Syntax Definition for
Language Prototyping

Syntax Definition for
Language Prototyping

Syntax Definition for
Language Prototyping

Academisch Proefschrift

ter verkrijging van de graad van doctor
aan de Universiteit van Amsterdam
op gezag van de Rector Magnificus
prof. dr J. J. M. Franse
ten overstaan van
een door het college van decanen ingestelde commissie
in het openbaar te verdedigen
in de Aula der Universiteit
op dinsdag 23 september 1997
te 13.30 uur

door
Eelco Visser

geboren te Rijswijk (ZH)

Promotor: prof. dr P. Klint

Faculteit Wiskunde, Informatica, Natuurkunde en Sterenkunde
Universiteit van Amsterdam

Kruislaan 403

1098 SJ Amsterdam

NWO logo

This research was supported by the Netherlands Computer Science Research
Foundation (SION) with financial support from the Netherlands Organisation
for Scientific Research (NWO). Project 612-317-420: Incremental parser gener-
ation and context-sensitive disambiguation: a multi-disciplinary perspective.

Copyright © 1997 by Eelco Visser.
ISBN 90-74795-75-7
Printed by Ponsen & Looijen, Wageningen

Author’s address:
Nieuwe Leliestraat 140/3
1015 SX Amsterdam
The Netherlands

visser@Qacm.org

To my parents

Pretace

This thesis is one of the results of the project Incremental parser generation and
context-sensitive disambiguation: a multi-disciplinary perspective, supported by
the Netherlands Computer Science Research Foundation (SION) with financial
support from the Netherlands Organisation for Scientific Research (NWQO). The
other main result is the thesis of Annius Groenink (1997) who was the other
OIO on the project.

My side of the project can be divided in three main lines of research. In the
first place I have been concerned with techniques for parsing and disambiguation
of context-free languages targeted at the design of programming languages. This
led to a number of results on disambiguation, including a general framework
for studying disambiguation methods and a number of new parsing techniques.
Furthermore, the syntax definition formalism SDF was redesigned and improved
as the formalism SDF2.

The second line of research was concerned with the extension of first-order
many-sorted algebraic specifications to include polymorphism and higher-order
functions. This research followed-up on research done for my Master’s thesis
(Visser, 1993) that was partly dedicated to the study of higher-order functions
in a first-order framework. This resulted in a general interest in the area of type
systems and a particular interest in multi-level specifications. The result was
the design of a multi-level algebraic specification formalism.

The third line combined the previous two in the study of two-level grammars
for the purpose of polymorphic syntax definition.

As a sideline I have always been interested in typesetting and literate pro-
gramming. I continued to maintain the literate programming tool ToIATEX that
I took over from Paul Klint during the work on my Master’s thesis. The wish to
improve the typesetting of terms in equations of specifications led to a coopera-
tion with Mark van den Brand who was working on the generation of formatters.
The cooperation was very fruitful and produced several results. A box calcu-
lus was developed that was used to translate box terms for pretty-printing to
TEX code (Van den Brand and Visser, 1994). A paper on the formatter gen-
erator was published in the ACM Transactions on Software Engineering and
Methodology (Van den Brand and Visser, 1996). This work, although related
to syntax definition, is not represented in this thesis, except indirectly in the
literate specifications in Part IT and Part III.

PREFACE

Acknowledgments

Many people contributed to the development of this thesis. Here I would like
to thank them.

Paul Klint, my promotor, has created an active and stimulating research envi-
ronment at the University of Amsterdam and CWI. His lecture on the generation
of programming environments introduced program generation, the mysteries of
dynamic syntax and ASF+SDF. I was hooked at once. Many of the ideas in
this thesis have their origin in our discussions. We wrote a joint paper on dis-
ambiguation filters and had many discussions on the intricacies of ATerms and
AsFix. His suggestion to forget about scanners when I had just specified a scan-
ner generator, referring to the work of Salomon and Cormack (1989), turned out
to generate a lot of interesting research. Most importantly he gave me the free-
dom to find my own way in research and he didn’t complain too much when I
spent time on multi-level specifications and polymorphic syntax definition in-
stead of parsing. In the end, despite my resistance, he expertly tricked me into
finishing this thesis.

I thank the members of the reading committee Krzysztof Apt, Jan Bergstra,
Jan van Eijck, Karl Meinke, and Anton Nijholt for refereeing this thesis.

Jan van Eijck was one of the proposers of the NWO/SION project. His last
minute questions and remarks about reject productions considerably improved
Chapter 3.

Mark van den Brand was my supervisor in the first years. I learned a lot about
parsing from him. We cooperated on formatting and typesetting of program
documentation tools and wrote several joint papers on the subject. He expertly
managed the infrastructure of the programming research group.

Annius Groenink was my partner in the NWO project. In those early dis-
cussions ideas such as disambiguation filters and polymorphic syntax originate,
although they were not recognizable as such at the time. Each of us worked out
the ideas in different ways. At the last moment came his idea of using reject to
define intersection of context-free languages.

Klaas Sikkel’s parsing schemata framework turned the twilight zone of parsing
algorithms into a bright and clear landscape.

With Arie van Deursen I had many discussions on (the future of) algebraic
specification. He was always good for a broad gesture and idem smile mocking
computer science ideologies. He was a critical reader of several of the chapters
in this thesis and some other stuff that vanished. He invited me to write a
chapter on specification of functional languages for his Language Prototyping
book. This turned out, quite differently and quite a bit longer than intended,
as the design of a multi-level specification formalism.

Dinesh could utterly confuse me by his stubborn questions and statements
that he refused to explain. In the end there was often a good idea or insight
underlying his oracles. His ideas about error messages for typechecking have
been applied in the specification of multi-level specifications.

Jan Heering was always willing to answer a question, which would invariably
turn into afternoon long discussion of a wide range of subjects, from the his-

i

PREFACE

torical design choices in SDF to publishing strategies and trends in scientific
funding.

Jan Bergstra’s views on software engineering inspired me to get my master’s
degree at the Programming Research Group. His views on language design have
influenced many design decisions in the work described in this thesis.

Wilco Koorn initiated me to the subtleties and undocumented features of
ASF+SDF.

Susan Uskiidarlh was my first roommate. Despite this, we became good
friends. We would even sometimes cut back on the hours spent on our sci-
entific quest to throw some time at a quest for a restaurant with just the right
food for the night, which should not be regarded as much easier.

Pieter Olivier was my second roommate. We initiated PETR and the use
of CVS and he supported my idea to include layout in parse trees. He almost
always knew the answer to my programming queries.

The daily coffee breaks with Bas Luttik, justified by RSI paranoia, formed a
welcome diversion from writing. They even led to a scientific cooperation which
resulted in a joint paper on rewriting strategies (Luttik and Visser, 1997). He
also relieved me of some of the organizational burdens of a graduation by acting
as paranimf.

Tobias Kuipers used the SGLR parser in his structure editor, which turned
out to be a good test. His scrutiny will undoubtedly turn up an error as soon
as he opens this thesis. Maybe I shouldn’t give him a copy.

Merijn de Jonge enthusiastically tested the ideas about renamings by building
a renaming tool for ASF4+SDF specifications. This resulted in an improvement
of the definition of renaming in SDF2, although not all anomalies have been
solved.

Several people, other than the members of the program committee, have read
parts or all of this thesis and commented on it. They include at least: Mark
van den Brand, Arie van Deursen, Dinesh, Annius Groenink, Pieter Hartel,
Merijn de Jonge, Jasper Kamperman, Tobias Kuipers, Teo Rus, Alex Sellink
and several anonymous referees of the various papers.

Many other people in the surroundings of the Programming Research groups
at UvA and CWI contributed in some way or another to my development
as a researcher, in general and to this thesis, in particular, I mention: Huub
Bakker, Doeko Bosscher, Jacob Brunekreef, Casper Dik, David Griffioen, Calin
Groza, Pieter Hartel, Joris Hillebrand, Jasper Kamperman, Ralf Liammel, Job
Ganzevoort, Hugh McEvoy, Sjouke Mauw, Emma van der Meulen, Jon Moun-
tjoy, Dimitri Naidich, Martijn Res, Piet Rodenburg, Judi Romijn, Frank Tip,
Leon Moonen, Alban Ponse, Alex Sellink, Chris Verhoef, Bas van Vlijmen, Pum
Walters and Jos van Wamel.

At the computer science department of the University of Amsterdam, the
computers are always up or if they do go down they are up in no time again.
They just work. This seems obvious, but one hears these horror stories. Thanks
for the systems group for that. In particular, to Jan Wortelboer for all his help
and to Gert Poletiek for keeping the IATEX installation up to date. The people
at the secretariat were always willing to make another series of reservations for

iii

PREFACE

the PEMs. Hugo Suidgeest and Monique Kleinendorst smoothly arranged the
trips to workshops and conferences.

Fien McColl encouraged me in pursuing a research career and in the first
not so easy years of doing research. Angelo Welling, Willemiek Kluifhout and
Selma Visser were always there. Ingmar Visser was one of the few outside
the university who could at least vaguely understand what I was doing. As a
paranimf he helped me with the organization of the graduation. Willemijn van
der Laan stood by me in the last stage of writing this thesis. She kept me sane.
Being together with her I could sometimes even forget this book. Wim and
Connie Visser have always supported me in many ways. To them I dedicate this
thesis.

Finally, one of the great contributors to this thesis is the deadline. Soft dead-
lines, firm deadlines, extended deadlines, nearing deadlines, changed deadlines,
passed deadlines, the empowering deadlines that make page after page appear
as if by magic, the deadlines that spook at night, deadlines that you can really
feel, deadlines that are suddenly there. Now, writing the last words of this book,
all pages printed except this one, I look back nostalgically. I know there will
always be new deadlines, but none of them will be like this one. Anyway, it was
fun, now I really have to stop. Enjoy reading.

Eelco Visser

Amsterdam
August 1997

iv

Contents

Preface

Contents

1 Introduction

1.1
1.2
1.3
1.4
1.5
1.6
1.7

General

Part I: Context-free Parsing Techniques
Part II: A Family of Syntax Definition Formalisms
Part III: Multi-Level Algebraic Specification
Part IV: Polymorphic Syntax Definition

Short Trips . .

Origins of the Chapters

2 Specification in ASF+4+SDF

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10

Introduction . .

Many-Sorted Algebra. oo
Grammars as Signatureso
Conditional Equations,

Term Rewriting

Modularization

The ASF+SDF Meta-Environment
Literate Specification
Specification of Programming Languages

Literature . . .

I Context-Free Parsing Techniques

3 Scannerless Generalized-LR Parsing

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

Introduction . .

Scannerless Parsing oo oL

Grammar Normalization

Disambiguation

Parser Generation

Automatic Lexical Disambiguation

Reject Productions oL oo
Generalized-LR Parsing

Implementation

13
13
14
15
18
18
18
18
19
19
21

23

25
25
30
36
40
45
50
52
56
66

CONTENTS

3.10 Related Work 68
3.11 Conclusions oo i e 69
4 Disambiguation Filters 71
4.1 Introduction 71
4.2 Disambiguation 72
4.3 Preliminaries e 74
4.4 Filters 76
4.5 Priorities 80
4.6 Prolog Operators 84
4.7 OffsideRule L 86
4.8 Pattern Matching Filters. 86
49 Discussion 90
4.10 Conclusions oL 92
5 A Case Study in Optimizing Parsing Schemata by Disambigua-
tion Filters 93
5.1 Introduction. 93
5.2 Preliminaries e 95
5.3 Disambiguation Filters 0oL, 96
5.4 Parsing Schemata oL oo 97
5.5 Priority Conflicts, 99
5.6 From EarleytoLR, 102
5.7 Multi-set Filter 107
5.8 Conclusions 111
II Context-Free Syntax Definition 113
6 A Family of Syntax Definition Formalisms 115
6.1 Introduction L 115
6.2 An Overviewof SDF2 118
6.3 Design Lo 123
6.4 Organization 126
7 Context-Free Grammars 129
7.1 Symbols 129
7.2 Grammars v v v i e e e e e e e e e e e e e e e e e 131
7.3 Context-Free Grammars (Kernel) 133
74 BasicSymbols. 138
7.5 ParseTrees 144
8 Disambiguation and Abbreviation 157
8.1 Priorities e 157
8.2 Regular Expressions oo 166
8.3 Lexical and Context-Free Syntax 174

vi

84 Restrictions

9 Renaming and Modularization

9.1 Renamings
9.2 Aliases
93 Modules

10 The Syntax Definition Formalism SDF2

10.1 SDF2
10.2 Comparison to SDF
10.3 Discussion and Concluding Remarks

IIT Multi-Level Algebraic Specification

11 Extensions of First-Order Specification

11.1 Introduction
11.2 Multi-Level Specifications
11.3 Related Formalisms
114 Qutline

12 Untyped and Simply Typed Specifications

12.1 Untyped Equational Specifications
12.2 One-Level Specifications
12.3 Typechecking One-Level Specifications

13 Examples of Multi-Level Specifications

13.1 Introduction
132 OnelLevel
133 TwolLlevels
13.4 Polymorphic Data Types
13.5 Three Levels
13.6 Type Equations

14 Definition of Multi-Level Specifications

14.1 Syntax and Equational Logic
14.2 Modular Specifications
14.3 Well-Formedness
14.4 Type Assignment
14.5 Typechecking
14.6 Discussion and Concluding Remarks

IV Polymorphic Syntax Definition

15 Polymorphic Syntax Definition

15.1 Introduction

CONTENTS

vii

CONTENTS

15.2 Signatures and Grammars 000
15.3 Two-Level Grammars
15.4 Examples e e
15.5 Properties
15.6 Parsing L
15.7 Related Formalisms
15.8 Conclusions v v i i i e e e e e

V Epilogue

16 Concluding Remarks
16.1 Syntaxo e e e e
16.2 Type Systems o i i i e
16.3 Program and Specification Schemata

VI Appendices

A Auxiliary Modules for the Specification of SDF2
Al Literals
A2 ATerms o e e e e

A3 Renamings
A4 SDF2 e

B Auxiliary Modules for Multi-Level Specifications
B.1 Library Modules
B.2 Term Utilities i

C Samenvatting
C.1l Algemeen
C.2 Resultaten

D Bibliography

viii

333

335
335
337
337

339

341
341
341
346
349

351
351
354

365
365
367

371

1

Introduction

Language prototyping is the activity of designing and testing definitions of new
or existing computer languages. An important aspect of a language definition
is the definition of its syntax. The subject of this thesis are new formalisms and
techniques that support the development and prototyping of syntax definitions.
There are four main subjects: (1) Techniques for parsing and disambiguation of
context-free languages. (2) Design and implementation of a new syntax defini-
tion formalism. (3) Design of a multi-level algebraic specification formalism. (4)
Study of polymorphic syntax definition. This chapter sketches the background
and motivation of this work and gives an overview of the thesis.

1.1 General

1.1.1 Language Prototyping

Computer languages are used to instruct computers or to encode data processed
by computers. According to their application area languages are classified as
programming language, domain specific language, specification language or data
format.

Language design is a recurrent activity in computer science and software en-
gineering. Kinnersley (1995) lists about 2350 languages that have been designed
since computers were first developed in the 1940s. Bearing in mind that this
list contains only a fracion of all languages it is probably an underestimation to
say that a new language appears every week. New general purpose languages
are designed as new technology becomes available that poses new requirements
or provides new opportunities. A recent example is the Java programming lan-
guage that addresses problems posed by exchanging programs over networks.
New domain specific languages are developed to encapsulate domain knowledge
previously expressed in a general purpose language.

The design of a new computer language requires a considerable investment.
By developing a prototype of the new language that contains its essential fea-
tures at an early stage, its design can be tested and adjusted if necessary. Design
tools can considerably speed up the design process by generating components
of a prototype.

1 / INTRODUCTION

1.1.2 Language Definitions

The core of the design of a language is a language definition consisting of the
description of its syntax and semantics. The syntax describes the form and
structure of its sentences. The semantics describes the meaning of the syntactic
constructs, which can vary from the interpretation of expressions as computer
programs to the translation of expressions to another language. A formal lan-
guage definition is a definition of syntax and semantics in a formal language
specification formalism, consisting of a syntax definition formalism and a logi-
cal or computational formalism for the expressing its semantics.

Language prototyping involves testing a language definition by executing it
as a computer program. Execution of a language definition comprises the syn-
tactic analysis of expressions in the language according to the syntax definition
of the language and the computation of the semantics of syntactically correct
expressions. A specification formalism is called executable if language defini-
tions can be tested directly on a computer or if tools exist that construct exe-
cutable computer programs from language definitions. A set of tools that sup-
ports the development of programs or specifications in some language could be
called a programming environment. A programming environment for developing
languages and their programming environments is called a meta-environment.
Other requirements for language definition formalisms besides executability are
that they support the description of existing languages, that language defini-
tions are extensible and can be combined with other language definitions, and
that the formalism is not overly restrictive.

1.1.3 Syntax Definition Formalisms

A syntax definition formalism is a formal language for the specification of the
syntactic rules of a language. The syntax describes the sentences of the lan-
guages and assigns a structure to these sentences. An example of a syntax defi-
nition formalism is the context-free grammar formalism introduced by Chomsky
(1956). A context-free production A ... A, — Ag determines that a sentence
of type Ao can be composed by concatenating sentences of type A; to A, in
that order. It can also be considered as a composition rule for trees: a tree of
type Ap can be composed by creating a new tree node labeled Ag with trees of
type A1 to A, as direct descendants.

In general, a syntax definition formalism can be characterized as follows. A
syntax definition (also called grammar) is a set of rules that describe how to
generate a set of trees. The concatenation of all leafs nodes of a tree (the yield)
gives a sentence. The language defined by a grammar is the set of yields of the
trees it generates. A parser is a function that assigns to a sentence a tree that
represents its structure. If more than one tree has a sentence as its yield, the
sentence is ambiguous. To solve ambiguities the syntax definition formalism may
provide a disambiguation method that allows the formulation of disambiguation
rules for selecting the intended tree for a sentence.

This abstract approach to syntax is also applicable to the type systems of

General [/ 1.1

programming languages. A signature describes the valid typed expressions (the
trees), untyped expressions (the sentences) can be derived from the typed ex-
pressions, a type checker analyses untyped expresssions and assigns them a type.
In particular, it is applicable to algebraic signatures.

1.1.4 Algebraic Specification of Languages

An algebra is a set of data with operations on those data. In case of many-
sorted algebras the data can be divided over a collection of sets. An algebraic
specification is the description of an algebra. It consists of a signature declaring
the types of the algebraic operations and a logical formula describing properties
of these operations. Several algebraic specification formalisms have been devel-
oped that use conditional equational logic as defining logic. Equations can be
executed by interpreting them as rewrite rules.

Rus (1972) and later also Goguen et al. (1977) showed that context-free gram-
mars correspond to algebraic signatures (see also Hatcher and Rus (1976)). The
composition of a tree, i.e., the construction of a new tree from subtrees, cor-
responds to the application of a function. In this view, languages correspond
to algebras. A number of algebraic specification formalisms (for instance, OBJ,
Pluss, ASF+SDF, Elan) exploit this property by using signatures with mixfix
operators or even arbitrary context-free grammars instead of a prefix signature.
A definition can be viewed as a context-free grammar or as an algebraic sig-
nature. The grammar view is used to generate parsers from a definition. The
signature view describes the abstract syntax trees that are used by semantic
tools. A mapping from parse trees to abstract syntax trees is used as interface
between parser and semantic tool. In Heering et al. (1989) these views are made
explicit by translating an SDF definition to a contex-free grammar (BNF) and
to a first-order algebraic signature and by providing a translation from parse
trees to abstract syntax trees.

1.1.5 ASF+SDF

ASF+SDF is an algebraic specification formalism designed for the specification
and prototyping of programming language tools. It uses the syntax definition
formalism SDF for the definition of the syntax of a language. This enables
an expressive notation in specifications, since functions can be prefix, postfix,
infix and mix-fix. Furthermore, the syntax of the programming language under
consideration is also expressed in these signatures. The semantics of a language
can be defined by means of operations on the language specified by means of
conditional equations.

Language prototyping is supported by the ASF+4+SDF Meta-Environment
(Klint, 1993, Van Deursen et al., 1996). It is an interactive development en-
vironment for modular ASF+SDF specifications. Given a specification of a
language, a programming environment for that language is generated automat-
ically. The use of incremental generation techniques makes that changes to the
specification are immediately applied to the generated environment. This makes

3

1 / INTRODUCTION

it possible to experiment with alternative designs.

Although the formalism in combination with the Meta-Environment provides
a powerful system for language prototyping, there are several shortcomings. For
instance, it is not possible to generate stand-alone environments and the evalua-
tion of equations by means of term rewriting is interpreted instead of compiled.
Currently much research is invested in overcoming these shortcomings.

1.1.6 Syntax Definition for Language Prototyping

This thesis is concerned with the design and implementation of methods to
enhance the expressive power and usability of the syntactic aspects of language
definition formalisms. The main theme is the development of techniques for
providing an ezpressive syntax definition formalism. The point of departure is
the syntax definition formalism SDF of Heering et al. (1989) that is used in
combination with the algebraic specification formalism ASF of Bergstra et al.
(1989b). This setting provides the direct background and motivation for this
work, but the techniques developed are applicable in other syntax definition
settings as well. There are four main results:

— Scannerless generalized-LR parsing is a new approach to parsing with-
out scanners that solves a number of problems of conventional parsing
techniques, by combining the following techniques: parsing without scan-
ner, generalized-LR parsing, static disambiguation with priority and asso-
ciativity declarations, lexical disambiguation with follow restrictions and
reject productions.

— SDF?2 is an expressive syntax definition formalism for context-free syntax
defintion. It is a redesign of SDF as a family of orthogonally defined
features for syntax definition.

— The multi-level algebraic specification formalism MLS extends first-order
many-sorted algebraic specification by making the sorts used in a signa-
ture a user-definable algebraic data type. This provides a simple and
uniform framework for the specification of advanced type constructs in-
cluding polymorphism and higher-order functions.

— Polymorphic syntax definition is the combination of the flexible notation
facilities of SDF with the flexible typing facilities of MLS.

Each of these subjects brings its own technical problems that are addressed in
this thesis. In the rest of this chapter we give an overview of this development
and indicate the connections.

1.2 Part I: Context-free Parsing Techniques

Part I describes techniques for parsing and disambiguation of context-free lan-
guages.

4

Part I: Context-free Parsing Techniques | 1.2

1.2.1 Scannerless Generalized-LR Parsing

Current deterministic parsing techniques have a number of problems. These
include the limitations of parser generators for deterministic languages and the
complex interface between scanner and parser. Scannerless parsing is a pars-
ing technique in which lexical and context-free syntax are integrated into one
grammar and are all handled by a single context-free analysis phase. This ap-
proach has a number of advantages including discarding of the scanner and
lexical disambiguation by means of the context in which a lexical token occurs.
Scannerless parsing generates a number of interesting problems as well. Inte-
grated grammars do not fit the requirements of the conventional deterministic
parsing techniques. A plain context-free grammar formalism leads to unwieldy
grammars, if all lexical information is included. Lexical disambiguation needs
to be reformulated for use in context-free parsing.

The scannerless generalized-LR parsing approach presented in Chapter 3
solves these problems. Grammar normalization is used to support an expressive
grammar formalism without complicating the underlying machinery. Follow
restrictions are used to express longest match lexical disambiguation. Reject
productions are used to express the prefer keywords rule for lexical disam-
biguation. An adaptation of the SLR(1) parser generation algorithm is used
to implement disambiguation by general priority and associativity declarations
and interprets follow restrictions. Generalized-LR parsing is used to provide
dynamic lookahead and to support parsing of arbitrary context-free grammars
including ambiguous ones. An adaptation of the GLR algorithm supports the
interpretation of grammars with reject productions.

1.2.2 Disambiguation Filters

An ambiguous context-free grammar defines a language in which some sen-
tences have multiple interpretations. For conciseness, ambiguous context-free
grammars are frequently used to define even completely unambiguous languages
and numerous disambiguation methods exist for specifying which interpretation
is the intended one for each sentence. The existing methods can be divided in
‘parser specific’ methods that describe how some parsing technique deals with
ambiguous sentences and ‘logical’ methods that describe the intended interpre-
tation without reference to a specific parsing technique.

Chapter 4 proposes a framework of filters to describe and compare a wide
range of disambiguation problems in a parser-independent way. A filter is a
function that selects from a set of parse trees (the canonical representation of
the interpretations of a sentence) the intended trees. A number of general prop-
erties of disambiguation filters is defined and several case studies are discussed
including disambiguation by means of priorities.

1.2.3 Optimizing Parsing Schemata by Disambiguation Filters

Although disambiguation filters give an abstract account of disambiguation,
implementation of disambiguation by means of a filter applied to the parse forest

1 / INTRODUCTION

after parsing can be too inefficient for a number of disambiguation methods.
Therefore, it would be attractive if a declaratively defined disambiguation filter
could be efficiently implemented by applying it during parsing or even during
parser generation.

In Chapter 5 a study into the optimization of the composition of parsing
algorithms and disambiguation filters is started, by considering two filters based
on priorities. The first filters a set of parse trees and selects trees without priority
conflict. The second selects the trees which are lowest in the multi-set ordering
on parse trees induced by the priority relation on productions.

The theory of parsing schemata of Sikkel (1993) gives an abstract account
of parsing algorithms. In Chapter 5 the parsing schema for Earley’s parsing
algorithm is optimized by applying the two priority filters. For the priority
conflict filter this results in an optimized LR(0) parser generator that yields
parsers that do not produce parse trees with a priority conflict. This provides
the formal derivation of the imlementation rules presented in Chapter 3. For
a restricted case of the multi-set filter an optimization of Earley’s algorithm is
derived.

1.3 Part II: A Family of Syntax Definition Formalisms

The formalism SDF is a syntax definition formalism for specification of lexical
and context-free syntax of programming languages. The design of the formal-
ism is rather monolithic, which makes it difficult to extend with new features or
experiment with the implementation. In Part IT SDF is redesigned and specified
as a modular and extensible family of syntax definition formalisms. Each fea-
ture is specified as an extension of a kernel formalism, orthogonal with respect
to other features. The meaning of most features is expressed in terms of the
primitives of the kernel formalism by means of normalization functions. One of
the members of this family is SDF2, the successor of SDF.

The syntax definition formalism SDF2 is a formalism for the concise definition
of context-free syntax. The semantic core of the formalism is formed by context-
free grammars extended with character clases, priorities, follow restrictions and
reject productions. Grammars in this basic format describe a set of parse trees
to which strings are associated that form the language of the grammar. In
connection with semantics specification formalisms such as ASF, a grammar is
interpreted as a signature and the parse trees it generates as terms in the term
algebra generated by the signature. The implementation of SDF2 consists of
a grammar normalizer, a parser generator and a generic parser. It supports
arbitrary context-free grammars using the GLR parsing algorithm.

One of the main contributions of SDF2 is the complete integration of lexical
and context-free syntax. The formalism supports the definition of lexical and
context-free syntax providing a separate name space for symbols such that inter-
ference is prevented. The grammar normalizer integrates lexical and context-free
syntax into a single context-free grammar. The scannerless parser generated for
such a grammar reads input characters directly and combines lexical analysis

6

Part III: Multi-Level Algebraic Specification [1.4

with context-free analysis in a single parsing phase.

Ambiguous grammars can be disambiguated by means of three disambigua-
tion facilities. Priority and associativity declarations can be used to disam-
biguate mixfix expression grammars in a very general way. Disambiguation by
means of priorities is implemented in the parser generator. For the disambigua-
tion of lexical ambiguities two features are introduced. With follow restrictions
the follow-set of grammar symbols can be restricted, which enables the expres-
sion of the ‘prefer longest match’ disambiguation rule. With reject productions
one can express the ‘prefer keywords’ rule. Follow restrictions are interpreted
during parser generation, reject productions are interpreted during parsing.

Other disambiguation methods can be defined as filters on parse forests (com-
pact representations of sets of parse trees). Due to the open design of the SDF2
implementation such filters can be easily attached to the parser. A number of
case studies of disambiguation filters are discussed in Chapter 4.

Other features of SDF2 are literals, an expressive set of regular expressions,
and symbol aliases that serve to abbreviate complicated regular expressions.
Furthermore, the formalism supports modular syntax definitions and flexible
reuse of modules by means of symbol and production renamings.

Many of the features are defined in terms of the core features by means of a
normalization function on syntax definitions. The formalism can be coupled to
any semantics specification language based on first-order many-sorted signatures
providing user-definable syntax. The modular design of the formalism supports
experiments with new features.

Chapter 6 gives an introduction to SDF2 and discusses the approach of de-
signing it as a family of syntax definition formalisms. Chapter 7 defines the
kernel of the family consisting of context-free grammars with sorts, character
classes and literals. The semantics of the formalism is defined by means of a
well-formedness predicate on parse trees characterizing the trees generated by
a grammar. Chapter 8 defines disambiguation by means of priorities, follow re-
strictions and reject productions. Regular expressions are defined to abbreviate
several common patterns in syntax definitions such as lists, optional constructs
and tuples. The integration of lexical and context-free syntax is defined. Chap-
ter 9 introduces a renaming operator on grammars that can be used to rename
sorts and productions. Renamings are then used to define symbol aliases. A
module mechanism is defined that supports the modularization of syntax def-
initions. Modules can be parameterized with a list of symbols and renamings
can be applied to imports. Chapter 10 discusses the assembly of SDF2 from the
features defined in the previous chapters and discusses possible improvements.

1.4 Part III: Multi-Level Algebraic Specification

Polymorphic, higher-order functions in functional programming languages pro-
vide a powerful abstraction method to construct reusable software. The first-
order signatures provided by conventional many-sorted first-order algebraic spec-
ification formalisms (such as ASF+SDF) do not support polymorphic or higher-

7

1 / INTRODUCTION

order functions. In Part II a multi-level algebraic specification formalism is de-
signed and specified in order to study the extension of first-order formalisms
with polymorphism and higher-order functions.

The multi-level specification formalism MLS extends first-order many-sorted
algebraic specification by making the algebra of types a user-definable data type.
The structure of the types used in the signature of a specification is specified
by means of an algebraic specification itself. This process is formalized in a
multi-level setting. The terms over a signature at level 7 + 1 can be used as
type expressions at level ¢. Variables in type expressions are interpreted as
universally quantified type parameters. Function declarations with such a uni-
versally quantified type are interpreted as declaration schemata for functions
with closed type expressions and thus represent polymorphic functions and con-
stants. Functions can also be overloaded, i.e., have more than one type. The
term structure is applicative, enabling higher-order functions. The formalism
supports modular specifications.

The formalism MLS is defined by means of a specification in ASF+SDF.
This specification also forms the basis for a prototype environment for MLS.
The environment consists of a typechecker that is defined in terms of a well-
formedness checker and a type assignment procedure. Type assignment is an
extension of the Hindley/Milner algorithm to many-sorted types, multi-levels
and overloading of functions. Furthermore, the environment contains a term
rewrite interpreter for equations in specifications.

Applications of multi-level specifications include all functional programs ex-
pressible in a Hindley/Milner system. Due to the many-sortedness of the sig-
natures of types and kinds (as opposed to the single-sorted types of functional
languages) more distinction can be made in type assignment. This enables the
definition of data types such as stratified stacks and tuples. By means of equa-
tions over types still more advanced typing constructs can be modeled. An
example is the type of the zip function that maps a list of tuples to a tuple
of lists. Other applications of type equations are type abbreviations, recursive
types, record types, the polytypic functions of Jansson and Jeuring (1997), the
type classes of Haskell and the constructor classes of Jones (1993). The specifi-
cation of type assignment presented here only deals with syntactic equality and
not with equality modulo type equations.

Chapter 11 gives an introduction to the formalism and discusses related work.
Chapter 12 handles the case of specifications consisting of a single level. This
corresponds to first-order algebraic specification. First an untyped equational
specification formalism with equational logic and term rewriting is defined. This
is extended with a first-order monomorphic applicative type system. In Chap-
ter 13 the possibilities of multi-level specifications are explained by means of
a number of example specifications. The formalism is defined in Chapter 14,
building on the language of Chapter 12. Appendix B defines several auxiliary
tools such as substitution, matching and unification.

Part IV: Polymorphic Syntax Definition / 1.5

1.5 Part IV: Polymorphic Syntax Definition

The signatures of multi-level specifications only support prefix and infix func-
tions. Chapter 15 develops theory to combine the type flexibility of multi-level
specifications with the notational flexibility of context-free grammars.

The combination of the idea of grammars as signatures with multi-level al-
gebraic specification leads to a multi-level grammar formalism. In a multi-level
grammar the set of non-terminals becomes a user-definable data type in the
same way as the types in multi-level specifications. Moreover, types and object
level data are specified by means of a context-free grammar instead of with a
signature, leading to flexible notation.

The combination provides a formalism for polymorphic syntax definition, in
which common language constructs can be described generically and reused in
many specifications. It turns out that while both formalisms have a decidable
type-assignment /parsing problem, the combination in its full generality has an
undecidable parsing problem. However, a subset of such multi-level grammars
can be characterized that have a decidable parsing problem, while not being too
restrictive for use in abstract data type specification. For this class of grammars
that satisfy the finite-chain property, a parsing algorithm is presented.

When restricted to two levels we have a formalism that is similar to Van
Wijngaarden grammars. The difference is that VWGs use derived strings with
variables (sentential forms) as types at level 0, while our two-level grammars
use parse trees with variables. This restriction ensures that syntactic unifica-
tion is decidable, which it is not in VWGs. The further restriction of two-level
grammars to grammars that satisfy the finite-chain property results in gram-
mars with a decidable parsing problem. Van Wijngaarden grammars were not
succesful in executable definition of programming languages. The discovery that
e-productions could be used to encode the static and even dynamic semantics of
a language led to a formalism with a very difficult parsing problem. This sparked
developments in the usage of VWGs as a programming language instead of a
grammar formalism. In Chapter 15 it is shown that this development has hid-
den the very useful application of two-level grammars to polymorphic syntax
definition, opening the flexibility of polymorphism to grammar development.

1.6 Short Trips

The main theme of this thesis is that of improving formalisms and techniques
for syntax definition in support of language prototyping. The organization of
this thesis reflects the development from context-free syntax definition, through
multi-level specifications to polymorphic syntax definition. For the reader inter-
ested in subsets of these subjects we suggest some alternative itineraries through
this thesis.

Three Formalisms For a quick overview of the formalisms developed in this
thesis look at the following sections with examples: §6.2 discusses the main
features of SDF2 illustrated by means of an example. The main features of MLS

9

1 / INTRODUCTION

are discussed in §11.2. A large number of examples of multi-level specifications
are presented in §13.1. §15.4 presents several examples of two-level grammars
used for data type specification.

Priorities The definition and implementation of priorities is presented in a
couple of sections. §3.4 gives a short overview of disambiguation with priorities.
A more precise definition of the interpretation of priorities as disambiguation
filters is presented in §4.5. The derivation of the efficient implementation of
priorities during parser generation is presented in Chapter 5. Rules for the
implementation of a parser generator are presented in §3.5.

Parsing Parsing of context-free grammars extended with character-classes,
priorities, follow restrictions and reject productions is discussed in Chapter 3.
Parser generation in §3.5 and the adaptation of the GLR algorithm in §3.8. A
parsing algorithm for two-level grammars is presented in §15.6.

Disambiguation For disambiguation by means of priorities see above. Other
disambiguation methods for context-free grammars are discussed in Chapter 4.
Parse forests are the subject of §3.8 and §7.5.5. Disambiguation is also an issue
in type assignment for signatures with overloaded functions. In §14.4.2 the type
assignment for multi-level specifications with overloading is presented.

ATerms The annotated term format (ATerms) of Van den Brand et al.
(1997a) is a generic, untyped format for the representation of structured data.
ATerms are used in Chapter 7 to represent parse trees and parse forests. The
definition of the subset of ATerms that represent well-formed parse forests is

given in §7.5.5. ATerms and their role in data representation are also discussed
in §15.2.3.

Terms € Term Rewriting In Part II terms also play an important role. In
Chapter B a number of standard operations such as substitution, matching and
unification on terms are defined. In §12.1.4 these tools are used to specify a
term rewrite interpreter of equations.

Type Systems The chapters in Part IIT present the specification of an ad-
vanced type system. Grammars can also be considered as signatures. The view
of grammars as signatures is discussed in Chapter 7 and Chapter 15.

Coupling of Syntaz to Semantics In §9.3 an example is given of the coupling
of user-definable syntax to conditional equations. In Chapter 12 and Chapter 14
the typing of equations given a signature is discussed.

Language Design In Part II the specification of SDF2 is presented. Several
considerations in the design of the formalism are discussed in §6.3. In Chapter 12
the specification of a simple applicative equational specification formalism is
presented. The specification includes a discussion of equational logic, term
rewriting, well-formedness under a signature and type assignment.

10

Origins of the Chapters [/ 1.7

Literate Specification Part II presents the specification of the syntax def-
inition formalism SDF2. Part III presents the specification of a multi-level
algebraic specification formalism. These specifications were written as literate
specifications. The typeset specifications with comments were prepared using

the ASF+SDF Meta-Environment.

1.7 Origins of the Chapters

Most of the chapters in this thesis were published before as separate papers.
We list their origin.

— Chapter 3 on the scannerless generalized-LR parsing approach is a new
paper that gives an overview of the design and implementation of the
SDF2 normalizer, parser generator and parser. It appeared as a technical

report (Visser, 1997f).

— Chapter 4 on disambiguation filters is joint work with Paul Klint. It
presented under the title using filters for the disambiguation of context-
free grammars at the ASMICS Workshop on Parsing Theory in Milan and
appeared in the proceedings (Klint and Visser, 1994).

— Chapter 5 was presented at the Accolade{95 conference on logic in Ams-
terdam and appeared in the proceedings (Visser, 1995a). It has been ac-
cepted for presentation at the International Workshop on Parsing Technol-
ogy (IWPT’97) in Boston and for publication in the proceedings (Visser,
1997a).

— Part II on the specification of SDF2 as a family of syntax definition for-
malisms is an update and extension of a paper that was presented at the
ASF+SDF’95 workshop on Generating Tools from Algebraic Specifications
and appeared in the proceedings (Visser, 1995b). In its current form it
appeared as a technical report (Visser, 1997d).

— Part IIT appeared as a single chapter in the book Language Prototyping.
An Algebraic Specification Approach (Visser, 1996a). The version in this
thesis has been split up in five chapters and several example specifications
have been added. Furthermore, the specification has been improved in a
few places.

— An extended abstract of Chapter 15 was presented at the AMAST work-
shop on Algebraic Methods in Language Processing (AMiLP’95) in En-
schede and was published in the proceedings (Visser, 1995c). The current
version is accepted for publication in a special issue of Theoretical Com-
puter Science dedicated to the workshop (Visser, 1997e).

11

2
Specification in ASF+SDF

ASF+SDF is a first-order many-sorted algebraic specification formalism de-
signed for the specification of computer languages. Development of ASF+SDF
specifications is supported by the ASF+SDF Meta-Environment that generates
a programming environment from the specification of a language. This chapter
gives an introduction to the basic notions of ASF+SDF.

2.1 Introduction

Algebraic specification is concerned with the formal description of abstract data
types. An algebraic specification consists of a signature describing the structure
of the data type—sorts of data and operations on the data—and expressions
in some form of logic that define the meaning of the operations. An algebraic
specification formalism is characterized by the form of the signatures, the logic
and additional features supporting specification development.

ASF+SDF is a modular algebraic specification formalism with first-order,
many-sorted signatures and conditional equations. It is the union of the al-
gebraic specification formalism ASF and the syntax definition formalism SDF.
An important feature of the formalism is the use of context-free grammars as
signatures (the contribution of SDF), providing an expressive notation for func-
tions. This feature makes the formalism well suited for programming language
specification. The signature describes the concrete syntax of a language and
functions can be defined directly on the concrete constructs.

Development of specifications is supported by means of the interactive, in-
cremental ASF+SDF Meta-Environmnent. It is called a meta-environment
because it supports the generation of programming environments from speci-
fications. Tool support for literate specification encourages the documentation
of specifications.

In this chapter we give an introduction to ASF+SDF. In §2.2 and §2.3 we
discuss algebraic structure, signatures and the use of grammars as signatures.
In §2.4 and §2.5 we discuss equational logic and its operationalization by means
of term rewriting. In §2.7 we discuss the ASF+SDF Meta-Environment. In
§2.8 we discuss the documentation of specifications as literate specifications.
In §2.9 we discuss some concepts related to the specification of programming

13

2 / SPECIFICATION IN ASF—+SDF

languages. We conclude in §2.10 with references to the literature on ASF+SDF
and algebraic specification.

2.2 Many-Sorted Algebra

An algebra is a collection of values or data A with constants a € A and oper-
ations f : A™ — A working on the values. A many-sorted algebra is a family
(A(s) | s € S) of such collections of data indexed by a set of sorts S with a collec-
tion of constants ¢ € A(s) and a collection of functions f : A(sy) x---X A(sp) —
A(So).

The structure of an algebra can be described by means of a signature. A
signature consists of the declaration of the sorts (names for the collections) and
the declaration of the constants and functions of an algebra. (In other contexts
signatures are also called interfaces.) For example, the following signature de-
scribes an algebra consisting of two sorts Bool and Nat and several operations
on those sorts.

sorts Bool Nat

functions
true : Bool
false : Bool
not : Bool -> Bool
and : Bool # Bool -> Bool
zero : Nat
succ : Nat -> Nat
plus : Nat # Nat -> Nat
geq : Nat # Nat -> Bool

A declaration ¢ : s declares a constant c of sort s. A declaration f : s;# ... #s, —
sg declares a function with n arguments of sorts s; ... s, and result sort sy, i.e.,
a function f: A(s1) X --- X A(sp) = A(so).

There are many algebras corresponding to a signature. Each structure that
has the prescribed sets of data and operations on them is considered an algebra
in the family of algebras described by a signature. A special algebraic structure
in this family is the term algebra T(X) corresponding to a signature X.. The data
of this algebra are terms over the signature, which are constructed according to
the following rules.

(Constants) If ¢ : s is a constant declaration, i.e., an element of the function
declarations F(X) of ¥, then ¢ is a term of sort s.

c:s € F(X)
c e T(X)(s)
(Functions) If f : s;# ...#s, — so is a function declaration and #; for 1 <
1 < n are terms of sort s;, then f(t1,...,t,) is a term of sort sq.

frsift...#sn = s0, ti € T(E)(s:)
f(tl, - ,tn) (S T(E)(Sg)

14

Grammars as Signatures | 2.3

For example, according to these rules the expression
not (geq(zero(), plus(succ(zero()), zero())))

is a term of sort Bool in the signature above.

The term algebra over a signature is special because it is initial in the family
of algebras for the signature. For each algebra A in Alg(X) there is a unique
translation from the term algebra T(X) to A. This is the interpretation function
I4 defined as follows:

IA(C) =CA

IA(f(tla s Jtn)) = fA(IA(tl)J s JIA(tn))

Here c4 is the value of the constant ¢ in A and fj4 is the function corresponding
to f in A. The fact that the term algebra is initial has another consequence, it
means that it has ‘no junk’, i.e., all values in the algebra correspond to a term.

2.3 Grammars as Signatures

2.3.1 Context-free Syntax

In ASF+SDF signatures are specified by means of a context-free grammar in
the form of a syntax definition in SDF. Basically, an SDF definition consists of a
declaration of sorts listing all the sorts and a context-free syntax section declar-
ing the functions. The differences with signatures is that the names of functions
are not restricted to prefix functions, but patterns that can be written before,
in between and after the arguments of the function. A function declaration is
of the form ly s1 l;...l, sn lny1 — S0, where the I; are lists of zero or more
literals and the s; are sorts. A literal is a string of characters between double
quotes that indicates a part of the function name that is to be written literally.

Corresponding to the signature of Boolean and natural number values in the
previous example we can define a grammar of Boolean and natural number
values:

sorts Bool Nat
context-free syntax

"true" -> Bool
"false" -> Bool
"not" Bool -> Bool
Bool "and" Bool -> Bool
Bool "or" Bool -> Bool
"o" -> Nat
ngn n(u Nat n) " -> Nat
Nat "+" Nat -> Nat
Nat "x" Nat -> Nat
Nat ">=" Nat -> Bool

15

2 / SPECIFICATION IN ASF—+SDF

2.3.2 Parse Trees as Terms

Again, we can formulate rules for the construction of terms over such syntax
definitions. Let G be a context-free grammar, S(G) the set of sorts of grammar
G, and P(G) the set of productions of G.

(Constants) If I — s is a constant context-free syntax rule (without sorts on
the left-hand side), then [is a term of sort s.

I -5 €P(G)
1eT(G)(s)

(Functions). If lg s1 l; . ..1, Sp lnt1 — So is a context-free syntax rule and ¢;
for 1 <14 < n are terms of sort s;, then lg t; Iy .. .1, t, l,41 is a term of sort so.

l() S1 l1 .. ln Sn ln+1 — So € P(g),tz (S T(g)(sz)
l(] tl l1 ... ln tn ln+1 S T(g)(SQ)

For example, the expression

not 0 >= s(0) + O

is a term of sort Bool in the syntax definition above.

2.3.3 Priorities

One problem with this definition is that terms can be ambiguous. For instance,
the term 0 + 0 + 0 is a term of sort Nat in two ways, depending on whether
we take + left or right associative. In SDF this problem is solved by declaring
the associativity and priority of functions. The attributes {left}, {right} and
{assoc} declare a function to be left-associative, right-associative or simply
associative, respectively. By means of priorities one can express that a function
has higher priority than another function. For example, the operations for the
natural numbers in the grammar above can be disambiguated in the following
manner:

context-free syntax
Nat "+" Nat -> Nat {left}
Nat "x" Nat -> Nat {left}
"(" Nat ")" -> Nat {bracket}
priorities
Nat "x" Nat -> Nat >
Nat "+" Nat -> Nat

This gives multiplication higher priority than addition and declares both oper-
ators as left associative.

In order to override the declared priorities one can introduce bracket functions,
function declarations of the form lo s Iy — s {bracket}. Such functions are
identity functions, i.e., we have the implicit identity Iy t l; = ¢t. For instance, in
the example above, parentheses are declared as brackets for natural numbers,
such that

16

Grammars as Signatures | 2.3

s(s(0)) * (s(s(0)) + s(0))

can be written to override the priority of * over +.

2.3.4 Lists

SDF has special support for functions that have an arbitrary number of argu-
ments of the same sort. For example, the declaration

context-free syntax
program FunDef* -> Program

declares that the function program constructs a Program from zero or more
function definitions.

2.3.5 Injections

ASF+SDF permits “syntax-less” chain rules for injecting a sort into another
sort. For example, to define that a natural number is an integer we declare

context-free syntax
Nat -> Int

2.3.6 Lexical Syntax

Syntax definitions do not only define the syntax of sentences, the context-free
syntax, but also define the syntax of words, the lexical syntax. We have already
seen literals that describe exactly one word. The literal "true" indicates that
the word consisting of the letters t, r, u and e is a unit of the language. Def-
initions can also contain a lexical syntax section that describes collections of
words. For example, the definition

sorts Id
lexical syntax
[a-z] [a-zA-Z0-9]* -> Id

defines that identifiers (sort Id) are words starting with a lowercase letter fol-
lowed by zero or more letters or digits.
2.3.7 Layout

The words in sentences can be separated by whitespace and comments. What
exactly constitutes this so called layout has to be defined in the lexical syntax
section. A conventional definition is the following

lexical syntax
[\t\n] -> LAYOUT
"%%" ~[\nl* -> LAYOUT

It defines spaces, tabs and newlines as whitespace and furthermore defines ev-
erything on a line after two percent signs as comments.

17

2 / SPECIFICATION IN ASF—+SDF

2.4 Conditional Equations

Now we have seen how algebraic structure of data can be specified by means
of signatures and grammars, but we have said nothing about their meaning. In
ASF+SDF conditional equations are used to describe the meaning of functions.
Equations define functions by specifying the equality of terms. An equation of
the form ¢t = s declares the terms ¢ and s to be equal. For example, the following
equations define addition and ordering of natural numbers.

equations
[0] 0O+ n =n
[1] s(m) + n’ = s(n + n’)
[21 0 > n = false
[3] s(n) >0 = true

[4] s(n) > s(n’) =n > n’

The tags [z] before the equations are for documentation purposes only.
A conditional equation has the form:

t1=51,...,tn=sn

” or t=swhent, =s1,...,t, = s,
=s

It declares that term t is equal to term s, if ¢; equals s; for 1 <1 < n.

2.5 Term Rewriting

For sets of equations respecting certain criteria, equality of terms can be de-
cided by interpreting the equations as term rewrite rules to simplify a term to
normal form. Term rewriting is the process of repeatedly replacing a subterm
that matches the left-hand side of an equation by the correspondingly instanti-
ated right-hand side of the equation until no such subterm can be found. The
resulting term is in normal form.

2.6 Modularization

A specification can be divided in a number of modules. A module can be
reused by importing it in other modules. The signature of a module is divided
in an export and an import part. Items in the exported signature are visible
in modules that imported the module. Hidden items are for use in the module
itself and are invisible to other modules. Currently, ASF+SDF does not support
renamings of sorts or functions or parameterized modules. This entails that
instantiations of a data type have to be created by copying a module.

2.7 The ASF4+SDF Meta-Environment

The ASF+SDF Meta-Environment is a programming environment for the de-
velopment of ASF+SDF specifications. The environment provides editors for

18

Literate Specification |/ 2.8

editing and type checking modules. Specifications can be tested by opening a
term editor over some module. Such a term editor provides a basic programming
environment for the language being defined. The basic operations on terms in
term editors are checking of the syntax and reducing a syntactically correct term
to its normal form according to the equations in the specification.

2.8 Literate Specification

Specifications can be used to prototype languages and programming environ-
ments, but are meant in the first place as language descriptions for implementors
and users of the language. Therefore, it is important that specifications are doc-
umented properly. Maintaining the documentation of a specification separately
from the specification itself is a guarantee for a divergence between the two.
Therefore, documentation of ASF+SDF specifications is supported by means
of literate specification. The specification developed and tested in the Meta-
Environment is also the basis for the documentation. The documentation is
generated automatically from the specification by means of a literate specifica-
tion tool for ASF4+SDF. The tool—appropriately called ToIATEX—translates an
ASF+SDF specification to ITEX code for typesetting. Comments in the speci-
fication are passed directly to IATEX. The syntax declarations and equations of
a specification are typeset. To accommodate the use of mathematical symbols,
ToI#TEX is parameterized with a user extendable mapping from ASCII symbols
to ITEX commands. For instance >= can be mapped to \geq, which comes out
as >. All specifications in this book have been prepared in this manner.

2.9 Specification of Programming Languages

We discuss some terminology and conventions in the usage of ASF+SDF for the
specification of programming languages. In ASF+SDF a programming language
is considered a data type. The specification of a programming language consists
of a specification of the syntaz, the strings that are sentences of the language,
a description of the semantics, the meaning of sentences of the language, and a
description of the context-sensitive requirements on sentences.

2.9.1 Language Processors

We distinguish several basic tools used in manipulating programs in a program-
ming language.

— A parser determines whether a string is a syntactically correct sentence of
the language.

— A typechecker checks context-sensitive requirements, mainly with respect
to type declarations.

— An interpreter computes the value for a program and its input.

19

2 / SPECIFICATION IN ASF—+SDF

— A compiler translates a program to a program in another language.

— A program transformation tool transforms a program in another program
in the same language.

Parsers are generated automatically from the syntax definition of the language.
Type checkers, interpreters and compilers are defined by means of functions in
the specification.

2.9.2 Programming Environments

A programming environment is a collection of tools supporting the development
of programs in a programming language. In addition to parsers, type checkers,
interpreters and compilers such environments may contain the following tools:

— A (structure) editor is used to create and maintain the program text and
invoke other tools. In the ASF+SDF Meta-Environment structure editors
are generated from the syntax definition of a language.

— A debugger helps finding errors in programs.

— A pretty-printer transforms the text of a program such that it becomes
more readable.

— A typesetter typesets a program for printing and usage in program docu-
mentation.

— Semantics analysis tools help in understanding a program and finding
errors in them.

— A version manager supports maintenance of versions and configurations.

2.9.3 Structure of a Specification

ASF+SDF does not enforce a modularization style for specifications of program-
ming languages. To promote reuse and extensibility, we use the following style.
The specification of a programming language is defined in several modules that
can be classified as:

— Syntax modules describe the syntax of the language. If it concerns a larger
language we divide the syntax in several modules containing parts of the
language that belong together. Some languages can be divided in a kernel
and several extensions to it.

— Data type modules describe auxiliary data structures.

— Interpreter modules describe the evaluation function for language con-
structs.

For each other kind of processor, a separate module is introduced.

An extension of a language consists of a syntax module for the syntax of the
new constructs, a data type module describing additional data structures and
an interpreter module describing the extension of the evaluation function.

20

Literature / 2.10

2.10 Literature

The algebraic specification formalism ASF and algebraic specification with ASF
and ASF+SDF are introduced in Bergstra et al. (1989a). The syntax definition
formalism SDF is defined in Heering et al. (1989). The principles of the imple-
mentation of the ASF+SDF Meta-Environment are described by Klint (1993).
Directions for the usages of the ASF+SDF Meta-Environment can be found in
Klint (1995). Literate ASF+SDF specification is described in Visser (1994a,
1994b). Case studies and experience with ASF+SDF are described in various
publications. In a recent book Van Deursen et al. (1996) give an introduction to
ASF+SDF as language prototyping formalism using a number of advanced case
studies, mainly in type checking, and present several research issues. Recent
advances in research in this area are reported on in the ASF+SDF workshops
(Van den Brand et al., 1995, Sellink, 1997).

Background on universal algebra can be found in Meinke and Tucker (1992)
and Wechler (1992). Literature on algebraic data type specification includes
Loeckx et al. (1996).

21

Part |

Context-Free Parsing Techniques

3

Scannerless Generalized-LR
Parsing

Current deterministic parsing techniques have a number of problems. These
include the limitations of parser generators for deterministic languages and the
complex interface between scanner and parser. Scannerless parsing is a pars-
ing technique in which lexical and context-free syntax are integrated into one
grammar and are all handled by a single context-free analysis phase. This ap-
proach has a number of advantages including discarding of the scanner and
lexical disambiguation by means of the context in which a lexical token occurs.
Scannerless parsing generates a number of interesting problems as well. Inte-
grated grammars do not fit the requirements of the conventional deterministic
parsing techniques. A plain context-free grammar formalism leads to unwieldy
grammars, if all lexical information is included. Lexical disambiguation needs
to be reformulated for use in context-free parsing.

The scannerless generalized-LR parsing approach presented in this chapter
solves these problems. Grammar normalization is used to support an expressive
grammar formalism without complicating the underlying machinery. Follow re-
strictions are used to express longest match lexical disambiguation. Reject pro-
ductions are used to express the prefer keywords rule for lexical disambiguation.
The SLR(1) parser generation algorithm is adapted to implement disambigua-
tion by general priority and associativity declarations and to interpret follow
restrictions. Generalized-LR parsing is used to provide dynamic lookahead and
to support parsing of arbitrary context-free grammars including ambiguous ones.
An adaptation of the GLR algorithm supports the interpretation of grammars
with reject productions.

3.1 Introduction

Parsing is one of the areas of computer science where program generation is a
routine technique that is successfully applied to generate parsers for program-
ming languages given their formal definition by means of a context-free gram-
mar. At least, in theory. In practice, most parser generators accept only a lim-

25

3 / SCANNERLESS GENERALIZED-LR PARSING

ited subset of the context-free grammars such as LL(1) or LALR(1) grammars.
Since most natural grammars for languages do not respect these limitations,
the language designer or compiler writer has to bend over backwards to fit the
grammar into the restrictions posed by the grammar formalism by rewriting
grammar rules, introducing ad-hoc solutions for parse table conflicts or resort-
ing to side effects in the parser. Even if one succeeds in producing a grammar
that respects the restrictions, a small extension or modification of the language
might jeopardize the careful balance of tricks, which makes maintenance of tools
for the language troublesome.

Another source of problems in generated parsers is the division between the
lexical analysis phase and the context-free analysis phase and the corresponding
division of the grammar into a regular grammar defining the lexical syntax and
a context-free grammar defining the context-free syntax. A scanner divides the
character string into tokens according to the lexical syntax. A parser structures
the token string into a tree according to the context-free syntax.

At the interface between scanner and parser the lexical tokens are passed
from the scanner to the parser. In the most straightforward scenario the scan-
ner produces a stream of tokens without intervention from the parser. This
entails that no knowledge of the parsing context is available in the scanner and
thus no lexical analysis decisions can rely on such information. It is difficult
to unambiguously define the lexical syntax of a language by means of only reg-
ular grammars. Therefore, lexical analysis and the interface with context-free
analysis are usually extended. First lexical disambiguation heuristics such as
‘prefer longest match’ and ‘prefer keyword’ are applied to reduce the number of
readings. If there remain ambiguities after application of these rules the scanner
might produce multiple streams of tokens representing all possible partitionings
of the string into tokens according to the regular grammar. The parser should
then be able to cope with this non-linear input. It is also possible to supply feed-
back from the parser to the scanner to reduce the number of applicable grammar
rules. For instance, by specifying the lexical categories that are expected for
the next token.

In all such schemes lexical analysis becomes more complicated than the simple
finite automaton model that motivated the use of regular grammars. Context-
free parsing functionality starts to appear both inside the scanner and at the
interface between scanner and parser and often operational elements corrupt
the declarativity of the language definition. As a consequence, many grammars
are ambiguous if only the pure regular and context-free grammar are considered
as such and reasoning about the language being defined becomes difficult.

3.1.1 Scannerless Generalized-LR Parsing

In this chapter we describe an approach to syntax definition and parser gen-
eration that overcomes many of these problems. The approach is based on
the integration and improvement of scannerless parsing, generalized-LR parsing
and grammar normalization. Because of the integration of the former two, the
approach is called scannerless generalized-LR parsing.

26

Introduction / 3.1

Scannerless Parsing Scannerless parsing is a parsing technique that does not
use a scanner to divide a string into lexical tokens. Instead lexical analysis is
integrated in the context-free analysis of the entire string. It comes up naturally
when considering grammars that completely describe the syntax of a language.
The term scannerless parsing was coined by Salomon and Cormack (1989, 1995).
They use ‘complete character level grammars’ describing the entire syntax of a
language down to the character level. Since conventional LR parser generation
yields tables with too many conflicts, they use an extension of SLR(1) parser
generation called non-canonical SLR(1). However, even this extension makes it
hard to define a grammar without conflicts.

Generalized-LR Parsing The conventional LR parsing techniques and espe-
cially scannerless LR parsing suffer from conflicts in the parse table. There are
two causes for conflicts in LR parse tables: ambiguities and lack of lookahead.
If a conflict is caused by an ambiguity, any of the possible actions will lead to a
successful parse. If it was caused by a lookahead problem, one of the actions will
lead to success and the others will fail. Which action will be successful cannot
be decided statically. Since ambiguity of a context-free grammar is undecidable
(Floyd, 1962), it is also undecidable whether a conflict is due to an ambiguity or
to a lack of lookahead. Because complete character level grammars frequently
need arbitrary length lookahead, methods to solve conflicts in the table will not
always succeed.

Generalized-LR parsing is an extension of LR parsing that interprets the con-
flicts in the parse table by forking off a parser from the main parser for each
possible action in case of a conflict. If such a conflict turns out to lead to an
ambiguity the parser constructs a parse forest, a compact representation of all
possible parse trees for a sentence. But if the conflict was caused by lack of looka-
head, the forked parsers for the wrong track will fail. In this manner lookahead
is handled dynamically. Therefore, generalized-LR parsing is an ideal technique
to solve the lookahead problems of scannerless parsing. Generalized-LR pars-
ing was introduced by Tomita (1985) building on the theoretical framework of
Lang (1974). It was improved by Rekers (1992) to handle all context-free gram-
mars. In this chapter we extend Rekers’ version of the algorithm with reject
reductions, a facility needed for lexical disambiguation.

Grammar Normalization An aspect of the division between lexical and con-
text-free syntax that affects the specification of syntax is the definition of layout,
i.e., the whitespace and comments that can occur at arbitrary places between
tokens. In the conventional setting layout is analyzed by the scanner and then
thrown away. The parser never sees the layout tokens. Therefore, layout can
also be ignored in the specification of context-free syntax. However, in a com-
plete character level grammar all aspects of the syntax are completely defined,
including the syntax and positions of layout. This can lead to rather unwieldy
grammars that declare the occurrence of layout as separator between all gram-
mar symbols in context-free productions.

Grammar normalization is a technique used to define an expressive gram-
mar formalism in terms of simple context-free grammars. An example of a

27

3 / SCANNERLESS GENERALIZED-LR PARSING

normalization procedure is the addition of layout symbols between the sym-
bols in context-free productions. Other examples are the definition of regular
expressions by means of productions and the flattening of modular grammars.
An important aspect of the scannerless generalized-LR approach is the use of
grammar normalization to keep grammars small and usable. The syntax defini-
tion formalism SDF2 used in the approach is a formalism for concise definition
of complete character level grammars. SDF2 is a generalization of the syntax
definition formalism SDF of Heering et al. (1989). The formalism and normal-
ization procedure is defined in Part II.

3.1.2 Architecture

The typical architecture of an application of SDF2 is depicted in Figure 3.1.
A program text! processor that transforms text into text is composed of (1) a
parser front-end that analyzes the input text and produces a structured repre-
sentation of the text in the form of a parse tree, (2) the actual processor that
performs a transformation from a parse tree to another one and (3) a pretty-
printer back-end that produces text corresponding to a transformed parse tree.
Processors can be, for instance, interpreters, compilers, data flow analyzers or
program transformation tools.

The input language of a processor is specified in the syntax definition formal-
ism SDF2. Given a language definition in SDF2 and a tree to tree processor, the
corresponding text to text processor is constructed using a grammar normalizer,
a parser generator, a parser and a pretty-printer generator.

Grammar Normalizer A language definition in SDF2 is normalized to a plain
context-free grammar extended with character classes, priority rules, follow re-
strictions and reject productions. Normalization is briefly discussed in §3.3. A
full definition of SDF2 normalization can be found in Part II.

Parser Generator From a normalized syntax definition a parse table is gen-
erated using an extension of the standard SLR(1) algorithm with character
classes, priorities, follow restrictions, and reject productions. The parser gener-
ator accepts arbitrary context-free grammars. The techniques used in the parser
generator are discussed in §3.5.

Parser A parse table is interpreted by a generic, language independent
SGLR parser, which reads a text and produces a parse tree. At the heart of the
parser is an extension of the GLR algorithm of Rekers (1992) that reads char-
acters directly, without using a scanner. The extension of the GLR algorithm
with reject reductions is discussed in §3.8.

Pretty-Printer A pretty-printer is used to translate the output tree of the
processor to text. The pretty printer itself can also be generated from the
definition of the output language. This is described in Van den Brand and
Visser (1996) and is not further discussed here.

1Here text denotes a linear representation of a program in some character code, e.g., ASCII
or UniCode.

28

Introduction / 3.1

L definition L' definition
in SDF2 in SDF2

L definition
in SDF2.

Parser Pretty-printer

Generator

Generator

L parse
table
L parse L' parse L' pretty-
tree tree printer
Ltext F-------= Processor } -------= > L' text

Figure 3.1: Architecture of an SDF2 application.

3.1.3 Contributions

The scannerless generalized-LR parsing approach presented in this chapter is a
new powerful parsing method that supports concise specification of languages.
The technical contributions (the details of which will be discussed later on) of
the approach are:

— The normalization of grammars to eliminate features enhancing the ex-
pressivity of the formalism, in particular, the integration of lexical and
context-free syntax by means of normalization into a single grammar.

29

3 / SCANNERLESS GENERALIZED-LR PARSING

— The use of GLR parsing for scannerless parsing to deal with unbounded

lookahead.

— Static disambiguation by means of priorities by interpreting priority dec-
larations in the parser generator. Priorities are completely expressed in
the parse table.

— The use of character classes in grammars to compact the parse table.

— The use of follow restrictions to define longest match disambiguation and
the interpretation of follow restrictions in the parse table.

— Prefer literals disambiguation by means of reject productions. Several
expressivity results about context-free grammars with reject productions.
Implementation of parsers for such grammars in an extension of the GLR
algorithm.

3.1.4 Overview

In the next section we will argue in more detail that scannerless parsing has a
number of definite advantages over parsing with scanners, but that it has not
been introduced before because of the limitations of conventional parsing tech-
niques. In the rest of the chapter we present several techniques that overcome
these limitations and result in a combined approach encompassing grammar
formalism and parsing techniques that does make scannerless parsing feasible.

3.2 Scannerless Parsing

The term scannerless parsing was coined by Salomon and Cormack (1989, 1995)
to indicate parsing without a separate lexical analysis phase using a scanner
based on a deterministic finite automaton. The parser directly reads the char-
acters of a text. This entails the integration of the definition of lexical and
context-free syntax in one grammar.

Consider the following SDF2 definition of a simple language of expressions
consisting of identifiers, additions and multiplications.

sorts Id Exp
lexical syntax

la-z]+ -> Id

[\ \t\nl -> LAYOUT
context-free syntax

Id -> Exp

Exp "*" Exp -> Exp {left}

Exp "+" Exp -> Exp {left}
context-free priorities

Exp "x" Exp -> Exp >

Exp "+" Exp -> Exp

30

Scannerless Parsing | 3.2

The first line declares the sorts (say the non-terminals) of the grammar. The
next three lines declare the lexical syntax of the language such that identifiers
are lists of one or more lowercase letters and layout consists of spaces, tabs and
newlines. The next four lines declare the context-free syntax of the language.
An expression is either an identifier or an addition or multiplication of two
expressions. Observe that the grammar is ambiguous and that in order to
disambiguate it, priority and associativity declarations have been added. The
last three lines declare that multiplication has higher priority than addition.
The left attribute declares addition and multiplication to be left-associative.

The conventional way to interpret such a grammar to parse a string is as
follows: (1) Divide the string into tokens according to the lexical syntax in
all possible ways. (2) Apply lexical disambiguation rules to select the desired
division. For instance, given the string ab,,, the rule ‘prefer longest match’
would prefer the division over [@[blg, i.e., the longest possible identifier is
selected. (3) Throw away layout tokens. (4) Parse the resulting token string
according to the context-free syntax. The result is a parse tree that contains as
leafs the tokens yielded by lexical analysis.

In scannerless parsing we have the following sequence: (1) Combine the defi-
nition of lexical and context-free syntax into a single context-free grammar. All
tokens on the left-hand side of productions in the context-free syntax are ex-
plicitly separated by layout. All grammar symbols are renamed, such that the
symbols occurring in the lexical syntax have the form (_-LEX) and those in the
context-free syntax have the form (_-CF). This is done to keep the two levels
separated. For instance, the addition production is transformed into

<Exp-CF> <LAYOUT?-CF> "+" <LAYOUT?-CF> <Exp-CF> -> <Exp-CF>

The symbol (LAYOUT?-CF) represents the syntax of layout that can appear be-
tween tokens. In §3.3 this will be explained in more detail. The complete inte-
grated grammar corresponding to the definition above is presented in Figure 3.3
on page 39. (2) Parse the characters of the string according to the normalized
grammar. The result is a parse tree that contains as leafs the characters of
the string. The tokens are recognizable as subtrees. For example, consider the
parse tree in Figure 3.2. Observe that the symbols (L-LEX) and (L-CF) are
abbreviations for (LAYOUT-LEX) and (LAYOUT-CF) and denote layout nodes.

In a sense, nothing is new. In a conventional parser, if we would instruct the
scanner to make each character into a corresponding token, the parser that reads
these tokens would in effect be ‘scannerless’. The reason that we distinguish
scannerless parsing from parsing with a real scanner is that the former generates
some special problems that are avoided by using a scanner.

3.2.1 Advantages

Now that we have an understanding of what scannerless parsing is, we might
ask why it is any good. We will discuss the advantages one by one.

No Scanner The obvious advantage of scannerless parsing is that no imple-
mentation of a scanner and scanner generator is needed and that the complicated
interface between scanner and parser can be eliminated.

31

3 / SCANNERLESS GENERALIZED-LR PARSING

<START>
<L?-CF> <Exp-CF> <L?- CF>

_———/ \ ™~ \

<Exp-CF> <L?-CF> "+" <L?-CF> <Exp-CF> <L-CF>

I I I I I I

<l d- CF> <L- CF> + <L- CF> <ld-CF> <L-LEX>

[I /N \ \

<I d- LEX> <L-LEX> <L-CF> <L-CF> <ld-LEX> \ 32

I I I | \

<[a-z]+-LEX> \32 <L-LEX> <L-LEX> <[a-z]+-LEX>

N\ I I I

<[a-z] +-LEX> <[a-z]+-LEX> \ 32 \t c

a b

Figure 3.2: Parse tree for the string aby+ \tc,

Integrated Uniform Grammar Formalism A language is completely defined
by means of one grammar. All grammar rules are explicit and formally specified.
Lexical syntax and context-free syntax are specified with the same formalism.
There is no longer a distinction between regular and context-free grammars.
This makes the formalism more uniform and orthogonal. All features available
for lexical syntax are available for context-free syntax and vice versa. This
simplifies use and implementation of the formalism.

Disambiguation by Context Because of the integration of lexical and context-
free syntax, lexical analysis is guided by context-free analysis. If a token does
not make sense at some position, it will not even be considered. For instance,
in the example above, the longest match rule does not have to be used to prefer
over because the latter situation—two adjacent identifiers—is never
syntactically correct.

The paradigmatic example of context-dependent lexical disambiguation is the
interplay between subrange types and floating point number constants in Pascal.
Subrange types have the form k. .1, where k and 1 are constants. If floating
point number constants could have the form i. and .j with i and j numbers,
then i..j could be scanned either as [il=={j}, i.e., the range from i to j, or as
[i.].]], ie., two adjacent floating point numbers. In scannerless parsing, this
ambiguity is solved automatically by context. A scanner that has no access
to the context and applies the longest match rule, would always choose the
second possibility (two adjacent numbers) and fail. Apparently for this reason
the syntax of Pascal only allows real numbers of the form i.j, where i and j

32

Scannerless Parsing | 3.2

are non-empty lists of digits (Jensen and Wirth, 1975). Similar examples can
be found in many languages.

Another example where the parsing context is relevant for making lexical
decisions is the syntax of lists of statements that can be separated by semicolons
or newlines. Consider the grammar

lexical syntax
[\ \t\n] -> LAYOUT
context-free syntax
"begin" {Stat ";"|"\n"}* "end" -> Block

The lexical syntax defines newlines (\n) to be layout. The context-free syntax
defines blocks as lists of zero or more statements starting with the keyword
begin and ending with the keyword end. The list is declared by the construct
{A B}x, which declares a list of As separated by Bs, i.e., a list of the form
A B A ... B A. In this case the separator is either a semicolon or a newline.
This means that newlines are both layout and non-layout. If the disambiguation
rule ‘prefer non-layout’ is applied to the tokens of this language, all newlines—
even those not used as separator of statements—will be wrongly characterized
as non-layout. A scannerless parser will recognize the newlines used as separator
simply by considering the parsing context.

Conservation of Lexical Structure Scanners do usually not maintain the
phrase structure of the tokens they produce. For example, the grammar

lexical syntax
[a-z]+ -> 1Id
u/n? "[Id u/n}+ -> Path

defines the lexical syntax of path expressions as occur, for instance, in the
naming conventions of tree-structured filesystems. This syntax has to be lexical
since no layout should occur between the identifiers and separators of a path. A
scanner would produce a string containing the characters of a path expression
without the structure assigned to it by the grammar, i.e., the distinction between
identifiers in the path is lost. This entails that the semantic processor must
reparse such tokens to deal with their internal structure.

Conservation of Layout Scanners throw away the layout between tokens of
a phrase. In this way the parser can ignore layout, which simplifies the parsing
problem. However, there are examples of operations on programs that require
the structure of the program, i.e., the parse tree, but also the layout in the
source. Examples are source to source translations, transformations on the
source text and program documentation tools. Although a conventional parser
could be instructed to add the layout to the parse tree via some detour, this
would usually require a non-standard extension of the method. If the layout
would be explicitly specified in the grammar we would get an approach that is
very similar to scannerless parsing.

33

3 / SCANNERLESS GENERALIZED-LR PARSING

Ezpressive Lexical Syntax Context-free grammars provide a more expressive
grammar formalism for lexical syntax than regular grammars. This additional
expressive power opens the way to concise definitions of nested comments and
syntactically correct expressions in comments. For example, consider the fol-
lowing extension of the expression grammar above that defines C-like comments
as a list of comment words between /* and */.

sorts ComWord Comment
lexical syntax
“[\ \t\n\[\/]+ -> ComWord
context-free syntax
"/*%" ComWord* "x/" —> Comment
Comment -> LAYOUT

A comment word is a non-empty list of characters that are not whitespace, | or
/. Since the definition of comments is part of the context-free syntax, comment
words can be separated by layout. These comments are made into layout by the
last line of the grammar, which is an injection of comment into layout. Because
layout can occur between any two adjacent tokens, comment can as well.
According to this definition, comments can be nested, because comment words
are separated by layout, which includes comments. For instance, the string

h /* height */
/*

* w /* width */

* d /* depth */
*/

is a syntactically correct expression over the grammar above in which part of
an expression including comments is commented out. This is a tedious job if
nested comments are not supported by the language.

Moreover, the following extension of the grammar above defines that a com-
ment word can also be an expression between two |s.

context-free syntax
"|" Exp "|" -> ComWord

This entails that comments can contain quoted expressions that must be syn-
tactically correct. For instance, the following sentence contains the expression
x + y as part of a comment.

a + b /x an expression |x + y| denotes
the addition of |x| and |y| */
+c

This is useful for typesetting comments in literate programs and for generating
cross-references.

34

Scannerless Parsing | 3.2

3.2.2 Problems & Solutions

Now one might ask why scannerless parsing was not introduced earlier, if it has
so many advantages. The answer is that there are several problems caused by
the integration of lexical and context-free syntax as well. In this chapter we
discuss solutions to these problems that make scannerless parsing feasible.

Limitations of Parsing Techniques The main problem with scannerless pars-
ing are the limitations of the conventional deterministic parsing techniques.
Most complete character level grammars are not LR(1), LL(1), or even LR(k)
due to lookahead needed for lexical elements. When parsing with a scanner a
lookahead of 1 entails looking one token ahead. In scannerless parsing a looka-
head of 1 entails only considering the next character. Furthermore, when layout
is skipped by the scanner this need not be considered in the lookahead. The
solution used in the SDF2 implementation is to use the generalized-LR parsing

algorithm of Tomita (1985) and Rekers (1992) to get dynamic lookahead.

Grammar Size Another problem is the size of grammars. Complete charac-
ter level grammars are large because all constructs have to be specified down to
the character level. Furthermore, the placement of layout between tokens should
be explicitly declared in productions. For maintenance and readability of gram-
mars this is problematic. To support the development of complete character
level grammars an expressive formalism is needed that hides the details of the
interface between lexical and context-free syntax and of the placement of layout.
In §3.3 we discuss the approach of grammar normalization in order to provide
an expressive formalism with a minimal semantic basis. In §3.4 we discuss the
extension of context-free grammars with various disambiguation constructs to
keep grammars concise.

Lezical Disambiguation Although many lexical ambiguities are solved auto-
matically through the integration of lexical and context-free syntax, there are
still cases where disambiguation of lexical constructs needs to be expressed.
Since lexical analysis is now based on context-free parsing, familiar lexical dis-
ambiguation rules such as ‘prefer longest match’ and ‘prefer keyword’ have to
be redefined and their implementation reconsidered. In §3.4 we discuss two dis-
ambiguation constructs for lexical disambiguation: follow restriction and reject
productions that suffice to express all common lexical disambiguation rules.

Interpretation of Disambiguation Rules There are a number of ways to in-
terpret disambiguation constructs. One possibility is to implement them as a
filter on parse forests as proposed in Chapter 4. However, for disambiguation
of lexical constructs and context-free expressions with priorities this can lead to
an exponential size of the parse forest before filtering, which makes the method
too inefficient. In §3.5 we discuss the techniques used in parser generation to
encode disambiguation rules in the parse tables such that decisions are taken
early. In §3.8 an extension of the GLR parsing algorithm with reject reductions
is presented.

35

3 / SCANNERLESS GENERALIZED-LR PARSING

Efficiency The first problem that comes to mind when considering scanner-
less parsing is efficiency. Since scanning with a finite automaton has a lower
complexity than parsing with a stack, scannerless parsing, i.e., replacing the
finite automaton part by a stack machine, should be less efficient. The fol-
lowing considerations led us to attempt scannerless parsing, nonetheless: (1)
LR parsing is linear, in particular for regular grammars. Since lexical syntax
is traditionally formulated by means of regular grammars, we should expect
linear behaviour for the lexical part of scannerless parsers. (2) The complete
complexity of the scanner/parser setup should be considered including lexical
disambiguation. If lexical disambiguation rules cannot solve all ambiguities and
disambiguation has to be deferred to the parser, a kind of graph structured stack
has to be maintained to keep track of the possible segmentation of the string in
tokens. (Such a setup is used in the ASF+SDF Meta-Environment (Klint, 1993)
that forms the background for the development of SDF2.) It seems even more
efficient to maintain a single graph structured stack, instead of two. (3) If more
complex grammars for lexical syntax are used, we get into an area where scan-
nerless parsing and parsing with scanners can no longer be properly compared
because such syntax is not expressible in the scanner framework. Therefore, the
worst case complexity of context-free parsing should not be taken as a reference
point for considering the complexity of scannerless parsing.

Of course, these considerations should be verified by means of experiments.
However, experiments with scannerless parsing can only be performed after
solutions have been found for the other problems discussed above. It seems
that these problems are the cause for the late introduction of scannerless parsing
rather than bad efficiency of the method. In §3.9 we will discuss a few simple
experiments that have been performed with the scannerless parsing method
described in this chapter and that seem to confirm our expectations.

3.3 Grammar Normalization

We need an expressive grammar formalism in which lexical syntax and context-
free syntax are integrated and that supports concise syntax definitions. SDF2
is such an expressive formalism. It provides regular expressions, lexical and
context-free syntax, character classes, literals, priorities, modules, renaming,
and aliases. The first version of the formalism was described in Visser (1995b).
The full definition is presented in Part II. Because it is expensive to extend
tools to such an expressive formalism, all features that are expressible in more
primitive features are eliminated by means of a normalization function on gram-
mars.

3.3.1 Normal Form

The expressive power of the syntax definition formalism SDF2 can be charac-
terized by the equation

SDF2 = context-free grammars + character-classes + priorities
+ reject productions + follow restrictions

36

Grammar Normalization | 3.3

That is, any SDF2 definition is equivalent to a context-free grammar making
use of character classes, priorities, reject productions and follow restrictions. All
other features are expressed in terms of these features. The equivalence is such
that a definition is equivalent to a definition of the form

sorts s1...5;

syntax pi...pk
priorities pry,... ,pry
restrictions 7y ...7.,

where the s; are sort symbols, the p; are context-free productions of the form
o — A, the pr; priority declarations of the form p; R p;; with R a priority
relation, and the r; follow restrictions of the form a -4~ cc with a a list of
symbols and cc a character class.

A production can have a number of attributes that may include the attribute
reject, which makes the production a reject production. A priority relation
is one of left, right, assoc, non-assoc or >. A symbol can be a character
class or some other symbol. Only character classes are interpreted during parser
generation. Other symbols constructed using symbol operators are simply in-
terpreted as a name. For instance, the symbol A+ used to indicate the iteration
of symbol A has no special meaning after normalization.

Given a grammar G the following projection functions are defined:

S(G) ~ sorts of G
Syms(G) — symbols used in G
P(G) — productions of G
Pr(G) + priorities of G
R(G) + restrictions of G

3.3.2 Normalization

As an example of the normal form, consider the grammar in Figure 3.3. It com-
pletely describes the lexical and context-free syntax of expressions with identi-
fier, multiplication and addition—the same language described in the example
in §3.2. In fact, this grammar is derived from that grammar by application of a
normalization procedure. We briefly discuss the elements of this normalization
that is formally specified in Part II. Refer to Figure 3.3 for examples of the
normalization rules.

Lexical and Context-free Syntaxr The most important aspect of the normal-
ization for this chapter is the integration of lexical and context-free syntax. The
productions of lexical and context-free syntax are merged. In order to avoid
interference of lexical and context-free syntax the symbols in productions are
renamed. The symbols in the lexical syntax—except for character classes and
literals—are renamed using the symbol constructor {(_~LEX). For instance, Id
becomes (Id-LEX) and [\97-\122]1+ becomes <[\97-\122]+-LEX>. Similarly,
the symbols in the context-free syntax are renamed using (_-CF). Furthermore,

37

3 / SCANNERLESS GENERALIZED-LR PARSING

the symbols on the left-hand side of context-free productions are separated by
(LAYOUT?-CF), which entails that layout can occur at that position. In this
way two disjunct sets of symbols are created. The interface between lexical and
context-free syntax is now expressed by an injection (A-LEX) — (A-CF) for each
symbol A used both in the lexical and the context-free syntax.

Top Symbol A syntax definition defines a number of symbols. A text over
such a definition can be one produced by any of its symbols. For context-free
parsing we need a single start symbol from which all strings are generated. For
this purpose for each sort A a production

(LAYOUT?-CF) (A-CF) (LAYOUT?-CF) — (START)

is added to the grammar, defining the start symbol (START). The production
also defines that a string can start and end with layout. Furthermore, to express
the termination of a string the production

(START) [\EOF] — (Start)

defines that a string consists of a string generated by (START) followed by the
end of file character.

Character Classes Character classes are expressions of the form [cry ... crp]
where the cr; are either characters or character ranges of the form ¢—¢'. Charac-
ter classes are normalized to a unique normal form by translating the characters
to a numeric character code—the ASCII code—and by ordering and merging
the ranges such that they are in increasing order and do not overlap. This
normalization is formally specified and proven correct with respect to the set
interpretation of character classes in Visser (1997b).

Literals Literals are abbreviations for fixed lists of characters. Literals are
defined in terms of a production with the literal as result and singleton char-
acter classes corresponding to the characters as arguments. For example, the
production

[\108] [\101] [\116] -> "let"
defines the literal "let" as the sequence of characters 1, e and t in ASCIL.

Regular FExpressions An extensive set of regular expressions including op-
tional, alternative, tupling, several kinds of iteration and permutation are ex-
pressed by means of defining productions. For instance, consider the definition
of <[\97-\122]+-LEX> in Figure 3.3, which defines a list of one or more lower-
case letters.

Priorities Priorities can be declared using chains of > declarations and as-
sociativities of productions can be declared using groups and attributes. These
are all defined in terms of binary priority and associativity declarations.

38

Grammar Normalization | 3.3

sorts Id Exp

syntax

[\9-\10\32] -> <LAYOUT-LEX>

<LAYOUT-LEX> -> <LAYOUT-CF>

<LAYOQUT-CF> <LAYOUT-CF> -> <LAYOUT-CF> {left}
-> <LAYOUT?-CF>

<LAYQUT-CF> -> <LAYOUT?-CF>

[\42] —> fxn

[\43] -> nyn

[\97-\122] -> <[\97-\122]+-LEX>

<[\97-\122]+-LEX> <[\97-\122]+-LEX> -> <[\97-\122]+-LEX>

{left}

<[\97-\122]+-LEX> -> <Id-LEX>

<Id-LEX> -> <I4d-CF>

<Id-CF> -> <Exp-CF>

<Exp-CF> <LAYOUT?-CF> "#" <LAYQUT?-CF> <Exp-CF> -> <Exp-CF> {left}
<Exp-CF> <LAYOUT?-CF> "+" <LAYOUT?-CF> <Exp-CF> -> <Exp-CF> {left}

<LAYOUT?-CF> <Id-CF> <LAYOUT?-CF> -> <START>

<LAYOUT?-CF> <Exp-CF> <LAYOUT?-CF> -> <START>

<START> [\EOF] -> <Start>
priorities

<[\97-\122]+-LEX> <[\97-\122]+-LEX> -> <[\97-\122] +-LEX>

left

<[\97-\122]+-LEX> <[\97-\122]+-LEX> -> <[\97-\122] +-LEX>,

<LAYOUT-CF> <LAYOUT-CF> -> <LAYOUT-CF> left

<LAYOUT-CF> <LAYOUT-CF> -> <LAYOUT-CF>,

<Exp-CF> <LAYOUT?-CF> "*" <LAYQOUT?-CF> <Exp-CF> -> <Exp-CF> >
<Exp-CF> <LAYOUT?-CF> "+" <LAYOUT?-CF> <Exp-CF> -> <Exp-CF>,
<Exp-CF> <LAYOUT?-CF> "*" <LAYOUT?-CF> <Exp-CF> -> <Exp-CF> left
<Exp-CF> <LAYOUT?-CF> "*" <LAYQOUT?-CF> <Exp-CF> -> <Exp-CF>,
<Exp-CF> <LAYOUT?-CF> "+" <LAYOUT?-CF> <Exp-CF> -> <Exp-CF> left
<Exp-CF> <LAYOUT?-CF> "+" <LAYOUT?-CF> <Exp-CF> -> <Exp-CF>

Figure 3.3: Expression grammar in normal form. The grammar contains no
restrictions or reject productions.

Modules An SDF2 definition can be divided over a number of modules. Mod-
ules can import other modules. This is used to share common syntax definitions
in several language definitions. Renamings of symbols and productions can be
used to adapt the definition in a module to some application. Furthermore,
symbol aliases can be used to abbreviate long regular expressions. Modular
syntax definitions are completely expanded by the normalization function.

39

3 / SCANNERLESS GENERALIZED-LR PARSING

3.3.3 Semantics

A syntax definition defines a language, i.e., a set of strings, and the structure
that is assigned to those strings. The strings of the language are important
to its users who write down programs. The structure of those strings is im-
portant for the definition of language processors such as compilers, interpreters
and typecheckers. The productions of an SDF2 definition describe both the
language and the structure assigned to strings in the language. The semantics
of a syntax definition is a set of parse trees from which a set of strings can be
derived. The mapping from trees to strings is achieved by taking the yield of
a tree. The reverse mapping from strings to trees is called parsing. At this
point, we formally define the semantics of context-free grammars without con-
sidering disambiguation rules such as priorities, reject productions and follow
restrictions.

A context-free grammar G generates a family of sets of parse trees T(G) =

(T(G)(X) | X € Syms(G)), which contains the minimal sets 7(G)(X) such that

cEcc
T (Char)
A1 An 5 AEP(9), th € T()(A1), .-, tn € T(G)(An) (Prod)

[t1...tn = A € T(G)(A)

In rule (Char) c is a character and cc a character class. We will write ¢, for a
list ¢; ...t, of trees where a is the list of symbols X; ... X, and t; € T(G)(X;)
for 1 < i < n. Correspondingly we will denote the set of all lists of trees of type
a as T(G)(a). Using this notation [t; ...t, — A] can be written as [t, — A]
and the concatenation of two lists of trees ¢, and tg is written as t,tg and yields
a list of trees of type af.

The yield of a tree is the concatenation of its leafs. The language defined by
a grammar G is the family L(G) = (L(G)(X) | X € Syms(G)) of sets of strings
that are yields of trees over the grammar, i.e., L(G)(X) = yield(T(G)(X)). A
parser is a function II that maps a string of characters to a set of parse trees. A
parser II accepts a string w if |II(w)| > 0. A parser for a context-free grammar
G that accepts exactly the sentences in L(G) is defined by

I(G)(w) = {t € T(9)(X) | X € Syms(G), yield(t) = w}

A parser II is deterministic if |II(w)| < 1 for all strings w. A grammar is
ambiguous if there are strings with more than one parse tree, i.e, |II(G)(w)| > 1.

3.4 Disambiguation

Disambiguation methods are used to select the intendend tree from a set of pos-
sible parse trees for an ambiguous string. SDF2 provides three disambiguation
methods. Priority and associativity declarations are used to disambiguate con-
cise expression grammars. Follow restrictions and reject productions are used
to express lexical disambiguation. In this section we discuss these methods.

40

Disambiguation [3.4

3.4.1 Disambiguation by Priorities

By using priority and associativity declarations, fewer grammar symbols have to
be introduced and a more compact abstract syntax can be achieved. Consider
the following grammar of expressions in a functional programming language
with binary function application and let binding.

sorts Var Term
lexical syntax
[a-z]+ =-> Var
[\ \t\n]l -> LAYOUT
context-free syntax

Var -> Term

Term Term -> Term {left}

"let" Var "=" Term "in" Term -> Term

Term "=" Term -> Term {non-assoc}

"(" Term ")" -> Term {bracket}
context-free priorities

Term Term -> Term >

Term "=" Term -> Term >

"let" Var "=" Term "in" Term -> Term

An example term over this grammar is
let sum = foldr plus zero in sum lst

The grammar is disambiguated by means of priorities. The binary application
operator is declared as left-associative. This entails that z y z should be read
as (z y) z and not as = (y z). This is illustrated in Figure 3.4 that shows
the right- and left-associative parse trees for three adjacent terms. The priority
declaration defines applications to have higher priority than equalities. Consider
the trees in Figure 3.5. According to the priority declaration, the first tree has
a priority conflict and therefore only the second tree is a correct parse tree. The
following definition formally defines the notion of priority conflicts.

Definition 3.4.1 Given some grammar G with priority declarations Pr(G), the
set conflicts(G) of priority conflicts over grammar G is the smallest set of parse
tree patterns of the form [a[8 — B]y — A] such that:

aBy —+ A>3 — BePrg)

[@[8 — B]y — A] € conflicts(G) (CF1)
v #¢€, B — B (right U non-assoc) By — A € Pr(9) (CF2)
[[8 = Bly — A] € conflicts(G)
a#¢€, B— B (left Uassoc Unon-assoc) aB — A € Pr(G) (CF3)

[a[8 = B] — A] € conflicts(G)

A parse tree over a grammar G has a priority conflict if one of its nodes matches
a pattern [a[8 — B]y — A] € conflicts(G). O

41

3 / SCANNERLESS GENERALIZED-LR PARSING

<Ter m CF> <Term CF>

1N 1N

<Term CF> <L?-CF> <TermCF> <TermCF> <L?-CF> <Term CF>

1N 1N

<Term CF> <L?-CF> <Term CF> <Term CF> <L?-CF> <Term CF>

Figure 3.4: Left- and right-associative parse trees for binary term application.

<Ter m CF> <Term CF>
N — /I N\
<Term CF> <L?-CF> <TermCF> <TermCF> <L?-CF> "=" <L?-CF> <TermCF>
— I\ N
<Term CF> <L?-CF> "=" <L?-CF> <Term CF> <Term CF> <L?-CF> <Term CF>

Figure 3.5: Two parse trees for application and equality.

Using the notion of priority conflicts we can define a filter on sets of parse trees
that selects the trees without a conflict. For example, according to rule (CF3)
and because of the declaration of application as a left-associative operator, the
pattern

[(T-CF) (L?-CF) [(T-CF) (L?-CF) (T-CF) — (T-CF)] — (T-CF)]

describes a tree with a conflict. (Term and LAYOUT are abbreviated to T and L,
respectively.) Therefore, the second tree in Figure 3.4 has a conflict and the
first one is selected by the disambiguation method. According to rule (CF1)
and because application has higher priority than equality, the pattern

[(T-CF) (L?-CF) "=" (L?-CF) (T-CF) — (T-CF)] (L?-CF) (T-CF) — (T-CF)]

is a member of the conflicts generated by the functional language grammar.
This means that the first tree in Figure 3.5 has a priority conflict. The second
tree has no conflict.

3.4.2 Lexical Disambiguation

If we consider the example of functional expressions again we see that it contains
two occurrences of lexical ambiguities.

Longest Match In the first place there is a longest match problem caused by
the syntax-less binary application operator. Two adjacent letters could be the
concatenation of two letters forming a variable, or it could be the application
of two single letter variables. Figure 3.6 shows two parse trees for the string
fa. In the first tree the concatenation of letter lists is used to make them into
a single variable. In the second tree each letter is interpreted as a variable on
its own. We want to solve this ambiguity by means of the longest match rule

42

Disambiguation [3.4

that prefers the longest possible lexical token. In this case the string fa as a
single variable. We define the longest match notion formally by comparing the
lengths of tokens. For this definition we first need the notion of the token stream
associated to a parse tree.

Definition 3.4.2 (Token Stream) The token stream associated with a parse
tree is the list of subtrees that have as root either an injection (A-LEX) — (A-CF)
or a literal defining production. The length |¢| of a token ¢ is the number of
characters in its yield. O

According to this definition the token streams for the trees in Figure 3.6 are
the single token

[[[[f = <[a-z]+-LEX>][a = <[a-z]+-LEX>] - <[a-z]+-LEX>]
— <Var-LEX>] — <Var-CF>]

and the tokens

[[[f = <[a-z]+-LEX>] — <Var-LEX>] — <Var-LEX>]
[[[a = <[a-z]+-LEX>] — <Var-LEX>] — <Var-LEX>]

The idea of longest match disambiguation is to compare two token streams from
left to right. While the tokens have the same length the streams are similar.
The first token that differs in length solves the ambiguity by taking the tree
associated with the longer token. In the example above, the first token stream
is larger because its first token has length 2 while the first token of the second
stream has length 1.

/N

<[a-z] +- LEX>

f

<[a-z] +- LEX>

a

<[a-z] +- LEX>

f

<Term CF> <Term CF>

<Var - CF> <Term CF> <L?-CF> <Term CF>

<Var —| LEX> <Var|— CF> <Var|— CF>
<[a-z] I+- LEX> <Var | LEX> <Var | LEX>

<[a- z] +- LEX>

a

Figure 3.6: Two parse trees for fa over the functional expression grammar.

43

3 / SCANNERLESS GENERALIZED-LR PARSING

Formally we have the following definition of longest match disambiguation:

Definition 3.4.3 (Longest Match) Given the token streams ¢ ...t, associ-
ated with the tree t and s ... s, associated with tree s, tree t is larger in the
longest match ordering >, than s (t >1m), if there is some 1 < ¢ < min(n,m)
such that [¢;] = |s;| for 1 < j < ¢ and |t;| > |s4]. O

This definition can be used as a method to filter parse forests by selecting
the largest trees according to the longest match ordering. However, because
a longest match ambiguity causes an exponential explosion of the parse forest
this is not feasible. We need a method that can be applied during parsing,
if possible as a filter on parse tables. A naive solution for the longest match
problem in the example above is to require non-empty layout as a separator
between the two terms of an application. In the example this would indeed solve
the problem because the second tree would be forbidden. However, this solution
is immediately refuted by considering the expression f (a), where brackets are
used around the argument.

A method that works in all cases we have encountered so far is that of follow
restrictions. A follow restriction of the form A; ... A, —~ cc declares that the
symbols A; should not be followed by any of the characters in the character
class cc. In the example above the restriction

lexical restrictions
Var -/- [a-z]

forbids a variable to be followed by a letter. This entails that the second tree in
Figure 3.6 violates the follow restrictions and the desired first tree is selected.

Prefer Literals The second problem in the functional expression grammar is the
overlap between the literals "let" and "in" and variables. This is particularly
problematic in combination with the = operator on terms. A let binding let
X = t1 in t2 can be interpreted also as an equality (let x) = (t1 in t2),
where let and in are now read as variables. We clearly want to declare 1let and
in as reserved words of the language that should not be used as variables. This
lexical disambiguation rule is called ‘prefer literals’ and can be defined formally
as follows.

Definition 3.4.4 (Prefer Literals) A tree violates the prefer literals rule if
it contains a subtree with function (A-LEX) — (A-CF) and the yield of that tree
is also used as literal in the grammar. O

This rule can be expressed by means of reject productions. A reject produc-
tion is a production a — A attributed with the attribute reject. It declares
that a string is not of type A if it can also be derived from a. For example to
disambiguate the grammar above we add the following productions.

lexical syntax
"let" -> Var {reject}
"in" -> Var {reject}

44

Parser Generation / 3.5

This creates an ambiguity: let can be a variable in two ways, via the lexical
definition or via the production above. Because this is a reject production both
derivations are forbidden, i.e., let can only occur in the context of a 1let binding.
We also need the restrictions

lexical restrictions
"et" "in" _/_ [a—z]

to prevent letter to be interpreted as the literal let and the variable ter. We
will further discuss some properties of reject productions in §3.7.

Automatic Lezical Disambiguation We have defined two extensions of context-
free grammars that enable us to express lexical disambiguation rules on gram-
mars for integrated lexical and context-free syntax. However, it is desirable to
derive the rules for lexical disambiguation automatically from the grammar. In
§3.6 we will discuss this issue, after we have discussed parser generation.

3.5 Parser Generation

We have discussed a grammar formalism with disambiguation methods for con-
cise definition of lexical and context-free syntax of languages. Now we turn our
attention to deriving parsers from such syntax definitions. In this section we
present the rules for the generation of parse tables for a shift-reduce parser. The
rules constitute a modification of the well known SLR(1) algorithm. We first
discuss shift-reduce parsing.

3.5.1 Shift-Reduce Parsing

A shift-reduce parser is a transition system that manipulates its state consisting
of a stack and an input stream by repeatedly shifting a symbol from the input to
the stack or reducing a number of elements on top of the stack to a single element
until it enters an accepting state. The transitions between parse configurations
are determined by the functions ‘actions’ and ‘goto’ as defined by the following
transition rules:

actions(sm,, a;) 3 shift(smi1)

Shi
(s0t181 - tmSm @ @i ...an) = (S0t151 -+ - tmSmQiSm i1 ® iyl ... Gn) (Shi)
actions(sm+, a;) 3 reduce(p, k),
s = goto(sm,p), t = tree(p, [tm+t1,-- -, tmtk)) (Red)
(Sot]_ . tmsmtm+15m+1 . tm+k5m+k ea;... an)
= (Sot1---tmSmtsea;...ay,)
actions(s1, \EOF) 3 accept (Aco)
cc

(sot1s1 ® \EOF) = accept(t)

Here a configuration (sot151...tmSm ® a;...a,) consists of a stack on the left
side of the o and a list of input characters on the right side of the o. The stack is

45

3 / SCANNERLESS GENERALIZED-LR PARSING

filled alternatingly with states s and trees t. Parsing starts in the configuration
Co = (sp®ai...a,), where sq is the initial state of the parser. Parsing succeeds
if there is some sequence of steps Co = C; = ... = accept(t) that ends in the
accepting configuration accept(t).

There are various ways to define the actions and goto functions that drive a
shift-reduce parser. The SLR(1) algorithm of DeRemer (1971) and Anderson
et al. (1973) is a simplification of the LR(k) parsing algorithm of Knuth (1965).
It works by first constructing an LR(0) parse table. This involves no lookahead
sets in the parse items. The lookahead of reductions is constrained to the follow
set of the nonterminal defined by the production being reduced.

In the rest of this section we describe a modification of the SLR(1) algorithm
that incorporates priorities and follow restrictions. This modification is based on
the derivation in Chapter 5, where starting with a schema for Earley’s parsing
algorithm, a parsing schema is derived such that the parser does not build trees
with priority conflicts. Other changes are the use of character classes, the use
of productions instead of symbols in follow and goto and the interpretation of
follow restrictions to restrict the lookahead set of reductions.

3.5.2 First

The first set for a symbol contains those symbols with which a phrase for the
symbol can start. Given some grammar G, define for each list of symbols o and
each character class cc the first characters in a followed by cc is the smallest
character class first(a, cc) such that:

first(e, cc) = cc (Fi1)
first(cc’ a, cc) = ec' (Fi2)
a— AeP(G) (Fi3)

first(ApB, cc) D first(af, cc)

The definition of the first set can be extended to the set of symbols that starts
a sentence derived from a list of symbols.

a— AeP(G)

firsts (A5,) D {A} U first(aB, @) (Fid)

3.5.3 Follow

In the conventional SLR(1) algorithm the follow set is computed for each non-
terminal of the grammar. It maps a nonterminal to the set of terminals that
can follow that nonterminal in a sentence, i.e.,

aAB —* (Start)
follow(A) D first(3,)

This can be computed as the closure of

BAy — B € P(G)
follow(A) D first(+y, follow(B))

(Fol)

46

Parser Generation / 3.5

that adds the characters in the first set of v to the follow set of A if v follows
A in some production. The follow of B is added in case v can also produce the
empty string.
This notion can be refined to the follow-set of productions. The rule
BAy — B € P(G)
follow(a — A) D first(v, follow(8Ay — B))

(Fo2)

defines the follow-set of production a — A as those characters that can follow
A in some context. In case of plain context-free grammars, rule (Fo2) has the
same effect as rule (Fol). But if we consider priorities, the rule is extended to

BAy — B € P(G), [Bla = A]y — B] ¢ conflicts(G)
follow(a — A) D first (v, follow(8Ay — B))

(Fo3)

Here the follow-set of a production is restricted to those contexts where it can
actually be used without causing a priority conflict. For instance, in the ex-
pression grammar of §3.2, the follow-set of the addition production does not
contain the character % because addition can not occur as a direct descendant
of multiplication.

Finally, if the grammar also defines follow restriction rules A —£~ cc, the
follow-set of a production for A can be further restricted as

BAy — B € P(G),[Bla = A]ly — B] ¢ conflicts(G), A -/~ cc € R(G)
follow(aw — A) D first (v, follow(BAy — B)) \ cc

The production can be followed by the difference of the first set of the right
context and the character class cc.

To see the effect of the last rule consider the follow-set of the production
[a-z]+ -> Var in the functional expression grammar of the previous section.
Because of the application production and the injection of variables into terms,
the follow-set of [a-z]+ -> Var is [\EOF\t\n\ \(\)\=a-z]. The lexical re-
striction Var -/- [a-z] removes the character class [a-z] from this follow-set,
resulting in [\EOF\t\n\ \(\)\=]. This entails that a variable cannot directly
be followed by a letter.

(Fod)

3.5.4 Goto Table

The states of an LR parser are formed by item-sets. An item is an object of the
form [ae 8 — A], i.e., a context-free production with a e somewhere in between
the symbols on the left-hand side. Such an item indicates that a sentential form
of type a has already been recognized.

The initial state of the parser for grammar G is the item-set init(G) defined
as

init(G) = closure([®(START) [\EOF] — (Start)])

This state expresses that a sentence can be recognized by recognizing a string
of sort (START) followed by the special end of file character that indicates the
end of strings.

47

3 / SCANNERLESS GENERALIZED-LR PARSING

The closure of a set of items adds all initial items to an item set for which
the result symbol is predicted by one of the items in the set.

T C closure(7) (Clo)

[c e BB — A] € closure(Z), v — B € P(G)
[ey — B] € closure(Z)

(cn)

In the presence of priorities the closure is restricted to those items that do not
cause a priority conflict.

[@ B3 — A] € closure(Z), v = B € P(G),
[a[y = B]B — A] ¢ conflicts(G)

[¢y — B] € closure(Z)

(C12)

For example, the item [E+ E — E] is not added to the closure as a result of the
item [E + oE — E] if this production is left-associative, because [E +[F + E —
E] — E] is a conflict pattern

The parsing of a string starts with the parser in the initial state. Upon
recognition of a symbol, either by reading a character or by completing a pro-
duction, the parser can enter other states as prescribed by the transitions of the
goto graph. The goto function maps an item-set to another item-set, given the
symbol that has been recognized. The function ‘goto’ is defined by

goto(X,Z) = closure(shift(X, 7))

i.e., create a new item-set by shifting the e over the symbol X and produce the
closure of the resulting item-set. In normal LR(0) parsing a shift with a symbol
B creates an item-set containing all items of the previous set that have the e
before a B symbol.

[ae BB — AleT
[aB e 8 — A] € shift(B,Z)

(Shi)

We refine the definition of shift to shifting with characters and shifting with
productions. Shifting an item-set with a character or character-class is defined
by the rule

[@ecc B— Al €T, cc Cec
[a cc' o B — A] € shift(ce, T)

(Sh2)

The character-class cc induces a shift of each item that predicts a character-class
cc that is a superset of cc.

Shifting with nonterminals is refined to shifting with complete productions.
A shift is only successful if the production do not cause a priority conflict as a
direct descendant at the position of the predicted symbol.

[e BB — Al € Z, [a[y — B]B8 — A] & conflicts(G)
[aB e 3 — A] € shift(y - B,7)

(Sh3)

48

Parser Generation / 3.5

For example, the production E + E — E cannot be used to shift the item
[E+ eE — E] if this production is left-associative, because [E +[E+E — E] —
E)] is a conflict. This restriction of the closure and goto functions guarantees
that we can never enter a state where we have built a parse tree with a priority
conflict.

3.5.5 Action Table

The action table declares the actions to be taken in each state. Given an item-
set, the function ‘actions’ maps a character to the set of actions that the parser
can take. If the set of actions is empty the parser has reached an erroneous
state. If the set contains more than one action there is more than one way to
proceed.

[ceccp— A€, cEcc

actions(Z, ¢) 3 shift(goto([c],7)) (ki)

[ae — A] € Z, c € follow(a — A)

actions(Z, c) 3 reduce(a — A, |al) (Red)
[(START) o [\EOF] - A] € T (Acc)

actions(Z, \EOF) > accept

Note that shift(Z) denotes the shift action to state Z, whereas shift(X,7) is
the application of the shift function defined above.

The following proposition states that the actions and goto functions defined
above constitute a correct shift-reduce parser.

Proposition 3.5.1 (Correctness) Given the actions and goto functions for a
grammar G, we have that (init(G) e w) =* accept(t) iff t € II(G)(w) and t con-
tains no priority conflicts according to Pr(G) and violates no follow restrictions

in R(G).

3.5.6 Remarks

The transition rules for shift-reduce parsing are non-deterministic. If more than
one action is possible in some configuration more than one transition is possible.
If the actions function is deterministic, at most one transition path is possible
for a string. Traditional parsing techniques only accept grammars that have a
deterministic action function. In §3.8 we will discuss an efficient implementation
for non-deterministic actions functions.

The rules for parser generation above ignore reject productions, i.e., they are
treated just like other productions. In §3.7 we will discuss how reject produc-
tions can be interpreted by means of a filter on parse forests. In §3.8 we will
discuss how reject productions can be interpreted during parsing by means of
an adaptation of the GLR algorithm. For this purpose, an item-set Z is marked
as rejectable if it can be reached using a reject production, i.e., Z is rejectable, if
there is an 7' such that goto(a — A,7') =7 and @ — A is a reject production.

49

3 / SCANNERLESS GENERALIZED-LR PARSING

3.6 Automatic Lexical Disambiguation

In §3.4 we discussed the specification of lexical disambiguation by means of
follow restrictions and reject productions. Although this is an effective way
to express lexical disambiguation, it is rather tedious to write down the rules.
Therefore, it would be desirable to derive lexical disambiguation rules automat-
ically from the other grammar rules such that the grammar is disambiguated
according to the longest match and prefer literals criteria. Here we discuss some
possibilities. The perfect rules for longest match disambiguation have not been
found yet. It is a question whether this is possible at all, since it is undecidable
whether a context-free grammar is ambiguous.

3.6.1 Prefer Literals

The prefer literals disambiguation rule can be expressed by generating reject
productions according to the following rule:
"er...cp," € L({A-LEX))
"ep...cn" — (A-LEX) {reject} € P(G)

i.e., if the literal is a lexical phrase of sort {A-LEX)—there is an overlap—the
reject rule is added to the grammar. This implements the reserved keywords
rule. The only (implementation) problem is that a parser is needed to recog-
nize the literals as lexicals. This can be solved by first generating a parser for
the grammar without reject rules and using that parser to determine overlap
between literals in the grammar and lexical categories. Reject rules can then be
added to the grammar accordingly and a new parser can be generated for the
extended grammar.

State Ezplosion A problem with reject productions to exclude keywords as
lexicals is that it can add many items to item-sets. For instance, if a language
contains 200 keywords that match with the identifiers of the language, each item-
set containing an item [@ (Id-LEX)3 — A] would be expanded with 200 items
[e"cy...c," — (Id-LEX) {reject}] and 200 items [e[c1]...[cn] = "c1...cn"]
along with many extra transitions. To prevent this expansion, we define the
rejection of literals in an indirect way, as follows:

"ep...cn" € L({A-LEX))
() (A-LIT) — (A-LEX) {reject} € P(G)
"er...cp" > <A—LIT) € P(g)

where the symbol () denotes the empty phrase, i.e., there is a production — ().
The sort (A-LIT) is used to collect all literals to be rejected from (A-LEX). The
production () (A-LIT) — (A-CF) {reject} defines the rejection for all literals
at once. The effect of the empty symbol () in the second production is that only
the item [e() (A-LIT) — (A-LEX)] is added when (A-LEX) is predicted. This
will cause a reduction with the production — () to an item-set where (A-LIT)
is predicted. This item-set is only computed once and is reused for all other

50

Automatic Lexical Disambiguation / 3.6

item-sets that predict (A-LEX). It is the initial state of a finite automaton for
the matching of literals.

As an example, consider how the prefer literals rule for our functional language
example is expressed using this modified rule:

syntax
() <Var-LIT> -> <Var-LEX> {reject}
"let" -> <Var-LIT>
"in" -> <Var-LIT>

Local Ezclusion An alternative for the expression of the prefer literals rule
is the rule
{[®#(A-LEX) — (A-CF)], [®[c1]-..[cn] = "c1...cn"]} C closure(Z)
[e"cy...cp," — (A-CF) {reject}] € closure(Z)

that locally forbids predicted literals as lexicals by extending the parser gen-
erator. This does not implement the reserved keywords rule in the sense of
forbidding the use of a keyword as a lexical in all positions. Only when a lexical
and a literal can appear in the same place, the literal is preferred. Therefore, it
might still lead to ambiguities.

3.6.2 Longest Match

It is less straightforward to find a general rule to express ‘longest match’ using
follow restrictions. An attempt is the rule

(B-LEX) € follows({A-LEX) — (A-CF))
(A-LEX) - first((B-LEX)) N last({A-LEX)) € R(G)

(FR)

This restricts the follow set of {A-LEX) by excluding the elements of the first
set of (B-LEX) that can also be used at the end of (A-LEX) for those (B-LEX)s
that can follow the injection (A-LEX) — (A-CF). Here follow; is the extension
of the follow function to produce all symbols that can follow a production.

This rule is adequate in many cases. Consider for instance the functional
expression grammar. The follow restriction for Var in §3.4.2 is derived exactly
using this rule. However, the rule is not general enough. One counter example is
the following grammar of expressions with single character variables and implicit
multiplication operator. This describes mathematical expressions such as zy
that denotes the multiplication of z and y.

lexical syntax

[a-z] -> Var

[\ \t\n] -> LAYOUT
context-free syntax

Var -> Exp

Exp Exp -> Exp {left}

51

3 / SCANNERLESS GENERALIZED-LR PARSING

Rule (FR) would forbid xy as an expression forcing the use of whitespace, i.e.,
x y. Although this example shows that rule (FR) is unsound if considered as
an analytic rule, one could also consider it as a normative rule forcing a clearer
style of language definition.

Rule (FR) generates follow restrictions for lexicals. We also need restrictions
for literals overlapping with lexicals. For instance, the restrictions

lexical restrictions
"let" "in" -/- [a-z]

forbids the interpretation of letter as the literal let and the variable ter. The
following rule adds restrictions to prevent this overlap.

(A-LEX) € follow("cy ...cn"),
c € first((A-LEX)), "¢1 ...chc" € L({B-LEX))

"ep...ep" -~ [c] € R(G)

If the literal L = "¢y ...c," followed by some character ¢ from the first set of
a lexical (A-LEX) that is a member of the follow set of L can form a lexical
(B-LEX), there is a longer match than the literal L. Therefore, c is restricted
from the follow set of the literal.

This rule is stronger than the longest match filter we formulated before. It can
forbid sentences that have a single unambiguous interpretation. For instance,
consider the string let x = 1 int. Here int is forced to be read as a variable
and not as the juxtaposition of the literal in and the variable t.

It is clear that these rules are not the final word about fully automatic lexical
disambiguation. Further research is needed to decide what is sufficient.

3.7 Reject Productions

In §3.4 we introduced reject productions to express ‘prefer literals’ lexical dis-
ambiguation. The parser generator discussed in §3.5 treats reject productions
as normal productions. This will cause ambiguous parses for those cases where
a normal production and a reject production overlap. In this section we first
define the semantics of context-free grammars with reject productions, then we
investigate several properties of such grammars including an interpretation of
rejects to solve such ambiguities. [The author thanks Jan van Eijck and Annius
Groenink for the email discussion that led to the results in this section.]

3.7.1 Semantics

The semantics of reject productions is obtained by refining the inductive defini-
tion of parse trees from §3.4. The inductive rule (Prod) is restricted to exclude
the construction of parse trees that have a yield that could be obtained via a
reject production.

A context-free grammar G with reject productions generates a family of sets

of parse trees T.(G) = (7.(G)(X) | X € Syms(G)), which contains the minimal

52

Reject Productions | 3.7

sets 7:(G)(X) such that
cEcc
¢ € Tz(G)(cc)
Ay A, = A€P(G), t1 € THG) (A1), -.., ta € TH(G)(4n),
-38 — A {reject} € P(G),t3 € T:(G)(B) : yield(tg) = yield(t; .. .tn)
[t1...tn = A] € T (G)(A)

(CharR)

(ProdR)

The second condition of (ProdR) excludes from 7.(G)(A) those trees for which
an A tree with the same yield could be built using a reject production at its
root. This second condition is the only difference with the definition of 7(G),
i.e., we have 7.(G) C T(G). Note that only trees in 7.(G)(8) are excluded.
That is, if there are nested reject productions such that some tree in 7(G)(8)
is rejected and thus not part of 7;(G)(8), then it is not used to exclude trees
using 3 — A {reject}.

Unfortunately, this definition is inconsistent for grammars with a cycle con-
taining a reject production. For instance, consider the grammar

syntax
[a]l] > A
A -> B

B -> A {reject}

and consider whether the string a is a member of the language of this grammar:
if [a & A] € T.(A), then [[a » A] — B] € 7:(B) and hence [a — A] € T:(4).
Conversely, if [a — A] € T:(A), then [[a - A] — B] ¢ 7.(B) and hence
[a = A] € T:(A). For this reason, we restrict the class of grammars that we
want to consider to grammars that do not contain a cycle (disregarding the
rejects) for which one of the transitions is via a reject production.

3.7.2 Expressive Power
In the rest of this section we explore some of the properties of reject productions.

a™b™c™ First of all context-free grammars with reject productions can be
used to describe some non-context-free languages. Consider for example, the
language a™b"c™ with n > 0, which is a standard example of a non-context-free
language. The following grammar, due to Van Eijck (1997), defines this language
using reject productions. The first four productions define the language a*b*c*.
The next four productions define the sorts D and E denoting, respectively, a™b™
and b"c™. The last four productions exclude from sort S all strings for which

one of the pairs z™y™ have unequal numbers of xzs and ys.

Ax Bx Cx -> S ->D D B+ Cx -> S {reject}
"t -> A ADB->D A+ D Cx -> S {reject}
"p" -> B -> E Ax B+ E -> S {reject}
et ->C BEC—>E Ax E C+ -> S {reject}

53

3 / SCANNERLESS GENERALIZED-LR PARSING

Difference Given a context-free grammar defining sorts A and B we can define
the difference of the languages of these sorts by adding the following productions.

A -> AminB
B -> AminB {reject}

The first adds all A trees to AminB, the second excludes from this all A trees that
match with a B tree.

Intersection Extending this result, we can express the intersection between
sorts A and B by adding two new sorts AminB and AandB and by adding the
following productions:

A -> AminB A -> AandB
B -> AminB {reject} AminB -> AandB {reject}

This defines AminB as the difference A—B, and AandB as the difference A—(A—B),
i.e., the intersection of A and B.

We can generalize the results above. Given two context-free languages, we
can express the difference and intersection of those languages using context-free
grammars with reject productions. Take the union of the context-free grammars
for the two languages, after renaming symbols to prevent interference. Then add
productions for the sorts to be intersected as explained above.

Weak Complement If we are only interested in the strings that can be gen-
erated from a grammar (and not in their structure), the complement of a the
language generated by sort A is defined by extending a grammar with the fol-
lowing rules:

“[1* -> NotA
A -> NotA {reject}

The first production defines the complement of A as a string of arbitrary char-
acters. The complement ~[] of the empty character class is the character class
with all characters. The second production excludes from this language all
strings in the language of A. Using this complement we can of course also ex-
press the weak intersection of two sorts.

Decidable We have seen that context-free grammars with reject productions
are very expressive. It is now appropriate to ask whether it is even decidable
whether a string is in the language of such a grammar. The following theorem
states that this is indeed the case. The proof uses the notion of a parse forest
that will be discussed in the next section. For the proof of the theorem we need
the following proposition about generalized-LR parsers.

Proposition 3.7.1 Let G be a context-free grammar. If t;,t2 € T(G)(A4) and
yield(t1) = yield(ts) = w, then a GLR parse of w will result in an ambiguity
node with t; and ty as possibilities.

Theorem 3.7.2 The parsing problem for context-free grammars with reject pro-
ductions (without rejects in cycles) is decidable.

54

Reject Productions | 3.7

<Var - LEX> <Var-LEX>

"let" <[a-z] +- LEX>

I/I\ N

t <[a-z]+-LEX> <[a-z]+-LEX>

A\ |

<[a-z] +-LEX> <[a-z]+-LEX> t

| e

Figure 3.7: Ambiguity node caused by overlap between syntax for <Var-LEX>
and reject production "let" -> <Var-LEX>

Proof. Given a context-free grammar G with reject productions (without
rejects in cycles), construct a generalized-LR parser for G ignoring the reject
annotations. The result is a parser for a possibly ambiguous context-free gram-
mar. Now, given a string, parse it with this parser. If parsing fails, the string
is also not in the language of the grammar with reject productions. Otherwise,
the result of parsing is a parse forest. Since cycles do not contain rejects, these
can be removed from the forest.

Now, if a tree t = [t; ...t, — A] should be rejected according to the second
condition of rule (ProdR), there is a reject production 8 — A and trees tg such
that yield(tg) = yield(¢t1 ...t,). But then, yield([tg = A]) = yield([t1...tn —
A]) and hence, according to the proposition above, the parse forest contains an
ambiguity node on top of ¢ also containing [tg — A] as possibility.

Reject productions are now interpreted by traversing the forest, in a bottom-
up manner, marking tree nodes according to the following rules: (1) Leafs are
not marked. (2) A reduction node is marked if any of its direct descendants is
marked. (3) An ambiguity node is marked if either all its direct descendants are
marked, or if it contains an unmarked tree with as root label a reject production.
Since the parse forest is finite, this procedure terminates.

If the root of the parse forest is marked after this procedure, the string is
not accepted by the grammar, otherwise it is accepted and the forest without
marked nodes represents all parse trees for the string. O

The tree in Figure 3.7 illustrates the proof. The overlap between the literal
"let" and the syntax for variables causes an ambiguity. The ambiguity node
is marked because "let" -> <Var-LEX> is a reject production. Therefore, the
interpretation of let as a variable is dismissed.

55

3 / SCANNERLESS GENERALIZED-LR PARSING

This shows that we can construct a complete implementation of parsers for
grammars with reject productions. In the next section we will discuss how reject
productions can be interpreted during parsing to influence parse decisions to
prevent trees with rejected subtrees from being built at all.

Ezpressive Power From the above we can conclude that context-free gram-
mars with reject productions are stronger than pure context-free grammars, but
have a decidable parsing problem. This gives a lower bound and upper bound
for the expressive power of the formalism, but it is an open question what class
of languages is described by context-free grammars with reject productions.

Regular Rejects We introduced reject productions in order to express the
prefer literals rule. This means that only a regular language is excluded from a
context-free one. This gives us the guarantee that the resulting language is still
context-free. We could exploit this property and restrict the formalism to such
regular reject productions and implement these by means of a grammar trans-
formation. However, such a grammar transformation would probably yield large
grammars. Furthermore, our implementation gives a general way to express the
prefer literals rule and it allows the expression of other interesting grammars
that have not been in the reach of declarative specification. This feature can
give rise to as yet unforeseen applications.

3.8 Generalized-LR Parsing

In §3.5 we have defined the generation of shift-reduce parsers from context-
free grammars with priority declarations and follow restrictions. If the actions
function derived from a grammar is deterministic then the shift-reduce parser
is also deterministic and can be implemented in a standard way.

However, since we do not restrict the class of grammars, it is not guaranteed
that the actions function is deterministic. This can have two causes: (1) The
lookahead needed for the grammar is more than provided by the parser gener-
ator. (2) The grammar is ambiguous. In the case of scannerless parsing we will
frequently see grammars for which unbounded lookahead is needed. This entails
that no variant of the LR parser generation algorithms will produce a determin-
istic actions function. Therefore, we need a non-deterministic implementation
of the shift-reduce parsing algorithm. When a configuration is reached where
more than one action is possible, all possibilities should be tried. In case of
unbounded lookahead only one of the possible transitions leads to an accepting
configuration. In case of an ambiguous string, multiple accepting configurations
will be reached giving all possible parse trees for the string.

The advantage of such a non-deterministic approach is, first of all, the un-
bounded lookahead that it provides. Furthermore, a parser producing all parse
trees for an ambiguous string can be used as a front-end for a disambiguation
filter that selects the correct tree according to some disambiguation method.
Finally, it is undecidable whether a grammar is ambiguous or has lookahead
problems. Having a parser that yields all possible parses can help in detect-

56

Generalized-LR Parsing | 3.8

ing the ambiguities and resolve them in a much easier way than by inspecting
conflicts in a parse table.

A naive way to implement such a non-deterministic parsing algorithm is to
copy the entire configuration at each point where two or more actions are possi-
ble and to continue parsing with each those configurations. This will not be very
efficient because of the memory requirements and because it will not reuse parses
for substrings that are the same in two forked off configurations. Generalized-LR
parsing is an efficient implementation of non-deterministic shift-reduce parsing.
A GLR parser deals with conflicts in the parse table by splitting the parser
into as many parsers as there are conflicts. If the conflict was due to a lack of
lookahead, some of the parsers will not succeed in parsing the sentence and will
die. If several parsers succeed in parsing, the grammar was ambiguous. In that
case parse trees for all possible parses are built.

Generalized-LR parsing was developed for natural language processing by
Tomita (1985). It is a specialization of the more general framework of Lang
(1974) (later also described in Billot and Lang (1989)) for creating generalized
parsers. The algorithm was improved by Rekers (1992) and applied to parsing of
programming languages. The feasibility of GLR parsing for parsing of program-
ming languages has been shown by the experience with GLR in the ASF+SDF
Meta-Environment (Klint, 1993). More experience with GLR parsing of pro-
gramming languages using an adaptation of Reker’s algorithm is reported by
Wagner and Graham (1997).

Besides the non-determinism in the parse table, we also need to interpret the
reject productions in the grammar. In the previous section we showed how reject
productions can be interpreted as a disambiguation filter after parsing. But we
would rather interpret them earlier. In this section we explain GLR parsing and
present an adaptation of the algorithm to interpret reject productions during
parsing.

3.8.1 Parse Forest

A generalized parser deals with ambiguous grammars by producing all possible
parse trees for an ambiguous string. In GLR parsing the possible parse trees
are represented by means of a parse forest. This is a compact representation of
a set of parse trees. A parse tree is constructed using application and ambiguity
nodes. An application node represents the application of a production to a list
of subtrees. An ambiguity node represents a set of possible parse trees for a
(sub)string. By packing all trees for a substring into an ambiguity node, these
parses can be shared in all trees for strings containing the substring.

For example, consider the following grammar of simple expressions with am-
biguous addition and multiplication operator.

sorts Exp
syntax
[a-=z] -> Exp
Exp "+" Exp —-> Exp
Exp "*" Exp -> Exp
Exp -> <START>
57

3 / SCANNERLESS GENERALIZED-LR PARSING

<START>

Figure 3.8: Parse forest with sharing for ambiguous string a+b*c.

To keep the example small, layout is not allowed between the tokens. The
parse forest for the ambiguous string a+b*c is shown in Figure 3.8. The ellipse
represents an ambiguity node. Observe that various subtrees are shared in the
forest.

3.8.2 Graph Structured Stack

A GLR parser deals with conflicts in the parse table by maintaining a number of
stacks in parallel. Each time a parse stack leads to n conflicting actions, n new
stacks are created that continue the parse with those actions. These stacks are
not copies of the old stack. The new top nodes have pointers to the old stack. If
in a later stage two stacks get into the same state, the stacks are merged again.
In this manner a graph structured stack is built in which parses for ambiguous
substrings are shared.

A graph structured stack node consists of a state number and a list of links.
Each link contains a reference to a node in the parse forest and a reference to
the previous stack.

As an example of the working of a GLR parser, consider the sequence of
stack configurations during parsing the string a+b*c in Figure 3.9. This is
the parse that created the parse forest in Figure 3.8. The figure shows the
stacks during each cycle of the parsing algorithm. After shifting a character, all
possible reductions are performed and then the next character is shifted. The
trees pointed to by the stack links are abbreviated by their yield using square
brackets to show the structure. The symbol after the colon denotes the main
type of the tree at the link. We consider the configurations one by one.

(a) The initial stack with state 0 is created. The character a is shifted.

(+) The character a reduces to an expression using the production [a-z] ->

58

Generalized-LR Parsing | 3.8

Figure 3.9: Parse configurations for the parse of string a+b*c.

Exp. The symbol + is shifted.
(b) The character + reduces to the literal "+". The character b is shifted.

(*) The character b reduces to an expression. The sequence [a+b] reduces to
an expression, resulting in a link from state 1 to state 0. From states 1

59

3 / SCANNERLESS GENERALIZED-LR PARSING

and 12 a shift can be performed with the next character *. Because both
shifts lead to a stack with state 9, a single stack is created that has links
to the two stacks.

(c) The character * reduces to the literal "*". The character c is shifted.

(\EOF) The character c reduces to an expression. Now there are two possible
reductions from the stack with state 13. First reduce [b*c] and then
reduce [a+[bxc]], or reduce [[a+b]l*c]. Both reductions result in the
creation of a stack with state 1 with a link to the initial stack. These
stacks are shared and an ambiguity node is created that represents the
two possible parse trees. At this point the entire string has been read and
the next symbol is \EOF. Therefore, the expression is reduced to (START)
and the string is accepted. The stack with state 2 is the accepting stack
and the tree pointed to by its link is the parse tree for the entire string.

3.8.3 Reject Reductions

In §3.4 disambiguation with reject productions was introduced in order to ex-
press the prefer literals rule. In §3.7 we outlined a procedure for interpreting
reject productions after parsing by pruning the parse forest. We would rather
interpret reject productions during parsing to prevent trees containing reject
productions from being built.

To understand how this can be achieved, recall the parse forest in Figure 3.7
that shows the ambiguity that is created when parsing the substring let in
the functional expression grammar defined in §3.4.1. It can be interpreted us-
ing the lexical productions for variables or using the reject production "let"
-> <Var-LEX> {reject}. Pruning this forest causes the ambiguity node to
be eliminated from the parse forest, thereby rejecting the reading of let as a
variable.

The parse configurations for this parse in Figure 3.10 show how this ambiguity
is created. In the first three configurations the letters 1, e and t are read.
The fourth configuration is the interesting one. There are three parses for the
substring let: as a variable constructed with <[a-z]+-LEX>, as the literal "let"
of the reject production "let" -> <Var-LEX>, and as the literal "let" as part
of the let construct. The reduction of the literal results in a stack with state 12.
The reduction of the lexical and the reject rule lead to a merged stack with
state 10 from where another reduction first leads to a stack with state 9 and
then leads to a term and a stack with state 14. From the states 9, 12 and 14
parsing continues with a shift of the space character , (32) to state 6.

The idea for the implementation of the reject rule is to forbid further actions
with a state that has been reached using a reject reduction. The link that is
created when reducing with a reject production is marked as rejected. If all
links of a stack are marked as rejected all shifts and reductions from that state
are forbidden.

In the last configuration of Figure 3.10 this would entail that the link from the
stack with state 10 to the stack with state 4 is rejected. Therefore, the reduction

60

Generalized-LR Parsing | 3.8

: ?-
n . <L?-CF> I 19

' 19| e |28

. <[a-z] +- LEX>
[le] :

11 e : <[a-z]+- LEX>
- 23

<[a- z] +- LEX>

<[a- z] +- LEX> t

[le] :

: <[a-z] +- LEX>

E
E

[let] : <Var-LEX> 10
[[le]t] : <[a-z]+-LEX> D

[let]|[[le]t] : <Var-CF>

<Ter m CF>

[let][[[le]t] :

Figure 3.10: Parse of let,x... when reject is ignored.

to state 14 and the shift to state 6 would be forbidden. This is exactly what
happens in the parse shown in Figure 3.11. The dotted link is rejected and no
actions are performed from its stack. The parse of 1let as variable is preempted.
In the next configuration parsing continues only with the stack with state 12,
corresponding to a parse of let as a literal.

3.8.4 The Algorithm

Below the complete SGLR algorithm is presented. The differences with the
GLR algorithm of Rekers (1992) are the use of productions in the goto function
and the handling of reject reductions. Furthermore, the parser does not make
use of a scanner, but reads characters from a file or string. This could of course

61

3 / SCANNERLESS GENERALIZED-LR PARSING

. <[a-z] +-LEX>

1]

: <[a-z] +-LEX>

[le]

[let] : "let" M7l 132
L

[let] : <Var-LEX>

o
[[le]lt] : <[a-z]+-LEX> .

\ 32

: <L-LEX>
IEI o <L?-CF> D4 =[Iet] o "let 12
;. <L-CF>

-t 18

Figure 3.11: Parse of let x... with reject production that forbids let as a
variable.

be a stream of token codes and does not make a difference to the algorithm. As
we discussed in the §3.5 character classes are handled in the parse table and are
thus transparent to the parser.

Algorithm 3.8.1 (SGLR) Given the parse table table for some grammar,
parse the string of characters in file. If the string is a sentence in the lan-
guage described by the grammar, return the parse forest for the string, and an
error message otherwise.

Parse The function parse reads the characters from a file and returns a parse
tree if the text is syntactically correct, an error message otherwise. The list of
active stacks is initialized to contain a single stack with the initial state of the
parse table as its state. For each character in the input, the parser handles all
actions for each active stack. The shifts for each stack are stored and performed
by the shifter after all possible reductions have been performed. When all char-
acters have been read or when no more stacks are alive, parsing terminates. If
parsing succeeded, the accepting stack has a direct link to the initial state. This
link has a reference to the parse forest with all possible parse trees for the entire
string. If parsing failed an error term is returned.

62

Generalized-LR Parsing | 3.8

PARSE(table, file)

global accepting-stack := ()

global active-stacks := {new stack with state init(table)}

do
global current-token := get-next-char(file)
PARSE-CHARACTER()
SHIFTER()

while current-token # \EOF A active-stacks #)

if accepting-stack contains a link to the initial stack with tree t then
return t

else
return parse-error

Parse Character The list of active stacks is moved to the list of stacks of the
actor that performs the actions for a stack unless the stack is rejected. The list
of stacks for the actor is extended when reductions are performed. If actions
for newly added stacks are performed before all links to it have been created, a
stack that becomes rejected might escape. Therefore, new stacks are added to
for-actor-delayed if they are rejectable and are only considered when all stacks
on for-actor are exhausted. Then stacks are taken from the delayed list in order
of priority. The operation ‘pop’ removes the stack with the highest priority from
a list of stacks.

PARSE-CHARACTER()
global for-actor := active-stacks
global for-actor-delayed := ()
global for-shifter :=)
while for-actor # 0 A for-actor-delayed # § do
if for-actor = () then
for-actor := {pop(for-actor-delayed)}
for each stack st € for-actor do
if = all links of stack st rejected then
ACTOR(st)

Actor Handle the actions for stack st and the current token. A reduce action
is immediately handled. Shift actions are saved on for-shifter for handling if
after all reductions have been performed. An accept action results in saving
the current stack as the accepting stack. An error action is ignored because the
current stack can be a wrong attempt while other stacks are still alive. The
entire parse fails if all stacks lead to error actions. This will become apparent
after shifting because no more active stacks will be alive.

ACTOR(st)
for each action a € actions(s, current-token) do
case a of
shift(s) = for-shifter := {(st,s)} U for-shifter
reduce(a - A) = DO-REDUCTIONS(st, a — A)

accept = accepting-stack := st

63

3 / SCANNERLESS GENERALIZED-LR PARSING

Reductions Function do-reductions performs a reduction for stack st with pro-
duction a@ — A. For each path of length |a| following the links from st to some
stack sto the trees along the path are collected and the reducer is called to han-
dle the reduction.

DO-REDUCTIONS(st, @ — A)
for each path from stack st to stack stg of length |a| do
kids := the trees of the links which form the path from st to st
REDUCER(sty, goto(state(sto), @ — A), o — A, kids)

Reducer Given a stack st, a state s, a production a — A and a list of trees
kids, the reducer creates the application node for the production and the list
of direct descendants kids and creates a new stack with state s and a link to
stack st. However, because there might already exist as stack with state s, the
list of active stacks is searched. If there is no such stack a new stack is created
(else branch) and added to the list of active stacks and the list of stacks for the
actor. The new stack has state s and a link with a pointer to the newly created
tree. If a stack with state s already exists and there is a direct link nl from
sty to stp, an ambiguity has been found. The tree ¢ is added to the ambiguity
node of the link. If there is no direct link, a new link is created from st; to stg
with t as parse tree. Because this new link entails that new reductions from
already inspected stacks might be possible, all active stacks are reconsidered.
In all cases, the link that is created or extended is marked as rejected if the
production is a reject production.

REDUCER(st, s, @ — A, kids)
t := application of o — A to kids
if 3st; € active-stacks : state(st;) = s
if 3 a direct link nl from st; to sty then
add ¢ to the possibilities of the ambiguity node at tree(nl)
if @ — A is a reject production then mark link nl as rejected
else
add a link nl from st; to sty with tree ¢
if @ — A is a reject production then mark link nl as rejected
for each sty € active-stacks
such that — all links of sts rejected
A sty & for-actor A sty & for-actor-delayed do
for each reduce(a — A) € actions(state(st2), current-token)
do
DO-LIMITED-REDUCTIONS(sts, a — A, nl)
else
st; := new stack with state s
add a link nl from st; to stg with tree ¢
active-stacks := {st1} U active-stacks
if rejectable(state(st;)) then
for-actor-delayed := push(sty, for-actor-delayed)

64

Generalized-LR Parsing | 3.8

else
for-actor := {st1} U for-actor-delayed
if @ — A is a reject production then mark link nl as rejected

Limited Reductions The function do-reductions is used to do all reductions for
some state and production that involve a path going trough link nl

DO-LIMITED-REDUCTIONS(st, « — A, 1)
for each path from stack st to stack stg of length |a| going through link /
do
kids := the trees of the links that form the path from st to sty
REDUCER(stg, goto(state(st), o = A), a — A, kids)

Shifter After all possible reductions have been performed, for-shifter contains
a list of stacks that can do a shift. Only these stack make it into the next cycle
of the parse. The list of active stacks is reinitialized to the empty list. For each
stack stg in for-shifter a new stack is created with a link to sty with as tree the
current token. That is, if a stack with state s was already created only a link
from that stack to stq is created.

SHIFTER()
active-stacks := ()
t := current-token

for each (s, stg) € for-shifter do

if Jsty € active-stacks: state(st;) = s then
add a link from st; to sty with tree ¢

else
st; := new stack with state s
add a link from st; to sty with tree ¢
active-stacks := {st1 } U active-stacks

end

3.8.5 Remarks

The algorithm above does not actually mark stacks as rejected, but the link
from a stack that is created with a reject production. Further action on a stack
is forbidden if all links from that stacks are rejected. This is done because, in
principle, there could be situations where two links are created from the same
stack that are not merged (as is the case when the links are to the same stack)
and only one is rejected. It is not clear whether such a situation can occur. But
there is no proof of the contrary either.

The ordering on states that is assumed in the priority pop operation used in
procedure PARSE-CHARACTER() is needed to ensure that nested reject pro-
ductions are treated properly. For example, consider again a grammar extended
with productions expressing the intersection of sorts A and B.

A -> AminB A -> AandB
B -> AminB {reject} AminB -> AandB {reject} AandB -> <Start>

65

3 / SCANNERLESS GENERALIZED-LR PARSING

A e -> AminB
A e -> AandB

\,,

e AandB -> <Start>
o A -> AandB B - :
B e -> A B t)
O|e AminB -> AandB {reject} é‘ minB {reject} ‘
o A -> AminB AminB
e B -> AminB {reject} \{AminB e -> AandB {reject}‘:}

andB
AandB e -> <Start> |4

Figure 3.12: Goto graph for grammar with nested reject productions.

This gives rise to the goto graph in Figure 3.12. States 3 and 4 are rejectable
because they can be reached with a reject production. When parsing a string
that is in A and in B, state 2 is reached using the reduction for B. The next
reduce action with the reject production B => AminB {reject} leads a stack
with state 3, which is rejected. No further action is taken from that stack. The
reduction of A -> AandB leads to a stack with state 4 and then, correctly, to
acceptance of the string.

Now consider the case where a string is in A, but not in B. Then there is no
reduction to state 2 and hence state 3 is not rejected, but there is a reduction
to state 3 using A -> AminB and a reduction to state 4 using A -> AandB. Now
there are two rejectable stacks on the for-actor-delayed list. If the stack with
state 3 is released first a reduction with AminB -> AandB {reject} occurs and
the stack with state 4, which is still on for-actor-delayed, is rejected; and parsing
fails as it should. However, if state 4 is released first, parsing succeeds before
the stack with state 4 is rejected. It is clear that in this case state 3 has higher
priority than state 4.

It is not clear how the ordering on states should be determined in general. It
would seem that a state s; with productions that are reachable from the produc-
tions in a state so has higher priority. This is only a guess, however, and should
be worked out more carefully. For single, i.e., non-nested reject productions the
ordering plays no role. Therefore, the implementation of exclusion by means of
reject productions, of which prefer literals is a special case, is not dependent on
finding an ordering on states.

3.9 Implementation

In the previous sections we have presented an approach to scannerless parsing.
These techniques are implemented as part of the SDF2 tools. The tools have
been used to construct parsers for a number of languages including SDF2 it-
self. Although no detailed data on the performance of the implementation are
available at the time of this writing, a couple of preliminary observations can
be made nonetheless.

66

Implementation / 3.9

Grammar Normalizer The syntax definition formalism SDF2 is completely
specified in ASF+SDF. Part of the definition is the grammar normalizer dis-
cussed in §3.3. This specification has been compiled to an executable term
rewriter, which has a reasonable performance. The literate specification of SDF2
and the normalization of syntax definitions is presented in Part II. The speci-
fication also defines the format of parse trees encoded in the ATerm format of

Van den Brand et al. (1997a).

Parser Generator The parser generator described in §3.5 has been com-
pletely specified in ASF+SDF. The compiled specification of the parser gener-
ator is too inefficient. It is probably necessary to implement this component in
an imperative language that allows direct access instead of lookup in lists.

There are several factors that make parser generation more difficult compared
to normal SLR(1) parser generation for context-free grammars. There are more
item-sets because of the productions for the lexical syntax. Extra productions
are added because of the reject productions expressing the prefer literals rule,
this increases the number of items in item-sets. The goto table contains a
transition for each production instead of a transition for each nonterminal. The
last factor can be reduced by sharing transitions to the same state.

Productions and item-sets are encoded by numbers. Character classes are
important for reducing the size of the parse table. A set of actions that is
shared by several characters is stored efficiently by means of a character class,
i.e., ‘actions’ is a mapping from item-sets and character classes to sets of actions.

Parser The SGLR parsing algoritm has been implemented in C. The imple-
mentation makes use of the C implementation of ATerms (Van den Brand et al.,
1997a) to represent stacks and trees.

The parser includes visualization tools for parse forests and graph structured
parse stacks that were used to produce the pictures in this chapter. The forest
vizualization might be used as basis for an interactive disambiguation tool.

The C implementation of the SGLR parsing algorithm seems reasonably ef-
ficient, although sharing of trees can be improved. Output of parse trees is
not optimal because sharing of subtrees is completely lost when writing out a
parse forest in a linear term format. This can solved by using a linear encoding
of graphs such as the graph exchange language GEL of Kamperman (1994).
Furthermore, a mark-scan garbage collector for stack and tree nodes is used.
This entails that all stack and tree nodes are visited on a collect, which is too
expensive, since a large amount of the heap will not change status. A reference
count garbage collector should make a difference.

Complezity of Lexical Analysis We have performed a few experiments to
get an idea of the complexity of lexical analysis with scannerless generalized-
LR parsers. The experiments were based on the simple expression grammar in
§3.2. The experiments that were performed were of the form: (a) Parsing a
single identifier of increasing length (up to 425KB). (b) Parsing an expression
consisting of ten additions with identifier arguments of increasing length (up
to 325KB). (c) Parsing an expression consisting of an increasing number of
additions (up to 16K arguments with length 490KB).

67

3 / SCANNERLESS GENERALIZED-LR PARSING

For all these experiments we saw an almost linear behaviour for small files
deteriorating to square behaviour for the large files. However, when garbage
collection was turned off, this behaviour changed into linear for all experiments.
This confirms the observation about the inappropriateness of the garbage collec-
tion algorithm. It also confirms the idea that lexical analysis will behave linearly
for simple, i.e., regular lexical syntax. The prototype implementation should be
further optimized before its performance can meaningfully be compared to scan-
ner/parser combinations such as LEX/YACC. Nonetheless, these experiments
show the feasibility of the scannerless generlized-LR parsing approach.

3.10 Related Work

The syntax definition formalism SDF2 is formally specified in Part II. The spec-
ification in ASF+SDF comprises the syntax of the formalism, the normalization
procedure and the parse tree format defined by a grammar.

The syntax definition formalism SDF of Heering et al. (1989) was the starting
point for the work discussed in this chapter. The definition of SDF2 grew out
of the specification of SDF in ASF+SDF. A number of generalizations where
applied to make the formalism more orthogonal and uniform and a number
of improvements and new features were added based on the experience with
SDF in the ASF+SDF Meta-Environment (Klint, 1993). SDF introduced the
integration of lexical syntax and context-free syntax, but only at the formal-
ism level. In the implementation, an SDF definition is mapped to a regular
grammar defining the lexical syntax and a context-free grammar definining the
context-free syntax. The scanners produced for the lexical syntax yield a graph
structured stream of all possible tokenizations of the input filtered by a set
of lexical disambiguation rules. Although this is a fairly advanced setup, the
interface suffers from several of the problems that we discussed in §3.1 and §3.2.

The generalized-LR parsing algorithm was first developed by Tomita (1985)
for application in natural language processing. It was later improved by Rekers
(1992) and applied in the ASF+SDF Meta-Environment for parsing of program-
ming languages. The algorithm presented in §3.8 is based on Rekers’ version.
Wagner and Graham (1997) describe the use of GLR parsing in incremental
parsing of programming languages. Earley (1970) described the first generalized
parsing algorithm that is closely related to the LR algorithm of Knuth (1965).
A more recent approach to parsing with dynamic lookahead is the extension of
top-down parsing with syntactic predicates of Parr and Quong (1994).

Scannerless parsing was introduced by Salomon and Cormack (1989, 1995).
They define an extension of SLR(1) parsing in which the lack of lookahead
is repaired by extending item-sets if conflicts are found. This non-canonical
SLR(1) parser generation works only for a limited set of grammars, making
grammar development difficult. The follow restrictions presented in this chapter
are a simplification of the adjacency restriction rule of the NSLR (1) approach in
which arbitrary grammar symbols can be forbidden to be adjacent. Our reject
productions are called exclusion rules by Salomon and Cormack (1989, 1995).

68

Conclusions [3.11

We have presented a complete implementation for follow restrictions and reject
productions, whereas the adjacency restrictions and exclusion rules are only
partially implemented in NSLR(1) parsing.

A similar approach using GLR parsing is tried in the area of natural language
processing. Tanaka et al. (1996) discuss the integration of morphological and
syntactic analysis of Japanese sentences in a single GLR parser. The morpholog-
ical rules describe how words can be formed from characters. Segmentation of
a string of characters into a string of words is guided by a connection matrix re-
stricting the categories that can be adjacent in a sentence. These rules do usually
not suffice to find an unambiguous segmentation. by integrating morphological
composition into the context-free grammar of the syntactic phase, such ‘contex-
tual’ ambiguities can be avoided. This creates the problem of disambiguating
the combined context-free grammar usingthe morphological connection matrix.
This is partly done as a filter on the generated LR table and partly dynamically
during parsing.

Disambiguation by means of priority and associativity declarations was in-
troduced simultaneously by Aho et al. (1975) and Earley (1975). The former
describe the solution of conflicts in LR parse tables by means of a restricted form
of priorities. Aasa (1991, 1992) describes the solution of LR table conflicts by
means of precedence declarations. Thorup (1992, 1994a, 1994b) describes the
solution of parse table conflicts by means of a collection of excluded subtrees.
The method is more expressive than the priorities of SDF, but only succeeds if
all conflicts are solved, which is not guaranteed.

In Chapter 4 logical disambiguation methods are formalized as disambiguation
filters on sets of parse trees. Based on this approach an efficient implementation
of disambiguation by priorities is derived in Chapter 5 from the disambiguation
filter for priorities. This derivation forms the foundation for the parser generator
algorithm presented in this chapter.

3.11 Conclusions

In this chapter we have presented a new approach to parsing that has several
advantages over conventional techniques. It overcomes the drawbacks of the tra-
ditional scanner/parser interface by abolishing the scanner completely (hence
the name scannerless parsing). The lexical and context-free syntax of a lan-
guage are described in a single integrated uniform grammar formalism. Lexical
ambiguities can frequently be solved by means of the parsing context. Lexical
structure and layout are preserved in the parse tree and thus accessible in se-
mantic tools. A more expressive formalism for lexical syntax is obtained, such
that for example nested comments can be expressed.

The approach encompasses an expressive syntax definition formalism. A
grammar normalizer to reduce the complexity of the formalism by simplify-
ing syntax definitions to context-free grammars with a few extensions. An
SLR(1) parser generator that deals with character-classes, follow restrictions
and priority and associativity rules. A generalized-LR parser that can be used

69

3 / SCANNERLESS GENERALIZED-LR PARSING

for arbitrary context-free grammars with reject productions, at least if they
are not nested. In parsing unambiguous languages, the GLR parser is used to
dynamically handle lookahead problems by forking off parsers in parallel.

Reject productions turn out to be a very expressive device that brings us out
of the domain of context-free languages. It is as yet unclear how expressive this
formalism is exactly, but we have a lower bound—stronger than context-free
because it describes a™b™c"—and an upper bound because the parsing problem
is decidable.

Priorities are compiled into the parse table such that no parse trees with
priority conflicts can be produced by the parser. This reduces the size of the
parse forest (in case of ambiguous binary expressions the parse forest grows
exponentially) and decreases the number of paths in the graph structured stack.
The technique is more general than conventional techniques for this kind of
disambiguation and works even if there remain conflicts in the parse table due
to other causes. For instance, if the grammar requires more lookahead than the
parser generator provides.

An open issue is the fully automatic derivation of lexical disambiguation rules
from the grammar that would make the method still easier to use. Apart from
this minor point, scannerless generalized-LR parsing is a feasible parsing method
that makes syntax definition more expressive and solves a number of problems
with conventional parsing approaches.

70

4

Disambiguation Filters

An ambiguous context-free grammar defines a language in which some sen-
tences have multiple interpretations. For conciseness, ambiguous context-free
grammars are frequently used to define even completely unambiguous languages
and numerous disambiguation methods exist for specifying which interpretation
is the intended one for each sentence. The existing methods can be divided in
‘parser specific’ methods that describe how some parsing technique deals with
ambiguous sentences and ‘logical’ methods that describe the intended interpre-
tation without reference to a specific parsing technique.

We propose a framework of filters to describe and compare a wide range of
disambiguation problems in a parser-independent way. A filter is a function
that selects from a set of parse trees (the canonical representation of the inter-
pretations of a sentence) the intended trees. The framework enables us to define
several general properties of disambiguation methods. The expressive power of
filters is illustrated by several case studies.

4.1 Introduction

In the last two decades we have seen the successful development of theory and
implementation techniques for efficient, deterministic, parsing of languages de-
fined by context-free grammars. As a consequence, the LL(k) and LR(k) gram-
mar classes and associated parsing algorithms are now dominating the field.

Using parsing techniques based on these subclasses of the context-free gram-
mars has, however, several drawbacks. First of all, syntax definitions may need
to be brought into an acceptable, but often unnatural, form that obeys the
restrictions imposed by the grammar class being used. More importantly, sub-
classes of the context-free grammars are not closed under composition, e.g.,
composing two LR(1) grammars does not necessarily yield an LR(1) grammar.
Only the class of context-free grammars itself can support the composition of
grammars which is essential for the support and development of modular gram-
mar definitions.

The use of natural, modular, grammars is becoming feasible due to the recent
advances in parsing technology for arbitrary context-free grammars. Unfortu-
nately, when leaving the established field of deterministic parsing one encounters

71

4 / DISAMBIGUATION FILTERS

a next obstacle: the language defined by a grammar may become ambiguous and
mechanisms are needed to disambiguate the parse forest (rather than the single
parse tree) that will be produced by the parser. Disambiguation encompasses
the whole spectrum from simple priority declarations for resolving ambiguities
in arithmetic expressions to the use of semantic (e.g., type) information for
pruning the parse forest. As a last resort, the user of the parser may have to
resolve ambiguities interactively.

In this chapter we explore disambiguation mechanisms for general context-
free grammars and their impact on parsing. We will concentrate on “logical”
disambiguation that can be modeled by a filter on sets of parse trees. This
excludes disambiguation methods that are inherently intertwined with a spe-
cific parsing technique. We study the expressiveness of various filters and their
interaction with parsing: as a general rule simpler filters can be applied earlier
(during parsing or even during parser generation).

This research was motivated by our experience with the modular syntax def-
inition formalism SDF (Heering et al., 1989) and its implementation based on
generalized LR parsing (Rekers, 1992). Although quite elaborate disambigua-
tion techniques are being used (local conflict detection based on priority and
associativity, and a multi-set ordering for pruning the parse forest) we keep
encountering examples where more fine-tuned filtering would be useful. This
suggests an approach based on extensible, user-defined, disambiguation filters.
For efficiency reasons, it will be advantageous to apply these filters as early as
possible.

The rest of this chapter is structured as follows. In §4.2 we consider several
characteristics of disambiguation methods. In §4.3 we introduce some prelimi-
nary terminology about context-free grammars and parsing. In §4.4 we define
the notion filter on sets of parse trees, the disambiguation of a context-free
grammar by a filter and several properties of filters. In §4.4.4 through §4.8 we
discuss several examples illustrating the expressive power of filters. Finally in
§4.9 we discuss related work and related issues.

4.2 Disambiguation

A disambiguation mechanism for context-free languages is a procedure that
chooses from a range of possible parses for a sentence the most appropriate one
according to some criterion. The architecture we propose to use for disambigua-
tion consists of three parts (see Figure 4.1):

Language description: A context-free grammar and a set of disambiguation
rules. Disambiguation rules concern lezical disambiguation rules (e.g., prefer-
ence for a longest match, preference for keywords over identifiers), context-free
disambiguation rules (e.g., precedence relations between operators), and static
semantic disambiguation rules (e.g., type or declaration dependent rules).

Generation phase: A grammar transformer and a parser generator. Typical
grammar transformations are the elimination of left/right recursion, and the

72

Disambiguation / 4.2

CFG Disambiguation
Rules
Transformations
CFG’
Parser Generator

Sentence Forest Filter Tree

Figure 4.1: Phases in parsing with ambiguous grammars

coding of priority and associativity information in grammar rules. Parser gen-
eration is most likely based on standard Generalized-LR techniques (Tomita,
1985, Rekers, 1992).

Parsing phase: A parser /filter pipeline that transforms input sentences into
a single (unambiguous) parse tree.

Given this architecture, we can classify disambiguation methods according to
the following characteristics:

Interference of context-free grammar and disambiguation rules. Figure 4.1
suggests that the given context-free grammar and disambiguation rules are com-
pletely disjoint. In many grammar formalisms, however, they will interfere with
each other. For instance, disambiguation rules may be embedded in grammar
rules, or the order of grammar rules may have a significance for disambiguation.
In this chapter, we will keep them disjoint.

Dependence on parsing method Disambiguation can be defined in terms of
parse actions (and is then closely intertwined with parsing) or it can be under-

73

4 / DISAMBIGUATION FILTERS

stood independently from the parsing method used. We will adopt this latter
view and we consider the first approach only when it is an implementation
method of the latter.

Moment of disambiguation Disambiguation can take place during grammar
transformation, during parser generation, and during post-parse filtering. As a
general rule, deferring disambiguation is expensive but can be used to implement
very general methods. Our strategy will be to define all disambiguation methods
as post-parse filters and to seek implementation techniques that apply them
(transparently but more efficiently) at an earlier moment.

Semantic assumptions An issue in the disambiguation of grammars is the
question whether the derivations of an ambiguous sentence should all have the
same meaning. In natural language parsing, this is clearly not true. In some
other approaches such as for example the approach of Thorup (1994a, 1994b)
this seems an essential assumption. In addition, it is not clear whether each
sentence generated by the underlying context-free grammar should also be a
sentence of the disambiguated grammar. This property is called ‘completeness’
in Thorup (1994a). But if we consider the language of type-correct Pascal
programs we see that this property does not hold.

4.3 Preliminaries

4.3.1 Context-free Grammars

Definition 4.3.1 (Context-free Grammar) A contezt-free grammar G is a
triple (Viy, Vi, P), where Vi is a finite set of nonterminal symbols, V a finite
set of terminal symbols, V' the finite set of symbols of G is Viy UV, and P(G) =
P C V* x Vi a set of productions. We write @ — A for a production p =
{a, A) € P(G). (We will sometimes refer to a production by a number or by an
abbreviation of its symbols, e.g., E + E — E is abbreviated as +.) O

The next definitions characterize the language generated by a context-free
grammar by the parse trees it generates instead of by derivations. This method
is as clear as derivations and has the advantage that the semantics of filters is
easily definable.

Definition 4.3.2 (Parse Trees) A context-free grammar G generates a family
of sets of parse trees T(G) = (T(G)(X) | X € V), which contains the minimal
sets T(G)(X) such that
XeV
X eT(G)(X)
Al Ay > A€eP(G), t1 € T(G)(A1), --., tn € T(G)(An)
[t1...tn = A] € T(G)(A)

We will write t,, for alist ¢; . ..¢t, of trees where « is the list of symbols X; ... X,
and t; € T(G)(X;) for 1 < i < n. Correspondingly we will denote the set of

74

Preliminaries | 4.3

all lists of trees of type a as T(G)(a). Using this notation [t ...t, — A] can
be written as [to — A] and the concatenation of two lists of trees t, and tg is
written as totg and yields a list of trees of type a8. The signature of a tree is
the production used to construct the root of a tree: sign([to — A]) = a - A.

O

We omit the argument G from 7(G) when the grammar G is clear from con-
text. We will identify 7" and |Jyy 7 (X) when appropriate. According to this
definition we should write [[a = E]+ [b — E] — E] for a tree with yield a + b.
When no ambiguity arises we will often write this as [a + b], using only brackets
to indicate the tree structure.

Definition 4.3.3 (Yield) The yield of a tree t is the string containing all
leaves from left to right, i.e.,

vield(X) =X, if X € Vp
yield([t; . ..t, = A]) = yield(t1) --- yield(t,)

The pointwise extension of yield to sets of parse trees is defined by yield(®) =
{yield(t) | t € ®}. m|

Definition 4.3.4 (Language) The language L(G) generated by a context-free
grammar G is the set of strings yield(7(G)). The language L(G)(A) generated
by nonterminal A is the set yield(7(G)(A)). |

A context-free grammar is ambiguous if it generates at least two different
trees t and s such that yield(¢) = yield(s). Derivation in the classical semantics
of context-free grammars and parse trees are similar notions as is witnessed by
the following proposition.

Proposition 4.3.5 For any context-free grammar G and any A € Vy, o € V*:
a—=5 A <= a€ L(G)(A) O

4.3.2 Parse Forests

A parse forest is a compact representation of a set of parse trees with the same
yield. Compaction is achieved by sharing common subtrees and by packing
different trees for the same yield in one node. Parse forests can be described by
contexts and sets of contexts.

Definition 4.3.6 (Contexts) A context C[e] is a parse tree with exactly one
occurrence of a hole o. The instantiation C[t] of a context C[e] is constructed
by replacing the hole e by the tree t. We denote the set {C[t] | t € &} by C[3].
Similarly, T'[e] denotes a set of contexts and its instantiation I'[t] is defined as

{C[t] | C[o] € T'[e]}. O

75

4 / DISAMBIGUATION FILTERS

Sharing of a tree ¢ by a set of trees is represented by the instantiation I'[t] of
a set of contexts. Packing of a set of trees in a single node is represented by the
instantiation C[®] of a context with a set of trees. Sharing of a packed node by
a set of trees is denoted by I'[®].

4.3.3 Parsing

Definition 4.3.7 (Parser) A parser is a function II that maps each string
w € V' to a set of parse trees. A parser II accepts a string w if [II(w)| > 0.
A parser II is deterministic if |II(w)| < 1 for all strings w. A parser for a
context-free grammar G that accepts exactly the sentences in L(G) is defined by

T1(G)(w) = {t € T | yield(t) = w} O

We restrict our attention to pure parsers that do not modify parse trees during
parsing. An example of an implementation of parsers for arbitrary context-free
grammars is Tomita’s generalized LR algorithm (Lang, 1974, Tomita, 1985, Rek-
ers, 1992). Such a generalized parser produces a parse forest as representation
of a set of trees by packing all trees for a subsentence v, the set ® = I1(G)(v), in
a single node and sharing that node in all trees built for the sentence in which v
is embedded, i.e., if uvw is a sentence and parsing the sentence u @ w produces
I1(G)(u @ w) = I'[e] then the forest for the whole sentence can be constructed as

I(G) (wvw) D T[].

4.4 Filters

Ambiguous context-free grammars produce multiple interpretations for some of
the sentences they generate. A programming language definition should unam-
biguously assign to each string a single interpretation. Therefore, if a language
definition is based on a context-free grammar, it should select from the multiple
interpretations given by the grammar the most appropriate one. We formalize
the specification of selection of an appropriate interpretation by the notion of
parse tree filters. It will turn out that most ‘logical’ disambiguation methods
can be expressed by means of filters.

Definition 4.4.1 (Filter) A filter F for a context-free grammar G is a function
F : p(T) = p(T) that maps sets of parse trees to sets of parse trees, where
F(®) C ® for any ® C T. The disambiguation of a context-free grammar G by
a filter F is denoted by G/F. The language generated by G/F is the set

L(G/F) ={weVr | 3@ CT(9) : yield(®) = {w} A F(®) = 3},

i.e., a string w is a sentence if there exists some non-empty parse forest & with
yield w from which no trees are removed by the filter F. The interpretation of a
string w by G/F is the set of trees F(II(G)(w)). A filter F; is also applicable to a
disambiguated grammar G/F;, which is denoted by (G/F;)/F2 and is equivalent
to g/(fgofl). O

76

Filters [4.4

Given a set of parse trees ® for some sentence w, a filter selects the ‘correct’
parse tree(s) in @ yielding a reduced set of trees ® C ®. The condition F(®) C
® ensures that filters do indeed reduce the set of trees instead of inventing new
ones. A trivial example of a filter that satisfies this condition is the identity
function on sets of parse trees. Often we will define a filter in negative terms by
specifying which trees are wrong in some sense and then throw away the wrong
trees from a set of trees. Observe that a disambiguated context-free grammar
G/F generates a subset of the language generated by G, i.e., a string w is only
in the language generated by G/F if there is at least one tree with yield w that
is not rejected by the filter.

This is a very general definition allowing arbitrary functions as filters. Later
in this chapter we will consider several classes of filters that use less powerful
functions.

4.4.1 Properties of Filters

We now investigate several properties of filters.

Definition 4.4.2 (Completely Disambiguating) A filter is completely dis-
ambiguating when |F(II(G)(w))| < 1 for all w € V*. m|

This is a useful property if the parse trees are input for a next, semantic,
processing phase. No provisions have to be made for sets of trees in such a
phase. A more restrictive property is completeness.

Definition 4.4.3 (Complete, Thorup (1994a)) A filter F is complete for a
context-free grammar G if w € L(G) = |F(II(G)(w))| = 1. m|

Actually, Thorup defines a parser to be complete if it produces exactly one
‘canonical’ parse tree for each sentence in the language of its underlying context-
free grammar.

Corollary 4.4.4 If F is complete for G then L(G) = L(G/F) O

Definition 4.4.5 (Local) A filter F for a context-free grammar G is local if
for each set of contexts I'[¢] C T[e] and each ® C T

F(T[@]) € T[F(®)]
A filter is global if it is not local. O

Global filters are counter intuitive. Rejection by a global filter of a tree for
some substring of a sentence does not imply that that tree can not be a subtree
of a parse tree for the sentence. A local filter is transparent. A rejected tree
can not be a subtree of any larger tree. This means that a local filter can be
applied to a local ambiguity instead of to the entire set of complete parse trees
for a sentence. It seems that a disambiguation method that can be defined in
terms of a local filter is both intuitive and easy to implement.

7

4 / DISAMBIGUATION FILTERS

Definition 4.4.6 (Incremental) A filter F is incremental if, for each pair of
sets of parse trees ®1, ®,, we have F(F(®1) U F(®2)) = F(®1 U ®5) O

A generalized parser constructs sets of parse trees for local ambiguities in an
incremental fashion. If a filter is incremental, it can be applied to a set whenever
an element is added. If it is not incremental application to a set is only legal if
the set is completed.

Definition 4.4.7 (Commutative) Two filters F; and F, are commutative if,
for each set of trees ®, we have that Fy(F2(®)) = F2(F1(P)) i.e, if their com-
position commutes: G/F; 0 Fp = G/Fa0 Fy O

Definition 4.4.8 (Context-free) A filter F for a context-free grammar G is
contezt-free if there is an unambiguous context-free grammar G’ and a function
tr : T(G') = T(G) such that L(G") = L(G/F), i.e., G' generates the same lan-
guage as G/F, and {tr(II(G")(w))} = F(II(G)(w)). A filter is contezxt-dependent

if it is not context-free. O

4.4.2 Specification of Filters

Filters can be defined in many ways. We will consider two special classes of
filters that are defined in terms of predicates and relations on trees.

Definition 4.4.9 (Property Filter) The property filter F¢ generated by the
unary predicate £ (exclude) on trees is defined by

Fa(®) ={te ®|-£(t)}

A predicate £ is compositional if for each tree t and each context C[e] £(t) =
E(Ce). O

A filter F¢ selects all trees which do mot have property £. The predicate
characterizes, for instance, trees with a conflict. Compositionality of a filter-
predicate ensures that if a tree has a conflict, any tree composed from it has
a conflict as well. This implies that to understand a conflict in a sentence one
only has to consider the smallest part of the sentence that has the conflict.

Proposition 4.4.10 A filter F¢ is local iff £ is compositional.

Proof. (<) Let I'[e] a set of contexts and ® a set of trees. If t € F(T'[®]), then
—=&(t) and t = C[t'] such that C[e] € I'[e] and t' € ®. Since £ is compositional
we have that ~€(t') and therefore t' € F(®) and thus t € I'[F(®)]. (=) Assume
£ is not compositional, i.e., there is some tree ¢ and context C[e], such that E(t)
and not £(C[t]). Then F({C[t]}) = {C[t]} € ® = C[F({t})] and thus F¢ is not
local. |

Definition 4.4.11 The predicate £ is defined in terms of £ by £(t) = 3s €
sub(t) : £(s), where sub(t) denotes the set of all subtrees of ¢. |

78

Filters [4.4

Note that &£ is always compositional.

Definition 4.4.12 (Comparison Filter) The comparison filter F~ generated
by the relation < is defined by

FX@)={ted|-IHt ecd:t <t}
A relation < is compositional if Vs, t,C[e] : s <t = C[s] < C[t]. O

A filter F= selects the minimal trees in a set according to the order <. Note
that if < is reflexive or symmetric, the filter F~ rejects all trees. For instance,
given any context-free grammar G, G/F~ defines the empty language. The
notation < suggests that the most useful filters of this kind are based on strict
partial orders, i.e., if < is transitive, irreflexive and antisymmetric. If < is a
strict partial order, F~ is monotonous, i.e., F=(®;) C F>(D;) if &; C P»,
which adds to the clarity of a disambiguation method.

Proposition 4.4.13 A filter F= is local iff < is compositional.

Proof. (<) Assume F not local, i.e., there are I'[e], ® and s = C[s'] € I'[P]
such that s € F(I'[®]) but s & T'[F(®)]. Thus -3t € ['[®] : t < s, i.e., Vit €
[[®] : -t < s and especially Vt' € ® : =C[t'] < C[s] then, by compositionality
of <, Vt' € ® : —~t' < s' which is equivalent to —3t' € ® : ¢/ < s’ but this is
in contradiction with 3¢’ € ® : ¢ < s’ which follows from s ¢ I'[F(®)]. (=)
Assume that < is not compositional, i.e., there are some s, t and C[e] such that
s < tAC[s] < C[t]. But then F(C[{s,t}]) = C[{s,t}] £ C[{s}] = C[F({s,t})],
which contradicts the fact that F is local. O

4.4.3 Parsers for Disambiguated Grammars

By definition a filter can always be used as a post-parse procedure to prune the
parse forest, i.e., II(G/F) = F oII(G). For efficiency reasons it is attractive to
apply the disambiguation rules described by a filter as early in the parse process
as possible.

The problem of producing the most efficient parser from an abstract specifi-
cation of a filter is probably undecidable. However, for certain classes of filters
efficient parsers are possible. By considering many disambiguation methods in
this one framework of filters crossovers between implementation strategies might
arise.

Definition 4.4.14 (Approximation) An approzimation of a parser for G/F
is a parser 7 such that for any string w F(II(G) (w)) C n(w) C II(G)(w) O

If F is a local filter for a context-free grammar G, we can construct an ap-
proximation 7 for G/F by filtering any local ambiguity as soon as it is con-
structed. Formally, if TI(G)(v)(A) = ® and I(G)(u e4 w)(B) = T'[e4] then
m(uvw) C T'[F(®)]. If there are no trees left in a local ambiguity the parser that
corresponds to it can be stopped, yielding the empty set of trees.

79

4 / DISAMBIGUATION FILTERS

Parsing schemata are abstract specifications of parsing algorithms. In Chap-
ter 5 we start an investigation of the implementation of parsers for grammars
disambiguated by filters based on parsing schemata.

4.4.4 Case Studies

In order to assess the feasibility of using filters for the disambiguation of context-
free grammars we present several case studies that illustrate the expressive power
of our method.

Priorities are a conventional tool for disambiguation and have been proposed
in many forms. In §4.5 we study the disambiguation mechanism of SDF which
consists of a filter for priority conflicts and a filter for priority comparisons, both
derived from a single priority declaration.

Extensible languages are typical examples of languages that are not in the
scope of context-free grammars disambiguated by filters. The definition of a
filter presumes a set of possible trees from which it selects appropriate ones.
A grammar for an extensible language must somehow describe how new pro-
ductions, i.e., new tree forms, can be introduced. However, restricted forms of
extensibility, like Prolog’s user-defined operators, are in the range of filters as
will be discussed in §4.6.

Landin’s offside rule is a disambiguation method based on indentation. In
84.7 we define this method by a filter.

A restricted class of filters based on pattern matching is described in §4.8.

4.5 Priorities

Disambiguation by precedences or priorities is used by many grammar for-
malisms in various instantiations (Earley, 1975, Aho et al., 1975, Johnson, 1975,
Heering et al., 1989, Aasa, 1992). In this and the next section we study priorities
in the syntax definition formalism SDF of Heering et al. (1989). An SDF prior-
ity declaration induces a strict partial order on grammar productions combined
with associativity declarations. From the priority and associativity declarations
R two filters 7€ and F<" are derived. The first removes trees with prior-
ity conflicts and the second selects trees which are minimal with respect to a
multi-set ordering on trees.

We do not use the notation of SDF for the declaration of priorities but a
notation similar to Earley’s notation for precedence rules in Earley (1975) that
is more suitable for theoretical exposition as in this paper. The concrete notation
of SDF can be translated to the abstract notation used here. There have been
many proposals for the interpretation of SDF priorities. Here we follow Klint

(1988).

4.5.1 Priority Conflicts

Definition 4.5.1 (Priority Declaration) A priority declaration R for a con-
text-free grammar G is a tuple (L,R,N,>), where & C P(G) x P for @ €

80

Priorities | 4.5

{L,R,N, >}, such that L, R and N are symmetric and > is irreflexive and
transitive. O

The relations L, R and N declare left-, right- and non-associativity, respec-
tively, between productions. The relation > declares priority between produc-
tions. A tree with signature p; can not be a child of a tree with signature p, if

p2 > pi1.

Definition 4.5.2 (Priority Conflict) A tree t has a root priority conflict
ER(t) if one of the following rules applies

A— Ba (RRFUN®)B =
ER([[tg = B] sa = A))
A—aB(LRUN®YB =3
ER([sa [ts = B] = A))
A—aBy>RB g
ER([sa [ts = B s, — A))

=R
A tree t has a priority conflict, if £ (t). O

According to Definition 4.4.9 we can now construct the filter fZR. Thus the

semantics of the pair (G, R) is the disambiguated context-free grammar G/ fER.
By definition of £ in terms of £ we have the following:

Corollary 4.5.3 F% is a local filter. O

Example 4.5.4 The usual example for priorities is the following grammar G,
for arithmetic expressions

E+E—-E —-E—>E
E-E—-E (E) > E
ExE— FE a—> FE
EtE—-E b— FE

that is completely disambiguated by the priority relation Reqp:
-E>t>x>{+,-},+L+, —-L—, +L—, xLx, 1R?

Now we have, for instance,

FET (W(Gesp)(a+ b+) = F " ({[a+ [b +], [la+ b +]})
={[[a + b] +]}

because + L + O

81

4 / DISAMBIGUATION FILTERS

According to the definition above a root priority conflict of a tree can be
detected by looking at the signature of the tree and at the signatures of its
children. The following version of the predicate is somewhat stronger in that it
looks through chain rules.

Definition 4.5.5 (Chain Rule Elimination) The function ecr (chain rule
elimination) yields the first subtree that is not an application of a chain rule:

ecr(X)=X
ecr(tg — A]) = ecr(tp)
ecr([ta = A]) = [ecrx(ta) — A], if |a| #1 m|

Definition 4.5.6 (Priority Conflict / Chain Rule) A tree t has a root pri-
ority conflict modulo chain rules (ER(t)) ER(t) < ER(ecr(t)) |

4.5.2 Multi-set Ordering

After selecting the conflict-free trees from a set there might still be more than
one tree in the set. The next filter that is used by SDF selects trees by comparing
trees with respect to a multi-set ordering < on trees.

Definition 4.5.7 (Multi-set) A multi-set is a function M : P(G) — N that
maps productions to the number of their occurrences in the set. The union
M@ N of two multi-sets M and N is defined as M & N (p) = M(p) + N(p). The
empty multi-set is denoted by @, i.e., #(p) = 0 for any p. We write p € M for
M(p) > 0. A multi-set with a finite number of elements with a finite number
of occurrences can be written as M = {p1,p1,... ,pa,...}, where M(p) is the
number of occurrences of p in the list. O

Definition 4.5.8 (Tree as Multi-set) A tree t is translated to a multi-set by
:7 = (P(G) > N) as

X=90
[t1...th > Al ={a > A} Wt W... Wiy,
ifa > A=sign([t1...tn > A4]) O

Definition 4.5.9 (Multi-set Order) Given some priority declaration R, the
order <™ on multi-sets is defined such that M <® N iff

M#NAVYYyEM:M(y)>N(y) =3Iz € N:y >Rz AM(z) < N(z) O

The motivation for this ordering is that it prefers parse trees that are con-
structed with the smallest possible number of productions of the highest possible
priority.

Given a priority declaration R, we can now construct the filter F <" using
Definition 4.4.12 that selects those trees which are minimal with respect to the
multi-set ordering induced by the priority declarations.

82

Priorities | 4.5

Proposition 4.5.10 (Klint (1988)) The multi-set ordering <~ on trees is
compositional.

Proof. (a) If t; <® t, then t; # t, and thus T} = C[t;] # C[t2] = Ty. (b)
Assume T (y) > Ts(y), then #;(y) > f3(y). Since t; <® ty, Az € ty : y >R
T Aty (z) < t3(z), then also Iz € Ty 1 y >R z /\Tl(a:) < Tz(iﬂ) From (a) and
(b) we conclude that C[t;] <® C[t2]. m|

Example 4.5.11 The following grammar is a typical example of the working of
the multi-set order for the disambiguation of overloaded operators. Expressions
over natural numbers,(n) and real numbers (r) with addition and multiplication
defined on both types of numbers. The natural numbers are included in the real
numbers by means of the injection N — R.

r— R n— N
R+R—R N+N-—>N
R+«R— R NxN—N

N>R

This grammar is disambiguated by means of the following priority declaration:
V>l > N > p BN N LR R

Given the string n + n the following trees are generated by the grammar (with
number of occurrences of productions):

[[n = N]+ [n — N] —= N]
[[n = R]+ [n — R] - R]
The first tree contains one occurrence of addition on natural numbers, while
the second contains an occurrence of addition on real numbers. Because of
the priority +% > +%, the first tree is lower in the multi-set ordering and is
therefore selected by the filter. Some other combinations of strings and trees:
n+n+n [n+n— N]+n— N
n+n+r [[n+n— N]— R]+r = R]
n+mnxr [[n = R]+[[n = R]*r - R] = R] O

4.5.3 Shortcomings of Priorities

The following examples give illustrations of grammars that can not or not ap-
propriately be disambiguated with priority rules.

Example 4.5.12 A well-known example is the following grammar G;. for con-
ditional statements with a dangling-else construct.

1SeS— S
iS—= S

83

4 / DISAMBIGUATION FILTERS

It is disambiguated by the priority declaration R;.: i € > i. This disambiguation
is correct according to the conventional solution of this problem in that it forbids
an i as first descendant of 7 e, as we can see from the parses of the sentence

11SeS:
Rie(I(Gie) (iiSeS)) = Rie({[i[iS]eS]), [i[iSeS]]}) = {[i[iSeS]]}

where the first parse is filtered out because it contains a priority conflict against
ie > i. However, the sentence iSeiS is not a member of L(G;./R) since [iSe[iS]]
is the only tree in 7(S) with the right yield and it has a priority conflict against
ie > 1. |

Example 4.5.13 Another problem of precedences is posed by the following
grammar that defines arithmetic expressions by one generic production for bi-
nary operators.

EOE—-E, +—-50,x—>0, ---

This grammar can not be disambiguated like the grammars in Example 4.5.4,
although it is useful when generic operations on the trees have to be defined. O

4.6 Prolog Operators

Several languages have mechanisms for introducing new infix, prefix and postfix
operators and declaring their precedence and associativity. Here we study a
mechanism that allows the user to introduce new operators with relative priority
instead of with absolute priority as in Prolog (Bratko, 1990). The meaning of
the priorities is the same as in the previous sections, but since the priority
declarations are part of the tree, the definition of the filter is more complicated.

The context-free grammar Gpro104 describes a language of programs P that
consist of a list of clauses C that are either operator declarations D or ex-
pressions E. There is an infinite supply of operators O and priority between
operators can be declared by the relations R, L and > which have the same
meaning as before. A declaration is valid from the point of introduction until
the end of the program unless overruled by a new declaration.

+ =0 x* =0
[a—z]+— A
ORO—-D OLO—-D 0>0,-D
EOE—E A—E (E) > E
D—C E-~C
C.P— P e—~> P

4.6.1 Global filter

A filter for these programs selects those trees that have expression trees that do
not violate the priority declarations earlier in the tree. The first method checks

84

Prolog Operators | 4.6

a program tree by traversing it from left to right, checking each expression tree
with the priority information it has collected earlier in the traversal.

Definition 4.6.1 The predicate R is defined as follows on program trees
ER(lep]) = € (e)VER(p)
ER([dp)) <= RV (p)
and for expression trees
ER([[e1 ®es]®es]) «PROVE > @
Rler@le2®es]]) €LV >®

The filter for sets of P-trees over Gpro109 can now be defined as F(®) = {t €
| -£0(t)} i

4.6.2 Local filter

Another approach to selecting the right tree is by means of a local filter. The
basic idea of the filter as defined below is that it infers the priority constraints
posed by each subtree of a tree. If these constraints form an inconsistent state-
ment the subtree can never be correct with respect to any priority declaration.

Definition 4.6.2 The function pr maps trees in 7 (Gproi0g) to first-order logical
formulas.

pr(fz = A]) =V®,9,0: >0 =>-0>9A-0dL®AGR®
ANR>ODAD>O0=>R>0
AQL®=dLOIA-QR®
ANRRO=>ORIAN-QLS
pr(les @ e2 - E) = (opler) > ® V op(ex) L&) A pr(er) A
(op(e2) > ® V op(e2) R®) A pr(ez)
pr([e.p = P]) = pr(e) A pr(p)
pr([d.p — P]) = d Apr(p)
where op([z — A]) = z and op([e; ® ez — E]) = &. The filter can now be
defined as FP*(®) = {t € ® | IR : R = pr(t)} O

Example 4.6.3 Sentence: x > +.a + b * c. Trees:

pr((*>+).((a+b)*c))=%«>+A+>%x=_1
pr((x > +).(a+ (bxc)).) =% >+ O

Example 4.6.4 Sentence: a + b * c+ d. Trees:

pr(((a+b)x(c+d))) =+ > *

pr((((a +b)xc)+d)=+Lx

pr(((a+ (bxc))+d)=(x>+V*xR+)A+L+

pr((a+ ((bxc)+d))) =*>+A+R+

pr((a+ (b*(c+d)))) =+R= O

85

4 / DISAMBIGUATION FILTERS

It is clear that this disambiguation method can not be applied at parser-
generation time, but can very well be applied at parse-time.

Aasa (1991, 1992) describes a disambiguation method for a limited class of
context-free grammars with distfix operators based on a predicate on trees. This
filter is used to transform context-free grammars into disambiguated context-
free grammars which generate the same trees.

4.7 Offside Rule

Several languages use the offside rule to enforce uniform indentation and at
the same time reduce the number of keywords for separating constructs. The
rule was first formulated by Landin (1966) and later (but shorter) by Richards
(1984) as:

None of an expression’s tokens can lie to the left of its first token.

In the following definition disambiguation by the offside rule is defined by means
of a filter.

Definition 4.7.1 (Offside) Associate with each occurrence of a terminal X €
Vr its horizontal position h(X). Associate with each tree t = [t;...t, — A]
its horizontal position h(t) = h(t;) and its minimal horizontal position hm(t) =
min?_, (hm(t;)). A tree t is offside (o(t)) if hm(t) < h(t). The grammar G/F°
is disambiguated by the offside rule. O

4.8 Pattern Matching Filters

In §4.5 we saw how priorities can be defined in terms of a unary predicate
that checks every node of a tree for a priority violation, i.e., if it matches some
pattern that indicates a priority conflict. This method is part of a larger class
of disambiguation methods based on pattern matching. This class is attractive
since it is weak enough to implement efficiently and it is strong enough to resolve
ambiguities in the area of precedence and associativity in an elegant way.

Definition 4.8.1 (Matching) A tree t matches a tree (pattern) g, if ¢ © t:

X o X
A o [ta = A
[q1.-.gn > Al o [t1...th 2 Al <= q1 © t1,.-. ,qn © tn

If Q is a set of patterns then Q ¢ t if there is some ¢ € @Q such that ¢ ¢ ¢. O

This definition can easily be extended such that ¢ yields a substitution of
the variables—indexed nonterminals—in the pattern, if patterns are linear. We
will write 0 = ¢ ¢ t to indicate that o is a substitution such that go = t.

86

Pattern Matching Filters | 4.8

4.8.1 Subtree Exclusion

Thorup (1994b) describes a disambiguation method that consists in specifying
a set of tree patterns that are excluded from trees produced by a parser. In
terms of filters this works according to the following definition.

Definition 4.8.2 (Subtree Exclusion) Given a set @ of tree patterns, the
subtree exclusion filter F@ is defined by

FR(®)={t€ ®|-Is€sub(t): Q o s} O

Disambiguation by priority conflicts as defined in §4.5 can be defined in terms
of subtree exclusion by translating the rules in a priority declaration R to a set
of tree patterns Qi that characterize trees with priority conflicts. For example,
if * > + € R, then the pattern [[E + E] * E] is illegal and therefore the tree
[[@ + b] *] is illegal.

Definition 4.8.3 (Priority Conflict Patterns) A priority declaration Pr(G)
derives a pattern set Qp.(g) as follows:

aB— A LUN g— B € Pr(G)
[oz[ﬂ — B] — A] c Qpr(g)
Ba— A RUN g — B € Pr(G)
[[8 = Bla = A] € Qpy(q)
aBB -+ A > v— B € Pr(G)
[aly = B]B — A] € Qp:(g)

Proposition 4.8.4 A tree has a root priority conflict (Definition 4.5.2) accord-
ing to a priority declaration Pr(G) iff it matches one of the patterns in @pr(g)>

i.e., gPr(g)(t) — Qpr(g) ot O

Subtree exclusion is strictly more expressive than priorities as a disambigua-
tion mechanism: Proposition 4.8.4 proves that each priority declaration can be
expressed as a subtree exclusion filter. Example 4.5.13 showed the grammar with
generic syntax for infix operators EFOE — E that could not be disambiguated
with priorities. By excluding patterns like

[E[*—> O] [E[+ - 0] E— E]— E|

the intended disambiguation can be achieved. This higher expressivity of subtree
exclusion is due to the fact that arbitrarily deep patterns can be specified, while
priorities provide fixed pattern templates—corresponding to associativity and
precedence—that are always 2 levels deep. Like priorities, subtree exclusion is
not expressive enough for a correct disambiguation of the dangling-else grammar
in Example 4.5.12. This is due to the fact that this problem can not be solved
with a finite number of fixed depth patterns. Below we will propose to solve
this problem by the use of higher-order patterns.

87

4 / DISAMBIGUATION FILTERS

4.8.2 Rewrite Rules

LaLonde and Rivieres (1981) describe a disambiguation method for operator
grammars with productions of the form £ & E — E. It works by translat-
ing a grammar to an unambiguous right-associative context-free grammar with
productions T O E — E and & — O and defining tree transformations that
transform a tree over the unambiguous grammar to the correct tree over the
ambiguous grammar. Such a transformed grammar is implemented by a de-
terministic parser that yields right-associative trees that are transformed after
parsing to the correct form by generic rules such as

[[E1 [® = O] E; —» E] [® = O] E3 — E]
=>[E1[®—>O0][E:[® >0]E; > E] > E], if®@ >®

The transformation system is specialized for operator precedence information. A
generalization of this technique is achieved by applying an arbitrary tree rewrite
system instead of operator transformations. For instance, to express that * > +,
the rewrite system contains a rule

Thorup (1994a) uses this idea in a method for the disambiguation of context-free
grammars by term-rewrite systems:

Definition 4.8.5 (Term Rewrite System) A term rewrite system (TRS) is
a set E of tree pairs (s,t). A tree t rewrites in one step to a tree s in a TRS E
(t =g s) ift = C[t'], s = C[s'] and there is a pair (¢,p) € E suchthatoc =q o ¢/
and po ¢ s'. A tree t rewrites to a tree s if ¢ —)E s. A set of rewrite rules E is
yield preserving if yield(t) = yield(s) for each t = s in E. O

Definition 4.8.6 (Rewrite Filter) If E is a yield preserving TRS, then F¥
is the filter defined by

FE@)={te®|-3s€d:t >} s} m|

Proposition 4.8.7 Rewrite filters F¥ for yield preserving E are local. O

Proof. Assume t € F(I'[®]) and ¢t ¢ I'[F(®)]. The latter implies that ¢t = C[¢']
and 3s' € ® : t' —»T s’ but then C[t'] - +C[s'] and therefore t ¢ F(I'[®]),

which contradicts the first assumption. |

The grammar G/F¥ is not implemented by post-parse filtering, but the TRS is
used for the solution of conflicts in LR parse tables. The input for the algorithm
is a context-free grammar G and a TRS FE, the output is a complete, linear time
parser II and a TRS E' = E U E" if such a pair exists, indication of failure
otherwise. The parser II is a deterministic parser for L(G), that produces for
each sentence w a tree ¢t in normal form with respect to E', i.e., there is no tree
s such that ¢ —>E, S.

88

Pattern Matching Filters | 4.8

Disambiguating rewrite rules can be derived from semantic equations s = t
that express that two trees (patterns) s and ¢ have the same meaning. If the
yields of the left-hand side and right-hand side of such an equation are the
same, i.e., yield(s) = yield(t), a disambiguation rule choosing either one can be
derived. This is especially appropriate for associative operators as in a® (b®c) =
(a ® b) @ c. Thorup (1994a) assumes s = ¢ if yield(s) = yield(¢) and neither
s —»t tnort =T s.

4.8.3 Higher-Order Patterns

Several disambiguation problems can not be described by fixed-depth patterns.
We propose a language of higher-order patterns that adds expressive power to
pattern matching. It allows the correct specification of the disambiguation of
the dangling-else grammar from Example 4.5.12.

Definition 4.8.8 (Higher-Order Pattern) A higher-order tree pattern is an
element from the set

H=Tu{aB,7,...} U(Vy x H*)

We write (A —* ¢1 ...¢,) for an element of Viy X H*. A tree t matches with a
higher order pattern ¢ if they are in the relation ¢ < t:

XoX
AO A= alty)
[ga = Al O ta > Al VX €Ea:gx Otx
[§—* A O[f—=Al«got
& JOht, =708
GOty qOt ATO D
7O B Ay < 70 i 5
Example 4.8.9 The dangling-else grammar can now be disambiguated by ex-
cluding all subtrees that match with
([iS—* SleS— 9]

This pattern matches any tree of the form

and thus describes all situations where an if-then appears before an else in a
string. O

89

4 / DISAMBIGUATION FILTERS

4.9 Discussion

Many disambiguation methods for context-free grammars for programming lan-
guages have been proposed since the early seventies. We can only briefly sketch
here some of the related work.

4.9.1 Implementation

Filters are an attractive method for the disambiguation of context-free grammars
because they specify the interpretation of a sentence in a logical manner and can
be implemented as post-parse filter. An implementation consisting of a standard
generalized parser in combination with a post-parse filter allows fast prototyping
of, and experimentation with, new disambiguation methods. However, deferring
filtering until parsing is complete can be expensive, because many trees built
during parsing are thrown away afterwards. If a tree is rejected by a filter after
parsing we can look at the parse steps that created it and see at which point
the reason for rejection is introduced. These facts can be used to apply filter
rules during parsing or even when constructing the parser. In Chapter 5 an
investigation is started into the derivation of efficient parsers for context-free
grammars disambiguated with filters.

4.9.2 Operator Disambiguation

Disambiguation of arithmetic operators is most commonly done by assigning
a priority to each operator and to resolve conflicting priorities during parsing.
Traditionally, resolution of priority conflicts and parsing are closely intertwined.
Techniques for disambiguation have been applied in all phases discussed earlier
in §4.2: grammar transformations, heuristic resolution of table conflicts during
parser generation, rule based resolution, and post-parse filtering of parse trees.

Typical grammar transformations are the elimination of left/right recursion,
and the coding of priority and associativity information in grammar rules.

Aho et al. (1975) describe how parsers for ambiguous grammars of binary ex-
pressions can be disambiguated with associativity and precedence declarations.
This technique is applied by Johnson (1975) in the parser generator YACC.

Earley (1975) describes a general scheme of precedence relations on context-
free productions but only indicates how these could be used in static disam-
biguation. Precedences in the definition of programming languages are also
discussed by Aasa (1991).

User definable disambiguation is, for instance, used in Prolog by declaring the
absolute priority and associativity of operators.

The order of the productions in a context-free grammar is used by Wharton
(1976) (backtracking) and in YACC (Johnson, 1975) (resolution of shift/reduce
conflicts).

Wharton (1976) defines a backtracking parser that is guided by an ordering
on parse steps. This ensures a single parse for any sentence over any grammar.
However, this resolution of ambiguity is not based on the language being defined

90

Discussion / 4.9

but on properties of the grammar productions.

In SDF (Heering et al., 1989) a strict partial order on productions is used
as well as relative associativity of productions. This involves the detection of
priority conflicts, and a multiset ordering on trees.

Thorup (1992, 1994a, 1994b) describes a technique of resolving LR and LL
conflicts based on a set of rewrite rules over parse trees. A consequence of this
work is disambiguation by exclusion of a set of tree patterns from the set of
legal trees generated by a grammar.

4.9.3 Semantic Disambiguation

Disambiguation can also be combined with the further semantic processing of
parse trees. For instance, during static semantic checking (type checking) of a
tree disambiguation can be done using type information. Examples of this ap-
proach based on attribute grammars can be found in Aasa (1992), Veldhuijzen
van Zanten (1988a) and Veldhuijzen van Zanten (1988b), Oude Luttighuis and
Sikkel (1992). Van den Brand (1992) describes parse time application of seman-
tic predicates in affix grammars (a variant of attribute grammars). His technique
can also be applied to lexical disambiguation. Parr and Quong (1994) describe
a disambiguation method that mixes syntactic and semantic disambiguation in
LL parsers. Static semantic restrictions on parse trees are also used by Bailes
and Chorvat (1993) and McCrosky and Sailor (1993).

An even stronger form of semantics-directed disambiguation can be found
in languages such as APL where execution and parsing of a program occur
simultaneously and decisions regarding parsing can depend on the outcome of
execution.

4.9.4 Filters

The notion of “filtering” as a means of disambiguation has been proposed by
other authors as well. A separation between disambiguation and parsing is
described by LaLonde and Rivieres (1981) where post-parse transformations on
trees are used to produce the right parse tree. The idea is also described by Aasa
(1992). In our approach, the treatment of filters and their properties is more
abstract and completely independent from the underlying parsing techniques.

In the framework of parsing schemata of Sikkel (1993) the notion of filtering
is used for describing refinement relations between parsing algorithms.

In several approaches the user is queried interactively to filter ambiguities.
An application of user-directed filtering is described by Share (1988) where a
modification of YACC is used that reports parse conflicts during parsing (instead
of during parser generation) and lets the user solve them. This technique is
proposed as a solution of parsing documents in various ambiguous mark-up
languages. Tomita (1985) also describes resolution of ambiguities by the user.
The implementation of SDF (Heering et al. (1989)) uses interactive dialogs to
filter ambiguities that could not be resolved by priorities.

We did not propose a formalism for the specification of filters, since we mainly

91

4 / DISAMBIGUATION FILTERS

explored their semantics. §4.4.2, however, already suggests an approach to the
specification of filters using predicates or partial orders, thus abstracting from
the application of these to sets of trees or to parse forests.

4.9.5 Unparsing

Disambiguation does not only play a role in parsing but also in unparsing,
i.e., generating a string for some semantic value. If parse trees are mapped to
abstract syntax trees and in this process bracket functions are considered as
identity functions (e.g., (z) and z are identified at the level of abstract syn-
tax trees), there is a problem during the reverse mapping of abstract syntax
trees to parse trees since the right brackets may have to be reintroduced. For
disambiguation methods based on precedence relations there is some body of
knowledge how to do this (e.g., Van den Brand and Visser, 1996). For arbitrary
filters new theory is needed, indicating how to unparse in this general case.
Blikle (1989) describes the derivation of concrete syntax from abstract syntax.
The equations that translate abstract to concrete syntax are very similar to the
algebraic specification of pretty printers in Van den Brand and Visser (1996).
Blikle’s method breaks down when the syntax becomes too concrete, i.e., when
brackets become optional. The disambiguation method of Thorup (1994a) is
aimed at solving that problem. However, unparsing is not addressed by him.

4.10 Conclusions

We have presented filters as a unifying framework for a large class of existing dis-
ambiguation methods. This framework can handle all ‘logical’ disambiguation
methods but is not suited for defining parser-specific methods. All disambigua-
tion methods expressed as filter can be implemented by post-parse filtering.
This provides a way of experimenting easily with new methods without having
to adapt a given parser generator. For us, the main merit of this framework is
an increased understanding of the relationship between parsing and disambigua-
tion. This insight may help during the design of new disambiguation methods
and their integration with syntax definition formalisms. In the next chapter
we explore techniques for deriving efficient parsers from the combination of a
grammar and a filter. These initial ideas suggest that a separation of parsing
and filtering at the conceptual level does not exclude the use of efficient parsing
techniques at the implementation level.

92

D

A Case Study in
Optimizing Parsing Schemata
by Disambiguation Filters

Disambiguation methods for context-free grammars enable concise specification
of programming languages by ambiguous grammars. A disambiguation filter is
a function that selects a subset from a set of parse trees—the possible parse
trees for an ambiguous sentence. The framework of filters provides a declarative
description of disambiguation methods independent of parsing. Although filters
can be implemented straightforwardly as functions that prune the parse forest
produced by some generalized parser, this can be too inefficient for practical
applications.

In this chapter the optimization of parsing schemata, a framework for high-
level description of parsing algorithms, by disambiguation filters is considered
in order to find efficient parsing algorithms for declaratively specified disam-
biguation methods. As a case study the optimization of the parsing schema
of Earley’s parsing algorithm by two filters is investigated. The main result is
a technique for generation of efficient LR-like parsers for ambiguous grammars
disambiguated by means of priorities.

5.1 Introduction

The syntax of programming languages is conventionally described by context-
free grammars. Although programming languages should be unambiguous, they
are often described by ambiguous grammars because these allow a more natural
formulation and yield better abstract syntax. For instance, consider the follow-
ing grammars. The first, ambiguous grammar gives a clearer and more concise
description of arithmetic expressions than the second unambiguous one.

gt -> E ng" >V T->E
E"+"E ->E E"+"T ->E V->T
E "x" E -> FE T "x" V -> T
ll(" E ll)ll _> E II(II E |l)ll _> V

93

5 / OPTIMIZING PARSING SCHEMATA

To obtain an unambiguous specification of a language described by an am-
biguous grammar it has to be disambiguated. For example, the first grammar
above can be disambiguated by associativity and priority rules that express that
E "x" E -> E has higher priority than E "+" E -> E and that both produc-
tions are left associative. In the second grammar these disambiguation rules
have been encoded in the grammar itself by means of extra non-terminals.

In Chapter 4 we have set up a framework for specification and comparison
of disambiguation methods. In this framework a disambiguation method is de-
scribed as a filter on sets of parse trees. A disambiguation filter is interpreted by
parsing sentences according to the ambiguous context-free grammar with some
generalized parsing method, for instance Generalized LR parsing (Tomita, 1985,
Rekers, 1992), and then prune the resulting parse forest with the filter. Because
this method of specification of disambiguation is independent of parsing, a lan-
guage definition can be understood without understanding a parsing algorithm
and it can be implemented by any generalized parser.

Although filters provide a uniform model for the description of disambigua-
tion, they are too inefficient for several applications because all possible parse
trees for a sentence have to be built before the intended ones are selected. (The
number of possible parse trees for the first grammar above grows exponentially
with the length of strings.) The optimization problem for filters is to find an
efficient parser for the combination of a context-free grammar and a disambigua-
tion filter. The filter can be used to prevent parse steps that lead to parse trees
that would be removed by the filter after parsing. Parsing schemata, introduced
by Sikkel (1993, 1994), are high-level descriptions of parsing algorithms that ab-
stract from control- and data-structures and provide a suitable framework for
the study of the interaction between filters and parsers.

Since it is not clear how to solve the optimization problem in general, if that
is possible at all, an instance of the problem is studied in this chapter, i.e.,
the optimization of the underlying parsing schema of Earley’s (1970) parsing
algorithm by a filter for disambiguation by priorities. This method, which is the
disambiguation method of the formalism SDF (Heering et al., 1989), interprets
a priority relation on context-free productions as two consecutive filters. The
first selects trees without a priority conflict. The second selects trees that are
minimal with respect to a multi-set ordering on trees induced by the priority
relation.

The main result of this chapter is a parsing schema for parsing with priorities.
The schema specifies a complete implementation of parsing modulo priority
conflicts and a partial implementation for the multi-set order. The schema
can be implemented as an adaptation of any parser generator in the family of
LR parser generators. The resulting parsers yield parse trees without priority
conflicts.

The method of specifying a disambiguation method by a filter and applying it
to optimize the parsing schema of some parsing algorithm appears to be fertile
soil for growing new parsing algorithms from old ones.

The rest of the chapter is structured as follows. In §5.2 some preliminary
notions are defined. In §5.3 disambiguation filters are defined. In §5.4 parsing

94

Preliminaries | 5.2

schemata are informally introduced. In §5.5 priority rules and the notion of
priority conflict are defined and a parsing schema optimized for the priority
conflict filter is derived. In §5.6 the relation between Earley parsing and LR
parsing is discussed and it is shown how optimization results can be translated
from the former to the latter. Furthermore, the results are extended to SLR(1)
parsing. In §5.7 the multi-set filter induced by a priority declaration is defined
and a partial optimization of the Earley schema for this filter is derived. The
two optimizations can be combined in a single schema, obtaining an efficient
implementation of disambiguation with priorities.

5.2 Preliminaries

Definition 5.2.1 (Context-free Grammar) A contezt-free grammar G is a
triple (Vi, Vi, P), where Vy is a finite set of nonterminal symbols, Vr a finite
set of terminal symbols, V' the set of symbols of G is Vy U Vr, and P(G) =
P C V* x Vy a finite set of productions. We write a — A for a production
p={o,A)€P. O

The @ — A notation for productions (instead of the traditional A — «) is
a convention of the syntax definition formalism SDF to emphasize the use of
productions as mixfix function declarations. The string rewrite relation —
induced by a context-free grammar is therefore also reversed, from a generation
relation to a recognition relation. Repeated application of productions rewrites
a string to its syntactic category. The statement w —* A means that the string
w can be reduced to the symbol A.

Observe that we do not distinguish a start symbol from which sentences are
derived. Each nonterminal in Viy generates a set of phrases as is defined in the
following definition.

Definition 5.2.2 (Parse Trees) A context-free grammar G generates a family
of sets of parse trees T(G) = (T(G)(X) | X € V), which contains the minimal
sets T(G)(X) such that
XeV
X eT(G)(X)
Al A > AeP(G), t1 € T(G)(A1), ..., tnh € T(G)(An)
[t1...th = Al € T(G)(A)

We will write t, for alist ¢; .. .t, of trees where « is the list of symbols X; ... X,
and t; € T(G)(X;) for 1 < ¢ < n. Correspondingly we will denote the set of
all lists of trees of type a as T(G)(a). Using this notation [¢t; ...¢, — A] can
be written as [to — A] and the concatenation of two lists of trees t, and tg is

written as totg and yields a list of trees of type af.
The yield of a tree is the concatenation of its leaves. The language L(G) de-
fined by a grammar G is the family of sets of strings L(G)(A) = yield(7 (G)(4)).
O

95

5 / OPTIMIZING PARSING SCHEMATA

Definition 5.2.3 (Parsing) A parser is a function II that maps each string
w € Vi to a set of parse trees. A parser II accepts a string w if |II(w)| > 0.
A parser II is deterministic if |II(w)| < 1 for all strings w. A parser for a
context-free grammar G that accepts exactly the sentences in L(G) is defined by

I(G) (w) = {t € T(G)(4) | A € Vi, yield(t) = w} 0

Example 5.2.4 As an example consider the ambiguous grammar

Ilall -> E
E ||+|l E -> E
E |I*|l E -> E
ll(ll E II)II -> E

from the introduction. According to this grammar the string a + a * a has two
parses:

I(G)(a+axa) ={[[[a > E]+ [a & E] > E] x[a > E] = E]
[[@a— E]+|[[a = E] *[a » E] - E] — E]} |

5.3 Disambiguation Filters

Definition 5.3.1 (Disambiguation Filter) A filter F for a context-free gram-
mar G is a function F : p(7) — p(7) that maps sets of parse trees to sets of
parse trees, where F(®) C ® for any & C 7. The disambiguation of a context-
free grammar G by a filter F is denoted by G/F. The language L(G/F) generated
by G/F is the set

L(G/F)={w e Vy |32 CT(G): yield(®) = {w} N F(®) = ?}

The interpretation of a string w by G/F is the set of trees F(II(G)(w)). A filter
F> is also applicable to a disambiguated grammar G/F;, which is denoted by
(G/F1)/F> and is equivalent to G/(F2 o JFy). O

Several properties and examples of filters are discussed in Chapter 4. In §5.5 and
§5.7 two examples of disambiguation filters will be presented. The optimization
problem for disambiguation filters can be formulated as follows.

Definition 5.3.2 (Optimization by Filter) Given a context-free grammar
G and a filter F, a parser 7 is an optimization of II(G) if for any string w

FIG)(w)) € w(w) C IL(G)(w)

We say that = approzimates F oII(G). 7 is an optimal approximation if 7(w) =

F(II(G)(w)) for any w. O

96

Parsing Schemata | 5.4

5.4 Parsing Schemata

Parsing schemata (Sikkel, 1993, 1997) abstract from the details of control- and
data-structures of full parsing algorithms by only considering the intermediate
results of parsing. A parsing system is a deduction system that specifies how
from a set of hypotheses (the tokens of a sentence) assertions (the intermediate
parser states) can be derived according to a set of deduction rules for some
context-free grammar. A parsing schema is a parsing system parameterized with
a context-free grammar and a sentence. Below parsing schemata are introduced
informally by means of an example. A formal treatment can be found in Sikkel
(1993, 1997). A related approach is the deductive parsing method of Shieber
et al. (1995), where inference rules describing parsing algorithms much like
parsing schemata are interpreted as chart parsers in Prolog.

Definition 5.4.1 defines a parsing schema for Earley’s (1970) parsing algo-
rithm. Its specification consists of an implicit definition of the set of hypotheses
H , the definition of a set of items 7 and the definition of a set of deduction rule
schemata. For each string a . .. a, the set of hypotheses H is the set containing
the items [a;,4 — 1,4] for 1 < i < n. The set of items 7 is the domain of the
deduction system, i.e., the items are the subject of deductions. According to
this definition, Earley items are of the form [e 8 — A,i,j], where a8 — Ais a
production of grammar G. The indices refer to positions in the string a; ... an,.
The intention of this definition is that an item [c e 3 — A, 1, j] can be derived if
Qiy1-..0; —)E a and aj ...a; Ay —>§ B, for some non-terminal B and string of
symbols . The deduction rules (I) through (C) describe how these items can be
derived. Rule (I), the initialization rule, specifies that the item [ea — A,0,0]
can always be derived. The predict rule (P), states that a production v — B
can be predicted at position j, if the item [a @ B8 — A,1,j] has already been
derived. Finally, the rules (S) and (C) finalize the recognition of a predicted and
recognized token or nonterminal—witnessed by the second premise—by shifting
the e over the predicted symbol.

Definition 5.4.1 (Earley) Parsing schema for Earley’s parsing algorithm (Ear-
ley, 1970).
af > A€P(G),0<i<j
[— Ai,jleT

[ea = 4,0,0]
[e BB — A,i,j]

[y = B, j,]
[O‘.alg_) A,i,j], [G,j,j+1]
[aae B — A,i,7+1]

[e BB — A, h,i], [ye = B,1,]]
[@BeB3 — A h,j]

5 / OPTIMIZING PARSING SCHEMATA

A derivation according to a parsing schema is a sequence Iy, ... , I, of items
such that for each ¢ (0 < i <m) I; € H or thereisa J C {Iy,... ,I; 1} such that
J F I; is (the instantiation of) a deduction rule. (Observe that if .J is empty this
corresponds to the case of using a rule without premises, such as the initialization
rule.) A string w = a; ...a, is in the language of context-free grammar G if
an item [ae — A,0,n] is derivable from the hypotheses corresponding to w in
the instantiation of the parsing schema in Definition 5.4.1 with G. An item of
the form [ae — A,0,n] is called a final item and signifies that the entire string
is recognized as an A phrase. The predicate w I—g I expresses that there is
a derivation Iy,... ,I,, = I of the item I from the hypotheses generated from
string w in the instantiation of parsing schema P with grammar G.

The schema in Example 5.4.1 only defines how strings can be recognized.
Since disambiguation filters are defined on sets of trees and not on items, a way
to relate items to trees is needed. Definition Definition 5.4.3 gives an extension
of the schema in Definition 5.4.1 that describes how trees can be built as a result
of the deduction steps. First we need a definition of partial parse tree

Definition 5.4.2 (Partial Parse Tree) A partial parse tree is a tree expres-
sion of the form [t, — A] where t, € T (G)(a) and such that the tree can be com-
pleted to a normal tree by adding a list of trees tg, i.e., [tatg = A] € T(G)(A).
(which requires a8 — A € P(G).) O

The items in the schema have the form [ae8 — A, 1, j] = [to — A] and express
that from position ¢ to position j a phrase of type a has been recognized and
the partial parse tree [to, — A] has been built as a result. The set of hypotheses
H is changed such that token items are annotated with trees, i.e., for each token
a; in the string [a;,7 — 1,i] = a; € H. Note how the shift and complete rules
extend partial parse trees.

Definition 5.4.3 (Earley with Trees) Parsing schema for Earley’s algorithm
with construction of parse trees.

af -+ A€P(G), 0<i<j, ta €T(9)(a)
[— Aji,jl=[ta > Al €T

[ea — A,0,0] = [4]
[e BB — A h,i] = [ta = A]

[y = B,i,i] = [— B
[@eaB — A h,i] = [ta = 4], [a,i,i+1] = a
[aae B — A hi+1] = [taa — A]

[e BB — A, h,i] = [ta = A], [y®e = B,i,j] = tB (©)

[aB e — A h,j] = [tats — 4]

Figure 5.1 shows the derivation of a parse tree for the string a + a with
the grammar from Example 5.2.4. The following theorem states that parsing

98

Priority Conflicts / 5.5

[a,0,1]

1,2

(0,23

[¢E + E — E,0,0]
[ea — E,0,0]

[ae — E,0,1]
[Ee+E — E,0,1]
[E+eFE — E,0,2]
[ea — E,2,2]

[ae — E,2,3]
[E+ Ee — E,0,3]

= a

=+

=a

= [—> E]

= [—> E]

= [a = E]

= [[a = E] = E]
= [[a = E]+ — E]
= [> E]

= [a = E]

= [[a > E]+[a — E] — E]

Figure 5.1: Derivation with the parsing schema in Definition 5.4.3 and the
grammar from Example 5.2.4.

as defined in Definition 5.2.3 and derivation with Earley’s parsing schema in
Definition 5.4.3 are equivalent.

Theorem 5.4.4 (Correctness) Parsing schema Farley with trees derives ez-
actly the trees produced by a parser, i.e., {t | A € Vy,w FZ*? [ae — A,0,n] =

t} = I(G)(w)

The following proposition states that the decoration of items with partial
parse trees makes no difference to what can be derived. Items in a parsing
schema can be annotated with trees as long as they do not affect the deduction.

Proposition 5.4.5 Parsing schema Earley with trees preserves the derivations
of parsing schema Earley, i.e., w FF*! [a0 f = Ai,j] <= Tta € T(G)(a) :
whFt? [ae f— Aij] = [ta — A

The optimization problem can now be rephrased as:

Definition 5.4.6 (Optimizing Parsing Schemata) The optimization of a
parsing schema P by a disambiguation filter F constitutes in finding a derived
parsing schema P’ such that

FING)(w)) C{t|wry I=t}C{t|wrf =1t}

where [is some final item. O

5.5 Priority Conflicts
We consider the optimization of parsing schema Earley by two disambiguation

filters that are used to interpret the priority disambiguation rules of the formal-
ism SDF of Heering et al. (1989). This disambiguation method is also used in

99

5 / OPTIMIZING PARSING SCHEMATA

the generalization of SDF to SDF2 presented in Part II. The subject of this
section is a filter that removes trees with a priority conflict. This filter is sim-
ilar to the conventional precedence and associativity filter. The declaration of
priority rules will also be used in the definition of the multi-set filter in §5.7.

Definition 5.5.1 (Priority Declaration) A priority declaration Pr(G) for a
context-free grammar G is a tuple (L,R,N,>), where ® C P x P for @ €
{L,R,N, >}, such that L, R and N are symmetric and > is irreflexive and
transitive. O

The relations L, R and N declare left-, right- and non-associativity, respec-
tively, between productions. The relation > declares priority between produc-
tions. A tree with signature p; can not be a child of a tree with signature p,
if p» > p1. The syntax of priority declarations used here is similar to that in
Earley (1975). In SDF (Heering et al., 1989) a formalism with the same un-
derlying structure but with a less Spartan and more concise syntax is used. In
SDF one writes left for L, right for R and non-assoc for N. We will use both
notations.

Definition 5.5.2 (Priority Conflict) The set conflicts(G) generated by the
priority declaration of a grammar G is the smallest set of partial trees of the
form [a[8 — B]y — A] defined by the following rules.

aBy -+ A>p — BePr(G)
[@[8 — B]y — A] € conflicts(G)
v #¢€, B = B (right U non-assoc) By - A € Pr(G)
[[8 = B]y — A] € conflicts(G)
a #¢€, B — B (left Unon-assoc) aB — A € Pr(G)
[@[8 = B] — A] € conflicts(G)

This set defines the patterns of trees with a priority conflict. O

Using the definition of priority conflict we can define a filter on sets of parse
trees.

Definition 5.5.3 (Priority Conflict Filter) A tree ¢t has a root priority con-
flict if its root matches one of the tree patterns in conflicts(G). A tree t has a
priority conflict, if t has a subtree s that has a root priority conflict. The filter
FP* is now defined by FF*(®) = {t € ® | ¢ has no priority conflict}. The pair
(G, Pr) defines the disambiguated grammar G/FF*. O

Example 5.5.4 Consider the following grammar with priority declaration

syntax
||a|| -> E
E "x" E -> E {left}
E "+" E > E {left}

100

Priority Conflicts / 5.5

priorities
E "s" E -> E >
E "+" E -> E

Here the attribute 1left of a production p abbreviates the declaration pLp. The
tree

[[a = E]+[a = E] = E]x[a = E] — E]

has a priority conflict over this grammar—it violates the first priority condition
since multiplication has higher priority than addition. The tree

[[a— E]+[[a = E]*[a » E] —» E] — E]

does not have a conflict. These trees correspond to the (disambiguated) strings
(a + a) xa and a + (a * a), respectively. The implication operator in logic is
an example of a right associative operator: a — a — a should be read as
a — (a — a). Non-associativity can be used to exclude unbracketed nested use
of the equality operator in expressions using the production E "=" E -> E. O

The priority conflict filter induced by a priority declaration can be used to
optimize the Earley parsing schema. By the following observation a more general
optimization problem can be solved.

Definition 5.5.5 (Subtree Exclusion) A subtree exclusion filter based on a
set) of excluded subtrees is defined by

FUP)={ted|-taQ}

where t < @ (¢ is excluded by Q) if ¢ has a subtree that matches one of the
patterns in Q). O

The optimized parsing schema should not derive trees that contain a subtree
contained in (). As is shown in definition 5.4.3 such patterns are constructed in
the complete rule and predicted in the predict rule. The construction of trees
with priority conflicts can be prevented by adding an extra condition to these
rules. This leads to the following adaptation of the Earley parsing schema.

Definition 5.5.6 (Earley modulo @) Parsing schema Earley modulo a set
Q of parse trees of the form [a[y — B]8 — A], which are excluded as subtrees.
The set of items Z and the deduction rules (H), (I) and (S) are copied unchanged
from Definition 5.4.3.

[0e BB — A h,i] = [to = A, [a]y = B]f = Al ¢ Q
[ey — B,i,i] = [~ B

(P)

[@ BB — A, h,i] = [ta —+ A], [ye = B,i,j] = ts,
[aly > B]g —» A] £ Q ©)
[aB e — A h,jl = [tatp = A]

5 / OPTIMIZING PARSING SCHEMATA

The following theorem states that parsing schema in Definition 5.5.6 is an
optimal approximation of the composition of a subtree exclusion filter (with
trees of the form [a[y — B]8 — A]) and a generalized parser.

Theorem 5.5.7 (Correctness) Parsing schema Earley modulo Q derives ez-
actly the trees produced by the composition of a parser and a subtree exclusion
filter for Q, i.e., {t € T(G)(A) | A € Vn, w I-g'?QG [A = ae,0,n] = t} =
FLI(G) (w))

This is proved using two lemmas. The soundness lemma asserts that no
intermediate parse tree derived with the deduction rules has an excluded subtree
(i.e., a priority conflict). The completeness lemma states that every parse tree
without a priority conflict can be derived. The completeness lemma is obtained
by reverting the implication of the soundness lemma. In these lemmata we use
the notion of a context ¢tp[e] that represents a tree context of type B with one
subtree that is a hole e. The instantiation ¢g[ta] of a context tg[e] is the tree
obtained by replacing the e subtree by the tree t 4.

Lemma 5.5.8 (Soundness) For all contezt-free grammars G, strings w =
a...a, € V5, symbols A € Vi and o, 3 € V*, natural numbers i < j € N,
and trees to, € T(G)(a) such that af — A € P(G), and Q a set of parse tree
patterns of the form [a[y — B]S8 — A] we have that

w l—g'5‘6 [ae B — Ai,j] = [ta = 4]

yield(ta = [taff = A]) = aiy1 ... a;0,
Jdtple] € T(G)(B) : ~tplta] <Q Ayield(tp[A]) = a; ...a;AS

5.6 From Earley to LR

There is a close correspondence between Earley’s algorithm and LR parsing
(Knuth, 1965). In fact, parsing schema Earley in Definition 5.4.1 can also be
considered the underlying parsing schema of an LR(0) parser. The main differ-
ence between the algorithms is that in LR parsing the instantiation of the pars-
ing schema with a grammar is compiled into a transition table. Definition 5.6.1
defines a parsing schema for ‘compiled’ LR(0) parsing. The intermediate results
of an LR parser, the LR states, are sets of LR items closed under prediction,
defined by the function closure. The function goto computes the set of items
that results from a state by shifting the dot in the items over a symbol X. The
schema defines three deduction rules. Rule (I) generates the initial state consist-
ing of the set of all items [ea — A] predicting all productions of the grammar.
Rule (Sh) obtains a new state from a state by shifting a terminal. Rule (Re)
reduces a number of states to a new state upon the complete recognition of a
production Bj ...B,, — B. It is clear that the function closure corresponds
to the predict rule (P) in Earley, that (Sh) corresponds to (S) and that (Re)
corresponds to (C). A goto-graph is a precomputation of the goto function.
Figure 5.2 shows a goto-graph for the grammar of Example 5.2.4.

102

From Earley to LR / 5.6

Definition 5.6.1 (LR(0) Parsing) LR items are Earley items without in-
dices. The items used in LR parsing are sets of LR-items with a pair of indices.

Irr={[cef—> Al |af > AeP(G)} Z={[®,4,j]|®CZrr}

The closure of a set of items ® is the smallest set of items containing ® and
closed under prediction, i.e.,

® C closure(®)
[e B8 — A], v = B € P(G)
[ey = B] € closure(®)

Given a symbol X the goto function maps a set of items to the closure of the
set obtained by shifting all items with X.

goto(X, ®) = closure({[aX ¢ 8 — A] | [x e X3 — A] € ®})
Given these functions an LR parser is defined! by the following deduction rules.

D

[{[ea = A] |« = A € G},0,0]
(@, h,i], [a,4,7 + 1]

lgoto(a, ®), h,i 1 1] (5k)

[‘I)[Q.Bﬁ%A],h,i], [(p[lBlo...Bk—)B]’i,il]7 [CI)EcBl"'Bk.—}B],i,ik] (R)
[goto(B, @), h, ir] ©

O

In the same way that an LR parser is derived from the Earley schema an LR
parser can be derived from the optimized parsing schema of Definition 5.5.6 by
adapting the closure and goto functions.

Definition 5.6.2 (LR(0) parsing modulo () Items are only predicted if they
do not lead to a conflict.

[@e B3 — A], vy = Be€P(G), [a[]y = B]g = A1 € Q
[ey — B] € closure(®)

Given a production v — B the goto function maps a set of items to the closure
of the set obtained by shifting all items with v — B for which that does not
lead to a conflict.

goto(y = B, ®) = closure({[aBe3 — A] | [xe B3 — Al € ®
Alaly = B]f = Al ¢ Q})

O

Note that the goto function has to be parameterized with the production
that is recognized instead of with just the symbol. (For the (Sh) rule the old
goto function is used.) Figure 5.3 shows the goto-graph for the disambiguated
grammar from Example 5.5.4.

IThis definition gives the intermediate results of an LR parser, not its exact control flow.

103

5 / OPTIMIZING PARSING SCHEMATA

%
?:.E :g ExFEe - F
s IR
eEF+E—~ FE E
a
¢ E+E—E +
Fe+FE— FE
eExE— FE ae— F
EFEexE — FE
ea — F *
a
?:'E:g E FrmeE
.05 |EEns
eE+FE—~ FE +

Figure 5.2: LR(0) goto graph for the grammar of Example 5.2.4

ExeE— FE |a—> FE E x Ees E
ea — FE
a
ExE — FE
E+E=E Ee+E—E
e ExE—~ FE ae— FE
EexE — FE
ea — F *
a
a
ExE— E
E+E—E EteE—E|a— E
E+ FEe— E
Ee+E—~ E ea — FE EexE — E
o ExF—~ E

Figure 5.3: LR(0) goto graph for the grammar of Example 5.5.4.

5.6.1 SLR(1) Parsing

The LR(0) goto graph in Figure 5.3 contains conflicts that are easy to prevent
with the SLR(1) (Simple LR(1)) extension of LR(0) parsing due to DeRemer
(1971). The SLR algorithm is based on the observation that a reduction is only

104

From Earley to LR / 5.6

useful if the next symbol in the string can follow the symbol that is recognized
by the reduction, i.e., the right hand-side of the production that is reduced.
This is expressed in the following adaptation of the LR(0) parsing schema of
Definition 5.6.1. The function first(c, ¥) yields the set of symbols that can start
a phrase derived from a string of symbols a followed by a symbol from the set .
The expression follow(B, ¥) denotes the set of symbols that can follow symbol
B in a phrase that is followed by a symbol from the set ¥. The reduce rule
now only applies if a production has been recognized and the next symbol in
the string can follow the right-hand side of the production.

Definition 5.6.3 (SLR(1) Parsing) The set of first symbols of a phrase gen-
erated by a string « followed by an element from ¥, is the smallest set first(a, ¥)
such that

first(e, ¥) = T
first(aa, ¥) = {a}
first(Aa, ¥) = Up_, acp(g) first(Be, ¥)

The set of symbols that can follow a symbol B in a phrase generated by G
followed by a symbol from ¥ is the smallest set such that

aBp - A€P(G)
follow(B, ¥) D first(8, follow (A, ¥))

The reduce rule of the schema in Definition 5.6.1 is restricted by requiring that

the next symbol in the string is an element of the follow set of B.

[@losBA—A] g [@lBre-Be=Bl g gy (@B Bre Bl G

[a,ik, i + 1], a € follow(B, {$})
[gOtO(B’ (I))a hazk]

O

The SLR(1) schema can be adapted in the same way as the LR(0) schema to
account for priority conflicts (or subtree exclusion). However, the definition of
follow above is too weak for this extended schema. For instance, in the grammar
of Example 5.5.4, the token * is an element of the follow set of £. However,
% can not follow an F if it is a E + E — E, i.e., if a reduction is done with
E+ E — E, no action for * is possible. The following parsing schema optimizes
the SLR(1) parsing schema by defining the follow set for a production instead
of for a symbol and adapting the reduce rule accordingly. Figure 5.4 shows the
SLR(1) table for the grammar of Example 5.5.4.

Definition 5.6.4 (SLR(1) Parsing Modulo @) This schema defines SLR(1)
parsing modulo a set @) of parse trees of the form [a[f — B]y — A] using
the definition of the closure and goto functions from the parsing schema in
Definition 5.6.2 and the definition of first from Definition 5.6.3.

aBy » A€ P(9), [o[f = Bly > A ¢ Q
follow(8 — B, ¥) D first(S, follow(aBy — A, ¥))

105

5 / OPTIMIZING PARSING SCHEMATA

(e [o [+ [+ [% [1[2[3[4] =
(1) s1 1 3131412 (2)E+E - E
3 5155 T ace B)E+E—E
4) F
4 s 5 | acc HES =5
8 sl 9
3)L(3
9 r2|r2|r2 BLE)

Figure 5.4: SLR(1) table for the grammar of example 5.5.4. s n denotes shift
to state n, r n denotes reduce with production n, acc denotes accept. The right
part of the table contains the goto entries for the productions. This parse table
corresponds to the goto graph of figure 5.3.

The reduce rule is adapted to the new definition of follow.

[@[aoBﬂ—)A]’ h, i], [(I>[1310...B;c—)B] . [(PECBL..B;CO—)B]

7i7i1]5 . 5i;ik]a

[a,ik, 9 + 1], a € follow(By ... B — B,{$})
[gOtO(Bl ...Bp — B, q)), h,Zk]

5.6.2 Discussion

Conventional methods for disambiguating grammars that apply to LR parsing
disambiguate the grammar by solving conflicts in an existing LR table. The clas-
sical method of Aho et al. (1975) uses associativity and precedence information
of a limited form—a linear chain of binary operators that have non-overlapping
operator syntax—to solve shift /reduce conflicts in LR tables. The method is
based on observations on how such conflicts should be solved given precedence
information, without a real understanding of the cause of the conflicts. Aasa
(1991, 1992) describes filtering of sets of parse trees by means of precedences.
Thorup (1994a) describes a method that tries to find a consistent solution for all
conflicts in an LR table starting from, and producing a set of excluded subtrees.

All these methods fail on grammars that are inherently non-LR(k), i.e., for
which there is no complete solution of all conflicts in any LR table for the
grammar. An example is the grammar

syntax
-> L
L [\ \t\n] ->1
uau -> E
EL "x" L E ->E {left}
EL "+" L E ->E {left}

106

Multi-set Filter | 5.7

priorities
EL "x"LE->E>
EL"+"LE->E

that models arithmetic expressions with layout. The tokens of expressions can
be separated by any number of spaces, tabs or newlines, which requires un-
bounded lookahead. Such grammars are the result of integrating the lexical
syntax and context-free syntax of a language into a single grammar as is pro-
posed in Chapter 3. Parsers for such grammars are called scannerless parsers
because the tokens they read are the characters from the input file. This gram-
mar is disambiguated completely (it has no ambiguous sentences) with priori-
ties, resulting in an LR table that contains some LR-conflicts, but that does not
produce trees with priority conflicts. In combination with a nondeterministic
interpreter, e.g., Tomita’s generalized LR algorithm (Tomita, 1985), of the parse
tables this gives an efficient disambiguation method for languages on the border
of determinism.

Thorup (1994b) describes a transformation on grammars based on a set of
excluded subtrees to disambiguate a grammar. This method could be used to
generate conflict free parse tables as far as possible. Because such a transforma-
tion introduces new grammar symbols, more states and transitions are needed
in the parse table than for the original grammar. Since the method defined
above also introduces some extra states, it would be interesting to compare the

LR tables produced by both methods.

5.7 Multi-set Filter

The multi-set ordering on parse trees induced by a priority declaration solves
ambiguities not solvable by priority conflicts. A certain class of ambiguities
solved by the multi-set order does not need the full power of multi-sets, only
a small part of both trees are actually compared. Based on this observation
an optimization of the Earley schema that partially implements the multi-set
filters can be defined.

Definition 5.7.1 (Multi-sets) A multi-set is a function M : P(G) — N that
maps productions to the number of their occurrences in the set. The union
M @ N of two multi-sets M and N is defined as (M W N)(p) = M(p) + N(p).
The empty multi-set is denoted by @, i.e., #(p) = 0 for any p. We write p € M
for M(p) > 0. A multi-set with a finite number of elements with a finite number
of occurrences can be written as M = {p1,p1,... ,p2,...}, where M(p) is the
number of occurrences of p in the list. A parse tree t is interpreted as a multi-
set of productions by counting the number of times a production acts as the
signature of a subtree of ¢, where @ — A is the signature of [t, — A]. O

The following definition due to Jouannaud and Lescanne (1982) defines an
ordering on multi-sets.

107

5 / OPTIMIZING PARSING SCHEMATA

Definition 5.7.2 (Multi-set Order) Given some priority declaration Pr(G),
the order <"*(9) on multi-sets is defined as
M <FO N —
M#NAVyeM:M(y) > N(y) =3z e N:y>"9 g A M) < N(z)
O

Definition 5.7.3 (Multi-set Filter) Given a priority relation Pr(G), the multi-
set filter F<"" is defined by

Pr(G)

F= (@):{t€@|_,gs€@:s_<1)r(g)t} .

The motivation for this filter is that it prefers parse trees that are constructed
with the smallest possible number of productions of the highest possible priority.

Example 5.7.4 Consider the grammar

syntax
Hnll -> N
N Il+ll N -> N
N -> R
"I'" -> R

R "+" R -> R

that describes the language of ‘naturals’ and ‘reals’ with an overloaded addition
operator. The sentence n+mn can be parsed as [[n = N]+[n — N] = N] and as
[[[n = N] — R]+[[rn = N] = R] — R]. This ambiguity can be solved, choosing
either the first or the second tree, by declaring one of the priority rules

N"+" N ->N>R "+" R ->R
or
R"+" R ->R >N "+" N -> N

Note that with the second priority rule, the production N + N — N is only
used as a parse tree in a context where no R is allowed. Therefore, the first
priority rule is assumed in further examples. |

The multi-set order is too strong for this kind of disambiguation. To solve the
ambiguity there is no need to compare the complete trees, as the multi-set order
does. Comparing the patterns [N + N — N]| = R] and [[N — R]+[N — R] —
R] is sufficient. The goto graph corresponding to the Earley parser for the
example grammar (Figure 5.5) shows that the partial phrase n+ causes a conflict
(in the left-most state at the bottom row) after completing the production [n —
N]. The parser can either shift with + or complete with the chain rule of
N — R. However, only after having seen what follows the + a decision can be
made. In the following adaptation of the Earley parsing schema the cause of
these early decision problems is solved by not predicting and completing chain
production, but instead storing them in items.

108

Multi-set Filter | 5.7

R+eR — R
eR+R— R
+ or —R| R R+ Re— R
o N — R Re+R— R
e N+ N—> N
r on — N

Re+R— R

e N+ N— N
eR+R— R
on - N
or —+ R
o N — R

re— R n N

Ne -+ R
Ne+N— N +

ne— N

n +
N+eoN = N
Ne+N— N eNL+tNsN N+ Ne— N

Ne — R + on oSN N Ne+N— N

Figure 5.5: Goto graph for the grammar of Example 5.7.4

Definition 5.7.5 (Earley modulo Chain Rules) Let V¢ be the set contain-
ing all chain symbols [C' — B], where B and C' are nonterminals in context-free
grammar G and B =C or C =g By —¢ -+- =g B,, =g B, (m > 0). Symbols
[A — A] and A are identified. A production with chain symbols [C — B] in
its left-hand side is identifiable (member of grammar, priority relation) with a
production where the chain symbols are replaced with their heads B. The (I)
and (S) rules are as usual.

af > A€, |af|#1VaB=aeVr, 0<i<j
[aeB — Ai,jleT
[«e BB — A h,i], [C - Bl € Vo
[y = C,1i,1]
[@ BB — A, h,i], [ye = C,i,j], |B] >0

(P)

1

[a[C — Ble 8 — A, h,j] (€1

[« @ B— A h,i],[ye = C,i,j],~[a'e = A" h,j], o' - A" >aB = A (C2)
[@[C — Ble = A, h,j]

O

The negative premise ~[a®e — A, i, j] in combination with the condition 4’ —
o' > A — aBis used in rule (C2) to express that an item [a[C — Ble — A, h, j]
can be derived from [« ¢ B — A, h,i] and [ye — C,1,j] only if no item [a'e —
A’ h, j] can be derived such that A" — o' has higher priority than A — aB.

With the introduction of negative premises we leave the domain of parsing
schemata as defined in Sikkel (1993) and this deserves a more thorough investi-
gation than is possible in the scope of this chapter. However, two points about

109

5 / OPTIMIZING PARSING SCHEMATA

R+eR — R
eR+R— R
+ R R+ Re— R
Re+R— R o N+ N— N
on SN Re+R— R
R r or — R +
PR+R - R, re—R n B N
or R R+[N = Rlo— R [N — R]+ Re— R
eN+N—= N , |V Ble+E> R Re+R —R
en AN e N Ne+N —+N| R
+
N N+ eoN — N
n N + Ne — N
NetN = N @gﬁ:ﬁ+”fjﬁ * N> R+
[N — R] TR+ R LSRN [N — R]e — R
e+R —R on SN Ne+N - N
[N — R]e+R— R
or — R

Figure 5.6: Goto graph for grammar of Example 5.7.4 corresponding to parsing
schema in Definition 5.7.5. The item [[N — R]+ [N — R]e — R] is present if
the negative premise of rule (C2) is absent.

this feature can be observed: (1) As used here the notion has a straightforward
implementation in an LR-like compilation scheme: first construct the complete
set of items and then choose the maximal items from it. (2) The priority rela-
tion > on productions is irreflexive by definition, which entails that rule (C2)
has no instantiation of the form I, I, I3 F I3 that would make the schema
inconsistent.

Example 5.7.6 Figure 5.6 shows the goto graph for the grammar of Exam-
ple 5.7.4 according to the parsing schema in Definition 5.7.5. The shift/reduce
conflict between the items [N o +N — N] and [No — R] is changed into a
reduce/reduce conflict between the items [N +Ne — N] and [[N — R] + [N —
R]e — R]. If the negative premise of rule (C2) is taken into account the item
[[N —- R]+ [N — R]e — R] can not be derived, and is not present in the
goto-graph. The conflict is solved. |

The method does not help for grammars where the ambiguity is not caused
by chain rules, for instance consider the following example due to Kamperman

(1992)

syntax
EE -> E
n_n E -> E
E n_mn E -> E
priorities

110

Conclusions [/ 5.8

EE ->E >
"n-"E ->E>
E"-"E->E

It defines expressions formed by concatenation, prefix minus and infix minus.

The methods developed in this chapter can be combined into a parsing schema
that handles both priority conflicts and the partial implementation of multi-set
filters by adding the subset exclusion conditions to the (P), (C1) and (C2) rules
of the parsing schema in Definition 5.7.5. As a bonus this combined parsing
schema handles priority conflicts modulo chain rules.

5.8 Conclusions

In this chapter two disambiguation methods specified as a filter on sets of parse
trees were considered. These filters were used to optimize parsers for context-
free grammars by adapting their underlying parsing schema.

The first optimization uses priority conflicts to prevent ambiguities. The re-
sulting Earley parsers modulo priority conflicts are guaranteed not to produce
trees with priority conflicts, even for grammars with overlapping operators,
layout in productions or other problems that need unbounded lookahead. In
combination with a GLR interpreter of the parse tables this gives an efficient
disambiguation method for languages with unbounded lookahead. The second
optimization covers a subset of the ambiguities solved by multi-set filters. To-
gether these optimizations can be used in the generation of efficient parsers for
a large class of ambiguous context-free grammars disambiguated by means of
priorities.

Parsing schemata provide a high-level description of parsing algorithms that
is suitable for the derivation of new algorithms. The introduction of negative
items was needed to express the optimization for the multiset filter and needs
more research. This first experiment in implemenation of disambiguation meth-
ods from formal specifications encourages research into a fuller optimization of
multiset filters and application of this approach to other disambiguation meth-
ods.

The deductive parsing approach of Shieber et al. (1995) and its implementa-
tion in Prolog could be used to prototype such optimized schemata. Deductive
parsing consists in computing the closure of a set of axiom items under the
inference rules of a schema, resulting in all items derivable for a sentence. Com-
piling the inference rule of a schema into a parse table for a specific grammar
increases the efficiency of an algorithm, since work is shifted from the parser
into the parser generator. It seems feasible to generalize the compilation of
Earley rules into LR tables to other schemata, thus obtaining a very declarative
method for creating new parser generators.

111

Part |l

Context-Free Syntax Definition

6

A Family of Syntax Definition
Formalisms

In the next chapters we present the design and specification of a family of
syntax definition formalisms. The kernel of this family of formalisms is formed
by context-free grammars. A number of orthogonal extensions to the kernel
is defined. Many of these extensions are defined in terms of the primitives of
the kernel by means of normalization functions. This provides a framework for
constructing new formalisms by adapting and extending previous ones.

Included in the family are the following extensions of context-free grammars:
uniform definition of lexical and context-free syntax, variables, disambiguation
by priorities, follow restrictions and reject productions, a rich set of regular ex-
pressions defined in terms of context-free productions, character classes, aliases,
parameterized modules with hidden imports and renamings. The accumulation
of these extensions is the syntax definition formalism SDF2.

This chapter provides an introduction to SDF2 and gives an overview of the
design and specification of the family of formalisms.

6.1 Introduction

New programming, specification and special purpose languages are being devel-
oped continuously. Syntax definition formalisms play a crucial role in the design
and implementation of new languages. Syntax definition formalisms also play a
role embedded in other languages: regular expressions in edit operations, macro
definitions for macro preprocessors, user definable infix or distfix operators in
programming languages, grammars as signatures in algebraic specification for-
malisms, and documents that contain a description of their own syntax.

The core of many syntax definition formalisms is formed by context-free gram-
mars, which are widely used in computer science since their introduction by
Chomsky (1956). A context-free grammar is a set of string rewrite rules of the
form a — A with a a string A; ... A, of zero or more symbols and A a symbol.
A string (a sequence of symbols) w is a member of the language described by a
grammar G if it can be rewritten to the start symbol S, i.e., if there is a sequence

115

6 / A FAMILY OF SYNTAX DEFINITION FORMALISMS

w=ay > a = ... > a, = 5 such that each step has the form a; — a;y1
with a; = 8162085 and a;41 = f1BPs and G contains a production 8, — B.

Despite, or maybe due to, the simplicity of this basic structure there has
never emerged a standard formalism for syntax definition. The Backus Naur
Form (BNF), originally developed by Backus (1959) and Naur et al. (1960) for
the definition of the syntax of Algol, is a commonly used notation for context-
free grammars, but it does not have the status of a standard and many variants
are in use. Several standard notations for syntax definition have been proposed
(e.g., Wirth, 1977, Williams, 1982). None of these has been convincing, instead
a number of similar or overlapping formalisms exist.

The reason for this divergence is that a practical syntax definition formal-
ism serves not only to define languages, i.e, sets of strings. Syntax definitions
are also interpreted as recognizers that decide whether a string belongs to a
language, as parsers that map strings to parse trees, as mappings from parse
trees to abstract syntax trees and as syntax directed editors. Plain context-free
grammars are not adequate for this purpose. To support the compact definition
of languages, formalisms can provide a variety of features as extensions to the
basic structure: character classes, regular expressions, disambiguation by asso-
ciativity and priority declarations, reuse by modularization, parameterization
of language definitions, interfacing between the formalism and its environment,
e.g., mapping to abstract syntax.

Various extensions of context-free grammars have been developed for attach-
ing semantics to grammars: Attribute grammars (Knuth, 1968) attach attribute
evaluation rules to productions. The computation of the semantics of a parse
tree consists in computing the values of all attributes. This computation is
orthogonal to parsing. Affix grammars (Koster, 1971) and extended affix gram-
mars (Watt, 1977) are similar to attribute grammars, but predicates on affix val-
ues can play a role in disambiguation during parsing. Definite clause grammars
(Pereira and Warren, 1980) are based on the Horn clauses of logic programming.
Parsing is performed by the SLD resolution evaluation mechanism. Semantic
values are represented by means of terms and passed around using unification
and logic variables. Other approaches including algebraic specification use a
separate formalism to define the semantics.

Traditionally, compiler construction is the main application area for syntax
definition formalisms. The most well-known is the pair LEX/YAcC. The for-
malism LEX (Lesk and Schmidt, 1986) is used to define the lexical syntax of a
language using regular expressions. According to the regular expressions a string
is analyzed and divided into tokens. In case more than one regular expression
can be matched, a number of disambiguation rules such as prefer longest match
and prefer regular expressions appearing earlier in the file. The ‘compiler com-
piler’ Yacc (Johnson, 1975) is used for the definition of the context-free syntax
of a language. An LALR(1) parser generator translates grammars to C pro-
grams if the grammar is LALR(1). Some conflicts in the parse table caused by
ambiguous expression grammars can be solved by means of binary and unary
precedences based on the ideas of Aho et al. (1975). Furthermore, the order of
productions in the grammar is used to solve conflicts. Trees for a string can be

116

Introduction / 6.1

constructed by calling C functions from the grammar productions.

Recent formalisms are generally based on the same deterministic parsing tech-
niques, but extend the expressivity and declarativeness of syntax definition by
providing mechanisms for building trees and coupling to other phases of com-
pilation. Some examples are: The Cocktail compiler generator (Grosch, 1990)
provides a BNF-like formalism with an LALR parser generator. The Eli system
(Gray et al., 1992) is a collection of tools for developing all aspects of compilers.
The syntax definition formalism is based on context-free grammars. Attribute
rules are added to define semantics computations. The tree transformation lan-
guage TXL (Cordy and Carmichael, 1993) is a programming language for source
to source transformations by means of transformation rules on parse trees. The
syntax definition formalism of TXL is based on context-free grammars extended
with some regular operators. Lexical syntax is defined by means of predefined
lexical notions and by means of regular expressions over character classes. PC-
cTs (Parr and Quong, 1994) is a formalism based on top-down LL(1) parsing.
The problems of unbounded lookahead are dealt with by means of backtracking
and syntactic predicates that can be used to try out a variant before deciding
which production to predict.

An application domain derived from compiler construction is the area of pro-
gramming environments. A programming environment is a collection of tools for
interactively developing and testing programs in some programming language.
These tools are usually centered around an interactive syntax directed editor. A
syntax editor has knowledge of the language of the programs being edited and
provides support for checking the syntax of programs and for presenting and
manipulating the structure of programs. In order to rapidly process changes to
a program, incremental parsing and incremental compilation are used. Syntax
definition formalisms developed for derivation of programming environments
include the grammar formalism of the Synthesizer Generator (Reps and Teitel-
baum, 1989), PSG (Bahlke and Snelting, 1986), METAL (Kahn et al., 1983) and
SDF (Heering et al., 1989). The ASF+SDF Meta-Environment (Klint, 1993)
is a programming environment for developing and generating programming en-
vironments from algebraic specifications. To speed up the development cycle
for syntax definitions, incremental parser generation is used to only regenerate
those parts of the parser that have been affected by a change.

Syntax definition in algebraic specification takes the form of grammars as
algebraic signatures. The motivation here is to provide flexible notation for
functions and constructors in abstract data type specifications and less the de-
scription of real programming languages. Therefore, the requirements on lexical
syntax are not so strong. The correspondence of context-free grammars and
many-sorted signatures was first described by Rus (see Hatcher and Rus, 1976).
Goguen et al. (1977) showed that this correspondence could be used to define
the semantics of programming languages. The correspondence was exploited in
a number of algebraic specification formalisms to provide flexible, user-definable
notation for functions and constructors. The first formalism to incorporate this
was OBJ (Futatsugi et al., 1985). Others are Cigale (Voisin, 1986), ASF+SDF
(Heering et al., 1989, Bergstra et al., 1989a), the Meta Notation, used in action

117

6 / A FAMILY OF SYNTAX DEFINITION FORMALISMS

semantics (Mosses, 1992), and Elan (Vittek, 1994).

The combination of features that a formalism provides is, necessarily, rather
arbitrary and strongly influenced by the expected application of definitions and
the environment in which generated tools have to operate. Although it is not
desirable to include all conceivable features in a formalism—some features can
not be combined with others and too many features results in an unmanage-
able formalism—the similarities between different formalisms can be exploited
by reusing parts of the design and implementation of old formalisms. However,
formalisms are conventionally designed in a monolithic way, containing an in-
tertwined mix of features, resulting in a formalism with a lack of orthogonality
and uniformity that is difficult to implement, extend and use for other applica-
tions than the originally intended ones. Syntax definition formalisms form no
exception to this rule.

Here we set out to design syntax definition formalisms in a modular way,
as a family of formalisms each extending a small kernel with some feature for
syntax definition. This approach should result in more orthogonal and uni-
form formalisms and should make it easier to (a) construct formalisms that use
some subset of a set of known features, (b) adapt formalisms for use in other
application areas, (c) implement tools for such formalisms and (d) design new
formalisms that combine new features with existing ones.

As a first step to accomplish this goal we design a concrete formalism with
a set of features that is useful in many application areas, but in particular in
the application of grammars as signatures for algebraic specifications of pro-
gramming languages. The result is the syntax definition formalism SDF2 that
is a generalization of SDF. It incorporates several concepts and techniques in-
troduced by Heering et al. (1989) in a more orthogonal and uniform way and
adds several new features.

We use the algebraic specification formalism ASF+SDF to formally specify
the family of syntax definition formalisms. For an introduction to ASF+SDF
see Van Deursen et al. (1996).

In this chapter we outline the main features of SDF2 and examine the struc-
ture and design principles of the specification.

6.2 An Overview of SDF2

SDF2 is a syntax definition formalism based on context-free grammars, extended
with character classes, sorts, literals, priorities, regular expressions, renamings,
aliases and modules and combines the definition of lexical and context-free syn-
tax into one formalism. The syntax definition in Figure 6.1 on page 121, taken
from Visser (1997c¢), presents (the syntax of) a small untyped, first-order func-
tional programming language, the data type environments and the evaluation
function that interprets such functional programs using an instantiation of the
environments data type. A program in this language might contain the follow-
ing definition of a function map that applies a function F to all elements of a
list L:

118

An Overview of SDF2] 6.2

function map(F, L) is
if(is-nil(L), nil(),
cons(call(F, head(L)), map(F, tail(L))))

We sketch the main features of SDF2 and use the syntax definition in Figure 6.1
as running example.

6.2.1 Context-free Productions

The basis of the formalism is formed by context-free productions. These are
rules of the form a — A, where a is a list of symbols A4; ... A, (n >0) and A a
symbol. A production declares that a string of category A can be constructed
by concatenating strings of the categories A;. For instance, the production

Fun "(" Terms ")" -> Term

defines that a term can be constructed by means of a function symbol followed
by a list of terms separated by commas between parentheses. Conventionally,
context-free productions are written as A — a or as A ::= a. In SDF2 pro-
ductions are written the other way around to make the similarity to function
declarations more apparent. This is useful because SDF2 definitions are used
as signatures in algebraic specifications such that productions correspond to al-
gebraic operators. For example, in a conventional signature one would declare
the evaluation function that computes the value of a term with respect to a
program and some environment by means of the function declaration

eval : Program # Term # Env -> Term
The production
eval "[[" Program "]]" "(" Term ")" "_" Env -> Term

not only defines a function with the same input types, but also the syntax for
its applications, i.e., the program argument should be enclosed in double square
brackets and the term argument should be enclosed in parentheses.

6.2.2 Character Clasess

Syntax definitions describe languages consisting of strings of characters, where
the set of all characters can be encoded by a finite set of consecutive natural
numbers. Character Classes are compact descriptions of sets of characters and
are typically used in the definition of lexical categories such as layout, identifiers
and numbers. The example contains the following character classes: the char-
acters space, tab and newline [\ \t\nl, all characters except newline ~[\n],
all uppercase letters [A-Z], all lowercase letters [a-z], all letters and digits and
the hyphen character [a-zA-Z0-9\-].

119

6 / A FAMILY OF SYNTAX DEFINITION FORMALISMS

6.2.3 Literals

Literals are strings of characters between double quotes that stand for ex-
actly that string of characters. These are used to represent keywords—such
as "function" and "program"—and operators and other literal symbols—such
as "[", "[->" "[>" and "*". The definition of the function eval does not
use quotes for the function name. This is an exception to the general rule:
identifiers starting with a lowercase letter can also be used as literals.

6.2.4 Sorts

The basic nonterminal symbols used in productions are sorts, which are written
as identifiers starting with a capital letter. Sorts should be declared in a sorts
section. The example defines the sorts Var, Fun, Term, etc.

6.2.5 Regular Expressions

More complex nonterminal symbols can be formed by means of regular expres-
sions that provide abbreviations for tupling (), iteration _x and _+, optional
constructs 7, and alternatives _|.. For example, [a-zA-Z0-9\-]* denotes a
list of zero or more characters from the set of letters, digits and hyphens,
{Term ","}* declares a list of terms separated by commas and the expres-
sion (Key "|->" Value)* denotes lists of zero or more tuples consisting of a

key, the symbol " |->" and a value.

6.2.6 Aliases

Since such regular expressions can become quite tedious to type, it can be useful
to introduce a shorter name for such symbols. This can be done by introducing
a symbol alias. For example the declaration

aliases
{Term ","}* -> Terms

introduces Terms as an alias for the regular expression {Term ","}*.

6.2.7 Priorities

Some productions that have a sensible type are syntactically ambiguous. For
instance, the two productions for destructive and consistent environment update

Env "|>" Env -> Env
Env "*x" Env -> Env

are ambiguous with respect to themselves and to each other, e.g., the environ-
ment expression Env |> Env * Env can be constructed as (Env |> Env) * Env
or as Env |> (Env * Env). Associativity and priority declarations are a way
to resolve most ambiguities of this type. In the example, the ambiguity in the
expressions above is resolved by means of the priority declaration

120

An Overview of SDF2] 6.2

module Functional-Programs
exports

aliases
{Term ","}* -> Terms
{var ","}* -> Vars
lexical syntax

[A-Z] [a-zA-Z0-9\-]* -> Var

[a-z] [a-zA-Z0-9\-]* -> Fun
context-free syntax

Var -> Term

Fun "(" Terms ")" -> Term

"program" FunDefx*

module Environments
exports
sorts Key Value Env
context-free syntax
u[n (Key n|_>n Value)* n]n ->

Env ll(" Key |l)|l _>
Env "|[>" Env ->
Env "x" Env ->
ll(ll Env Il)ll _>

context-free priorities
Env "|>" Env -> Env > Env "x"

module Function-Eval
imports Functional-Programs

exports
context-free syntax

sorts Var Fun Term FunDef Program

[\ \t\nl] -> LAYOUT
nyyn =~ [\nl * -> LAYOUT

"function" Fun "(" Vars ")" "is" Term -> FunDef

Environments [Key => Var Value => Term]

eval "[[" Program "]]" "(" Terms ")" "_" Env -> Terms

-> Program

Env

Value

Env {left}
Env {left}
Env {bracket}

Env -> Env

Figure 6.1: SDF2 definition of the syntaz of a small functional programming

language and its main evaluation function.

Env "|>" Env -> Env > Env "x" Env

-> Env

that declares " |>" to have higher priority than "*", which entails the (Env |>
Env) * Env interpretation. The left attribute of a production declares that

the operator is left-associative.

121

6 / A FAMILY OF SYNTAX DEFINITION FORMALISMS

6.2.8 Lexical and Context-free Syntax

The phrases making up a string over a language are usually divided into lexical
tokens—the words of a sentence—and context-free phrases. The distinction
between tokens and phrases is that the tokens making up a phrase can be
separated by layout (whitespace and comments) while the characters comprising
a token cannot. In definitions this distinction is indicated by means of lezical
and context-free productions. For example, the lexical definition

[a-z] [a-zA-Z0-9\-]* -> Fun

indicates that function symbols consist of a number of adjacent characters start-
ing with a lowercase letter, followed by zero or more letters, digits or hyphens.
While the tokens in the term succ (zero()) can be separated by spaces, the
characters in the token succ cannot. The layout that can occur between tokens
should also be specified. The symbol LAYOUT is reserved for this purpose. In
the example, layout is declared as

[\ \t\n] -> LAYOUT
nyyn ~M\n]* -> LAYOUT

meaning that spaces, tabs and newlines (also called whitespace) are layout and
that any suffix of a line starting with two percent signs is comment.

6.2.9 Modules

Grammars can be divided in a number of modules such that parts of a grammar
can be reused in various language definitions. Modules consist of a list of exports
and hiddens sections. An import of a module M into a module N denotes the
inclusion of the exported grammar of M into N. Thus the import of module
Terms in module Functions means that the syntax of terms is included in the
syntax of programs. To prevent name clashes or to instantiate generic modules,
renamings of symbols and productions can be applied to imported modules.
For example, the module Function-Eval specifying the evaluation function,
imports the generic module defining environments by means of

imports Environments [Key => Var Value => Term]

renaming the sort Key to Var and the sort Value to Term, thus instantiating it
for use with the terms of the functional programming language.

Modules can also be parameterized with a list of parameter symbols that can
be instantiated on import. For instance, module Environments might also have
been declared as

module Environments[Key Value]
declaring Key and Value as parameters. The import

imports Environments[Var Term]

122

Design / 6.3

would then perform the instantiation.

A complete syntax definition consists of a list of modules and a designated
top module. The language defined by such a definition is the one defined by the
grammar associated to the top module. Of course, in a programming environ-
ment for SDF2 this list does not have to reside in a single file. More likely, each
module will be defined in one file with the module name as the file name.

6.3 Design

The next chapters give a formal algebraic specification of the syntax and se-
mantics of SDF2. The semantics of a syntax definition is characterized by the
well-formed trees it generates. A tree is associated with a sentence—its yield.
The language associated to a definition is the set of sentences that are yields of
trees generated by the definition. A parser is a function that given a sentence,
produces the tree (or set of trees) that have that sentence as yield. We do not
describe parsing as part of the specification of SDF2, but specify the output
required of a parser and allow any implementation that does so. Parsing for
SDF2 grammars is described in Chapter 3.

6.3.1 Modularization

The formalism SDF2 is not designed monolithically, but modularized, as a family
of formalisms. The kernel of this family is formed by context-free grammars. All
features are defined as independent extensions of the kernel. The combination
of the features forms SDF2. This setup makes it easier to construct a variant
of the formalism by adding, removing or modifying features. Figure 6.2 depicts
the structure of the family by means of (an abstraction of) the import graph of
the specification.

Furthermore, the specification of SDF2 covers several aspects. The syntaz of
the formalism consists of the definition of the form of all its constructs. Projec-
tion functions on these constructs are defined in order to extract information
from them. Normalization functions transform a syntax definition in order to
simplify it. The specification of parse trees consists of several parts. A generic
format for the representation of structured data called ATerms (Van den Brand
et al., 1997a) is used to represent parse trees. In order to use this format for
a specific purpose, constructor names have to be defined. To represent gram-
mar information in parse trees, several constructs of the formalism have to be
encoded as ATerms. Given this framework, the well-formedness of a tree with
respect to a grammar can be defined. Furthermore, the yield of trees and the
equality of trees are defined.

For each feature a number of modules are defined that each define an aspect
of the formalism for that feature. The result is the matrix of modules listed in
Table 6.1. The rows of the matrix contain the modules for one feature. The
columns of the matrix contain all modules for one aspect. Each module in the
matrix has a name consisting of the name of the feature and the name of the
aspect separated by -Sdf-. For instance module Kernel-Sdf-Syntax specifies the

123

6 / A FAMILY OF SYNTAX DEFINITION FORMALISMS

Character
Classes

= Sorts R

=1 Literals —]

= Priority |—

Symbols

= Basic -

Kernel |— = SDF2

—= Regular —

Grammar

= Modular —

= Alias —

= Labels |—]

L = Restrictions—

Figure 6.2: Import graph for the definition of SDF2.

syntax of the constructs in the kernel. So for each feature X we have mod-
ules X-Sdf-Syntax, X-Sdf-Projection, X-Sdf-Normalization, X-Sdf-Renamings,
X-Sdf-Constructors, X-Sdf-ATerms, X-Sdf-Trees and X-Sdf-Equality. With the
exception that if some feature does not change some aspect, the module is omit-
ted.

6.3.2 Normalization

An important role in the design of SDF2 is played by the normalization function.
In general, a normalization function defines a transformation on an expression
that yields an expression in the same language, which uses less features. The

124

Design / 6.3

g 5 £ F e
5 g I g & g ” =
= 5 & A g 3
w & = s O - & o
Symbols 7.1 7.5.3
Grammar 7.2 7.3.3 A21 A22
Kernel 731 732 733 913 752 754 755 758
Sorts 741 741 74.1 A3 A21 A22
CC 7.4.2 7.4.2 A3 A21 A22 756
Literals 7.4.3 7.4.3 A3 A21 A22
Priority 81.1 &.1.2 813 A3 A22 814
Regular 8.2.1 822 A3 A21 A22
Basic 8.3.1 832 A3 A21 A22 8.3.3
Restrictions | 8.4.1 84.2 8.4.3 A3
Renaming 9.1.1 9.1.2 9.1.3 9.14
Alias 9.2.1 9.22 923 923
Modular 93.1 932 933 934
Label
Sdf2 10.1.1 A4 1012 A4 A4 A4 A4 A4

Table 6.1: Modules of the family of syntax definition formalisms. The last row
contains the collecting modules for SDF2. There are no collection modules for
the rows. The numbers refer to the sections presenting the modules.

normalized expression has the same meaning as the original one. Thus, a nor-
malization is a mapping from the language onto (a subset of) the same language.
Ideally, a normalization function should be idempotent, i.e., yield the same re-
sult when applied twice. An implementation for such a language only has to
consider the simplified expressions, while users have a more expressive language
at their disposal.

The requirement that normalization produces an expression in the language
itself entails that all constructs used for encodings should also be present in the
original language, i.e., the language should be closed under normalization. For
example, one of the normalizations in this definition renames a symbol A into
(A-LEX) if it occurs in the lexical syntax. Therefore, the constructor (_~LEX)
introduced for the purpose of normalization also becomes a construct of the
language before normalization.

A consideration in the definition of a normalization is whether two different
expressions that are equivalent with respect to the semantics have the same
normal form. This can be useful when expressions have to be compared. This is
for example the case in the normalization of character classes. In Visser (1997b)
a normalization of character classes to a unique normal forms is defined such that
two character classes that represent the same set of characters are normalized

125

6 / A FAMILY OF SYNTAX DEFINITION FORMALISMS

to the same character class expression. In general, however, the normalizations
in this chapter will not have this property. For instance, all permutations of
a list of productions are equivalent. Although such lists could be ordered by
imposing an ordering on productions, this is not done here, since comparisons
of lists of productions are not needed. In such cases definitions can not use
syntactic equality to determine equivalence.

Using this approach SDF2 is an expressive formalism that depends on a small
set of features, i.e., we have:

SDF2 context-free grammars
priorities
character-classes
reject productions

follow restrictions

+ 4+

Features that are provided in the formalism, but that are eliminated, i.e., ex-
pressed using the features above are: literals, regular expressions, lexical and
context-free syntax, variables, modules, renamings, and aliases. Furthermore,
character classes, priority declarations and grammar composition are simplified
considerably.

The normalization of SDF2 is defined as a pipeline of normalizations, as is
illustrated in Figure 6.3. This modularization of the definition of normalization
makes it easy to define an extension and express it in existing features using a
new normalization function. The overall normalization is extended by adding
the new function to the normalization pipeline.

6.4 Organization

The next chapters discuss the specification of the family of syntax definition for-
malisms that is the basis of SDF2. Chapter 7 defines context-free grammars, the
basic symbols sorts, character classes and literals and defines the well-formed
parse trees characterized by a grammar. Chapter 8 defines disambiguation by
means of priorities, regular expressions, lexical and context-free syntax and re-
strictions for lexical disambiguation. Chapter 9 introduces renamings, aliases
and modules. Chapter 10 these extensions are combined in the formalism SDF2.
The formalism is compared to SDF and a discussion of possible improvements
and extensions is given. Appendix A gives some auxiliary modules for the spec-

ification of SDF2.

126

Organization | 6.4

Modular: extract complete
grammar for selected module

Basic: merge lexical and
context-free syntax

[

=

VAVAVAVAVAY

Alias: expand aliases

Regular: define regular
expressions by means of
extra productions

priority declarations

Literals: define literals in
terms of character classes

]

Kernel: merge productions

ANANANANANA

2]

[106)

SDF2: define topsorts

o=

CC: order character classes
Grammars: order grammar

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| e ey .
, Priorities: normalize
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I .
I sections

.
Y

Figure 6.3: The normalization of SDF2 definitions consists of a series of inde-
pendent transformations. The last step is not performed by a transformation
function, but by rewrite rules acting on the constructors themselves.

127

7

Context-Free Grammars

In this chapter a context-free grammar formalism is defined. First an abstract
framework of symbols and grammars is introduced. In this framework a gram-
mar is interpreted by means of several predicates and functions that characterize
the trees and strings of symbols generated by a grammar. A well-formedness
predicate on parse trees characterizes the trees over a grammar. From the parse
trees over a grammar the strings of the language defined by the grammar are
derived. Parse trees are represented in the annotated term format ATerms. An
instance of this framework is set up with as kernel context-free productions.
We introduce three kinds of basic symbols to be used in productions: sorts,
character classes and literals.

7.1 Symbols

Syntax definitions define languages, i.e., sets of strings of symbols. A string of
symbols is a list of zero or more symbols. The sort Symbol is declared without
actually specifying any constructors for it. This entails that the sort is empty
at this point, but can be extended later on with constructors. We do not make
a distinction between terminal and nonterminal symbols. Whether a symbol is
a terminal or nonterminal symbol is determined by the interpretation and is not
fixed syntactically. A symbol that plays the role of a terminal in one view can be
a nonterminal in another view. An example is a literal that can be considered
as a terminal token or as a nonterminal that is defined in terms of characters.

module Symbols
imports Layout
exports
sorts Symbol Symbols
context-free syntax
“(” Symbol “)” — Symbol {bracket}
Symbolx — Symbols
variables
[ABC][0-9']* — Symbol
[aB7][0-9']* — Symbolx
[aBy]“4+"[0-9']* — Symbol+

129

7 / CONTEXT-FREE GRAMMARS

7.1.1 Projection

The function + concatenates strings and |-| gives the length of a string. The
predicate € decides list membership.

module Symbols-Projection
imports Symbols”! Booleans Integers
exports
context-free syntax
Symbols “+” Symbols — Symbols {assoc}

“” Symbols “|” — Int
Symbol “€” Symbols — Bool
equations

Concatenation, length and membership of symbol lists.

1) atB=af
2 =0

3 |Aal=|al+1

[4] Ae=1

[5] AcAa=T

[6] AeBa=A€a when A#B

The concatenation function on sorts such as Symbols is needed because the
concatenation of the built-in associative lists (e.g., Symbolx) of ASF+SDF is
not inherited through the injection Symbol* — Symbol. The injection is needed
because list sorts cannot be output sorts of functions in ASF+SDF.

7.1.2 Sets

From lists of symbols we construct sets of symbols by means of the operation
{_}. Although this constructor does not remove double elements from the list, it
signifies that the number of occurrences in the list does not matter. Operations
on sets are union (U), difference (/) and membership (€). The union v; U vy
adds only those elements of v; to vs that do not already occur in vs. If a set
is constructed by means of union from singleton sets, the resulting set does not
contain double elements. Although this is not strictly necessary it is useful when
later on something has to be done once for each symbol in some set.

module Symbol-Sets
imports Symbols-Projection”!! Booleans
exports
sorts SymbolSet
context-free syntax
“{” Symbols “}” — SymbolSet
SymbolSet “U” SymbolSet — SymbolSet {right}
SymbolSet “/” SymbolSet — SymbolSet {left}
“(” SymbolSet “)” — SymbolSet {bracket}
Symbol “€” SymbolSet — Bool

130

Grammars | 7.2

priorities
SymbolSet “/”SymbolSet — SymbolSet >
SymbolSet “U”SymbolSet — SymbolSet

variables
“v”[0-9']%* — SymbolSet

equations
Membership
[1] A€ {a} =A€a
Union
(2] {}Uv=vo
(3] v U {} =v
(4] {at B luv={aT}U{fT}Uv
5] {A}Uv=v when Acv=T
6] {A} U{a} ={Aa} otherwise
Difference
7 (H/v=1)
8 o/ {}=v
[9] {at ¥} /v={at}/vu{B*} /v
10] {A}/v={} when Acv=T
[11] {A} /v ={A} otherwise

7.2 Grammars

A syntax definition consists of a grammar. The only generic operations on
grammars that we define at this point are an associative composition operation
that is used to combine grammars and the constant §) representing the empty
grammar.

module Grammar-Syntax
imports Layout
exports
sorts Grammar
context-free syntax
“r — Grammar
Grammar Grammar — Grammar {assoc}
“(” Grammar “)” — Grammar {bracket}
variables
“G”[0-9']* - Grammar

131

7 / CONTEXT-FREE GRAMMARS

7.2.1 Interpretation

A grammar defines a set of strings of symbols, a language. We specify the
language derived by a grammar indirectly, via the trees it generates. Parse trees
will be represented by means of ATerms, a term format for the representation
and exchange of structured data (Van den Brand et al., 1997a). The format will
be introduced in §7.5.1. In fact we will not just define parse trees, but parse
forests. A parse forest is a compact encoding of a collection of parse trees in
which contexts are shared. A parse forest is used to represent all parse trees for
an ambiguous sentence.

The interpretation of a grammar is now given by two predicates and a func-
tion. The predicate G F T characterizes the terms T that are well-formed parse
forests over grammar G. The function yield[G](T) maps a parse tree T to a
string of symbols. The predicate T' € T' determines membership of a tree T in
a forest T'. The set of trees generated by a grammar is denoted by 7[G].

Given these functions we can derive the notion of the language generated by
a grammar and the notion of a parser for a grammar. The language generated
by a grammar corresponds to the set of yields of the parse trees it generates. In
other words, a string of symbols a is an element of the language defined by a
grammar G, if there exists a well-formed tree T over the grammar with « as its
yield. A parser II[G](a) is a function that maps a string a in L[G] to a parse
forest T' containing all well-formed trees such that their yield is . The module
below summarizes these definitions. The equations define the set of parse trees
T[G], the language L[G] and the parser II[G](.) in terms of well-formedness,

yield and parse forest membership.

module Grammar-Interpretation
imports Grammar-Syntax”-? Symbols”! Booleans ATerms”>! Symbols-Sets

ATerm-Sets
exports
context-free syntax
Grammar “F” ATerm — Bool
ATerm “€” ATerm — Bool
yield “[” Grammar “]” “(” ATerm “)” — Symbols
w ul[” Grammar u]]” — ATermList
“prn :cl[;: Grammar u]]n — SymbOlSSet
“II” “[” Grammar “]” “(” Symbols “)” — ATerm
equations
G-T=T
(1] TeTIGl = T
TeT[Gg] =T
- G T=T, yield[G](T) = a
acL[G] =T
1] TEMG](a) = T

132

Context-Free Grammars (Kernel) / 7.3

Note that these equations are non-constructive, i.e., do not provide decision
procedures, but are merely a specification of the required behaviour. (Module
Symbols-Sets defines sets of strings of symbols in a similar way as sets of symbols
are defined in module Symbol-sets.)

7.2.2 Overview

In the rest of this chapter we will provide the specifications of well-formedness,
yield and forest membership for a context-free grammar formalism. In §7.3
we define the syntax and normalization of context-free productions. In §7.4
we define basic symbols to be used in grammars: sorts, character classes and
literals. In §7.5 we define the well-formed parse trees generated by a context-
free grammar. In the next chapters this formalism is extended with a number
of features.

An implementation of a parser is not specified, but can be chosen such as
to comply with this specification. One possible implementation is discussed in

Chapter 3.

7.3 Context-Free Grammars (Kernel)

7.3.1 Syntax

The kernel of SDF2 is formed by context-free grammars. A context-free pro-
duction is a structure a — A, where « is a list of symbols and A a symbol. A
context-free grammar is formed by a list of productions preceded by the keyword
syntax.

Conventionally, since their introduction by Chomsky (1956), context-free pro-
ductions are written as A — «a to emphasize the generative view of grammars.
A grammar generates a string from a symbol, by repeatedly replacing some
symbol in a string by the symbols on the right-hand side of a production. There
exist many variants of this ‘standard’ notation, e.g., A ::= a in BNF (Backus,
1959) and A : a4]...|a,; in YACC (Johnson, 1975).

The unconventional & — A notation for productions introduced by Heering
et al. (1989) emphasizes the functional view of productions when used in the
context of algebraic specification. A production coincides with the declaration of
the name and type of a function. This notation is a unification of the definition
of context-free productions with the declaration of mixfix functions in algebraic
specification formalisms. For example, the declaration of the infix addition
operator on natural numbers that is declared as Nat ::= Nat "+" Nat in BNF,
is declared as op _ + _ : nat nat -> nat . in OBJ (Futatsugi et al., 1985)
and as @ + @ : (nat nat) nat in Elan (Vittek, 1994). In SDF this becomes
Nat "+" Nat -> Nat.

133

7 / CONTEXT-FREE GRAMMARS

All these notations are equivalent in expressive power and could be used instead
of the current one. We could effortlessly define a version of SDF that uses the
A 1= a notation of BNF and define its meaning by translation to the notation
used here. Note, however, that this does not mean that other aspects of these
formalisms have the same expressive power nor that the parsing techniques
coupled to these formalisms all have the same power.

Optionally, productions can have a list of attributes. An attribute is an anno-
tation of a production that gives some extra syntactic or semantic information
about the production. An example of an attribute that will be introduced in
88.1 is 1left that indicates left associativity of the production. Productions can
have any number of attributes. The kernel does not provide any attributes, but
to be able to introduce attributes later on without having to introduce an extra
constructor for productions, the attribution of a production is defined here.

module Kernel-Sdf-Syntax
imports Symbols”! Grammar-Syntax”-2
exports
sorts Attribute Attributes Production Productions
context-free syntax
“{” {Attribute “) }x “}” — Attributes
— Attributes
Symbols “—” Symbol Attributes — Production

Productionx — Productions
“syntax” Productions — Grammar
variables

“attr’[0-9']x — Attribute

“attr” “”[0-9'1x — {Attribute “,”}x
“attr” cc+7a[0_g’]* — {Attribute “,”}"‘
“$”[0—9']* — Attributes
[p][0-9")% — Production
[p]“+”[0-9"]% — Productionsx

[p] =c+”[0_g']* — Production+

7.3.2 Projection

We define concatenation functions for lists of productions and lists of attributes.
The concatenation function for attributes removes duplicates. A production
with an empty list of attributes is equal to a production without attributes.
The projection function ‘P’ gives the productions of a grammar, the function
‘P’ gives the non-production parts of a grammar (to be defined later), and the
function ‘P 4’ gives all productions defining a symbol 4. The function ‘symbols’
gives the set of all symbols in a grammar. The function ‘reachable’ gives all
productions reachable from some set of symbols, i.e., used in the definition of
those symbols.

134

Context-Free Grammars (Kernel) / 7.3

module Kernel-Sdf-Projection
imports Kernel-Sdf-Syntax”-3! Symbol-Sets”-1+2

exports
context-free syntax

Productions “H” Productions — Productions {right}
Attributes “H” Attributes — Attributes {right}
Production “€” Productions — Bool
Productions “C” Productions — Bool
Production “2” Production — Bool
“P” (Grammar) — Productions
“P” “(” Grammar “)” — Grammar
“P” “” Symbol “(” Productions)” — Productions
symbols(Productions) — SymbolSet
symbols(Grammar) — SymbolSet
reachable(SymbolSet, SymbolSet, Productions) — Productions
reachable(SymbolSet, Grammar) — Grammar

equations

Concatenation of lists of productions, membership and subset of a list of pro-
ductions.

(1] pi +H p3 = pi P}

2] peEPIPPy=T

[3] p€p*=_1 otherwise
(4] Cp*=T

[5] ppi Cps=p€Eps Ap; Cp;

Concatenation of attribute lists. Attributes ocurring in both lists are added
only once.

[6] {attr]", attryt} + {attr*} = {attr} + {attrs"} + {attr*}
[7] {attr} H {attr}, attr, attry} = {attr}, attr, attrs}

8] {attr} H {attr*} = {attr, attr*} otherwise

[9] $H =8

[10] H$=$

[

11] {=

The last equation states that an empty list of attributes {} is equal to no
attributes.
Two productions are similar if they are the same up to their attributes

[12] a3 A Z2a—-A%=T
[13] p1 = p, =1 otherwise

135

7 / CONTEXT-FREE GRAMMARS

Function ‘P’ gives all productions of a grammar and function ‘P’ gives all
non-syntax parts of a grammar. The function P 4 gives all productions defining

the symbol A.

[14] P(syntax p*) =

[15] P(G1 G2) = (‘:71) + P(G2)

[16] P(G) = otherwise

[17] P(syntax p*) = 9

18] P(G1 G2) = P(G1) P(G2)

[19] P(G) =G otherwise

[20] P4() =

[21] PA(a—>A$P*)= — AS +H Py(p®)
(22] Ps(pp*) =P4(p*) otherwise

The function ‘symbols’ gives the set of symbols of a list of productions or a
grammar.

[23] symbols() = {}

[24] symbols(a — A $ p*) = {a} U {A} U symbols(p*)
[25] symbols(syntax p*) = symbols(p*)

[26] symbols(G; G2) = ymbols(gl) U symbols(G2)
[27] symbols(G) = {} otherwise

The function ‘reachable’ gives the subgrammar with those productions reachable
from some set of symbols v. It is defined by applying the auxiliary ‘reachable’
function to the productions of the grammar. Observe how the resulting grammar
is a composition of the reachable productions and the non-production parts of
a grammar. The auxiliary function selects for each symbol in the original set
the productions for that symbol from the original grammar. This is applied
recursively to the symbols used in the left-hand sides of those productions.
The first set argument of the auxiliary function represents the symbols already
handled. The second set contains the symbols for which the productions still
have to be looked up.

[28] reachable(v, G) = syntax reachable({}, v, P(G)) P(G)
[29] reachable(v, {}, p*) =

A€ v =1, Py(p}) = p3, symbols(ps) / vi =v2

30

130] reachable(v1, {A a}, pf) = p3 H reachable(vy U {A}, va U {a}, p})

[31] reachable(vi, {A a}, p*) = reachable(vy, {a}, p*)
otherwise

136

Context-Free Grammars (Kernel) / 7.3

7.3.3 Normalization

Grammar Normalization Composition of grammars is commutative and the
empty grammar is a unit for grammar composition. Since commutativity can-
not be expressed by means of a terminating rewrite system, the following module
normalizes grammar compositions as a right associative list, where the gram-
mars are ordered or merged as specified by the operation &. If G;OGs yields a
pair (G3,G,4) this means that the composition G; G, should be replaced by G3G,.
The definition of ¢ can either merge the two grammars into one, yielding the
pair {Gs,), or exchange the grammars yielding (G»,G;). The termination of
this normalization depends on the property of < that a swap cannot be undone.
The definition of < should be extended for each new grammar constructor. For
example, the merging of the productions of two adjacent syntax sections is ex-
pressed in the next module. The ordering could also be defined directly on
the grammar composition operator, but that would entail that two equations
would have to be written for each pair of constructors that have to be merged
or swapped, corresponding to the last two equations below.

module Grammar-Normalization
imports Grammar-Syntax -2
exports
sorts Grammar-Grammar
context-free syntax

Grammar “0” Grammar — Grammar-Grammar
“<” Grammar “,” Grammar “>” — Grammar-Grammar
equations
The empty grammar) is a unit for composition and composition is associative.
1] PG=g
2] Gh=g
(3] G1 (G2 G3) = G1 G2 G3
Subgrammars can be swapped as specified by the function <.
[4] G1 Gy = gll g2/ when G ¢ Gy = (gll, gg’)
[5] G1G2G3=0G1 gzl gé when G, & G3 = (gzl, gé)

Contezt-free Grammar Normalization The normalization function k[_] for the
kernel, merges productions with the same arguments and result symbols. If
such productions have different attributes, these are joined. This normalization
entails that two occurrences of the same production are identified and do there-
fore not cause an ambiguity. Consequently, other normalization functions can
generate a production more than once, without changing the meaning of the
grammar. This strategy will be relevant later on when we introduce modular-
ization of grammars. The identification of productions means that a production
that is declared in two or more different modules is identified when these mod-
ules are imported in the same module.

137

7 / CONTEXT-FREE GRAMMARS

module Kernel-Sdf-Normalization
imports Kernel-Sdf-Projection”3? Grammar-Normalization”
exports
context-free syntax
“k” “[” Grammar “]” — Grammar
merge(Productions) — Productions
equations
An empty list of productions is equivalent to an empty grammar and multiple
syntax sections are merged into one.

3.3

[1] syntax =)
[2] syntax pf < syntax pj = (syntax p} p3, 0)

The normalization function ‘k’ merges productions with the same arguments
and result, using the auxiliary function ‘merge’.

[3] k[G] = syntax merge(P(G)) P(G)

p1=a—>.A$1, p2=OL—>.A$2, $1 H $2 = 83, p3=a—)A$3
merge(p} p; p5 P, p3) = merge(p] p; p5 p3)

[4]

*

[5] merge(p*) = p
otherwise

7.4 Basic Symbols

The kernel formalism presented in the previous section is a complete definition
of context-free grammars, except for the notation of symbols. In this section we
present three extensions of the kernel that provide notation for basic symbols
needed in syntax definition. Sorts represent the non-terminals of grammars, the
categories or domains that the grammar introduces. Character classes are used
to represent the terminals of grammars, the characters from which strings are
built. Literals are convenient abbreviations for fixed strings of characters. With
these extensions we will have a complete notation for context-free grammars.
The extensions in later sections will provide features to make this formalism
more expressive.

7.4.1 Sorts

Syntar Sorts are the symbols that represent the basic domains or categories
of a syntax definition. A sort identifier is a word starting with an uppercase
letter followed by zero or more letters or digits. Hyphens can be used between
the first and last character. Sorts used in the productions of a grammar should
be declared in a separate sorts section that consists of the keyword ‘sort’ and a
list of symbols.

138

Basic Symbols [7.4

module Sorts-Sdf-Syntax
imports Kernel-Sdf-Syntax”-3-1
exports
sorts Sort
lexical syntax
[A-Z] — Sort
[A-Z][A-Za-z0-9\—]*[A-Za-20-9] — Sort
context-free syntax

Sort — Symbol
“sorts” Symbols - Grammar
variables

“S7[0-9']% — Sort

Normalization Ordering of sorts and syntax sections (sorts are placed before
syntax sections) and merging of sorts sections.

module Sorts-Sdf-Normalization

imports Sorts-Sdf-Syntax”-4! Kernel-Sdf-Normalization”-3-3

equations

[1] sorts = ()

[2] sorts a < sorts 8 = (sorts a 3, 0)

3] syntax p* < sorts a = (sorts a, syntax p*)

Projection The projection function ‘S’ gives the list of sorts of a grammar.

module Sorts-Sdf-Projection
imports Kernel-Sdf-Projection”-32 Sorts-Sdf-Syntax”-4-!
exports
context-free syntax
“S” (Grammar) — Symbols
equations
The declared sorts of a grammar.

(1] S(sorts a) = «
2] S(G1 G2) = S(G1) H S(G2)
(3] S(G) = otherwise

7.4.2 Character Classes

A character class is an expression such as, for example, [a-z\’] that denotes a
set of characters, in this case the set of all lower case letters and a prime. For
example, the following definition defines identifiers as lists of characters starting
with a lowercase letter followed by zero or more lowercase letters or digits.

139

7 / CONTEXT-FREE GRAMMARS

sorts Id

syntax
[a-z] -> Id
Id [a-z0-9] -> Id

The meaning of character classes could be defined in terms of productions and
characters, effectively eliminating them from the formalism. For instance, the
character class [a-z] is completely defined by 26 productions of the form:

[a] -> [a-z] [b] -> [a-z] [z] -> [a-Zz]

However, this would cause an enormous increase in the number of productions.
Therefore, the interpretation of character classes is not defined by translating
character classes out of the language. This means that interpretation functions
should be extended to character classes.

We do not give the complete specification of character classes and character
class arithmethic. A full specification of character classes can be found in Visser
(1997b). The normalization defined there ensures that two classes that contain
the same elements have the same normal form.

Characters A character is a constant of the form \dj ...d,, where the d; are
decimal digits, denoting the d; ... d,-th member of some finite, linearly ordered
universe of characters. Since specifying characters by their index in some encod-
ing scheme is difficult, we provide easier syntax for specification of characters.
Alphanumeric characters (letters and digits) can be specified as themselves.
Other visible characters in the ASCII set can be specified by escaping them us-
ing a backslash, e.g., \ (for left parenthesis, \- for a hyphen and \ (a backslash
followed by a space) for space. The characters \t and \n represent tabs and
newlines. Finally, there are two special characters, \EOF and \TOP. \EOF is the
character used to indicate represent the end of a file. \TOP is used to represent
the largest character in the character universe.

module Character-Syntax
imports Layout
exports
sorts Character NumChar ShortChar
lexical syntax
[\][0o-9]+ — NumChar
[a-zA-Z0-9] — ShortChar
[\]~[\000-\037A-Za-mo-su-z0-9] — ShortChar
context-free syntax
NumChar — Character
ShortChar — Character
“\TOP” — Character
“\EOF” — Character
variables
“c”[0-9']* — Character

140

Basic Symbols [7.4

Character Classes A set of characters—a character class—is represented by a
list of characters and character ranges between square brackets [and]. A list
is constructed by an injection of characters into lists and by a right associative
binary concatenation operator on lists. Operations on character classes are
difference (/), intersection (A), union (V) and complement with respect to the
complete character set, i.e., the characters in the range \0-\TOP, (~).

module Character-Class-Syntax

imports Character-Syntax”-42

exports
sorts CharRange CharRanges OptCharRanges CharClass
context-free syntax

Character — CharRange

Character “—” Character — CharRange

CharRange — CharRanges

CharRanges CharRanges — CharRanges {right}

“(” CharRanges “)” — CharRanges {bracket }
— OptCharRanges

CharRanges — OptCharRanges

“[” OptCharRanges “]” — CharClass

“~" CharClass — CharClass

CharClass “/” CharClass — CharClass {left}

CharClass “A” CharClass — CharClass {left}

CharClass “V” CharClass — CharClass {left}

“(” CharClass “)” — CharClass {bracket }

priorities

“~”CharClass — CharClass > CharClass “/” CharClass — CharClass
> CharClass “A” CharClass — CharClass >

CharClass “v”CharClass — CharClass
variables

“cr”[0-9'* — CharRange
“cr” “x”[0-9']%* — OptCharRanges
“cr” “47[0-9']* — CharRanges
“cc”[0-9"]x — CharClass

Syntar The kernel formalism is extended by adding character classes as sym-
bols.

module CC-Sdf-Syntax

imports Character-Class-Syntax”*? Kernel-Sdf-Syntax”-3-!

exports

context-free syntax
CharClass — Symbol

Normalization Character classes can be normalized to a unique normal form
by ordering the ranges such that all characters are translated to their numeric

141

7 / CONTEXT-FREE GRAMMARS

equivalent and such that smaller characters are before larger characters and by
fusing adjacent or overlapping ranges. For example, the class [A-Z0-9\%] has
normal form [\37\48-\57\65-\90], because \37 is the numerical representa-
tion of \%, \48-\57 of 0-9, \65-\90 of A-Z and these do not overlap and are or-
dered. This normalization is specified in module Character-Class-Normalization

that can be found in Visser (1997b).

module CC-Sdf-Normalization
imports CC-Sdf-Syntax”*-? Character-Class-Normalization
Kernel-Sdf-Normalization”-3-3

7.4.3 Literals

Literals are abbreviations for fixed lists of characters. For example, the following
production uses literals to define the keywords of a conditional statement.

"if" Exp "then" Stat "else" Stat -> Stat

The meaning of literals is expressed by means of a production that specifies the
sequence of characters that makes up the literal. For instance, the meaning of
the literals above is expressed by the productions

[\105] [\102] -> "if"
[\116]1 [\104] [\101] [\110] -> "then"
[\101] [\108] [\115] [\101] -> "else"

Literals that are identifiers starting with a lowercase letter can be specified
without the double quotes.

Another useful abbreviation in this category is the definition of the syntax of
prefix functions in the form

add(Nat, Nat) —-> Nat
as an abbreviation of

lladdll Il(" Nat ll’" Nat ll)ll _> Nat

Syntaz Literals consist of a list of characters between double quotes. For the
complete syntax of literals see §A.1. Literals that start with a lowercase let-
ter can be written without quotes, hence the name ‘unquoted literals’. Prefix
functions can be declared by means of a special form of productions, where the
double quotes for the parentheses and commas can be omitted.

module Literals-Sdf-Syntax
imports Kernel-Sdf-Syntax”3! Literals”-!
exports
sorts UQLiteral
lexical syntax
[a-2] — UQLiteral
[a-z][A-Za-2z0-9\—]x[A-Za-20-9] — UQLiteral

142

Basic Symbols [7.4

context-free syntax
UQLiteral — Literal
Literal — Symbol
Literal “(” {Symbol “”}x “)” “=” Symbol Attributes — Production

Normalization The normalization function ‘I’ generates a defining production
for each literal that is used as a symbol in one of the productions of the grammar.
module Literals-Sdf-Normalization

imports Literals-Sdf-Syntax”-4-* CC-Sdf-Normalization4-2

exports
context-free syntax
“[” Grammar “]” — Grammar
literals(SymbolSet) — Productions
chars(Literal) — Symbols
symbols({Symbol “”}x) — Symbols
variables

“c’[0-9"]* — CHAR
“c”“47[0-9'1*x - CHAR+
“c”“x"[0-9'1x — CHARx
“r — Literal
“y7[0-9"]% — {Symbol “ }x
“y” “47[0-9']x — {Symbol “”}+
equations
Unquoted literals are translated to quoted literals.

(1] ugliteral(ct) = literal(""" ¢+ """)

The function 1[_] generates a production for each literal symbol in the grammar.
The production generated for a literal L has the form a — L, where a is a list of
singleton character classes representing the characters of L. This list is produced
by the function ‘chars’.

[2] 1[6] =
] literals({L}) = chars(L) — L
] literals({A}) = otherwise
[5] literals({}) =
] literals({at B1}) = literals({at}) ++ literals({37})

G syntax literals(symbols(G))

The function ‘chars’ scans the characters in the literal string, translating them
to short characters. These are then normalized to numeric character codes
by character normalization. The third equation tries if the first character of
the string is a short-character by normalizing it and then testing whether it
has reduced to a numeric character. This works for letters and digits. If this
fails, the fourth equation translates the character to an escaped short-character,
which succeeds for all other characters. Characters that are already escaped are
handled by the second equation.

[7] chars("") =

143

7 / CONTEXT-FREE GRAMMARS

[shortchar("\" ¢)] = cc

8
[] chars(literal(" nn n\u c C* nnn)) = cc+H Chars(literal(""" C* """))
. [shortchar(c)] = cc, cc = [numchar(c™)]
1] chars(literal(""" ¢ ¢* """)) = cc H chars(literal(""" ¢* """))
[shortchar("\" ¢)] = cc,
a = chars(literal(""" ¢* """)) .
[10] otherwise

chars(literal(""" ¢ ¢* """)) = cc H a

Prefix function productions are translated to normal productions by enclosing
the parentheses and commas in double quotes.

[11] L(y) > A$ =L "(" + symbols(y) + ")" —> A $
[12] symbols() =

[13] symbols(A) = A

(4] symbols(rgt, v5") = symbols(yit) + ", + symbols(y;)

7.5 Parse Trees

Now we can define the interpretation of grammars, that is, the well-formed
trees characterized by a grammar and the yield of those trees. The general
idea is that a context-free production p = A; ... A, — Ag constructs trees of
type A labeled with the production p and with a list of direct descendants
of type A; ... A,. Such trees are represented by means of terms. The con-
structor ‘appl’ builds an application of a production p to a list of trees, i.e., if
T, ...T, are trees of type A; ... A, then appl(p,[T1,...,T,]) is a tree of type
Ap. Parse forests are constructed by representing choice nodes or ambiguity
nodes by means of the constructor ‘amb’. If 77 ...T,, are all trees of the same
type A, then amb([T4,... ,T,]) is an ambiguity node of type .A.

To formally define this notion of trees we introduce the notion of terms. We
first present the generic term format that is used to encode parse trees and the
encoding of symbols and grammars in that format. With those tools in place,
we define the well-formedness rules in §7.5.5.

7.5.1 Term Format

Van den Brand et al. (1997a) introduce the generic, annotated term format
ATerms for the representation and exchange of structured data. The format is
designed such that all kinds of data can be represented in a single, fixed format,
with the purpose of exchanging such data between tools and providing generic
operations on these data. The definition of the format comes with an extensive
library of (higher-order) functions. We will use the ATerm format to represent
parse trees.

144

Parse Trees | 7.5

The syntax of ATerms is defined in module ATerms below. Terms are con-
structed by means of four constructors, i.e., an ATerm is one of the following:

— A constant (ACon), which is either an integer constant or a real number
constant.

— A Ulist of terms (ATermList), which is either empty [], or a list of one or

more terms separated by commas between square brackets [T1,...,Ty].
The sort ATerms represents lists of one or more terms separated by com-
mas.

— A function symbol (AFun).

— An application of a function symbol to a list of one or more terms separated
by commas.

Furthermore, each of these constructors can be annotated by a list of one or
more terms between { and } (Ann). Literals are strings of characters between
double quotes. Integer constants are lists of digits and real constants are floating
point numbers with an optional exponent. For the syntax of literals, integers
and reals see Van den Brand et al. (1997a).

module ATerms

imports Literals“-' IntCon RealCon

exports
sorts ATerms ATermList ACon AFun ATerm Ann
context-free syntax

ATerm — ATerms
ATerm “,” ATerms — ATerms
“I" 9 — ATermList
“I” ATerms “)” — ATermList
IntCon — ACon
RealCon — ACon
Literal — AFun
ACon — ATerm
ATermlList — ATerm
AFun — ATerm
AFun “(” ATerms “)” — ATerm
“{” ATerms “}” — Ann
ACon Ann — ATerm
ATermList Ann — ATerm
AFun Ann — ATerm
AFun “(” ATerms “)” Ann — ATerm
variables

“Ts”[0-9']x — ATerms
“TP[0-9'7% — ATermList
“ACon”[0-9'] — ACon
“AFun”[0-9']% — AFun

145

7 / CONTEXT-FREE GRAMMARS

“T7[0-9"]% — ATerm
“Ann”[0-9']x — Ann

7.5.2 Constructors for Parse Trees

Function symbols can be literals—strings of characters between double quotes—
or identifiers. Specification of the identifiers is not included in the ATerm for-
mat. For each application of ATerms, an appropriate set of AFuns should be
declared, with the requirement that they are restricted to names of the form
[a-z] [a-zA-Z0-9\-]*. For the representation of grammars, symbols, produc-
tions and trees we define the following function symbols.

module Kernel-Sdf-Tree-Constructors
imports Grammar-Tree-Constructors?-2-1
exports
context-free syntax

“prod” — AFun

“no-attrs” — AFun

“attrs” — AFun

“atr” — AFun

“syntax” — AFun

“appl” — AFun
“amb” — AFun

The function symbols ‘appl’ and ‘amb’ will be used to represent parse trees.
The others will be used in the encoding of grammar structures. Each extension
of the kernel that adds new constructors for symbols or grammars should also
add the corresponding ATerm function symbols. These are included in §A.2.

7.5.3 ATerm Encoding

Now we can encode symbols, grammars and productions as terms. For each
sort S a function aterm(S) — ATerm is defined that encodes S-expressions
as ATerms. The encoding is injective. For each sort & a decoding function
s(ATerm) — S is defined such that s(aterm(s)) = s. Figure 7.1 illustrates the
encoding of symbols and productions as ATerms.

The following module defines the encoding of lists of symbols. The encoding
of constructors for symbols is defined in a module for each extension of the
kernel; see §A.2.

module Symbols-ATerms

imports Symbols-Projection”!! ATerm-Lists

exports

context-free syntax

aterm(Symbol) — ATerm
atermlist(Symbols) — ATermList
symbol(ATerm) — Symbol
symbols(ATermList) — Symbols

146

Parse Trees | 7.5

/aterm

atermlist

Production}”

Figure 7.1: Encoding symbols, productions and parse trees in a fixed term
format. Grammar domains such as Symbol and Production are mapped (the
dotted arrows) onto subsets of the set of ATerms. Parse Trees are another subset
of ATerms formed by the constructor ‘appl’ from a production and a list of trees,
or by the constructor ‘amb’ from a list of trees.

147

7 / CONTEXT-FREE GRAMMARS

equations
Encoding lists of symbols.

[1] atermlist(A) = [aterm(.A)]
[2] atermlist(a) =[] when a =
3] atermlist(at 87) = atermlist(at) + atermlist(3 ™)

Decoding lists of symbols.

n symbols([]) =
[5] symbols([T]) = symbol(T)
[6] symbols([T, Ts]) = symbol(T) + symbols([Ts])

where we have the requirement that

[7] symbol(aterm(A)) = A

The last equation requires of each future definition that it should be such that
the decoding of an encoded symbol gives the original symbol.

7.5.4 Encoding Productions

The following module defines the encoding of productions. As an example,
consider the production

Exp "+" Exp -> Exp {left}
which is encoded as

prod([sort ("Exp"),lit ("+"),sort("Exp")],
sort ("Exp") ,attrs([atr("left")]))

A production is represented by the function symbol ‘prod’ and the attributes
of the production are represented by ‘attrs’. Note that this makes use of the
encoding of sort and literal symbols that is defined in §A.2.

module Kernel-Sdf-ATerms
imports Kernel-Sdf-Projection”-3? Kernel-Sdf-Tree-Constructors’-

Symbols-ATerms” %% Grammar-ATerms“-?-?> ATerm-Lists
exports

context-free syntax

5.2

aterm(Production) — ATerm
aterm(Attributes) — ATerm
atermlist({Attribute “”}x) — ATermList
aterm(Attribute) — ATerm
atermlist(Productions) — ATermList
production(ATerm) — Production
attributes(ATerm) — Attributes

148

Parse Trees | 7.5

attribute(ATerm) — Attribute
productions(ATermList) = — Productions
equations

Encoding productions and attributes.

[1] aterm(a — A $) = prod(atermlist(a), aterm(.A), aterm($))
[2] aterm() = no-attrs

(3] aterm({attr*}) = attrs(atermlist(attr*))

[4] atermlist(attr*) =[] when {attr*} = {}

[5] atermlist(attr) [aterm (attr)]

6] atermlist(attr;", attr,”) = atermlist(attr;") + atermlist(attr;")

Decoding productions and attributes.

[7] production(prod(TI, T, T')) = symbols(Tl) — symbol(T) attributes(T")
8] attributes(no-attrs) =

[9] attributes(attrs(Tl)) = attributes(Tl)

[10] attributes([]) = {}

[11] attributes([7]) = {attribute(T)}

[12] attributes([T, Ts]) = {attribute(T)} -+ attributes([Ts])

where we have the requirement that
[13] attribute(aterm(attr)) = attr

Encoding grammars and lists of productions.

[14] aterm(syntax p*) = syntax(atermlist(p*))

[15] atermlist(p) = [aterm()]

[16] atermhst(p)=[] when p*

[17] atermlist(p;” p;) = atermlist(p;") + atermlist(p,h)

Decoding of grammars and lists of productions.

grammar(syntax(Tl)) = syntax productions(T1)

(18]

[19] productions([]
[20] productions([7]
[21] productions([T, Ts]

= production(T)
= production(T) -+ productions([Ts])

— — — —

7.5.5 Well-formed Parse Trees

Now we have prepared all equipment for the characterization of the terms that
represent the well-formed parse trees over a grammar. The predicate G + T
determines whether a tree T is well-formed with respect to grammar G. This is
defined in terms of - T' : T', which checks whether T is a tree of type T". Since
a tree contains all type information explicitly in the form of productions, this

149

7 / CONTEXT-FREE GRAMMARS

can be checked without reference to the grammar. The well-formedness with
respect to the grammar is then defined by checking that all productions in a
tree are actually productions of the grammar.

The main constructor for trees is the function ‘appl’ that creates an application
of a context-free production to a list of trees such that the types of the argument
trees correspond to the symbols in the left-hand side of the production. As an
example, consider the grammar

sorts E

syntax
[a-z] -> E
[\+] _> ll+||

E "+" E -> E {left}

The following ATerm is a well-formed parse tree over this grammar for the
sentence a+b.

appl(prod([sort("E"),lit("+"),sort("E")],
sort ("E"), attrs([atr("left")])),
[appl(prod([char-class([range(97,122)1)],
sort ("E") ,no-attrs),
[o7D),
appl(prod([char-class([43]1)],
1it ("+") ,no-attrs),
[431),
appl(prod([char-class([range(97,122)])],
sort ("E") ,no-attrs),

(98101

Observe that the main appl has the aterm encoding of the production E "+" E
-> E {left} as first argument and as second argument a list of three trees with
types that correspond to the arguments of that production. The numbers at
the leafs of the trees denote the ASCII values of the characters, i.e., 97 denotes
a, 43 denotes + and 98 denotes b.

Context-free grammars can be ambiguous, i.e., generate more than one tree for
a single sentence. The constructor ‘amb’ is introduced to represent parse forests,
i.e., compact representations of sets of parse trees. A term amb([T1,...,T,])
represents the set of parse trees containing the terms 71, . .. , T, (which can again
contain ‘amb’ nodes). For example, the string E "*" E "+" Eis ambiguous with
respect to the grammar

sorts E

syntax
E nyn E -> E
E Myt E -> E

and therefore has the following parse forest that represents the two possible
parses, left-associative (E "x" E) "+" E and right associativeE "*" (E "+" E).

150

Parse Trees | 7.5

amb ([appl(prod([sort ("E"),1it ("+"),sort ("E")],
sort ("E") ,no-attrs),
[appl(prod([sort("E"),1it("*"),sort("E")],
sort ("E") ,no—attrs),
[sort("E"),
1it ("*"),
sort ("E")1),
1it("+"),
sort("E")1),
appl(prod([sort("E"),lit("*"),sort("E")],
sort ("E") ,no-attrs),
[sort("E"),
lit("*") ,
appl(prod([sort ("E"),1it("+"),sort("E")],
sort ("E") ,no—attrs),
[sort("E"),
1it(||+|l) ,
sort ("E")1)11)

Note that in order to reduce the size of the term, the subtrees for E and "*"
and "+" are symbols. The tree represents the parse tree for a sentential form.

The yield of a tree is the concatenation of the characters at the leafs of the
tree. For instance, the yield of the first tree above is [97] [43] [98], i.e., the
list of characters a+b.

module Kernel-Sdf-Trees
imports Kernel-Sdf-ATerms”-># Kernel-Sdf-Projection”-32

exports
context-free syntax
Grammar “F” ATerm — Bool
“+” ATerm “:” ATerm — Bool

yield [’ Grammar “]” “(” ATerm “)” — Symbols

args(ATerm) — ATermList

type(ATerm) — ATerm

prods(ATerm) — Productions
variables

“Prod”[0-9']x — ATerm

“Res”[0-9']x — ATerm

“Attrs”[0-9']%* — ATerm

“Args”[0-9']x — ATermList
equations
A term T is a well-formed parse tree over grammar G, if it is a well-formed tree
and if all its productions are productions of G.

F T: type(T) A prods(T) CP(G) =T
GHFT =T

[1]

151

7 / CONTEXT-FREE GRAMMARS

Otherwise, the tree is not well-formed.
2] GF T=_1 otherwise

The function ‘prods’ gives the productions of a term, i.e., the list of all produc-
tions used in its applications.

prods([T, Ts]) = prods(T) + prods([Ts])
prods(T) = otherwise

[3] prods(appl(Prod, Args)) = production(Prod) + prods(Args)
[4] prods(amb(Args)) = prods(Args)

5] prods([]) =

[6] prods([T]) = prods(7)

[7]

(8]

For the definition of G - T we need several auxiliary functions on terms. The
function ‘args’ gives the arguments of a production. The ‘type’ of a production
is its result type. The ‘type’ of an application is the result type of its production.

[9] args(prod(Tl, Res, Attrs)) = Tl

[10] args(appl(Prod, Args)) = Args

[11] type(prod(Tl, Res, Attrs)) = Res

[12] type(appl(Prod, Args)) = type(Prod)

3] type(amb([T4])) = type(first([T4)

An application is a well-formed term of type T if the type of its production is
T and if its arguments are well-formed terms with types that correspond to the
argument types of the production of the application.

type(Prod) = T, + Args: args(Prod) = T

[14]
b appl(Prod, Args) : T = T

A list of trees or symbols is well-formed if each element is well-formed.

[15] FLI:[]=T

[16] [T :[T=F+T:T

[17] T, Ts): [T', Ts'|=F T: T' A+ [Ts] : [Ts']

An ambiguous node is well-formed if all possibilities have the same type.
[18] Famb([T]): T' =+ T: T'

[19] Famb([T, Ts]) : T'=F T: T' A+ amb([Ts]) : T'

A symbol term T is a well-formed tree of type T'. This is used to represent trees
for sentential forms.

symbol(T) = symbol(T")
FT:T' =T

[20]

The yield of a term is the concatenation of all its leaf symbols.
[21] yield[G](appl(Prod, TI)) = yield[G](T

152

Parse Trees | 7.5

[22] yield[G](amb(T1)) = yield[G](first(T1))

[23] yield[G]([]) =

[24] yield[G]([T]) = yield[G](T)

[25] yield[G] ([T, Ts]) = yield[G](T) + yield[G]([Ts])
[26] yield[G](T) = symbol(T) otherwise

7.5.6 Trees with Characters and Literals

In the previous section we defined character classes and literals as symbols in
grammars. Since the meaning of literals is defined in terms of character classes
by means of context-free productions, the definition of well-formedness of parse
trees does not need to be extended for literals. However, for character classes
we have to extend the definition such that a character is a tree with as type
any character class that contains it, i.e., a parse tree is a well-formed tree of a
character class type if it is a character (represented by a natural number) that
is an element of the character class. For example, the term

appl(prod([sort("Id") ,char-class([range(97,122)]1)],
sort("Id") ,no-attrs),
[appl(prod([char-class([range(97,122)])],
sort ("Id") ,no-attrs),
[971),
981)

is a well-formed parse tree for the identifier ab. The definition of well-formedness
and yield is extended as follows:

module CC-Sdf-Trees
imports CC-Sdf-ATerms”2-2 Kernel-Sdf-Trees”->->

. Character-Class-Normalization
equations

A character is represented by an integer. The characteristic functions for trees
are extended for this new tree constructor. The type of a character is the
character code itself. The yield of a character is a character class containing the
single character. A character does not contain any productions.

[1] type(n) = n
[2] yield[G](n) = [character(n)]
[3] prods(n) =

A character code n is a well-formed tree of type T if T represents a character
class that contains the character corresponding to n.

symbol(T) = ce, character(n) € cc=T
Fn:T =T

[4]

153

7 / CONTEXT-FREE GRAMMARS

7.5.7 Cyclic Parse Forests

Some grammars generate infinitely many parse trees for a single string. For
instance, the grammar

syntax
-> S

[a]l -> S

SS->8

generates infinitely many trees for the string a. The collection of parse trees
for strings over such grammars can be finitely represented by means of a cyclic
parse forest (Billot and Lang, 1989, Rekers, 1992). However, in the term format
defined here we have no provisions for cyclic forests. The parser for SDF2 in
Chapter 3 does generate a cyclic parse forest.

In ASF+SDF cyclic structures cannot be expressed in a natural way. This can
be simulated by explicitly representing the pointer structure by means of a table
of references and tags to represent these references. But this would complicate
the entire specification. Since the application of SDF2 will be mainly to non-
cyclic grammars we have not gone into the trouble of defining cyclic forests in

ASF+SDF.

7.5.8 Equality of Trees

We define an equality predicate = on parse trees. At this point this comes down
to syntactic equality. Later on we will extend the predicate such that trees that
are not syntactically equal can be equal. This will be useful to abstract from
certain details in parse trees. For instance, in §8.3 we will introduce parse trees
containing layout. This is useful for applications that are aware of layout. But
most applications will want to abstract from the specific layout in a tree and
consider two trees equal up to layout. Another application is the equality of
trees with associative operators such as list concatenation. The definition of
the equality predicate below is intended to specify the details of such equality
considerations. Furthermore, we define membership of a tree in a parse forest.

module Kernel-Sdf-Equality
imports Kernel-Sdf-Trees"->3
exports
context-free syntax
ATerm “=” ATerm — Bool
ATerm “€” ATerm — Bool
equations
Equality of applications. If the productions are the same two applications are
equal if the argument lists are.

Args = Args' =T
appl(Prod, Args) = appl(Prod, Args') = T

[1]

154

Parse Trees | 7.5

Argument lists are equal if the elements are pairwise equal.
[2] [1=[]=T
[3] (N=[T=T=T
[4] [T, Ts) = [T', Ts'| = T= T' A [Ts] = [Ts']
An ambiguity node is equal to a tree if it all its possibilities are contained in
the tree and vice versa.
amb([Ts]) € TA T € amb([Ts]) =T
amb([Ts]) =T =T

amb([Ts]) € TA T € amb([Ts]) =T
T=amb([Ts]) = T

[5]

[6]

If none of the cases above apply the terms are not equal.
[7] Ty = T, =1 otherwise

A tree is member of a parse forest (tree containing ambiguities) if it is contained
in one of the possibilities of an ambiguity.

TWET,=T
T1 e amb([TZ]) =T

(8]

Ty €T,V Ty €amb([Ts]) =T
Ty € amb([T2, Ts]) = T

[9]

An ambiguity is contained in a forest if all its possibilities are contained in the
forest.

10 T]_ E TZ = T
n Ty € To A amb([Ts]) € To =T

amb([Ty, Ts]) € T = T

An application is contained in an application, if the arguments of the first are
contained in the arguments of the second.

Args, € Argsy, =T

[12] .
appl(Prod, Args,) € appl(Prod, Args,) = T
Lists
13 e(="T
[14] [TIET =TT
[15] [T, Ts| € [T', Ts') = T & T' A[Ts| € [Ts']

If none of the cases above apply membership does not hold

[16] Ty € Ty =1 otherwise

155

8

Disambiguation and Abbreviation

In this chapter we present features for disambiguation of ambiguous grammars
and abbreviation of common patterns. Priorities are used to disambiguate am-
biguous expression syntax, providing support for compact abstract syntax. Pri-
orities are defined by means of an extension of the well-formedness predicate
on parse trees. Regular expressions abbreviate common patterns of produc-
tions such as lists, optional constructs, alternatives, etc. Regular expressions
are defined by generating the defining productions for each expression in the
grammar. Lexical and context-free syntax sections separate the definition of
tokens and phrases. These are integrated into a single context-free grammar by
normalization such that no interference between the two levels is created. Fur-
thermore, the definition of the placement of layout between tokens is handled
by this normalization. Follow restrictions and reject productions are provided
to express lexical disambiguation rules such as ‘prefer longest match’ and ‘prefer
literals’.

8.1 Priorities

Context-free grammars can be ambiguous. There are many methods for the dis-
ambiguation of context-free grammars. Most programming language oriented
formalisms provide some kind of precedence based method. Here we adopt the
method of disambiguation by associativity and priority as used in SDF. New
with respect to the design of priorities in Heering et al. (1989) is (a) disam-
biguation of lexical syntax by lexical priorities, (b) a more uniform notation
for priority declarations, and (c) derivation of productions from priority decla-
rations, which provides a more compact notation by avoiding multiple decla-
rations of productions. A feature not present in SDF2 is the abbreviation of
productions in priority declarations by the list of literals of the left-hand side.
(For example, "*" > "+" as an abbreviation of E "¥" E -> E > E "+" E ->
E.) The reason for this omission is the unclear semantics in combination with
modularization. Also < priority-chains are not included in SDF2 because these
can also be expressed using > chains.

We first define syntax, projection functions and normalization of priority dec-
larations. In §8.1.4 we describe an extension of the well-formedness predicate

157

8 / DISAMBIGUATION AND ABBREVIATION

on parse trees that characterizes parse trees without priority conflicts.

Example 8.1.1 The following grammar defines priority and associativity rela-
tions over the syntax of expressions with unary negation and binary operators
for exponentiation, multiplication, addition and subtraction. Note that, unlike
in SDF, the syntax for arithmetic operators can be defined inside the priorities
section.

syntax
"(" E ")" -> E {bracket}
priorities
n_n E _> E
> E """ E -> E {right}
> E "x" E -> E {left}
> {left:
E "+" E -> E {assoc}
E "-" E -> E {left}}

This grammar declares that unary — has higher priority than ~, which has
higher priority than binary %, which has higher priority than + and binary —.
The latter two are mutually left associative as declared by the group associa-
tivity. The bracket production declares that parentheses can also be used to
disambiguate expressions. With this grammar the expression E--E*E+E-E"E
should be interpreted as ((E-((-E)*E))+E)-(E"E). O

8.1.1 Syntax

The priorities section of a grammar defines the priority relation > on productions
and the associativity relations ‘left’, ‘right’, ‘assoc’, and ‘non-assoc’. A priority
declaration is either a > chain or an associativity declaration. The objects of
these declarations are single productions or groups of productions. A group
can have an X-associativity, which declares the productions in the group to be
mutually X-associative.

The ‘bracket’ attribute declares a production of the form ! A r — A {bracket},
with 1’ (‘r’) denoting the syntax for the left- (right-) bracket, to be the identity
function on A. Such productions can be used to explicitly disambiguate some
text or to indicate a different disambiguation than the one given by priority
rules.

module Priority-Sdf-Syntax

imports Kernel-Sdf-Syntax”-3-1

exports
sorts Associativity Group Priority Priorities
context-free syntax

“left” — Associativity
“right” — Associativity
“non-assoc” — Associativity
“assoc” — Associativity

158

Priorities / 8.1

“bracket” — Attribute
Associativity — Attribute
Production — Group
“{” Productions “}” — Group
“{” Associativity “” Productions “}” — Group
{Group “>"}+ — Priority
Group Associativity Group — Priority
{Priority “,” }x — Priorities
“priorities” Priorities — Grammar
variables
“g”[0-9"]* — Group

“ggx”[0-9"]x — {Group “>"}x
“gg+”[0—9’]* ‘_) {Group ((>”}+
“pr”[0-9']x — Priority
“pr? “$”[0-9']x — {Priority “ }x
“pr” “+7’ [0_9/]* _) {Priority “,”}+
“as”[0-9']x — Associativity

8.1.2 Projection

The projection function ‘Pr’ yields the list of all priority declarations of a gram-
mar. The projection function ‘Pr’ yields the grammar without its priority dec-
larations.

module Priority-Sdf-Projection
imports Priority-Sdf-Syntax®!-! Kernel-Sdf-Projection”
exports
context-free syntax
Priorities “H” Priorities — Priorities {assoc}

3.2

“Pr” (Grammar) — Priorities

“Pr” (Grammar) — Grammar

Priority “€” Priorities — Bool
equations

Concatenation of priority declarations.
[1] pri + pry = pri, pr

The priorities and non-priorities of a grammar.

[2] Pr(priorities pr*) = pr*

[3] Pr(gl 2) = Pr(G1) + Pr(G,)
[4] Pr(G) = otherwise

[5] Pr(priorities pr*) =

[6] PI‘(g1 G2) = Pr(G1) Pr(G2)

[7] Pr(G) =G otherwise

Membership of a priority declaration. A pair is member of a declaration if the
declaration contains a pair with similar productions. Recall from §7.3.2 that two

159

8 / DISAMBIGUATION AND ABBREVIATION

productions are similar if they are the same except for their attributes, which
may be different.

PLEp3=T, pp=Ep, =T

(8]
P1> Py € pri, p3> Py pry = T

[0] PLEPsADEpPyVp Epy APy Eps =T
Py aS py € pri, p3 aspy, pry = T

[10] pr€pr* = 1

otherwise

8.1.3 Normalization

The complex syntax for priority declarations can be expressed by means of only
binary declarations for the > relation and the associativity relations as follows:
(1) Priority chains of the form p; > ... > p, are normalized to lists of simple
priorities of the form p; > p; 1. This relation is closed transitively. (2) Associa-
tivity declarations in attributes and group associativities are expressed as binary
associativity declarations of the form p; as ps. (3) The productions that are
mentioned in priorities sections are added to the syntax section of the grammar.

Example 8.1.2 The normalization of the grammar in Example 8.1.1 on page 158
is:

syntax
n_mn E _> E
E """ E -> E {right}
E "x" E —> E {left}
E "+" E -> E {assoc}
E "-" E -> E {left}

priorities
"on E -> E > E """ E -> E {right},
E """ E -> E {right} right E """ E -> E {right},
E """ E -> E {right} > E "x" E -> E {left},
E "x" E -> E {left} > E "+" E -> E {assoc},
E "x" E -> E {left} > E "-" E -> E {left},
E "x" E -> E {left} 1left E "x" E -> E {left},
E "+" E -> E {assoc} left E "-" E -> E {left},
E "+" E -> E {assoc} assoc E "+" E -> E {assoc},
E "-" E -> E {left} 1left E "-" E -> E {left}

Observe that all productions mentioned in the priorities declaration are also
declared as productions in the ‘syntax’ part. Furthermore, the > chain is made
into a binary relation, which is transitively closed. All associativity attributes
are expressed by means of binary declarations. O

160

Priorities / 8.1

module Priority-Sdf-Normalization

imports Priority-Sdf-Syntax®!! Booleans Kernel-Sdf-Normalization” 33

Priority-Sdf-Projection®!-2
exports
context-free syntax
“p[” Grammar “]” — Grammar
“assoc” “[” Grammar “]” — Priorities

“assoc” “[” Productions “]” — Priorities
“syntax” “[” Priorities “]” — Grammar

“norm” “[” Priorities “]” — Priorities
“trans” “[” Priorities “]” — Priorities
equations

The normalization function p[.] extracts syntax information from priorities
and priority information from syntax, normalizes the priorities declarations and
takes the transitive closure.

Pr(G) = pri, norm[pri] = pr3, Pr(G) syntax[pr3] =G’

2 p[G] = G' priorities trans[pry ++ assoc[G']]

The function norm[] normalizes a priority declaration to a list of pairs of the
form p > p' or p as p' by eliminating >-chains and {_} groups.

2] norm[p> p'] = p> p’
(3] norm[p as p'l =p asp’, p' asp

Each of the priority declarations in the list is normalized.

[4] norm[] =
[5] norm[p] =
6] norm[pri", pryt] = norm[pr;"] + norm[pr;t]

A > chain is broken into binary > declarations. The transitive closure defined
below ensures that p; > p3 if p1 > p2 > ps was specified.

[7] norm[gg;t> gg;f > gg;"] = norm[ggt > 995", 995> 9931

Groups and priority. A group is an abbreviation for a pointwise extension of
the declared relation to the members of the group.

[8] norm[{p}] =

[9] norm[{}> g] =

[10 norm[g> {}]] =

[11 norm[{p;" p;"}> g] = norm[{p;"}> g, {ps"}> 4]
[12 norm[g> {p;" p;' }] = norm[g> {p;"}, o> {p5"}]
[1] = norm[p> g]

[

[

[

|
]
]
3] norm[{p}> g
|
|
]

14 norm[g> {p}] = norm[g> p]
15 norm[{as: p*}> g] = norm[{as: p*}, {p*}> 4]
16 norm[g> {as: p*}] = norm[[{as: p*}, ¢> {p*}]

161

8 / DISAMBIGUATION AND ABBREVIATION

Groups and associativity.

[17] norm[{} as g] = norm[g]

[18] norm[{p p*} as g] = norm[p as g, {p*} as g]

[19] norm[g as {}] = norm[g]

[20] norm[g as {p p*}] = norm[g as p, g as {p*}]

[21] norm[[{as; : p*} asz g] = norm[{as; : p*}, {p*} as2 g]
[22] norm[g asz {as; : p*}] = norm[{as; : p*}, g as2 {p*}]

Associativity groups are abbreviations. The members of an associativity group
are mutually associative with respect to the declared relation. If the group
contains a single production, it is taken to define the associativity for that
production. Otherwise, the associativities are defined only between the members
of the group and are not defined reflexively. This makes it possible, for instance,
to have a production that is left-associative with respect to itself, but right-
associative with respect to a group of other productions.

[23] norm[{as: p}=pasp
[24] norm[{as: p; py}] = p; as p,
[25] norm[{as: p; py pT}] = norm[p, as p,, {as:p; p*}, {as: py pT}]

The function trans[] takes the transitive closure of the > relation.

pri, p1> Po, pr5 = pr¥, pr* = pri, py> p3, pry, P> p3 € prrF£ET

26

[26] trans[pr*] = trans[p;> ps, pr*]

[27] trans[pri, pr, pr3, pr, pr3] = trans[pri, pr, pr3, pr3]
(28] trans[pr*] = pr*

otherwise

The function assoc[.] derives associativity declarations from the productions of
a grammar. Productions that have an attribute declaring them as left, right,
or non-associative produce a declaration of that associativity in the priorities
declaration.

[29] assoc[G] = assoc[P(G)]

[30] assoc[] =

[31] assoc[pl"' p2+]] = assoc[[pl‘i']] + ass0c|[p2+]]

[32] assoc[p] = p asp when p=a — A {attr}, as, attrs}
[33] assoc[p] = otherwise

The function ‘syntax’ derives from a priorities declaration the list of all produc-
tions referred to in that declaration.

[34] syntax[[] = 0
[35] syntax[pr;", pry] = syntax[pr;"] syntax[pry]
[36] syntax[p; > p,] = syntax p; p,

162

Priorities / 8.1

[37] syntax[p, as p,] = syntax p; p,

Merging and ordering of grammars.

38] priorities =)
[39] priorities pr{ < priorities pry = (priorities pry, pry, 0)
[40] priorities pr* & syntax p* = (syntax p*, priorities pr*)

8.1.4 Parse Trees with Priority Conflicts

We extend the notion of well-formedness of parse trees to well-formedness over a
grammar with priorities. A tree is well-formed if it is a well-formed context-free
tree and if, moreover, it does not contain priority conflicts.

module Priority-Sdf-Trees
imports Kernel-Sdf-Trees”->-> Priority-Sdf-Projection®-1-2

exports
context-free syntax
Grammar “ypi,” ATerm — Bool
conf “[” Priorities “]” “(” ATerm “)” — Bool
rootconf “[” Priorities “]” “(” Production “,” ATermList “)” — Bool
left “[” Priorities “]” “(” Production “,” ATerm “)” — Bool
middle “[” Priorities “]” “(” Production “,” ATermList “)” — Bool
right “[” Priorities “]” “(” Production “” ATerm “)” — Bool
equations

We introduce an extension of the notion of well-formedness. A tree is well-
formed with respect to the priorities in a grammar, if it is well-formed with
respect to the grammar and does not contain a priority conflict.

G T=T, conf[Pr(G)(T) =L

] Ghuo T = T
prio =

An application has a conflict if it has a root conflict or if any of its descendants
has a conflict.

rootconf[pr*](production(Prod), Args) V conf[pr*](Args) = Bool
conf[pr*](appl(Prod, Args)) = Bool

For the other constructors, a tree has a conflict if any descendant has.

3 contlpr*](ammb([T])) = conf[pr*)(T)

[4] conf[pr*](amb([T, Ts])) = conf[pr*](T) V conf[pr*](amb([T4]))
s conflpr]((]) = L

{6} conf[[pr*]]([T]g = conf[pr*](T)

~J

163

8 / DISAMBIGUATION AND ABBREVIATION

An application with no descendants does not have a conflict.
8] rootconf[pr*](p, []) = L

An application with more than one descendant has a root conflict if it has a left
conflict, a middle conflict or a right conflict.

0] rootconf[pr*](p, [T, Ts)) = left[pr*(p, T) v middle[pr*](p, [T)

An injection, i.e., an application with only one child has a root conflict if its
production has higher priority than its child’s production.

production(Prod) = p,, p;> p, € pr* = Bool
rootconf[pr*](p,, [appl(Prod, Args)]) = Bool

[10]

A tree has a left conflict if the productions of root and left-most child are mu-
tually right-associative or non-associative, or if the root production has higher
priority than the child production.

production(Prod) = p,,
p; right p, € pr* V p,; non-assoc p, € pr* V p;> py € pr* = Bool

11
(1] left[pr*](p,, appl(Prod, Args)) = Bool

If the left-most child is an ambiguitity node, the tree has a conflict if there is a
left conflict with any of the possibilities of the ambiguity.

[12] left[pr*](p,, amb([T])) = left[pr*](p., T)
[13]left[pr*](p,, amb([T, Ts])) = left[pr*](p:, T) V left[pr*](p,, amb([Ts]))

A tree has a middle conflict if the root production has higher priority than any
of the middle child productions.

production(Prod) = p,, p;> py € pr* V middle[pr*](p,, [Ts]) = Bool
middle[pr*](p;, [appl(Prod, Args), Ts]) = Bool

[15] middle[pr*[(p, [T]) = right[pr*](p, T)

[14]

e middle[pr*](p,, [amb([T]), 7+]) = middie[pr](py, [, Ts)

middle[pr*](p;, [T, Ts]) V middle[pr*](p,, [amb([Ts]), Ts]) = Bool
middle[pr*](p,, [amb([T, Ts]), Ts]) = Bool

(17]

A tree has a right conflict if the productions of root and right-most child are
mutually left-associative, non-associative or associative (a synonym for left), or
if the root production has higher priority than the child production.

production(Prod) = p,,
py left py € pr* V p; assoc p, € pr*
V p, non-assoc p, € pr* V p;> p, € pr* = Bool

18
18] right[pr*](p;, appl(Prod, Args)) = Bool

164

Priorities / 8.1

The case of an ambiguity as right-most child.

[19] right[pr*](p,, amb([T])) = right[pr=](p,, T)

right[pr*](p,, T) V right[pr*](p,, amb([Ts])) = Bool
right[pr*](p,, amb([T, Ts])) = Bool

[20]

8.1.5 Discussion

Here we have described the requirements on parse trees that a parser should pro-
duce, i.e., not containing priority conflicts. There are various ways to implement
this requirement. One possible scheme that is further discussed in Chapter 4 is
to interpret the priority rules as a filter on parse forests that prunes the subtrees
with conflicts. This scheme is used in the parser in the current ASF+SDF Meta-
Environment (Heering et al., 1989, Klint, 1993). An advantage of this approach
is that disambiguation is decoupled from parsing and that other disambiguation
filters could be added. The drawback of the approach is that the parse forest can
become very large, which hampers efficiency. Therefore, applying the priority
rules as early as possible in the parsing process will increase efficiency. A parser-
generation time interpretation of priorities is described in Chapter 5. There the
priorities are completely expressed in the parse tables produced by the parser
generator. An implementation of this method is discussed in Chapter 3.

Other Disambiguation Methods Disambiguation by priority conflicts is sim-
ilar to the methods using precedences of Earley (1975) and Aho et al. (1975).
The latter also describe a method for interpreting these rules in the parser gen-
eration process, which is less general than the one in Chapter 5. Disambiguation
by priorities as defined in this section is based on the definition of priorities in
Heering et al. (1989). In that definition a second interpretation of priorities is
defined. Parse trees are interpreted as a multi-set of productions and the pri-
orities are interpreted as an ordering of such multi-sets. This ordering is used
to make a further selection of trees if the filtering by priority conflicts does not
solve all ambiguities.

Subtree exclusion is a disambiguation method introduced by Thorup (1994a)
that works by specifying a finite set of partial parse trees that are forbidden
as subtrees of parse trees yielded by the parser. This method allows a more
fine tuned disambiguation than is achievable by the priority scheme. Examples
are disambiguation of generic operators and internal arguments. Some problems
can not be solved appropriately. The if-then-else ambiguity is solved in the same
way as with priorities, which is not correct. In Chapter 4 these and several other
disambiguation methods are studied in the framework of filters on parse forests.

Brackets Unparsing is complicated in the presence of priorities. When a
parse tree is created by a semantics processor, a rewriter for instance, it might
create a well-formed tree that does not satisfy the ki, predicate, i.e., contains a
priority conflict. Such trees are semantically meaningful, but problematic when

165

8 / DISAMBIGUATION AND ABBREVIATION

their yield is considered. Naively translating an abstract syntax tree to a string
as described before might lead to a string that, when parsed, does not represent
the same tree because it would contain conflicts. To force equivalence of tree
and string, brackets should be introduced. In Van den Brand and Visser (1996)
the rules for priority conflicts are used to place brackets when unparsing an
abstract syntax tree.

8.2 Regular Expressions

Certain patterns of context-free productions occur again and again. Examples of
such patterns are lists, lists with separators, optional constructs and alternative.
For example, a list of one or more identifiers can be specified by the grammar

syntax
Id -> Id-List
Id-List Id-List -> Id-List {left}

Here a list is defined in terms of two constructors, one for singleton lists and
one for concatenation of lists.

Many formalisms provide shortcuts for such patterns by extending the lan-
guage of context-free grammars with some collection of regular operators on
symbols. For instance, BNF provides an alternative at the level of productions,
i.e., a production has the form A := Ap|...|A,, where the symbol ‘| has the
meaning of or. Extended BNF (EBNF) is the canonical extension of BNF with
regular operators. In one formulation, Wirth (1977) adds the operators {A}
for iteration and [A] for optionality. Variations on this notation appear in Lee
(1972) and Williams (1982). SDF provides iteration A% and A+ and {A L}&®
iteration for abbreviation of lists of As separated by a literal L.

In this section we give an extension of context-free productions by a set of
regular operators on symbols. In all the approaches mentioned above regular
operators are given a special treatment. New in our formulation is the treatment
of regular operators as first class citizens. They are nothing but constructors of
new symbols that spare the specifier the burden of having to invent new names.
As a consequence, a regular expression can occur at all positions where a normal
symbol can occur, in particular in the right-hand side of a production.

This approach is motivated by the following considerations: (1) It enables us
to express the meaning of regular expressions by means of a normalization of
the grammar that adds defining productions for each expression. (2) Our gram-
mars function as signatures for algebraic specifications, where each production
represents a function. If regular symbols can not be the result of functions,
as is the case in SDF, we still have to define an auxiliary symbol to define a
function that yields such a result. For example, suppose that we want to define
a function add that adds an integer to each integer in a list of integers. In the
syntax below we can write this as

add(Int, Int*x) -> Intx

166

Regular Expressions | 8.2

whereas in SDF we should introduce an auxiliary sort IntList to represent the
result sort of this function.

8.2.1 Syntax

We consider the following operators:
— Empty: The symbol () represents the empty string

— Concatenation: The symbol (A;A,) with n > 2 denotes the concate-
nation ay ...a, of expressions a; of type A;.

— Alternative: The symbol Ay |...|A,, with n > 2, denotes an expression a
of one of the types A;.

— Optional: The symbol A? is an optional A

— TIteration: The symbol Ax (A+) denotes alist a; ...a, withn >0 (n > 1)
of expressions a; of type A.

— Iteration with separator: The symbol {A B}x ({A B}+) denotes a list
aiby ...by_1a, with n > 0 (n > 1) of expressions a; of type A separated
by expressions b; of type B. Observe that, unlike in SDF, in SDF2 there is
no limitation of the symbols that can be used as separators. For example,
{Stat [\;]|[\n]}* denotes lists of statements separated by semicolons
or newlines.

— Constrained iteration: The symbol {A}n+ with n > 2 denotes a list
aj ...an of n or more expressions a; of type A. Similarly for {A B}n+
with separator B.

— Set expressions: The symbol Set[.A] represents the syntax of set expres-
sions of the form {ay,...,a,} with the a; expressions of type A

— Product: The symbol A1 # .. .#A,, withn > 2, denotes tuples {(ai, ... ,a,)
of expressions a; of type A;.

— Functions: The symbol (A; ... A, = B), with n > 0, denotes function
expressions f that can be used in expressions f(a; ...an) of type B with
the a; expressions of type A;.

— Permutation: The symbol < A; ... A, > denotes expressions of the form
a1 ...a, such that for each A; exactly one of the a; has type A;.

The syntax of these operators is defined in the following module. Observe that
the empty symbol () and sequences (A;A,) are not defined using a single
production “(” Symbol x “)” — Symbol because parentheses around a single
symbol are already used as brackets; see §7.1.

167

8 / DISAMBIGUATION AND ABBREVIATION

module Regular-Sdf-Syntax
imports Kernel-Sdf-Syntax”-3! IntCon

exports
context-free syntax
“(75 (4)7’ _) Symbol
“(” Symbol Symbol+ “)” — Symbol
Symbol “?” — Symbol
Symbol “+” — Symbol
Symbol “x” — Symbol
“{” Symbol Symbol “}” “+” — Symbol
“{” Symbol Symbol “}” “x” — Symbol
“{” Symbol “}” NatCon “+” — Symbol
“{” Symbol Symbol “}” NatCon “+” — Symbol
“Set” “[” Symbol “]” — Symbol
Symbol “#” Symbol — Symbol {right}
“(” Symbols “=” Symbol «)” — Symbol
Symbol “|” Symbol — Symbol {right}
“&” Symbols “>” — Symbol
priorities

{Symbol “?” — Symbol, Symbol “¥” — Symbol, Symbol “+” — Symbol,
Symbol NatCon “4+” — Symbol} > Symbol “#”Symbol — Symbol >
Symbol “|”Symbol — Symbol

8.2.2 Normalization

We define a normalization function r[_] that for each regular expression that is
used in the grammar introduces one or more productions that define its meaning.
In this interpretation regular expressions form a shorthand for defining extra
symbols and productions.

Example 8.2.1 The following production defines a single production describ-
ing the structure of a block in a While program consisting of an optional decla-
ration followed by a list of statements.

syntax
"begin" (Decl ";")7 {Stat ";"}+ "end" -> Stat

The normalization of this grammar is:

syntax
"begin" (Decl ";")7 {Stat ";"}+ "end" -> Stat
-> (Decl ";")7

(Decl ";™) -> (Decl ";")?
Decl ";" -> (Decl ";")
Stat -> {Stat ";"}+
{Stat ";"}+ ";" {Stat ";"}+ -> {Stat ";"}+ {left}

168

Regular Expressions | 8.2

{Stat n ; ll}+ n ; n {Stat n ; ll}* -> {Stat n ; |I}+

{Stat n ; ll}* n ; n {Stat n ; ll}+ -> {Stat n ; |I}+

{Stat ";"}*x ";" {Stat ";"}x -> {Stat ";"}* {left}

-> {Stat n;u}*

{Stat ";"}+ -> {Stat ";"}*
priorities
{left :

{Stat n ; n}+ n ; n {Stat n ; n}+ -> {Stat n ; u}+ {left}

{Stat n ; ll}+ n ; n {Stat n ; H}* -> {Stat n ; |I}+

{Stat n ; ll}* n ; n {Stat n ; H}+ -> {Stat n ; |I}+

{Stat ";"}x ";" {Stat ";"}x -> {Stat ";"}* {left}
>

{Stat ";"}+ -> {Stat ";"}x*

We see that the meaning of the operators is expressed by means of extra pro-
ductions. Observe how regular expressions are used as target symbols of pro-
ductions. O

module Regular-Sdf-Normalization
imports Regular-Sdf-Syntax®-2-! Priority-Sdf-Syntax®-!-!

Literals-Sdf-Syntax”*-* Kernel-Sdf-Normalization”3-3
exports

context-free syntax

“r[” Grammar “]” — Grammar

“r[” Symbols “]” — Grammar

alt(Symbol, Symbol) — Grammar

tup(Symbol) — Symbols

perm(Symbols) — Productions

perm3(Symbols, Symbols) — Productions
equations

The function r[_] adds defining productions for each regular expresssion occur-
ring in one of the productions of the grammar. Existing productions are not
affected.

[1] r[G] = G r[a] when {a} = symbols(G)

Recall that the function ‘symbols’, defined in §7.3.2, gives the set of all symbols
in a grammar. The function r[_] generates a grammar for each of the regular
expressions in the list of symbols.

[2]] =0
[3] rlat] =rfa*] r[87]

Concatenation The regular expression () is a symbol that abbreviates the
concatenation of the symbols a.

[4] r[()] = syntax — ()

169

8 / DISAMBIGUATION AND ABBREVIATION

p=Aat =5 (Aat)
r[(A a™)] = syntax pr[A a™]

[5]

Note that r[.A a*] recursively produces the productions for regular expressions
in the list of symbols A a™.

Alternative The alternative A|B denotes either A or B. We could thus define
r[A|B] to yield the productions A — A|B and B — A|B. However, if one of
the alternatives is again an alternative, an unnecessary chain A — A|B and
A|B — A|BIC is created. We would rather have A — A|B|C. Therefore, we
define

[6] r[A | B] = alt(A | B, A | B)

where the function ‘alt’ unpacks the alternative until a symbol is reached that
is not an alternative.

[7] alt(Bl | Bz, A) = alt(Bl, A) alt(Bg, ./4)
8] alt(B, A) = syntax B - A r[B] otherwise

Optional The optional construct A? is either empty or A.

= = A?)
r[A?] = syntax p; p, r[A]

[9]

Iteration The iteration operator A+ denotes lists of one or more A’s, i.e.,
either A or A Aor A A Aor.... The iteration Ax denotes a list of zero or
more A’s, i.e., € (empty) or Aor A Aor A A Aor... There are several ways to
define such lists with productions. It is not sufficient to define a list by means
of the productions

— Ax A= A+
A+ — Ax A+ A= A+

The symbols Ax and A+ can be the right-hand side of any production, i.e., lists
can be the result of arbitrary functions. Therefore, an A% expression can also
contain function calls and variables. For instance, if a grammar contains the
production

yield(Tree) -> Symbolx

then yield(T1) yield(T2) should also be an expression of type Symbol* (with
T1 and T2 expression of type Tree). We have the following rules for the com-
position of list expressions.

0. A single A is an A+.

1. An A+ followed by an A+ is an A+.

170

Regular Expressions | 8.2

2. An A+ followed by an Ax is an A+.

3. An Ax followed by an A+ is an A+.

4. An Ax followed by an Ax is an Ax.

5. An Ax can be empty.

6. An A+ is an Ax.
Productions expressing these rules are generated by the following equation.
The priorities section declares the concatenation operators to be mutually left-

associative. The priority prevents that the empty production and the injection
are used vacuously.

Do A— A+,

Py = A+ A+ — A+ {left},
Py = A+ Ax = A+,

p3 = Ax A+ - A+,

py = Ax Ax — Ax {left},
ps = - A*;

ps = A+ — Ax

10
o r[A«] = syntax py p; P> Ps P4 P5 Pe

priorities {left : p; py p3 P4 }> {Ps Ps} r[A]
) A+ = tAs]

Iteration with Separator The iteration with separator operators {A B}+
and {A B}x denote iteration of A’s separated by B’s. Their meaning is defined
analogously to A+ and Ax.

po = A= {AB}+,
p, = {AB}+ B {AB}+ — {A B}+ {left},
py = {AB}+ B {AB}x - {AB}+,

|

ps = {AB}x B{AB}+ — {AB}+,

py = {AB}x B{AB}x = {A B}x {left},
ps = — {AB}x,
2] ps = {AB}+ — {A B}«
r[{AB}«] = syntax po py Py ps P4 Ps P
priorities {left : p; py p3 ps}> pg r[A B]
[13] r[{A B}+] = r[{A B}«]

Constrained Iteration The iteration operator {A}n+ denotes the iteration
of at least n As. First of all we define that zero or more As corresponds to *
iteration and that one or more As corresponds to + iteration. For integers n > 2

171

8 / DISAMBIGUATION AND ABBREVIATION

we define {A}n+ in terms of {A}(n — 1)+, and eventually A+, by productions
of the form A {A}(n — 1)+ — {A}n+.

[14] {A} 0+ = Ax

[15] (A1 += A+

n>2=T,n—-1=n"p=A{A}n +—> {A} n+
r[{A} n+] = syntax pr[{A} n' +]

[16]

Constrained iteration is defined similarly for lists with separators.

[17] {AB}0 + = {AB}x
[18] {AB}1+={AB}+

n>2=T,n—1=n', p=AB{AB}n'+ > {AB}n+
r[{A B} n+] = syntax pr[{A B} n’ +]

[19]

Tuples For the definition of functions that return a tuple of values, new
sorts have to be invented. To give sensible types to tuples the notation A#B
is introduced. A symbol A;# ...#.A, denotes a tuple of A; ... A, expressions.
A tuple is written as (T4,... ,T,), where the T; are expresions of type A;.

<" Htup(A#B)H """ =a, p=a—->A#B
r[A # B] = syntax p r[o]

[20]

The auxiliary function tup[.] derives the syntax of the body of the tuple by
separating the symbols by commas.

[21] tup(A # B) = tup(A) + "," + tup(B)
[22] tup(A) = A otherwise

Sets The conventional notation for sets is a list of items between { and }.
The operator Set[.A] generates this notation such that if T} ... T, are expressions
of type A, then {T1,...,T,} is an expression of type Set[A].

a="{"{A","}x"}" p = a— Set[A]
r[Set[A]] = r[a] syntax p

23]

Functions Sometimes it is convenient to pass functions around as data. The
operator (a = B) can be used to give a type to functions. It denotes the sort of
functions from « to B. The operator generates syntax for the prefix application
of a function to an argument.

p = (Oé:>B) ||(|| o u)n - B
rf[(a = B)] = syntax p r[a B]

[24]

172

Regular Expressions | 8.2

Permutation The permutation symbol < a > denotes any concatenation
of the symbols in a, i.e., 8 < a > if 8 is a permutation of a.

[25] r[< a >] = syntax perm(a) r[a]

The function ‘perm’ generates the productions for all permutations of a set of
symbols. In case the permutation consists of two elements it generates the two
productions directly. In case of more elements the function ‘perm3’ is used to
generate permutations.

[26] perm() = - <K >

[27] perm(A) = A > < A >

[28] perm(AB)=AB > < AB>» BA-> <K AB>
[29] perm(a) = perm3(,«) when |a|>2 =T

For each symbol in the list a production is generated with that symbol first and
a permutation of the other symbols following it.

(30] perm3(a,) =

p=A<KLaf>-><KLaAf>

131] perm3(a, A 8) = p H perm3(a A, 8) H perm(a f3)

It should be observed that this is not a very efficient way to implement permu-
tation constructs. It should be adequate for permutations of 2 or 3 elements,
though. What is needed in addition to the generation of these productions,
is the normalization of the parse trees over these productions to a form that
lists the elements in a fixed order such that semantic functions do not also
have to deal with all permutations. Cameron (1993) describes an extension of
LL(1) parsing for permutation operators. An alternative approach suggested by
Cameron (1993) is the introduction of an intermediate symbol representing the
union of the symbols in the permutation and a check after parsing that each
symbol in the permutation is represented exactly once.

Discussion We could have handled several of these regular expressions by
translating them to other regular expressions. For instance, optionality can
be expressed by means of empty and alternative via the equation A? = ()|.A. In
the specification above we have chosen not follow this route. Except for a few
cases involving constrained iteration.

8.2.3 Equality of Parse Trees with Lists

Since all new constructs are expressed by means of existing constructs—all reg-
ular expressions are expressed by means of generated context-free productions—
there is no need to extend the definition of well-formedness of parse trees.

We do extend the definition of the equality of trees. This definition makes lists
equal modulo associativity of the concatenation operators. It is the basis for

173

8 / DISAMBIGUATION AND ABBREVIATION

matching modulo associativity. We give the equations that should be considered
in matching, where a variable a™ (a*) ranges over all constructs of type A+ (Ax)
and €4 denotes the tree constructed with — Ax. Empty sublists are units for
concatenation and can be removed.

eqat =at at eq=at

€qa* =a* a* €4 =a*
Injections from A+ into A% can be removed or lifted over concatenations.
[af — A%] [af — A%] = [(a] af) = Ax]
atf [af = Ax] = af o
[af = Ax] af =af af

Right-associative concatenations are equal to left-associative ones. Each of these
expressions involves different concatenation operators.

af (af a3) = (af a3) a3 aj (a3 ag) = (af af) a3
aj (a3 ag) = (af a3) ag aj (af a3) = (af a3) a3
af (a3 a3) = (af a3) a3 af (a3 a3) = (ai a3) a3
af (af a3) = (af a3) a3 aj (a3 a3) = (af a3) a3

8.3 Lexical and Context-Free Syntax

The syntax of a programming language is usually divided into two levels: lexi-
cal syntax and context-free syntax. Lexical syntax is the syntax of the tokens,
the words of the language, e.g., identifiers, numbers and keywords. Context-free
syntax is the syntax of the sentences of a language, e.g., expressions, statements,
type declarations and function definitions. The division affects both language
definition and implementation. Conventionally lexical analysis is restricted to
grammars that can be recognized by finite automata, whereas context-free anal-
ysis is implemented with push-down automata. Indeed, it is sometimes not clear
whether the division is motivated by the implementation or by an inherent con-
cept of lexical syntax.

In many formalisms the separation is even physical; lexical and context-free
syntax are defined with completely different formalisms that are written in sep-
arate files. For instance, YACC and METAL use LEX to define lexical syntax.
This means lexical definitions in the form of a number of regular expressions
are defined in a separate file. Context-free and lexical definitions share a dec-
laration of token symbols that constitutes the interface between the lexical and
context-free level. The syntax definition formalism of PCCTS uses a lexical syn-
tax similar to LEX, but provides a mechanism to include token definitions in the
same file as the context-free syntax definition. In SDF lexical and context-free
syntax are integrated in one formalism, but still uses different semantics for
both. All these approaches have in common that the distinction between lexical

174

Lexical and Context-Free Syntax / 8.3

and context-free syntax is identified with the distinction between regular and
context-free grammars.

In SDF2 the inherent distinction between the two categories is that context-
free symbols can be separated by layout, while lexical symbols cannot. Beyond
that difference there is none. The exact same features should be available for
the definition of lexical and context-free syntax.

New in this approach is that we provide a uniform notation for the defini-
tion of lexical and context-free syntax by means of context-free productions.
Grammars for lexical and context-free syntax are normalized to the context-
free grammars of the kernel. The distinction between lexical and context-free
syntax is completely expressed in the resulting productions.

By treating lexical and context-free syntax identically, every extension that is
defined for one is also applicable to the other. For instance, in §8.1 we defined
priorities for disambiguation. In Heering et al. (1989) these are only defined
for context-free syntax. As result of our approach we can also provide lexical
disambiguation through priorities. Similarly the regular operators introduced
in §8.2 can be used in the definition of both lexical and context-free syntax.

In addition to lexical syntax we also define variables. Variable schemes are
used in the specification of the semantics of a language. We also introduce the
notion of lexical variables that range over constructs introduced in lexical syntax
grammars.

The extension in this section is called Basic Sdf because it covers the basic
idea of the original SDF: integration of lexical and context-free syntax in one
formalism.

Example 8.3.1 The following definition introduces a simple expression lan-
guage with variables and addition.

sorts Id Exp
lexical syntax

[\ \t\nl] -> LAYOUT

[a-z]+ -> Id
context-free syntax

Id -> Exp

Exp "+" Exp -> Exp {left}
variables

[i] ->1Id

[xyz] -> Exp

The lexical syntax section defines the syntax of layout as spaces, tabs and new-
lines and identifiers as lists of one or more lowercase letters. The division in
lexical and context-free syntax entails that whitespace can occur between ex-
pressions, but not between the letters of an identifier.

To illustrate the power of the integration of lexical and context-free syntax
we can extend the layout convention above by introducing C-like comments
consisting of a string of comment words between /* and */, as follows:

175

8 / DISAMBIGUATION AND ABBREVIATION

sorts ComWord Comment
lexical syntax
I\ \t\n\|\/*]+ -> ComWord
context-free syntax
"/*%" ComWord* "x/" —> Comment
Comment -> LAYOUT

Because the definition of comments is part of the context-free syntax, comment
words can be separated by layout, including layout. This means that we have
specified nested comments, which is useful when commenting out pieces of code
already containing comment.

We can extend the defition of comments further to include syntactically cor-
rect expressions between bars as comment words.

context-free syntax
"|" Exp "|" -> ComWord

For instance, the text

a + b /x an expression |x + y| denotes
the addition of |x| and |y| */ + ¢

is a syntactically correct expression over the grammar above denoting the ex-
pression a+b+c with some comment after b. In the conventional setting of a sep-
arate scanner and parser this would require a call to the parser from the scanner.
One application of syntactically correct program fragments in comments is in
typesetting programs for documentation. The typesetting algorithms applied
to the real program text can also be applied in typesetting the expressions in
comments and crossreferences to program variables can be extended to variables
occurring comments. a

8.3.1 Syntax

The grammar constructors ‘lexical syntax’ and ‘context-free syntax’ introduce
the syntax of lexical constructs and context-free constructs, respectively. The
grammar constructors ‘variables’ and ‘lexical variables’ introduce the syntax of
variables over context-free symbols and variables over lexical symbols, respec-
tively. The symbol constructors (_~LEX), (_.-CF) and (_-VAR) are used to indicate
lexical symbols, context-free symbols and variable symbols, respectively. The
special symbol LAYOUT is used to define layout.

module Basic-Sdf-Syntax
imports Kernel-Sdf-Syntax”-3-!

exports
context-free syntax
“lexical” “syntax” Productions — Grammar
“context-free” “syntax” Productions — Grammar
“variables” Productions — Grammar
“lexical” “variables” Productions — Grammar

176

Lexical and Context-Free Syntax / 8.3

“<” Symbol “-CF” “>” — Symbol
“<” Symbol “-LEX” “>” — Symbol
“<” Symbol “-VAR” “>” — Symbol
“LAYQUT” — Symbol

8.3.2 Normalization

The normalization function defined below expresses the meaning of lexical and
context-free syntax by merging them into a single grammar. To avoid interfer-
ence between the two levels, the symbols in the lexical syntax are renamed into
(.-LEX) symbols and the symbols in the context-free syntax are renamed into
(_~CF) symbols. These ideas are illustrated in the following example.

Example 8.3.2 The grammar in Example 8.3.1 is mapped to the following
grammar in which lexical and context-free syntax have been merged.

sorts Id Exp ComWord Comment

syntax
<[a-z]+-LEX> -> <Id-LEX>
<Id-LEX> -> <I4-CF>
<Id-CF> -> <Exp-CF>
<Exp-CF> <LAYOUT?-CF> "+"
<LAYOUT?-CF> <Exp-CF> -> <Exp-CF> {left}

[i] ->
<<Id-CF>-VAR> ->
[xy=z] ->
<<Exp-CF>-VAR> ->

<[\ \t\n\|\047*]+-LEX>

<ComWord-LEX>

"|" <LAYOUT?-CF> <Exp-CF>
<LAYOUT?-CF> "|"

"/x" <LAYOUT?-CF> <ComWord*-CF>
<LAYOUT?-CF> "x/"

[\ \t\n]

<LAYOUT-LEX>

<Comment-CF>

<LAYOUT-CF> <LAYOUT-CF>

<LAYOUT-CF>

<<Id-CF>-VAR>
<Id4d-CF>
<<Exp-CF>-VAR>
<Exp-CF>
<ComWord-LEX>
<ComWord-CF>

<ComWord-CF>

<Comment-CF>
<LAYOUT-LEX>
<LAYOUT-CF>
<LAYOUT-CF>
<LAYOUT-CF> {left}
<LAYOUT?-CF>
<LAYOUT?-CF>

The symbols in lexical productions are renamed into (_-LEX) symbols. The
symbols in context-free productions are renamed into (_-CF) symbols. The
connection between lexical and context-free syntax is made by an injection from
each (A-LEX) symbol into the corresponding {.A-CF) symbol. m|

The following module makes these ideas formal by introducing the normal-
ization function b[.].

177

8 / DISAMBIGUATION AND ABBREVIATION

module Basic-Sdf-Normalization
imports Basic-Sdf-Syntax®3-! Regular-Sdf-Syntax®-2! Priority-Sdf-Syntax®-1-1

Kernel-Sdf-Normalization”-3-3
exports
context-free syntax

“b[” Grammar “]” — Grammar
“baux[’ Grammar “]” — Grammar
“<” Symbols “~-LEXs” “>” — Symbols
“<” Production “~-LEX” “>” — Production
“<” Productions “~LEXs” “>” — Productions
“<” Grammar “-LEX” “>” — Grammar
“<” Symbols “~CFs” “>” — Symbols
“<” Production “-CF” “>” — Production
“<” Productions “-CFs” “>” — Productions
“<” Grammar “-CF” “>” — Grammar
“<” Productions “~VARs” “>” — Productions
“<” Productions “~LEXVARs” “>" — Productions

equations

The normalization function b[.] integrates lexical and context-free syntax. It
applies the auxiliary function baux to each subgrammar of a grammar to trans-
form lexical and context-free sections into normal production sections by re-
naming symbols and separating context-free symbols by (LAYOUT?-CF), which
entails that two tokens can optionally be separated by (LAYOUT?-CF). Context-
free layout is a list of lexical layout. Concatenation of layout is defined by the
production added by the function b[_].

p = (LAYOUT-CF) (LAYOUT-CF) — (LAYOUT-CF) {left}
bl[g]] = syntax p bauxl[g]]

[1]

The default rule declares that unless otherwise stated baux does not affect a
grammar. Below we deal with the exceptions.

(2] baux[0] =0
3] baux[G1 G2] = baux[F1] baux[G-]
4] baux[G] =G otherwise

Lezical Syntaz Lexical syntax grammars are translated to normal syntax gram-
mars by encoding the symbols of the grammar to (A-LEX) symbols. Further-
more, for each symbol appearing in a lexical syntax section an injection from
the lexical into the context-free symbol is added.

[5] baux[lexical syntax p*] = (syntax p*-LEX)

6] (a-LEXs) = when a =

178

Lexical and Context-Free Syntax / 8.3

[7] (A-LEXs) = {A-LEX)

[8] (at BT-LEXs) = (o -LEXs) H (81 -LEXs)

[9] (@ = A $-LEX) = (a-LEXs) — (A-LEX) $§

[10] (@ = A $-LEXs) = (@ — A $- LEX) (A-LEXs) — (A-CF)
[11] (p*-LEXs) = when p*

[12] (p;" p -LEXs) = (p;"-LEXs) H (p, -LEXs)

[13] (syntax p*-LEX) = syntax (p*-LEXs)

[14] (G1 G2-LEX) = (g1 LEX) (G2-LEX)

[15] (0-LEX) =

Context-free Syntaxr Context-free syntax is treated similarly to lexical syntax.
All symbols in the production are mapped to {A-CF) symbols. The impor-
tant difference is that each adjacent pair of symbols in the left-hand side of a
production is separated by the symbol (LAYOUT?-CF).

[16] baux[context-free syntax p*] = (syntax p*-CF)
[17] (a-CFs) = when a =

[18] (A-CFs) = (A-CF)

[19] {at B1-CFs) = (at-CFs) + (LAYOUT?-CF) + (3+-CFs)
[20] (a = A $-CF) = (a-CFs) — (A-CF) $

[21] (p~CFs) = (p-CF)

[22] (p -CFs) = when p*

[23] {pi" py"~CFs) = (p," ~CFs) + <P2+ -CFs)

[24] (syntax p*-CF) = syntax (p*-CFs)

[25] (G1 G2-CF) = (G1-CF) (G»-CF)

[26] (b-cF) = 0

Variables Variables and lexical variables grammars introduce tokens that have
the status of variables. The symbol constructor (A-VAR) is used to denote
variables over the symbol 4. The left-hand sides of variable productions are
interpreted as lexical syntax. The lexical value produced by such a left-hand
side is given the type of a variable over the symbol in the right-hand side of
the production. For each production in a variables grammar, two productions
are generated. The first interprets the left-hand side of the production as a
lexical pattern, i.e., the symbols on the left-hand side are lexical symbols and
no layout between symbols can occur. The right-hand side is ((.A-CF)-VAR)
indicating that the pattern is a variable over the context-free symbols A. The
second production injects (A-CF) variables into (4-CF) such that a variable can
occur whereever an (A-CF) can occur.

[27] baux[variables p*] = syntax (p*-VARs)

[28] (-VARs) =

[29] {p;" p; -VARs) = (p;"-VARs) + (p, -VARs)
[30] (a = A $-VARs) = (a-LEXs) — ({A-CF)-VAR) $

({A-CF)-VAR) — (A-CF)

179

8 / DISAMBIGUATION AND ABBREVIATION

Lexical variables are treated similarly, but their result sort is the corresponding
lexical sort.

[31] baux[lexical variables p*] = syntax (p*-LEXVARs)

[32] (-LEXVARs) =

[33] (p;" p;m-LEXVARs) = (p;"-LEXVARs) + (p; -LEXVARs)
[34] (@ = A $-LEXVARs) = (a-LEXs) — ((A-LEX)-VAR) $

({A-LEX)-VAR) — (A-LEX)

Ordering Grammars The following equations specify the ordering of grammars,
where the following order is obtained: lexical syntax, context-free syntax, lexical
variables, and variables. We only show two of the equations, the other cases are

similar.

35] G1 = context-free syntax pj, G2 = context-free syntax p;
G1 © Gy = (context-free syntax p} pi, 0)

36] G1 = context-free syntax pj, G» = lexical syntax p3

G1 © Gy = (lexical syntax pj, context-free syntax pj)

8.3.3 Parse Trees

Since we have expressed the meaning of lexical syntax and context-free syntax
in terms of normal syntax productions, we do not have to extend the definition
of parse trees, except for the encoding of symbols and grammars in the ATerm
format. See §A.2 for the encoding and decoding of the newly introduced con-
structs. This entails that trees for lexical and context-free syntax have the same
form. In particular, the structure assigned to lexical tokens by the grammar is
retained in parse trees for tokens.

We will refine the equality predicate on trees such that layout is ignored. In
considering whether two trees are equivalent it is likely that we do not want
to consider layout. For this purpose it is not required to first translate a parse
tree to an abstract syntax tree. It suffices to define two arbitrary layout trees
as equivalent, as is done in the following extension of the equality predicate on
trees.

module Basic-Sdf-Equality
imports Kernel-Sdf-Equality”-3-® Basic-Sdf-ATerms#-2-2

Regular-Sdf-ATerms“-2-2
equations

symbol(type(T1)) = (LAYOUT-CF), symbol(type(7Ts)) = (LAYOUT-CF)
Th=T, =T

[1]

symbol(type(T;)) = (LAYOUT?-CF), symbol(type(T2)) = (LAYOUT?-CF)
T1 = TZ =T

180

Restrictions /[8.4

8.3.4 Discussion

Lexical Layout In some languages, such as FORTRAN, tokens can contain some
kind of layout. In Heering et al. (1989) the symbol IGNORE is introduced for this
purpose. This can be dealt with by separating the symbols in a lexical produc-
tion by a lezical layout symbol just as this is done with context-free productions.
This is not done in the current version because for most languages this is not
necessary, but it is straightforward to add this feature to the normalization
above.

Implementation A conventional implementation of parsers for lexical and context-
free syntax is based on a separate scanner and parser. Such an implementation
can be achieved for grammars as introduced here by separating productions for
(.-LEX) and (_-VAR) symbols from productions for {_-CF) symbols and gener-
ating a scanner based on finite automata for the first set of productions and
by generating a parser for the second set of productions based on push-down
automata. Scanner and parser communicate through some shared buffer-like
data-structure. A requirement for this approach is that the lexical productions
form a regular grammar. This can be enforced by specifying static constraints
on lexical productions.

The parser generator for SDF2 described in Chapter 3 does not depend on
a separate scanner. Instead ‘lexical analysis’, i.e., parsing according to the
productions for (_~LEX) symbols, is incorporated in the parser. To cope with
ambiguities and lookahead, generalized LR parsing is used. A similar approach
is described by Salomon and Cormack (1989, 1995) under the name scannerless
parsing using conventional LR techniques.

8.4 Restrictions

When a distinction is made between lexical and context-free syntax, lexical
ambiguities have to be solved before tokens can be sent to the parser. This is
usually done by applying rules such as ‘prefer longest match’, ‘prefer keywords’
and ‘prefer variables’.

By removing this distinction, as we did in the previous section, lexical am-
biguities can be dealt with in the same way as context-free ambiguities. For
example, in §8.1 we defined disambiguation by priorities, which applies both
to lexical and context-free syntax. Furthermore, many lexical ambiguities are
solved by considering the context in which tokens occur. For instance, the well-
known problem of distinguishing an occurrence of the subrange 1..10 from two
consecutive occurrences of the real numbers 1. and .10 in Pascal is solved au-
tomatically, because ranges and reals do not occur in the same context in the
grammar.

However, not all lexical ambiguities can be solved by context or by means of
priorities. Some lexical ambiguities need to be solved by rules such as ‘prefer
longest match’ and ‘prefer literals’.

In this section we introduce two extensions of context-free grammars that are

181

8 / DISAMBIGUATION AND ABBREVIATION

aimed at lexical disambiguation: follow restrictions and reject productions. A
follow restriction .A-/-cc declares that the symbol A can not be followed by any
character in the character class cc. A reject production a — A {reject} declares
that any tree of type A should be rejected if there exists a tree with the same
yield that has this reject production as root production. These constructs suffice
for expressing most lexical disambiguation rules.

Example 8.4.1 The definition of a simple expression language with nested
comments in Example 8.3.1 contains two lexical ambiguities. First, the defini-
tion of lists of comment-words ComWord* is ambiguous. The string abc can be
one comment word (a list of characters from the class [\ \t\n\|\/]), but it
can also be considered as a list of two comment-words ab and c or as a and bc or
as a and b and c. We want to express that the longest possible comment-word
should be selected. Second, the definition of identifiers and variables for identi-
fiers and expressions overlap, i.e., x can be either an identifier or an expression
of sort Exp. Here we want to express the rule ‘prefer variables’ that selects a
variable over a lexical. These ambiguities are solved by the following rules:

lexical restrictions
ComWord -/- ~[\ \t\n\|\/]

syntax
<<Id-CF>-VAR> -> <Id-CF> {reject}
<<Exp-CF>-VAR> -> <Id-CF> {reject}

The first rule states that a comment-word should not be followed by any of the
characters in [\ \t\n\|\/]. This solves the problem because it rules out all
parses, except the one in which abc is one word. The last two rules state that
variables should be preferred over identifiers. O

8.4.1 Syntax

A follow restriction has the form A--cc. Follow restrictions are declared in a
grammar starting with the keyword ‘restrictions’ followed by a list of restric-
tions. A reject production is a normal production attributed with the attribute
‘reject’.
module Restrictions-Sdf-Syntax
imports CC-Sdf-Syntax”*-2
exports

sorts Restriction Restrictions

context-free syntax

Symbols “/” CharClass — Restriction

Restriction* — Restrictions

“restrictions” Restrictions — Grammar

“reject” — Attribute
variables

“restr”[0-9']%* — Restriction
“restr«”[0-9']* — Restrictionx

182

Restrictions /[8.4

“restr+”[0-9']* — Restriction+

8.4.2 Projection

The function ‘R’ gives the restrictions of a grammar. The function 7 4 looks up
the restrictions for some symbol.

module Restrictions-Sdf-Projection
imports Restrictions-Sdf-Syntax®-4-1
exports
context-free syntax
Restrictions “H” Restrictions — Restrictions {right}

“R” (Grammar) — Restrictions
m “” Symbol “(” Restrictions “)” — CharClass
equations

Concatenation of restrictions.
[1] restry H restry = restr] restr;

The restrictions of a grammar.

2] R(restrictions restr*) = restr*
3] R(G1 G2) = R(G1) + R(G2)
4] R(G) = otherwise

The restrictions for a symbol.

T4() =
) = w4 (restr)
cc V 4 (a - cc restr*)

A(a + ccrestr*) otherwise

(5])
[6] 7w A(- cc restr*) =
[7] T A(A a -+ cc restr™)
8] wA(B a + cc restr*)

8.4.3 Normalization

No special normalization is needed for restrictions except the normal ordering
and merging of grammars.

module Restrictions-Sdf-Normalization

imports Restrictions-Sdf-Syntax®4-! CC-Sdf-Normalization™
equations

Merging and ordering of grammars.

4.2

1] restrictions restrf < restrictions restri = (restrictions restr® restrs,)
1 2 1 25
2 restrictions restr* < syntax p* = (syntax p™*, restrictions restr™
y p Y b,

183

8 / DISAMBIGUATION AND ABBREVIATION

8.4.4 Discussion

The disambiguation rules presented above are derived from similar rules intro-
duced by Salomon and Cormack (1989). The adjacency restriction of Salomon
and Cormack (1989) is more general. It has the form A-/-B and declares that
symbols A and B should not be adjacent. Since this may require arbitrary
long lookahead, we have chosen for the simpler follow restrictions, which can be
implemented by restricting the lookahead of productions. The implementation
of reject productions in SGLR parsing described in Chapter 3 is more general
than the implementation based on noncanonical SLR(1) parsing of Salomon and
Cormack (1989).

We have not presented the interpretation of follow restrictions and reject
productions as disambiguation devices. Follow restrictions can be interpreted
as an extension of the well-formedness predicate on parse trees. If a follow
restriction applies to a symbol, for any tree with that symbol as type, the
character immediately next to the right-most character of its yield should not
be contained in the restriction. For a discussion of the semantics of reject
productions see Chapter 3.

In the current situation lexical disambiguation rules have to be invented by the
user. In SDF lexical disambiguation is completely taken care of in the scanner
by means of a number of heuristics. These heuristics do cause problems in a
number of cases. Therefore, it is attractive to have complete control over lexical
disambiguation as is provided by restrictions and reject productions introduced
here. However, it would be desirable if for most cases the necessary restrictions
could be derived automatically from the grammar. Although some schemes have
been considered, it is not yet clear how the derivation rules should be defined.

184

9

Renaming and Modularization

In this chapter we introduce a module mechanism for reusing parts of syntax
definitions. In order to adapt imported modules to specific applications and
to avoid name clashes, a renaming mechanism is provided that can be used to
rename symbols and productions. The renaming mechanism is also used in the
definition of symbol aliases that can be used to define abbreviated names for
large regular expressions. Renamings are also used to define symbol parameter-
ization of modules.

9.1 Renamings

In the previous sections we have presented a number of features that enable more
concise definition of syntax than plain context-free grammars. The grammars
that can be defined are long monolithic lists of productions. To promote reuse
of grammars we will introduce in §9.3 a module layer on top of grammars, such
that parts of a language definition can be reused in various other definitions.
To make the opportunities for reuse even greater we introduce here a renaming
operator on grammars. Renamings enable the adaptation of a generic grammar
to specific needs by renaming sorts and productions. A renaming is either
a symbol renaming A = B that renames A to B or a production renaming
p1 = p2 that renames p; to pa. For example, the renaming

[Key => Var Value => Term Table => Subst
lookup(Table, Key) -> Value
=> Subst "[" Var "]" -> Term]

specifies the renaming of symbols Key and Value to Var and Term, respec-
tively, and the renaming of the production lookup(Table, Key) -> Value to
Subst "[" Var "]" -> Term.

Once we have defined renamings on grammars we can apply them in several
situations: renaming of imported modules, symbol parameters of modules and
symbol aliases. These will be the subject of the next sections.

185

9 / RENAMING AND MODULARIZATION

9.1.1 Syntax

A renaming is a list of symbol renamings of the form A = B and production
renamings of the form p; = ps.

module Renaming-Sdf-Syntax
imports Kernel-Sdf-Syntax”-3-1
exports
sorts Renaming Renamings
context-free syntax

“[” Renaming* “]” — Renamings

Symbol “=" Symbol — Renaming

Production “=" Production — Renaming
variables

“p"[0-9']* — Renamings

“p"“x”[0-9']%* — Renamingx

“p” “47[0-9'* — Renaming+
The only requirement on production renamings is that if a - A = 8 — B
is a renaming, then a and 3 should be similar, i.e., the non-terminal parts
should correspond. This entails that production renamings can only be used to
rename literals between the arguments—the ‘syntax’—and not the order of the
arguments.

9.1.2 Projection
We define two projection functions for looking up the value of a symbol or a
production in a list of renamings.

module Renaming-Sdf-Projection
imports Renaming-Sdf-Syntax®-!-!

exports
context-free syntax
Renamings “H” Renamings — Renamings {right}
“r” “ Symbol “(” Renamings “)” — Symbol
“r” « Production “(” Renamings “)” — Production
“(” Symbols “=” Symbols “)” — Renamings
equations

Concatenation of renamings.

[1] [p1] + [p3] = [pi p3]

Looking up the renaming of a symbol in a list of renamings.

2 ralA= B p?) = B
[3] 7 4([A" = B p*]) =7 4([p*]) otherwise
[4] mallp=p' p*]) = 7allp”]

)

Renamings / 9.1

Looking up the renaming of a production in a list of renamings.

[6] () =rp

[7] mo(lp=p' p*]) =p'

(8] To s Aslla > A =>B2B p*)=—>8B$

[9] ﬂp([p’ =p" p*]) = ﬂp([p*]) otherwise
[10] mp([A = B p*]) = mp([p*])

[11] (=)=
[12] (=)=
(13] (=8)=]
[14] (Aa=>Bp)=[A= B8]+ (a=p)

This will be used for the instantiation of a list of formal parameters with a list
of actual parameters.

9.1.3 Normalization

Now we can define the application of a renaming to a grammar. For each sort S
we define an application function (S) Renamings — S that applies a renaming
to constructs of sort S. We start by defining the renaming of symbols and
productions. The rest is mainly a distribution of the renamings function over
the constructs building a grammar.

module Kernel-Sdf-Renaming
imports Renaming-Sdf-Projection®!-? Kernel-Sdf-Projection”
exports
context-free syntax
“(” Symbol “)” Renamings — Symbol
“[” Symbol “]” Renamings — Symbol
“(” Symbols “)*” Renamings — Symbols
“(” Production “)” Renamings — Production
“(” Productions “)*” Renamings — Productions
“(” Grammar “)” Renamings — Grammar
equations
Renaming a symbol. If the symbol is defined in the renaming it is replaced by

3.2

its value in the renaming. Otherwise, the renaming is applied recursively to the
subsymbols of the symbol, which is done by the function []p.

[1] (A) p=DB when my(p) =B, A#B
2] (A) p=[A] p otherwise

Renaming a production works similarly. If the production is defined in the
renaming it is replaced by its value. Otherwise, its symbols are renamed.

(3] (p) when 7,(p) =p', p' #p

p=1p'
[4] (@ A$)p=(a)xp— (A) p$ otherwise 187

9 / RENAMING AND MODULARIZATION

For all other grammar constructs, renaming is a homomorphism that applies
the renamings to symbols and productions contained in the structure.
Renaming lists of symbols.

[5] (a)x p= when a=
[6] (@ BT)xp=(a®)xp+ (BF)xp
[7] (A)xp=(A)p

Renaming lists of productions.

(8] (p)xp=(p)p
[9] (pi)x p= when p{ =
[10] (pi o)xp=(p;")xp+ (p) p

Renaming grammars.

[11] @) p=0
[12] (G1 G2) p=1(G1) p(G2) p
[13] (syntax p*) p = syntax (p*)* p

The application of a renaming to a renaming denotes the composition of the
renamings.

module Renaming-Sdf-Renaming
imports Kernel-Sdf-Renaming®-!-3
exports

context-free syntax

“(” Renamings “)” Renamings — Renamings

equations
A renaming p, applied to a renaming p; (p1)p2 denotes the composition of the
renamings, i.e., (z)(p1)p2 = ((z)p1)p2- This can be expressed by means of a
single renaming by renaming the targets of p; with ps and adding ps at the end
of the list of renamings.

(1] Me=pr
[2] (A= Bp*])p=[A= (B)p] # ([p*]) p
(3] (lp=>p' pDe=k= @)+ (p*]r

For each of the extensions of the kernel we have to extend the renaming functions
to the new constructors. See §A.3 for the specification of these extensions.
9.1.4 Renaming Trees

If well-formed trees exist over a grammar that is renamed, the trees have to be
renamed as well, if they have to be reused in the same context as the renamed
grammar. For example, if equations over a grammar are defined, the equations

188

Renamings / 9.1

must be renamed as well. Therefore, we extend the definition of renaming to
parse trees.

module Renaming-Sdf-Trees
imports Kernel-Sdf-Trees”->5 CC-Sdf-Trees”-%¢ Basic-Sdf-Trees
Regular-Sdf-Trees Kernel-Sdf-Renaming?-1-3

Literals-Sdf-Normalization”*3
exports

context-free syntax
“(” ATerm “)” Renamings — ATerm
rnargs(ATermList, ATermList) — ATermList

mktree(Literal) — ATerm
chartrees(Symbols) — ATermList
equations

Renaming an application. If the production is defined in the renaming, rename
the arguments and then rename the literals in the argument terms according to
the new production.

aterm((production(Prod)) p) = Prod’, Prod' # Prod,
(Args) p = Args', rnargs(args(Prod'), Args') = Args"
(appl(Prod, Args)) p = appl(Prod’', Args")

[1]

If the production is not defined in the renaming, then only rename the argu-
ments.

[2] (appl(Prod, Args)) p = appl(Prod, (Args) p) otherwise

Renaming is a homomorphism over the other tree constructors.

[3] (n)p=mn

[4] (amb(Args)) p = amb((Args) p)

[5] (T p=[] when TI=T[]

[6] (1)) p=[(D) P]

[7] ([T, Ts)) p=[(T) p, Ts'] when [Ts'] = ([T3]) p

Renaming the arguments.

[8] rnargs([], []) =[]

Insert literals of the new pattern.

symbol(first([Ts;])) = L
rnargs([Ts1], Tls) = mbktree(L) : rnargs(rest([Ts1]), Th)

[9]

Skip literals of the old tree.

symbol(type(first([Ts2]))) = L

[10] rnargs(Tlh, [Tsz]) = rnargs(Tl, rest([Ts2]))

189

9 / RENAMING AND MODULARIZATION

Copy layout from old tree to new tree if layout is requested in new pattern.
symbol(first([T's;])) = (LAYOUT?-CF),
symbol(type(first([Ts2]))) = (LAYOUT?-CF)
rnargs([Ts1], [Ts2]) = first([Ts2]) : rnargs(rest([Ts1]), rest([Tsz2]))

[11]

Insert empty layout in the new tree.

symbol(first([Ts;])) = (LAYOUT?-CF),
symbol(type(first([T]))) # (LAYOUT?-CF)
rnargs([Ts1], Tly) = appl(aterm(— (LAYOUT?-CF)), [])
: rnargs(rest([Ts1]), Th)

[12]

Skip layout of the old tree.

symbol(first(Tl)) # (LAYOUT?-CF),
symbol(type(first([T'sz]))) = (LAYOUT?-CF)
rnargs(Tl, [Tss]) = rnargs(Tl, rest([Ts2]))

[13]

In the other cases there is no layout or literal in either list. This means that
it concerns an argument tree that should be copied from the old tree to the
renamed tree.

[14] rnargs([Ts1], [Ts2]) = ﬁ:lslt([T.SQ]) : rnargs(rest([Ts1]), rest([Ts2]))

The function ‘mktree’ constructs a tree for a literal L, by constructing the
production according to the definition in §7.4.3 and by generating the list of
character codes.

chars(L) = a, aterm(a — L) = Prod

15
[15] mktree(L) = appl(Prod, chartrees(a))

From a list of singleton character classes generate a term list of integers repre-
senting the character codes.

[16] chartrees() =[]
[17] chartrees([c] @) = int(c) : chartrees(a)

9.1.5 Discussion

It would be desirable that renaming preserves well-formedness, i.e., if a tree
T is well-formed under some grammer G, it should also be well-formed when
renamed with some renaming p. That is, we want that

GET = (Gt (T)p

190

Renamings / 9.1

In fact we would like that renaming preserves the structure defined by a gram-
mar, i.e., renaming the trees generated by a grammar gives the same trees as
those generated by the renamed grammar:

(TI9Dp = TI(G)Al

Unfortunately, this is not the case for all renamings. If the argument sorts of
a production are renamed using a production renaming, but the sorts are not
renamed independently, the arguments of an application with that production
have the wrong type after renaming. For instance, the renaming

[E "+" E -> E => Set "&" Set -> Set]

will change the notation of addition on the sort E into a binary operator & on
the sort Set. Other constructs for sort E will still have type E after renaming,
including the arguments of the & operator, which will hence not be well-formed.
It is sufficient to require that in such cases the corresponding symbol renamings
are present as well, i.e., the renaming

[E => Set E "+" E -> E => Set "&" Set -> Set]

does preserve well-formedness.
Also the interaction between regular expressions and renamings spoils the
preservation property. For instance, consider the renaming

[{Int n’u}* => {Int n;u}*]

that is intended to rename lists of integers separated by commas into lists sep-
arated by semicolons. This will rename all symbols {Int ","}*, but it will not
rename the concatenation operators for this sort. The renaming

[{Int ","}* => {Int ";"}x*
{Int ","}* "," {Int ","}* -> {Int ","}x
=> {Int ";"}* ";" {Int ";"}x -> {Int ";"}x*
{Int n , l|}+ n , n {Int n , ll}* -> {Int n , ||}+
=> {Int n;n}+ nen {Int n;n}* -> {Int n;n}+
{Int n , ll}* n , n {Int n , ||}+ -> {Int n , ||}+
=> {Int n;n}* u;n {Int n;u}+ -> {Int n;u}+
{Int n’n}+ u’n {Int n,u}+ -> {Int n,u}+
=> {Int n;n}+ nen {Int n;u}+ -> {Int n;u}+
]

is a well-formedness preserving renaming that does have the intended effect.

In all these cases correct renamings can be given that will preserve well-
formedness and achieve the intended renaming, but these examples show that
care has to be taken when writing down renamings. Ideally we would like to
restrict the renamings such that the preservation property holds. It might also
be possible to complete a renaming to guarantee well-formedness preservation
as in the examples above. This is a matter for further study.

191

9 / RENAMING AND MODULARIZATION

9.2 Aliases

The regular expressions introduced in §8.2 provide a way to concisely declare a
number of productions without actually having to write them down. A problem
with these regular expressions is that they can become rather large. This is
a property that might make their use unattractive. Therefore, we introduce
symbol aliases. An alias declaration introduces a short name for a complicated
regular expression. All occurences of the alias are replaced by their meaning.
For example, the declarations

aliases
{Term ","}x -> Terms
{var ","}=x -> Vars

Set[(Var "|->" Term)] -> Subst

introduce Terms and Vars as aliases for lists of Term and Var, respectively, and
Subst as an alias for sets of pairs of variables and terms. This entails that all
operations generated for list constructs also apply to Terms and Vars and all
operations generated for sets apply to Subst.

Aliases are defined using the renamings of the previous section. An alias
A — B induces a grammar renaming [B = A], which is applied to the entire
grammar. Why then introduce this extra feature if we already have renamings?
Renamings apply to a fixed grammar. Only the grammar to which the renaming
is applied, including all imported grammars, is affected. An alias is a renaming
of a symbol that also affects all modules that import the alias.

9.2.1 Syntax

An alias grammar consists of a list of aliases of the form A — B that define the
symbol B to be an alias of symbol A.

module Alias-Sdf-Syntax
imports Kernel-Sdf-Syntax”-3-1
exports
sorts Alias Aliases
context-free syntax

“aliases” Aliases — Grammar

Symbol “—” Symbol — Alias

Aliasx — Aliases
variables

“al”’[0-9']%x — Alias
“al¥’[0-9']% — Aliask
“al7[0-9'] — Alias+

9.2.2 Projection

Concatenation of alias lists. Projection of the aliases and non-alias parts of a
grammar.

192

Aliases | 9.2

module Alias-Sdf-Projection
imports Alias-Sdf-Syntax®2-1
exports
context-free syntax
Aliases “H” Aliases — Aliases {right}

“Al”(Grammar) — Aliases
“Al” (Grammar) — Grammar
equations

The function ‘Al’ gives all alias declarations of a grammar, ‘A’ the grammar
without alias declarations.

[1] ali + oly = alf al;

[2] Al(aliases al*) = al*

(3] Al(g1 Ga) = Al(G1) + Al(G2)
[4] Al(G) = otherwise

[5] Al(aliases al*) = 0

[6] Al(gl 2) = Al(G1) Al(G2)

(7] Al(G) =G otherwise

9.2.3 Normalization

Aliases are defined by renaming all alias symbols to their defined meaning. The
function a[_] produces a renaming from the alias declarations in the grammar
and applies it to the non-alias parts of the grammar. The alias declarations
are then attached to the renamed grammar. This is done in order to keep the
following modular property:

a[[gl gz]] = a[[a[gl]] a[[g2]]]]

This entails that aliases can be replaced before flattening a module, after which
the aliases are still part of the grammar and keep their forward renaming prop-
erty.

module Alias-Sdf-Normalization
imports Alias-Sdf-Projection® 22 Kernel-Sdf-Normalization

Kernel-Sdf-Renaming®-!-3
exports

context-free syntax
“a]” Grammar “]” — Grammar

7.3.3

rn(Aliases) — Renamings
symbols(Aliases) — SymbolSet
equations

Replace all alias symbols by their definition by applying a renaming derived
from the alias declarations to the non-alias parts of the grammar.

[1] a[G] = aliases al* (AI(G)) rn(al*) when Al(G) = alt

193

9 / RENAMING AND MODULARIZATION

(2] a[G] =G otherwise

Build a renaming from a list of aliases. The target B of the alias declaration
A — B is renamed to the source A.

[3] rn() =]
[4] rn(A — B al*) = [B = A] + rn(al®)

The symbols occurring in an alias declaration.

[5] symbols(aliases al™) = symbols(al™)
[6] symbols(al*) = {} when al* =
[7] symbols(A — B al*) = {A B} U symbols(al™)

Merging and ordering of grammars.

8] aliases = ()
[9] aliases al] < aliases al; = (aliases al] al;, 0)
[10] syntax p* < aliases al™ = (aliases al*, syntax p*)

Aliases themselves can also be subject to renamings.

module Alias-Sdf-Renaming
imports Kernel-Sdf-Renaming®!-® Alias-Sdf-Projection®?-
exports
context-free syntax
“(” Aliases “)a” Renamings — Aliases
equations
Renaming of aliases.

2

1] (aliases al™) p = aliases (al*)a p

2] (al*)ap= when al* =

3] (A=Blap=(A)p—(B)p

4 (alt ol Yap = (alf Ya p + (abF o p

194

Modules / 9.3

9.3 Modules

In this section we introduce a module framework for grammars to support man-
agement and reuse of parts of the grammar of a language. A modular definition
consists of a list of named modules. Modules can be reused in other modules
by means of imports. The body of a module is a list of exported and hidden
grammars. Export and hiding provide a means to control what is visible from a
module and what is local to that module. Hidden syntax is useful when the syn-
tax definition formalism is coupled to a semantics formalism for the specification
of the semantics of languages. Hidden syntax then plays the role of auxiliary
functions. Since imports are abbreviations for grammars, an import can be
hidden or exported. Modules can be parameterized by a list of symbols. An
import can instantiate these parameters, although this is not required. Parame-
terization is an abbreviation for a renaming. When a module M[a] is imported
as M[f], the formal parameters [@] are renamed into the actual parameters [§].
An import can also be subject to a renaming of symbols and productions.

Example 9.3.1 (Aliases and Renaming) The following module defines the
syntax of tables. A table is defined as an alias for a set of mappings from keys
to values. The value assigned to a key can be looked up in a table using the
access function lookup.

module Tables
exports
sorts Key Value Table
aliases
Set[(Key "|[->" Value)] -> Table
context-free syntax
lookup(Table, Key) -> Value

Below we transform tables into mappings from variables to terms, thus obtaining
a representation for substitutions. This is achieved by renaming the sorts in
module Tables such that variables become the keys and terms the values in
tables.

module Substitutions
imports Terms
Tables[Key => Var Value => Term Table => Subst
lookup(Table, Key) -> Value
=> Subst "[" Var "]" -> Term]

exports

context-free syntax

Subst "(" Term ")" -> Term

The additional function applies a substitution to all variables in a term. O

Example 9.3.2 (Map) Using renaming a kind of polymorphic higher-order
functions can be expressed. The following module defines a function that maps

195

9 / RENAMING AND MODULARIZATION

a function over the elements of a list. The function is defined for a given A and
B that can be instantiated as needed.

module Map[A B]
exports
sorts A B
context-free syntax
(A => B) Myt ||(|| A* n)n -> B*

The disadvantage of this kind of polymorphism is that for each instance of a
polymorphic function, an explicit module import has to be done. |

Example 9.3.3 (Parameterized Modules) The following module defines the
syntax of a list of conditional equations preceded by the keyword ‘equations’.
This is the syntax of the equations part of an ASF+SDF module, which is
parameterized by the syntax of some language. For each sort, productions
defining the syntax of equations over that sort are defined. Note the use of the
constrained iteration operator to define the bar (Implies) between conditions
and conclusion as at least 3 equal signs.

module Equations
exports
sorts Tag Tagld CondEquation Equation Implies
Condition Equations
lexical syntax

{[\=1}3+ -> Implies
[a-z0-9A-Z\-]+ -> Tagld
aliases

{Condition ","}+ -> Conditions
context-free syntax

"equations" CondEquationx -> Equations
Tag (Conditions Implies)? Equation -> CondEquation
Tag Equation "when" Conditions -> CondEquation
"[" TagId? "1" -> Tag

Next we define generic syntax for sorts Equation and Condition as follows:

module X-Equations[X]
exports
sorts X Equation Condition
context-free syntax

X "=" X -> Equation
X "=" X -> Condition
X "t=" X -> Condition

To define the syntax of the equations part of a module M, the ASF+SDF Meta-
Environment generates a module M -Equations that defines the syntax of these
equations (Klint, 1993). This module imports the language independent syntax

196

Modules / 9.3

of equations and defines equations for the sorts declared in the module. With
the parameterized module X-Equations we can express this by a module that
contains an import for each declared sort. For instance, for Boolean-Equations
we get the following module:

module Booleans-Equations

imports Booleans
Equations
X-Equations[Bool]

Observe that the sorts Condition and Equation are declared in two different
modules. This is not problematic when these modules meet, because duplicate
definitions are merged. O

9.3.1 Syntax

A modular syntax definition consists of a series of named module declarations.
A module declaration consists of a list of sections, which are either exports
or hiddens. A module name consists of a module identifier and an optional
list of parameters. Module identifiers can contain slashes to enable the use of
directory names in module names, e.g., sdf/kernel/Syntax. A module can
import any number of other modules. An import consists of a module name
with optionally a renaming applied to it. An import of a module M denotes
the grammar declared in module M. An import can be contained in one of the
exports or hiddens sections. In the latter case all syntax imported through that
module is hidden and thus not exported from the module. Imports can also
occur at the start of a module, outside any exports or hiddens section. In this
case the imports are exported.

module Modular-Sdf-Syntax
imports Kernel-Sdf-Syntax”! Renaming-Sdf-Syntax®-1-!
exports
sorts Moduleld ModuleName Import Imports Section Sections Module

Definition ImpSection
lexical syntax

[A-Za-z0-9_\—]+ — ModuleWord
“/”ModuleWord — ModuleDir
ModuleWord ModuleDir+ — Moduleld
ModuleDir+ — Moduleld

context-free syntax
Modulex — Definition
“module” ModuleName ImpSection* Sections — Module
“exports” Grammar — Section
“hiddens” Grammar — Section
Sectionx — Sections
Moduleld — ModuleName
Moduleld “[” Symbols “]” — ModuleName
id(ModuleName) — Attribute

197

9 / RENAMING AND MODULARIZATION

“imports” Imports — ImpSection

ImpSection — Grammar

Import — Imports

ModuleName — Import

ModuleName Renamings — Import

“(” Import “)” — Import {bracket}
variables

“Mid”[0-9']* — Moduleld
“M”[0-9"1« — ModuleName
“s”[0-9']x — Section

“s” “x?[0-9']% — Sectionx

“s” “47[0-9"1* — Section+
“m”[0-9']* — Module
“mx"[0-9'1x — Modulex
“m+7[0-9']%* — Module+
“d’[0-9']* — Definition
“7[0-9"]% — Import
“P“x”[0-9']* — Importx*
“P“47[0-9"1x — Import+
“is”[0-9']*x — ImpSection
“isx”[0-9']x — ImpSectionx

9.3.2 Projection

Projection functions: mwar(d) yields the body of the module named M. ‘Exp’

yields the exported part of a module and ‘Hid’ yields the hidden part of a

module.

module Modular-Sdf-Projection

imports Modular-Sdf-Syntax®3-! Booleans Kernel-Sdf-Projection”3-
Modular-Sdf-Renaming®-3-4

2

exports
context-free syntax

Import “€” Imports — Bool
Sections “H” Sections — Sections {assoc}
Imports “H” Imports — Imports {assoc}
“r” “” ModuleName “(” Definition “)” — Sections
“Exp” (Sections) — Grammar
“Hid” (Sections) — Grammar

equations

Membership of a list of imports.

[1] ieriin=T
[2] i€i*=_1 otherwise

Concatenation of section and imports lists.

8] 51 H 83 =81 5

198

Modules / 9.3

[4] i H iy =i

Lookup of a module by its name in a list of modules. If a module name matches
the module name searched for, its list of sections is yielded. If a parameterized
module is imported without specifying any actual parameters, the parameters
are left uninstantiated. If a list of actual paramters is given, these are used to
rename the formal parameters into the actual parameters. The function (- = .)
constructs a renaming from the formal parameters to the actual parameters of
a parameterized module. If no modules are found the empty list of sections is

yielded.

[5] my(module M s* m*) = s* + 7wp(m*)

[6] T prig(module Mid[a] s* m*) = s* + wppq(m™)

[7] T pidjp)(module Mid[a] s* m*) = (s*) (= B) + 7 ppap(m™)
8] 7 y(module M’ s* m*) = wp(m*) otherwise

[9] mm() =

Exported grammars from a list of sections.

[10] EXP() 0

[11] Exp(s;" s57) = Exp(s;") Exp(s;))
[12] Exp(exports G) = g

[13] Exp(hiddens G) =

Hidden grammars from a list of sections.

[14] Hld() 0
[15] Hid(s;" s;7) = Hid(s;") Hid(s;")
[16] Hid(exports G) = 0
[17] Hid(hiddens G) = G

9.3.3 Normalization

We define the semantics of the modular constructs introduced above by means
of a normalization function that yields the flattening of a module in a modular
syntax definition by replacing each import by the body of the module it refers to.

Hidden productions are renamed by attaching the name of the hiding module.
Since all productions occurring in a hiddens do not occur in another hiddens
section (they should have been exported) it can never occur that two such
renamed productions are imported into the same module. A consequence of
production merging in this case is that an exported function becomes hidden if
it is also in the hiddens part of the module.

We define the function m[d](M) that yields the grammar corresponding to
module M in the definition d.

199

9 / RENAMING AND MODULARIZATION

module Modular-Sdf-Normalization
imports Modular-Sdf-Projection®3-2 Modular-Sdf-Renaming®-3-*

Kernel-Sdf-Normalization”3® Grammar-Projection
exports

context-free syntax
“m[” Definition “]” “(” ModuleName “)” — Grammar

hide(ModuleName, Grammar) — Grammar
hide(ModuleName, Productions) — Productions
hiddens
sorts IG
context-free syntax
“<” Imports “” Grammar “>” — IG

imp “[” Definition “]” “(” Imports “,” Import “)” — IG
ims “[” Definition “]” “(” Imports “” Imports “)” — IG
gra “[” Definition “]” “(” Imports “” Grammar “)” — IG
equations
Normalization of order of grammars.

[1] imports =)
[2] imports ij © imports i5 = (imports i] i3, 0)
3] G < imports i * = (imports i *, G) otherwise

Normalization of module sections. Exports and hiddens sections can be merged.

[4] module M is* is s* = module M is* exports is s*
[5] si exports Gy exports Gy s; = s7 exports G1 G2 s}
[6] s} hiddens G; hiddens G5 s = s} hiddens G; G s}
[7] s} hiddens G; exports G5 s5 = s7 exports G hiddens G; s}

The semantics of a module named M in a definition d is expressed by m[d] (M)
and is the composition of the exported and hidden grammars of module M with
all imports replaced by the exported grammars of the modules they refer to.

my(d) = s*, gra[d](, Hid(s*)) = (i{, G1), gra[d](i], Exp(s*)) = (i3, G2)
m[d](M) = G hide(M, G;)

The function ‘hide’ marks all productions in the hiddens part of a module with
the module name by attaching the attribute id(M) to it.

(8]

9] hide(M, 0) =0

[10] hide(M, G1 G2) = hide(M, G1) hide(M, G2)

[11] hide(M, syntax p*) = syntax hide(M, p*)

[12] hide(M, G) =G otherwise

[13] hide(M,a - A$) =a - A$ H {id(M)}

[14] hlde() =

[15] hide(M, p;" p;") = hide(M, p;") + hide(M, p,)

The function ‘gra’ expands all the imports in a grammar. It returns a structure
(i*, G), which denotes a flattened grammar with the list of imports i* that were

200

Modules / 9.3

expanded to flatten the grammar. This list is passed on to the rest of the
flattening process in order to prevent multiple imports of the same module.
This is important in particular in the presence of cyclic imports.

(16] gra[d](i1, G1) = (i3,) grald] (i3, G2) = (i3, G3)
gra[d](if, G1 G2) = (i3, 91 Gs)

[17] gra[d](i7, imports i) = ims[d](if, i)

[18] gra[d](i*, 9) = (i", 9)

otherwise

The function ‘ims’ yields the flattened grammars for a list of imports.
[19] ims[d](i*,) = (", 0)
ims[d] (i}, ii3) = (iy, G1 G2)
The function ‘imp’ yields the flattened grammar associated with the exported
grammar of an import. The first list of imports denotes the imports that are

already expanded. If a module was already imported it is not imported again.
This is a protection against cyclic imports.

[20]

G =if M €i”* then 0 else Exp(mp(d)) i
imp[d](i*, M) = gra[d](i* M, G)
G =if Mp € i* then 0 else (Exp(m(d))) p fi
imp[[d](i*, M p) = gra[d](i" M p, G)
As we will see in the next section, the renaming p that is applied to the exported
part of the imported module M in the last equation above is also applied to the

imports of that module and hence is applied recursively to all modules imported

via M.

[21]

22]

9.3.4 Renaming

We extend the definition of renaming to renaming of module sections and im-
ports. This includes the renaming of imports, and hence the renaming of re-
namings applied to imported modules.

module Modular-Sdf-Renaming
imports Renaming-Sdf-Renaming®!*> Modular-Sdf-Syntax®-3-!

Modular-Sdf-Projection®-3-2
exports

context-free syntax
“(” Sections “)” Renamings — Sections
“(” Imports “)” Renamings — Imports

201

9 / RENAMING AND MODULARIZATION

equations
Renaming sections.

[1] (s*) p when s* =
[2] (exports G) p = exports G p
[3] (hiddens G) p = hiddens (G) p
[4] (5") p=(s") p+ () p

Renaming a list of imports implies applying the renaming to all imported mod-
ules, i.e., attaching the renaming to each module name in the list of imports.

[5] (imports i *) p = imports (i*) p

[6] (M) p=Mp

[7] (i*) p= when i* =

8] (i i) p=is" i when i = (i) p, is = (i) p

If the imported module has already a renaming attached to it, the new renaming
is applied to the first, yielding the composition of the two renamings.

9] (M py) ps = M (p1) po

9.3.5 Discussion

The modularization presented here is an extension with symbol parameters,
import renamings and hidden imports of the modularization of ASF+SDF as
implemented in the ASF+SDF Meta-Environment (Klint, 1993). The definition
here is a pure ‘textual’ inclusion semantics of modularization. Hendriks (1991)
describes both a textual normalization semantics and an incremental semantics
for modular constructs without renamings and hidden imports. The incremen-
tal implementation of modularization in the Meta-Environment becomes com-
plicated in the presence of renamings, since items are created on the fly and
can no longer be associated with a module. We have not addressed the issue of
incremental parser generation and modular parser generation in a setting with
renamings.

We deviate from the original design of ASF in that we do not incorporate
the ‘origin rule’ that forbids identification of names that originate from differ-
ent modules (Bergstra et al., 1989b). This style forbids to have two modules
with partly overlapping signatures, e.g., both introducing the same sort or func-
tion, that are imported in the same module, even if the overlap is intentional.
The definition here is completeley liberal in this respect. Productions that are
imported via different routes are identified if they are the same.

In §9.1 we saw that renamings are not guaranteed to preserve well-formedness
of trees. A further study of modular properties of grammars in the line of module
algebra (Bergstra et al., 1990) should give more insight into properties of good
modularization. Some topics for study are: properties of trees and languages
under renaming, ambiguity caused by union, interaction of regular expressions
and renamings, modular properties of reject productions.

202

10

The Syntax Definition Formalism
SDE?2

This chapter presents the assembly of the syntax definition formalism SDF2 from
the features designed in previous chapters. This is mainly a matter of defining
collecting modules that import the modules defined earlier. However, some
features interfere. In some cases the normalization functions have to be extended
to cover constructs introduced for other features. In other cases features have
to be extended such that the orthogonality of another feature is maintained.
The chapter concludes with a comparison of SDF2 to SDF and a discussion of
anomalies and possible improvements to the formalism.

10.1 SDF2

Now we put the pieces together and define the syntax definition formalism SDF2,
which is a generalization of SDF (Heering et al., 1989). It covers all features
available in SDF and adds several new ones. Furthermore, up to some small
adaptations, SDF is textually (although not structurally) a subset of SDF2.
This means that existing SDF definitions can be used almost literally as SDF2
definitions. The differences can be translated automatically by means of a mi-
gration tool.

The combination of features described earlier is achieved basically by combin-
ing them by means of imports into collecting modules. For each aspect of the
definition, such as syntax, projection and normalization, a collecting module is
defined. Here we show the collecting modules for the syntax and normaliza-
tion of SDF2. The other modules can be found in Appendix A.4. Although
we have tried to define features orthogonally, some interference between them
is unavoidable. For instance, when we extend the syntax of symbols, normal-
ization functions that deal with symbols are affected and have to be extended
accordingly.

10.1.1 Syntax

The syntax of SDF2 is simply the collection of the syntax of all features in-
troduced sofar. The syntax is extended with lexical and context-free priorities

203

10 / THE SYNTAX DEFINITION FORMALISM SDF2

and restrictions, which arise as a result of the combination of Basic-Sdf with
Priority-Sdf and Restriction-Sdf. The constructor ‘definition’ collects a list of
modules into a single SDF definition.

The symbols (Start) and (START) serve to define grammars with a single
start symbol. In the normalization below productions will be added such that
(START) is the union of all sorts of the grammar. The symbol (Start) is used
to describe files that consist of a string over the language of (START) followed
by the end of file character.

In the Label extension a symbol can be labeled with a literal using the syntax
L : A. This extension is not further defined here. The priorities section is
extended to deal with this extra symbol constructor.

module Sdf2-Syntax

imports Kernel-Sdf-Syntax”-3-! Basic-Sdf-Syntax®3-! Modular-Sdf-Syntax®-3-1
Regular-Sdf-Syntax®2! Priority-Sdf-Syntax®-1-1 CC-Sdf-Syntax”-4-2
Sorts-Sdf-Syntax”-4! Literals-Sdf-Syntax”-4-3 Label-Sdf-Syntax
Restrictions-Sdf-Syntax®4! Alias-Sdf-Syntax®-2-!

exports

sorts SDF

context-free syntax
“(START)” — Symbol
“(Start)” — Symbol
“lexical” “priorities” Priorities — Grammar
“context-free” “priorities” Priorities — Grammar
“lexical” “restrictions” Restrictions — Grammar
“context-free” “restrictions” Restrictions — Grammar
“definition” Definition — SDF

priorities

Symbol “|”Symbol — Symbol > Literal “:”Symbol — Symbol

10.1.2 Normalization

We define the normalization function that normalizes a syntax definition by
applying the normalization functions of the individual features. Here we have
to deal with interaction between the normalization functions for the separate
features and the constructs added to the formalism in other features.

module Sdf2-Normalization

imports Sdf2-Syntax!'?-!-! Sdf2-Projection®* Sdf2-Renaming“*
Basic-Sdf-Normalization® 32 Modular-Sdf-Normalization®3-3
Priority-Sdf-Normalization®!-3 Regular-Sdf-Normalization®2-2
Literals-Sdf-Normalization”4* CC-Sdf-Normalization” 42
Sorts-Sdf-Normalization”#! Sorts-Sdf-Projection 4!

Restrictions-Sdf-Normalization®4-3 Alias-Sdf-Normalization®-2-3
exports

context-free syntax
normalize “[” SDF “]” “(” ModuleName “” Symbol “)” — Grammar

204

SDF2 / 10.1

topsorts “[” Grammar “]” “(” Symbol “)” — Grammar
topsorts(Symbol, Symbols) — Productions
equations

The normalization of an SDF2 definition is defined by the following equation.
The function ‘normalize’ is parameterized with a module name denoting the
top module to be normalized and a sort denoting the topsort of the definition.
The definition is normalized by first expanding module M by means of function
‘m’. Then the normalization functions ‘b’ (Basic), ‘a’ (Alias), ‘r’ (Regular), ‘p’
(Priorities), ‘I’ (Literals) and ‘k’ (Kernel) are applied to the resulting grammar.
The function ‘topsorts’, defined below, is used to add special productions for
the top sorts of the definition and to remove productions not reachable from
those top sorts.

k[I[p[r[topsorts[a[b[m[d](M)TT(A]III] = g

] normalize[definition dJ(M, A) = reachable({(Start)}, G)

The function ‘topsorts’ adds a special production for the symbol (Start), which
declares that a text over the grammar is a string of sort A followed by the
character representing the end of file. For each declared sort in the definition a
production is added that defines that a text can be a string of that sort which
starts and ends with layout.

G' = syntax A [\EOF] — (Start) -+ topsorts(A, S(G))

2 topsorts[G](A) = G' G

3] topsorts(A, at B1) = topsorts(A, at) + topsorts(A, 871)

[4] topsorts(A,) =

[5] topsorts(A, B) = (LAYOUT?-CF) (B-CF) (LAYOUT?-CF) — A

10.1.3 Interaction

Several of the normalization functions are underdefined, i.e., the full SDF2 for-
malism contains more constructors than the extension for which they have been
defined. Therefore, we must extend these functions accordingly.

exports
context-free syntax
“<” Priorities “~LEXp” “>” — Priorities
“<” Priorities “~CFp” “>” — Priorities
“<” Restrictions “~LEX” “>” — Restrictions
“<” Restrictions “~CF” “>” — Restrictions
hiddens
variables
“L” — Literal
equations
The normalization function for regular expressions must be extended to the
symbol constructors added in other extensions. The first equations express that

205

10 / THE SYNTAX DEFINITION FORMALISM SDF2

sorts, character classes, literals and the symbols LAYOUT, (START) and (Start)
do not generate any productions.

6] r[S] = 0 [7] r[LAYOUT] = 0
8] rfec] = 0 [9] r[(START)] = 0
[10] rf[Z] =0 [11] r[(Start)] = 0

The following equations define that the productions generated for some symbol
A should be transformed into productions for lexical (context-free) productions
if a lexical (context-free) version of the symbol occurs. This entails that first
the productions for A are generated by the recursive call and that these are
transformed by the (_-LEX) ((_-CF)) function.

[12] r[(A-LEX)] = (t[A]-LEX)
[13] r[(A-CF)] = (:[A]-CF)
[14] r[{A-VAR)] = r[A]

This is an example of the context-sensitivity of the generation of productions
from symbols. The meaning of (Id x -CF) is different from that of (Id = -LEX).

Basic Literals and character classes do not need the (_-LEX) or (_-CF) con-
structor, because they are lexical by definition

[15] (cc-LEX) = cc [16] {cc=CF) = cc [17] (cc-VAR) = cc
[18] (L-LEX) = L [19] (L-CF) = L [200 (L-VAR) = L

Basic + Priorities Equations for the normalization of lexical and context-
free priorities that were added at the level of SDF2.

G1 = context-free priorities pr*, Gs = context-free syntax p*

21]

G1 © G2 = (context-free syntax p*, context-free priorities pr*)
2] G1 = context-free priorities pr*, G» = lexical syntax p*
G1 © Go = (lexical syntax p*, context-free priorities pr*)
23] G1 = context-free priorities prjy, G2 = context-free priorities prj

G1 © Go = (context-free priorities pr}, pri, 0)

Context-free priorities are priority declarations for context-free productions and
are abbreviations of normal priorities in the same way that context-free syntax
is an abbreviation for a certain style of normal syntax. The productions in the
priorities sections are thus treated with the same (_-CF) functions as context-free
productions.

24] baux[context-free priorities pr*] = (priorities pr*-CF)

[

[25] (priorities pr*-CF) = priorities (norm[pr*]-CFp)
[26] (pr*-CFp) = when pr* =

[27) (pri", pry"~CFp) = (pry" ~CFp) + (pr;"-CFp)

SDF2 / 10.1

28] (p1> py-CFp) = (p, -CF)> (p,~CF)
[29] (p, as py~CFp) = (p,-CF) as (p,~CF)

Similarly for lexical priorities.

[30] baux[lexical priorities pr*] = (priorities pr*-LEX)

[31] (priorities pr*-LEX) = priorities (norm[pr*]-LEXp)
[32] (pr*-LEXp) = when pr* =

[33] (pri", pry"~LEXp) = (pr;" -LEXp) + (pr," -LEXp)
(34] (p1> p,-LEXp) = (p, ~LEX)> (p,-LEX)

[35] (py as p,~LEXp) = (p,~LEX) as (p,~LEX)

Basic + Restrictions

[36] baux[lexical restrictions restr*] = restrictions (restr*-LEX)
[37] (restr*-LEX) = when restr* =

[38] (restr;” restr;”~LEX) = (restr;"—LEX) ++ (restr;} ~-LEX)

[39] (o - cc-LEX) = (a-LEXs) + cc

[40] baux[context-free restrictions restr*] = restrictions (restr*-CF)

[41] (restr*-CF) = when restr* =

[42] (restr;" restryt-CF) = (restr;”-CF) ++ (restry| -CF)

[43] < 7L CC‘CF) = 7L cc

[44] (A a + cc-CF) = (A-CF) B+ cc when {a -+ cc-CF) = 3 + cc
Labels

[45] r[L : A] = r[A]

[46] (L: A-LEX) = L : (A-LEX)

[47] (L : A-CF) = L : {A-CF)

(48] (L : A-VAR) = L : (A-VAR)

Hiding Productions

[49] hide(M, context-free syntax p*) = context-free syntax hide(M, p*)

[50] hide(M, lexical syntax p*) = lexical syntax hide(M, p*)

[51] hide(M, variables p*) = variables hide(M, p*)

[52] hide(M, lexical variables p*) = lexical variables hide(M, p*)
Aliases

G, = aliases al*, G, = sorts «

53
53] G1 © Ga = (sorts a, aliases al™)

207

10 / THE SYNTAX DEFINITION FORMALISM SDF2

10.2 Comparison to SDF

SDF2 was developed as a generalization of SDF (Heering et al., 1989). We
briefly list the differences between the two formalisms.

10.2.1 Semantics

SDF defines the semantics of a syntax definition by means of mappings to other
formalisms. The lexical syntax is mapped to a regular grammar. The context-
free syntax is mapped to a context-free grammar. From the entire definition a
first-order many-sorted algebraic signature is derived. A parse tree for a string
according to the grammar is translated to a term or abstract syntax tree over
the signature. In SDF2 parse trees are defined by means of a well-formedness
predicate on ATerms based directly on (the normal form of) a syntax definition.
The strings of the language defined by a grammar are obtained via the function
yield. No external formalism is used to define trees. In this way the notions of
grammar and signature that were related via mappings in SDF are completely
integrated in SDF2.

10.2.2 Lexical and Context-free Syntax

SDF integrates lexical syntax and context-free syntax in one formalism. How-
ever, this integration is only at the level of the formalism; on the level of the
implementation these are separated. The lexical syntax is mapped to a regular
grammar (hence the specification of the lexical syntax should also be regular).
The context-free syntax is translated to a context-free grammar. In SDF2 the
integration of lexical and context-free syntax is completed. All other features
are orthogonal with respect to lexical and context-free syntax. For instance,
character classes and regular expressions can be used in exactly the same way
in lexical productions and context-free productions.

10.2.3 Lexical Disambiguation

SDF has several built-in lexical disambiguation rules that are applied to the
token stream before tokens are passed to the parser. SDF2 has no built-in lex-
ical disambiguation rules, but provides reject productions to express the prefer
literals rule and follow restrictions to express longest match disambiguation.

10.2.4 Character Classes

In SDF the syntax of character classes is defined lexically. In SDF2 character
classes are defined by means of context-free constructors. This makes the def-
inition of normalization of character classes much easier. The differences with
character classes in SDF are: numeric characters have a decimal interpretation
instead of an octal interpretation, there is no syntactic limit to the range of
numeric characters, all characters except letters and digits have to be escaped
using a slash. In SDF2 character classes have a numeric interpretation, that

208

Discussion and Concluding Remarks / 10.3

is, each character class is normalized to an ordered and non-overlapping list of
numeric characters and ranges of characters.

10.2.5 Lists

SDF only provides list sorts that can be used in the left-hand sides of produc-
tions. Furthermore, lists are not orthogonally defined. In the lexical syntax
no iteration with separator is provided. In SDF only sorts can be used on the
right-hand side of a production. This means that list sorts cannot be the result
of functions. In order to define a function with a list as result, a new sort has to
be introduced into which the list sort is injected. Furthermore, to concatenate
the lists that result from a function a concatenation function should be defined.

SDF2 provides an expressive set of regular expressions that are treated as
first-class citizens. Regular expressions can be used where ever any another
symbol can be used. In general, all symbols that can be used in the left-hand
side of a production can also be used as output symbols.

10.2.6 Priorities

The priorities declarations of SDF2 are the same as in SDF with the following
exceptions: No abbreviations of productions in priorities are supported because
of the problematic semantics in a setting with modules. No <-chains are pro-
vided. The implementation does not provide the multi-set filter interpretation
of priorities.

10.2.7 Reuse

SDF does not provide renamings, module parameterization, hidden imports,
and aliases.

10.3 Discussion and Concluding Remarks

We have presented the modular design of a family of syntax definition for-
malisms. The result is a uniform formalism for syntax definition designed for
extensibility. A guiding principle in the design is the orthogonality of the fea-
tures with respect to one another. As as consequence it is easy to replace a
feature by a variant or to add a new feature without affecting the design and
implementation of all other features.

10.3.1 Parser Generation

The direct motivation for this work was the specification of a parser generator for
SDF. Many of the techniques presented in this chapter were originally developed
for the translation of SDF to intermediate languages like context-free and regular
grammars as prescribed by the SDF reference manual (Heering et al., 1989).
Gradually it became clear that the difficulty of this project was due to the
monolithic design of SDF. The features presented in this chapter are combined

209

10 / THE SYNTAX DEFINITION FORMALISM SDF2

in the formalism SDF2 that is intended to replace SDF. The specification of a
parser generator for SDF2 was easier due to the uniform abstract syntax and
elimination of cases by normalization. The tables generated by the generator

are interpreted by the generic scannerless generalized-LR parser described in
Chapter 3.

10.3.2 Disambiguation

Priorities are interpreted as a well-formedness requirement on parse forests,
which could be operationalized as a filter on parse forests as prescribed by
Heering et al. (1989). This approach can be extended to other disambiguation
methods as described in Chapter 4.

We have provided some features for disambiguation of ambiguous context-free
grammars. There remain a large number of ambiguities that can not be solved
with these mechanisms. Some more advanced disambiguation methods are de-
scribed in Klint and Visser (1994). Here we list some ideas for improvements of
the current scheme.

The priority relation > on productions does not allow a distinction between
the arguments of the productions to which it applies. In several cases it would
be useful to restrict the relation to certain arguments. For instance, the priority
declaration

TT->T > "let" V"="T "in" T -> T

does correctly forbid the usage of a let expression as the first argument of an
application. However it also forbids the usage of let as the last argument of an
application, for which there is no reason. An extension of the notation could be

TT->T {1}> "let" Vv "="T "in" T -> T

to declare the desired disambiguation. There would be no implementation prob-
lems with such an extension.

A case for non-standard disambiguation is in ambiguous equations. In §9.3
we gave as an example the specification of the syntax of conditional equations.
It can occur that equations are ambiguous due to injections. If a symbol A is
injected in B, then an equation over two A expressions can be interpreted both
as A and B equations. A possible interpretation of such an ambiguity is to take
both possibilities. This is done in the definition of multi-level algebraic specifi-
cations in Part III, where ambiguous equations can occur due to overloading of
functions.

In the implementation of SDF in the ASF+SDF Meta-Environment an un-
documented disambiguation method is used. As a simplification of the multi-set
ordering, trees with fewer injections are preferred over trees with more injec-
tions. Such a method is needed to disambiguate conditions of equations. This
method has not been implemented as part of the SDF2 tools, but can be added
as a post-parse filter without problems.

We have defined follow restrictions and reject productions to express lexical
disambiguation rules. We omitted the definition of these methods as an ex-
tension of the well-formedness predicate on parse trees. See Chapter 3 for a

210

Discussion and Concluding Remarks / 10.3

discussion of the semantics of these methods and for a discussion of automatic
lexical disambiguation.

10.3.3 Renaming

Modules associate a name with a grammar. Grammars can be combined by
module imports. Export and hiding provide control over visibility of grammars.
New with respect to the modularization of SDF are renamings and hidden im-
ports. In the current definition of renaming productions, only the literal skele-
ton of the production can be changed, but the order of the arguments stays
the same. Sometimes it is desirable to change the syntax of a production and
also make a permutation of the arguments. A notation for such permutations
should be devised by means of some kind of indexing. The problem with such a
notation is that the current definition reuses the syntax of productions literally
in the definition of renamings. Changing the syntax of productions will thus be
applicable everywhere. The label facility (see below) could be used for this pur-
pose. Unfortunately, renamings are not guaranteed to preserve well-formedness
of parse trees. Further study is needed to find a set of sufficient requirements
on renamings that do guarantee well-formedness.

10.3.4 Labels

A feature that has not discussed are labels. Labels are intended to be used
as ‘field names’ of a record. For instance, consider the following production
defining the syntax of assignments in an imperative language:

var : Var ":=" value : Exp -> Stat {cons(assign)}

The two arguments are labeled with var and value, respectively. From this
information we can derive the following syntax for projection functions based
on the field names:

Stat "." var -> Var
Stat "." value -> Exp

This should be accompanied by the the defining equations for these functions.

10.3.5 Derived Syntax

Regular expressions are considered as name constructors that are used to make
new names out of existing ones. A normalization function adds canonical pro-
ductions defining the regular operators. For instance, 4?7 denotes an optional
A and is defined by the productions 4 — A? and — A?. However, there is no
restriction on the use of these name constructors. Other defining productions
can be added by the user. In the context of algebraic specification this means
for instance that users can specify functions that have lists (A%) as result.

Regular expressions are an example of derived syntax: Given some symbol
or even production in the grammar, other productions are derived. Many other
applications of derived syntax could be useful.

211

10 / THE SYNTAX DEFINITION FORMALISM SDF2

Sometimes it is useful to explicitly indicate empty constructs and injections.
This could be accommodated by generating syntax for explicitly matching injec-
tion functions and e-functions, i.e., if A => Bis a production then also "injA-B"
(A) -> B Similarly for €, if -> A a production, then also "emptyA" -> A.
These constructors should of course match with their origins. This can be done
by translating these functions internally to the real injection or e function. See
Dinesh (1995) for some interesting remarks on injections in ASF+SDF.

A structure editor provides facilities to manipulate sentential forms. This
requires the specification of the syntax of symbol placeholders. For each symbol
A that is not a literal add a production "<A>" -> A.

Another case of this kind is the generation of explicit type casts S ":" "S"
-> S {cast} (like bracket attribute) to constrain the type of an overloaded
entity. This would be similar to the no-operator attribute in SDF.

It would be even better to make syntax derivation user-definable by providing
schemas such as discussed above.

10.3.6 Polymorphic Syntax

The definition of regular expressions by introducing new productions is an in-
stance of second order quantification. The generalization of this approach to
two-level grammars in Chapter 15 provides the syntactic counterpart of the
two-level specifications in Meinke (1992a) and the multi-level specifications in
Part ITI. Generic productions are written as production schemata. The syntax
of symbol constructors is described by means of a second level grammar.

10.3.7 Dynamic Syntax

Another open problem is the formal description of languages with an extensible
syntax. Programs in such languages can contain grammars that define part
of the syntax of the program itself. An example of extensible syntax is the
syntax of equations in ASF+SDF. Several other instances exist, e.g., Cardelli
et al. (1994), and Vittek (1994) (Elan). All these approaches treat the meta-
language and object language differently. A formal approach to this problem
would specify the syntax of the base language and the grammars it can specify
and the lifting of these grammars to meta-level grammars.

10.3.8 Design Methodology

We have presented a large specification. We approached this using a rigorous
modularization of the specification in a matrix of modules. For each feature
the syntax and tools are described in separate modules. In this way it becomes
feasible to flexibly include and exclude parts of a language definition. Some
parts of the specification such as the ATerm encoding are not very interesting.
It would be better if those parts could be generated using a simple rule.

The main technique we have applied is that of definition of features by nor-
malization, i.e., transformation to a subset of the language. The great advantage

212

Discussion and Concluding Remarks / 10.3

of normalization is that many features can be provided to enhance the expres-
siveness of the language while defining the semantics of the formalism on a
small set of kernel features in which the other features are expressed. Normal-
ization has also its disadvantages. The semantics of various features is defined
indirectly, which makes reasoning about them more troublesome. Furthermore,
parse trees over a grammar use the normalized productions, which can look
rather different than their origins. It would be desirable to use normalization
equations rather than functions in order to be able to reason about equivalence
of syntax definitions. The problem with such an approach is the lack of control
over normalization. A solution could be the use of strategies such as described
in Luttik and Visser (1997).

The modularization of the formalism and hence the modularization of the
normalization in separate normalization functions for each feature made the
specification of normalization feasible. A normalization function that would in
one pass over the grammar normalize it would be a very complex. However,
the modularization also hides the interaction between features. When defining
a normalization function for an extension of the kernel, only those constructs
introduced are normalized. The combination of features prompts the extension
of the normalization function to new constructs. Often this is can be achieved
by innocent distribution equations, but in some cases the interaction between
features is more problematic. In particular, the interaction of renamings with
other features needs more study.

Language design is a software engineering process. A language definition gets
better developed if it is actually used in a prototype implementation. The parts
of the specification of SDF2 that are used in the parser generator, i.e., the
normalization, were developed on demand. Especially the fragment of SDF2
that corresponds to SDF was developed first, because most syntax definitions
fed to the parser generator were converted SDF definitions. Other parts of the
specification, such as well-formedness or equality that are not directly used in
tools were developed later. But these parts are important because they define
the correctness criteria for implementations. The well-formedness checker can
be used to validate the output of a parser for a grammar. The equality checker
can be used to validate a matching algorithm for terms.

The design approach we have used for SDF2 has led to an infrastructure for
further study of syntax definition and experimentation with new features. It
is indeed very easy to extend the specification in order to construct subsets or
supersets of the formalism, or to replace a feature by a variant.

213

Part Il

Multi-Level Algebraic Specification

11

Extensions of First-Order
Specification

The next chapters introduce a modular, applicative, multi-level equational spec-
ification formalism that supports algebraic specification with user-definable type
constructors, polymorphic functions and higher-order functions. Specifications
consist of one or more levels numbered 0 to n. Level 0 defines the object level
terms. Level 1 defines the types used in the signature of level 0. In general,
the terms used as types at level n are defined at level n + 1. This setup makes
the algebra of types and the algebra of types of types, etc., user-definable. The
applicative term structure makes functions first-class citizens and facilitates
higher-order functions. The use of variables in terms used as types provides
polymorphism (including higher-order polymorphism, i.e., abstraction over type
constructors). Functions and variables can be overloaded. Specifications can be
divided into modules. Modules can be imported at several levels by means of a
specification lifting operation. Equations define the semantics of terms over a
signature. The formalism also allows equations over types, by means of which
many type systems can be described. The typechecker presented in Chapter 13
does not take into account type equations.

The specification, in ASF+SDF, of the syntax, type system and semantics of
the formalism is presented in three stages: (1) untyped equational specifications
(2) applicative one-level specifications (3) modular multi-level specifications.
The definition of a typechecker for stages (2) and (3) is divided into four parts:
(a) well-formedness judgements verifying type correctness of fully annotated
terms and specifications, (b) non well-formedness rules giving descriptive error
messages for the cases not covered under (a), (¢) a type assignment function
annotating the terms in a plain specification with types, and (d) a typechecking
function which checks well-formedness after applying type assignment. These
functions are defined uniformly for all levels of a specification.

Aside of defining a new specification formalism, the next chapters illustrate
the use of ASF+SDF for the design and prototyping of sophisticated specifica-
tion formalisms.

217

11 / EXTENSIONS OF FIRST-ORDER SPECIFICATION

11.1 Introduction

Algebraic specification and functional programming are closely related paradigms.
The foundation of both paradigms is equational logic. Values are represented
by terms and a program or specification consists of a list of equations over these
terms. Two terms that are equal according to a specification (by means of equa-
tional logic) have the same meaning and can replace each other in any context,
a property called referential transparency.

The paradigms differ in the aim of a program or specification. An algebraic
specification defines a class of algebras that satisfy its equations. A functional
program on the other hand defines a method to compute a value from an initial
value by executing the equations as rewrite rules. However, this difference is
mainly one of emphasis; functional programs can be seen as algebraic specifi-
cations that satisfy certain restrictions. Almost all specifications in this book
can be executed as rewrite systems. In spite of that, there are many technical
differences between actual formalisms. These differences can be divided into
semantics and type system.

11.1.1 Semantics

The choice of a semantics for a language is based on the set of required program
constructs, which may include equations, conditional equations, A abstraction,
let binding, recursion and fixed-point operators, etc. In this chapter we use pure
equational logic as the basis for the specification logic.

The operationalization of an equational algebraic specification by means of
term rewriting is aimed at determining whether two terms are equal or at finding
a normal form for a term. The strategy used to accomplish this is of no im-
portance. Functional programming languages, emphasizing computation rather
than specification, incorporate a rewrite strategy (innermost, outermost, lazy)
into their semantics. Furthermore, functional languages make a distinction be-
tween functions that transform a value into another and constructors that are
used to represent data. In algebraic specification this distinction is not made,
e.g., the unary minus function ‘—’ can be seen either as a constructor (—1) or
as a function (—0 = 0).

11.1.2 Type Systems

A signature determines which terms are the subject of a specification or pro-
gram. A type system determines the form of signatures and the well-formed
terms over a signature. Several issues are of importance in the design of type
systems.

Term Structure First-order many-sorted algebraic specifications use a many-
sorted algebraic signature to assign types of the form s; x--- X s, = sg to func-
tion symbols f. Terms can be formed by application of such function symbols
to a list of terms ¢; of sort s;, resulting in terms of the form f(¢1,...,t,). This
function application construct is called algebraic. Such a type system is called

218

Introduction / 11.1

first-order because no higher-order functions (having functions as arguments)
can be defined. A function symbol can only occur in a term when it is ap-
plied to the right number of arguments. Other type systems allow higher-order
functions and use an applicative term structure — application is of the form
ty to, term t; applied to term t3 — to build terms. Applicative term structure
is common in functional languages, whereas algebraic specification formalisms
generally use first-order term structures.

Overloading If a function can have a finite number of different types it is
said to be overloaded. An example of overloading is addition on integers and
reals. Overloading is common in frameworks with algebraic term structure,
where it is easy to deduce which version of a function is used from the argu-
ments to which it is applied. In applicative frameworks ambiguities caused by
overloading are much harder to resolve because functions can occur separate
from their arguments. Therefore, overloading was omitted in early functional
languages like ML. Most modern functional languages have some restricted form
of overloading through type classes (see below).

Polymorphism Parametric polymorphic functions, which were introduced by
Milner (1978) in the functional language ML, can have infinitely many types that
are instantiations of one generic type. An example of a polymorphic function
is the function that computes the length of a list, which is independent of
the contents of lists and can therefore be defined for all possible lists at once.
Polymorphic functions have a universally quantified type. For instance the type
of length is Va.list(a) — int.

Restricted polymorphism For some applications this unrestricted polymor-
phism is too strong. For instance, the polymorphic equality function with type
Va.a X a — bool also applies to functions, which is undesirable because func-
tion equality is not computable. In Standard ML (Milner et al., 1990) the type
of the equality function is defined on the subset of the set of all types for which
equality is computable. This idea is generalized by Wadler and Blott (1989) by
means of type classes, which are predicates on types that divide the set of types
into subsets with certain properties that can be used to restrict the polymor-
phism of functions. For instance, if the class eq indicates all types on which
equality can be defined, then the type of the equality function can be rephrased
as YVa.eq(a) = a X a — bool to express that the type variable can only be
bound to types for which the eq predicate holds, that is, those that are in the
eq class. The type classes of Wadler and Blott (1989) are unary predicates on
types. Jones (1992) gives a more general formulation of restricted polymor-
phism in his theory of qualified types, in which arbitrary predicates on types are
allowed. Special cases of the theory are type classes, subtyping and extensible
records.

Type Operators In frameworks with polymorphism the language of types
becomes a user-definable set of terms and subject to a type system itself. In a
first-order framework the type of lists of integers has a name like int-1ist. In
a polymorphic framework one wants to quantify over the type of the contents of

219

11 / EXTENSIONS OF FIRST-ORDER SPECIFICATION

lists. By defining a type constructor 1ist (a function from types to types), one
can denote lists of integers as 1ist (int) and arbitrary lists as 1ist (A), where
A is a variable ranging over types.

Types of Types The language of types built from type constants and type
constructors is itself an algebraic language with a signature. In many-sorted
algebraic signatures the only type constructors are x and — and the language
of types is restricted to types of the form ¢; X -+ X ¢, — ¢g, where the ¢;
are type constants. In polymorphic languages like ML the language of types
consists of untyped, first-order terms, i.e., all type constructors have a type of
the form type X --- X type — type. For instance, list is a type constructor
that takes a type and constructs a type, i.e., it is declared as list : type —
type. Generalizing the idea of an algebra of type constructors, one can use an
arbitrary many-sorted (instead of a one-sorted) signature for the specification
of the algebra of types, leading to a two-level signature. Further generalization
of this idea leads to a third-level signature that specifies the types of types of
types. In this chapter a formalism with multiple levels of signatures is presented.

Higher-Order Polymorphism and Constructor Classes In Hindley/Milner type
systems the quantifier in types can only range over types and not over type con-
structors. Higher-order polymorphic functions can also quantify over type con-
structors. With such polymorphism it is natural to extend the notion of a type
class to a constructor class which restricts quantification over type constructors

(Jones, 1995).

There are many other considerations in the design of type systems. Here we
restrict our attention to the ones discussed above. See §14.6 for some references
to surveys of type systems.

11.2 Multi-Level Specifications

In the chapters in this part we present the formalism MLS, a modular, applica-
tive, multi-level, equational specification formalism with overloading. Figure 11.1
illustrates several features of this language by means of a two-level specification
of lists and trees with polymorphic size and map functions. The specification
imports the specification of the type nat of natural numbers with functions 0,

s and (+).

Multi-level A specification consists of arbitrary many levels of one-level spec-
ifications. The terms over the signature at level 0 are the ‘object’ level terms.
The types used in the signature of level 0 are terms over level 1. In general, the
types in the signature at level n are terms over the signature at level n 41, as is
depicted in Figure 11.2. The types used in the signature of the highest level are
determined by an implicit signature of types consisting only of type constants
and the type constructors x and —.

The sort declarations at level n determine which of the terms at level n + 1
can actually be used as type at level n. A term used as type should match one of

220

Multi-Level Specifications | 11.2

module list-tree
imports nat;
level 1
signature
sorts type;
functions
@), (->) : type # type —> type;
list, tree : type -> type;
variables
A, B : type;
level O
signature
sorts A;
functions
] : list(A);
(::) : A # 1list(A) —> list(A);
size : list(A) -> nat;
map : (A -> B) # list(A) -> list(B);

variables
X :A; L : 1list(A); G : A -> B;
equations
size([1) == 0;
size(X :: L) == s(size(L));
map (G, []) == [1;
map(G, X :: L) == G(X) :: map(G, L);
signature
functions
] : tree(Ad);

node : tree(A) # A # tree(A) -> tree(A);
size : tree(A) -> nat;
map : (A -> B) # tree(A) -> tree(B);

variables
X :A; T: tree(A); G : A -> B;
equations
size([]1) == 0;
size(node(T, X, T’)) == s(size(T) + size(T?));
map(G, [1) == [1;

map(G, node(T, X, T’)) == node(map(G, T), G(X), map(G, T’))

Figure 11.1: Two-level specification of list and tree data types.

the terms declared as sort. These ideas are illustrated in Figure 11.1. The term
type # type -> type in the first function declaration at level 1 is a term over
the implicit signature of the types at the highest level. (Note that x is written

221

11 / EXTENSIONS OF FIRST-ORDER SPECIFICATION

implicit x, —
signature
implicit x, — level n /
signature
signature
level 1 /
equations
signature
imolicit x] / /
1mp et X, = equations _
signature
/ level 0 / level 0 /
signature ; signature ; signature ;
equations equations equations
(a) One-level (b) Two-level (c¢) Multi-level

Figure 11.2: Specifications with one, two and multiple levels of signatures.

in ASCII notation.) The term list (A) is a term over the signature at level 1:
list is a function from type to type and A is a type variable. Furthermore,
list (A) matches the sort declaration A. Therefore, 1ist (A) can be used in the
signature at level 0 as a type in the declaration of the functions [] (empty list),
(::) (cons) etc. Level 0, finally, determines the terms for the objects of real
interest, such as [1, s(0) :: [], and map(s)(0 :: [1).

The example in Figure 11.1 shows a two-level specification (n = 1). The
formalism supports arbitrarily many levels. The type constructors available at
level 1 can be enriched by means of a third level. In §13.1 several examples of
three level specifications are shown.

Polymorphism Terms over a signature can contain variables. A term with
variables used as type in a signature denotes a polymorphic type. For instance,
size is a function from list(A) to nat. This means that for any type ¢, size
applies to terms of type list (¢). Quantification is not restricted to types but
can also range over type constructors.

Owverloading Functions can have two or more related, or completely different,
types. This allows the use of function names for different purposes, which is not
possible with polymorphism alone. For instance, the functions size and map
are defined for both lists and trees. Equations can also be overloaded. For

222

Related Formalisms / 11.3

example, the equations defining the functions size and map on empty lists and
empty trees are exactly the same. Actually, writing this equation once would
have sufficed, because all possible interpretations of ambiguous equations are
taken into consideration.

Applicative The term structure is applicative, i.e., application is a binary
operation on terms. At the functional position an arbitrary term can occur.
Functions are first-class citizens and can be arguments of functions. For in-
stance, the function map has a function as argument, which it applies to all
elements of a list or tree.

Observe that the arrow and product constructors for types are considered
normal functions. The arrow in the type of size is the same arrow that is de-
clared at level 1 as a binary function on types. There is, however, one difference
with other functions: the arrow and product constructors are related to the op-
erations application and pairing. For each arrow type, there is a corresponding
application operation that takes a term of type 1 — 7» and a term of type
71 and produces a term of type 75. Similarly for each product type there is a
corresponding pairing operation that takes two terms of types 73 and 75 and
produces a term of type 7 X 7.

Equational Equational axioms over terms express the semantics of terms.
Equational logic can be used for reasoning about terms, whereas term rewriting
can be used to decide ground equations for appropriate systems of equations or
to compute the result of defined functions. The ideas for the multi-level type
system in this chapter are also applicable to formalisms with other logics, e.g.,
conditional equations, Horn clause logic or even first-order logic.

Modular Multi-level specifications can be split into modules by means of
a rudimentary module system consisting of module declarations and module
references (imports). Operations for manipulating specifications can also be
applied to imports, facilitating reuse of specifications at more than one level
(see §13.1 for examples).

Type Equations The MLS formalism supports equations at all levels of a
specification. This means that equations over types can be defined to spec-
ify powerful type constructs like recursive types, qualified types, and logical
frameworks. However, the typechecker for MLS defined here does not take into
account equations over types. Typechecking in the presence of type equations
requires £-unification, which is undecidable in general. For restricted forms of
equations typechecking with £-unification seems feasible, and might be incor-
porated in future versions of the MLS typechecker (Visser, 1996b).

11.3 Related Formalisms
The MLS formalism is a generalization of several concepts found in other for-

malisms. Below we give a brief overview of related formalisms. The landscape
of formalisms is summarized by the diagram in Table 11.1.

223

11 / EXTENSIONS OF FIRST-ORDER SPECIFICATION

| features | algebraic || # levels || applicative | features |
ol OBJ, Pluss, 1 OLS hof
ASF+SDF
2 ML, Miranda hof, p
p, tc PolySpec Spectrum, Haskell | hof, p, tc
p, ol ATLAS 3 Quest hof, p, st
p, ol ATLASII n MLS hof, p, ol

Table 11.1: Several algebraic and functional languages classified accord-
ing to their number of levels and to their term structure (algebraic vs.
applicative). The additional features columns list the presence of: ol: over-
loading, hof: higher-order functions, p: polymorphism, tc: type classes, st:
subtypes.

One-Level Monomorphic Algebraic Languages Algebraic specification for-
malisms such as OBJ (Futatsugi et al., 1985), Pluss (Bidoit et al., 1989) and
ASF+SDF (see Chapter 2) have monomorphic many-sorted first-order signa-
tures as type system. The sort space consists of terms of the form ¢; x---x¢, —
co, with the ¢; sort constants. A limited form of polymorphism can be obtained
by means of overloading and parameterized modules, but polymorphic higher-
order functions are not provided. All these formalisms support arbitrary mixfix
notation. OBJ provides order-sorted signatures, in which an inclusion relation
between sorts can be declared. In ASF+4SDF, sort inclusion can be simulated
by means of syntaxless unary functions (also called injections). The formalisms
OLS and MLS considered here support neither subsorting nor syntaxless func-
tions.

One-Level Monomorphic Applicative Languages The one-level applicative
specification language OLS, defined in §12.2 and §12.3, generalizes the sort space
of monomorphic algebraic languages to the closure under x and — of the de-
clared sort constants. The extension with respect to the algebraic frameworks
discussed above is the support for higher-order functions.

Two-Level Polymorphic Applicative Languages The type system for poly-
morphic higher-order functions, known as the Hindley/Milner system, was first
described by Hindley (1969) as a type assignment algorithm for expressions in
combinatory logic. It was extended by Milner (1978) to languages with local
declarations. The functional programming language ML (Gordon et al., 1978)
was the first language to incorporate this type system. For the introduction of
type operators, the type system of ML uses a second level of terms consisting of
an untyped, first-order signature. All type operators work on one implicit type
(kind) of types. ML is not purely functional because it supports side effects
through assignments in expressions. Miranda (Turner, 1985) is one of a number
of purely functional languages with a Hindley /Milner type system. Haskell is a
general purpose, purely functional programming language (Hudak et al., 1992)

224

Related Formalisms / 11.3

with a Hindley/Milner type system using one-sorted first-order user-definable
type constructors. Overloading, which is not supported in ML and Miranda, is
introduced in a restricted form through type classes (see §11.1.2), which are the
main innovation of the language.

The requirement and design specification language Spectrum (Broy et al.,
1993) is an algebraic specification formalism with applicative term structure, a
two-level type system and sort classes, which is a variant of type classes. The
second level is an unsorted signature. The difference with functional languages
like Haskell is the use of full first-order logic instead of conditional equations.

Two-Level Polymorphic Algebraic Languages The algebraic specification for-
malism PolySpec of Nazareth (1995) is a two-level formalism, with an untyped
second level of type constructors and predicates (sort classes), which are used
to constrain polymorphism similarly to type classes.

Both the algebraic and the applicative two-level languages that we have dis-
cussed sofar have an untyped second level: all type constructors operate on the
single, implicit sort type.

Three-Level Applicative Languages Quest is a three level language inspired
by second-order typed A-calculus (Cardelli, 1993). A Quest program introduces
objects at three levels: values at level 0, types and type operators at level 1 and
kinds at level 2. Instead of the limited universal type quantification of Hind-
ley /Milner type systems, explicit and nested quantification over types is allowed.
Universally quantified types, i.e., polymorphic types, have to be instantiated ex-
plicitly. For example, the identity function, declared as id : Va.a — «, should
first be applied to a type to instantiate the type variable and then to a value,
e.g., id[int](1). Cardelli (1993) discusses a rich set of built-in data types in-
cluding mutable types, array types, exception types, tuple types, option types,
recursive types, subtyping, operations at the level of types. Quest does not
support overloading.

Three-Level Algebraic Languages The algebraic specification formalism AT-
LAS of Hearn and Meinke (1994) is a three-level algebraic specification for-
malism. The main differences with MLS are: (1) ATLAS has an arrow type
constructor for the type of functions and a product type constructor for the
type of pairs that are primitive at all levels, and that can be used as first-order
types of the form 7y X - - - X7, — 7, which means that term structure is algebraic.
Higher-order function application can be simulated by means of a user-defined
arrow type constructor and a user-defined application operator and by declaring
functions as constants of the user defined arrow type. MLS has an applicative
instead of an algebraic term structure, which makes higher-order types and func-
tions more naturally definable. (2) An ATLAS specification consists of three
levels for the constructors of ‘kinds’, ‘types’ and ‘combinators’ as the different
sorts of terms are called. MLS specifications can have arbitrary many levels
instead of the fixed three levels of ATLAS, making the definition of the syntax
and type system uniform for all levels and enabling specifications with more
or fewer than three levels. (3) ATLAS does not have a module system. (4)
ATLAS considers ambiguous equations as erroneous. In MLS all well-formed

225

11 / EXTENSIONS OF FIRST-ORDER SPECIFICATION

typings of an equation are considered valid. (5) ATLAS specifications can con-
tain rewrite rules at all levels, which are interpreted by the type assignment
mechanism. Although the MLS formalism allows equations at all levels, these
are not considered by the type assignment algorithm specified in this chapter.

Multi-Level Algebraic Languages ATLASII is a multi-level and modular re-
design of ATLAS (Hearn, 1995). Items (1), (4) and (5) above also hold for
ATLASIIL

Multi-Level Applicative Languages The specification formalism MLS defined
in this chapter is an applicative multi-level language with overloading.

11.4 Outline

The next chapters present the multi-level specification formalism MLS by means
of a specification in ASF+SDF of syntax, type system and semantics. In order
not to introduce too many concepts and technical details at once, the equational
specification formalism is presented in three phases, each enhancing the previous
one: (1) an untyped formalism, (2) a one-level applicative formalism without
overloading or polymorphism, and (3) a multi-level, applicative formalism with
polymorphism and overloading.

In §12.1 the notions of terms and equations for the untyped language are
defined. Specifications are lists of equations over a simple term language with
application and pairing. In §12.2 this untyped language is extended to a one-
level language, after introducing the notions of types and signatures. In §12.3 a
typechecker for this specification language is defined as the composition of a type
assignment function and a well-formedness checker. The type assignment func-
tion takes a plain term and annotates it with types. The well-formedness checker
takes a fully annotated term and verifies its well-formedness. The specification is
presented in four parts: Well-formedness judgements determine whether a fully
annotated term is well-formed according to a signature. The complements of
the rules for well-formedness give descriptive error messages for non-wellformed
terms. A type assignment function annotates each subterm of a plain term with
a type. A typechecker combines type assignment and well-formedness checking.

In Chapter 14 one-level specifications are used to form multi-level specifica-
tions. The same syntax for terms, signatures and equations is used at all levels.
The usefulness of such multi-level specifications is illustrated with several ex-
amples of data type specification in Chapter 13. The type system of multi-level
specifications is defined with the same four part structure as for one-level speci-
fications. The same ideas apply to the type system, but are complicated by the
addition of multiple levels of signatures, polymorphism and overloading. The
most important innovation here is that the types of each level of the specification
are well-formed terms over the signature at the next level of the specification.
This means that types become typed terms. The same typechecking mechanism
is used at all levels.

In Appendix B a number of auxiliary tools that are used in the specification
are defined. In §B.1 several ‘standard’ library modules like Layout and Booleans
are defined. In §B.2 several utilities on terms such as sets of terms, substitution,
matching and unification are defined.

226

12

Untyped and Simply Typed
Specifications

In this chapter we lay the foundations for the definition of multi-level specifica-
tions. First we define an untyped equational specification formalism with equa-
tional logic and term rewriting. Next we specify a language of signatures that
can be used to restrict the terms used in equations. Signatures are interpreted
by a well-formedness predicate on fully annotated terms. A type assignment
function annotates untyped terms with types according to a signature.

12.1 TUntyped Equational Specifications

Equational specifications consist of a list of equations over some term language.
Such specifications can be interpreted as a set of axioms for reasoning with
equational logic. For many specifications, equality of terms in the context of
an equational specification can be made by means of term rewriting. We start
with the definition of the term language.

12.1.1 Terms

The terms of our specification language are simple applicative terms composed of
function symbols (identifiers starting with a lowercase letter, e.g., map), variables
(identifiers starting with an uppercase letter, e.g., X), application (¢; t2), and
pairing (t1,t2). Application is left-associative and has a higher priority than
pairing. Pairing is right-associative. For example, map G empty denotes ((map
G) empty), not map (G(empty)). Likewise, plus X, Y should be read as (plus
X), Y and not as plus(X, Y). In this chapter we will write the argument of an
application between parentheses, e.g., map(G) (empty) instead of map G empty.
These notations are syntactically equivalent according to the following grammar.

module Terms
imports Layout®-1-1
exports

sorts Fun Var Term

227

12 / UNTYPED AND SIMPLY TYPED SPECIFICATIONS

lexical syntax

[a-z0-9][A-Za-z0-9]x — Fun

[A-Z][A-Za-z]x[0-9']x — Var
context-free syntax

Var — Term

Fun — Term

Term Term — Term {left}

Term “” Term — Term {right}

“(” Term “)” — Term {bracket}
priorities

Term Term — Term > Term “”Term — Term
variables

[zy][0-9']* — Var

“f?[0-9']* — Fun

“t”[0-9"]% — Term

To accommodate the convention of writing binary functions as infix operators,
§B.2.1 defines syntax for infix operators. The application of a binary opera-
tor @ to two arguments t; and t; is written t; @ t2. By enclosing a binary
operator in parentheses it is converted into a prefix function symbol. Using
this property an infix application is translated into a prefix application by the
equation t1 @ ta = (®)(t1,t2). For example, in Figure 11.1 the expression
size(T) + size(T’) is equivalent to (+) (size(T), size(T’)) and X :: Lis
equivalent to (::) (X, L). Furthermore, §B.2.1 introduces notation to use an
arbitrary term as an infix operator, such that a binary function application of
the form ¢ (t2,t3) can be written as to .t1. t3. Finally, if the functions (::)
and [] are used to construct lists, the notation [t;,...,t,] can be used to
represent a list with a fixed number of elements. This notation is translated to

ty t:...:: t, :: [1. Note that using the [¢, ...,t,] notation the tail of the
list is always [], i.e., can not be a variable or another term. Similarly, tuple
terms of the form <tq,...,t,> are abbreviations for ¢t; ~..." t, ~ <>.

The extension of multi-level signature formalisms with arbitrary mix-fix op-
erators (like if _ then _ else _) leads to a multi-level grammar formalism.
Such a formalism leads to extra complications in parsing. This is the subject of
Chapter 15.

Lists of terms separated by semicolons.
exports

sorts Terms

context-free syntax

{Term “” }x — Terms

Terms “+H” Terms — Terms {right}

“(” Terms “)” — Terms {bracket}
variables

“t” “*” [0_9[]* % {Term “;77 }*
“t” “+”[0_gl]* % {Term “;77}+
“ts”[0-9']x — Terms

228

Untyped Equational Specifications [12.1

equations

1] Bt = 8

12.1.2 Equations

An equation is a pair of terms t; = t2. In order to avoid confusion between the
equality symbol in the object language we are describing and the metalanguage
we describe it with, the symbol = is used for specification equations. It is
written == in examples. We will refer to the left-hand (right-hand) side ¢; (¢2)
of an equation by ‘lhs’ (‘rhs’). An equational specification is a list of equations.

module Equations
imports Binary-Operators?-2:! Terms
exports

sorts Eq Eqgs

context-free syntax

12.1.1

Term “=” Term — Eq

{Eq cc;n}* — Eqs

Eqs U Eqs — Eqs {assoc}

u(n Eqs “)” — Eqgs {bracket}
variables

“p’[0-9"]% — Eq

“(p” M*” [0_9[]* % {Eq “;”}*

‘(<p7’ “+” [0_9/]* % {Eq ((;73}+

“€7[0-9'] — Egs
equations

(1] 1 H Y3 =915 e

An example specification is shown in Figure 12.1. The first two equations define
the addition operation (+) on successor naturals. The last two equations define
the function map that applies some function G to all elements of a list represented
by means of the functions [1 (empty list) and (::) (cons). Observe that some
of the parentheses used are optional, e.g., we might as well write G X instead
of G(X). Recall that we will use the convention of writing the argument of an
application between parentheses.

12.1.3 Equational Logic

A term represents a value. In an equational specification a term represents
the same value as all terms to which it is equal. In this view the semantics of
a specification is the equality relation on terms that it induces. This relation
is determined by the following rules of equational logic together with a list of
equations (also called axioms). Two terms ¢; and t, are equal according to a

229

12 / UNTYPED AND SIMPLY TYPED SPECIFICATIONS

0+X == X;
s(X) +Y =sX +Y);
map (G) ([1) == [1;

map(G) (X :: L) == G(X) :: map(G) (L)

Figure 12.1: Untyped equational specification of addition on successor naturals
and map over cons lists.

set of equations & if the predicate £ F t; = ¢ holds. Note that predicates
are modeled by means of Boolean functions in ASF+SDF. This entails that
the specification of a predicate consists of equations over sort Bool. If P is a
Boolean function we will write P(z) in texts when we mean P(z) = T.

The rules of equational logic are the reflexivity, symmetry and transitivity
rules of equivalence relations; an axiom rule that declares any equation in £ as
axiom; a substitution rule that makes any substitution instance of a derivably
equation derivable; and congruence rules. The substitution rule [5] uses the
notation o(t) for the application to a term ¢ of a substitution o that maps
variables to terms. (See §B.2.7 for the definition of substitution.)

module Equational-Logic
imports Equations'?1-2 Substitution®-2-7 Booleans
exports
context-free syntax
Egs “+” Eq — Bool

B.1.2

equations

1] Eht=t=T

[2] g"tzEtlzT

gl_tlEtz =T

3 g"tlEh:T,EthEt;;:T

[] gl_tlEt3:T

[4] Pliti =ty s b=t =T

[5] El—tlztgz"l'
g"O’(tl)EO'(tg) =T

6 g"t15t3:—|—,g|—t2§t4:—|—

[] El—t1t2£t3t4=T

[7] g"tlEt3IT,g|_tht4:T

(c,"_t]_,tzEt3,t4 =T

230

Untyped Equational Specifications [12.1

This specification is not executable as a term rewrite system, because it is
non-deterministic and not normalizing. This is not surprising since equational
derivability is an undecidable property. To determine whether two terms are
equal we can make use of several other techniques. In the following subsection
we define an evaluation function that implements a simple rewrite strategy that
decides (ground) equality for a large class of specifications.

12.1.4 Term Rewriting

Equational specifications can be interpreted as term rewriting systems by di-
recting the equations from left to right. This gives a procedure for deciding
derivable equality from a set of equations that constitutes a terminating and
confluent rewrite system. Fvaluation of a term in the context of a specification
amounts to finding its normal form, if it exists, with respect to the term rewrit-
ing system. If £ is a list of equations and ¢ is a term, then t' = eval(£)[t] is the
normal form of ¢ under £, i.e., t' has no sub-term that matches the left-hand
side of an equation in £.

There are a number of strategies used to find normal forms. Here we use
a simple left-most innermost rewriting algorithm. This strategy is sound with
respect to equational logic, i.e., if two terms have the same normal form they
are also derivably equal. The strategy is (ground) complete with respect to
confluent and strongly normalizing term rewrite systems, i.e., two terms are
derivably equal if and only if they have the same normal form.

Evaluation proceeds as follows. The auxiliary function ‘step’ tries to find a
matching equation for a term. If it finds one, the instantiation of its right-hand
side is evaluated. In equation [6] the list of equations is searched (by means of
list matching, see Chapter 2) for an equation t; = t» such that the left-hand side
t; matches the term t, i.e., such that there is a substitution ¢ such that o(t;) = t.
The substitution is found in the condition t; := t = o. The substitution o forms
the environment for the evaluation of the right-hand side of the equation. If no
matching equation is found, ‘step’ just returns its argument (equation [7]). The
function ‘eval’ itself evaluates a term by first evaluating its direct sub-terms and
then applying ‘step’ to the composition of the resulting normal forms.!

module Term-Rewriting

imports Matching®-2-® Equations!?-1-2
exports
context-free syntax
eval “(77 E(lS “)77 “[[77 Term “]]” % Term
eval “(” Eqs “)7’ (([[” Term M]]” “_77 Subst % Term
Step (((7’ Eqs (()77 “|[” Term “]]” % Term

INote that the underscore _ in the syntax of the function ‘eval’ is interpreted by the
ASF+SDF to IATEX typesetting program by typesetting the next argument, i.e., the substi-
tution, as a subscript.

231

12 / UNTYPED AND SIMPLY TYPED SPECIFICATIONS

equations
(1] eval(€)[t] = eval(€)[H];
[2] eval(&)[1], = o(=z)
[3] eval(€)[flo = step(E)[/]
4 exal(€)[t1 o], = step(E)[eval(€)[1], eval (€)[t2],]
[5] eval(&)[t, 2], = step(&)[eval(E)[t1]o, eval(E)[t2]o]
[6] step(€)[{] = eval(€)[2]o
when £ =it = b p5, hi=t=0
[7] step(E)[f] =t otherwise

The following proposition states that evaluation is sound with respect to deriv-
able equality.

Proposition 12.1.1 (soundness of evaluation) IfE constitutes a terminat-
ing term rewrite system and eval(E)[t], = t', then £ + o(t) = t' and if
step(E)[t] =/, thenEFt =1t

Proof. By simultaneous induction on the definition of eval and step. O

Observe that the specification of evaluation is not sufficiently-complete, because
the ‘eval’ of a non-terminating term cannot be eliminated and thus is a new
term constructor. The restriction to terminating rewrite systems in the sound-
ness proposition is necessary because the definition of equational logic does not
account for these new term constructors. This could be repaired by introducing
an auxiliary sort as the result of evaluation and using conditional equations to
define ‘eval’ as in
eval(E)[t1] = t}, eval(E)[t2] =t}
eval(E)[t1 t2] = step(E)[t] 5]

The conditions work as ‘retracts’ and guarantee that the rule only applies if the
evaluation of the subterms terminate, thereby avoiding the pollution of the sort
Term. However, this gives a more complicated specification that does not have
a better termination behavior and adds nothing to our understanding of term
rewriting. Therefore, we leave the specification as it is, with the somewhat loose
understanding that it says what we intend for terminating specifications.

12.2 One-Level Specifications

The untyped equations of the previous section do not impose a restriction on
the set of terms that they describe. Although we have an intuition about the
terms that are meaningful with respect to a specification and those that are
not, this is not formalized. For instance, the specification in Figure 12.1 clearly
manipulates two categories of terms: numbers composed by 0, s and (+) and
lists composed by [1, (::) and map. However, s(map) + O is a valid term over

232

One-Level Specifications | 12.2

this specification, which has no apparent meaning in our intuition about the
specification.

Signatures formalize the intuition about the types of terms in specifications
and allow one to check that specifications and terms comply with each other. A
signature is a list of declarations of functions and variables that is interpreted as
a predicate on terms indicating which terms are well-formed. In this section, we
extend the untyped equational specification formalism with signatures, leading
to the one-level specification formalism OLS.

12.2.1 An Example

Before giving the syntax of type terms, signatures and specifications we discuss
a simple example of a one-level specification. Figure 12.2(a) presents the spec-
ification of natural numbers in OLS. The signature part declares the constant
nat as a sort and the constant 0, the unary function s and the binary function
(+). Furthermore, the signature declares X and Y as nat variables. Together
these declarations define the terms of sort nat. The equation part defines the
meaning of the binary function (+) in terms of 0 and s.

The signature of this specification is depicted by the signature diagram in
Figure 12.2(b). The diagram consists an ellipse denoting the set of all terms
of sort nat. The arrows denote the functions declared in the signature. The
constant 0 is denoted by an arrow without origin. The unary function s is
denoted by an arrow from nat to nat; it takes a natural number and produces
a new one. The binary function (+) takes two natural numbers and produces a
new one, which is depicted by the forked arrow.

signature
sorts nat;
functions
0 : nat;

s : nat -> nat; P 0
(+) : nat # nat -> nat; ‘ <
variables @b a

X, Y : nat;
equations (b)
0+ X == X;
sX) + Y==sX+Y)

Figure 12.2: Specification of successor naturals with addition (a) and corre-
sponding signature diagram (b).

233

12 / UNTYPED AND SIMPLY TYPED SPECIFICATIONS

nat # nat -> nat

Figure 12.3: Signature diagram of natural numbers in which function and prod-
uct types and the corresponding application and pairing functions are depicted
explicitly. The functions s and (+) are constants of functional types.

As we will see, the term structure of one-level specifications is actually applica-
tive. This entails that besides nat, there are the sorts nat -> nat, nat # nat
and nat # nat -> nat. The signature diagram in Figure 12.3 depicts this
situation. The functions s and (+) are constants of sorts nat -> nat and
nat # nat -> nat, respectively. The diagram also shows the role of the im-
plicitly declared pairing (,) and application (@) functions.

12.2.2 Types

A type is an expression that denotes a set of terms. Types in many-sorted sig-
natures are composed of constants, such as nat, by means of the type operators
product x and arrow —. The product type 71 X 72 denotes pairs of terms (1, t2)
of type 71 and 73, respectively. The type 73 — 72 denotes the type of functions
with domain 71 and codomain 7. The types in polymorphic languages are
{x, —}-types extended with arbitrary terms like 1ist (nat). We will see later
that such types can be described by a signature. Anticipating this extension,
we use terms extended with the product and arrow operators as types. The
variable 7, ranging over terms, will be used to indicate a term used as type.

A type amnotation of a term is the attachment of a type to each subterm.
Annotation is expressed by means of the operator ‘. The term ¢ : 7 denotes
the term ¢ annotated with type 7. A term is fully annotated if each subterm has
a type annotation. For example, the term

(s : nat -> nat)(0 : nat) : nat

is a fully annotated version of the term s(0). In the context of a signature,
a term without annotations is an abbreviation of an annotated term. In the
multi-level extension that we will define in §14.1 and §14.3 we will encounter
terms with annotations that are themselves annotated, e.g.,

[J : ((1ist : type -> type) (A : type) : type)
is the term [] annotated with the type list(A), which is itself annotated.
Compare the annotation of 1ist (A) with that of s(0) above.

234

One-Level Specifications | 12.2

module Types

imports Terms!2-11
exports
context-free syntax
“nil” — Term
“top” — Term

Term “x” Term — Term {right}
Term “—” Term — Term {right}
Term “” Term — Term {right}
priorities
Term Term — Term > Term “x”Term — Term >
Term “—”Term — Term > Term “:” Term — Term >

Term “,” Term — Term
’
variables

“r7[0-9']* — Term

“T” “*77 [0_9/]* _> {Term “;7’}*

“T” “+77 [0_9/]* _> {Term ‘(;7’}+
The terms ‘nil’ and ‘top’ are auxiliary types that will be used in typechecking.
‘nil” denotes the empty type, which is assigned to terms for which no type exists.
In our multi-level setting, ‘top’ will denote the type of top-level types, i.e., terms
over the implicit signature on top of a multi-level specification.

The priorities section declares that application has highest priority of all term
constructors and that product binds stronger than arrow, which has higher
priority than type annotation and pair. For instance, consider the following
disambiguations:

text disambiguated as

list : type -> type list : (type -> type)

list A -> nat (1ist A) -> nat

nat # nat -> nat (nat # nat) -> nat

list : type -> type A : type | list : ((type -> (type A)) : type)

12.2.3 Term Analysis

Recall that we have the following term constructors: variable and function sym-
bols, nil, top, application, pairing, product, arrow and annotation. These are
all the constructors we will consider in this chapter. All other functions that
produce terms should be such that they can always be eliminated (i.e., the
specification is assumed to be sufficiently complete). Assuming this property,
a default (otherwise) equation over a function with a term as argument ranges
over all constructors for which no other equation is defined, and thus is an
abbreviation for a list of equations with those other constructors substituted.
For future use we now define several functions for analyzing terms. The sort
(Term = Term) is the sort of functions from terms to terms that is defined in
§B.2.3. The basic operation of this sort is the application of a function to a term
yielding a term, i.e., (Term = Term)(Term) — Term. This approach makes it
possible to generically define a function that applies a (Term = Term) function

235

12 / UNTYPED AND SIMPLY TYPED SPECIFICATIONS

to all terms in a list of terms.

module Term-Analysis

imports Term-Functions®-2® Terms'?!! Types'?22 Binary-Operators?-2-!
exports
context-free syntax
spine — (Term = Term)
fspine — (Term = Term)
term — (Term = Term)
type — (Term = Term)
dom — (Term = Term)
cod — (Term = Term)
fun — (Term = Term)
arg — (Term = Term)
bterm — (Term = Term)
bapp — (Term = Term)
equations

The type assignment functions that will be specified later add annotations to
terms. In order to relate a fully annotated term to its underlying plain term, the
function ‘spine’ removes all annotations from a term. For instance, the spine of
(s : nat -> nat) (0: nat) : natis s(0).

[1] spine(t : 7) = spine(?)

2] spine(f) = f

(3] spine(z) =

[4] spine(nil) = nil

[5] spine(top) = top

6] spine(t;, t2) = spine(t;), spine(tz)
[7] spine(t; t») = spine(t;) spine(t2)

8] spine(t; X t2) = spine(t;) X spine(t)
[9] spine(t; — t») = spine(t;) — spine(t2)

The function ‘fspine’ is the same as ‘spine’ except that it does not remove the
annotation from a function symbol.

[10] fspine(f: 1) =f: 7
[11] fspine(t : 7) = fspine(t) otherwise
The other equations are the same as for ‘spine’. This function is used to

translate annotated terms over a signature with overloading to disambiguated
plain terms.

The ‘term’ of an annotated term is the term without its outermost type
annotation. The ‘type’ of a term is its outermost annotation.

[12] term(t:7) =1
[13] type(t:7) =71

We see that for any term ¢ of the form t' : 7, term(¢) : type(t) = t. To extend
this property to arbitrary terms, the ‘term’ of a term without annotation is

236

One-Level Specifications | 12.2

defined to be the term itself and the ‘type’ of a term without annotation is
‘top’. To complete the picture it follows that a term with annotation ‘top’ is
equal to the term itself.

[14] term(f) = ¢ otherwise
[15] type(t) = top otherwise
[16] t:top=t

Now we have for arbitrary terms
[17] term(t) : type(t) = ¢

The functions ‘dom’ and ‘cod’ give the domain and codomain of a function type,
respectively. The domain of a term that is not an arrow is nil, its codomain is
the term itself. nil is a left unit for arrow. This corresponds to the notion that
a constant is a function without arguments. Similarly the functions ‘fun’ and
‘arg’ give the function and argument of an application

[18] dom(t; = t) = # [19] arg(ti t2) = t

[20] dom(?) = nil otherwise [21] arg(?) = nil otherwise
[22] COd(tl — tg) = t [23] fun(t1 tz) =t

[24] cod(?) = t otherwise [25] fun(?) = t otherwise
[26] il - ¢ =t [27] tnil =t

We have

[28] dom(t) — cod(t) = ¢t [29] fun(t) arg(t) = ¢

The functions above are combined in the definition of the function ‘bterm’ that is
used to analyze the types of binary functions. It strips the outermost annotation
off an arrow term and off its domain.

[30] bterm(t) = term(dom(term(t))) — cod(term(t))
For example,

bterm((((nat : type) # (nat : type)) : type
-> (nat : type) : type))
= (nat : type) # (nat : type) -> (nat : type)

This function will be used for typechecking multi-level specifications. Similarly
the function ‘bapp’ removes the annotations from a binary application

[31] bapp(t) =t (%, t3)
when term(t) = t] #;, term(t) =, term(ty) = by, t3
[32] bapp(f) =t otherwise

For example,

bapp(((+) : nat # nat -> nat)
((0 : nat, O : nat) : nat # nat) : nat)
= (+)((0 : nat), (0 : nat))

237

12 / UNTYPED AND SIMPLY TYPED SPECIFICATIONS

12.2.4 Syntax of One-Level Specifications (OLS)

A specification consists of a signature and a list of equations. A signature is
constructed from sort, function and variable declarations. We start with the
definition of declarations.

Declarations A function declaration of the form f : 7 assigns the type 7 to
function symbol f. For example, the type of the addition operator plus on
natural numbers is declared as plus : nat # nat -> nat. An infix operator
is declared by declaring its prefix notation as a binary function. For instance, if
we use + as an infix operator for addition on natural numbers we would declare
(+) : nat # nat -> nat. A variable declaration of the form x : 7 assigns type
T to variable symbol z. For instance, the declaration X : nat declares a variable
X of type nat. A sort declaration consists of a declaration of function symbols
to be used as basic types.

module OLS
imports Terms'?!'! Types!?22 Binary-Operators?-2-1
exports
sorts Decl Decls
context-free syntax
{Fun “”}+ “” Term — Decl
{Var “}+ “” Term — Decl
{Decl “”}x — Decls
Decls “+” Decls — Decls {right}
variables
[f] <<+7: [0_91]* — {FUII «,71}_*_
[Z’] “+”[0-9’]* — {Var «,”}_*_
“d”[0-9"]x — Decl
“d”“x”[0-9"]% — {Decl "}
“d” “+77[0_gl]* _) {Decl M;”}+
“ds”[0-9']x — Decls
equations
According to the syntax above, declarations can have the form fy,...,f, : 7

declaring in one declaration the function symbols f; to be of type 7. This
notation is merely an abbreviation of a list of declarations f; : 7 as expressed
by the following equations.

AN

(1] =4 4
2] o, o i =dia el T d
[3] & + & = dj; &

Signatures An atomic signature is constructed from sort, function and vari-
able declarations by the constructors ‘sorts’, ‘functions’ and ‘variables’, respec-
tively. Signatures can be combined by the signature concatenation operator
.

;. The projection functions ‘S’, ‘F’ and ‘V’ yield the list of sorts, function
declarations, and variable declarations, respectively, of a signature.

238

One-Level Specifications | 12.2

exports
sorts Sig
context-free syntax
“sorts” Terms — Sig
“functions” Decls — Sig
“variables” Decls — Sig

— Sig
Sig «“ Slg — Slg {I'ight}
“(7 Sig)7 — Sig {bracket}
“S” (Sig) — Terms
“F” (Slg) — DeClS
“V” (Sig) — Decls
variables
“¥7[0-9"1% — Sig
equations

Equations [5], [7] and [9] express that atomic signatures with empty declaration
lists are equivalent to empty signatures.

[4] DY =X [6] sorts =

6] X =3 [7] functions =

8] (15 X2); X5 = X1; 30 83 [9] variables =

[10] S(sorts ts) = s [11] S(=

[12] S(functions ds) = [13] S(Z1; E2) = S(Z1) H S(E2)
[14] S(variables ds) =

[15] F(sorts ts) = [16] F() =

[17] F(functions ds) = ds 18] F(X1; X2) = F(Z1) + F(Z2)
[19] F(variables ds) =

[20] V(sorts ts) = [21] V() =

[22] V(functions ds) = 23] V(Z1; E2) = V(E1) H V(E2)
[24] V(variables ds) = ds

Specifications An atomic specification is a signature or a list of equations in-
dicated by the functions ‘signature’ and ‘equations’, respectively. Specifications
are combined by the operator ‘;’. The projection functions ‘Sg’ and ‘E’ give the
signature and equations of a specification.

imports Equations!?1-2

exports

sorts Spec

context-free syntax
“signature” Sig — Spec
“equations” Eqs — Spec

— Spec

Spec “” Spec — Spec {right}
“(” Spec “)” — Spec {bracket}
“Sg” (Spec) — Sig
“E” (Spec) — Eqgs

239

12 / UNTYPED AND SIMPLY TYPED SPECIFICATIONS

variables
“S”[0-9']% — Spec

equations
[25] ; S =S [26] signature =
[27] S; =S [28] equations =
[29] (81;82);83 = 51;82; 83
[30] Sg(signature ¥) = % [31] E(signature) =
[32] Sg(equations &) = [33] E(equations &) = &
34 Sg() = 135 E) -
36]Sg(S1; S2) = Sg(S1); Sg(S2) B E(S1; S2) = B(Sy) + B(Sy)

We can extend the (Term = Term) functions to apply to all terms in a spec-
ification. By means of these functions we can apply the functions ‘spine’ and
‘fspine’ to a fully annotated specification in order to get its underlying plain
specification. Accordingly, spine(S) denotes the underlying plain specification
of specification S.

12.2.5 Specification Semantics

The semantics of specifications is defined by means of an extension of equational
logic to terms with type annotations.

Typed Equational Logic Equation [1] states that an equation ¢ = t3 is an
axiom of a specification & if it is an element of the equations of S. The other
rules are the same as in the case of untyped equational logic (§12.1.3), except
for the congruence rule for annotated terms [2]. Only terms with the same
annotation can be equated if they are equal without annotation. Compare this
to the congruence rules for application [6] and pairing [7] in §12.1.3, where both
arguments can be equal modulo the equations in €. In the case of multi-level
specifications we will give an equational logic (§14.1.3) where equations over
types play a role.

module OL-Equational-Logic
imports OLS!22 Substitution®?-2-7
exports
context-free syntax
Spec “+” Eq — Bool

equations

] E(S) = ¢1; 61t = t; 3
S+ th=1t = T
Sk thh =t = T

(2]

Skt :7=t:7 =T

240

Typechecking One-Level Specifications / 12.3

The standard rules for reflexivity, symmetry, transitivity, substitution and con-
gruence for the other binary operators are not shown.

Proposition 12.2.1 Typed equational logic over a list of equations £ is type
preserving if the equations in £ are type preserving, i.e., if for each t| =13 € £,
type(t1) = type(ts) then £ -t =t' implies type(t) = type(t').

Proof. (Sketch) by induction on derivations. The property clearly holds for
[1], [2] and equality of types is preserved by reflexivity, symmetry, transitivity,
substitution and congruence. O

Typed Term Rewriting In accordance with the rules for typed equational logic,
the typed innermost term rewriting function ‘eval’ applies equations, oriented
from left to right, until a term is in normal form. The annotation of a term
is not evaluated in equation [2], because the equations of a specification apply
only to object terms and not to types.

module OL-Term-Rewriting
imports OLS!?-24 MatchingB-2-8

exports
context-free syntax
eva] “(” Spec “)77 “|[’7 Term “]]” _) Term
eval “(” Spec “)” “[” Term “]” “_” Subst — Term
Step “(” Spec “)75 “ﬂ” Term “]]” _) Term
equations
[1] eval(S)[t] = eval(S)[{]|;
2] eval(S)[t: 7], = step(S)[eval(S)[t], : ()]
[3] step(S)[] = eval(S)[%]»
when E(S)=pf;ti =t 03, th:=t=0
[4] step(S)[t] =t otherwise

The evaluation rules for the other operators are straightforward following Sec-
tion 12.1.4. Note that recursive applications of eval to the other new operators
product and arrow have to be added.

12.3 Typechecking One-Level Specifications

The context-free syntax of specifications defined in the previous section allows
many degrees of freedom. In this section we narrow this down to the subset of
one-level equational specifications with monomorphic types and no overloading.
In §14.3 we will extend this to multi-level signatures with polymorphism and
overloading. Here we avoid the complications introduced by multi-level spec-
ifications to make it easier to explain the architecture and basic ideas of the
specification of the type system.

241

12 / UNTYPED AND SIMPLY TYPED SPECIFICATIONS

Plain Plain

Specification Term

type assignment i type assignment

typechecking Fully-Annotated Fully-Annotated

Specification | — Term

well-formedness — =] term rewriting

Normal

Error + true

Form

Figure 12.4: Architecture of typechecker for one-level specifications.

In §12.3.2 (Module OLS-WF) the well-formedness of fully annotated specifi-
cations is defined. The definition of well-formedness only specifies the correct
cases, i.e., it contains a function which yields T iff the specification is well-
formed. It does not deal with erroneous cases. The translation of these to
human readable error messages is taken care of in §12.3.3 (Module OLS-NWF).

Since fully annotated specifications are difficult to read and write, one is not
expected to actually write such specifications (although it is possible to supply
partial annotations in terms to constrain their typing). Instead, plain speci-
fications without annotations are annotated with types by a type assignment
function defined in §12.3.4 (Module OLS-TA).

Finally, the typechecker defined in §12.3.5 (Module OLS-TC) first applies
the type assignment function to a specification and then checks the result for
well-formedness. This setup gives a separation between typechecking and type
assignment that saves a great deal of bookkeeping and makes the definitions
accessible. Moreover, annotated specifications can be used as input for tools
other than a well-formedness checker, for instance a theorem prover or term
rewriter. This architecture is illustrated in Figure 12.4.

First we define projection functions to find the type of a function or variable
in a signature.

12.3.1 Projection

The projection function 7 yields the type of the first declaration for a variable or
function in a list of declarations. The type of a function symbol f in a signature
Y is w¢(X). The type of a variable symbol z in a signature ¥ is m,(X). Observe
that variable declarations in a ‘functions’ section and function declarations in a
‘variables’ section are ignored.

242

Typechecking One-Level Specifications / 12.3

module Projection

imports QOLS!%-2+4
exports
context-free syntax
“71.” ((_7) Var “(7) Decls “)77 _> Term
“7.[_7’ “_77 Fun “(77 DeClS “)77 _) Term

“7.[_77 “_77 Var “(77 Sig “)77 _) Term

“7.[_77 “_77 Fun “(77 Sig “)77 _) Term
equations
Looking up a function in a list of declarations. If no declaration is found the
term ‘nil’ is returned.

[1] m{d*) =nil when d* =
[2] 7rf(f: T dY) =71
3] mf(d; d*) = m(d*) otherwise

The projection of a variable from a list of declarations is defined similarly.

[4] mg(d*) =nil when d* =
[5] mp(z:T;d*) =T
[6] wg(d; d*) = my(d*) otherwise

Looking up the type of a function in a signature consists of looking it up in the
list of function declarations. The type of a variable is found by looking it up in
the list of variable declarations.

[7] TH(Z) =
8] my(X) =

12.3.2 Well-formedness

Well-formedness judgements on terms characterize the well-formed, fully anno-
tated terms over a signature, i.e., given a signature X the set T,(X) defined
as

Tra(E) ={t|t € Term A X Kerm t}

is the set of fully annotated terms ¢ that satisfy the well-formedness judgement
Y Kerm t- The plain terms (without annotation) over a signature can be obtained
by taking the spines of the well-formed, fully annotated, terms, i.e., the set T(X)
of plain terms over X defined as

T(X) = {spine(t) | t € Term A ¥ Kerm t}

In this section we define well-formedness of fully annotated terms. In §12.3.4
we define a type assignment function that produces a fully annotated term for
a plain term. Figure 12.5 shows a fully annotated specification.

243

12 / UNTYPED AND SIMPLY TYPED SPECIFICATIONS

signature
sorts nat;
functions
0 : nat;
s : nat -> nat;
(+) : nat # nat -> nat ;
variables
X : nat; Y : nat;
equations
((+) : nat # nat -> nat)
((0 : nat, X : nat) : nat # nat) : nat
== : nat;

((+) : nat # nat -> nat)
(((s : nat -> nat) (X : nat) : nat, Y : nat)
: nat # nat) : nat

(s : nat -> nat) (((+) : nat # nat -> nat)
((X : nat, Y : nat) : nat # nat) : nat)
: nat

Figure 12.5: A fully annotated one-level specification. This is an annotation of
the specification in Figure 12.2.

We define not only the well-formedness of terms, but also the well-formedness
of signatures and equations. In general, well-formedness judgements define
which syntactically correct expressions are well-formed. The well-formedness
of fully annotated one-level specifications is defined by means of the following
judgements.

module OLS-WF
imports OLS!2-2#4 Projection!?-3-! Variables®-2¢ Error-Booleans?1-?

Term-Analysis!2-2-3
exports

context-free syntax
“Ispec” Spec — EBool
“kig” Sig — EBool
“orts” Terms — EBool
Sig “Hects” Decls — EBool
Sig “ksort” Term — EBool
Sig “Kerm” Term — EBool
Sig “leqs” Eqs — EBool

The well-formedness of a fully annotated specification S is defined by means of
the judgement kspec S. It is defined in terms of several other judgements of the
form ¥ k 7, which stands for ‘construct r (of type r) is correct with respect

244

Typechecking One-Level Specifications / 12.3

to signature ¥’. For instance, the judgement X kerm t determines whether ¢ is
a well-formed term with respect to ¥. Equations defining judgements will, in
general, have the form

CI(QaE)a-'- 7Cm(Q;E)
2'@(](7‘1,... ;Tn)zzli-l TN AY R,y

to express that a construct g with subconstructs r; is well-formed if conditions
C; hold for ¢ and ¥ and if the subconstructs are well-formed.

Judgements are functions that yield a term of the sort EBool of error Booleans.
This sort is a version of the Booleans (defined in §B.1.3) with a constant T (‘true’
or ‘correct’) but with no constant for ‘false’ or ‘incorrect’. Instead all elements
of the sort Error act as values representing incorrectness. Two operations are
defined on error Booleans. The symmetric conjunction A yields T in case both
arguments are T and yields the addition of the errors otherwise. The asymmet-
ric conjunction ~» yields T if both arguments are T and otherwise it prefers the
error of the left argument.

In this subsection only the positive cases for the judgements are defined. In
the next subsection the other, negative, cases are defined to yield errors that
give a description of the well-formedness rule that is violated.
equations
A specification is well-formed if its signature is well-formed and its equations
are well-formed with respect to the signature.

(1] Fpec S = Kig £ ~ ¥ keqs E(S) when Sg(S) =%

Signatures A signature is well-formed if all its sort, function and variable
declarations are well-formed.

[2] lTSig Y = korts S(Z) AX lHecls F(E) ANZ |Hecls V(E)

The terms declared as sorts in the sorts section should be constant terms, i.e.,
function symbols.

[3] forts f=T
[4] Borts = T
[5] Forts 7_1+; 7_2+ = Korts 7'1+ A Fsorts 7'2+

A declaration is correct if the type assigned to the function or variable is a
well-formed sort (see below) and if the function or variable is not overloaded.

[6] Y Recls f: 7 =X kort 7 when Wf(E) =T
[7] Y Recls : T =X kort 7 When 7,(X) =7
[8] by |Hecls =T

[9] Y Recls d1+) d2+ = ¥ Recls d1+ A X Recls d2+

Recall that 77(X) gives the type of f in ¥. The condition 7;(X) = 7 for a
declaration f : 7 expresses that there should be only one declaration for f in
the signature. If there are more (with different types), the condition will fail
when checking the second declaration because m7(X) will yield the type of the
first declaration.

245

12 / UNTYPED AND SIMPLY TYPED SPECIFICATIONS

Sorts Sorts are terms composed by x and — from function symbols, which
are the basic sorts. A basic sort should be declared in the sorts section as
expressed by the condition of equation [10].

[10] Yhort f=T when feS(X)=T
[11] Yhort t1 X ta = X lgort t1 A X bsort to
[12] X 'T;ort h = b= b lTsort th A X 'T;ort to

Terms A term is well-formed if all its subterms are annotated with a type in
a correct way corresponding to the signature. Variables and functions are well-
formed if their annotation is equal to their declared type in the signature and
if that type is a well-formed sort. This additional condition is needed because
m¢(X) yields ‘nil’ if ¢ is not declared. If the annotation is also ‘nil’, this would
wrongly imply that the term is correct. Since ‘nil’ cannot be a sort, this extra
condition is sufficient. A pair is well-formed if its type is the product of the types
of its arguments. An application is well-formed if the its type is the codomain of
the type of the function and if the type of the argument is equal to the domain
of the type of the function.

(X)) =7, kot 7=T

13
[13] Yhermz:7 = T
14 THE) =7, Shot T=T
Yherm f:7 = T
" type(t) X type(tz) =7
Y Kerm (t17 t2) :T = Y Kerm t1 A X Kerm &2

t t1))=1t —

6] ype(t1) = type(t) — 7

Yherm ti t2: 7 = X Kerm &1 A X Kerm b

There is no need to check the well-formedness of the types of applications and
pairs, because equations [16] and [15] preserve well-formedness of type annota-
tions. In equation [15]: if type(t;) are well-formed, then their product is also
well-formed. In equation [16]: if type(t;) are well-formed, then 7 must also be
well-formed, because it is a subterm of type(t1).

Equations An equation is well-formed if both sides have the same type and
if all variables used in the right-hand side occur in the left-hand side. The
last condition ensures that no new variables are introduced if the equations are
interpreted as rewrite rules oriented from left to right.

type(t1) = type(tz), vars(ty) C vars(t;) =T

17

7] EI73q:s7515752:El’fermtl/\E}'f.ermt2
[18] Yhag =T

[19] S feqs #1527 = Thegs 1 A Dlegs 95

246

Typechecking One-Level Specifications / 12.3

The following proposition states that a well-formed specification preserves
types. This means that if two terms are equal according to a well-formed spec-
ification (and the rules of equational logic), they have the same type and that
the normal form of a term has the same type as the term that is evaluated.

Proposition 12.3.1 (Type Soundness) Equational logic and rewriting with
well-formed specifications is type preserving: If spec S and Sg(S) kKerm ti then
Sk t; =ty implies type(t1) = type(tz). Furthermore, eval(S)[t1] = t2 implies
type(t1) = type(tz).

Proof. By the well-formedness of S it follows that all equations are type pre-
serving (equation [17]) and by Proposition 12.2.1 it then follows that equational
derivations for § are type preserving. The second part of the proposition fol-
lows from the first part and the soundness of evaluation with respect to derivable
equality (Proposition 12.1.1). O

The condition Sg(S) kerm t:; implies that the terms ¢; are fully annotated.
Normally, when considering a specification, we think about equality of plain
terms. By means of the function spine and the well-formedness judgements we
can characterize the plain terms T(X) over a signature (see beginning of this
subsection). The following proposition states that well-formed specifications
can only equate plain terms for which well-formed full annotations exist.

Proposition 12.3.2 If kpec S, S = spine(S’), t1 # t2 and S F t1 = t,, then
there are t} and t, such that spine(t}) = t1, spine(t}) = t2, S’ Kerm tl{l,z} and

type(t}) = type(ts).

12.3.3 Non-wellformedness

In the previous section we have defined which specifications are well-formed.
In this section we look at the cases not covered by the well-formedness rules,
which are, by definition, not well-formed. As an example of the type of error
messages generated by these rules, Figure 12.6 shows the errors for an incorrect
version of equations of the natural numbers specification from §12.2. We derive
equations for the generation of error messages for non-wellformed specifications
by looking at which cases were not covered by the equations above. If we had
an equation of the form

Cl(q7 E), s 7Cm(qa E)

Shq(ri,...,mn) =Sk 1A AZE, T,
the error case will be of the form
-Cy (q,zj) VeV ﬁcm(q,g)
Lhq(r,...,mn) =2k 1 A...AXk, r,~ "¢" not well-formed

If either of the conditions does not hold then construct g is not well-formed. But
we only want to report this fact if all its sub-constructs are well-formed. Other-
wise only the reasons for non-wellformedness of the sub-constructs are reported,

247

12 / UNTYPED AND SIMPLY TYPED SPECIFICATIONS

equations
0+X ==Y;
s@X) +Y==5+ (X, Y)

equation "(+)(0, X) == Y" not well-formed :
variables "Y" of rhs not in lhs ;

application "(+)(s , X , Y)" not well-formed :
type of argument "(nat -> nat) # nat # nat"
does not match type of domain "nat # nat"

(b)

Figure 12.6: Non-wellformed specification (a) and errors (b) corresponding to
the violations against the well-formedness rules. The signature part of the
specification in (a) is not shown here but corresponds to the signature in Fig-
ure 12.2(a).

which is expressed by the use of the asymmetric conjunction ~». Furthermore,
we may choose to generate more precise error messages that are related to the
conditions C;. We then get equations of the form

Cl(QJ E); DR Cifl (q; E), _‘C—i(q, E)
EIT?{Q(rla--- arn) = ElTl T‘1/\.../\E|Tn Tn
~» "g" does not have property C;

Instead of negating the conditions we can use default equations to deal with the
remaining cases.

Thq(ri,...,mn) = Xk A AXkK, r, ~ "¢" not well-formed
otherwise

module OLS-NWF
imports OLS-WF!2-3-2 SPEC-Errors?-22
equations

Declarations No terms other than constants can be declared as sorts.

[1] ksorts T =" 7T " not a well-formed sort declaration otherwise

[2] 2 Hecls f: 7 = function " f" multiply declared otherwise
[3] X tgecls z: T = variable " z " multiply declared otherwise

248

Typechecking One-Level Specifications / 12.3

Sorts A term is a non-wellformed sort if it is a constant that is not declared
or if it is a term that is not a constant, product or arrow.

[4] X kort f=sort " f" not declared when fe€ S(X) = L
[5] ¥ tsort t=" 1" not a well-formed sort otherwise

Functions and Variables If the result of looking up a function or variable
in the signature is ‘nil’, it is not declared, otherwise the declared sort is not
well-formed.

6] ¥ Kerm f: 7 = function " f" not declared when 7rf(2) = nil
7] ¥ Kerm f: 7 =X ksort 7 otherwise
] ¥ Kerm z: T = variable " z " not declared when 7,(X) = nil
9] ¥ Kerm z: 7 = X kort 7 otherwise

Pair and Application

[10] Y Kerm (t17 tz) T = (E Ferm t1 A X Kerm tz)
~» pair " spine(t;, t2) " not well-formed
otherwise

[11] YhRerm it @ T
= (E Rerm ti A X Kerm t2)
~» application " spine(#; t;) " not well-formed
:: if eq(dom(type(t;)), nil)
then " spine(#;) " is not a function
else type of argument " type(t)
" does not match type of domain " dom(type(#)) "

otherwise

Note that the function ‘spine’ is used to show a term without its type annota-
tions.

Annotation Terms without annotation or with double annotations are never
well-formed.
type(t) = top

12
[12] Y Kerm t = term " ¢ " not well-formed

[13] ¥ kerm (t:71) : T2
= Y Kerm t: 71
~» annotation of " spine(t) " with " 75 " not well-formed
: should be " spine(71) "

For several constructors in the language of terms we did not formulate any rules

because they cannot be used at the level of terms at all.

[14] ¥ Kerm t1 X t2 : 7 = term " spine(#; X t3) " not well-formed
[15] ¥ Kerm t1 — t2 : T = term " spine(t; —) " not well-formed
[16] Y Kerm top : 7 = term " top " not well-formed
[17] Y Kerm nil : 7 = term " nil " not well-formed

249

12 / UNTYPED AND SIMPLY TYPED SPECIFICATIONS

FEquations

[18] b)) |§qs th = ta
= (E Rerm ti A X Kerm t2)
~» equation " spine(t;) = spine(tz) " not well-formed
= if = eq(type(t1), type(tz))
then types do not match
else variables " trms(vars(#;) / vars(#;)) " of rhs not in lhs
otherwise

The following proposition states that the definition of the well-formedness
judgement for terms is sufficiently-complete, i.e., all cases are covered by the
well-formedness and non-wellformedness rules.

Proposition 12.3.3 For any term t and signature 3, ¥ Kerm t € {T } U Error.

12.3.4 Type Assignment

Figure 12.5 shows that it is a tedious task to write fully annotated specifica-
tions. In this subsection we define the type assignment function Wt(X)[t] that
annotates a term with types according to signature ¥. Terms for which no typ-
ing exists are assigned the ‘nil’ type. If a term is already partially annotated,
these annotations are checked against the derived annotations. In the one-level
framework we are currently dealing with there is not much use for such anno-
tations because terms can have at most one type. However, in the multi-level
framework terms can be polymorphically typed and we will also allow functions
to be overloaded. In such a situation, partial annotations are useful to enforce
a more specific type for a term.

module OLS-TA

imports OLS!2-24 Projection!?-3! Term-Analysis!?-23
exports
context-free syntax
“WSP” u[[n Spec 44]]” N Spec

“Wt” “(” Sig “)77 M[[” Term ((]]77 % Term

“We” “(75 Sig “)7’ “l[” EqS ((]]75 % Eqs
equations
The function ‘Wsp’ assigns types to the terms in equations of a specification
using its signature.

¥ = Sg(S)
Wsp[S] = signature ¥; equations We(2)[E(S)]

[1]

Terms Functions and variables are annotated with their types in the signa-
ture. The type of a pair is the product of the types of its arguments. The type

250

Typechecking One-Level Specifications / 12.3

of an application is the codomain of the type of the function.

(X)) =71
2] Wt(E)[z] = z:7
(X)) =1
i Wt(g)(lm; = fir
n Wt(B)[a] = ts, Wt(Z)[t] = ta
Wt(D)[ts, 2] = (ts, ta) = type(ts) X type(ts)
5] Wt(B)[t] = ts, Wt(X)[t] = ta

Wt(Z)[t 1] = 3 ts : cod(type(ts))

A term that is already partially annotated is handled by first assigning a type
to the term without its annotation and then comparing the derived annotation
with the given annotation.

Wt(E)[{] = ¢’
Wt(E)[t: 7] = if eq(type(t’), 7) then ¢’ else t' : 7

[6]

In case the given type and the derived type are equal, the annotated term is
returned. In case the types are different, the term was inconsistently annotated
by the user. To be able to report this, the erroneous annotation is attached
to the already annotated term. The resulting term is not well-formed, which
will be reported by equation [13] in Section 12.3.3. Observe that equation [6]
guarantees that we can assign types to fully annotated terms. We have that
Wt(E)[Wt(2)[t]] = Wt(2)[¢t], i-e., type assignment is idempotent.

Terms constructed from ‘nil’, ‘top’, ‘X’ and ‘=’ are assigned the error type
‘nil’, since these constructors cannot occur in well-formed terms.

[7] Wt (X)[nil] = nil : nil
8] Wt(X)[top] = top : nil
9] Wt(Z)[t1 x 2] = Wt(Z)[&] x Wt(Z)[t2] : nil
[10] Wt(Z)[tr = 2] = Wt(Z)[&] = Wt(Z)[E2] : nil

Equations Both sides of an equation are assigned types.

i We(S)[= 1] = We(S)[1] = We(S)[t2]
[12] We(2)[] =
[13] We(E)[e1; 03 1 = We(D) 1] +H We(Z)[p5']

In §12.3.2 we saw that well-formedness judgements identify the fully anno-
tated terms that are well-formed with respect to a signature. The type assign-
ment function defined in this section allows us to produce fully annotated terms
from plain terms. The following proposition states that for any plain term the
type assignment function finds a well-formed, full annotation if one exists.

251

12 / UNTYPED AND SIMPLY TYPED SPECIFICATIONS

Proposition 12.3.4 (Correctness of ‘Wt’) The type assignment function Wt
finds a well-formed typing for a term if one exists, i.e., if t is a fully annotated

term and X kerm t then Wt(X)[spine(t)] = ¢.

Proof. by induction on terms. (Hint: equations [2] until [5] assign types to
terms as required by [13] until [16] in §12.3.2.) m|

12.3.5 Typechecking

typechecking can now be defined in terms of type assignment and well-formedness
checking. We define three typecheck functions. The first checks a term against
a signature, the second checks a list of equations against a signature and the
last checks a complete specification. The functions are defined in terms of well-
formedness judgements (§12.3.2) and type assignment functions (§12.3.4).

module OLS-TC
imports OLS-NWF!23-3 OLS-TA!2-34
exports
context-free syntax
tc “(7’ Sig (()’7 “I[” Term ((]]7’ _) EBOOI
tC (((” Sig (()” Ml[” Eqs M]]” % EBOOI
tc “[” Spec “]” — EBool
equations

(1] te(%) |[t]] = |_sig ¥~ ¥ Kerm Wt(z)[[t]]
2 (D] = g > fege We(E)[E]
[3] tc[S] = kspec Wsp[S]

Now we have seen the complete specification of a typechecker for a monomorphic
applicative language. In Chapter 14 we will repeat this exercise for a multi-level
polymorphic specification language.

252

13

Examples of
Multi-Level Specifications

A multi-level specification consists of a list of numbered levels each of which is
a specification as encounterd in the previous chapter. To structure multi-level
specfications a module mechanism is provided to enable reuse of specifications.
In this chapter we introduce the multi-level algebraic specification formalism
MLS by means of a number of examples motivated by datatype specification.

13.1 Introduction

In the one-level framework of Chapter 12 the algebra of types used for the
declaration of functions and variables is the subset of terms consisting of the
closure under product (x) and arrow (—) of a set of sort constants. In such a
framework one has higher-order functions (due to the applicative term format)
but no polymorphism and no user-definable type constructors.

A two-level specification is a pair of specifications, called level 1 and level 0.
The signature of the level 1 specification specifies a set of terms (like a one-
level signature would) that are used at level 0 as types. In other words the
signature at level 1 determines the type algebra of level 0. A type variable
can be instantiated to any type. A term that has a type containing variables
is polymorphic; it denotes all terms obtained by substituting ground types for
type variables. As in the one-level case, the type algebra of signatures at level 1
is determined by the implicit signature generated from the sorts of level 1 and
the constructors (—) and (x).

Multi-level specifications generalize two-level specifications by allowing arbi-
trary many levels of specifications. The signature at level n uses terms from
the signature at level n + 1 as types and determines the type algebra of the
signature at level n — 1. The types used in the highest level are members of the
closure of the sorts at that level under (x) and (—), i.e., there is an implicit sig-
nature at the top that is generated by the sort declarations of the highest level.
Figure 13.1 illustrates the concepts of one-level, two-level and multi-level speci-
fications. The arrow from a signature means that the terms over that signature

253

13 / EXAMPLES OF MULTI-LEVEL SPECIFICATIONS

implicit x, —
signature
implicit x, — level n /
signature
signature
level 1)
equations
signature
imolicit x]) /
1hp e1t x, = equations _
signature
/ level 0 / level 0 /
signature ; signature ; signature ;
equations equations equations
(a) One-level (b) Two-level (c¢) Multi-level

Figure 13.1: Specifications with one, two and multiple levels of signatures.

are used at the target of the arrow.

In Chapter 14 we define the extension of one-level specifications to multi-level
specifications. In this chapter we start with an extensive list of examples that
introduce the key ideas of the formalism. The examples are motivated by data
type specification. For examples of application of multi-level specification to
logical frameworks see (Hearn and Meinke, 1994) and (Hearn, 1995).

13.2 One Level

The running example of §12.2 and §12.3, successor naturals with addition, can be
specified as a one-level specification. The declaration of sort nat generates the
implicit sort signature consisting of the basic sort nat and the sort operators (—)
and (x). As a consequence, terms like nat, nat -> nat and nat # nat -> nat
are sorts that can be used in the signature that declares the functions composing
the algebra of natural numbers. The signature is summarized in the diagram in

Figure 13.2(a).

254

Two Levels / 13.3

PO ARO=T

(a) nat (b) type

Figure 13.2: Signature diagrams of modules nat and type

module nat
level O
signature
sorts nat;
functions
0 : nat;
s : nat -> nat;
(+) : nat # nat -> nat;
variables
I, J : nat;
equations
0+ 1 == TI;
s(I) + J ==s(I + J);

13.3 Two Levels

Just like module nat defines a language of nat expressions, module type below
defines a language of type expressions built from type variables A, B and C
by means of the binary operators (->) and (#). Examples of such terms are
A A -> A A # B -> A etc. These terms have type type. The signature of
module type is summarized by the diagram in Figure 13.2(b).

module type
level 1
signature
sorts type;
functions
@), (->) : type # type -> type;
variables
A, B, C : type;

The difference between module nat and module type is that the signature of
types is a level 1 signature. This entails that type expressions can be used as
sorts at level 0 in signatures of modules that import module type.

255

13 / EXAMPLES OF MULTI-LEVEL SPECIFICATIONS

13.3.1 Polymorphic Functions

The next module function introduces several polymorphic operations on func-
tions. It first imports module type to use type expressions as sorts at level 0.
The sorts declaration declares all expressions over level 1 that match the term
A, as sorts. This means that all terms of type type can be used as sorts, but
other terms over level 1 cannot (because A is a type variable). For instance,
A -> Ais a type expression, but (->), which is also a term over level 1, is not a
type expression. Next, the module defines a number of common functions. The
identity function i takes any value to itself. The function k creates a constant
function k(X) that always yields X. The function s is a duplication function
that copies its third argument. The composition G . H of two functions G and
H applies G to the result of applying H to the argument of the composition.

All these functions are polymorphic. The types of the functions contain type
variables, which can be instantiated to arbitrary type expressions. The signa-
ture is actually an abbreviation of an infinite signature, declaring each function
for each possible instantiation of the type variables. For instance, if nat is a type
(as we will define in the next paragraph), then the instantiation i : nat -> nat
is the identity function on the natural numbers.

module function
imports type;
level O
signature
sorts A;
functions
i : A > A;
k : A ->B -> A;
s : (A->B->C) > (A ->B) >A > C;
(.) : B->C) # (A ->B) ->A ->C;
variables
X :A; Y:B;Z:C; G:A->B; H:B->C;
equations
i(X) == X;
k(X) (Y) == X;
s(X)(V)(Z) == X(Z)(Y(2));
G . BHE == GHEX));

Observe that the specification in module function can also be considered as
a logical framework in which the types are propositional logic formulas and
the types of the functions the axioms of propositional logic, together with the
implicit type of the application operator, which represents the modus ponens
rule.

13.3.2 Typing Natural Numbers

In module nat_typed, the natural numbers as specified in module nat are in-
corporated in the world of types by declaring nat as a type constant. This

256

Polymorphic Data Types | 13.4

Figure 13.3: Signature diagram of module nat-typed.

is illustrated by the diagram in Figure 13.3. This provides the polymorphic
functionality defined for arbitrary types to natural numbers.

module nat_typed
imports function, nat;
level 1
signature
functions
nat : type;

13.4 Polymorphic Data Types

13.4.1 Cartesian Product

The product A # B of two types A and B is the type of pairs (X, Y) of elements X
of A and Y of B. In MLS the pairing constructor function _, _is implicitly declared
as (,) : A # B -> A # B. This means that if at level n+1 a declaration for (#)
is given, then at level n the constructor _, _is defined implicitly. The declaration
is implicit because binary infix operators are defined in terms of _,_ by means
of the equation t; ® ta = (®)(t1,t2). If _,_ would be treated like an ordinary
binary operator this would lead to a circular definition t1,t2 = (,)(t1,t2) =
(), 12))

Module product defines a number of general functions on products. The
projection functions exl and exr give the left and right elements of a pair.
The product G # H of two functions is a function that applies the first function
to the first argument of a pair and the second function to the second argu-
ment resulting in a new pair. The function split takes two functions that
split the values of a type C into the components of a pair. For instance, the
function swap defined as (exr .split. exl) swaps the elements of a pair, i.e.,
(exr .split. ex1)(X, Y) == (Y, X).! The function curry converts a binary
function (a function on pairs) into a curried binary function that first takes its
first argument and returns a function that when applied to a second argument

1Recall that T1 .T2. T3 can be written as an abbreviation of T2(T1,T2).

257

13 / EXAMPLES OF MULTI-LEVEL SPECIFICATIONS

returns the application of the function to its arguments. The function uncurry
is the inverse of curry that uncurries a function, i.e., converts it from a curried
binary function to a function on pairs. It is defined in terms of duplication,
projection and composition. Finally, the function pair is the curried version of
the built-in pairing operator (,).

module product
imports function;

level O
signature

functions
exl : A # B -> A4
exr : A #B -> B;
(#) : (A->B) # (A2 -=>B’) -=> (A # A°) -> (B #B%);
split : (C -> A) # (C->B) -> C -> A # B;
curry : (A#B ->C) -> A ->B ->C;
uncurry : (A ->B ->C) -> A # B -> C;
pair : A ->B ->A # B;
swap :A#B ->B#A;

variables
X :A; Y:B;Z:C; G:A->B; H:B->C;

equations

exl(X, Y) == X;

exr(X, Y) ==Y;

G#OHAE, N == (G(X), H(N));

(G .split. H)(X) == (G(X), H(X));

curry(G) (X) (Y) == G(X, Y);

uncurry(G) == g(G . exl) (exr);

pair == curry(i);

swap == (exr .split. exl);

13.4.2 Disjoint Sum

The disjoint union or sum A + B of two types A and B contains all elements from
A and B. The elements of both types are tagged by means of injection functions
inl and inr, such that their original type can be reconstructed and such that
there are no clashes; the union of bool and bool contains two elements, while
the sum bool + bool contains the four elements inl(t), inl(f), int(t) and
inr(f). The sum G + H of two functions G and H is the function that takes
the sum of codomains to the sum of the domains of G and H by applying G to
left-tagged values and H to right-tagged values. The function case applies either
of two functions with the same codomain depending on the tag of the value it
is applied to.

The signature diagram in Figure 13.4 illustrates the structure of the alge-
bra. Due to polymorphism, the number of sorts of a specification becomes
infinite. Therefore, signature diagrams do not provide an accurate description

258

Polymorphic Data Types | 13.4

(#) (+)

Figure 13.4: Signature diagram of module sum.

of the structure of the algebra described by a specification. Nonetheless we will
continue to use approximate signature diagrams to give insight in the examples.

module sum
imports function;
level 1
signature
functions
(+) : type # type -> type;
level O
signature
functions
inl : A -> A + B;
inr : B -> A + B;
(+) : (A->B) # (A’ ->B’) => (A +A’) -> (B + B?)
case : (A ->C) # (B->C) -> (A + B) —> C;

equations
(G + H) (in1(X)) == in1(G(X));
(G + H) (inr(Y)) == inr(H(Y));

(G .case. H)(inl(X)) == G(X);
(G .case. H) (inr(Y)) == H(Y);

13.4.3 Lists

A list is a structure built by the functions [1, the empty list, and (::) (cons)
that adds an element to alist. A great number of generic functions have been de-
fined on lists, see for instance (Bird, 1987, 1989). Here we give some common list
functions. The function (*) (map) applies a function G to each element of a list.
The function (/) (fold right) takes a pair (G, Z) of a function and a constant to
replace the constructors []1 and (::) suchthat (X1 :: ... :: (Xn :: [1))is
transformed into (X1 .G.G. (Xn .G. Z)). The function (\) (fold left)

259

13 / EXAMPLES OF MULTI-LEVEL SPECIFICATIONS

is similar to (/) but starts adding the elements at the left side of the list re-
sulting in ((Z .G. X1) .G.G. Xn). The fold operations can be seen as
signature morphisms consisting of replacements for the list cons function and
the empty list. The function (++) concatenates the elements of two lists. The
function size gives the length of a list. The functions (++) and size are defined
in terms of the fold functions (/) and (\). Finally, the function zip takes a
pair of lists into a list of the pairs of the heads of the lists.2

module list
imports product, nat_typed;
level 1
signature
functions
list : type -> type;
level O
signature
functions
] : list(A);
(::) : A # list(A) —> list(A);
(* : (A -> B) # list(A) -> 1list(B);
(/) : (A#B ->B) # B -> 1list(A) -> B;
(\) : (B# A ->B) # B -> 1list(A) -> B;
size : list(A) -> nat;
(++) : 1list(A) # list(A) -> list(A);
zip : list(A) # list(B) -> list(A # B);

variables
L : 1list(A);
equations
G * [] == [1;
G* (X :: L) == GX) :: (G *x L);
G /7 2)(D == Z;
G/ Z)X :: L) ==X .G. (G / 2)L));
G\ 2 == Z;
G\NZEX :: L) = (G \ (Z .G. X DMW);
size == (s . exl) \ O;
L1 ++ L2 == ((::) / L2)(L1);
zip([1, L) == [1;
zip(L, [1) == [1;

zip(X :: L, X’ :: L’) == (X, X?) :: zip(L, L?);

2Note that a variable declaration such as L : list(A) declares all variables with ‘base’ L
as list(A) variables, e.g., L1, L2 and L’ are also declared by this declaration.

260

Polymorphic Data Types | 13.4

Figure 13.5: Signature diagram of module stratified-stack.

13.4.4 Stratified Stacks

All examples we have seen until now use only one sort (type) at level 1. The
next module gives an example of a specification that uses an additional sort at
level 1.

The data type of stacks can be specified by means of (polymorphic) push,
pop and top functions. A well-known disadvantage of the normal formulation is
that the top of the empty stack is either undefined or part of the type of stack
elements, leading to a pollution of that type. All other operations that use the
type have to take account of the top of the empty stack as an additional element.
Another solution is to take a default value from the type of stack elements as
result of the top of the empty stack. The problem of this solution is that the
distinction between failure and success of a partial function is lost.

The solution of Hearn and Meinke (1994) is to ‘stratify’ the type of stacks.
The stack type constructor does not just construct a type from a type, but has a
natural number as argument that records the number of elements on the stack.
The type operator stack takes a type, which is the type of the elements on the
stack, and a nat, which represents the height of the stack. The type of stacks
is stratified into stacks with elements of type A and height 0 indicated by the
type stack(A,0), stacks of height s(0) indicated by the type stack(A,s(0)),
etc. A new type constant error is introduced to represent errors. The usual
stack operators are now typed as follows. The empty stack has type stack(A,
0), i.e., is a polymorphic constant for stacks with arbitrary types of elements
and with height 0. The push function takes an A element and a stack of A’s
with height I and produces a stack of A’s of height s(I). The operations pop
and tops come in two variants, one for empty stacks and one for non-empty
stacks. The top of an empty stack (which has type stack(A,0)) results in an
error element and not in an A. The error element is not added to the sort of
stack elements.

261

13 / EXAMPLES OF MULTI-LEVEL SPECIFICATIONS

The natural numbers in the types of stacks are used at level 1 while the
specification in module nat specifies naturals at level 0. This means that just
importing module nat is not enough to reuse the specification. The reuse is
achieved by the operation lift that increases all levels of its argument specifi-
cation by 1. The signature diagram in Figure 13.5 gives an overview of the
signature in module stratified-stack.

module stratified-stack
imports types;
lift (imports nat);
level 1
signature
functions
error : type;
stack : type # nat -> type;
level O
signature
functions
flag : error;
empty : stack(A, 0);
push : A # stack(A, I) -> stack(A, s(I));

pop : stack(A, 0) -> stack(A, 0);
pop : stack(A, s(I)) -> stack(A, I);
tops : stack(A, 0) -> error;
tops : stack(A, s(I)) -> A;

variables
St : stack(A, I);

equations

pop(push(X,St)) == St;

tops (push(X,St)) == X;

pop (empty) == empty;

tops (empty) == flag;

13.5 Three Levels

The type expressions we have used so far are described by a signature at the
highest level of specifications. This entails that only type constructors over
the signature {type, (=), (x)} can be constructed. This is not sufficient for all
type constructors. For instance, the type of tuples contains a list of types. We
can provide more structure in the sort space of types just as we provided more
structure in the sort space of values, by building yet another level. Module kind
introduces the sort kind at level 2 and defines type to be a kind constant.

262

Three Levels / 13.5

module kind
imports type;
level 2
signature
sorts kind;
functions
type : kind;
(#), (->) : kind # kind -> kind;
variables
K : kind;
level 1
signature
sorts K : kind;

From here on we can proceed by adding useful kind constructors to level 2 and
using them in the signatures at level 1. However, to construct tuples we need
lists of types. Since there is not yet a definition of 1ist : kind -> kind, we
would have to redo module lists but now one level higher. Since this is a waste of
time we use another approach. Module type-type also introduces the constant
type at level 2, but uses type itself as its type! The types defined in module
type are used as kinds, by lifting the contents of that module. Now we can
reuse all type constructors defined so far for level 1 at level 2, by simply lifting
their specification.

module type-type
lift(imports type);
imports type;
level 2
signature
functions

type : type;

13.5.1 Tuples

Lists and stacks are homogeneous data types that are parameterized by one
sort. All elements of a list or stack are members of the same sort. A tuple on
the other hand is a heterogeneous structure with various types of elements. In
the next module we define a type constructor prod that constructs a general-
ized product type from a list of types. To construct a list of types we import
the definition of level 0 lists and lift it to the level of types. Now we can use
the same polymorphic operations on lists that we defined before. A tuple is
constructed by means of the functions <> (empty tuple) and (°), which adds
an element to a tuple. (Recall from §12.1.1 that <X1, ..., Xn> is an abbrevi-
ation for X1 =~ ... = Xn ~ <>.) For instance, the tuple <0, [0], t> has type
prod([nat, list(nat), booll). The first element of a tuple is given by exl
and the rest by exr. Observe that these functions are not partial: they are
only well-formed if applied to a non-empty tuple. Now the size of a tuple can

263

13 / EXAMPLES OF MULTI-LEVEL SPECIFICATIONS

be determined by means of the function size that is polymorphic for all kinds
of tuples.

module tuple
imports type-type, nat_typed;
lift(imports list);
level 1
signature
functions
prod : list(type) -> type;
variables
LT : list(type);
level O
signature
sorts prod(LT);
functions
<> : prod([1);
(") : A # prod(LT) -> prod(A :: LT);
exl : prod(A :: LT) -> A;
exr : prod(A :: LT) -> prod(LT);
size : prod(LT) -> nat;

variables
P : prod(LT);
equations
exl(X -~ P) == X;
exr(X ~ P) == P;
size(<>) == 0;

size(X ~ P) == sZsize(P))

13.6 Type Equations

In Hindley/Milner type systems it is not possible to construct the type of strat-
ified stacks nor the type of tuples, because only one sort (type) can be used at
the level of types. Since the formalism is uniform at all levels, the levels spec-
ifying type structure can contain equations over type expressions. This entails
that operations on types can be specified. This makes the specification of ad-
vanced type constructs possible as will be illustrated in this section. This can be
expressed in the MLS formalism, but is not supported by the MLS typechecker
defined in Chapter 14.

13.6.1 Type Definitions

Abbreviations are a first application of type equations. A type can be defined
as a mnemonic abbrevation of a complicated type. For instance, the following
module defines the type of tables that associate keys with values as a list of pairs
of keys and values. The function (.) is the lookup of a value associated with

264

Type Equations / 13.6

Figure 13.6: Signature diagram of module tuple with lifted 1ist and type.

a key. Its second argument is a pair consisting of the key and a default value
that is produced when the key is not defined in the table. The (:=) function
updates the value of a key in a table. The functions if and eq are defined in
module bool.

module table
imports list, bool;
level 1
signature
functions
table : type # type -> type;
equations
table(A, B) == list(A # B);
level O
signature
functions
(.) : table(A, B) # (A # B) -> B;
(:=) : table(A, B) # (A # B) -> table(A, B);

equations
1 &, ==Y;
(X, Y) :: L) . (X2, Y?) ==if(eqX, X)) . X*);
(1 =&, N =I[& N;

(X’, Y) == if(eq(X, X’))
(L := (X’, YY)
(X, ¥) :: (L := X?, Y’)));

(X, ¥) :: L)

This kind of type equations can be implemented by simply replacing each oc-
curence of table(T1, T2) by its definition.

265

13 / EXAMPLES OF MULTI-LEVEL SPECIFICATIONS

13.6.2 Tuple Zip

Another class of type equations is formed by operations on types. Consider
the function zip that takes a pair of lists into a list of pairs. Its type can be
expressed as

zip : list(A) # list(B) -> list(A # B)

where list is the type constructor for the type of lists, # is the type constructor
for the type of pairs and A and B are type variables.

The generalization of this function takes an n-tuple of lists into a list of n-
tuples. In an untyped language such as Lisp this can easily be encoded. Typed
functional programming languages such as Haskell (Hudak et al., 1992) cannot
even define the type of tuples, let alone the type of the function zip for tuples.
Instead for each n, upto the number that is thought necessary, a function zipn

zipn : list(Al1) # ... # list(An) -> list(Al # ... # An)

is defined together with its defining equations.
Using the tuples of the previous section, the type of the function zip for tuples
can be expressed as

zip : prod(list * LT) -> list(prod(LT))

where (*) is the map function that a applies a function, in this case the type
constructor list, to each element of a list. The map function is used to eztract
the types of list elements in the argument tuple to transfer it to the result
tuple. The function (*) is a function that lives at level 1 (because of the lifting
of module list) and is defined by means of the type equations

G * [] == []
G*X :: L==GX) :: Gx*x1L

Well-formedness of an expression with zip involves the equality of types modulo
these equations. For example, in the expression

zip(<[0, 2], [true, falsel, [[s(0)], [0, s(0)11>)
the equality

zip : prod(list * [nat, bool, list(mat)])
-> list(prod([nat, bool, list(nat)]))

zip : prod([list(nat), list(bool), list(list(nat))])
-> list(prod([nat, bool, list(nat)]))

relates the type of the argument of zip to its declared type. The complete
definition of zip for tuples is given in the following module.

266

Type Equations / 13.6

module tuple-zip
imports tuple, list, bool;

level O
signature
functions
zip : prod(list * LT) -> list(prod(LT));
hds : prod(list * LT) -> prod(LT);
tls : prod(list * LT) -> prod(list * LT);
empty : prod(list * LT) -> bool;
equations
hds (<>) == <>;
hds((X :: L) ~ P) == X ~ hds(P);
tls(<>) == <>;
tls([] " P) ==1[1 " t1ls(P);
tls((X :: L) -~ P) ==L ~ tls(P);
empty (<>) == false;
empty([1 = P) == true;

empty((X :: L) = P) == empty(P);

zip(P) == if (empty(P)) ([1) (hds(P) :: zip(tls(P)));

In order to reflect the use of type equations in the type assignment for speci-
fications, £-unification has to be applied. Given a set of equations £ and two
terms ¢; and t», an £-unifier is a substitution o such that £ F o(t1) = o(t2). If
the t; are ground terms this question reduces to £ F t; = t». Here £-unification
has to be applied to unify the types of actual argument and domain type of
the function zip given the equations for (*). For instance, consider the type
assignment of the term

zip(L =~ (M = (N = P)))

where L, M and N are list variables. The basic assignment to the components of
this term are

zip : tuple(list * LT1) -> list(tuple(LT1))
@~ ™"~ " P)
: tuple(list(A) :: 1list(B) :: list(C) :: LT2)

Now we have to relate the domain of the function to the type of the argument,
i.e., we have to solve the following unification problem:

tuple(list * LT1)
== tuple(list(A) :: list(B) :: 1list(C) :: LT2)

This means that we have to find a substitution such that these terms are equal
considering the type equations for the map function:

267

13 / EXAMPLES OF MULTI-LEVEL SPECIFICATIONS

G * [] == []
G* (A :: LT) == G(4) :: (G = LT)

A solution for the unification problem is the substitution
[LTL := A :: B :: C :: LT3 LT2 := list * LT3]
This leads to the type assignment
zip(L ~ (M~ (N ~ P))) : list(tuple(A :: B :: C :: LT3))

for the original term.

The E-unification problem is undecidable in general (see Jouannaud and
Kirchner (1991) for a survey of unification), but for the equations of functions
like (%) it seems decidable. However, the type assignment function presented
in §14.4.2 does not consider equations over types.

13.6.3 Tuple Functor

In a similar manner we can define the functor prod for tuples that takes a tuple
of functions into a function on tuples such that the types in the domain tuple
corresponds to the domains of the functions and the codomain corresponds to
the codomains of the functions. This can be achieved by defining the function
(=>) on lists of types that zips together a list of domains and a list of codomains
into a list of function types.

module tuple-map
imports tuple;

level 1
signature
functions
(->) : list(type) # list(type) -> list(type);
equations
(1 -> LT == [1;
LT -> [] == [1;

(A :: LT1) -> (B :: LT2) == (A -> B) :: (LT1 -> LT2);
level O

signature

functions

prod : prod(LT1 -> LT2) -> prod(LT1) -> prod(LT2);

equations

prod(<>) ([1) 1

prod(G ~ P)(X ~ P’) == G(X) ~ prod(P)(P’);

13.6.4 Tuple Composition

Another well-known problem is the construction of the composition of a tuple
of functions into a new function. For instance, given three functions F, G and H,
the composition of the tuple <F, G, H> is defined such that

268

Type Equations / 13.6

comp(<F, G, H>) (X) == H(G(F(X)))

The type of this function can be specified by means of a function comp at
level 1 that transforms a list of types into a list of function types such that the
codomain of a function type is the domain of the next function type in the list.
The function last is used to extract the last codomain from the list of types

module tuple-composition
level 1
signature
functions
comp : list(type) -> list(type);
last : type # list(type) -> type;

equations
comp ([1) == [1;
comp ([A]) == [1;
comp(A :: B :: LT) == (A -> B) :: comp(B :: LT);
last (A, [1) == A;
last(A, B :: LT) == last(B, LT);
level O
signature
functions
comp : prod([]) -> A -> A;
comp : prod(comp(A :: B :: LT)) -> A -> last(B, LT);
equations
comp (<>) (X) == X;

comp(G ~ P)(X) == comp(P)(G(X));

269

13 / EXAMPLES OF MULTI-LEVEL SPECIFICATIONS

13.6.5 Recursive Types

The type definitions of the previous examples can be eliminated by simply ap-
plying the equations as rewrite rule. The following example uses recursive type
equations to define the type of binary trees in terms of disjoint sums and Carte-
sian products. The abstract data type is defined by three functions that are
expressed in terms of the primitives on sums and products. The characteristic
functions of sums are the left and right injection functions inl and inr and the
selection function case. The functions for trees are leaf that constructs a leaf
node from some value, (+) that combines to trees into a new tree and cata
that builds a value from a tree by replacing its constructor functions by new
functions.

module rec_tree
imports sum, product, bool, nat;
level 1
signature
functions
tree : type -> type;
equations
tree(A) == A + (tree(A) # tree(A));
level O
signature
functions
leaf : A -> tree(A);
(+) : tree(A) # tree(A) -> tree(hd);
cata : (A ->B) # (B # B -> B) -> tree(A) —> B;
equations
leaf(X) == inl(X);
T1 + T2 == inr(T1, T2);

cata(Zero, Plus) == Zero .case.
(Plus . (cata(Zero, Plus).exl #
cata(Zero, Plus).exr)

It is clear that the definition of tree can not be eliminated by simple rewriting,
since this leads to an infinite term.

13.6.6 Type Classes

Another class of applications of equations over types is formed by constraints on
types. The following module models the restriction of the polymorphism of the
equality function by means of a type class like mechanism. The module imports
module bool that defines the standard operations on the Boolean values t (true)
and f (false). At level 1 a unary boolean function (a predicate) eq on types is
defined such that the type nat is in the eq class and such that a list type is in the
eq class if its content type is in the class. The operator (=>) constrains a type

270

Type Equations / 13.6

by some boolean condition. At level 0 the equality function eq is now declared
with type eq(A) => (A # A -> bool), which expresses that the function only
applies to types in the eq class. The function (!) is used to apply a function
with a constrained type to an argument. It requires that the condition is equal
to t. This ensures that eq cannot be applied to function types or other types
not in the eq class.

module equality
imports type;
lift(imports bool);
imports list, nat_typed, bool_typed;
level 1
signature
functions
eq : type -> bool;
(=>) : bool # type -> type;
equations
eq(nat) == t;
eq(list(A)) == eq(A);
level O
signature
functions
(") : (£t =>A->B) # A -> B;
eq : eq(A) => (A # A -> bool);

equations
eq! (0, 0) == t;
eq! (0, s(I)) == f;
eq!(s(D), 0) == f;

eq! (s(I), s(J)) == eq! (I, D;

eq!([1, [1) == t;
eq!X :: L, [== f;
eq!([1, X :: L) == f;
eq!(X :: L, X :: L’) == eq!(X, X’) /\ eq! (L, L);

Here we conclude our introduction to MLS. In the next chapter we proceed to
formalize the MLS language.

271

14

Definition of
Multi-Level Specifications

In this chapter we give a formal specification of the syntax and semantics of
multi-level specifications, including modular specifications and specification op-
erators such as ‘lift’. Typechecking of multi-level specifications differs at several
points from typechecking one-level specifications. First of all, types at level n
are terms over the signature at level n 4+ 1. Secondly, types can be polymor-
phic. Finally, functions and variables can be overloaded, i.e., have more than
one declaration in a signature.

14.1 Syntax and Equational Logic

In this section we define the syntax of multi-level specifications and define the
semantics of multi-level specifications.

14.1.1 Syntax

A multi-level specification is either empty, a level composed of a natural num-
ber indicating the level and a specification, or a concatenation of multi-level
specifications.

module MLS
imports OLS!?2* Naturals®-1-4
exports
sorts MLS
context-free syntax
— MLS
“level” Nat Spec — MLS
MLS “” MLS — MLS {left}
“(” MLS «)” — MLS {bracket}
priorities
Sig “;”Sig — Sig > MLS “”MLS — MLS
variables
“I'”[0-9']x — MLS

273

14 / DEFINITION OF MULTI-LEVEL SPECIFICATIONS

Arrow and Product Functions Since types are terms over a signature, the
constructors arrow and product must also be declarable. For this purpose the
functions (—) and (x) are introduced with the same notation as used to make
other infix operators into prefix functions.

exports
context-free syntax
“(=)” —» Fun
“(x)” — Fun

Specification Projections As for the OLS case we define several projection
functions for decomposing specifications. Most noteworthy is the function ‘up’
that gives a specification without its lowest level. The projection function 7,
gives the specification at level n. The function ‘lift’ increases the level indicators
of all levels by 1. The function ‘drop’ decreases the indicators of all levels by
one and removes the specification at level 0.

exports
context-free syntax
“ﬂ.” ((_” Nat (((” MLS “)’7 _) Spec

max(MLS) — Nat

lift(MLS) — MLS

drop(MLS) — MLS

up(MLS) — MLS

top-sig — MLS

decl(Terms, Term) — Decls
equations

Level concatenation is normalized to a left-associative list. An empty level
is equivalent to an empty specification. The empty specification is a unit for
composition.

[1] [y; (T3 T5) = Ty; Ty T [2
[3] level n [4] r, =T

!
|
—

The projection 7, gives the n-th level of a specification.

[5] mn() =

6] mp(level n 8) =8

[7] mp(level mS) = when eq(n, m) = L
8] Tn(L1; T2) = mn(T1); mn(T2)

The function ‘max’ gives the index of the highest level of a specification. Note
that ‘max’ is also the maximum function on natural numbers.

[9] max() =0
[10] max(level n S) =n when S #
[11] max(I'1; I'y) = max(max(I'), max(T'))

274

Syntax and Equational Logic [14.1

Any specification is equal (modulo commutativity of ‘;’) to the concatenation
of all levels, i.e., for any specification I':

= level max(I") Tmax(r)(D);. .. ;level 1 71 (T);level 0 mo(T)

The function ‘lift’ increments all levels by one.

[12] lift() =

[13] lift(level n S) = level suce(n) S

[14] hft(I‘l, Fz) = hft(I‘l) llft(rz)

The function ‘drop’ lowers all levels by one level and drops the lowest level.
15 drop() =

[16] drop(level 0 8) =

[17] drop(level n S) = level pred(n) S when zero(n) = L

[18] drop(T'y; T's) = drop(T'y); drop(Ts)

For =, ‘lift’ and ‘drop’ we have (modulo associativity and commutativity of ‘;’)
[19] lift (drop(T")); level 0 my(T) =T

A multi-level specification can be considered as a stack of specifications, with
‘drop’ as the pop operation and 7o as top. The term lift(_); level O_ corresponds
to pushing a specification on the stack.

The constant ‘top-sig’ is the implicit signature that determines the sorts of
the highest signature.

[20] top-sig = level O signature functions (x), (=) : top x top — top

The operation ‘up’ is like ‘drop’ with an extra property. In case level 0 is not
the highest level, i.e., max is not equal to 0, then ‘up’ just drops level 0. If
level O is the highest level, ‘up’ is the signature ‘top-sig’ extended with the sorts
of the highest level declared as constants of type ‘top’. This is the implicit
signature of the types used at the highest level of a specification. Observe that
if max(T') = 0, then after one iteration up(up(T')) = up(T).

[21] up(T) = top-sig; level 0 signature functions decl(S(Sg(wq(T))), top)
when zero(max(T')) =T

[22] up(T) = drop(I') when zero(max(T')) = L

The function ‘decl’ constructs a list of declarations from a list of terms and a
sort. It is used in the definition of ‘up’ above to create a declaration for each
sort of the highest level. Only the function constants in the list are declared.

[23] decl(, 7) =

24 decl(f, r) =

[25] decl(t;+; T) = decl(t1 , T) +H decl(t;h, T)
[26] decl(t 7) = otherwise

275

14 / DEFINITION OF MULTI-LEVEL SPECIFICATIONS

14.1.2 Normalization

According to the syntax of signatures and multi-level specifications, specifi-
cation elements like levels, signatures and declarations can be written in any
order and can be repeated. For instance, a specification can contain several
sections for level O and a signature can contain several functions sections.
The function ‘norm’ below normalizes a specification such that the levels are
presented in decreasing order and specifications consists of one signature section
and one equations section. Furthermore, signatures are normalized such that
they contain a single sorts, functions and variables section. Finally, redundant
declarations, sort declarations and equations are removed.

module MLS-Norm
imports MLS4-1-1
exports
context-free syntax
norm(MLS) — MLS
norm(Spec) — Spec

equations
[1] norm(I') = level 0 norm(my(I')) when max(I") =0
[2] norm(I") = lift(norm(drop(I"))); level 0 norm(7y(T))
when zero(max(I')) = L
3] norm(S) = signature X.'; equations E(S)
when Sg(S) =3,
%' = sorts S(X);
functions F(X);
variables V(X);
[4] dy; d; dy; d; dy = di; d; dy; d
5 sorts t7; t; t3; t; 13 = sorts &7 t; 13; 13

[6] equations pT; @5 ©5; @; p3 = equations ©T; ©; Y3; Y3

14.1.3 Multi-Level Equational Logic

We redefine equational logic for multi-level specifications. An equation is an
axiom if it is an equation at level 0. The equations at higher levels apply to
type annotations; in equation [2] it is stated that two annotated terms are equal
if their term parts are equal and if the annotations are equal with respect to the
next level.

276

Modular Specifications | 14.2

module ML-Equational-Logic
imports MLS'41-1 Substitution®-27
exports
context-free syntax
MLS “+” Eq — Bool

equations
n E(mo(T') = ¢1; &1 = a5 95
Tk th=t, = T
2 Tt =t=T, up)kF1y=72=T

F}'tliTlftgiTz =T

The standard rules for reflexivity, symmetry, transitivity, substitution and con-
gruence for the other binary term operators (application, pair, arrow and prod-
uct) are not shown.

If only free constructors (functions over which no equations are defined) are
used in type annotations, then the types 7; in equation [2] have to be syn-
tactically equal. In that case multi-level equational logic reduces to the typed
equational logic of §12.2.5 and we have

Fl‘tlEtzzﬂ'o(F)FtlEtQ

Under the same assumption, term rewriting with a multi-level specification
reduces to the typed term rewriting of §12.2.5. Rewriting of annotated terms
in a system with type equations is more complicated because £-matching is
needed. Given a set of equations £, term t; £-matches term t, if there exists a
substitution o such that £ F o(t2) = ¢;.

Meinke (1992a) gives an equational logic for two levels of equations similar
to the multi-level equational logic above. Meinke (1993) considers the rewrite
relation resulting from a set of equations over terms and types by taking the
transitive, reflexive closure of the equations considered as rewrite rules in both
directions.

14.2 Modular Specifications

We define a simple modularization scheme based on syntactic inclusion. It adds
considerably to the expressive power of the language by the ability to share spec-
ifications at more than one level, as we saw in the examples in §13.1. A module
binds a multi-level specification to a module name. An import is a reference to
the body of a module. It denotes the specification that would be obtained by
replacing the import by the module body. Name clashes between functions im-
ported from different modules are not problematic, because overloading permits
such functions to coexist. Functions from different origins with identical names
and types are identified. Although this seems a reasonable choice, extension
with renaming operators would be useful, but is not further considered here.

277

14 / DEFINITION OF MULTI-LEVEL SPECIFICATIONS

module MMLS
imports MLS'4!t MLS-Norm®!4-1-2
exports
sorts Module Modules
context-free syntax

“imports” {Fun “” }x — MLS
“module” Fun MLS “;” — Module
Modulex — Modules

Modules “+” Modules — Modules {right}
m “” Fun “(” Modules “)” — MLS
variables

“M”[0-9"* — Module
“M”“x”[0-9']%* — Modulex
“M?”“47[0-9"]* - Module+

equations

Concatenation of module lists

[1] My + M; = My M,
A list of imports denotes the concatenation of the imported specifications.
[2] imports f1+ , f2+ = imports f1+ ; imports f2+

The projection of a module name in a list of modules yields the module body. If
more than one module with the same name exists, the bodies are concatenated.

[3] () =

[4] ng(module fT';) =T

[5] mmodule f' T';) = when eq(f, f') = L
o RAM M) = (M3); A M)

Note that the function 7 is overloaded: lookup of the type of a function in a
list of declarations and lookup of a module in a list of modules.

Modules have a simple syntactic replacement semantics. The normalization
function ‘flat’ flattens all modules in a list of modules, by replacing imports by
module bodies.

imports Term-Sets?2-5
exports
context-free syntax
flat “(” Modules “)” — Modules
flat “(” Modules “)” “[” Modules “]” — Modules
flat “(” Modules “,” TermSet “)” “[” MLS “]” — MLS
equations

The unary function ‘flat’, flattens the body of each module in a list of modules
with respect to the entire list of modules.

[7] flat(M*) = fat(M*)[M*]

278

Well-Formedness | 14.3

[8] flat(M*)[] =
[9] flat(M*)[M;" M;"] = flat(M*)[M;"] + flat(M*)[M;"]
[10] flat(M*)[module fT;] = module f norm(flat(M*, {})[T]);

An import of a module is replaced by its body. The imports in the body of
a module have to be flattened in turn. A loop caused by cyclic imports is
prevented by adding the module name to the set of modules already seen (the
second argument of function ‘flat’). An import is not expanded if a module was
already imported (equation [12]).

1] fed=_1
flat(M™, ®)[imports f] = flat(M*, & U {f})[r{(M")]
2] fe®=T

flat(M™*, ®)[imports f] =

Imports inside other constructs are replaced by distributing ‘flat’ over all op-
erators except ‘imports’. Consider, for example, the expression 1ift (imports
list) in §13.5.1. Since ‘lift’ is not defined on imports, the imported module
has to be substituted before lifting can be performed.

13 flat(M*, ®)[T] = when I'=
14 flat(M*, ®)[Ty; To] = fat(M*, ®)[T1]; fat(M*, &)[T2]
15 flat(M™, ®)[level n S] = level n flat(M™, ®)[S]

[13]
i3
[16] flat(M™, ®)[mn(T)] = mp(flat (M,)[T])
[17]
[18]
[19]
[20]

17 flat(M™, ®)[Lift(T)] = lift(fat(M*, @)[I])
18 flat(M*, ®)[drop(T")] = drop(flat(M™, ®)[I])
19 at(M", B)[up(D)] = up(Hat(M*, H)[T])
20 flat(M*, ®)[max(T)] = max(flat(M™, ®)[I])

The function ‘flat’ has to consider all projection operations on specifications
and has to be extended to all sorts embedded in specifications by means of
distribution equations like the ones above. These equations are not shown.

14.3 Well-Formedness

In this section and the next we define a typechecker for multi-level specifications
following the same approach as for one-level specifications. Well-formedness of
fully annotated multi-level specifications is defined in §14.3.2. Rules for the
complementary cases produce error messages for non-wellformed constructs in
§14.3.3. Type assignment functions, defined in §14.4.1 and §14.4.2, produce
a fully annotated specification for a plain specification an example of which
is shown in Figure 14.1. Finally, the typechecker is defined in §14.5 as the
composition of type assignment and well-formedness checking.

Typechecking of multi-level specifications differs at several points from type-
checking one-level specifications. First of all, types at level n are terms over

279

14 / DEFINITION OF MULTI-LEVEL SPECIFICATIONS

the signature at level n + 1. Secondly, types can be polymorphic. Finally, func-
tions and variables can be overloaded, i.e., have more than one declaration in a
signature.

14.3.1 Projection

We define a new projection function that finds the type of a function or variable
in a list of declarations. The difference with the projection function from §12.3.1
is that the function yields the set of all types that are assigned to the function
or variable, instead of the first type. If no declaration exists the empty set is
produced. Furthermore, w takes a set of function or variable names as first
argument and yields the set of all types for all functions or variables in the set.

module MLS-Projection
imports MLS'*!! Renaming®-21® Term-SetsB-2-5

exports
context-free syntax
“x” “2 TermSet “(” Decls “)” — TermSet
U @« Ygp M(” MLS “)” — TermSet
“p? « Fyup M(” MLS “)” — TermSet
equations

The projection function 7 finds the types of a set of functions or variables in a
list of declarations.

[1] me() = {}

[2] wg(f: 7) =if f € ® then {7} else {}
3] wg(z:7) =if £ € ® then {7} else {}
[4] mo(di; &) = ma(di) U e (dy)

The projection function 7 applied to a specification finds the type of a function
or variable in the function or variable declarations of the signature of the lowest

level.
[5] m{(T) = 75 (F(Sg(mo(T))))
(6] (L) = T & base(z)}(V(Sg(ﬂ-O N)

In case of a variable not only the type of the variable, but also the type of its
‘base’ (variable without trailing digits or primes; see §B.2.10) is looked for. This
makes it possible to use many variants of a variable with only one declaration.
For example, if A : type is declared, then A1, A2, A’ : type are implicitly
declared as well. This facility encourages a consistent use of variable names.

14.3.2 Well-Formedness

As in the one-level case in §12.3.2, the well-formedness of fully annotated terms
and specifications is defined by several well-formedness judgements—functions
that yield an error Boolean value. An example of a fully annotated two-level
specification is shown in Figure 14.1.

280

Well-Formedness | 14.3

level 1
signature
sorts type ;
functions
(->) : type # type -> type ;
variables
A : type; B : type; C : type ;
level O
signature
sorts A : type;
functions
k : (A : type)
-> ((B : type) -> (A : type) : type) : type;
variables
X : A : type;
Y : B : type;
equations
((k : (A : type)
-> ((Q : type) -> (A : type) : type) : type)
(X : A : type) : (Q : type) -> (A : type) : type)
(Y : Q: type) : A : type
== : A : type

Figure 14.1: Example of a fully annotated two-level specification. Observe that
the types at level 0 are fully annotated terms over level 1.

module MLS-WF
MLS-1-1 MLS-Projection'43! Error-Booleans?1-3 SPEC-Errors?-2-2
MLS-TA-Aux!4-41 MatchingB'z'8 Term-Analysis!2-2-3

exports
context-free syntax

“Hn1s” MLS — EBool
MLS “pec” Spec — EBool
MLS “k;g” Sig — EBool
MLS “korts” Terms — EBool
MLS “lgects” Decls — EBool
MLS “kort” Term — EBool
MLS “Kym” Term “:” Term — EBool
MLS “Kerm” Term — EBool
MLS “kqgs” Eqgs — EBool

equations

A multi-level specification is well-formed if each level is well-formed. The en-
vironment in which a specification is checked includes the specification itself

281

14 / DEFINITION OF MULTI-LEVEL SPECIFICATIONS

because that may contain relevant sort declarations.
[1] bnis I =T kpec m9(I') when max(I') =0
2] bnts T' = Fs up(T) ~ T kspec mo(I')

when zero(max(T')) = L

A specification is well-formed if both the signature and the equations are well-
formed. The errors in the equations generally depend on errors in the signature.
Therefore equation [3] gives precedence to signature errors over equation errors.

[3] r |Tspec §=T l_sig Sg(S) ~ T |_eqs E(‘S)

A signature is well-formed if the sorts section contains well-formed sort decla-
rations and if the function and variable declarations are well-formed.

[4] r I_Sig Y =T Korts S(E) ~ T |Hecls F(E) AT laecls V(E)

The terms in a sort declaration at level n should be well-formed terms over
level n + 1.

up(r) Kerm 7= T

5

[] Fhorts m = T

[6] I' Korts 7'1+; 7'2+ = T korts 7'1+ AT korts 7'2+
[7] r }_sorts =T

A function or variable declaration is well-formed if its type is a well-formed sort.

(8] [Recs : 7 =T kort T

[9] [Reas f:7=T kort 7

[10] [Rects =T

(11] I' Recls d1+7 d2+ =T Recls d1+ AT Recls d2+

Sorts A term is a sort at level n if it is a term over level n + 1, and if it
matches one of the terms declared as sort at level n.

zero(max(T)) = L, {S(Sa(mo(D))} = t="T

I'kort t = UP(F) Ferm t
The predicate & >t (§B.2.8) tests whether a term ¢ matches one of the elements
of a set of terms @, in this case the set of sorts declared at level Q.

For a term to be a sort at the highest level it is sufficient to be a term over
the next (implicit) level.

[12]

zero(max(l)) =T
I'kort t = UP(F) Ferm t
Otherwise all terms from the closure of the basic sorts under arrow and product

that are used in function and variable declarations, would have to be declared
explicitly as sorts.

[13]

282

Well-Formedness | 14.3

Terms A complication with respect to the one-level case is that sorts are
also annotated, except for the sorts at the highest level. We could solve this
problem by introducing two different well-formedness predicates. Instead we
use one predicate and the implicit annotation of terms with ‘top’. The auxiliary
judgement kry is introduced to treat explicitly and implicitly annotated terms
in the same way. The annotation of a term is constructed explicitly by splitting
it in its term and type. This has the effect that terms that are annotated
implicitly with ‘top’ can be treated in the same way as terms with explicit
annotations.

[14] I kerm t =T hrm term(?) : type(?)

The term ‘top’ has type ‘top’. Since ‘top’ can not be declared as a function,
this is the only possible type it can have.

[15] FRymtop:top = T

The types of functions and variables should be well-formed sorts. The type of a
function should match one of the types with which it is declared. If a variable is
declared, its type should match one of its declared types. Variables are allowed
to be undeclared. The reason for this exception is that the type assignment
algorithm has to invent new variables in some cases to prevent name clashes. A
result of this choice is that variables can be used without declaration, if some
reasonable type can be inferred for it from the context, or if it is given some
suitable annotation.

6] T([)27=T
F'kem f:T =T
7] () =®, & =7V empty(®)=T

Fhmz:7 = Ihorg 7

A pair is well-formed if its type is the product of the types of its left and
right components. An application is well-formed if the type of the argument
matches the type of the domain of the type of the function and if the type of
the annotation matches the type of the codomain.

term(7) = type(t;) X type(ts)
I' krm h,b:7 = I' Rerm t1 AT Kerm t2
term(type(t;)) = type(tz) = 7
Fhrm ti t2:7 = I kerm t1 AT Kerm 2

(18]

[19]

Products and arrows are well-formed if their prefix versions (x) and (—) are
declared in the signature as binary functions. The product of the types of the
arguments t; and t» should be the domain and the annotation 7 should be the
codomain of the declaration of the function. This is checked in the same way
as the annotation of a function is checked by matching the annotation of the

283

14 / DEFINITION OF MULTI-LEVEL SPECIFICATIONS

function to one of its declarations. Because the type of the product or arrow is
reconstructed, it is not clear what the annotations for the product and arrow
in the types of (x) and (—) should be. For this purpose, the function ‘bterm’
(§12.2.3) is used to strip the annotation from the declared types.
btermx(m(,)(I')) 2 type(t) X type(tz) »7=T

Fhmtt X t2:7 = I'kerm tt AT Rerm t2
btermsx(m(_,)(I')) 2 type(t1) x type(t2) - 7=T

Pt = t:7 = I Rerm 81 AT Rerm B

[20]

21]

Equations An equation is well-formed if both sides have the same type, the
variables of the right-hand side are contained in the variables of the left-hand
side and all occurrences of a variable on both sides have the same type.

type(t1) = type(tz), vars(tz) C vars(t;) =T,
var-types(avars(t, t2)) = []

22

[] Fl?eqstlEtZZFl'fermtl/\FlTermffz
[23] Mg = T

[24] r IEqs ‘P1+; (P2+ =T |_eqs <P1+ AT |_eqs ‘P2+

The following proposition states that equality according to a well-formed spec-
ification is type preserving, i.e., a term can only be equal to another term if they
have the same type.

Proposition 14.3.1 (Type Soundness) Equational logic is type preserving
for well-formed specifications: LetT' be a fully annotated multi-level specification
such that declarations in I' use only free type constructors. If by I' and T’ kerm
t; then mo(T) F t1 = to implies type(t1) = type(ta).

Proof. Since I is well-formed, all equations in mo(I") have equal types in the
left-hand side and right-hand side and typed equational logic is type preserving
for equations with that property (Proposition 12.2.1). |

The following proposition relates equalities over plain terms to equalities over
fully annotated terms.

Proposition 14.3.2 Equational deriwability in a fully annotated specification
implies equational derivability in the plain specification: Let T be a fully anno-
tated multi-level specification such that declarations in T' use only free type con-

structors and such that by T, then T+ t1 = to implies spine(T') I spine(t;) =
spine(ts)

In §14.4.3 we discuss the requirements for the reverse implication; when does
equality in the plain specification preserve types?

284

Type Assignment | 14.4

14.3.3 Non-wellformedness (MLS-NWF)

The generation of error messages for the non-wellformed cases is very similar to
§12.3.3, therefore only the case of a non-wellformed application is presented.

module MLS-NWF
imports MLS-WF'4-3-2 SPEC-Errors?-2-2

equations

[1]F|'frm hto: T
= (F Rerm 1 A T Kerm tz)
~» application " spine(#; t) " not well-formed
mif = A — B 2 term(type(t))
then " spine(#;) " is not a function
else if = eq(dom(term(type(t))), type(t2))
then type of argument " type(t)
" does not match type of domain " dom(term(type(;))) "
else type of result " spine(7)
" does not match type of codomain " cod(term(type(#))) "
otherwise

14.4 Type Assignment

In the next section we will define the type assignment functions for the multi-
level case. First, we define several auxiliary functions that are needed for the
definition of type assignment.

14.4.1 Preliminaries

The two major complications in type assignment for multi-level specifications
are overloading and polymorphism.

Overloading caused by multiple declarations of variables and functions leads
to multiple fully annotated terms for a single plain term. Therefore, the type
assignment function for terms yields a set of annotated terms instead of a single
term. To assign types to a composite term such as an application, first the sub-
terms are assigned types, resulting in a pair of sets of terms. Each combination
from the two sets can form a well-formed application. Therefore, each term in
the Cartesian product of the two sets has to be considered.

Join To handle polymorphism correctly, type variables of terms composed
by application, pairing etc. have to be renamed before types can be compared,
because types are implicitly universally quantified. The function > (join) com-
bines the function of renaming type variables and producing the cartesian prod-
uct of two sets. Given two sets ®; and ®, it renames the type variables in the

285

14 / DEFINITION OF MULTI-LEVEL SPECIFICATIONS

terms in the two sets leading to sets ®3 and ®4 such that the type variables are
disjunct, i.e., tvars(®3) N tvars(®4) = {}. The operation rn®[®'], given a set of
variables @', produces a renaming of the variables in the set ® such that they
do not occur in @' (see §B.2.10). The result of the operation is the Cartesian
product ®3 x Py, i.e., the set of all pairs (¢1,t2) of elements from t; € &3 and
t2 € B4 (see also §B.2.5).

module MLS-TA-Aux
imports Renaming?-2-1°
exports
context-free syntax
TermSet “b<” TermSet — TermSet {non-assoc}
equations

vars(®2) = ®,, rn tvars(®;) N &, [vars(®,) U ,]%(P;) = ®3,
vars(®3) = @3, rn tvars(®y) N B5[By U B3]x(Dy) = By
(1)1 > (I>2 = (1)3 X @4

[1]

Selection Once two sets of terms have been joined, the well-formed pairs
have to be selected and given a type annotation. This involves tests and type
forming operations for each construct applying the test to each element in the
set of pairs thereby keeping only the correct ones. This last aspect can be
specified generically for all constructs. For each construct we use a function of
sort (Term = Bool x TermSet)!, which given a term produces a pair of a Boolean
value indicating whether the term is well-formed and a set of terms resulting
from assigning a type to that term. This function can be mapped over a set
of terms resulting from the join of two type-assignments by the function ‘x’. It
applies the function to each element of the argument set remembering whether
a well-formed term was already encountered. If at the end of the list none of the
combinations turns out to be well-formed, then the last, non-wellformed one, is
returned. This guarantees that type assignment always returns a term. From
this non-wellformed term the well-formedness judgements can find out the cause
of the error.

imports Term-Analysis'??® Term-Functions?-2-3

exports
sorts (Bool x TermSet) (Term = Bool x TermSet)
context-free syntax
“(” Bool “” TermSet “)” — (Bool x TermSet)
(Term = Bool x TermSet) “(” Term “)” — (Bool x TermSet)
(Term = Bool x TermSet)

“x? “(” TermSet “)” — TermSet

(Term = Bool x TermSet)

“x” “(” Bool “,” TermSet “)” — TermSet
variables

INote that we instructed ToIATEX to typeset the sort identifier Term2BoolXTermSet as
(Term = Bool x TermSet)

286

Type Assignment | 14.4

“G@?[0-9"]%* — (Term = Bool x TermSet)

equations

2] Gx(®) = Gx(L, ®)

[3] Gx(b, {}) = {}

[4] Gx(b, {t}) =if bA — b’ then {} else ® when G(t) = (b', ®)
[5] Gx(b, {t; tT}) = (if b’ then ® else {}) U Gx(bV b', {t*})

when G(t) = (b', ®)

For functions of sort (Term = Bool x Egs), which yield a list of equations instead
of a set of terms, similar functions are defined.

Annotation with a Set of Types Due to overloading, the result of assigning
a type to a term is a set of terms instead of a single term. This means that
the assignment of types in declarations and type annotations also leads to a set
of types. These should be translated to lists of declarations and sets of terms,
respectively. The following functions can be used to construct the declaration
of a function or variable or the annotation of a term with a set of terms. The
ambiguity in a declaration is translated to multiple declarations for the function
or variable, i.e., f : {71,72} = f : 71; f : 2. The annotation of a term with a set
of terms is translated to the set of the term with all the annotations from the
set.

imports MLS41-1

exports
context-free syntax
Fun “” TermSet — Decls
Var “” TermSet — Decls
Term “:” TermSet — TermSet
priorities
Term “”TermSet — TermSet > TermSet “U” TermSet — TermSet

t:{r}={t:7}
t {5 6=t {F Ut {7}
Variable Type Consistency The function ‘var-types’ checks whether the types
of the variables in a set of terms of the form z : 7 (annotated variables) are con-

[6] f-{}=

[7] f{ty=1:1

(8] fARS Yy =7 {6} # f: {8}
[9] z: {} =

[10 T: {t}—zt

{11 oty =2 {4} H 2 {87}
1

[

[

]
]

2} t: {} = {¢t: nil}
]

sistent, i.e., two occurrences of a variable should have types that are unifiable.
If this is the case the function returns a substitution that makes the types of all

287

14 / DEFINITION OF MULTI-LEVEL SPECIFICATIONS

occurrences of the same variable equal. The function is used as follows: Given
a term t, var-types(avars(t)) either gives 1, which indicates that ¢ contains
two occurrences of the same variable with incompatible type annotations or a
substitution o that makes all occurrences of the same variable in ¢ the same.

imports Unification?-2-

exports
context-free syntax
var-types(TermSet) — Subst |
var-eqs(TermSet) — Egs
equations

[15] var-types(®) = mgu(var-eqs(®))

[16] var-eqs({}) =

[17] var-eqs({z: T1; t; z: T2; 5}) = 71 = T2 H var-eqs({t]; z: T2; £})
[18] var-eqs({z: 71; t*}) = var-eqs({t*}) otherwise

New Variables The function ‘new-var’ generates a variable name that is not
declared in the signature at level 0. Given a set of variables ® ‘nv’ picks the
first element of ® that is not declared in I'. If all variables are declared, the
variables in @ are renamed by prepending an extra letter (Q) to each variable

in ®.

imports MLS-Projection'4-3-1
exports
context-free syntax
new-var “(” MLS “)” — Term
nv “(” MLS “)” “(” TermSet “,” TermSet “)” — Term
equations
[19] new-var(I') = nv(I')({}, {})
[20] nv(T)(®, {}) =nv([)(®', ') when &' = add(q,

Q,)
[21] nv(T)(®, {z; t*}) = if empty(m4(T")) then z else nv(T')(®, {t*})

14.4.2 Type Assignment

The basic ideas for type assignment of multi-level specifications are similar to
the one-level case. For instance, the type of an application is the codomain of
the first (function) argument. The complications are caused by the multi-level
aspect (types are typed terms), overloading and polymorphism. The basic idea
in dealing with overloading is to create a set of all possible typings for each term;
type assignment function ‘Wt’ returns a TermSet. When terms are combined,
all possible combinations of the associated sets have to be considered. The join
and select functions of the previous section are applied for this purpose.

Type assignment of multi-level specifications proceeds by first annotating the
higher levels and using the resulting annotated specification to assign types to

288

Type Assignment | 14.4

the signature at level 0. The resulting signature can be used to assign types to

the equations at level 0.

module MLS-TA

imports MLS'41-1 MLS-TA-Aux!44! MLS-Projection'4-3-1
Term-Analysis'??? Matching®-2-8

exports
context-free syntax
“Wm” (([[’7 MLS “]]” _) MLS
“Wsp” (l(” MLS Wy” “|[” Spec M]]” _) Spec

)

[43 R ENYe WY” o« : «l» :

“g(si% “(’(’ 1\]2[41;]-_158 (()5)7 [43 [[E])Séfls]](ﬁ]]” :: %legcls

“WS” “(77 MLS “)” “l[” Term “]]77 _) Termset

“WSS” (C(?’ MLS “)57 “l[” Terms “]]77 _) Terms

“th” “(” MLS M)” “|[77 Term “]]” _) Termset

“Wt” “(” MLS M)” £(|[” Term “]]” _) Termset

“Wts” M(” MLS (!)” “|[” Terms M]]” _) Terms

“We” “(” MLS “)’5 ((ﬂ” Eqs “]]” _) Eqs
equations
Assigning types to a specification consists of assigning types to all levels of the
signature and using the resulting signature to assign types to the equations.

zero(max([')) =T
Wm[I'l = level 0 Wsp(lift (up(I")))[7o(I)]

[1]

zero(max(T)) = L, lift(Wm[up(T)]) =T"'
Wm[I] = T'; level 0 Wsp(I'')[7(I)]

[2]

A specification is annotated by first annotating the signature using the higher
levels and then annotating the equations using the higher levels extended with
the annotated signature.

Wsg(T)[Sg(S)] =X, T’ = level 0 signature &

3] Wsp(T)[S] = signature ¥; equations We(T; T'')[E(S)]

Assign types to each section of a signature.

sorts Wss(I)[S(Z)] = B2, T'' =T level 0 signature ¥
Wsg(D)[E] = 2;
functions Wd(T'")[F(2)];
variables Wd(T")[V ()]

[4]

The sorts in the declarations of sorts, functions and variables are treated as
terms over the signature at the next level.

[5] Wd(D)[] =
[6] WAD)[f: 7] = f: Ws(D)[7]
[7] WA(D)[z: 7] = z: rn vars(P)[{z}]*(P)

when Ws(IT)[r] = @
[8] Wd(D)[d,; d;] = Wd(D)[d,] + Wd(T)[d,']

289

14 / DEFINITION OF MULTI-LEVEL SPECIFICATIONS

Sorts A sort at level n is a term over level n+ 1. Only the annotations that
match a sort declaration are selected in case a declaration is ambiguous. The
function ‘srt’ selects a term if it matches one of the terms in the set in its first
argument.

[9] Ws(D)[7] = srt({S(Sg(mo(I))) })*(Wtv(up(T'))[7])
[10] srt(®)(r) =(T,{r}) when @ >7=T
[11] srt(®) (1) = (L, {r}) otherwise

A list of sort terms at level n is a list of terms over level n + 1.
[12] Wss(D)[ts] = Wts(up(I"))[¢s]

Terms with Variables The function ‘Wt’ defined below assigns types to a
term without considering the consistency of the types of variables. The function
‘Wtv’ first assigns a type to a term using ‘Wt’ and then applies ‘var-types’
(§14.4.1) to make the types of different occurrences of the same variable equal.

Wt(D)[{] = ®, var-types(avars(®)) = oy
Wtv(D)[#] = if fail?(oy) then ® else |1 (o0)*(P)

[13]

Functions and Variables Functions get assigned the type from the declara-
tion in the signature.

[14] Wi(D)[A] = 7: wfI)

The type assignment to variables is somewhat more complicated since unde-
clared variables are taken into account according to the following rules. Equa-
tion [15] deals with variables in types of the top signature. Equation [16] finds
the set of declared types ® for a variable z. If ® is not empty, i.e., the variable
is declared, z is annotated with ®. If there is no declaration (® is empty), a new
type variable is generated to assign to x, which is assigned a type as a term over
the next level. This is necessary to ensure that a term has the right number of
annotations.

up(T") = top-sig

! WO = {7}
up(r) 76 tOp-Sig, 7T:E(]'-‘) = (1)7
116] if empty(®) then Wt(up(T'))[new-var(up(T'))] else ® = {ts}

Wt(D)[z] = z: {rn vars *(ts)[{z}]*(ts)}

Nil and Top Nil can not occur in well-formed specifications. Top can only
occur as a top-level type.

[17] Wt(I)[nil] = {nil : nil}
[18] Wt(I')[top] = {top : top}

290

Type Assignment | 14.4

Auziliary Functions For the type assignment of non-atomic terms we need
the following auxiliary functions.

hiddens
context-free syntax
srt(TermSet) — (Term = Bool x TermSet)
app(MLS) — (Term = Bool x TermSet)
pr(MLS) — (Term = Bool x TermSet)
arr — (Term = Bool x TermSet)
prd — (Term = Bool x TermSet)
ann — (Term = Bool x TermSet)
eqn — (Term = Bool x Eqs)

new-arrow(MLS) — Term
equations

Application An application term is assigned the codomain of the type of the
function. To this end, both arguments are assigned types and the result terms
are joined. The type of the term in the argument position should conform to
the argument type of the function.

[19] Wt(D)[t 2] = app(I') *(WH(T)[#:] ba Wt(D)[2:])
> {a : new-arrow(I")})
mgu(type(t1) = 71; type(ta) = 72) = 0
app(D)((t1, &2), a: (11, 72, 73)) = (T, {o(tr tp : 73)})

[21] app(D)((t1, t2), 7) = (L, {t1 t : nil})
otherwise

The function ‘new-arrow’ constructs an arrow type with new variables as domain
and codomain, annotates it with types and yields a triple of the arrow type,
domain and codomain.

new-var(up(T')) = z, ¢’ = prime(z), 70 =z — z',
if zero(max(T")) then {7¢} else Wt(up(I'))[70] = {71; t*}

[22] new-arrow(I') = 71, dom(term(71)), cod(term(7y1))

Pair A pair (t1,t2) has the product type 71 X 72 if 7; is the type of ¢;. The
product is itself a term over the next level.

[23] Wt(D)[t1, t2] = pr(D)*(Wt(T)[t1] < Wt(T)[2])
[24] pr(I)(t, t2) = (T, {(t, &) : type(t) x type(t2)})
when zero(max(T')) =T
[25] pr(D)(t, t2) = (T, &, t2 : Wt(up(D))[type(t:1) x type(t2)])

when zero(max(I')) = L

291

14 / DEFINITION OF MULTI-LEVEL SPECIFICATIONS

Arrow and Product Arrow and product are defined in terms of application
of the functions (—) and (x) to their arguments. After type assignment the
binary notation is restored for readability.

[26] Wt(D)[tr =] = arrx(WH(T)[(=) (t1, 82)])

[27] arr(t) = (T, {t1 = & : type(?)})
when bapp(t) = (=) (4, t2)

[28] arr(t) = (L, {t}) otherwise

[29] Wt(D)[tr x 2] = prdx(Wt(I)[(x) (t1, 82)])

[30] prd(t) = (T, {t1 x 2 : type()})
when bapp(t) = (X) (4, t2)

[31] prd(t) = (L, {t}) otherwise

Annotation A term t : 7 that already has a type annotation 7, has to be
assigned a type that conforms with 7 and 7 itself should be assigned a type as
a term at the next level of T'.

[32] Wt(D)[t: 7] = annx(Wt(T)[#] > a : Wt(up(T))[7])
[33] ann(t:71,a:73) = (T, {o(t: 72)}) when mgu(ry =73) =0
[34] ann(t,a:7) = (L, {t:7}) otherwise

Lists of Terms

(35] Wis(I)[] =
[36] Wits(T)[f] = ts when {ts} = Wt(I)[{]
[37] Wis(D)[1"; 7] = Wts(D)[#"] + Wts(D)[,']

Equations An equation is annotated by annotating both sides of the equa-
tion. The types of the resulting terms should be unifiable and if this is the case
the unifier is applied to both term to make the types equal.

[38] We(D)[t1 = t2] = equx(Wt(D)[t1] < Wt(D)[t2])
39] eqn(ty, &) = (T, 02 0 1 (1 = 1))
when var-types(avars(t, t2)) = o1

mgu(o (type(t) = type(t))) = o2
[40] eqn(ty, t2) = (L, t; = t») otherwise
[41] We(D)[] =
[42] We(D)[i01'; 5] = We(D)[] + We(D)[5']

Correctness The type assignment functions defined above produce a fully an-
notated specification given an arbitrary plain, partially annotated or fully an-
notated specification. Type assignment always succeeds, but the resulting spec-
ification is not necessarily well-formed. The following propositions state that
type assignment produces a well-formed result whenever that is possible. The

292

Type Assignment | 14.4

expression ® > t' expresses that t' is an instantiation of one of the terms in ®.
Because we can choose t' arbitrarily as long as it is well-formed the proposition
states that Wt finds all most general annotations of t.

Proposition 14.4.1 (Correctness of Wt) The function Wt finds all correct
typings for a term if any exist. Let ' be a multi-level specification with free types
such that by T. Given a term t, if there exists a full annotation t' of t, i.e.,
spine(t') = spine(t), such that T Keym t' and if & = Wt(D)[t], then ® 2 ¢’ and
forallt" € ®, T kerm t".

Proof. by induction on t. O

If no functions are overloaded, terms have a single full annotation. The pre-
vious proposition states that this single annotation is ‘principal’, i.e., the most
general type assignment of the term.

Proposition 14.4.2 Let T be a fully annotated multi-level specification with
free types such that by T' and such that for each f, |ms(T')| < 1, then we have
[(Wt(D)[]] = 1.

Similarly, we have that Wm finds a well-formed full annotation for a specifi-
cation if one exists.

Proposition 14.4.3 (Correctness of Wm) Ifly I' then by Wm[spine(T')].

The result of type assignment is an expression over the original language to
which type assignment can again be applied.

Proposition 14.4.4 Type assignment is idempotent, i.e.,

U WD) = We@[.
e Wt(D)[t]

14.4.3 Disambiguation and Confluence

We saw in §14.3.2 that well-formedness of a specification ensures that derivable
equality is type preserving. As a corollary, term rewriting with a well-formed
specification is type preserving. Furthermore, the type assignment function for
multi-level specifications yields a well-formed annotation of a specification if
one exists. However, we have not yet looked at the consequences of overloading
resolution by type assignment for term rewriting. Is the plain term rewrite
system the same as the annotated rewrite system? Although this is the case for
some specifications, in general the answer to this question is no.

Non-Confluence Caused by Overloading Due to overloading, the plain term
rewrite system (TRS) of a specification can be non-confluent while the annotated
TRS is confluent. A TRS is confluent if it does not matter which matching
equation is taken for a rewrite step. For example, the following module eqda
defines equality on Boolean values and on lists in the style of the data algebra of

293

14 / DEFINITION OF MULTI-LEVEL SPECIFICATIONS

Bergstra and Sellink (1996). Module 1ist_access extends module list from
§13.1 with the function empty for testing emptiness of a list and the functions
hd and t1, which give the head and tail of a list. The variables X and Y are
generic variables.

module eqda
imports bool, list_access;
level O
signature
functions
eq : A # A -> bool;
equations
eq(X, Y) == X <> V;
eq(X, Y) == (empty(X) /\ empty(Y))
\/ (("(empty (X)) /\ ~(empty(Y)))
/\ (eq(hd(X), hd(Y)) /\ eq(t1l(X), t1(¥))));

The plain term rewrite system of this module is not confluent because the two
eq equations have the same left-hand side but completely unrelated right-hand
sides. For instance, either equation can be used to rewrite the term eq(t,f).
Only if the first equation is chosen the expected result is achieved. The TRS of
the module becomes confluent if we consider its full annotation. The types of
variables X and Y in the right-hand sides force the right types in the left-hand
sides. The annotation of eq in the first equation becomes bool # bool -> bool
and in the second equation 1ist(A) # list(A) -> bool.

The next example shows that even while the plain TRS is confluent it can
have different normal forms than the annotated TRS. The function (/) is used
as constructor for positive rational numbers and as defined exclusive or function
for the Booleans. When regarded as a plain TRS, rationals of the form X/Y are
rewritten anyway.

signature
functions
2] : nat # nat -> rat;
A\, (/\), (/) : bool # bool -> bool;
equations

X/ Y¥Y==CX/\AD\ X/N\"Y

These examples clearly show that, in general, types are needed to disam-
biguate the equations of specifications. However, in many cases where matching
is used and constructors and defined functions do not have overlapping names,
overloading is resolved by the choice of constructors in the left-hand side of
an equation. An example is the definition of the generalization of zip to tu-
ples, for which it is not even clear how typed rewriting should be done, but
untyped rewriting does not go wrong. Although it is often clear by examination
whether types can be discarded, it is not clear how this property can be tested.
For rewriting purposes it seems to be sufficient to annotate only functions with

294

Typechecking [14.5

their type, i.e., apply function ‘fspine’ to the specification which removes all
annotations except those of functions. It is not clear whether all ambiguities
due to overloading are resolved in the fspine of a fully annotated specification.

Ambiguous Equations Due to overloading an untyped equation can actually
denote several typed equations. An example is the equation size([]) == 0in
Figure 11.1 on page 221. As another example consider the overloaded numerical
operations in module num below. It is clear that the equations for addition that
involve 0 and s are valid for both naturals and integers. The type assignment
function ‘We’ produces all annotations of an equation for which the types of
left-hand side and right-hand side match.

module num

level O
signature
sorts nat; int;
functions
0 : nat; 0 : int;
s : nat -> nat; s, p : int -> int;
(+) : nat # nat -> nat; (+) : int # int -> int;
i : nat -> int;
variables
X, Y : nat; X, Y : int;
equations
0 +Y =1Y; s(X) == X; i(0) == 0;
s(X) +Y ==X+ s(Y); p®) =% i(sX)) ==s(@X));
pX) +Y ==X+ p(¥);

14.5 Typechecking

The typecheck function for multi-level specifications is again constructed from a
well-formedness predicate and a type assignment function. The main typecheck
function checks a multi-level specification. In addition there are two predicates
to check terms and equations over a multi-level signature.

module MLS-TC
imports MLS-TA442 MLS-NWF14.3-3
exports
context-free syntax
tc “[” MLS “]” — EBool
tC “(77 MLS “)77 “[77 Term “]]77 _) EBOOI
tC “(77 MLS “)77 “[77 EqS “]]77 _) EBOOI
equations

[1] te[l] = s Wm[I]

295

14 / DEFINITION OF MULTI-LEVEL SPECIFICATIONS

Wm[I'] =T/, Wt(T')[{] = {¢; t*}
tC(F)[[t]] = huls I'~T' Ferm t’
Wm[I'] =
tC(F)ﬂE]] = }_mls I'~T' eqs We()[5]]

14.5.1 Typechecking Modular Specifications

Finally, we define typechecking of a list of modules. The approach is rather
crude. First all modules are flattened, then the MLS of each module is type-
checked. This is of course rather expensive because code is duplicated. Observe
that with this approach types and equations are disambiguated after being im-
ported. This entails that newly introduced function declarations of existing
functions may cause previously unambiguous equations to become ambiguous.

module MMLS-TC
imports MMLS'42 MLS-TC14:5
exports
context-free syntax
tc “[” Modules “]” — EBool
tel “[” Modules “]” — EBool

equations

o e[M°] = te1[flat(M*)]

[2] tel[] =T

3] tcl[module fT';] = errors in module " f" :: tc[I']
[4] tel[M;T M) = tel[M;T] A tel[My

This concludes the specification of the syntax, semantics and typechecking of
modular multi-level specifications.

14.6 Discussion and Concluding Remarks

14.6.1 Related Work

In §11.1 we discussed several formalisms related to the formalism MLS described
in this chapter. Here we give some pointers to other related issues.

Type Surveys Cardelli and Wegner (1985) give an informal introduction to
types in programming languages including polymorphism, existential types and
subtypes. Cardelli (1993) discusses a wide variety of programming features and
their types, including mutable types, exception types, tuple types, option types,
recursive types and subtypes. Mosses (1993) surveys the usage of sorts in first-
order algebraic specification frameworks, discussing order-sorted algebra and

296

Discussion and Concluding Remarks / 14.6

partial functions. Mitchell (1990) gives a survey of type systems for program-
ming languages. Cardelli (1997) provides a more informal introduction to type
systems.

Typechecking in ASF+SDF The specification formalism ASF+SDF has been
applied to the description or design of several languages. We give some point-
ers to papers that describe specifications of type systems similar to the one
described in this chapter. Hendriks (1989) describes (in the first ASF+SDF
specification) the polymorphic type inference algorithm of Milner (1978) in the
language Mini-ML. Van Deursen (1996) describes the specification of a type-
checker for Pascal. Hillebrand and Korver (1995) give a specification of the
well-formedness of pCRL specifications. pCRL is a process specification formal-
ism with a monomorphic algebraic specification language for the specification
of data in processes. Vigna (1995, 1996) specifies a typechecker and compiler
for the categorical programming language IMP(G). A special feature of the
language is the associativity of the built-in type constructors x and 4. The
typechecker makes extensive use of list matching in ASF+SDF to handle this
associativity. In full MLS, associativity of type constructors can be expressed
by means of equations over types like A x (BxC) = (Ax B)xC. Type checking
such specifications requires £-unification.

Polymorphic Typechecking The type inference algorithm of Milner (1978),
also described in Damas and Milner (1982), forms the core of all typecheckers
for polymorphic languages. The basic idea of that algorithm is also used in the
type assignment of terms in multi-level specifications. Although Milner (1978)
mentions overloading as a possible orthogonal extension of his type inference
algorithm, such an extension is not described in the literature. Ambiguities
due to overloading in pure Hindley/Milner systems are difficult to resolve if no
restriction on the type(s) of functions is given by means of a signature, because
then each occurrence of a function can have a different type. The overloading
that is achieved by means of type classes (Wadler and Blott, 1989), or more
generally, qualified types (Jones, 1992), is actually not overloading in the sense
used in this chapter. Rather, type classes provide the means to restrict the set of
types over which the universal quantifier in the type of a polymorphic function
ranges and they give an account of ‘non-parametric’ function definitions of such
restricted polymorphic functions.

Types in Algebraic Specification The basic type system of monomorphic
many-sorted algebraic specification is explained in any introduction to algebraic
specification or universal algebra, see for instance Wechler (1992). Mosses (1993)
surveys the many variations and extensions of monomorphic type systems for
algebraic specification. Extensions of many sorted algebraic specification where
the space of types is defined by means of an algebraic specification have been
studied by various authors (Poigné, 1986, Moller, 1987, Meinke, 1992a). Meinke
(1992b) develops a theory for universal algebra in higher types. Meinke (1993)
gives the operational semantics of ATLAS via term rewriting and proves its
equivalence to the denotational semantics (i.e., initial model).

297

14 / DEFINITION OF MULTI-LEVEL SPECIFICATIONS

14.6.2 Extensions

The formalism MLS presented in this chapter is a uniform and simple specifica-
tion formalism for sophisticated abstract data type specification. Some aspects
important for specification and execution of specifications have not yet been
attended. We discuss several extensions to the formalism and the issues they
raise for further research.

Implicit Functions ATLAS provides implicit functions, which entails that
functions declared as {implicit} do not have to be written explicitly in terms
(Hearn and Meinke, 1994, Hearn, 1995). This is used, for instance, to hide the
explicitly defined application function for user-defined function types. When
used for unary functions, this boils down to chain rules of grammars. For
example, by introducing an operator inc as

inc : nat -> int {implicit}
the naturals are embedded in the integers. The equations

0 +X==X;
s(X) + Y==sX+Y)

then apply both to naturals and integers. This feature gives rise to infinite
ambiguities. Consider the declaration

inc : A -> list(A) {implicit};
(++) : 1list(A) # 1list(A) -> list(A) {implicit}

Given these declarations we can write lists such as inc(X) ++ inc(Y) ++ inc(Z)
as X Y Z. The problem is that the inclusion operator inc is applicable to any
term, i.e., we can interpret X as inc(X), as inc(inc (X)), etc. It is clear that
this infinite ambiguity is recurrent and could somehow be represented in a finite
manner. How this should be achieved is not clear.

In ATLAS only unary and binary functions can be declared as implicit.
Implicit constants, which are not allowed in ATLAS, are analogous to empty
productions in context-free grammars and make the typechecking problem un-
decidable. For instance, if we declare

empty : list(A) {implicit}

then the list X can be interpreted as inc(X), as empty ++ inc(X), as empty
++ inc(X) ++ empty, etc. The implicit constant can be inserted anywhere and
arbitrarily many times in the term.

Grammars as Signatures A generalization of the implicit types of ATLAS
and the infix functions of MLS is the use of arbitrary mixfix function declara-
tions. The motivation for the development of MLS is to prepare the extension of
the syntax definition formalism SDF of Heering et al. (1989). In SDF, context-
free grammars are used as monomorphic algebraic signatures, providing flexible
notation for functions and constructors. Like normal monomorphic algebraic
signatures, SDF does not support polymorphism nor higher-order functions.

298

Discussion and Concluding Remarks / 14.6

The first step towards an extended SDF is made in Part II, where the design
of Heering et al. (1989) is rationalized by orthogonally defining its features such
that the formalism can be seen as an instance of a family of formalisms. A
syntax definition formalism can be created by choosing a set of features. Many
features are expressed as conservative extensions of pure context-free grammars
by normalizing extended grammars to context-free grammars. As part of this
approach, the disambiguation of ambiguous context-free grammars by means
of priorities is seen as an instance of a more general view of disambiguation
by means of disambiguation filters — functions that select a subset of a set of
possible parse trees — see Chapter 4.

In the definition of MLS we have abstracted from the use of grammars as
signatures in order to get a clear picture of a multi-level type system without
the complications caused by grammars. It is clearly desirable to extend MLS
with arbitrary mix-fix operators and disambiguation capabilities like priorities
to enhance the notation defined in signatures. However, the generalization of
multi-level specifications to multi-level grammars is not straightforward if ar-
bitrary grammars are allowed. The addition of chain and empty productions
to signatures makes the parsing problem undecidable in general. Such rules
are the cause of infinite ambiguities (sentences can have infinitely many parses)
already in context-free grammars. However, in multi-level grammars the set of
all parses for a sentence might not be finitely representable. Due to overloading,
terms in MLS can have more than one full annotation (the analogon of a parse
tree), but always finitely many.

In Chapter 15 the extension of context-free grammars to two-level gram-
mars and the correspondence of two-level grammars with two-level first-order
signatures are studied for the purpose of polymorphic syntax definition — poly-
morphic notation for algebraic specification. There a restriction on multi-level
grammars is formulated that guarantees that parsing is decidable.

Type Equations Type equations are not interpreted by the type assignment
algorithm presented in this chapter. This is a pity, because many type features
from programming languages and abstract data types can be expressed in MLS
by means of type equations. In §13.6.2 the generalization of the zip function
to tuples of lists is defined by means of functions at the level of types (the map
function (*)). In §13.6.6 type classes are expressed as type predicates. In the
same way the more general qualified types of Jones (1992) can be expressed.
There are many other applications of type equations. Type definitions of the
form

parser (A, B) == list(A) -> (B # list(A))

can be used to define a type in terms of other types. The original constructor
can be eliminated. Recursive type definitions of the form

list(A) == empty + (A # list(A))

can be used to define recursive types. These type constructors can not be
eliminated, because the unfolding of the type results in an infinite term. The

299

14 / DEFINITION OF MULTI-LEVEL SPECIFICATIONS

associative type constructors of Vigna (1995, 1996) can be expressed by the
equations

A# (B#C) ==(A#B) # C;
A+ (B+C) ==(A+B)+C

Jones (1992) also discusses record types as a special case of qualified types by
providing operations for looking up the type of a field in, and for removing a
field from a record type.

Simple type definitions can be accounted for by rewriting. For the other cases
of type equations £-unification is required. €-unification is undecidable in gen-
eral [see Jouannaud and Kirchner (1991) for a survey of unification]. However, if
the equations are known to belong to a certain class, a solution strategy based on
that knowledge might be found. For instance, a simple approach to £-unification
led to a unification algorithm that terminates for the unification of the types in
the generalization of the zip function in §13.6.2 (see Visser (1996b)). All the
other examples of type equations mentioned above are embedded in the type-
checking of various programming languages. These typecheckers thus use some
kind of £-unification optimized for the special case. For instance, Nipkow and
Prehofer (1995) describe a typechecking algorithm for type classes in terms of
unification with constraint resolution. If a union of these solutions exists such
that many cases of type equations can be dealt with more generically, MLS
provides an expressive framework for specification of advanced type systems.

Modules The formalism has a rudimentary modularization scheme based on
syntactic inclusion, i.e., imports are expanded before typechecking. Is it possible
to keep the module structure while typechecking? Furthermore, consider using
arbitrary terms as module names. An import of a module name provides a term
that is at least as specific as a module name. The parameters of the module are
determined by matching the actual module name against the declared module
name. Function renaming operators applicable to imports would be another
useful extension.

Rewriting A first experiment has been conducted with translating the level 0
equations of a multi-level specification to the first-order rewrite rule language
of the Epic term rewrite compiler of Walters and Kamperman (1996). Terms
are translated to first-order terms by keeping the same term structure as in the
specification, i.e., terms are built by application, pairing, product, arrow and
annotation from functions and variables. Research issues here include: When
are annotations necessary? The translation is correct for the subset of MLS that
uses only free type constructors in declarations. If type equations are allowed,
rewriting with type annotations is complicated because matching has to consider
type equations. Can this be expressed in the rewrite system itself?

14.6.3 Conclusions

In this chapter we have defined the syntax, semantics and type system of the
modular, applicative, multi-level equational specification formalism MLS. Each

300

Discussion and Concluding Remarks / 14.6

level of an MLS specification is an applicative equational specification that uses
terms over the next level as types. This is a generalization of type systems
with two and three levels that have separate definitions for each level. The type
system of MLS is orthogonal and uniform (typechecking is the same for each
level) and combines parametric polymorphism with overloading. These features
form a formalism for the definition of advanced generic data types.

The formalism is completely specified in ASF+SDF. The Meta-Environment
made it possible to interactively experiment with design choices and develop the
formalism and its prototype implementation in a short period of time (about four
months). The typesetting and literate programming facilities provided by the
Meta-Environment played an important role in the design process. This chapter
demonstrates a number of specification techniques applicable in other specifi-
cations, including innermost term rewriting, the separation of well-formedness
rules and non-wellformedness rules producing descriptive error messages, type
assignment by annotation, module import normalization, and a library of func-
tions on terms, such as sets, substitution, unification and matching.

One of the shortcomings of ASF+SDF is the poor reusability of specifications,
due to a lack of abstraction features such as polymorphism and parameterized
modules. If ASF+SDF would be equipped with the higher-order functions and
polymorphism of MLS, specifications could reuse more standard data types
directly. On the other hand, MLS does not provide the syntax definition support
of SDF. A formalism that combines the notational facilities of SDF with the
typing facilities of MLS into Multi-Level ASF+SDF, will be a powerful tool for
designing and prototyping languages.

301

Part |V

Polymorphic Syntax Definition

15
Polymorphic Syntax Definition

Context-free grammars are used in several algebraic specification formalisms
instead of first-order signatures for the definition of the structure of algebras,
because grammars provide better notation than signatures. The rigidity of
these first-order structures enforces a choice between strongly typed structures
with little genericity or generic operations over untyped structures. In two-
level signatures level 1 defines the algebra of types used at level 0 providing
the possibility to define polymorphic abstract data types. Two-level grammars
are the grammatical counterpart of two-level signatures. This chapter discusses
the correspondence between context-free grammars and first-order signatures,
the extension of this correspondence to two-level grammars and signatures, ex-
amples of the usage of two-level grammars for polymorphic syntax definition,
a restriction of the class of two-level grammars for which the parsing problem
is decidable, a parsing algorithm that yields a minimal and finite set of most
general parse trees for this class of grammars, and a proof of its correctness.

15.1 Introduction

In the algebraic approach to programming language specification, languages are
considered as algebras. A sentence, program or expression in a language is an
object of its algebra. The constructs for composition of expressions from smaller
expressions and the operations that interpret, translate, transform or analyze
expressions are the operations of the algebra. Algebraic specifications describe
algebras by means of a finite structure that describes the sorts of the algebra,
its operations and the relations between the operations. Any algebra that has
the structure prescribed by the specification and that satisfies its relations is a
model of the specification. Therefore, a specification always describes a class of
algebras instead of precisely the intended algebra. There are many formalisms
for algebraic specification. Depending on the expressive power of a formalism
the class of algebras described by a specification can be narrowed down to the
intended algebra. First-order algebraic specifications consist of a first-order
signature and a set of equations over the terms generated by the signature.
A first-order signature consists of a finite set of sorts and a finite number of
operations over those sorts.

305

15 / POLYMORPHIC SYNTAX DEFINITION

Grammars describe languages by means of a finite structure that describes the
syntactic categories of a language and the sentences of its categories. Context-
free grammars and first-order signatures generate the same class of algebras.
Parse trees or abstract syntax trees can be considered as terms over a signature
and the language of terms over a signature can be described by a context-free
grammar (Hatcher and Rus, 1976, Goguen et al., 1977). This correspondence
is exploited in several algebraic specification formalisms by allowing the use of
signatures with mix-fix operators (Futatsugi et al., 1985, Bidoit et al., 1989)
or even arbitrary context-free grammars (Heering et al., 1989) instead of just
prefix function signatures. This provides concrete notation for functions and
constructors in data type specifications and it enables definition of operations
on programming languages directly in their syntactic constructs.

The rigidity of first-order signatures and context-free grammars makes it dif-
ficult to generically describe properties of an algebra. For example, an algebra
with lists of integers and lists of strings can be specified with a first-order sig-
nature by declaring a sort LI (list of integers) and a sort LS (list of strings) and
by defining operations like the empty list, cons, head, tail and concatenation on
both sorts. However, if these list sorts have the same properties independent
of the contents of the lists for some operations, this can not be expressed in a
first-order specification. Similarly, if for both list sorts an operation exists that
applies a function to each element of a list, this can not be expressed in a generic
way in a first-order specification. This lack of genericity makes it difficult to
develop libraries with specifications of common data types and generic language
constructs.

A higher type algebra (Meinke, 1992b) is an algebra with an algebraic struc-
ture imposed on the set of sorts, i.e., the set of sorts is itself an algebra with
operations. These sort operators are interpreted as functions from collections of
carrier sets to collections of carrier sets. For instance, the sorts LI and LS above
can be seen as sorts constructed from the sorts I (integer) and S (string) by the
sort operator L that constructs the sort of sequences of integers and strings, re-
spectively. In such algebras more generic statements about (classes of) objects
and operations of the algebra can be made. For example, one can say that, for
an arbitrary sort z, the tail function is a function from Lz to Lz that yields
the argument sequence without its first element, where we abstract from the
fact that z is equal to I or S. One could say that higher type algebras provide
a higher resolution in the sort space of an algebra. Algebraic specifications in
higher types (Poigné, 1986, Moller, 1987, Meinke, 1992a, Hearn and Meinke,
1994, Visser, 1996a) describe higher type algebras by means of two (or more)
levels of signatures. Each level specifies the sort operations for the next level,
i.e., the terms over the signature at level i 4+ 1 are the sort expressions of the
signature at level i. Sort expressions with variables are polymorphic sorts that
describe all sorts obtained by substituting sorts for the variables. Polymorphic
sorts are used to specify polymorphic functions that uniformly apply to many
sorts.

In this chapter we discuss polymorphic syntax definition by means of context-
free and two-level grammars. We argue that the grammatical counterpart of

306

Signatures and Grammars [15.2

algebraic specifications with two-levels are two-level grammars. This correspon-
dence can be extended to multi-level signatures leading to multi-level grammars.
The connections between the various formalisms are summarized by the follow-
ing diagram:

First-Order Two-Level Multi-Level
Signature (3) Signature (4) Signature
]]
(2) | :
' '
Context-Free (1) Two-Level Multi-Level
Grammar Grammar | 1 Grammar

where we refer to the following literature: (1) van Wijngaarden et al. (1976),
Pereira and Warren (1980) (2) Hatcher and Rus (1976), Goguen et al. (1977),
Futatsugi et al. (1985), Heering et al. (1989) (3) Poigné (1986), Meinke (1992b,
1992a), Hearn and Meinke (1994) (4) Hearn (1995), Visser (1996a).

The rest of this chapter is structured as follows. §15.2 contains a review of
first-order signatures, context-free grammars and their correspondence and gives
some examples of data type specification with context-free grammars. §15.3
defines two-level grammars and the parsing problem for two-level grammars.
§15.4 illustrates how two-level grammars can be used for polymorphic syntax
definition. §15.5 discusses several properties of two-level grammars including
a characterization of a large class of grammars for which the parsing problem
is decidable, although membership of the class is undecidable. §15.6 defines a
parsing algorithm, with a correctness proof, for this class of two-level grammars
that yields for each string a minimal and finite representation of the set of all
parse trees for the string. §15.7 discusses related grammar formalisms and type
systems and §15.8 concludes the chapter.

15.2 Signatures and Grammars

In this section we review many-sorted algebras, context-free grammars, the cor-
respondence between first-order signatures and context-free grammars and the
use of context-free grammars in the algebraic specification of languages and data

types.

15.2.1 Many-Sorted Algebra

Many-sorted algebras or Y-algebras were introduced by Higgins (1963) as a gen-
eralization of the theory of abstract algebra. Here we give the basic constructs
needed in this paper. For a further introduction to the theory of universal alge-
bra see for instance Meinke and Tucker (1992), who also give several example
applications. A note on notation: We will frequently use the notion of a family,

307

15 / POLYMORPHIC SYNTAX DEFINITION

which is a collection of sets indexed by some, finite or infinite, index set. If F'
is a family indexed by I, we denote by F(i) the set at index ¢ € I and write
F = (F(i)|i€I). If we want to indicate that = is an element of some F'(7), we
loosely write € F' identifying F' with (J;.; F(3).

Definition 15.2.1 (Signature) A many-sorted signature ¥ is a pair (S, F)
where S = S(¥) C S is a set of sort names and F' = F(X) C O x S(X)* a set
of function declarations (with S and O some sets of sort names and operation
names, respectively). We write f: 7y X -+ X 1, = 7 if {f,71...7,70) € F(X).
Y UV is the extension of a signature ¥ with a S(¥)-indexed family of sets of
variables V. We write z : 7 if z € V(7). The class of all signatures is denoted

by SIG.

Definition 15.2.2 (X-Algebra) A X-algebra A is an S(X)-indexed family of
carrier sets A(7) and an assignment of each f : 74 X --- X 7, = 79 in F(X) to an
A function f4 : A(11) X --- X A(Tn) — A(70) such that fa(ai,...,a,) € A(10)
if a; € A(m) (1 <4 <n). Alg(X) denotes the collection of all Y-algebras.

An equational many-sorted algebraic specification consists of a signature and
a set of equations that define the relations between objects of the algebras
described by the specification. Note that the theory of universal algebra does
not limit algebras to have finitely many operations or sorts, but that an algebraic
specification must be a finite structure. The following example illustrates the
definitions above. We use the keywords sorts, functions and variables to
indicate the declaration of S(X), F(X) and V, respectively. We write # for x
and -> for —. Furthermore, we make use of modular specifications consisting of
modules that can import other modules, where a module with imports denotes
the pointwise union of the imported and importing specification.

Example 15.2.3 The following is an example of a first-order algebraic specifi-
cation of the algebra of natural numbers.

module naturals
sorts nat;
functions
zero : nat;
succ : nat -> nat;
add : nat # nat -> nat;
variables
I, J : nat;
equations
add(zero, I) = I;
add (succ(I), J) succ(add (I, J))

Definition 15.2.4 (Terms) The S(X)-indexed family Tree(X) of well-formed
terms (or trees) over signature Y is defined by the inference rules below such

308

Signatures and Grammars [15.2

that t € Tree(X)(7) ff X F ¢ : 7.

z € V(1)
YUVikz:T (Varl)
M X..XT,=2>7T€eFX), X+t (1<i<n
f 1 () () (Appl)

SF .. ytn) T

Definition 15.2.5 (Homomorphism) A X-homomorphism h: A — B is an
S(X)-indexed family of functions h, such that for any f: 7 x ... x 7, > 7 €
F(X), h-(falar,... ,an)) = fB(hr,(ar,),... , hr, (an)). A X-algebra A is initial
in Alg(Y) if for any B € Alg(X) there is a unique homomorphism from A to B.

Because there is a unique homomorphism hy4 : Tree(¥X) — A for any A €
Alg(z)a i'e'7 hA(f(th e Jtn)) = fA(hA(tl)J T JhA(tn))J we have

Proposition 15.2.6 Tree(X) is an inital algebra in Alg(X).

Definition 15.2.7 (Substitution) A substitution o : V — Tree(X U V) is a
S(X¥)-indexed function mapping variables to terms. The function & : Tree(¥ U
V) — Tree(XUV) is the homomorphic extension of a substitution o that replaces
all variables in a term by their o images. A term t is an instance of term t' or
t' is more general than t, written as t' 2 t, if there is some substitution o such
that t = 5(¢'). A term t is strictly more general than t', t > t', if ##®and not

t' >t. In case t' >t we also say that t matches t' and that o is the match. A
substitution o is a unifier for two terms ¢ and t' if 5(t) = 5(¢'). A unifier o is a
most general unifier for t and t' if for each unifier o’ we have that (t) > &'(t).

A substitution o is a renaming of t if 5(t) >t, i.e., if range(c|vars(t)) C V, with
vars(t) the set of variables in . Two terms ¢ and t' are equal up to renaming

of variables (¢ =t') if there is a renaming o such that o(t) = t'.

The S(¥)-indexed family of equations of an algebraic specification with sig-
nature ¥ is a subfamily of the family Eq(X U V) such that Eq(X U V)(7) C
Tree(X U V)(7)2. A X-algebra A satisfies an equation t; = to, if for any sub-
stitution o, ho g(t1) = h o &(t2) in A, where h is the unique homomorphism

h: Tree(X) — A.

15.2.2 Context-Free Grammars

Context-free grammars can be used to define languages, i.e., sets of strings and

analyses of strings in the form of parse trees. The structure of parse trees
corresponds to the structure of terms over a signature as we shall see in the
next subsection. However, grammars provide more flexible notation for terms.

Definition 15.2.8 (Grammar) A contezt-free grammar G is a triple (S, L, P)
with S = Ss(G) a finite set of sort symbols or nonterminals, L = SI(G) a finite
set of literals or terminals, with Ss(G) NSI(G) = 0 and S(G) = Ss(G) USL(G) the

309

15 / POLYMORPHIC SYNTAX DEFINITION

set of symbols of G, and P = P(G) C S(G)* x Ss(G) a finite set of productions.
We write @ — 7 for a production {a,7) € P(G). G UV is the extension of
a grammar with variables. We write £ — 7 if £ € V(7). The class of all
context-free grammars is denoted by CFG.

Observe that productions are reversed in order to make them look like function
declarations in a signature—conventionally a production a — 7 is written as
T — a or T ::= a. Also note that in the conventional definition of context-free
grammars a single symbol has the role of start symbol from which all sentences
of the grammar are generated. In the definition above all sort symbols are
start symbols. Rus and Jones (1995) make a distinction between context-free
grammars that have a single start symbol or aziom, algebraic grammars that
have all nonterminals as start symbol, and multi-aziom grammars with a subset
of the nonterminals as start symbol. In that terminology our grammars might
more appropriately be called algebraic grammars. However, in our definition of
language generated by a grammar (below), we distinguish the sets generated by
each nonterminal, whereas in the definition of Rus and Jones (1995) the language
of a grammar is the union of all strings generated by all axioms, weakening the
expressive power of the formalism. With Goguen et al. (1977) we stick with the
familiar ‘context-free grammar’.

As concrete syntax for grammars in examples we adopt the style of the syntax
definition formalism SDF (Heering et al., 1989). The keywords sorts, syntax
and variables indicate the sets of sort symbols, context-free productions and
variables declarations, respectively. Strings of characters between double quotes
represent the literals of the grammar and identifiers are used as sort symbols.
The sort symbols are explicitly declared in the sorts section, whereas literals
are implicitly declared by their usage in productions. Grammars can be divided
in modules and modules can import other modules. A module with imports
denotes the pointwise union of the imported and importing grammar.

Example 15.2.9 The following specification uses a context-free grammar as
signature in the specification of succesor naturals. This specification is similar
to the specification in Example 15.2.3, but in the equations we can use the more
natural infix notation familiar from mathematics.

module naturals-cfg
sorts nat;

syntax
"o" -> nat;
"s" nat -> nat;

nat "+" nat -> nat {left};
"(" nat ")" -> nat {bracket};

variables

"I" -> nat; "J" -> nat;
equations

0 + I =1;

s(I) +J=s(I+J)

310

Signatures and Grammars [15.2

The attributes attached to the productions are meant for disambiguation. The
attribute left indicate the left associativity of the addition function and the
attribute bracket indicates that parentheses around a natural number behave
as the identity function. Disambiguation will be further discussed below.

Definition 15.2.10 (Parse Trees) The S(G)-indexed family Tree(G) of parse
trees over grammar G is defined by the inference rules below such that t €

Tree(G)(7) if GF ¢ : 7.

L e sl(9) .
GrL L (Lit2)
z € V(T)
GUV kEvar(z,7): 7 (Var2)
... Tn =>TEPG), Gt :1; (1<i<n) (App2)

GrFapp(ri...Th = T, [ty ta]) : T

Example 15.2.11 As an example of this inference relation consider the follow-
ing parse tree for the sentence 0 + I over the grammar of Example 15.2.9.

app(nat "+" nat — nat,[app("0" — nat,["0"]),"+",[var("I", nat)]])

Rule (App2) defines the construction of application tree nodes for productions
of a grammar. Observe that the complete production is used as label in such
application nodes.

Because the structure of parse trees is different from terms over a signature,
we redefine the notion of substitution.

Definition 15.2.12 (Substitution) A substitution o : (VxS(G)) — Tree(GU
V) is a S(G)-indexed family of functions mapping variables to trees. The exten-
sion & of o to trees is defined as

g(L)=1L
&(7)(var(z,7)) = o(var(z, 7))
a(1)(app(m1 ... Th = T, [t1,--- ,tn))) =

app(71 ... = T[o(m1)(t1), ... ,0(T0)(tn)])

All other notions defined in Definition 15.2.7 are defined in the same way for
parse trees.

Definition 15.2.13 (Language) The language L(G) generated by a context-
free grammar G is the S(G)-indexed family of strings such that L(G)(7) =
yield(Tree(G)(7)), where the function yield : Tree(G U V) — (S(G) U V)* is
defined by
yield(L) = L
yield(var(z, 7)) =z
yield(app(7i ... 7T = 7,[t1, .- ,tn])) = yield(t1) .. . yield(¢,)

311

15 / POLYMORPHIC SYNTAX DEFINITION

and applied to a set of trees denotes the pointwise extension to sets.

Definition 15.2.14 (Parsing) A parser for a context-free grammar G is a
function II(G) : S(G)* — P(Tree(G)) that maps a string of symbols to a sub-
family of Tree(G) such that

II(G) (w) (1) = {t € Tree(G)(7) | yield(t) = w}

A recognizer is a predicate € L(G) that decides whether a string is in the lan-
guage generated by G or more specifically a predicate € L(G)(r) that decides
whether a string is in the language generated by sort symbol 7.

15.2.3 Correspondence of Signatures and Grammars

There is a correspondence between the trees generated by first-order signatures
and context-free grammars such that grammars can be used to describe the
structure of algebras (Hatcher and Rus, 1976, Goguen et al., 1977, Heering
et al., 1989).

Proposition 15.2.15 There are mappings grm : SIG — CFG andsig : CFG —
SIG such that Tree(grm(X)) 22 Tree(X) and Tree(sig(G)) =2 Tree(G).

Proof. Define grm such that for a signature ¥ a grammar is constructed that
expresses the syntax of terms over a signature X by taking as nonterminals the
sorts of X and as literals the operator symbols of ¥, parentheses and commas.

Ss(grm (%)) = S(T)
Sl(grm(X)) = {"f" | f:71 X --- X T = T € F(X)JU{"(",m",","}
P(grm(S)) = {"£" (vry ", 1.0 hr 1) sy

| fimx--Xx1y 710 €F(X)}

Now we can translate terms over ¥ to parse trees over grm(X) by means of the
function igrm : Tree(X) — Tree(grm(X)) as follows:

igrm(T)(f(tla . ;tn)) — app("f""("ﬁ n ,u L s "Tn") "no_s To,
[ufnn ("igrm(Tl)(tl)" s nwooom s "igrm(Tn)(tn)") n])
for each f : 74 X --- X7, =& 7 € P(X). Define sig such that a grammar is

translated to a signature in which the productions of the grammar have the role
of function names.

S(sig(9)) =S(9)
FGig(@) ={"a—= 71 :mn x--- X1 o7 |a—=>7€€P@),a=71...7}
U {"L":—» L|LeSIG)}

Now we can translate parse trees to terms by means of the function i :
Tree(G) — Tree(sig(G)) as follows:

312

Signatures and Grammars [15.2

isig (L) (L) = L()
isig(T)(var(z, 7)) = =
tsig (T)(app(71 ... Th = T, [t1, .- ,tn])) =
"1 T = T (lsig (T1) (1) - -+ 5 Gsig (Tn) (En))
It is clear that i, and i, are isomorphisms.! O

The following proposition tells us that we can use context-free grammars as
many-sorted algebraic signatures, where productions play the role both of func-
tion symbol and type declaration. We can thus speak of the class of algebras
Alg(G) generated by a context-free grammar G, where the grammar symbols are
interpreted as carrier sets and productions as algebraic operations. It is clear
that the family Tree(G) of parse trees over G is an initial algebra in Alg(G). The
language L(G) is also an element of Alg(G), with yield as the unique homomor-
phism from Tree(G) — L(G). However, L(G) is not necessarily initial in Alg(G).
A context-free grammar is ambiguous if there is some string w € L(G) for which
more than one parse tree exists.

Proposition 15.2.16 L(G) is initial in Alg(G) iff G is unambiguous.

For if G is ambiguous, yield is not injective, hence not an isomorphism. This
entails that algebraic properties do not apply to the strings used to denote
trees. For example, in a grammar of arithmetic expressions with the production
e "—" e — e, the composition of the strings z, — and y — z does not corre-
spond with the composition of their trees, i.e., z — (y — z), but with (z —y) — 2,
which usually has a different semantic interpretation. We could require the use
of unambiguous grammars. However, it is undecidable whether a context-free
grammar is ambiguous. There are decidable subclasses of CFG, e.g., the LR(k)
grammars, that are unambiguous, but these classes are much more restrictive
than the class of unambiguous grammars and, moreover, not closed under union
of grammars, which is a handicap when developing modular specifications. Fur-
thermore, to disambiguate a grammar it is often necessary to introduce new
sort symbols and to restrict the possibility to compose expressions.

In Chapter 4 a method for disambiguation of context-free grammars by means
of disambiguation filters is proposed. A filter F(G) selects a subset from the
parse trees for a string, i.e., F(G)(II(G)(w)) C I(G)(w). A filter is completely
disambiguating if for each string w, |F(G)(II(G)(w))| < 1.

Proposition 15.2.17 If a filter F(G) is completely disambiguating, then F(G)o
II(G) is an injection L(G) — Tree(G).

However, the trees that are not selected by the filter become unreachable with
this method, i.e., F(G) o II(G) is not surjective. A solution to this problem is to
try to add bracket productions, which are interpreted as identity functions, to
the grammar such that all trees become reachable.

INote that grm and sig are not isomorphisms from SIG to CFG and vice versa: X #
sig(grm (X)) and G # grm(sig(G)).

313

15 / POLYMORPHIC SYNTAX DEFINITION

Proposition 15.2.18 If Tree(G) = Tree(G U Gy,)/ =br and F(GU Gs,.) is com-
pletely disambiguating, then L(G) =2 Tree(X).

For a further discussion of this topic we refer to Chapter 4. In the sequel we
will assume that we are dealing with such grammars that we can use strings
to denote trees. In examples we use a simple method for disambiguation by
priority and associativity declarations. For instance, in the grammar of naturals
above we used the production attribute left to declare the addition operator
as left associative. Furthermore, the bracket attribute declares the production
"(" nat ")" -> nat {bracket} as the identity function on natural numbers
and makes all trees in Tree(nat) reachable by means of strings.

15.2.4 Data Type Specification

By means of grammars as signatures we have a flexible framework for syntax def-
inition in the algebraic specification of data types, for example, the typical stack
constructors might be defined as "[]1" -> stack; "push" int "on" stack
-> stack . In algebraic specification of programming languages, context-free
grammars can be used for instance to specify the syntax of a programming

language as in var ":=" exp -> stat and the syntax of operations on pro-
grams such as typecheckers decl "|-" exp -> bool; decl "|[-" stat ->
bool that characterize the well-typed expressions and statements, interpreters
"eval" "[[" stat "]]1" "(" env ")" -> env that interpret statements as

functions from environments to environments and compilers "trans" "[["
stat "]]" -> smc that translate statements to stack machine code.

The disadvantage of first-order signatures and context-free grammars is the
rigid monomorphic typing scheme. For instance, we can not express that for
each sort 7, the sort 7* of sequences of 7s can be constructed and that for
each function f : 74 — 7 € F(X) the function f* : 77 — 75 extends f to
sequences such that f*(a; ...a,) = f(a1) ... f(a,). The consequence is that for
each special case of a generic construct such as sequences and for each instance
of a generic function such as _*, a separate definition has to be given.

One solution to overcome this rigidity is to loosen the typing requirements. In
Visser (1993) terms of typed combinatory logic are encoded as simple untyped
applicative terms. In Van den Brand et al. (1997a) a similar structure is defined
for the representation of parse trees and other structured data by means of a
generic format for term representation. We study a combination of the ideas
from those papers. The following grammar of generic terms (aterms) is defined
by Van den Brand et al. (1997a) to represent parse trees and abstract syntax
trees over arbitrary grammars. A term is a function symbol (afun), an applica-
tion of a function symbol to a list of arguments F(Ts, ... ,T},), or a list of terms
[T1,...,T,]. A function symbol is a literal or an identifier. Identifier function
symbols have to defined explicitly. The module 1iterals that is imported in
module aterms defines the syntax of literals, i.e., strings of characters between
double quotes.

314

module aterms
imports literals

sorts aterms atermlist af

syntax
aterm ->
aterm "," aterms ->
n [II Il] n _>
n [n aterms n] n ->
literal ->
afun ->
afun "(" aterms ")" ->
atermlist ->

variables

"T" -> aterm;

With this term structure it is

"Ts" -> aterms;

Signatures and Grammars | 15.2

un aterm

aterms;
aterms;
atermlist;
atermlist;
afun;
aterm;
aterm;
aterm;

"T1" -> aterms;

possible to define higher-order functions. For

instance, the following module defines the function * that applies a function F'

to each element of a list of terms

and the function : that adds an element to the

front of a list. Functions that are passed as arguments to higher-order functions
are also represented as terms. The function @ defines the application of such
symbolically represented functions to their arguments.

module listops
imports aterms;

syntax
aterm ":" atermlist ->
aterm "*" atermlist ->
|lmapll _>
aterm "Q@" aterm ->
|l(" aterm ll)" _>
variables

"Fun" -> aterm;

atermlist {right};
aterm {right};
afun;

aterm {left};
aterm {bracket};

)

T1;

T) : (F * [Ts]);

equations
T: [1 = [T];
T : [Ts] = [T, Ts]
Fun * [] = [1;
Fun * [T] = [Fun @
Fun * [T, Ts] = (Fun @
map(Fun) @ T = Fun * T;

Such a definition works well as

long as sensible terms are considered. However,

([1 * map), the empty list mapped over the function map, is also a syntactically

correct term, but does not have

a clear interpretation. We would rather forbid

this term on the basis of some typing rule without losing the genericity of the

term structure.

315

15 / POLYMORPHIC SYNTAX DEFINITION

One application of the generic term structure of aterms, is the representation
of parse trees. We add the following function symbols

module atrees
imports aterms
syntax
"var" -> afun; "app" -> afun; "prod" -> afun; "1lit" -> afun;

The following proposition shows how this language can be used to represent
parse trees over arbitrary grammars. Observe that we use the concrete syntax
of aterms to represent elements of Tree(atrees).

Proposition 15.2.19 For any CFG G, there is an injection [_] : Tree(G) —
Tree(aterms) such that Tree(G) is isomorphic with its [_] image in aterms, i.e.,

Tree(G) = [Tree(G)].

Proof. Given some CFG ¢ first define [_] : S(G) — Tree(atrees) as
[L] = 1it("L")
[T] ="r"if 7 € Ss(G)

then define [_] : Tree(G) — Tree(atrees) as

1=
[var(z,7)] = var("z", [7])
[app(Ty ... Th = T0, [t1,--- ,tn])] =
app(prod([[m1],..., [7a]], [0]), [[ta],.- ., [tn]])
Now we have Tree(G) = [Tree(G)]. O

As a result, any sentence in a context-free language can be represented as a
string in the fixed language of aterms preserving the structure assigned to it by
the context-free grammar describing the language. For example, the parse tree
for the string s 0 according to the grammar for natural numbers is translated
as follows:

[app("s" nat — nat,["s" app("0" — nat, ["0"])])] =
app(prod([1it("s"), "nat"], "mnat"),
["S" s app(prod([1it("0")] s "nat") , [non])])

The resulting string does not only have a fixed syntax, it is also self descrip-
tive. The grammar G can be derived from the aterm that encodes a parse tree.
With this encoding we can define very generic, language independent operations
on parse trees like substitution, unification and searching of subtrees. Again,
the disadvantage of this scheme is that there are (many) aterms that are not
encodings of parse trees, e.g., "abc"("def") is a syntactically correct aterm
but is not an element of [Tree(G)] for any G. Therefore, specifications and pro-
grams that manipulate aterms encoding parse trees have to type check the terms
they receive and have to preserve well-formedness of the terms they process and
construct.

316

Two-Level Grammars / 15.3

15.3 Two-Level Grammars

Context-free grammars provide either a strongly typed but rigid syntactic struc-
ture or a generic but untyped structure. Two-level grammars provide a method
for polymorphic syntax definition that supports definition of generic structures
with type constraints. Two-level grammars have been defined in several vari-
ants after the original formulation for the definition of the syntax of Algol68
in van Wijngaarden et al. (1976). Here we introduce a definition of two-
level grammars that is straightforwardly formulated as two levels of context-
free grammars, where level 1 defines the syntax of the nonterminals of level 0.
The productions at level 0 of a two-level grammar are production schemata that
uniformly describe sets of context-free productions in the same way that poly-
morphic functions in a framework like ML (Milner, 1978) describe collections of
functions. Given the extension of context-free grammars to two-level grammars,
it is straightforward to generalize two-level grammars to multi-level grammars,
in the same way as multi-level specifications are defined in Part III. In this
chapter we will restrict our attention to two-level grammars.

Definition 15.3.1 (Two-Level Grammar) A two-level grammar T is a pair
(G1,Go) of context-free grammars such that the sort symbols of Gy are terms,
possibly with variables, over Gy, i.e., Ss(Go) C Tree(G; U V).

The following definition gives the meaning of finite two-level grammars in
terms of, possibly infinite, context-free grammars.

Definition 15.3.2 A two-level grammar I' corresponds to a, possibly infinite,
context-free grammar [I'] that is derived from I' by taking all substitutions of
symbols S([I']) = {&(7) | 7 € S(Go), o : V1 — Tree(G; U V;)} and productions
P(ITT) ={o(m1) = a(m2) | 1 = 72 € P(Go), 0 : V1 — Tree(G; U Vy)}).

Through the translation of a two-level grammar I' to a CFG [I'] we immedi-
ately have the definitions of the term algebra Tree([I']) and the language L([I']).
Another characterization of the trees generated by a two-level grammar is given
by means of inference rules in the following definition.

Definition 15.3.3 The S(Gy)-indexed family Tree(I") of parse trees over two-
level grammar T is defined by the inference rules below such that ¢ € Tree(T")(7)
it -t 7.

L € SI(G)
W(L) (Lit3)
zeV(),rzr
TUVF var(z,7): 7 (Var3)
peEP(Go), p2m...7 o7, Tt i1 (1<i<n)
(App3)
Thapp(ri...Tn = 7, [t1,. .- ,ta]) 1 7T

317

15 / POLYMORPHIC SYNTAX DEFINITION

Recall from Definition 15.2.7 that the relation p > p' holds if production p’ is
an instance of p, i.e., p is more general than p'.

We observe that the two ways of defining the terms generated by a two-level
grammar are equivalent.

Proposition 15.3.4 T ¢:7 ¢ff [T Ft: 7

Proof. (=) by induction on ¢: (i) if t = L then [['] F L : L by (Lit2) (ii) if
t = var(z,7) then [I'] F var(z,7) : 7 by (Var2) (iii) if t = app(p/, [t1,--- ,tn]),
by induction hypothesis [I'] F ¢; : 7, and by (App3) there is some p € P(Go)
such that p > p/, i.e., there is some o such that 5(p) = p', but then p’ € P([T]),
therefore, by (App2), [T] F app(p/, [t1,--- ,tn)). (<) similarly. O

Corollary 15.3.5 Tree([I']) = Tree(T') and L(T") = L([I'])

Definition 15.3.6 (Substitution) A two-level substitution ¢ is a pair (o1, 09)
of a type substitution o7 : (V1 x S(G1)) — Tree(G; U V1) and an object substi-
tution og : (Vo X S(Go)) — Tree(Go U Vy). The extension @ of ¢ to level 0 trees
is defined as

p(L) = L
¢(7)(var(z,7)) = oo(var(z,51(7)))

&(T)(@app(71 .- T = T, [t1,- - ,t0])) =
app(01(r1) ... 01(n) = 01(7), [P(11)(t1), - .- , @(70) (t0)])

All other notions defined in Definition 15.2.7 are defined in the same way for
parse trees. A two-level substitution with o¢ equal to the identity function is
also denoted by 4, i.e., a function that substitutes type variables throughout a
term.

Definition 15.3.7 (Parsing) Given a two-level grammar I and a string w the
parsing problem is to find the set of parse trees II(T')(w) such that

NI (w)(r) ={t | Tk ¢: 7 Ayield(t) = w}

Discussion 15.3.8 According to the definition above, trees over level 1 are
used as sort symbols in level 0. However, if we write such grammars, we want
to use strings instead of trees, i.e., S(Go) C L(G; U V1) U S instead of S(Gg) C
Tree(G; U V1) US. This entails that the syntax of two level grammars is not
fixed, the syntax of the symbols of level 0 is determined by level 1. To parse a
two-level grammar we first have to parse level 1 with a parser for a context-free
grammar formalism in order to construct a parser for level 0. Note that we use
the same, SDF style, notation for productions and modules at both levels.

318

Examples | 15.4

15.4 Examples

In this section we discuss several examples of two-level grammars. The syntax
of grammars is the adaptation of the syntax of the multi-level specifications
of Part III to grammars, i.e., function declarations become productions. It is
not our intention to explain every detail of the notation used, but we do want
to illustrate the general utility of two-level grammars for specification of data

types.

15.4.1 Naturals

Module nat defines the syntax of natural number expressions. Level 1 introduces
the sort type and the type constant nat. The expression nat can then be used
as sort at level 0. Consider for example the production "s" nat -> nat of
level 0. The expression nat in this production, is the constant "nat" -> type
defined at level 1.

module nat
level 1
sorts type;
syntax
"nat" -> type;
level O
syntax
"o" -> nat;
"s" nat -> nat;
nat "+" nat -> nat {left};
"(" nat ")" -> nat {bracket};

variables

"I" => nat; "J" -> nat;
equations

0 + I =1;

s(I) +J =s(I + J);

15.4.2 Booleans and Polymorphic Conditional

The grammar in module nat defines monomorphic syntax for natural numbers.
Each production has one instance, i.e., the production itself. The following
module defines the data type of Booleans. At level 1 the type constant bool is
introduced, which is used as sort at level 0. In addition to the ordinary Boolean
connectives, the module defines a polymorphic conditional for any type. The
type variable A in the if-then-else-fi production can be instantiated with any
type expression. The production actually denotes the set of all instantiations
of this production. Furthermore, the module defines a polymorphic bracket
function.

319

15 / POLYMORPHIC SYNTAX DEFINITION

module bool
imports nat;

level 1
syntax
"bool" -> type;
variables
"A" -> type; "B" -> type; "C" -> type;
level O
syntax
"true" -> bool;
"false" -> bool;
"not" bool -> bool;
bool "\/" bool -> bool {left};
"if" bool "then" A "else" A "fi" -> A;
LG WD R -> A {bracket};
priorities
"not" bool -> bool > bool "\/" bool -> bool
variables
ngn > bOOl; nyxn o> A; nyon _> A;
equations
not true = false;
not false = true;
true \/ B = true;
false \/ B = B;
if true then X else X’ fi = X;
if false then X else X’ fi = X?;

15.4.3 Polymorphic Lists

Most grammar formalisms provide a built-in notion of lists. The next example
shows how such notation can be introduced with two-level grammars. Module
list introduces type operators at level 1 denoting the type of polymorphic lists.
The operators {_ _}+ and {_ _}* denote the type of non-empty and possibly-
empty lists with separators, respectively. The operators "_+" and "_x" denote
the type of non-empty and possibly-empty lists without separators, respectively.
The latter two operators are defined in terms of the former two by means of
the equations that define lists without separators as lists with empty separators,
where empty is a sep.

At level 0 polymorphic constructor functions for these types are defined. A
non-empty list of As separated by Seps is either an A or two lists concatenated
by a Sep. The first equation expresses that Sep concatenation associates to the
right. An {A Sep}* list is either empty or a non-empty list of As. {A Sep}*-lists
can be concatenated by means of the operator [_ Sep _]. Note that """ is used
as a variable to denote separators.

320

Examples | 15.4

module list
imports bool;
level 1
sorts regtype, sep;
syntax
"{" type sep "}" "x" -> regtype; type "*" -> regtype;
"{" type sep "}" "+" -> regtype; type "+" -> regtype;

"[" regtype "1" -> type; "empty" -> sep;
variables

"Sep" -> sep; "R" -> regtype;
equations

Ax = {A empty}*; A+ = {A emptyl}+;

level O

syntax

A > {A Sep}+;

{A Sep}+ Sep {A Sepl}+ -> {A Sep}+ {right};

-> {A Sepl}x;
{A Sepl}+ -> {A Sepl}x;
"[" {A Sep}* Sep {A Sep}* "I" -> {A Sepl}x;
-> empty;

m(n R m)m -> R {bracket};
variables

"L" -> {A Sep}*; "Lp" -> {A Sep}+; """ -> Sep;
equations

(Lp1 ~ Lp2) ~ Lp3 = Lp1l =~ (Lp2 ~ Lp3);

L L 1] =L;

L -] =L;

[Lp1 ~ Lp2] = Lpl " Lp2;

Observe again how expressions over the syntax defined at level 1 are used as
sorts at level 0. For instance, in the production {A Sep}+ -> {A Sep}*, the
syntax of the expression {A Sep}+ is defined by the production "{" type sep
min men -> regtype and by the variables "A" -> type and "Sep" -> sep.

We have introduced a new sort regtype at level 1 as the sort of list type con-
structors in order to avoid an infinite chain caused by the injection of arbitrary
types in the corresponding list type. If we would have declared the list type
constructor as

u{u type sep n}u nyn oy type
the production A -> {A Sep}+ would give rise to the productions
{A Sep}+ —> {{A Sep}+ Sep}+
{{A Sep}+ Sep}+ -> {{{A Sep}+ Sep}+ Sep}+

etc., causing each expression to have infinitely many non-unifiable types. By in-
troducing the new sort regtype, lists are not automatically embedded in types,
i.e., A does not unify with {A Sep}+ because their sorts are different.

321

15 / POLYMORPHIC SYNTAX DEFINITION

The usage of list types is illustrated in the following grammar of a fragment
of an imperative language. A statement is either an assignment, a while-do loop
or a list of statements separated by semicolons.

module while
imports list, exp;

level 1
syntax
"var" -> type; "exp" -> type;
"gtat" -> type; u(;:u -> sep;
level O
syntax
var ":=" exp -> stat;
"while" exp "do" stat -> stat;
"begin" {stat ‘;’}x* "end" -> stat;
";ll -> ..

))

The expression {stat ¢;’}* is defined by the polymorphic productions in
module 1ist, which have the following instantiations.

stat -> {stat “;’}+;
{stat “;’}+ ¢;’ {stat ‘;’}+ -> {stat ‘;’}+;

-> {stat ;’}x;
{stat ‘;’}+ -> {stat “;’}x;

15.4.4 Polymorphic Operations

Now that we have a polymorphic definition of list construction we can also
define polymorphic functions over lists. For instance, the length function that
computes the number of elements of a list can be polymorphically defined by
the following specification:

module length
imports list;

level O
syntax
"length" n(u {A Sep}* n)n -> nat;
equations
length() = 0;
length(X) = 5(0);

length(Lpl "~ Lp2) = length(Lpl) + length(Lp2);

15.4.5 Higher-Order Functions

Another example of a type constructor is the arrow => of function types. A
term of sort A => B, i.e., a function from A to B, can be applied to a term of
sort A yielding a B.

322

Examples | 15.4

module arrow
imports list;
level 1
syntax
type "=>" type -> type {right};
level O
syntax
(A=>B) "(maAm"" -> B;
(A => B) "x" {A Sep}* -> {B Sepl}*;
variables
"F" -> (A => B);

The higher-order function * (map) takes as arguments a function from A to
B and a list of As and applies the function to each element of the list.

equations
Fx () = 0;
F * (X) =FX);

F * (Lpl ~ Lp2)

[(F = Lp1) =~ (F * Lp2)]1;

If we want to pass functions such as length and map themselves as argu-
ments to some higher-order function we need to define the combinators (curried
versions) associated with the functions as follows:

syntax
"ifn -> (bool => A => A => A);
"flength" -> ([{A Sep}*] => nat);
HCON -> (A => B) => ([{A Sep}*] => [{B Sep}x*]);

(A => [R;]) Il(" A |I)|l _> R’;

([R] => B) |l(" R ||)|l _> B;

(IR] => [R’]) "(" R)" -> B’;
equations

if(B) (X)(Y) = if B then X else Y fi;

flength(L) = length(L);

() (F)(L) =F * L;

Observe the usage of the operator [_] that injects regtypes into types in
order to reuse the functionality for type expressions. We added extra application
operators to apply functions like flength to lists.

These examples illustrate how two-level grammars provide user-definable syn-
tax for sort symbols and generic definition of polymorphic mix-fix functions and
constructors over data types. More advanced examples of two- and multi-level
specifications (with prefix function signatures instead of grammars) can be found
in Hearn and Meinke (1994), Hearn (1995) and Part III.

323

15 / POLYMORPHIC SYNTAX DEFINITION

15.5 Properties

We have seen how two-level grammars can be used for polymorphic syntax
definition in algebraic specification. To actually use two-level grammars in an
executable specification formalism, it is necessary that we can parse strings over
the language specified by a grammar. Unfortunately, the parsing problem for
two-level grammars is in general undecidable as shown by the following theorem.

Theorem 15.5.1 (Sintzoff, 1967) For every semi-Thue system T we can con-
struct a Van Wigngaarden Grammar W such that the set S(T') generated by T
is the set S(W) generated by W.

Corollary 15.5.2 (Sintzoff, 1967) Every recursively enumerable set is gen-
erated by a Van Wijngaarden grammar.

Corollary 15.5.3 (Sintzoff, 1967) The problem of determining, of a given
string, whether or not it is generated by a given Van Wijngaarden grammar, is
recursively unsolvable.

Although the version of two-level grammars defined in this chapter is some-
what weaker because it uses trees instead of strings as nonterminals at level
0, these constructs can be translated to our two-level grammars. From these
theorems it follows that we cannot construct terminating parsers for arbitrary
two-level grammars in a general way. However, for the purpose of polymorphic
syntax definition we are interested only in restricted forms of the formalism.

One view on two-level grammars is that they are used to abbreviate frequently
occurring patterns in context-free grammars, but that in the end we want only
a finite context-free grammar from a ground subgrammar and the appropriate
instantiations of generic productions. For instance, the grammar of the pro-
gramming language in module while gives rise to the instantiation of the list
construction functions for {stat ‘;’}* and to the instantiation of the list and
map functions for lists of statements. This is the effect that is reached when
reuse of functions is obtained by means of parameterized modules for which only
finitely many instantiations are requested. Although it is clear by looking at a
grammar, which instantiations of productions are needed for the implementation
of a certain subgrammar, we have not yet found a syntactic characterization of
productions such that such subgrammar operations are possible. A promising
approach might be the extension of the layering operations of Hatcher and Rus
(1976) and Rus and Jones (1995) to two-level grammars.

In context-free grammars empty (€) and chain productions are the cause of
infinite ambiguities. In two-level grammars they are the cause of the undecid-
ability of the formalism. In the rest of this section we investigate the restriction
of the usage of such productions in order to achieve a subclass of the two-level
grammars with a decidable parsing problem that still allows the kind of gram-
mars as shown in §15.4.

324

Properties / 15.5

Definition 15.5.4 (e-elimination) The conventional method for eliminating
e-productions from context-free grammars applied to two-level grammars works
by adding productions to the level 0 grammar Gy according to the rule

aAB = B € Go,e » A" € Go,0(A") = 0(4)
o(af) = o(B) € Gg

where o is a most general unifier of A and A’. After no more productions can be
added, all e-productions are removed. Define ee(T") to be the result of removing
e-productions from two-level grammar I by the above procedure.

Note that e-elimination preserves both the language and the trees generated
by the grammar (if e-trees are identified).

Proposition 15.5.5 L(ee(T')) = L(T') and Tree(T") = Tree(ee(T))

Deussen (1975) shows that this method can turn finite two-level grammars
into infinite ones. Consider the following grammar that gives type <a™> to each
sentence a™ with m < n.

level 1
sorts type, list;
syntax
"< 1ist ">" -> type
"a" -> list
list "a" -> list
variables
"L" -> list
level O
syntax
<L> <a> -> <L a>;
nat -> <a>;

-> <a>;

If we try to eliminate the last production by substituting it in the first production
we get the productions

<L> -> <L a>; %% <a> can be empty
-> <a a>; %% <L> unifies with the rhs of -> <a>
-> <a a a>; %% <L> unifies with the rhs of -> <a a>

and all other productions of the form -> <a™> for n > 0. However, for many
applications e-productions can be eliminated. For instance, the production ->
Ax in the list grammar in §15.4 can be eliminated by means of the procedure
outlined above, resulting in a finite two-level grammar defining the same lan-
guage.

In a similar fashion chain productions can be eliminated from grammars.

325

15 / POLYMORPHIC SYNTAX DEFINITION

Definition 15.5.6 (Chain Elimination) To eliminate chain production from
a two-level grammar T, first take the transitive closure of all chains in the level 0
grammar Go:

T = T2 € Go, T3 = T4 € Go,0(T2) = 0(73)
() = o(m) € Go

then use chain productions as substitutions

1 = Ty € Go,am33 = 74 € Go,0(T2) = 0(73)
o(an B — 14) € Go,

and finally remove all chain productions from Gy resulting in ce(T).

This procedure also preserves the language and trees generated by a grammar.
Proposition 15.5.7 L(T") = L(ce(T')) and Tree(T') = Tree(ce(T)).

Also chain elimination does not terminate for all grammars. Take for instance
the grammar for lists in the previous section. If we redefine the syntax of the
list operators as

H{ll type Sep Il}ll ll*" -> type;
H{ll type Sep Il}ll ll+" -> type

then we have that A unifies with {A Sep}+ resulting in infinitely many produc-
tions

A -> {A Sepl+;
{A Sep}+ -> {{A Sep}+ Sep}+;
{{A Sep}+ Sep}+ -> {{{A Sep}+ Sep}+ Sepl}+;

An A is a singleton list of As, which is a singleton list of lists of As, etc.

So we see that e-elimination and chain elimination will not terminate for
arbitrary grammars. However, for the grammars for which it succeeds we have
the following corollary from Theorem 15.6.8 that we will prove in the next
section.

Corollary 15.5.8 If T is a finite two-level grammar without e- and chain pro-
ductions, then the question w € L(T") is decidable.

The intuition behind this result is that with e- and chain-free grammars at
most n reductions can be done for a string of length n. Based on the same
idea, the next definition defines a characterization of a larger class of two-level
grammars for which the parsing problem is decidable.

Definition 15.5.9 (Finite Chain Property) A two-level grammar I" has the
finite chain property if it is (1) e-free, (2) its chain productions are non-cyclic
and have a finite transitive closure and (3) it does not contain redundant pro-
ductions, where a production p € P(Gy) is redundant if there is some p' € P(Gy)
such that p # p' and p > p'.

326

Parsing / 15.6

In the next section we will define a parsing algorithm for two-level grammars
and prove that it is a decision procedure for membership of languages defined
by finite chain two-level grammars.

On the positive side we have a subclass of the two-level grammars with a
decidable parsing problem. On the negative side, membership of the class itself
is undecidable.

Proposition 15.5.10 It is undecidable whether a two-level grammar satisfies
the finite chain property.

However, decidability of the finite chain property is not essential for using
two-level grammars for language specification. The situation can be compared
to ambiguity of context-free grammars. Although it is undecidable whether a
context-free grammar is ambiguous, it is a good formalism for defining unam-
biguous languages. A large class of grammars is evidently non-ambiguous and
for others ambiguities will turn up when working with the grammars.

The examples presented in §15.4 satisfy the finite chain property, except for
the empty production -> {A Sep}* for lists. As remarked above this production
is not a problematic e-production because it can be eliminated from the gram-
mar. In general we can follow the following procedure for determining whether
a grammar has the finite chain property: (1) Try to eliminate e-productions
by the method of Definition 15.5.4. (2) Try to eliminate chain rules by means
of the method in Definition 15.5.6. (3) If this terminates we know that the
grammar has the finite chain property and that we can parse with it (see next
section). (4) If either step (1) or step (2) takes too long, this is a hint that it
does not terminate. In such cases we can inspect the list of e-productions or
chain productions added by the elimination procedures. These traces will give
a clue about the productions that cause the nontermination, because these will
lead to a repetition of similar productions, as we saw in the example above.
This information can be used to redesign the grammar such that it satisfies the
finite chain property.

15.6 Parsing

In this section we define a parsing algorithm for finite chain two-level grammars.
The parsing algorithm below is a parallel bottom-up parsing algorithm that
computes all parse trees for a sentence. This procedure is similar to the Hindley-
Milner type assignment procedure used in functional languages, that assigns to
each expression a single principal type (Damas and Milner, 1982). The difference
is that in two-level grammars strings can have more than one principal type due
to ambiguities. It will turn out that for finite chain two-level grammars there
are only finitely many principal types for a string. We first define a function
that gives the type of a parse tree.

327

15 / POLYMORPHIC SYNTAX DEFINITION

Definition 15.6.1 The type of a parse tree is defined as:

type(L) = L
type(var(z, 7)) =7
type(app(T1 ... Tn = T, [t1,.-- ,tn])) =7

Next we define the data structure of parse configurations that is used in
parsing.

Definition 15.6.2 A parse configuration (7?0 aj...an)e is an element of the
set Tree(I' U V)* x SI(I')* x Set(Vy), i.e., a triple consisting of a list of trees
t' =1ty ...ty (the stack), a list of literals a; ...a, (the remaining input) and a

set of sort variables ® (the sort variables over level 1 that are used in t)

Algorithm 15.6.3 Define the function parse(T') : S(T')* — Set(Tree(T")) as
parse(l)(w) = {t | (o w) =1 (to€)}

where =] is the transitive closure of the one-step parse relation =t on parse
configurations, which is defined by the rules

(toayay...an)e =1 (Fayeay...an)e (Shift)
! o
_ seVE)r=pt))
(tzod)e = (t var(z,7) ® @)U vars(r)
P € P(QO)J ﬁ(p) =a— T, |a| =1m, mgu(a;type(tla e Jtm)) =0 (Red)

({11 ...ty ®@)e =1 (5(app(p, [tr,. .., tm))) ® @)$U vars(3 (p))

where p : Vi — V; is a renaming of sort variables occurring in ® such that
p(®)N® = (). We identify configurations that are the same up to renaming of
sort variables.

We now prove that the algorithm is a correct implementation of II(T") for
finite chain two-level grammars. We first show that the trees produced by the
parser are correct parse trees.

Lemma 15.6.4 (Sound) V¢ € Tree(T') : ¢t € parse(I')(w) = yield(t) = w

Proof. We first prove that if (t_{ edj) =r (tg e d3), then yield(t_l‘)a'i =
yield(f3)d3. For (Shift) and (Var) the property clearly holds. In (Red) we see
yield(£'t; .. .ty,)@ = yield(f &(app(p, [t1 . .. tm])))@ by definition of yield and by
the fact that type substitutions do not affect the yield of a tree. But then also
for (£ e di) =% (f2 ® d3) we have yield(¢;)di = yield(£3)d3. In particular, if
(e e w) =1 (t @ €) we have that w = yield(e)w = yield(t)e. |

Next we show that the parser is complete, in the sense that any parse tree for
the sentence can be derived by instantiating one of the parse trees produced by
the parser.

328

Parsing / 15.6

Lemma 15.6.5 (Complete) V¢ € Tree(T") : yield(t) = w = ' =t : t' €
parse(T")(w)

Proof. By induction on ¢: (1) if ¢t = L then parse(T')(L) 5 L > L.
(2) if t = var(z,7), there is some 7" > 7 such that z € V(7'), but then
parse(l')(z) 3 var(z, ') 2 var(z, 7).
(3) If t = app(p, [t1,--- ,tn)) With p = 71 ...7, — 7 (a) By definition of yield
we have yield(t) = yield(t1)...yield(t,) = wy ... w, with yield(t;) = w; for
1 < ¢ < n. (b) By induction we have $'>¢; for 1 < ¢ < n—and thus 7} > 7;
with 7] = type(f)—such that }'€ parse(I')(w;). (c) By (App) there is some
...l = " = p" € P(Gy) such that p” = p (variables of p"” and p dis-

"

junct). By (b) and (c) there is a substitution o such that Go(r{'...7)) =
Tt ...Tn = G0(71 ...7)). Then there is also a most general unifier, say . Now
take t' = a(app(p”,[t]...t,])) € Tree(T'). It is clear that ¢’ = ¢ and that
(cowi...wn)=F (¢ ..., 8€) =1 (t' 0¢) O

Next we show that the set of parse trees produced by the algorithm is minimal
in the sense that it generates only the most general parse trees for a string.

Lemma 15.6.6 (Minimal) Vt,t' € parse(T')(w) : ¢t 2¢ V' 2t => ¢t =1+

Proof. Assume that ¢,¢' € parse(I')(w) and that ¢ >t'. Because both trees are
in the set there must be sequences of configurations for their derivation. Because
t > t', the trees have the same structure, i.e., the configuration sequences have
the same number of reductions and shifts. But also because t > t/, there must
be some point at which the sequences diverge, i.e.,

(e e w) =} (tit; ¢ @) =r (t1 51(app(p1,ts)) @ @) =1 (te€)
and
(e o w) =1 (fitz @ @) =r (f1 G2(app(pe, ta)) @ @) =7 (' @ €)

for t and t', respectively. Because t > t' we must have &1(p1) > d2(p2). Now we
have either (1) p; = p» and o1 > 02, but then o2 is not a most general unifier
and hence t' ¢ parse(T)(w) or (2) if p; > pa, then T does not satisfy the finite
chain property because it has the redundant production ps. O

Finally we prove that parse yields a finite set of parse trees, entailing that
parse is effectively computable.

Lemma 15.6.7 (Finite) |parse(T)(w)| € N

Proof. (1) For each configuration and each production there is at most one
reduction step (Red) because there is at most one most general unifier for o
and 7y ...Ty. For each configuration there is at most one (Shift) step and one
(Var) step. Therefore, the graph of the relation = is finitely branching.

(2) The length of configurations does not increase (no e-productions). For any
configuration (fed), |@| (Shift) steps can be done. A (Red) step with a production
a — 7 such that |a| > 1 decreases the length of a configuration, therefore at

329

15 / POLYMORPHIC SYNTAX DEFINITION

most |£]/2 such reductions can be performed for a configuration (t'e @). By the
finite chain property only finitely many chain reductions can be done, i.e., for
each configuration (£ t e @) there is a maximal value n such that (£t e @) =7
(t't" o @). Therefore, the graph of the relation =t has no infinite paths.
(3) From any configuration (fe@) only finitely many configurations are reachable.
In particular, for any string w only finitely many configurations of the form (te¢)
are reachable from (e e w). O
Finally, we see that Algorithm 15.6.3 is a correct implementation of a parser
for finite chain two-level grammars.

Theorem 15.6.8 (Correct) For any finite chain two-level grammar T' and
any string w € SI(T)*, parse(T')(w) is a minimal and finite set of parse trees,
unique up to renaming of sort variables, that generates II(T")(w).

Proof. By Lemma 15.6.4 and Lemma 15.6.5 all and exactly the trees in
II(T")(w) can be derived from parse(I')(w). By Lemma 15.6.7 parse(I")(w) is
finite and by Lemma 15.6.6 it is minimal. O

As a result the recognition problem for finite chain two-level grammars is

decidable.

Corollary 15.6.9 (Decidable) For a finite chain two-level grammar T' it is
decidable whether w € L(T") and w € L(T')(7).

The relation = defines a tree shaped search space. Only the types of trees
in the configuration matter for the rest of the process. We would like to identify
configurations (f; e @) and (f3 e @) for which |f1| = |£3| and type(t1) = type(tz).
This would lead to a generalization of the graph structured stack and the parse
forests of Tomita (1985) to parsing for two-level grammars.

15.7 Related Formalisms

In the same way that context-free grammars correspond to first-order signa-
tures, two-level grammars correspond to two-level signatures. The type system
of the functional programming language ML (Milner, 1978) can be considered
as two-level signatures in which the expressions over level 1 are single-sorted
expressions of sort type. This system was used to introduce parametric poly-
morphic functions. Two-level signatures are discussed in Poigné (1986), Mdller
(1987), Meinke (1992a). After a two-level signature is expanded, a, possibly
infinite, one-level signature results that can again be used as the specification of
the sort space of a level 0 signature. In this manner the extension of signatures
to two-level signatures can be generalized to signatures with three and more lev-
els. Hearn and Meinke (1994) introduce the three-level algebraic specification
formalism Atlas, which is generalized by Hearn (1995) to a multi-level specifica-
tion formalism. The complete and formal specification of the related multi-level
specification formalism MLS is presented in Part III. MLS supports overloading
of function symbols, which entails that a term can have infinitely many types,

330

Related Formalisms [15.7

but only finitely many most general or principal types. This property is not
respected by general two-level grammars as discussed in §15.5.

On the grammatical side, many variants of two-level grammars have been
proposed in the literature for various purposes. Van Wijngaarden grammars
(VWG) (van Wijngaarden et al., 1976) were developed to express the syntax
and semantics of Algol68. In VWGs strings, instead of trees, over level 1 are used
as nonterminals (hypernotions) at level 0. This leads to the problem of gram-
matical unification—whether two sentential forms over a context-free grammar
are unifiable by means of a substitution of nonterminals with strings—which
Maluszynski (1984) shows to be undecidable. The transparent two-level gram-
mars of Maluszynski (1984) are a restriction of VWGs such that grammatical
unification comes down to term unification. Another restriction of VWGs are
the Extended Affix Grammars (EAG) (Watt, 1977) that restrict the order in
which the variables in nonterminals at level 0 can be instantiated.

The observation that two-level grammars are Turing equivalent sparked an-
other development: two-level grammars as logic or functional programming lan-
guages. The (context-free) metagrammar (level 1) is used to define the syntax of
language and semantic domains. The hypergrammar (level 0) is used to define
the operations on the data. See for example Maluszynski (1984).

Definite Clause Grammars (DCQG) introduced by Pereira and Warren (1980)
are grammars embedded in Prolog programs. They are equivalent to two-level
grammars with a fixed level 1 equivalent to the following grammar

module dcg
level 1
sorts fun, term;
syntax
[a-z] [A-Za-z0-9] * -> fun;
fun -> term;
fun "(" {term ","}* ")" -> term;
variables
[A-Z] [A-Za-z0-9]* -> term;

that defines an untyped domain of terms that can be used as grammar symbols
in level 0. These terms are then typically used at level 0 in productions such as
the following from a tiny natural language grammar:

np(N) vp(N) -> s;
det(N) n(N) rel(N) -> np(N);

Parsing of DCGs—parsing as deduction (Pereira and Warren, 1983)—uses
Prolog’s built-in resolution strategy to answer queries like w € L(G)(s). With
the normal evaluation strategy of Prolog (SLD resolution) this comes down to
top-down backtrack parsing. Problems with this strategy are that it cannot
cope with left-recursion and that already computed answers are not reused.
The tabulation strategy described in Warren (1992) partially overcomes these
problems. One of the problems of the latter approach is that unification in
Prolog is not many-sorted, disabling solutions like that with regtype in §15.4.

331

15 / POLYMORPHIC SYNTAX DEFINITION

15.8 Conclusions

Algebraic specification with first-order signatures or context-free grammars en-
force a choice between strongly typed structures with little genericity or generic
operations over untyped structures. Polymorphism combines genericity with
typedness, making it possible to develop libraries of specifications. In this chap-
ter we have discussed how the integration of algebraic specification with user-
definable syntax and polymorphism can be materialized. The extension with
polymorphism of algebraic specification formalisms that use context-free gram-
mars as signatures, e.g., OBJ or ASF+SDF, leads necessarily to formalisms with
two-level grammars as signatures. Likewise, the extension with user-definable
syntax of formalisms that have polymorphic signatures, including polymorphic
functional and logic programming languages, leads to two-level grammars.

In two-level grammars level 1 defines the syntax of sort symbols used at level 0.
Sort terms with variables are interpreted as sort schemata that can have many
instantiations. Productions at level 0 with such sorts are production schemata,
i.e., declarations of polymorphic functions with mix-fix syntax. Thus two-level
grammars combine polymorphism with user-definable syntax, as we illustrated
by means of a number of examples of polymorphic syntax definition in data type
and programming language specifications.

Although the parsing problem for context-free grammars and the type-assign-
ment problem for two-level signatures are decidable, the parsing problem for the
integration of both formalisms is undecidable if no restrictions are considered.
We defined an intuitive restriction of the class of two-level grammars that results
in a class of two-level grammars for which the parsing problem is decidable and
for which we defined a parsing algorithm that yields a minimal and finite set of
most general parse trees for each string.

332

Part V

Epilogue

16

Concluding Remarks

In this thesis we have investigated techniques for improving the expressivity of
syntax definitions for language prototyping. The main results are the design
and implementation of the syntax definition formalism SDF2, the design and
specification of the multi-level algebraic specification formalism MLS and theory
about polymorphic syntax definition. There are many opportunities for further
research. Here we mention a few.

16.1 Syntax

Implementation of SDF2 There are several possibilities for improvement of
the implementation of SDF2. The parser generator that is currently imple-
mented in ASF+SDF is not efficient enough and probably needs to be reimple-
mented in an imperative language that offers direct access to data structures.
A more generic matter is the compact representation of parse tables. Due to
the use of productions in the goto relation more transitions are computed than
in a normal LR table. This is necessary to deal with priorities. However, for
sorts that have no priorities and productions that have the same priority, the
transitions should be shared. If the sharing is computed before computing the
next state the performance of the parser generator might also be improved.
Furthermore, the disambiguation with priorities as multi-set filters needs to be
implemented.

Several improvements of the disambiguation are possible. Priority disam-
biguation could be refined such that the priority relation applies only to a se-
lected number of arguments. Lexical disambiguation rules by means of follow
restrictions and reject productions could be generated automatically from the
grammar.

Applications of SDF2 The implementation of SDF2 has been tested to gener-
ate parsers for ASF+SDF specifications by upgrading the syntax part of a spec-
ification to SDF2. These parsers are used as front-ends for compiled ASF+SDF
specifications. The next step is to couple semantics specifications directly to
SDF?2 definitions. In that manner the full expressiveness of SDF2 can be used.
In principle, SDF2 is suitable for connection with other logics than equational
logic as in ASF+SDF. Experiments could be made with frameworks such as

335

16 / CONCLUDING REMARKS

functional programming, logic programming, and theorem provers to provide
these languages with full user-definable syntax.

The implementation of SDF2 as described here is batch-oriented. A complete
syntax definition is normalized and fed to the parser generator. To incorporate
the SDF2 implementation in the new ASF+SDF Meta-Environment (Van den
Brand et al., 1997c), it might be necessary to reconsider the modular, lazy
and incremental parser generation schema of Rekers (1992) to combine it with
grammar normalization and renaming.

Filters In Chapter 4 a theoretical framework of disambiguation filters was
presented. Given the infrastructure provided by the SDF2 implementation,
experiments with disambiguation filters could be performed. Also the definition
of lexical disambiguation by means of filters should be explored. Given such
experimental filters, the investigation of optimized combinations of parsers and
filters could be further pursued and generalized.

Parsers for Polymorphic Syntax Definitions In Chapter 15 an interpretative
parsing algorithm for two-level grammars is defined. A more efficient imple-
mentation of parsing for two-level grammars could be achieved if an LR-like
preprocessing of the grammar into a parse table could be derived. This should
involve unification in the table lookup and storage of binding of types to type
variables in item-sets.

Parser Generator Generators In Chapter 5 we derived an adaptation of the
LR(0) parser generation algorithm by adapting its underlying parsing schema.
The implementation of the derived schema was achieved by adapting an im-
plementation of the parser generator. It would be desirable to generate this
implementation from the schema automatically. This is actually not such a
farfetched idea. Shieber et al. (1995) describe the interpretation of parsing
schemata by means of logic programs that implement the control of a parser by
maintaining a chart of all items derivable from a sentence. This chart interpre-
tation is parameterized with a set of deduction rules for parsing, i.e., a parsing
schema.

Now consider a chart parser with the schema for Earley’s algorithm. In chart
parsing the items are computed individually and dynamically. In Earley parsing
items are bundled in sets but these are still computed dynamically. In LR
parsing items are also bundled in sets, but the transitions between such item-sets
is precomputed, i.e., computed only once for a grammar, inducing a considerable
efficiency gain. All these algorithms are driven by the same parsing schema,
but have a different control structure. There is a refinement relation between
them as well. Earley is derived from chart parsing, by taking sets of items
closed under prediction. Transitions occur from a set to a new set by shifting
with some symbol. The initial item-set is the closure of the axiom rules of the
schema. In LR these sets are precomputed in the same way. This procedure
might be generalizable to arbitrary parsing schemata. Single premise rules are
closure rules, rules with as one of the premises a token are shift rules, etc. In
this way we can derive new parser generators by adapting a parsing schema and
letting the parser generator generator derive an implementation from it.

336

Type Systems | 16.2

Eztensible Syntar An open problem is the description of the syntax of exten-
sible languages. An extensible language is a language that can extend its own
syntax. ASF+SF itself is an extensible language. The syntax of equations is
parameterized with a grammar describing the syntax of terms. This is handled
in the current Meta-Environment by separating the definition of syntax and
equations such that the syntax definition can be parsed and analysed before
the equations are parsed. It would be desirable to be able to mix syntax and
equations. This would require the adaptation of the parser during parsing. The
syntax of two-level grammars is even more extensible. The syntax of the rules in
level 0 depends on the productions of level 1. Other work in this area includes
Cardelli et al. (1994) who give a definition of a language with extensible syntax.

16.2 Type Systems

Module Systems The specification of SDF2 and MLS both contain a specifi-
cation of module systems. It would be desirable to generalize these specifications
to make the definition of the module system orthogonal to the details of the rest
of the formalism.

Type equations The typechecker specified in Chapter 13 considers types as
elements of a free term algebra. This means that normal syntactic unification
can be used in type assignment. This is not sufficient if equations over type
expressions are allowed. Such equations are useful for describing more powerful
type systems, including general product types and type classes without further
extending the framework. Other examples of the application of type equations in
multi-level algebraic specifications to the modelling of type systems include the
specification of type abbreviations, recursive types, record types, the polytypic
functions of Jansson and Jeuring (1997), the type classes of Haskell and the
constructor classes of Jones (1993).

Type assignment is undecidable in general for multi-level specifications with
type equations, because it requires E-unification. In Visser (1996b) a prelim-
inary study of methods for type assignment that are useful for a subset of
multi-level specifications with type equations is presented.

Interaction between Levels In MLS and two-level grammars we have the
problem of transferring values to the next level. Examples are separators in
lists and field names in records. Currently this has to be done by introducing a
sort at the type level containing all these values and declaring for each element
that it generates the same element at the object level below it. A more elegant
way should be possible.

16.3 Program and Specification Schemata
In this thesis we have applied several methods for reusing syntax definitions or

specifications. The normalization function of SDF2 generates productions from
the symbols used in a syntax definition, providing abbreviations for frequently

337

16 / CONCLUDING REMARKS

occuring patterns. The module mechanism of SDF2 provides reuse of user-
definable definitions. Renaming makes modules even more reuseable by freeing
the user from the particular names chosen in the module that is reused. User-
definable polymorphic types in MLS allow generic definition of data types and
higher-order functions. Overloading and ambiguous grammars provide another
method to keep syntax definitions concise.

A method not covered by all these forms of reuse is one directed at reuse
by exploiting the genericity in the structure of data. An example application
of such genericity is the formatter generator described in Van den Brand and
Visser (1996). Given a context-free grammar, a specification of a formatter is
generated. An extension of this technique to arbitrary transformation rules on
terms is presented in Van den Brand et al. (1997b). In this approach the ab-
stract derivation rules used to generate specifications and their implementation
in a generator are intertwined. In Luttik and Visser (1997) the term traversal
operator for rewriting strategies is defined using a schema that should be instan-
tiated for all functions in the signature. It is desirable to drive the generation
of generic functionality by means of such schemata.

One approach in this direction is the polytypic programming of Jansson and
Jeuring (1997), where each regular data structure is associated with a data
structure built from a few primitives such as product and recursion. Very general
recursion functionals can be defined for those primitives structures and thus be
implemented for all regular data types with very little effort, i.e., the conversion
between the data type and its representation in terms of the primitives.

A similar result could also be achieved in a first-order setting as is illustrated
by the preprocessor of Elan (Vittek, 1994) that is used to generate specifications
given some extended signature. In fact the preprocessor statements correspond
to specifications with a second-order quantor ranging over signature elements.

It would be interesting to consider a full integration of such second-order
quantification in—the syntax definition formalism of—an algebraic specification
formalism, making second-order quantification over sorts and functions available
in a general approach to generation of derived syntax and equations. This could
be used for example to make the regular expressions of SDF2 user-definable in-
stead of built-in constructs or to generate traversal functions. Such specification
schemata would provide a kind of reuse not currently available by means of the
conventional abstraction facilities.

338

Part VI

Appendices

A

Auxiliary Modules for the
Specification of SDF?2

In this appendix we include several auxiliary modules used in the specification

of SDF2.

A.1 Literals

module Literals
imports Layout
exports
sorts Literal
lexical syntax
“\”~0O — EscChar
“\”[01][0-7][0-7] — EscChar
~[\000-\040"\] — L-Char

[L\t\n] — L-Char

EscChar — L-Char

“\””L-Charx“\"” — Literal
variables

«[7[0-9"]% — Literal

A.2 ATerms
A.2.1 Constructors

module Grammar-Tree-Constructors
imports ATerms’-5!
exports
context-free syntax
“empty-grammar” — AFun
“conc-grammars” — AFun

module CC-Sdf-Tree-Constructors

341

A / AUXILIARY MODULES FOR THE SPECIFICATION OF SDF2

imports Kernel-Sdf-Tree-Constructors” 32

exports
context-free syntax
“char-class” — AFun
“range” — AFun

module Sorts-Sdf-Tree-Constructors
imports Kernel-Sdf-Tree-Constructors”
exports
context-free syntax
“sort” — AFun

5.2

module Literals-Sdf-Tree-Constructors

imports Kernel-Sdf-Tree-Constructors?->-2
exports
context-free syntax

“lit” — AFun

module Regular-Sdf-Tree-Constructors

imports ATerms”->!

exports

context-free syntax

“empty” — AFun
“seq” — AFun
“opt” — AFun
“iter” — AFun
“iter-star” — AFun
“iter-sep” — AFun
“iter-star-sep” — AFun
“iter-n” — AFun
“iter-sep-n” — AFun
“set” — AFun
“pair” — AFun
“func” — AFun
“alt” — AFun
“perm” — AFun

module Basic-Sdf-Tree-Constructors

imports Kernel-Sdf-Tree-Constructors”->-2

exports
context-free syntax
“lexical-syntax” — AFun
“context-free-syntax” — AFun
“variables” — AFun
“lexical-variables” — AFun
“cf? — AFun
“lex” — AFun
“varsym” — AFun

342

ATerms [A.2

“layout” — AFun

A.2.2 Encoding and Decoding

module Grammar-ATerms
imports Grammar-Tree-Constructors#?! Grammar-Syntax”-2
exports
context-free syntax

aterm(Grammar) — ATerm

grammar(ATerm) — Grammar
equations
Encoding of grammars.

[1] aterm () = empty-grammar
[2] aterm(G; G2) = conc-grammars(aterm(G;), aterm(G>))

Decoding of grammars.

3] grammar(empty-grammar) = {)
[4] grammar(conc-grammars(Ty, T>)) = grammar(7T;) grammar(T>)

module CC-Sdf-ATerms
imports Kernel-Sdf-ATerms”-3* CC-Sdf-Syntax”-4-2

CC-Sdf-Tree-Constructors?-21 Character-Arithmetic
exports

context-free syntax
atermlist(OptCharRanges) — ATermList

aterm(Character) — NatCon

ranges(ATermList) — CharRanges

range(ATerm) — CharRange

character(ATerm) — Character
equations

Encoding character classes.

[1] aterm([cr*]) = char- class(atermhst(cr)

[2] atermlist(cr*) =[] when cr* =

[3] atermlist(cr;t cryb) = atermlist(cri™) ++ atermlist(cr;h)
[4] atermlist(cr) = [aterm(c)] when cr=c

[5] atermlist(c; — c2) = [range(aterm(c;), aterm(cs))]

6] aterm(c) = int(c)

Decoding character classes.

[7] symbol(char-class([])) = []
8] symbol(char-class([Ts])) = [ranges([Ts])]
9 vanges((7]) = range(7)

343

A / AUXILIARY MODULES FOR THE SPECIFICATION OF SDF2

[10] ranges([T, Ts]) = range(T) ranges([Ts])

[11] range(n) = character(n)

[12] range(range(n1, n2)) = character(n;) — character(nz)
[13] character(n) = char(n)

[14] symbol(n) = [char(n)]

module Sorts-Sdf-ATerms
imports Kernel-Sdf-ATerms”** Sorts-Sdf-Tree-Constructors”-2-!

Sorts-Sdf-Syntax” 4!
equations

Encoding and decoding sorts.

(1] aterm(sort(ct)) = sort(literal(""" ¢t """))
[2] symbol(sort(literal(""" ¢t """))) = sort(cT)

module Literals-Sdf-ATerms
imports Kernel-Sdf-ATerms”>* Literals-Sdf-Tree-Constructors”-2-!

Literals-Sdf-Syntax”4-3
equations

Encoding and decoding literals.

[1] aterm(L) = lit(L)
[2] symbol(lit(L)) =

module Priority-Sdf-ATerms

imports Kernel-Sdf-ATerms”®># Priority-Sdf-Syntax®-1-!
equations

Encoding attributes.

[1] aterm(left) = atr("left")

[2] aterm(right) = atr("right")

(3] aterm(bracket) = atr("bracket")
[4] aterm(assoc) = atr("assoc")

[5] aterm(non-assoc) = atr("non-assoc")

Decoding attributes.

6] attribute(atr("left")) =

[7] attribute(atr("right")) =

8] attribute(atr("bracket")) = bracket
[9] attribute(atr("assoc")) = assoc

[10] attribute(atr("non-assoc")) = non-assoc

344

ATerms [A.2

module Regular-Sdf-ATerms
imports Regular-Sdf-Tree-Constructors?-2! Kernel-Sdf-ATerms”-34

Regular-Sdf-Syntax®-2-!
equations

Encoding regular expressions.

[1] aterm(()) = empty

[2] aterm((A a ™)) = seq(atermlist(A a™))

[3] aterm(A?) = opt(aterm(.A))

[4] aterm(A+) = iter(aterm(.A))

[5] aterm(Ax) = iter-star(aterm(.A))

[6] aterm({A B}+) = iter-sep(aterm(.A), aterm(B))

[7] aterm({A B}x) = iter-star-sep(aterm(.A), aterm(B))
8] aterm({A} n +) = iter-n(aterm(.A), con(n))

[9] aterm({A B} n +) = iter-sep-n(aterm(A), aterm(B), con(n))
[10] aterm(Set[.A]) = set(aterm(.A))

[11] aterm(A # B) = pair(aterm(.A), aterm(B))

[12] aterm((a = B)) = func(atermlist(a), aterm(B))

[13] aterm(A | B) = alt(aterm(.A), aterm(B))

[14]

14 aterm(< a >) = perm(atermlist(a))

Decoding regular expressions.

[15] symbol(empty) = ()

[16] symbol(seq(Tl)) = (A @) when symbols(T]) = Aa™
[17] symbol(opt(Ty)) = symbol(Ty)?

[18] symbol(iter(T1)) = symbol(T;)+

[19] symbol(iter-star(77)) = symbol(T7)x*

[20] symbol(iter-sep(T1, T>)) = {symbol(7T1) symbol(T2)}+
[21] symbol(iter-star-sep(T1, T2)) = {symbol(T}) symbol(o) b
[22] symbol(iter-n(71, n)) = {symbol(Ty)} n

[23] symbol(iter-sep-n(T1, Ts, n)) = {symbol(T}) symbol(TZ)}

[24] symbol(set(Ty)) = Set[symbol(T})]

[25] symbol(pair(Ty, T>)) = symbol(T;) # symbol(T>)
[26] symbol(func(Tl, T»)) = (symbols(Tl;) = symbol(T5))
[27] symbol(alt(Ty, T>)) = symbol(T}) | symbol(T2)

(28] symbol(perm(Tl)) = < symbols(Tl) >

module Basic-Sdf-ATerms
imports Basic-Sdf-Tree-Constructors”-2! Basic-Sdf-Syntax®-

. Kernel-Sdf-ATerms"-*
equations

Encoding grammars.

3.1

[1] aterm(lexical syntax p*) = lexical-syntax(atermlist(p*))
[2] aterm(context-free syntax p*) = context-free-syntax(atermlist(p*))

345

A / AUXILIARY MODULES FOR THE SPECIFICATION OF SDF2

[3] aterm(variables p*) = variables(atermlist(p*))
[4] aterm(lexical variables p*) = lexical-variables(atermlist(p*))

Encoding symbols.

[5] aterm((A-LEX)) = lex(aterm(.A))

6] aterm({A-CF)) = cf(aterm(.A))

[7] aterm((.A-VAR)) = varsym(aterm(.A))
8] aterm(LAYOUT) = layout

Decoding grammars.

lexical syntax productions(1)

= context-free syntax productions(T1)
variables productions(T1)
lexical variables productions(T7)

[9] grammar(lexical-syntax(T1)
[10]grammar(context-free-syntax(T1)
[11] grammar(variables(T1)
[12] grammar(lexical-variables(Tl)

)=
)
)=
)=

Decoding symbols.

[13] symbol(lex(T)) = (symbol(T)-LEX)
[14] symbol(cf(T)) = (symbol(T)-CF)
[15] symbol(varsym(T)) = (symbol(T)-VAR)
[16] symbol(layout) = LAYOUT

A.3 Renamings

module CC-Sdf-Renaming

imports Kernel-Sdf-Renaming®!-® CC-Sdf-Syntax"-*-2
equations

Renaming character classes.

[1] [cc] p = cc

module Literals-Sdf-Renaming
imports Kernel-Sdf-Renaming®!® Literals-Sdf-Syntax”
hiddens
variables
“L” — Literal
equations
Renaming literals.

4.3

1] L} p=1L

346

Renamings / A.3

module Sorts-Sdf-Renaming

imports Sorts-Sdf-Syntax”*! Kernel-Sdf-Renaming®-'-3
equations

Renaming sorts.

0 (S]p=35
(2] (sorts a) p = sorts (a)* p

module Priority-Sdf-Renaming
imports Priority-Sdf-Projection®!? Basic-Sdf-Renaming*->
exports
context-free syntax
“(” Priorities “)” Renamings — Priorities
“(” Group “)g” Renamings — Group
equations
Renaming symbols and productions in priority declarations.

[1] (priorities pr*) p = priorities (pr*) p
Lists of priorities.

[2] (pr*) p= when pr* =
[3] (priT, o) p= (pr") p + (pr) p

Associativity and priority declarations.

[4] (91 as 93) p= (91)a p as (92)a p

[5] (0:> 92) = (91)c P> (92)a p

6] (91> 92> 99) p= (91)a p> 95> gg't when g;> gg't = (g,> gg) p
Groups.

(7] (9)c p=p' when g=p, p'=(p)p

(8] {p*})a p={(p*)* p}

[9] ({as:p*})a p={as: (p*)* p}

module Regular-Sdf-Renaming

imports Kernel-Sdf-Renaming®!-® Regular-Sdf-Syntax8-2-1
equations

Renaming symbols in regular expressions.

i) [O1p=()
2] [(Aa*)] p=(BAY) when (Aa*)xp=Bps*
B [A7] p = (A) p?
] [A+] p = (A) p+

347

A / AUXILIARY MODULES FOR THE SPECIFICATION OF SDF2

[5] [Ax] p = (A) px

[6] [{A B}+] p={(A) p (B) p}+
[7] [{AB}+] p={(A) p (B) p}*

(8] {A}n+] p={(A) p} n+

[9] {AB}n+]p={(A) p(B) p} n+
[10] [Set[A]] p = Set[(A) p]

[11] [A# Blp=(A) p# (B)p
[12] [(@=B)] p=((a)xp=(B)p)
[13] [A|Blp=(A) p|(B)p

module Basic-Sdf-Renaming
imports Basic-Sdf-Normalization®3-2 Kernel-Sdf-Renaming®-1-3
exports
context-free syntax
“<” Renamings “-LEX” “>” — Renamings
“<” Renamings “-CF” “>” — Renamings
equations
Renaming grammars.

* context-free syntax (p*)* p

lexical syntax (p*)* p
variables (p*)x p
lexical variables (p*)x p

[1] (context-free syntax p*)
[2] (lexical syntax p*)
3] (variables p*)
[4] (lexical variables p*)

VDDV

Renaming symbols.

[5] [(A-LEX)] p = ((A) p-LEX)
[6] [(A-CF)] p = ((A) p-CF)
[7] [(A-VAR)] p = ((A) p-VAR)
[8] [LAYOUT] p = LAYOUT

Applying {_-LEX) to a renaming.

[9] ([]-LEX) =]

[10] (JA = B]-LEX) = [(A-LEX) = (B-LEX)]

[11] ([py = po]-LEX) = [(p; ~LEX) = (p,-LEX)]
[12] (lpi" p3f]-LEX) = ([p;"]-LEX) + ([p,"]-LEX)

Applying {_-CF) to a renaming.

[13] (I-cFy=1]

[14] ([A = B]-CF) = [(A-CF) = (B-CF)]

[15] ([p1 = po]-CF) = [{p,-CF) = (p,~CF)]
[16] (lpit P 1-CF) = ([p"]-CF) + ([p;]-CF)

348

SDF2 / A.4

module Restrictions-Sdf-Renaming
imports Restrictions-Sdf-Syntax®4-! Kernel-Sdf-Renaming®-!-3
exports
context-free syntax
“(” Restrictions “)” Renamings — Restrictions
equations
Renaming restrictions.

[1] (restrictions restr*) p = restrictions (restr*) p

[2] (restr*) p= when restr* =
(3] (a + cc restry) p= (o)% p 4 cc restry when restry = (restr) p
A.4 SDF2

module Sdf2-Projection

imports Kernel-Sdf-Projection”-32 Sorts-Sdf-Projection” *:
Priority-Sdf-Projection®!-? Renaming-Sdf-Projection®-*
Modular-Sdf-Projection®32 Alias-Sdf-Projection®2-2
Restrictions-Sdf-Projection®4-2

1
2

module Sdf2-Renaming

imports Sdf2-Syntax!'?-!! Kernel-Sdf-Renaming®!? Priority-Sdf-Renaming“-3
Regular-Sdf-Renaming#-® Literals-Sdf-Renaming?-3
CC-Sdf-Renaming#-® Basic-Sdf-Renaming#-® Sorts-Sdf-Renaming*-3
Restrictions-Sdf-Renaming”-® Modular-Sdf-Renaming?®-3-
Alias-Sdf-Renaming?®-2-3

equations

[1] (context-free priorities pr*) p = context-free priorities (pr*) p
[2] (lexical priorities pr*) p = lexical priorities (pr*) p

3] [(Start)] p = (Start)

[4] [(START)] p = (START)

module Sdf2-Tree-Constructors

imports Kernel-Sdf-Tree-Constructors’->-? Basic-Sdf-Tree-Constructors”-2!
Modular-Sdf-Tree-Constructors Regular-Sdf-Tree-Constructors”-2-!
Priority-Sdf-Tree-Constructors CC-Sdf-Tree-Constructors”-2!
Sorts-Sdf-Tree-Constructors®-2-! Literals-Sdf-Tree-Constructors?-2-!

module Sdf2-ATerms

349

A / AUXILIARY MODULES FOR THE SPECIFICATION OF SDF2

imports Sdf2-Tree-Constructors®# Sdf2-Syntax'®1-! Kernel-Sdf-ATerms”->
Basic-Sdf-ATerms“-?2 Modular-Sdf-ATerms Regular-Sdf-ATerms*-2-2
Priority-Sdf-ATerms*-2-? CC-Sdf-ATerms*2? Sorts-Sdf-ATerms”-2-2
Literals-Sdf-ATerms”?-? Restrictions-Sdf-ATerms

equations
[1] aterm({START)) = sort("<START>")
[2] aterm({Start)) = sort("<Start>")

module Sdf2-Trees
imports Sdf2-ATerms?* Sdf2-Syntax'%!! Kernel-Sdf-Trees”:3->
Priority-Sdf-Trees® 14 CC-Sdf-Trees”5*® Renaming-Sdf-Trees? !4

module Sdf2-Equality
imports Kernel-Sdf-Equality”-5-® Regular-Sdf-Equality Basic-Sdf-Equality3-3-3

350

B

Auxiliary Modules for
Multi-Level Specifications

This appendix contains the specification of several data types and opererations
used in the specification of multi-level specifications. The first section contains
a couple of standard library modules. The second section defines operations on
terms such as substitution, matching, unification and renaming of variables.

B.1 Library Modules
B.1.1 Layout

module Layout
exports
lexical syntax
[L\t\n] — LAYOUT
“%%” ~[\n]* — LAYOUT
“——"~[\n]* — LAYOUT

B.1.2 Booleans

module Booleans

imports Layout?-1-!
exports
sorts Bool
context-free syntax
“T” — Bool
“l” — Bool
“=” Bool — Bool

Bool “A” Bool — Bool {assoc}

Bool “V” Bool — Bool {assoc}

“(” Bool “)” — Bool {bracket}
priorities

“="Bool — Bool > Bool “A”Bool — Bool > Bool “v”Bool — Bool

351

B / AUXILIARY MODULES FOR MULTI-LEVEL SPECIFICATIONS

variables
[8][0-9']% — Bool
equations
[1] TAb =05 [2] TVvb=T [3] -T =1
[4] LAb =1 [5] Lvb=m»> [6] 2L =T

B.1.3 Error Booleans

Boolean predicates are either true or false. In case of type checking this is not
appropriate. In case the predicate does not hold a more refined value than false
should be returned that explains the cause of the error. Error Booleans are
a refinement of the normal Booleans with a true value T and a sort Error to
represent the false values.

FErrors The error eq;es indicates that both errors e; occurred. The error
e1 : e indicates that error e; occurred and that es is an explanation of that
error; as in

equation "(X :: L) ++ L’ == X :: (L1 ++ L2)" not well-formed:
variables "L1; L2" of rhs do not occur in lhs

module Error-Booleans
imports Layout®1-! Booleans
exports

sorts Error

context-free syntax

B.1.2

Error “;” Error — Error {right}

Error “” Error — Error {right}

“if” Bool “then” Error “else” Error — Error

“(” Error “)” — Error {bracket}
priorities

“if’Bool “then”Error “else”Error — Error > Error “”Error — Error >
Error “”Error — Error
)

equations

(1] (615 62); €3 = €1; €35 €3
[2] (e1:€):e3=r¢ :(en; €3)
3] if T then e; else es = €

[4] if 1 then e; else e3 = ey

Error Booleans An error Boolean value is either T (correct, true) or an error.
The place normally taken by the value false is here represented by the sort of
errors. Since it is unclear which error should be indicated by the negation of

352

Library Modules |/ B.1

T, we do not provide negation. The operations on EBool are A, ~ and ::.
The operator A is a symmetric conjunction that yields T if both arguments do
and otherwise the conjunction of the errors. The operator ~» is an assymetric
conjunction that prefers the error in its first argument discarding the error in
its second. This operator should be used to indicate a dependency between
errors. If the well-formedness of a construct depends on the well-formedness of
its subconstructs and some conditions, then one can express that the errors in
the subconstructs are more important. Finally, the operator :: has T as right
zero and as left unit. If both arguments are errors it yields the explanation of
the first by the second.

exports
sorts EBool
context-free syntax

“T” — EBool

Error — EBool

EBool “:” EBool — EBool {right}
EBool “~” EBool — EBool {right}
EBool “A” EBool — EBool {right}
“if” Bool “then” EBool “else” EBool — EBool

“(” EBool “)” — EBool {bracket}

priorities

“if” Bool “then” EBool “else” EBool — EBool >
EBool “::”EBool — EBool > EBool “~»”EBool — EBool >
EBool “A”EBool — EBool

variables
“e”[0-9']«x — Error
“eb”[0-9']* — EBool

equations

[5] T Aeb=ceb

[6] ebANT =eb

[7] e1 N\ ea = e1; ey
[8] T~ eb=ceb

9] e~ eb=ce

[10] eb::T=T
[11] T:ueb=ceb
[12] e] ey = e : e
[13] if T then eb; else eby = eb;
[14] if L then eb; else eby = eby

353

B / AUXILIARY MODULES FOR MULTI-LEVEL SPECIFICATIONS

B.1.4 Naturals

module Naturals
imports Booleans®-1-2
exports
sorts Nat
lexical syntax
[0-9]4+ — Nat
context-free syntax
succ(Nat) — Nat
pred(Nat) — Nat
Nat “+” Nat — Nat {left}
max(Nat, Nat) — Nat

zero(Nat) — Bool
eq(Nat, Nat) — Bool
variables

[mn][0-9']%* — Nat
“cx’[0-9')+ — CHARs#
“c47[0-9')+ — CHAR+

The usual equations for the natural numbers are not shown.

B.2 Term Utilities

In this section we define several data types and operations on terms.

B.2.1 Binary Operators

module Binary-Operators
imports Types'?-2-2 Terms!?-1-!
exports
sorts BinOp
lexical syntax
~['u\t\n%O\[\]-]x
~[a-zA-20-9 'L\t \nZ()\[\] <>,..]~["u\t\n%(O\[\][* — BinOp

context-free syntax

“(” BinOp “)” — Fun

“[7’ “]77 _) Fun

“[” Term “]” — Term

“<” (()7’ ‘_) Fun

“(” Term “)” — Term

Term BinOp Term — Term {non-assoc}
Term “0” Term “o” Term — Term {non-assoc}

priorities

Term Term — Term > {non-assoc: Term BinOp Term — Term,
Term “o”Term “o” Term — Term} > Term “X”Term — Term

354

variables
“®”[0-9']% — BinOp
equations

B.2.2 Errors over Terms and Signatures

(1] h @t = () (4, i)

2] oty ts =ty (t, 1)

[3] [tl, tg] = tl H [tg]

[4] [(]=t::[] otherwise
[5] (ti, &) =t " (fa)

6] () =t~ () otherwise

Term Utilities / B.2

To provide errors that convey information related to terms and equations we

define several error constructors. An example error is

function "(+)" not declared

module SPEC-Errors
imports Error-Booleans?1-3 QLS!2-24
exports

context-free syntax

“\”” Term “\”” not a well-formed sort declaration — Error

sort “\”” Term “\”” not declared

“\”” Term “\”” not a well-formed sort

sort “\”” Term “\”” matches no sort declaration

function “\”” Term “\”” multiply declared
variable “\”” Term “\”” multiply declared
function “\”” Term “\”” not declared
function “\7777 Term “\7,77

with type “\”” Term “\”” not declared
variable “\”” Term “\”” not declared

term “\”” Term “\”” not well-formed

pair “\”” Term “\”” not well-formed
application “\”” Term “\”” not well-formed
product “\”” Term “\”” not well-formed
arrow “\”” Term “\”” not well-formed
annotation of “\”” Term “\””

with “\”” Term “\”” not well-formed

“\”” Term “\”” is not a function
type of argument “\”” Term “\””

does not match type of domain “\”” Term “\””

type of result “\”” Term “\””

— Error
— Error
— Error

— Error
— Error
— Error

— Error
— Error

— Error
— Error
— Error
— Error
— Error

— Error

— Error

— Error

355

B / AUXILIARY MODULES FOR MULTI-LEVEL SPECIFICATIONS

does not match type of codomain “\”” Term “\”” — Error

no declaration for function “\”” Term “\””

with type “\”” Term “\”” — Error
equation “\”” Eq “\”” not well-formed — Error
types do not match — Error
“variables” “\”” Terms “\”” of rhs not in lhs — Error
level “\”” Nat “\”” — Error
should be “\”” Term “\”” — Error
type C(\”” Term “\7’77 Of variable “\7’77 Term “\””
incompatible with declaration — Error
type C(\”” Term “\7’77 Of function “\”7’ Term “\””
incompatible with declaration — Error
type is “\”” Term “\”” — Error
types of variable “\”” Term “\”” incompatible

“\7777 Term “\7773 versus “\777’ Term “\7777 _) E:rr()Il
errors in “module” “\”” Term “\”” — Error

B.2.3 Term Functions

The sort (Term = Term) represents functions from terms to terms. The sort
is defined in order to reuse several common higher-order operations such as
function composition and mapping a function over a list. Furthermore, we
define a conditional for terms, list membership, and term equality.

module Term-Functions
imports Terms'2''! Booleans?1'2 Types
exports
sorts (Term = Term)
context-free syntax
(Term = Term) “(” Term “)” — Term
“d” — (Term = Term)
(Term = Term) “o” (Term = Term) — (Term = Term) {assoc}
“if” Bool “then” Term “else” Term — Term
(Term = Term) “x” “(” Terms “)” — Terms

12.2.2

eq(Term, Term) — Bool
Term “€” Terms — Bool
variables
“p"[0-9"1% — (Term = Term)
equations
1] id(t) =t
[2] p1 0 pa(t) = pa(py (1)

356

Term Utilities / B.2

3] idop=p

(4] poid=p

[5] px() =

[6] px(t) = p(?)

[7] px(tit; t5) = px(17) +H px()
[8] if T then ¢ else t, = t;

[9] if 1 then #; else t; = ty

[10] eq(t, t) =T

[11] eq(t, t') = L otherwise
[12] te=1

[13] tet =eq(t,t)

[14] teth; th =tet viett

B.2.4 Equation Functions

Map (Term = Term) functions over equations and lists of equations.

module Equation-Functions

imports Term-Functions®-2-® Equations

exports

context-free syntax

(Term = Term) “(” Eq “)” — Eq
(Term = Term) “xe” “(” Eqgs “)” — Eqgs
“if” Bool “then” Eqs “else” Eqs — Egs

equations

12.1.2

=

if T then £ else £9 =&

(1]

[2] en

[3] pxe(p; ™) = p(p) + pxe(p”)
4]

[5] if 1 then &1 else €9 = &5

(<)

B.2.5 Term Sets

The function {_} creates a ‘set’ of terms from a list of terms by removing the
duplicates from the list. The usual operations on sets are union (U), intersection
(N), difference (/), emptiness (‘empty’), membership (€) and subset (C). The
Cartesian product X yields the set of pairs of the elements of two sets.

module Term-Sets
imports Term-Functions®-2-® Terms'?1! Booleans
exports

sorts TermSet

B.1.2

357

B / AUXILIARY MODULES FOR MULTI-LEVEL SPECIFICATIONS

context-free syntax

“{” Terms “}” — TermSet
TermSet “U” TermSet — TermSet {left}
TermSet “N” TermSet — TermSet {left}
TermSet “/” TermSet — TermSet {left}
TermSet “x” TermSet — TermSet {right}
(Term = Term) “x” “(” TermSet «)” — TermSet

“if” Bool “then” TermSet “else” TermSet — TermSet
trms(TermSet) — Terms

“(” TermSet)" — TermSet {bracket}
empty(TermSet) — Bool

Term “€” TermSet — Bool

TermSet “C” TermSet — Bool

priorities

TermSet “x”TermSet — TermSet > TermSet “/”TermSet — TermSet
> TermSet “N”TermSet — TermSet > TermSet “U” TermSet — TermSet

> “if”’Bool “then” TermSet “else” TermSet — TermSet

variables
“®”[0-9']x — TermSet

equations
[1] {8 & 155 6 5} = {85 & 855 85}
[2] {nru{e} ={a; &}
[3] {ne={}
[4] {thtine={1nasu{t}ine
[5] {t} N ® =if t € D then {t} else {}
[6] /e={}
[7] {they/e={}/eu{t}/®
8] {t} /| @ =if t € ® then {} else {t}
[9] {t} x {&} ={t, &}
[10] {}xe={}
[11] {thit) xe={} x2U{t}x2
[12] ® x{}={}
[13] dx {tth = x {f}Uud x {&}
[14] px({ts}) = {px(ts)}
[15] if T then ®; else &5 = &,
[16] if L then ®; else &5 = &,
[17] trms({ts}) = ts
[18] empty({}) =T
[19] empty({t*}) = L
[20] te {ts} =t€ts
1] fca=T
[22] {t} CP2=tec®
[23] {tht1ce={1cen{s}ce

Term Utilities / B.2

B.2.6 Variables

To extract the variables from a term a family of functions is defined. The func-
tions differ in their treatment of variables and the type annotation operator
:, but share their definition for the other operators. To prevent copying the
same equations for the four functions, the function names are put in a sort.
The generic part of the definition is expressed by means of a ‘variable function
name’ vs. The functions are ‘var’ that yields the set of all variables in a term,
‘tvars’ that yields the set of all type variables, i.e., variables occurring in annota-
tions, ‘ovars’ that yields all ‘object variables’, i.e., variables that are not in type
annotations, and ‘avars’ that yields all object variables with their annotation.

module Variables

imports Term-Sets?-2->
exports
sorts Vars
context-free syntax
vars — Vars
tvars — Vars
avars — Vars
ovars — Vars
Vars “(” Term “)” — TermSet

Vars “x(” Terms “)” — TermSet
Vars “(” TermSet “)” — TermSet

variables
“vs” — Vars

equations
[1] vs(f) = {}
[2] vs(nil) = {}
[3] vs(top) = {}
[4] vs(t1, t2) = vs(t) U vs(tz)
5] vs(ty ta) = vs(t1) U vs(tz)
6] vs(ty X t2) = ws(t) U vs(tz)
[7] vs(ty = ta) = vs(t1) U ws(t2)
8] vs({ts}) = vs x(ts)
[9] vs x() ={}
[10] vs *(1) = vs(t)
[11] vs (7 t57) = ws #(;) U ws x(")
[12] vars(z) = {z}
[13] vars(t: 7) = vars(t) U vars(T)
[14] ovars(z) = {z}

359

B / AUXILIARY MODULES FOR MULTI-LEVEL SPECIFICATIONS

[15] ovars(t : T7) = ovars(t)

[16] tvars(z) = {}

[17] tvars(t : 7) = tvars(t) U vars(7)
[18] avars(z) = {}

[19] avars(z: 1) = {z: 7}

[20] avars(t: 7) = avars(t) otherwise

B.2.7 Substitution

A substitution is a mapping from variables to terms. When applied to a term all
variables occurring in the domain of the substitution are replaced by their result
in the substitution. A finite substitution maps only a finite number of variables
to other terms than themselves. Finite substitutions are represented by a list
of atomic substitutions of the form z := ¢, which express the mapping from
variable z to term ¢. Note that [] is the empty substitution. The application
o(t) of a substitution o to a term t denotes ¢ with each occurrence of a variable
z in t replaced by o(z). The union (+) of two substitutions is simply the
concatenation of their lists of atomic substitutions. If a conflict arises, i.e., both
substitutions contain an assignment to the same variable, the assignment in the
first substitution has priority over the second as a result of the definition of o(z)
in equations [1,2,3].
module Substitution
imports Term-Functions®-2% Terms!?!! Types!'?-2-2
exports

sorts ASubst Subst

context-free syntax

Var “:=” Term — ASubst

“[” ASubstx “]” — Subst

Subst — (Term = Term)

“})” ((Term = Term)) — Subst

Subst “+” Subst — Subst {assoc}

“(” Subst “)” — Subst {bracket}
variables

“as”[0-9']x — ASubst

“as” “x”[0-9']% — ASubstx

“as” “4+7[0-9']%* — ASubst+

“o”[0-9"]* — Subst
equations

—

as*](z) when eq(z, y) =L

rSlrrolrcin

N

360

Term Utilities / B.2

[5] o(nil) = nil

[6] o(top) = top

[7] J(tla t2) - U(tl)a U(t2)
[8] ot &) = o(t) o(t2)
[9] o(t x) =0o(t) x o(r)
[10] a(t— 1) =0(t) = o(7)
[11] a(t:7)=0(t) : o(7)
[12] U(o) =

[13] U(id) =]

[14] [as7] + [as3] = [as] as]
[15] [co=0

[16] coll=o

[17] oo [z:=tas*] =[z:=0o(t)] + o o [as*]

Failure Substitutions A failure substitution is a substitution or the value
1 (fail), which denotes failure for partial functions producing substitutions like
matching and unification. The operation +, is the strict extension of + to failure
substitutions. The operation is the consistent composition of two substitutions.
Two substitutions are consistent if they coincide on the same variable or the
variable is undefined in one or both substitutions.

sorts Subst |
context-free syntax

Subst — Subst |
“r” — Subst |
Subst | “4.” Subst | — Subst; {non-assoc}
Subst | “@®” Subst — Subst; {non-assoc}
Subst | “o;” Subst | — Subst; {non-assoc}
“if” Bool “then” Subst; “else” Subst; — Subst
“fail?” (Subst 1) — Bool
“UJ 17 (Subst) — Subst
“(” Subst “)” — Subst; {bracket}
variables
“0.”[']* — Subst
priorities

{non-assoc: Subst; “+,”Subst; — Subst,, Subst; “@®”Subst; — Subst,,
Subst “o;”Subst; — Subst;} > “if’Bool “then”Subst; “else”Subst; — Subst

equations

[18] if T then o) else o, ' = o

[19] if 1 then o elseo ' =0’

[20] 01+ 09 =01 + 02
[21] o+ L=1

[22] 140 =1

[23] L®o =1

361

B / AUXILIARY MODULES FOR MULTI-LEVEL SPECIFICATIONS

[24] oo ®dLl=1

[25] J&oL=00

[26] o ®[=aL

[27] [z:=tas*] ® o =ifeq(t', z) Veq(t', ?)
then [z :=] +1 ([as*] ® o)
else 1
when o(z) = ¢’

[28] lo o =1

[29] o] O 1l=1

[30] o1 0 09 = {01 0 03)

[31] fail? (o) = L

[32] fail?(L) =T

33] Yi(o) =0

B.2.8 Matching

A term t matches with a pattern term t', notation ¢’ := ¢, if there exists a

substitution o such that o(t') = ¢. If ¢ matches ', t' is said to more general
than ¢, which is expressed by means of the predicate > as t' >¢. If ' >t we also
say that ¢ is an instance of ¢. This relation gives a partial order on terms. A

substitution o is a renaming if o(t) = t for any t.

module Matching

imports Substitution®2-7 Term-Sets?-2-

exports

context-free syntax
Terms “:=” Terms — Subst
Term “2” Term — Bool
Term “>” Term — Bool

Term *

‘=" Term — Bool

TermSet “2>” Term — Bool

equations

rz:=t=[z:=1{
t:=t=]
byl =, la=t; =134
Wb =tata=t; b =1
t th:=t3Xt4=t1;t22=t3;t4
h = hi= 2=t =135k
t1:t212t3:t4:t1;t2
==]]
t =ttt =t =t @t =t
t:=t' =L otherwise
tl > t2 =" fail?(tl = tg)

=135 Uy

Term Utilities / B.2

[12] t1>t2=t12t2/_|t22t1
[13] tlit2=t12t1/\t22t1
(14] 3z2t=1

[15] {t'}Z2t=¢t'21¢

[16] {tH ey 2t={tfy2tv{tS} >t

B.2.9 TUnification

Two terms t; and ts are unifiable if there exists a substitution ¢ such that
o(t1) = o(t2). The function ‘mgu’ yields the most general unifier o for a set
of equations &, such that for each equation ¢; = t2 in &, o(t1) = o(t2). The
definition is based on the algorithm by Martelli and Montanari (1982). Hendriks
(1989) specifies in a similar manner the unification of types in ML. See also
Jouannaud and Kirchner (1991) for a survey on unification.

module Unification

imports Variables?2:¢ Substitution®-?-" Equation-Functions?-24
exports
context-free syntax
mgu(Egs) — Subst |
Term “%” Term — Bool
equations
[1] mgu(t = 1) = []
[2] mgu(z=t) = [z:={ when € vars(t) = L
3] mgu(t=z) =[z:=f when € vars(t) = L
[4] mgu(tl, to = t3, t4) = mgu(t1 = t3; to = t4)
[5] mgu(t1 th =13 t4) = mgu(t1 = tg; th = t4)
[6] mgu(t1 X b =1t3 X t4) = mgu(t1 =t3; by = t4)
[7] mgu(t1 ==t > t4) = mgu(t1 =t3; by = t4)
[8] mgu(ty : to = 3 : ty) = mgu(ty = t3; to = ty)
[9] mgu() = []
[10] mgu(p;"; ;") = mgu(li(on)xe(p,)) oL o1
when mgu(p;t) = oL
[11] mgu(€) = L otherwise
[12] t ; th = fail?(mgu(t1 = tz))

B.2.10 Renaming

It is sometimes necessary to rename variables in a term such that they are
disjunct from the variables in another term. To this end several functions are

363

B / AUXILIARY MODULES FOR MULTI-LEVEL SPECIFICATIONS

defined to generate new variable names. The function get-fresh produces a fresh
variable (not occurring in some set of variables). The function rn ®;[®,], with
®; and P, sets of variables, yields a substitution o; that renames the variables
in ®; such that none occurs in ®5, i.e., 01(®1) NP3 = (). The other ‘rn’ function
renames the variables of a term with respect to (the variables of) another term.

module Renaming

imports Variables?2:6 Substitution®-2-7
exports
context-free syntax
prime(Var) — Var
deprime(Var) — Var
base(Var) — Var

get-fresh(Var, TermSet) — Term
rn TermSet “[” TermSet “|” — Subst

rn Term “[” Term “]” — Term
add(Var, TermSet) — TermSet
hiddens
variables
“c+7[0-9"]* —» CHAR+
equations
[1] prime(var(ct)) = var(ct "’ ")
[2] deprime(var(cT "?")) = deprime(var(cT))
[3] deprime(z) = z otherwise

The function ‘base’ takes off all trailing digits and primes of a variable.

equations for the function ‘base’ are not shown.

[4] add(var(c;"), {var(c,")}) = {var(e;” ¢;")}

[5] add(z, {}) {=}

[6] add(s, {#;"; t,"}) = add(s, {#"}) U add(z, {,"})
[7] add({t}) = {z} otherwise

8] get-fresh(z, ®) = if z € ® then get-fresh(prime(z), P) else z

[9] rn {}[9] =]
[10] mn {z; t*}[®] = [z:= 9] + m {t*}[{y} U]
when get-fresh(deprime(z), ®) =y

Rename a term with respect to the variables in another term.

[11] rmn tl[tg] =rn @1 n @2[(132](751)
when vars(t)) = @1, vars(ty) = @

364

The

C

Samenvatting

C.1 Algemeen

Computertalen Computertalen worden gebruikt voor het schrijven van com-
puterprogramma’s, maar ook voor het beschrijven van data en specificaties.
Voortdurend worden nieuwe computertalen ontworpen. De opkomst van nieuwe
technologie stelt andere eisen aan talen. Bijvoorbeeld, de recente groei en ont-
wikkeling van het internet heeft de doorbraak van de taal Java tot gevolg gehad.
De ontwikkeling van talen voor speciale toepassingsgebieden vereenvoudigt de
programmatuur voor die gebieden. Nieuwe inzichten op het gebied van pro-
grammeertaaltechnieken kunnen ook aanleiding zijn voor de ontwikkeling van
een nieuwe taal. Kinnersley (1995) geeft een lijst van zo’n 2350 computertalen
die ooit, dus sinds ongeveer 1940, ontwikkeld zijn. Aangezien deze lijst vermoe-
delijk slechts het topje van een ijsberg weergeeft, is het veilig om te stellen dat
er iedere week een nieuw ontworpen taal bijkomt.

Het ontwikkelen van een nieuwe computertaal is veel werk. Door het snel
ontwikkelen van een prototype van de taal, de rudimentaire vorm van de uitein-
delijke taal waarin de belangrijkste eigenschappen naar voren komen, kunnen
de ideeén die aan de taal ten grondslag liggen getoetst worden en zonodig bij-
gesteld. Ontwerpgereedschappen kunnen het ontwikkelen ondersteunen door
routinewerk uit handen van de ontwerper te nemen. Dit soort gereedschappen
zijn het onderwerp van dit proefschrift. We bespreken hier eerst een aantal ba-
sisbegrippen met betrekking tot het prototyperen van talen. Vervolgens geven
we een samenvatting van de bijdrage die dit proefschrift levert.

Syntaz en Semantiek Het ontwerp van een computertaal bestaat uit een be-
schrijving van de syntaxis en semantiek van de taal. De syntaxis (op z’n engels
van af nu syntax) van een taal beschrijft de vorm van de zinnen waaruit de
taal bestaat en kent aan die zinnen structuur toe. In het geval van een pro-
grammeertaal heet een zin een programma, in het geval van een specificatietaal
een specificatie, etc. De semantiek beschrijft de betekenis van syntactisch cor-
recte zinnen. Niet alle zinnen hebben altijd een semantiek, dat wil zeggen, een
zinvolle betekenis.

Als voorbeeld volgt hier de beschrijving van de syntax en semantiek van de
eenvoudige taal van rekenkundige expressies met optelling en product. De syn-
tax van expressies wordt beschreven door de volgende regels: (1) Een variable

365

C / SAMENVATTING

is een expressie. (2) Een getal is een expressie. (3) Als = en y expressies zijn
dan ook z *xy en z 4+ y. Volgens deze regels is © x y + 3 een expressie. De
semantiek van expressies definiéren we nu als de waarde van een expressie onder
de toekenning van getallen aan variabelen. (1) De waarde van een variabele is
die welke eraan is toegekend. (2) De waarde van een getal is dat getal zelf. (3)
Als wy de waarde is van z en w- de waarde van y dan is het product van w; en
wy de waarde van x * y en de som van w; en we de waarde van = + y.

Ambiguiteit De syntax van een taal beschrijft uit welke zinnen een taal be-
staat en kent daarnaast aan die zinnen een structuur toe die vaak in de vorm
van een boomdiagram voorgesteld wordt. Een zin is ambigu als de syntax er
meer dan één structuur aan toekent. Bijvoorbeeld, volgens de syntax regels
hierboven heeft z x y + 2z twee mogelijke structuren: z * (y + z) of (z *xy) + 2.
Daarmee heeft de zin ook twee betekenissen: het product van z en de som van
y en z, of de som van het product van z en y en z.

Disambiguatie is het oplossen van dergelijke ambiguiteiten. Een disambigua-
tieregel is een regel voor het oplossen ambiguiteiten. De gebruikelijke regel voor
de disambiguatie van rekenkundige expressies wordt gegeven door de bekende
regel ‘meneer van Dalen wacht op antwoord’. Met dit ezelsbruggetje wordt
uitgedrukt dat operatoren sterker binden als ze eerder voorkomen in het rijtje
‘machtsverheffen, vermenigvulden, delen, optellen, aftrekken’. In het voorbeeld
hierboven wordt dus de interpretatie (z * y) + z gekozen volgens deze regel.

Syntaz Definitie Formalismen Voor het ontwikkelen van een prototype van
een taal die door een computer leesbaar is, worden de syntax en semantiek in de
vorm van een formele definitie gegeven. Fen syntax definitie formalisme is een
formele taal waarin de regels van de syntax opgeschreven kunnen worden. Voor
de definitie van de syntax van talen worden gewoonlijk context-vrije grammati-
ca’s gebruikt. Een context-vrije regel van de vorm A; ... A, — Ap bepaalt dat
uit een rijtje zinnen van type A; tot en met A, een zin van type Ag te maken
valt. De volgende context-vrije grammatica beschrijft bijvoorbeeld de syntax
van expressies zoals hierboven besproken.

Var -> Exp
Num -> Exp
Exp "*" Exp —> Exp
Exp "+" Exp —> Exp

Net zoals hierboven zijn deze regels ambigu. Om de gedefinieerde taal te disam-
bigueren kunnen syntax definitie formalismen methoden verschaffen waarmee
disambiguatieregels geformuleerd kunnen worden. De regel die stelt dat ver-
menigvuldiging sterker bindt dan optelling kan bijvoorbeeld uitgedrukt worden
door de volgende prioriteitsregel.

Exp "*" Exp -> Exp > Exp "+" Exp -> Exp

Een syntax definitie formalisme kan veel meer faciliteiten bieden om te disam-
bigueren of om definities korter te maken. Het geheel van dit soort faciliteiten
bepaalt de uitdrukkingskracht en de bruikbaarheid van het formalisme.

366

Resultaten / C.2

Algebraische Specificaties Er zijn vele varianten van syntax definitie forma-
lismen. In het algemeen kan een formalisme worden gekarakteriseerd door: de
structuren (bomen) die uit een definitie kunnen worden afgeleid, de afleiding van
een zin uit een structuur, en een ontleder die zinnen analyseert en er een struc-
tuur aan toekent. Deze abstracte benadering van syntax is ook van toepassing
op de typesystemen van programmeertalen. Een signatuur beschrijft de geldige
getypeerde expressies, uit getypeerde expressies kunnen ongetypeerde expressies
worden afgeleid en een type checker analyseert ongetypeerde expressies en kent
er een type aan toe. Op deze manier kunnen grammatica’s beschouwd worden
als signaturen voor algebraische specificaties.

Een algebra is een verzameling van gegevens met daarbij behorende operaties.
Een algebraische specificatie is een beschrijving van een algebra. Bij het gebruik
van grammatica’s als signaturen zijn de programma’s de gegevens van de algebra
en hierop kunnen operaties gedefinieerd worden. Dit verband geeft een manier
om ook de semantiek van een taal te beschrijven door middel van een operatie
op de structuren van de taal. Zo’'n operatie kan bijvoorbeeld een vertaling zijn
naar een andere taal, of een interpretatie waarbij de waarde van een programma
wordt uitgerekend zoals in het voorbeeld van expressies.

ASF+SDF is een algebraisch specificatie formalisme waarin deze ideeén zijn
uitgewerkt. ASF+SDF specificaties kunnen door een computer worden uitge-
voerd, waardoor een taaldefinitie direct getest kan worden en daarmee getoetst
aan de eisen die aan de taal gesteld worden.

C.2 Resultaten

In dit proefschrift worden methoden ontwikkeld waardoor de uitdrukkingskracht
en bruikbaarheid van syntax definitie formalismen verbeterd worden. Het be-
handelt vier hoofonderwerpen: (1) Technieken voor ontleding en disambiguatie
van context-vrije talen. (2) Ontwikkeling van een nieuw syntax definitie forma-
lisme voor ontwerp van context-vrije talen. (3) Ontwerp van een meer-niveau
algebraisch specificatieformalisme. (4) Studie van polymorfe syntax definitie en
ontleed problemen hiervan. Naast het introduceren van nieuwe technieken voor
taalontwerp en ontwikkeling, bevat het proefschrift ook twee voorbeelden van
de toepassing van technieken voor taalontwerp. De talen genoemd bij (2) en (3)
zijn ontworpen met behulp van de algebraische specificatietaal ASF+SDF. De
specificaties worden in dit proefschrift gebruikt om het ontwerp van de talen te
presenteren. We bespreken deze onderwerpen en hun samenhang kort.

C.2.1 Ontleedtechnieken

Ontleden zonder Scanmer Traditioneel bestaat een ontleder voor een pro-
grammeertaal uit twee onderdelen. Een scanner verdeelt de lijst van karakters
waaruit een programma bestaat op in een lijst van lexicale tekens. Deze teken-
lijst is vervolgens de invoer voor de eigenlijke ontleder die een boomstructuur
aan het programma toekent. In Hoofdstuk 3 wordt een nieuwe ontleedmethode
voorgesteld waarbij geen gebruik wordt gemaakt van een aparte scanner. De

367

C / SAMENVATTING

ontleder leest en analyseert direct de karakters van een programma.

De voordelen van ontleden zonder scanner ten opzichte van de traditionele
methode zijn: (1) Er is geen implementatie van een scanner nodig, (2) Er kan
met één formalisme voor de declaratie van de syntax volstaan worden. (3) Lexi-
cale disambiguatie kan gebruik maken van de ontleedcontext. (4) De lexicale
structuur blijft behouden. (5) De layout van de programmatekst blijft behouden
in de boom. (6) Een expressievere lexicale syntax, bijvoorbeeld genest commen-
taar, wordt mogelijk.

De methode bestaat uit de volgende onderdelen: Normaliseren van de gram-
matica zorgt ervoor dat een expressief formalisme gebruikt kan worden terwijl
de implementatie gebaseerd is op een eenvoudiger formalisme. Lexicale dis-
ambiguatie wordt uitgedrukt door middel van twee mechanismen. Zogenaamde
‘volgbeperkingen’ (follow restrictions) verbieden dat een constructie gevolgd kan
worden door een bepaalde verzameling karakters. Hiermee kan uitgedrukt wor-
den dat de langst mogelijke lezing van een lexicale categorie moet worden geko-
zen. Uitsluitingsregels (reject productions) beperken de verzameling bomen die
voor een grammaticale categorie worden gegenereerd. Hiermee kan worden uit-
gedrukt dat gereserveerde woorden van de taal niet mogen worden gebruikt als
variabelen. Het SLR(1) algoritme voor ontledergeneratie is aangepast om dis-
ambiguatie door middel van prioriteiten en volgbeperkingen uit te drukken. Ge-
generaliseerd LR ontleden wordt gebruikt om beslissingsproblemen dynamisch
op te lossen. Het GLR algoritme is aangepast om context-vrije grammatica’s
met uitsluitingsregels te behandelen.

Het blijkt dat deze uitsluitingsregels een grammaticaformalisme opleveren
met een grotere uitdrukkingskracht dan context-vrije grammatica’s. Dit wordt
aangetoond door middel van een aantal voorbeelden. Het ontleedprobleem van
het formalisme is echter wel beslisbaar.

Disambiguatiefilters Een disambiguatiefilter is een operatie die uit een ver-
zameling ontleedbomen een deelverzameling selecteert. Dit biedt een zeer alge-
meen raamwerk waarbinnen disambiguatiemethoden bestudeerd kunnen wor-
den. Het geeft een beschrijving van disambiguatie die onafhankelijk is van
ontleedalgoritmen en geeft derhalve een meer inzichtelijke semantiek aan dis-
ambiguatiemethoden. Diverse eigenschappen van filters worden bestudeerd en
een aantal disambiguatiemethoden wordt als filter gedefinieerd.

Optimalisatie van Ontlederschema’s door Disambiguatiefilters Filters geven
een zeer algemene methode om disambiguatie te beschrijven. Een filter kan
geimplementeerd worden door eerst een algemene ontleder te gebruiken die alle
mogelijke bomen voor een ambigue zin oplevert en vervolgens deze verzame-
ling te filteren, dat wil zeggen een deelverzameling van de mogelijke bomen
te selecteren. Voor bepaalde toepassingen kan dit echter te duur zijn omdat
het aantal mogelijke ontleedbomen exponentieel toeneemt met de lengte van de
zin. Voorbeelden hiervan zijn ambigue binaire expressies en lexicale ambigui-
teiten. Bij dit soort methoden willen we dan liever een implementatie waarbij
disambiguatie in een zo vroeg mogelijk stadium plaatsvindt, indien mogelijk
al bij de constructie van de ontleder. In Hoofdstuk 5 wordt onderzocht hoe

368

Resultaten / C.2

uit de samenstelling van een ontleder en een disambiguatiefilter een geoptimali-
seerde ontleder kan worden afgeleid. Dit wordt gedaan door een speciaal geval
te onderzoeken, namelijk disambiguatie door middel van prioriteiten. Hiervoor
wordt een algoritme voor ontledergeneratie afgeleid waardoor prioriteiten in de
ontleedtabel verwerkt worden. Deze afleiding wordt gedaan door een abstracte
beschrijving door middel van een ontleedschema van Earley’s ontleedalgoritme
te transformeren naar een ontleedschema dat rekening houdt met prioriteiten.

C.2.2 Een Familie van Syntax Definitie Formalismen

SDF is een syntax definitie formalisme voor de specificatie van lexicale en
context-vrije syntax van programmeertalen. Het ontwerp van het formalisme
is een monolithisch geheel waardoor het moeilijk is om het te implementeren
en uit te breiden. In Deel IT wordt SDF herontworpen als modulaire en uit-
breidbare familie van syntax definitie formalismen. Iedere eigenschap van het
formalisme wordt gespecificeerd als een orthogonale uitbreiding van het kern-
formalisme. De betekenis van veel eigenschappen wordt uitgedrukt door middel
van een normalisatiefunctie die de constructies afbeeldt op constructies in het
kernformalisme. Na vertaling blijven syntaxdefinities over die gebruik maken
van context-vrije grammatica’s met karakterklassen, prioriteiten, volgbeperkin-
gen, en uitsluitingsregels. Eigenschappen die op deze manier behandeld worden,
zijn: literals, reguliere expressies, lexicale en context-vrije syntax, hernoemin-
gen, aliasen en modules. De samenstelling van deze eigenschappen vormt het
syntax definitie formalisme SDF2.

C.2.3 Meer-Niveau Algebraische Specificaties

In ASF+SDF worden context-vrije grammatica’s gebruikt om de structuur van
data te definieren. Context-vrije grammatica’s komen overeen met eerste-orde
meersoortige algebraische signaturen. Hierbij heeft de typestructuur een be-
perkte vorm en kunnen alleen typeconstanten worden gedefinieerd. Dit heeft
rigide structuren tot gevolg waarbij veel overeenkomsten tussen datastructuren
niet tot uitdrukking komen. Veel aspecten van datastructuren zijn echter on-
afhankelijk van de data die ze opslaan. Beschouw bijvoorbeeld lijsten. Bij het
bepalen van de lengte van een lijst is het onbelangrijk of de elementen van de
lijst getallen zijn of waarheidswaarden. Door te abstraheren van de soort van
data in een datatype kan de definitie van zo’n datatype makkelijker hergebruikt
worden.

Om een flexibeler typestructuur te bereiken wordt in Deel III een studie ge-
maakt van meer-niveau algebraische specificaties. Hierbij zijn de types zelf
definieerbaar als een algebraisch datatype, die worden beschreven door middel
van een algebraische signatuur. Bij twee-niveau specificaties zijn de types in
de signatuur van niveau 0 termen over de signatuur van niveau 1. Bij meer-
niveau specificaties wordt deze constructie veralgemeniseerd tot willekeurig veel
niveaus, waarbij steeds geldt dat een type gebruikt op niveau n een term is over
de signatuur op niveau n + 1.

369

C / SAMENVATTING

Een groot deel van Deel III bestaat uit een formele specificatie in ASF+SDF
van het meer-niveau algebraische specificatie formalisme MLS. De specificatie
beschrijft de syntax, de semantiek en het typesysteem van het formalisme. De
specificatie van het typesysteem is executeerbaar als termherschrijfsysteem en
vormt een prototype programmeeromgeving voor het formalisme.

Er wordt een groot aantal voorbeelden van specificaties in MLS gegeven die
laten zien hoe polymorfe datatypen gespecificeerd kunnen worden. In de eerste
plaats worden een aantal standaard voorbeelden uit de wereld van de functi-
onele programmeertalen besproken zoals lijsten, product en disjuncte vereni-
ging. Daarna volgen voorbeelden die in het normale Hindley/Milner systeem
niet uitdrukbaar zijn zoals de gestratificeerde stapel en tuples. Met behulp van
typevergelijkingen kunnen geavanceerde typeconstructies gespecificeerd worden.
Een voorbeeld is de typering van de functie zip die een tuple van lijsten aan
elkaar ritst tot een lijst van tuples. Andere voorbeelden zijn typedefinities, tuple
functor en tuple compositie, recursieve types en typeklassen. Deze voorbeelden
laten zien dat meer-niveau algebraische specificaties een eenvoudig en uniform
raamwerk vormen voor de specificatie van type structuren.

C.2.4 Polymorfe Syntax Definitie

In het MLS formalisme worden signaturen met prefix en infix functies gebruikt.
Ook voor context-vrije grammatica’s geldt dat ze rigide zijn en niet kunnen
abstraheren van de concrete inhoud van een structuur. Het is wenselijk om de
grammaticale regels voor een bepaalde structuur te kunnen hergebruiken door
de soort van de elementen van de structuur in te vullen. De volgende regels
geven bijvoorbeeld op een generieke manier aan hoe lijsten opgebouwd worden.

A -> A+
A+ A+ -> A+

Hierbij is A de parameter van de regels. Door deze parameter op verschillende
manieren in te vullen kan de structuur van lijsten hergebruikt worden. Ook
operaties op lijsten kunnen dan op de generieke structuur gedefinieerd worden
en hergebruikt voor iedere instantiatie.

Door het idee van grammatica’s als signaturen te combineren met het idee
van meer-niveau specificaties krijgen we een formalisme voor polymorfe syntax
definitie. In een twee-niveau grammatica zijn de grammaticasymbolen van ni-
veau 0 ontleedbomen over de grammatica op niveau 1. In Hoofdstuk 15 wordt
dit idee uitgewerkt.

Een probleem van deze combinatie is dat, hoewel het ontleedprobleem van
context-vrije grammatica’s beslisbaar is en ook het typetoekenningsprobleem
van meer-niveau specificaties beslisbaar is, het ontleedprobleem van twee-niveau
grammatica’s onbeslisbaar is. Hiervoor wordt een oplossing gegeven door de
beperking tot twee-niveau grammatica’s met eindige ketens. Voor deze klasse
van grammatica’s is het ontleedprobleem wel beslisbaar, terwijl de beperking de
toepassing voor polymorfe syntax definitie niet schaadt.

370

D
Bibliography

Technical reports from the Programming Research Group of the University of
Amsterdam can be obtained from http://www.wins.uva.nl/research/prog/
reports/reports.html Technical reports from CWI can be found at http:
//www.cwi.nl/cwi/publications/reports/reports.html.

Aasa, A. (1991). Precedences in specifications and implementations of program-
ming languages. In J. Maluzynski and M. Wirsing, editors, Programming Lan-
guage Implementation and Logic Programming, volume 528 of Lecture Notes
in Computer Science, pages 183-194. Springer-Verlag.

Aasa, A. (1992). User Defined Syntaz. Ph.D. thesis, Department of Computer
Sciences, Chalmers University of Technology and University of Géteborg, S-
412 96 Goteborg, Sweden.

Aho, A. V., Johnson, S. C., and Ullman, J. D. (1975). Deterministic parsing of
ambiguous grammars. Communications of the ACM, 18(8), 441-452.

Anderson, T., Eve, J., and Horning, J. (1973). Efficient LR (1) parsers. Acta
Informatica, 2(1), 12-39.

Backus, J. W. (1959). The syntax and semantics of the proposed international
algebraic language of the Zurich ACM-GAMM conference. In Proceedings
of the International Conference on Information Processing, pages 125-132,

Paris. UNESCO.

Bahlke, R. and Snelting, G. (1986). The PSG system: from formal language
definitions to interactive programming environments. ACM Transactions on
Programming Languages and Systems, 8(4), 547-576.

Bailes, P. A. and Chorvat, T. (1993). Facet grammars: Towards static semantic
analysis by context-free parsing. Computer Languages, 18(4), 251-271.

Bergstra, J. and Sellink, M. (1996). Sequential data algebra primitives. Techni-
cal Report P9602, University of Amsterdam, Programming Research Group.

371

D / BIBLIOGRAPHY

Bergstra, J. A., Heering, J., and Klint, P., editors (1989a). Algebraic Speci-
fication. ACM Press Frontier Series. The ACM Press in co-operation with
Addison-Wesley.

Bergstra, J. A., Heering, J., and Klint, P. (1989b). The algebraic specification
formalism ASF. In J. A. Bergstra, J. Heering, and P. Klint, editors, Algebraic
Specification, ACM Press Frontier Series, pages 1-66. The ACM Press in
co-operation with Addison-Wesley. Chapter 1.

Bergstra, J. A., Heering, J., and Klint, P. (1990). Module algebra. Journal of
the ACM, 37(2), 335-372.

Bidoit, M., Gaudel, M.-C., and Mauboussin, A. (1989). How to make alge-
braic specifications more understandable: An experiment with the PLUSS
specification language. Science of Computer Programming, 12, 1-38.

Billot, S. and Lang, B. (1989). The structure of shared forests in ambiguous pars-
ing. In Proceedings of the Twenty-Seventh Annual Meeting of the Association
for Computational Linguistics. Association for Computational Linguistics.

Bird, R. S. (1987). An introduction to the theory of lists. In M. Broy, editor,
Logic of Programming and Calculi of Discrete Design, pages 3-42. Springer-
Verlag.

Bird, R. S. (1989). Algebraic identities for program calculation. The Computer
Journal, 32(2), 122-126.

Blikle, A. (1989). Denotational engineering. Science of Computer Programming,
12(3), 207-253.

Van den Brand, M. and Visser, E. (1994). From Box to TgX: An algebraic
approach to the generation of documentation tools. Technical Report P9420,
Programming Research Group, University of Amsterdam.

Van den Brand, M. G. J. (1992). Pregmatic, A Generator for Incremental
Programming Environments. Ph.D. thesis, Katholieke Universiteit Nijmegen.

Van den Brand, M. G. J. and Visser, E. (1996). Generation of formatters
for context-free languages. ACM Transactions on Software Engineering and

Methodology, 5(1), 1-41.

Van den Brand, M. G. J., van Deursen, A., Dinesh, T. B., Kamperman, J.
F. T., and Visser, E., editors (1995). Proc. ASF+SDF’95. A Workshop on
Generating Tools from Algebraic Specifications. Technical Report P9504, Pro-
gramming Research Group, University of Amsterdam.

Van den Brand, M. G. J., Klint, P., Olivier, P., and Visser, E. (1997a). ATerms:
Representing structured data for exchange between heterogeneous tools. Tech-
nical report, Programming Research Group, University of Amsterdam.

372

BIBLIOGRAPHY / D

Van den Brand, M. G. J., Sellink, M. P. A., and Verhoef, C. (1997b). Generation
of components for software renovation factories from context-free grammars.
Technical Report P9705, Programming Research Group, University of Ams-
terdam.

Van den Brand, M. G. J., Kuipers, T., Moonen, L., and Olivier, P. (1997c).
Implementation of a prototype for the new ASF+SDF meta-environment. In
A. Sellink, editor, Second International Conference on the Theory and Prac-
tice of Algebraic Specification (ASF+SDF’97), Amsterdam, The Netherlands.

Programming Research Group, University of Amsterdam.

Bratko, I. (1990). Prolog. Programming for Artificial Intelligence. Addison-
Wesley, second edition.

Broy, M., Facchi, C., Grosu, R., Hettler, R., Hussmann, H., Nazareth, D.,
Regensburger, F., Slotosch, O., and Stglen, K. (1993). The requirement and
design specification language SPECTRUM. An informal introduction. Version
1.0. Technical Report TUM-19311 and TUM-19312, Technische Universitat

Miinchen, Miinchen, Germany.

Cameron, R. D. (1993). Extending context-free grammars with permutation
phrases. ACM Letters on Programming Languages and Systems, 2(1-4), 85—
94.

Cardelli, L. (1993). Typeful programming. SRC Research Report 45, May 24,
1989. Revised January 1, 1993, Digital Systems Research Center, Palo Alto,
California.

Cardelli, L. (1997). Type systems. In J. B. Tucker, editor, The Handbook
of Computer Science and Engineering, chapter 103, pages 2208-2236. CRC
Press.

Cardelli, L. and Wegner, P. (1985). On understanding types, data abstraction
and polymorphism. ACM Computing Surveys, 17(4), 471-522.

Cardelli, L., Matthes, F., and Abadi, M. (1994). Extensible syntax with lexical
scoping. SRC Research Report 121, Digital Systems Research Center, Palo
Alto, California.

Chomsky, N. (1956). Three models for the description of language. IRE Trans-
actions on Information Theory, 2, 113-124.

Cordy, J. R. and Carmichael, I. H. (1993). The TXL Programming Language.
Syntaz and Informal Semantics. Version 7. Software Technology Laboratory,
Department of Computer and Information Science, Queen’s University at
Kingston, Kinston, Canada, 7 edition.

Damas, L. and Milner, R. (1982). Principal type-schemes for functional pro-
grams. In Conference Record of the Ninth Annual ACM Symposium on Prin-
ciples of Programming Languages, pages 207-212. ACM.

373

D / BIBLIOGRAPHY

DeRemer, F. L. (1971). Simple LR(k) grammars. Communications of the ACM,
14, 453-460.

Van Deursen, A. (1996). The static semantics of pascal. In A. van Deursen,
J. Heering, and P. Klint, editors, Language Prototyping. An Algebraic Specifi-
cation Approach, volume 5 of AMAST Series in Computing, chapter 2, pages
31-52. World Scientific, Singapore.

Van Deursen, A., Heering, J., and Klint, P., editors (1996). Language Proto-
typing. An Algebraic Specification Approach, volume 5 of AMAST Series in
Computing. World Scientific, Singapore.

Deussen, P. (1975). A decidability criterion for van Wijngaarden grammars.
Acta Informatica, 5, 353-375.

Dinesh, T. B. (1995). Injection misdemeanors. In M. G. J. v. d. Brand et al., ed-
itors, ASF+SDF’95. A Workshop on Generating Tools from Algebraic Spec-
ifications, pages 255—-270. Technical Report P9504, Programming Research
Group, University of Amsterdam.

Earley, J. (1970). An efficient context-free parsing algorithm. Communications

of the ACM, 13(2), 94-102.

Earley, J. (1975). Ambiguity and precedence in syntax description. Acta Infor-
matica, 4(1), 183-192.

Van Eijck, J. (1997). Email, july 9.

Floyd, R. W. (1962). Syntactic analysis and operator precedence. Communica-
tions of the ACM, 5(10), 316-333.

Futatsugi, K., Goguen, J., Jouannaud, J.-P., and Meseguer, J. (1985). Principles
of OBJ2. In B. Reid, editor, Conference Record of the Twelfth Annual ACM

Symposium on Principles of Programming Languages, pages 52—66. ACM.

Goguen, J. A., Thatcher, J. W., Wagner, E. G., and Wright, J. B. (1977). Initial
algebra semantics and continuous algebras. Journal of the ACM, 24(1), 68—
95.

Gordon, M., Milner, R., Morris, L., Newey, M., and Wadsworth, C. (1978). A
meta language for interactive proof in LCF. In Conference Record of the Fifth
Annual ACM Symposium on Principles of Programming Languages, Tucson,

Arizona, pages 119-130. ACM.
Gray, R. W., Heuring, V. P., Levi, S. P., Sloane, A. M., and Waite, W. M. (1992).

Eli: A complete, flexible compiler construction system. Communications of

the ACM, 35, 121-131.

Groenink, A. V. (1997). Surface without Structure. Ph.D. thesis, University of
Utrecht.

374

BIBLIOGRAPHY / D

Grosch, J. (1990). Lalr - a generator for efficient parsers. Software-Practice €
FEzperience, 20, 1115-1135.

Hatcher, W. S. and Rus, T. (1976). Context-free algebras. Journal of Cyber-
netics, 6, 65-76.

Hearn, B. M. (1995). The Design and Implementation of Typed Languages for
Algebraic Specification. Ph.D. thesis, University of Wales, Swansea.

Hearn, B. M. and Meinke, K. (1994). ATLAS: A typed language for algebraic
specification. In J. Heering, K. Meinke, B. Méller, and T. Nipkow, editors,
Proceedings of the First International Workshop on Higher-Order Algebra,
Logic and Term Rewriting (HOA ’93), volume 816 of lecture Notes in Com-
puter Science, pages 146-168, Berlin. Springer-Verlag.

Heering, J., Hendriks, P. R. H., Klint, P., and Rekers, J. (1989). The syntax
definition formalism SDF — reference manual. SIGPLAN Notices, 24(11),
43-75.

Hendriks, P. R. H. (1989). Typechecking Mini-ML. In J. Bergstra, J. Heer-
ing, and P. Klint, editors, Algebraic Specification, ACM Press Frontier Series,
pages 299-337. The ACM Press in co-operation with Addison-Wesley. Chap-
ter 7.

Hendriks, P. R. H. (1991). Implementation of Modular Algebraic Specifications.
Ph.D. thesis, University of Amsterdam.

Higgins, P. J. (1963). Algebras with a scheme of operators. Mathematische
Nachrichten, 27, 115-132.

Hillebrand, J. and Korver, H. (1995). A well-formedness checker for yCRL. In
A. Ponse, C. Verhoef, and S. F. M. van Vlijmen, editors, Algebra of Commu-
nicating Processes (ACP ’95), pages 81-119. Eindhoven University of Tech-
nology, Computing Science Report 95/14.

Hindley, R. (1969). The principal type-scheme of an object in combinatory logic.
Transactions American Mathematical Society, 146, 29-60.

Hudak, P., Peyton Jones, S., and Wadler, P., editors (1992). Report on the
Programming Language Haskell. A Non-strict, Purely Functional Language.
(Version 1.2), volume 27. ACM SIGPLAN Notices.

Jansson, P. and Jeuring, J. (1997). Polyp - a polytypic programming language
extension. In Conference Record of POPL’97: The 24th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages 470—
482, Paris, France. ACM.

Jensen, K. and Wirth, N. (1975). PASCAL User Manual and Report, volume 18
of Lecture Notes in Computer Science. Springer-Verlag, Berlin, second edition
edition.

375

D / BIBLIOGRAPHY

Johnson, S. C. (1975). YACC—yet another compiler-compiler. Technical Report
CS-32, AT & T Bell Laboratories, Murray Hill, N.J.

Jones, M. P. (1992). A theory of qualified types. In B. Krieg-Briickner, editor,
4th European Symposium on Programming (ESOP’92), volume 582 of Lecture
Notes in Computer Science, pages 287-306. Springer-Verlag.

Jones, M. P. (1993). A system of constructor classes: overloading and im-
plicit higher-order polymorphism. In FPCA ’93: Conference on Functional
Programming Languages and Computer Architecture, Copenhagen, Denmark.
(Appears in extended form in the Journal of Functional Programming, 1995.).

Jones, M. P. (1995). A system of constructor classes: Overloading and implicit
higher-order polymorphism. Journal of Functional Programming, 5, 1-35.

Jouannaud, J. P. and Kirchner, C. (1991). Solving equations in abstract al-
gebras: A rule-based survey of unification. In J. L. Lassez and G. Plotkin,
editors, Computational Logic. Essays in Honour of Alan Robinson, chapter 8,

pages 257-321. M.I.T. Press, Cambridge (MA).

Jouannaud, J.-P. and Lescanne, P. (1982). On multiset orderings. Information
Processing Letters, 15(2), 57-63.

Kahn, G., Lang, B., Méleése, B., and Morcos, E. (1983). METAL: A formalism
to specify formalisms. Science of Computer Programming, 3, 151-188.

Kamperman, J. (1992). A try at improving the second disambiguation phase in
SDF. technical note.

Kamperman, J. F. T. (1994). GEL, a graph exchange language. Technical
Report CS-R9440, CWI, Amsterdam.

Kinnersley, B. (1995). The language list — version 2.4. Collected informa-
tion on about 2350 computer languages, past and present. Available from
http://wuarchive.wustl.edu/doc/misc/lang-list.txt.

Klint, P. (1988). Definitie van prioriteiten in SDF. Unpublished technical note
(in dutch).

Klint, P. (1993). A meta-environment for generating programming environ-
ments. ACM Transactions on Software Engineering and Methodology, 2(2),
176-201.

Klint, P., editor (1995). The ASF+SDF Meta-environment User’s Guide. Cen-
trum voor Wiskunde en Informatica (CWI), Amsterdam. Version June 4.
Available as ftp://ftp.cwi.nl/pub/gipe/reports/SysManual.ps.Z.

Klint, P. and Visser, E. (1994). Using filters for the disambiguation of context-
free grammars. In G. Pighizzini and P. San Pietro, editors, Proc. ASMICS
Workshop on Parsing Theory, pages 1-20, Milano, Italy. Tech. Rep. 126-1994,
Dipartimento di Scienze dell’Informazione, Universita di Milano.

376

BIBLIOGRAPHY / D

Knuth, D. E. (1965). On the translation of languages from left to right. Infor-
mation and Control, 8, 607-639.

Knuth, D. E. (1968). Semantics of context-free languages. Mathematical Systems
Theory, 2(2), 127-145. Correction in: Mathematical Systems Theory 5(1),
pp- 95-96, Springer-Verlag, 1971.

Koster, C. H. A. (1971). Affix grammars. In J. E. L. Peck, editor, Algol-68
Implementation. North-Holland, Amsterdam.

LaLonde, W. R. and Rivieres, J. d. (1981). Handling operator precedence in
arithmetic expressions with tree transformations. ACM Transactions on Pro-
gramming Languages and Systems, 3(1), 83-103.

Landin, P. J. (1966). The next 700 programming languages. Communications
of the ACM, 9(3), 157-166.

Lang, B. (1974). Deterministic techniques for efficient non-deterministic parsers.
In J. Loeckx, editor, Proceedings of the Second Colloguium on Automata, Lan-
guages and Programming, volume 14 of Lecture Notes in Computer Science,
pages 255—269. Springer-Verlag.

Lee, J. A. N. (1972). The formal definition of the BASIC language. Computer
Journal, 15(1), 37-41.

Lesk, M. E. and Schmidt, E. (1986). LEX — A lexzical analyzer generator.
Bell Laboratories. UNIX Programmer’s Supplementary Documents, Volume

1 (PS1).

Loeckx, J., Ehrich, H.-D., and Wolf, M. (1996). Specification of abstract data
types. J. Wiley & Sons and B.G.Teubner Publishers.

Luttik, B. and Visser, E. (1997). Specification of rewriting strategies. In A. Sell-
ink, editor, Second International Conference on the Theory and Practice of
Algebraic Specification (ASF+SDF’97), Amsterdam, The Netherlands. Pro-
gramming Research Group, University of Amsterdam.

Maluszynski, J. (1984). Towards a programming language based on the notion
of two-level grammar. Theoretical Computer Science, 28, 13-43.

Martelli, A. and Montanari, U. (1982). An efficient unification algorithm. ACM

Transactions on Programming Languages and Systems, 4, 258-282.

McCrosky, C. and Sailor, K. (1993). A synthesis of type-checking and parsing.
Computer Languages, 18(4), 241-250.

Meinke, K. (1992a). Equational specification of abstract types and combina-
tors. In E. Boerger, G. Jaeger, H. K. Buening, and M. M. Richter, editors,
Computer Science Logic - CSL’91, volume 626 of Lecture Notes in Computer
Science, pages 257271, Berlin. Springer-Verlag.

377

D / BIBLIOGRAPHY

Meinke, K. (1992b). Universal algebra in higher types. Theoretical Computer
Science, 100, 385—417.

Meinke, K. (1993). Algebraic semantics of rewriting terms and types. In J. Remy
and M. Rusinowitch, editors, Proc. Third Int. Workshop on Conditional Term
Rewriting Systems, volume 656 of Lecture Notes in Computer Science, pages
1-20, Berlin. Springer-Verlag.

Meinke, K. and Tucker, J. V. (1992). Universal algebra. In S. Abramsky, D. Gab-
bay, and T. S. E. Maibaum, editors, Handbook of Logic in Computer Science.
Volume I: Mathematical Structures, pages 189—141. Oxford University Press,
Oxford.

Milner, R. (1978). A theory of type polymorphism in programming. Journal of
Computer and System Sciences, 17(3), 348-375.

Milner, R., Tofte, M., and Harper, R. (1990). The Definition of Standard ML.
MIT Press, Cambridge, Massachusetts.

Mitchell, J. (1990). Type theories in programming languages. In J. van Leeuwen,
editor, Handbook of Theoretical Computer Science, volume B: Formal Models
and Semantics, chapter 8, pages 366—-458. Elsevier Science Publishers.

Moller, B. (1987). Algebraic specification with higher-order operators. In
L. Meertens, editor, Program Specification and Transformation, pages 367—
398. Elsevier Science Publishers B.V. (North-Holland).

Mosses, P. D. (1992). Action Semantics. Cambridge University Press.

Mosses, P. D. (1993). The use of sorts in algebraic specifications. In M. Bidoit
and C. Choppy, editors, Recent Trends in Data Type Specification (WADT
’91), volume 655 of Lecture Notes in Computer Science, pages 66-92.
Springer-Verlag.

Naur, P. et al. (1960). Report on the algorithmic language ALGOL 60. Com-
munications of the ACM, 3(5), 299-314.

Nazareth, D. (1995). A Polymorphic Sort System for Aziomatic Specification
Languages. Ph.D. thesis, Technische Universitdt Miinchen. Technical Report
TUM-I9515.

Nipkow, T. and Prehofer, C. (1995). Type reconstruction for type classes. Jour-
nal of Functional Programming, 5(2), 201-224.

Oude Luttighuis, P. and Sikkel, K. (1992). Attribute evaluation during gener-

alized parsing. Memoranda Informatica 92-85, Universiteit Twente, Faculteit
der Informatica.

378

BIBLIOGRAPHY / D

Parr, T. J. and Quong, R. W. (1994). Adding semantic and syntactic predicates
to LL(k): pred-LL(k). In P. A. Fritzson, editor, Compiler Construction,
5th International Conference, CC’94, volume 786 of LNCS, pages 263-277,
Edinburgh, U.K. Springer-Verlag.

Pereira, F. C. N. and Warren, D. H. D. (1980). Definite Clause Grammars for
language analysis—a survey of the formalism and a comparison with aug-
mented transition networks. Artificial Intelligence, 13, 231-278.

Pereira, F. C. N. and Warren, D. H. D. (1983). Parsing as deduction. In Proceed-
ings of the 21st Annual Meeting of the Association for Computational Lin-
guistics, Massachusetts Institute of Technology, Cambridge, Massachusetts.

Poigné, A. (1986). On specifications, theories, and models with higher types.
Information and Control, 68, 1-46.

Rekers, J. (1992). Parser Generation for Interactive Environments. Ph.D. the-
sis, University of Amsterdam. ftp://ftp.cwi.nl/pub/gipe/reports/Rek92.ps.Z.

Reps, T. and Teitelbaum, T. (1989). The Synthesizer Generator: a System for
Constructing Language-Based Editors. Springer-Verlag.

Richards, H. (1984). An overview of ARC SASL. SIGPLAN Notices, 19(10).

Rus, T. (1972). £S-Algebra of a formal language. Bulletin Mathematique de la
Societe de Science, Bucharest, 15(63-2), 227-235.

Rus, T. and Jones, J. S. (1995). Multi-layered pipeline parsing from multi-axiom
grammars. In A. Nijholt, G. Scollo, and R. Steetskamp, editors, Algebraic
Methods in Language Processing AMiLP’95, volume 10 of Twente Workshops
in Language Technology, pages 65—81, Enschede, The Netherlands. Twente
University of Technology.

Salomon, D. J. and Cormack, G. V. (1989). Scannerless NSLR(1) parsing of
programming languages. SIGPLAN Notices, 24(7), 170-178.

Salomon, D. J. and Cormack, G. V. (1995). The disambiguation and scanner-
less parsing of complete character-level grammars for programming languages.
Technical Report 95/06, Department of Computer Science, University of Man-
itoba, Winnipeg, Canada.

Sellink, A., editor (1997). Proceedings of the Second International Workshop on
Theory and Practice of Algebraic Specification (ASF+SDF’97). Programming

Research Group, University of Amsterdam.

Share, M. (1988). Resolving ambiguities in the parsing of translation grammars.

ACM SIGPLAN Notices, 23, 103-109.
Shieber, S. M., Schabes, Y., and Pereira, F. C. N. (1995). Principles and imple-

mentation of deductive parsing. The Journal of Logic Programming, pages
3-36.

379

D / BIBLIOGRAPHY

Sikkel, K. (1993). Parsing Schemata. Ph.D. thesis, Universiteit Twente, En-
schede.

Sikkel, K. (1994). How to compare the structure of parsing algorithms. In
G. Pighizzini and P. San Pietro, editors, Proc. ASMICS Workshop on Parsing
Theory, pages 21-39, Milano, Italy. Tech. Rep. 126-1994, Dipartimento di
Scienze dell’Informazione, Universita di Milano.

Sikkel, K. (1997). Parsing Schemata. A Framework for Specification and Anal-
ysis of Parsing Algorithms, volume XVI of Texts in Theoretical Computer
Science. An EATCS Series. Springer-Verlag, Berlin / Heidelberg / New York.

Sintzoff, M. (1967). Existence of a van Wijngaarden syntax for every recursively
enumerable set. Annales de la Société Scientifique de Bruzelles, 81(11), 115—
118.

Tanaka, H., Tokunga, T., and Aizawa, M. (1996). Integration of morphological
and syntactical analysis based on GLR parsing. In H. C. Bunt and M. Tomita,
editors, Recent Advances in Parsing Technology, pages 325-342. Kluwer Aca-
demic Publishers, Dordrecht, The Netherlands.

Thorup, M. (1992). Ambiguity for incremental parsing and evaluation. Technical
Report PRG-TR-24-92, Program Research Group, Oxford University, Oxford,
UK.

Thorup, M. (1994a). Controlled grammatic ambiguity. ACM Transactions on
Programming Languages and Systems, 16(3), 1024-1050.

Thorup, M. (1994b). Disambiguating grammars by exclusion of sub-parse trees.
Technical Report 94/11, Dept. of Computer Science, University of Copen-
hagen, Denmark.

Tomita, M. (1985). Efficient Parsing for Natural Languages. A Fast Algorithm
for Practical Systems. Kluwer Academic Publishers.

Turner, D. A. (1985). Miranda: A non-strict functional language with poly-
morphic types. In J.-P. Jouannaud, editor, Proceedings IFIP International
Conference on Functional Programming Languages and Computer Architec-
ture, volume 201 of Lecture Notes in Computer Science, pages 1-16, Nancy,
France. Springer-Verlag.

Veldhuijzen van Zanten, G. E. (1988a). An attributed-LALR-parser generator
for syntactically ambiguous grammars. Master’s thesis, Department of Com-
puter Science, University of Twente, Enschede, The Netherlands.

Veldhuijzen van Zanten, G. E. (1988b). SABLE: A parser generator for ambigu-
ous grammars. Memoranda Informatica INF 88-62, Department of Computer
Science, University of Twente, Enschede, The Netherlands.

380

BIBLIOGRAPHY / D

Vigna, S. (1995). Specifying IMP(G) using ASF+SDF: A case study. In M. G. J.
van den Brand, A. v. Deursen, T. B. Dinesh, J. F. T. Kamperman, and
E. Visser, editors, Proc. ASF+SDF’95. A Workshop on Generating Tools from
Algebraic Specifications, pages 65—88. Technical Report P9504, Programming
Research Group, University of Amsterdam.

Vigna, S. (1996). Distributive Computability. Ph.D. thesis, Universita degli
Studi di Milano e di Torino.

Visser, E. (1993). Combinatory Algebraic Specification & Compilation of List
Matching. Master’s thesis, Department of Computer Science, University of
Amsterdam, Amsterdam.

Visser, E. (1994a). ASF+SDF to BTgX. User Manual. Programming Research
Group, University of Amsterdam.

Visser, E. (1994b). Writing course notes with ASF+SDF to WTEX. In T. B.
Dinesh and S. M. Uskiidarl, editors, Using the ASF+SDF environment for
teaching computer science, chapter 6. Collection submitted to NSF workshop
on teaching formal methods.

Visser, E. (1995a). A case study in optimizing parsing schemata by disambigua-
tion filters. In S. Fischer and M. Trautwein, editors, Proceedings Accolade95,
pages 153-167, Amsterdam. The Dutch Graduate School in Logic.

Visser, E. (1995b). A family of syntax definition formalisms. In M. G. J.
van den Brand et al., editors, ASF+SDF’95. A Workshop on Generating
Tools from Algebraic Specifications, pages 89-126. Technical Report P9504,
Programming Research Group, University of Amsterdam.

Visser, E. (1995c). Polymorphic syntax definition (extended abstract). In A. Nij-
holt, G. Scollo, and R. Steetskamp, editors, Algebraic Methods in Language
Processing AMiLP’95, volume 10 of Twente Workshops in Language Tech-
nology, pages 43-54, Enschede, The Netherlands. Twente University of Tech-
nology.

Visser, E. (1996a). Multi-level specifications. In A. van Deursen, J. Heering, and
P. Klint, editors, Language Prototyping. An Algebraic Specification Approach,
volume 5 of AMAST Series tn Computing, pages 105-196. World Scientific,

Singapore.

Visser, E. (1996b). Solving type equations in multi-level specifications (pre-
liminary version). Technical Report P9606, Programming Research Group,
University of Amsterdam, Amsterdam.

Visser, E. (1997a). A case study in optimizing parsing schemata by disam-
biguation filters. In A. Nijholt, editor, International Workshop on Parsing
Technology IWPT’97, Boston, USA. (To appear).

381

D / BIBLIOGRAPHY

Visser, E. (1997b). Character classes. Technical Report P9708, Programming
Research Group, University of Amsterdam.

Visser, E. (1997¢). Executable specification of programming languages. (Draft).

Visser, E. (1997d). A family of syntax definition formalisms. Technical Report
P9706, Programming Research Group, University of Amsterdam.

Visser, E. (1997e). Polymorphic syntax definition. Theoretical Computer Sci-
ence. (To appear).

Visser, E. (1997f). Scannerless generalized-LR parsing. Technical Report P9707,
Programming Research Group, University of Amsterdam.

Vittek, M. (1994). ELAN: Un cadre logique pour le prototypage de language de
programmation avec contraintes. Ph.D. thesis, Université Henri Poincaré —
Nancy I, Nancy, France.

Voisin, F. (1986). CIGALE: a tool for interactive grammar construction and
expression parsing. Science of Computer Programming, 7, 61-86.

Wadler, P. and Blott, S. (1989). How to make ad-hoc polymorphism less ad hoc.
In 16’th Symposium on Principles of Programming Languages (POPL’89),
pages 60—67, Austin, Texas. ACM Press.

Wagner, T. A. and Graham, S. L. (1997). Incremental analysis for real program-
ming languages. SIGPLAN Notices, 32(5), 31-43. Proc. of the 1997 ACM
SIGPLAN Conferene on Programming Language Design and Implementation
(PLDI).

Walters, H. and Kamperman, J. (1996). Epic 1.0 (unconditional), an equational
programming language. Technical Report CS-R9604, Centrum voor Wiskunde
en Informatica (CWI), Amsterdam.

Warren, D. S. (1992). Memoing for Logic Programs. Communications of the
ACM, 35(3), 94-111.

Watt, D. A. (1977). The parsing problem for affix grammars. Acta Informatica,
8(1), 1-20.

Wechler, W. (1992). Universal Algebra for Computer Scientists, volume 25 of
EATCS Monographs on Theoretical Computer Science. Springer-Verlag.

Wharton, R. (1976). Resolution of ambiguity in parsing. Acta Informatica,
6(4), 387-395.

van Wijngaarden, A., Mailloux, B. J., Peck, J. E. L., Koster, C. H. A., Sintzoff,
M., Lindsey, C. H., Meertens, L. G. L. T., and Fisker, R. G., editors (1976).
Revised Report on the Algorithmic Language Algol 68. Springer-Verlag, Berlin
Heidelberg New York.

382

BIBLIOGRAPHY / D

Williams, M. H. (1982). A flexible notation for syntactic definitions. ACM
Transactions on Programming Languages and Systems, 4(1), 113-119.

Wirth, N. (1977). What can we do about the unnecessary diversity of notation
for syntactic definitions. Communications of the ACM, 20(11), 822-823.

383

