999.

[SH98] S. E. Sim and R. C. Holt. The ramp-up problem in software projects: A
case study of how software immigrants naturalize. In 20th Int. Conf. on
Software Engineering; ICSE-98, pages 361–370. ACM, 1998.

[SN95] H. M. Sneed and E. Nyáry. Extracting object-oriented specification from
procedurally oriented programs. In Second Working Conference on Re-
verse Engineering; WCRE’95, pages 217–226. IEEE Computer Society,
1995.

[Sne92] H. M. Sneed. Migration of procedurally oriented COBOL programs in
an object-oriented architecture. In International Conference on Software
Maintenance; ICSM’92, pages 105–116. IEEE Computer Society, 1992.

[Sne96] G. Snelting. Reengineering of configurations based on mathemati-
cal concept analysis. ACM Transactions on Software Engineering and
Methodology, 5(2):146–189, April 1996.

[Sne98] G. Snelting. Concept analysis — a new framework for program under-
standing. In Proceedings of the ACM SIGPLAN/SIGSOFT Workshop
on Program Analysis for Software Tools and Engineering (PASTE’98),
1998. SIGPLAN Notices 33(7).

[Sne00] G. Snelting. Software reengineering based on concept lattices. In Pro-
ceedings of the 4th European Conference on Software Maintenance and
Reengineering (CSMR’00). IEEE Computer Society, 2000. To appear.

[SR97] M. Siff and T. Reps. Identifying modules via concept analysis. In In-
ternational Conference on Software Maintenance, ICSM97. IEEE Com-
puter Society, 1997.

[ST98] G. Snelting and F. Tip. Reengineering class hierarchies using concept
analysis. In Foundations of Software Engineering, FSE-6, pages 99–110.
ACM, 1998. SIGSOFT Software Engineering Notes 23(6).

BIBLIOGRAPHY 143

[Swa76] E. B. Swanson. The dimensions of maintenance. In Proceedings of the
Second International Conference on Software Engineering, pages 492–
497. ACM, 1976.

[TL95] H. B. K. Tan and T. W. Ling. Recovery of object-oriented design from ex-
isting data-intensive business programs. Information and Software Tech-
nology, 37(2):67–77, 1995.

[Tom85] M. Tomita. Efficient Parsing for Natural Languages. A Fast Algorithm
for Practical Systems. Kluwer Academic Publishers, 1985.

[V
�

] E. Visser et al. The online survey of program transformation. http://
www.program-transformation.org/survey.html.

[VBT99] Eelco Visser, Zine-el-Abidine Benaissa, and Andrew Tolmach. Building
program optimizers with rewriting strategies. ACM SIGPLAN Notices,
34(1):13–26, January 1999. Proceedings of the International Conference
on Functional Programming (ICFP’98).

[Vis97a] E. Visser. Scannerless Generalized-LR Parsing. Technical Report P9707,
University of Amsterdam, Programming Research Group, 1997.

[Vis97b] E. Visser. Syntax Definition for Language Prototyping. PhD thesis,
University of Amsterdam, 1997.

[WAKS97] D. C. Wang, A. W. Appel, J. L. Korn, and C. S. Serra. The Zephyr ab-
stract syntax description language. In Proceedings of the USENIX Con-
ference on Domain-Specific Languages, pages 213–28, Berkeley, CA,
October 15–17 1997. USENIX Association.

[WBF97] T. Wiggerts, H. Bosma, and E. Fielt. Scenarios for the identification
of objects in legacy systems. In I.D. Baxter, A. Quilici, and C. Verhoef,
editors, 4th Working Conference on Reverse Engineering, pages 24–32.
IEEE Computer Society, 1997.

[Wig97] T. Wiggerts. Using clustering algorithms in legacy systems remodular-
ization. In 4th Working Conference on Reverse Engineering, pages 33–
43. IEEE Computer Society, 1997.

[WS91] L. Wall and R. L. Schwarz. Programming Perl. O’Reilly & Associates,
Inc., 1991.

[WTMS95] K. Wong, S.R. Tilley, H.A. Müller, and M.-A.D. Storey. Structural
redocumentation: a case study. IEEE Software, 12(1):46–54, 1995.

[YRK99] R. J. Yarger, G. Reese, and T. King. MySQL & mSQL. O’Reilly, 1999.
http://www.mysql.org/.

144 BIBLIOGRAPHY

Summary

This thesis presents a number of experimental techniques for understanding legacy
software systems. Software systems that are used need to be maintained. Main-
taining a complex software system is a daunting task. The maintenance activity
consists of modifying the source code of the system. A major part of that activity
is finding the exact location of the artifact to be changed in the source code. The
changes to be made in the source code can vary from performing minor changes,
e.g. the fixing of a small error, to structural changes, where the design of the system
is changed, and the code accordingly. Different types of information are needed to
perform either change.

A way of gathering such information is through rapid system understanding,
where lexical analysis is used to extract a number of facts from Cobol legacy sys-
tems. These facts include a system inventory, which presents some basic metrics
of the system. Furthermore detailed information of database usage per module
is derived and information about the usage throughout the system of data fields.
The relation between Cobol sections is analyzed and presented through both a
graphical representation, and as sorted lists of which sections are performed most
often. Finally, a number of conclusions are drawn with respect to these analysis re-
sults. Using a very lightweight, and (thus) not very precise analysis technique, we
can give initial answers to questions such as: “Does the system contain reusable
code?”, “What statements describe business rules?”, and “What fraction of the
code is platform specific?”. These answers are by no means detailed enough to
perform a structural modification of the system, but they give more than enough
information to decide whether or not to perform a detailed investigation, and give
this information in a rapid and cost-effective way.

The results of the analyses described above can be consolidated by building
a documentation generator. This thesis presents the notion of a documentation
generator as a system that performs any number of more or less detailed analyses
on a legacy software system, and presents the results in an interlinked way, with
different levels of abstraction. For some of the more detailed analyses that are
performed as part of a documentation generator, lexical analysis as used during
rapid system understanding is not powerful enough, but full syntactic analysis may

146 Summary

be too restrictive, or too expensive. This thesis introduces the notion of island
grammars, from which an analysis can be generated that is liberal when analyzing
the larger part of the source code (the “water”), but very strict when analyzing the
relevant part (the “island”).

A documentation generator integrates manual documentation with the auto-
matically generated documentation. It utilizes graphical, hyperlinked representa-
tions of dependencies between different types of modules, data files, databases,
and so on.

When looking to alter a system structurally, structure must be imposed on a
largely unstructured, or not-well-enough structured system. One way of imposing
structure is to migrate a procedural system to an object-oriented system. This the-
sis compares two techniques for relating data and procedures from a procedural
system, so to act as a starting point for an object-oriented (re-)design of that sys-
tem. These techniques are cluster analysis and concept analysis. Cluster analysis
works by calculating a distance between various objects, and group the objects that
are less than a certain distance from each other in a single cluster. Here, the dis-
tance is calculated between different data fields in a system, where distance relates
to whether or not they are used in the same modules. Concept analysis groups
related items with their features into “concepts”. Concepts are maximal subsets of
items sharing exactly the same features. Here, the items are data fields, and the
properties they have are the modules they are used in.

Concept analysis appears to be better suited for object identification than clus-
ter analysis. A case study shows that when deriving certain data fields from a
Cobol software system, and ignoring others, the concept analysis of data fields
and the modules they are used in results in a starting point for an object-oriented
remodeling of the original software system.

Legacy software systems are largely untyped. This makes systems harder to
maintain, in part because it is hard to find the “relevant” data in a system. Type
inference can alleviate this problem in part. All the data fields in a system are
grouped together in types, based on the way they interact with each other. Using
these types as items in a concept analysis, instead of plain data fields, greatly
improves the result of the concept analysis as a starting point for an object-oriented
remodeling of the system.

In order to perform analysis on software systems such as those needed for
type inference, the system must be parsed, and the parse trees must be analyzed.
This thesis presents a system that lets a software engineer access parse trees in an
object-oriented fashion. The system also presents the engineer with tree traversals,
allowing him to focus on specific analyses while selecting one of the traversal
strategies presented by the system. Analyses written using this system can be
easily linked to all sorts of applications.

Extreme programming is a software engineering methodology that bundles a
number of programming practices and tries to make their interdependency explicit.

Summary 147

Extreme programming focuses on changeability of systems. A system developed
using the extreme programming methodology should be ready for any change
its owner needs from the system, be it minor or structural. The last chapter of
this thesis examines whether the techniques used in extreme programming can be
retrofitted to legacy system maintenance in order to improve the understanding of,
and ultimately the changeability of such a system.

148 Summary

Samenvatting

Deze dissertatie laat een aantal experimentele technieken zien om legacy software
systemen te kunnen begrijpen. Software systemen die gebruikt worden, moeten
worden onderhouden. Het onderhouden van een complex software systeem is een
intimiderende taak. De onderhoudsactiviteit bestaat uit het aanpassen van de bron-
code van het systeem. Een groot gedeelte van die activiteit is het vinden van de
exacte locatie van het voorwerp dat veranderd moet worden in de broncode. De
veranderingen die moeten worden uitgevoerd kunnen verschillen van het uitvoe-
ren van een kleine verandering, bijvoorbeeld het repareren van een kleine fout,
tot structurele veranderingen die nodig zijn omdat het ontwerp van het systeem is
veranderd. Voor de verschillende soorten wijzigingen zijn verschillende soorten
informatie nodig.

Een manier om zulke informatie te verkrijgen is door “snel systeem begrip”.
Lexicale analyse wordt dan gebruikt om een aantal feiten uit een Cobol legacy
systeem te extraheren. Een van de feiten is een zogenaamde systeeminventaris,
die een aantal basismetrieken over het systeem laat zien. Verder wordt er gede-
tailleerde informatie over databasegebruik per module afgeleid en informatie over
waar welke datavelden in het systeem worden gebruikt. De relatie tussen de Cobol
secties wordt geanalyseerd en gepresenteerd, zowel grafisch als tekstueel. Tot slot
worden een aantal conclusies getrokken over de analyseresultaten. Door gebruik
te maken van een lichtgewicht en (daardoor) niet heel precieze analysetechniek
kan er een initieel antwoord worden gegeven op vragen als: “Bevat het systeem
herbruikbare code?” en “Welk gedeelte van de code is platformspecifiek?”. De
antwoorden zijn zeker niet gedetailleerd genoeg om een structurele verandering
van het systeem uit te voeren, maar ze geven genoeg informatie om te beslissen of
een nadere analyse zinvol is, en geven deze informatie op een snelle en kostenef-
fectieve manier.

De resultaten van de hierboven beschreven analyses kunnen worden gecon-
solideerd door een documentatiegenerator te bouwen. In deze dissertatie is een
documentatiegenerator een systeem dat een aantal min of meer gedetailleerde ana-
lyses op een legacy softwaresysteem uitvoert en de resultaten op een geı̈ntegreerde
manier laat zien, met verschillende abstractieniveaus. Voor sommige van de meer

150 Samenvatting

gedetailleerde analyses die worden uitgevoerd als onderdeel van de documenta-
tiegenerator is lexicale analyse niet krachtig genoeg, maar volledige syntactische
analyse te beperkend, of te duur. Deze dissertatie introduceert de notie van “ei-
landgrammatica’s”, waaruit analyses gegenereerd kunnen worden die liberaal zijn
wanneer ze het grootste gedeelte van de broncode analyseren (het “water”), maar
zeer nauwkeurig als ze het relevante gedeelte van de broncode analyseren (het
“eiland”).

Een documentatiegenerator integreert handmatige documentatie met automa-
tisch gegenereerde documentatie. De generator gebruikt grafische, gehyperlinkte
representaties van de afhankelijkheden tussen verschillende soorten van modules,
databestanden, databases enzovoorts.

Als een systeem structureel veranderd moet worden dan moet er een struc-
tuur worden opgelegd aan een grotendeels ongestructureerd, of in ieder geval niet
goed genoeg gestructureerd systeem. Een manier om zo’n structuur af te dwin-
gen is een procedureel systeem te migreren naar een object-georiënteerd systeem.
Deze dissertatie vergelijkt twee technieken om de gegevens en de procedures van
een procedureel systeem aan elkaar te relateren, om zo een beginpunt te vormen
voor een object-georiënteerd (her-)ontwerp van dat systeem. Deze technieken zijn
“clusteranalyse” en “conceptanalyse”. Clusteranalyse werkt door een afstand te
berekenen tussen verschillende objecten en de objecten die minder dan een zekere
afstand van elkaar liggen te groeperen in een cluster. In dit geval wordt de af-
stand tussen verschillende datavelden in een systeem berekend, gebaseerd op het
feit dat datavelden al dan niet in dezelfde module worden gebruikt. Conceptana-
lyse groepeert gerelateerde voorwerpen met hun kenmerken in “concepten”. Een
concept is een maximale deelverzameling van voorwerpen die exact dezelfde ken-
merken hebben. In dit geval zijn de voorwerpen de datavelden en hun kenmerken
de modules waar ze in gebruikt worden.

Conceptanalyse blijkt beter geschikt voor objectidentificatie dan clusterana-
lyse. Een casus demonstreert dat als bepaalde datavelden van een Cobol systeem
worden gebruikt als voorwerpen (en bepaalde andere datavelden niet) de concept-
analyse van die velden en hun bijbehorende modules leidt tot een beginpunt voor
een object-georiënteerd herontwerp van het originele systeem.

Legacy systemen zijn grotendeels ongetypeerd. Dit zorgt ervoor dat de syste-
men moeilijker zijn te onderhouden, ten dele omdat het moeilijk is de “relevante”
gegevens in een systeem te vinden. Type-inferentie is een manier om dit probleem
deels op te lossen. Alle datavelden in een systeem worden dan gegroepeerd in “ty-
pes”, gebaseerd op de manier waarop ze met elkaar interacteren. Als deze types
gebruikt worden als voorwerpen in de conceptanalyse, in plaats van de datavelden,
dan verbetert het resultaat van de conceptanalyse als beginpunt voor een heront-
werp.

Om softwaresystemen te analyseren met de mate van detail die nodig is voor
bijvoorbeeld type-inferentie moet het systeem geparseerd worden en de parseer-

Samenvatting 151

bomen geanalyseerd. In deze dissertatie wordt een systeem geı̈ntroduceerd dat het
mogelijk maakt een parseerboom op object-georiënteerde wijze te benaderen. Het
systeem produceert ook zogenaamde traversals die het mogelijk maken dat degene
die de analyses schrijft zich slechts met die analyses bezig hoeft te houden. Hij
kan een van de traversal-strategieën die het systeem biedt kiezen. De analyses die
met behulp van dit systeem zijn geschreven laten zich zonder moeite koppelen aan
een grote variëteit van toepassingen.

Extreme programming is een manier van software-ontwikkeling die een aan-
tal programmeerpraktijken bundelt en hun wederzijdse afhankelijkheden expliciet
probeert te maken. Extreme programming focust op veranderbaarheid van sys-
temen. Een systeem dat is ontwikkeld met behulp van de extreme programming
methodologie zou gereed moeten zijn voor elke verandering die de eigenaar van
het systeem nodig heeft, zowel klein als structureel. Het laatste hoofdstuk van
deze dissertatie onderzoekt of de technieken van extreme programming met te-
rugwerkende kracht kunnen worden gebruikt bij het onderhouden van een legacy
systeem, om zo het begrip en uiteindelijk de veranderbaarheid van zo’n systeem te
verhogen.

Titles in the IPA Dissertation Series

J.O. Blanco. The State Operator in Process Al-
gebra. Faculty of Mathematics and Computing
Science, TUE. 1996-1

A.M. Geerling. Transformational Development
of Data-Parallel Algorithms. Faculty of Mathe-
matics and Computer Science, KUN. 1996-2

P.M. Achten. Interactive Functional Programs:
Models, Methods, and Implementation. Faculty
of Mathematics and Computer Science, KUN.
1996-3

M.G.A. Verhoeven. Parallel Local Search. Fa-
culty of Mathematics and Computing Science,
TUE. 1996-4

M.H.G.K. Kesseler. The Implementation of
Functional Languages on Parallel Machines
with Distrib. Memory. Faculty of Mathematics
and Computer Science, KUN. 1996-5

D. Alstein. Distributed Algorithms for Hard
Real-Time Systems. Faculty of Mathematics and
Computing Science, TUE. 1996-6

J.H. Hoepman. Communication, Synchroniza-
tion, and Fault-Tolerance. Faculty of Mathema-
tics and Computer Science, UvA. 1996-7

H. Doornbos. Reductivity Arguments and Pro-
gram Construction. Faculty of Mathematics and
Computing Science, TUE. 1996-8

D. Turi. Functorial Operational Semantics and
its Denotational Dual. Faculty of Mathematics
and Computer Science, VUA. 1996-9

A.M.G. Peeters. Single-Rail Handshake Cir-
cuits. Faculty of Mathematics and Computing
Science, TUE. 1996-10

N.W.A. Arends. A Systems Engineering Specifi-
cation Formalism. Faculty of Mechanical Engi-
neering, TUE. 1996-11

P. Severi de Santiago. Normalisation in Lambda
Calculus and its Relation to Type Inference. Fa-
culty of Mathematics and Computing Science,
TUE. 1996-12

D.R. Dams. Abstract Interpretation and Par-
tition Refinement for Model Checking. Faculty
of Mathematics and Computing Science, TUE.
1996-13

M.M. Bonsangue. Topological Dualities in Se-
mantics. Faculty of Mathematics and Computer
Science, VUA. 1996-14

B.L.E. de Fluiter. Algorithms for Graphs of
Small Treewidth. Faculty of Mathematics and
Computer Science, UU. 1997-01

W.T.M. Kars. Process-algebraic Transformati-
ons in Context. Faculty of Computer Science,
UT. 1997-02

P.F. Hoogendijk. A Generic Theory of Data
Types. Faculty of Mathematics and Computing
Science, TUE. 1997-03

T.D.L. Laan. The Evolution of Type Theory in
Logic and Mathematics. Faculty of Mathematics
and Computing Science, TUE. 1997-04

C.J. Bloo. Preservation of Termination for Ex-
plicit Substitution. Faculty of Mathematics and
Computing Science, TUE. 1997-05

J.J. Vereijken. Discrete-Time Process Algebra.
Faculty of Mathematics and Computing Science,
TUE. 1997-06

F.A.M. van den Beuken. A Functional Ap-
proach to Syntax and Typing. Faculty of Mathe-
matics and Informatics, KUN. 1997-07

A.W. Heerink. Ins and Outs in Refusal Testing.
Faculty of Computer Science, UT. 1998-01

G. Naumoski and W. Alberts. A Discrete-Event
Simulator for Systems Engineering. Faculty of
Mechanical Engineering, TUE. 1998-02

J. Verriet. Scheduling with Communication for
Multiprocessor Computation. Faculty of Mathe-
matics and Computer Science, UU. 1998-03

J.S.H. van Gageldonk. An Asynchronous Low-
Power 80C51 Microcontroller. Faculty of Ma-
thematics and Computing Science, TUE. 1998-
04

A.A. Basten. In Terms of Nets: System Design
with Petri Nets and Process Algebra. Faculty
of Mathematics and Computing Science, TUE.
1998-05

E. Voermans. Inductive Datatypes with Laws
and Subtyping – A Relational Model. Faculty
of Mathematics and Computing Science, TUE.
1999-01

H. ter Doest. Towards Probabilistic Unification-
based Parsing. Faculty of Computer Science,
UT. 1999-02

J.P.L. Segers. Algorithms for the Simulation of
Surface Processes. Faculty of Mathematics and
Computing Science, TUE. 1999-03

C.H.M. van Kemenade. Recombinative Evolu-
tionary Search. Faculty of Mathematics and Na-
tural Sciences, Univ. Leiden. 1999-04

E.I. Barakova. Learning Reliability: a Study on
Indecisiveness in Sample Selection. Faculty of
Mathematics and Natural Sciences, RUG. 1999-
05

M.P. Bodlaender. Schedulere Optimization
in Real-Time Distributed Databases. Faculty
of Mathematics and Computing Science, TUE.
1999-06

M.A. Reniers. Message Sequence Chart: Syn-
tax and Semantics. Faculty of Mathematics and
Computing Science, TUE. 1999-07

J.P. Warners. Nonlinear approaches to satis-
fiability problems. Faculty of Mathematics and
Computing Science, TUE. 1999-08

J.M.T. Romijn. Analysing Industrial Proto-
cols with Formal Methods. Faculty of Computer
Science, UT. 1999-09

P.R. D’Argenio. Algebras and Automata for
Timed and Stochastic Systems. Faculty of Com-
puter Science, UT. 1999-10

G. Fábián. A Language and Simulator for Hy-
brid Systems. Faculty of Mechanical Engineer-
ing, TUE. 1999-11

J. Zwanenburg. Object-Oriented Concepts and
Proof Rules. Faculty of Mathematics and Com-
puting Science, TUE. 1999-12

R.S. Venema. Aspects of an Integrated Neural
Prediction System. Faculty of Mathematics and
Natural Sciences, RUG. 1999-13

J. Saraiva. A Purely Functional Implementation
of Attribute Grammars. Faculty of Mathematics
and Computer Science, UU. 1999-14

R. Schiefer. Viper, A Visualisation Tool for Pa-
rallel Progam Construction. Faculty of Mathe-
matics and Computing Science, TUE. 1999-15

K.M.M. de Leeuw. Cryptology and Statecraft
in the Dutch Republic. Faculty of Mathematics
and Computer Science, UvA. 2000-01

T.E.J. Vos. UNITY in Diversity. A stratified
approach to the verification of distributed algo-
rithms. Faculty of Mathematics and Computer
Science, UU. 2000-02

W. Mallon. Theories and Tools for the Design
of Delay-Insensitive Communicating Processes.
Faculty of Mathematics and Natural Sciences,
RUG. 2000-03

W.O.D. Griffioen. Studies in Computer Aided
Verification of Protocols. Faculty of Science,
KUN. 2000-04

P.H.F.M. Verhoeven. The Design of the MathS-
pad Editor. Faculty of Mathematics and Compu-
ting Science, TUE. 2000-05

J. Fey. Design of a Fruit Juice Blending and
Packaging Plant. Faculty of Mechanical Engi-
neering, TUE. 2000-06

M. Franssen. Cocktail: A Tool for Deriving
Correct Programs. Faculty of Mathematics and
Computing Science, TUE. 2000-07

P.A. Olivier. A Framework for Debugging He-
terogeneous Applications. Faculty of Natural
Sciences, Mathematics and Computer Science,
UvA. 2000-08

E. Saaman. Another Formal Specification Lan-
guage. Faculty of Mathematics and Natural
Sciences, RUG. 2000-10

M. Jelasity. The Shape of Evolutionary Search
Discovering and Representing Search Space
Structure. Faculty of Mathematics and Natural
Sciences, UL. 2001-01

R. Ahn. Agents, Objects and Events a com-
putational approach to knowledge, observation
and communication. Faculty of Mathematics and
Computing Science, TU/e. 2001-02

M. Huisman. Reasoning about Java programs
in higher order logic using PVS and Isabelle. Fa-
culty of Science, KUN. 2001-03

I.M.M.J. Reymen. Improving Design Processes
through Structured Reflection. Faculty of Mathe-
matics and Computing Science, TU/e. 2001-04

S.C.C. Blom. Term Graph Rewriting: syntax
and semantics. Faculty of Sciences, Division

of Mathematics and Computer Science, VUA.
2001-05

R. van Liere. Studies in Interactive Visualiza-
tion. Faculty of Natural Sciences, Mathematics
and Computer Science, UvA. 2001-06

A.G. Engels. Languages for Analysis and Tes-
ting of Event Sequences. Faculty of Mathematics
and Computing Science, TU/e. 2001-07

J. Hage. Structural Aspects of Switching Clas-
ses. Faculty of Mathematics and Natural Scien-
ces, UL. 2001-08

M.H. Lamers. Neural Networks for Analysis of
Data in Environmental Epidemiology: A Case-
study into Acute Effects of Air Pollution Episo-
des. Faculty of Mathematics and Natural Scien-
ces, UL. 2001-09

T.C. Ruys. Towards Effective Model Checking.
Faculty of Computer Science, UT. 2001-10

D. Chkliaev. Mechanical verification of concur-
rency control and recovery protocols. Faculty
of Mathematics and Computing Science, TU/e.
2001-11

M.D. Oostdijk. Generation and presentation of
formal mathematical documents. Faculty of Ma-
thematics and Computing Science, TU/e. 2001-
12

A.T. Hofkamp. Reactive machine control: A si-
mulation approach using � . Faculty of Mecha-
nical Engineering, TU/e. 2001-13

D. Bošnački. Enhancing state space reduction
techniques for model checking. Faculty of Ma-
thematics and Computing Science, TU/e. 2001-
14

M.C. van Wezel. Neural Networks for Intelli-
gent Data Analysis: theoretical and experimen-
tal aspects.. Faculty of Mathematics and Natural
Sciences, UL. 2002-01

V. Bos and J.J.T. Kleijn. Formal Specification
and Analysis of Industrial Systems. Faculty of
Mathematics and Computer Science and Faculty
of Mechanical Engineering, TU/e. 2002-02

T. Kuipers. Techniques for Understanding Leg-
acy Software Systems. Faculty of Natural Scien-
ces, Mathematics and Computer Science, UvA.
2002-03

