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Abstract

Building large, heterogeneous, distributed software systems poses serious problems for the software
engineer; achieving interoperability of software systems is still a major challenge.

In a previous paper, we have proposed to get control over the possible interactions between software
components (“tools”) by forbidding direct inter-tool communication. Instead, all interactions are con-
trolled by a process-oriented “script” that formalizes all the desired interactions among tools. This leads
to a component interconnection architecture resembling a hardware communication bus, and therefore
we call it a “TooLBus”.

Based on the experience with our previous proposal, we extend TooLBUs scripts with features like
conditionals and simple operations on the built-in data type of terms. More significantly, we introduce
discrete time and give detailed descriptions of the protocol between TooLBUS and tools. As a result,
we can completely define the dynamic connection and disconnection of tools as well as notions like
“monitoring” the execution of the TooLBUS and “dynamic reconfiguration” of the TooLBUS during
execution.

These extensions are defined in a generic framework intended for the experimentation with new
TooLBuUs features.
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Chapter 1

Introduction

Building large, heterogeneous, distributed software systems poses serious problems for the software en-
gineer. Systems grow larger because the complexity of the tasks we want to automate increases. They
become heterogeneous because large systems may be constructed by re-using existing software as compo-
nents. It is more than likely that these components have been developed using different implementation
languages and run on different hardware platforms. Systems become distributed because they have to
operate in the context of local area networks.

It is fair to say that the interoperability of software components is essential to solve these problems.
The question how to connect a number of independent, interactive, tools and integrate them into a well-
defined, cooperating whole has already received substantial attention in the literature (see, for instance,
[SvdB93]), and it is easy to understand why:

e by connecting existing tools we can reuse their implementation and build new systems with lower
costs;

e by decomposing a single monolithic system into a number of cooperating components, the modu-
larity and flexibility of the systems’ implementation can be improved.

Tool integration is just one instance of the more general component interconnection problem in which
the nature (e.g., hardware versus software) and granularity (e.g., natural number versus database) of
components are left unspecified. As such, solutions to this problem may also increase our understanding
of subjects like modularization, parameterization of datatypes, module interconnection languages, and
structured system design.

In a previous paper [BK94], we have proposed the use of process-oriented “TooLBUS scripts” for
describing tool interactions. This paper has two aims:

e Introducing a number of new features based on the experience with our previous proposal.

e Establishing a framework for the design of and experimentation with such new features.

Where [BK94] used a script interpreter in which all language features were built-in, we propose here an
extensible approach that allows the arbitrary combination of language features thus yielding a “family”
of component interconnection languages.

The plan for the paper is as follows. In the following sections! we first summarize current research in
tool integration and relate it to our work. In Chapter 2 we will briefly describe the TooLBUS architecture
and all the features used in TooLBUSs scripts (or T scripts for short). Next, we give several annotated
examples in Chapter 3. A number of common notions like terms, matching and substitution are defined
in Chapter 4. The global definition framework is presented in Chapter 5, where also two examples of
TooLBUS interpreters are given. A list of TooLBUS features for processes and tools are described in
Chapter 6, respectively, Chapter 7. A discussion in Chapter 8 concludes the paper. In Appendices A-D
and the Index we provide cross-reference information to facilitate reading the specifications in this paper.
In Appendix E we describe a discrete time process algebra for the TooLBUSs.

1These sections are updated versions of Sections 1.2 and 1.3 of [BK94].



2 1 Introduction

1.1 Current research in tool integration

1.1.1 Data integration

In its full generality, the data integration problem amounts to exchanging (complicated) data val-
ues among tools that have been implemented in different programming languages. The common ap-
proach to this problem is to introduce an intermediate data description language, like ASN-1 [ASN8T] or
IDDL [Sno89], and define a bi-directional conversion between datastructures in the respective implemen-
tation languages and a common, language-independent, data format.

Instead of providing a general mechanism for representing the data in arbitrary applications, we will
use a single, uniform, data representation based on term structures. A consequence of this approach is
that ezisting tools will have to be encapsulated by a small layer of software that acts as an “adapter”
between the tool’s internal dataformats and conventions and those of the TooLBUSs.

1.1.2 Control integration

The integration of the control of different tools can vary from loosely coupled to tightly coupled systems. A
loose coupling is, for instance, achieved in systems based on broadcasting or object-orientation: tools can
notify other tools of certain changes in their internal state, but they have no further means to interact.
A tighter coupling can be achieved using remote procedure calls. The tightest coupling is possible in
systems based on general message passing.

Broadcasting. The Field environment developed by Reiss [Rei90] has been the starting point of work
on several software architectures for tool integration. In these broadcast-based environments tools are
independent agents, that interact with each other by sending messages. The distinguishing feature of
Field is a centralized message server, called Msg, which routes messages between tools. Each tool in the
environment registers with Msg a set of message patterns that indicate the kinds of messages it should
receive. Tools send messages to Msg to announce changes that other tools might be interested in. Msg
selectively broadcasts those messages to tools whose patterns match those messages. Variations on this
approach can be found in [Ger88, GI90]. In [Clé90] an approach based on signals and tool networks
is described which has been further developed into the Sophtalk system [BJ93]. In [Boa93] the SPLICE
system is described, a network-based approach in which each component is controlled by an “agent” and
agents communicate with each other through global broadcasting. These and similar approaches lead to
a new, modular, software structure and make it possible to add new tools dynamically without the need
to adjust existing ones. A major disadvantage of most of these approaches is that the tools still contain
control information and this makes it difficult to understand and debug such event-driven networks. In
other words, there is insufficient global conirol over the flow of control in these networks. An approach
closely related to broadcasting is blackboarding: tools communicate with each other via a common global

database [EM88].

Object-orientation. Similar in spirit are object-oriented frameworks like the Object Request Broker
Architecture proposed by the Object Management Group [ORB93] or IBM’s Common Blue Print [BM93].
They are based on a common, transparent, architecture for exchanging and sharing data objects among
software components, and provide primitives for transaction processing and message passing. The current
proposals are very ambitious but not yet very detailed. In particular, issues concerning process cooper-
ation and concurrency control have not yet been addressed in detail. These efforts reflect, however, the
commercial interest in reusability, portability and interoperability.

Remote procedure calls. In systems based on remote procedure calls, like [Gib87, BCL*87], the
general mode of operation is that a tool executes a remote procedure call and waits for the answer to be
provided by a server process or another tool. This approach is well suited for implementing client/server
architectures. The major advantage of this approach is that flow of control between tools stays simple and
that deadlock can easily be avoided. The major disadvantage, however, is that the model is too simple to
accommodate more sophisticated tool interactions requiring, for instance, nested remote procedure calls.
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See, for instance, [TvR85, BJ94] for an overview of these and related issues in the context of distributed
operating systems.

General message passing. The most advanced tool integration can be achieved in systems based on
general message passing. In SunMicrosystems’ ToolTalk [TO092], data integration as well as generic
message passing are available. For each tool the names and types of the incoming and outgoing messages
are declared. However, a description of the message interactions between between tools is not possible.

Another system in this category is Polygen, described in [WP92], where a separate description is
used of the permitted interactions between tools. From this description, stubs* are generated to perform
the actual communication. The major advantage of this approach is that the tool interactions can be
described independently from the actual, underlying, communication mechanisms. The major disadvan-
tage of this particular approach is that the interactions are defined in an ad hoc manner, that precludes
further analysis of the interaction patterns like, for instance, the study of the dead lock behaviour of the
cooperating tools.

The hardware metaphor. Although the analogy between methods for the interconnection of hard-
ware components and those for connecting software components has been used by various authors, it
turns out that more often than not approaches using the same analogy are radically different in their
technical contents. For instance, in the Eureka Software Factory (ESF) a “software bus” is proposed
that distinguishes the roles of tools connected to the bus, like, e.g., user-interface components and service
components. As such, this approach puts more emphasis on the structural decomposition of a system
then on the communication patterns between components. See [SvdB93] for a more extensive discussion
of these aspects of ESF. A similar approach is Atherton’s Software Backplane described in [Bla93], which
takes a purely object-oriented approach towards integration.

In [Pur94], Purtillo proposes a software interconnection technology based on the “POLYLITH software
bus”. This research shares many goals with the work we present in this paper, but the perspectives are
different. Purtillo takes the static description of a system’s structure as starting point and extends it to
also cover the system’s runtime structure. This leads to a module interconnection language that describes
the logical structure of a system and provides mappings to essentially different physical realizations of
it. One application is the transparent transportation of software systems from one parallel computer
architecture to another one with different characteristics. We take the communication patterns between
components as starting point and therefore primarily focus on a system’s run-time structure. Another
difference is the prominent role of formal process specifications in our approach.

The notion of “Software IC’s” is proposed by several authors. For instance, [Cox86] uses it in a
purely object-oriented context, while [Clé90] describes a communication model based on broadcasting
(see above).

Control integration in the TooLBUs. The control integration between tools is achieved by using
process-oriented “T scripts” that model the possible interactions between tools. The major difference
with other approaches is that we use one, formal, description of all tool interactions.

1.1.3 User-interface integration

Two trends in the field of human-computer interaction are relevant here:

e User-interfaces and in particular human-computer dialogues are more and more defined using for-
mal techniques. Techniques being used are transition networks, context-free grammars and events.
There is a growing consensus that dialogues should be multi-threaded (i.e., the user may be simul-
taneously involved in more than one dialogue at a time) [Gre86].

e There is also some evidence that a complete separation between user-interface and application is
too restrictive [Hil86].

28mall pieces of interfacing software.
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We refer to [HH89] for an extensive survey of human-computer interface development and to [Mye92]
for a recent overview of the role of concurrency in languages for developing user-interfaces. Approaches
in this category that have some similarities with our approach are Abstract Interaction Tools [vdB88],
Squeak [CP85], and the use of ESTEREL for control integration [Dis94]. Abstract Interaction Tools uses
extended regular expressions to control a hierarchy of interactive tools. Squeak uses CSP to describe
the behaviour of input devices like a mouse or keyboard when building user-interfaces. Experience with
the Sophtalk approach we already mentioned earlier, has led to experiments to use (and extend) the
synchronous parallel language ESTEREL for describing all control interactions between tools.

We will not address user-interface integration as a separate topic, but it turns out that the control
integration mechanisms in the TooLBUS can be exploited to achieve user-interface integration as well.

1.2 The relation with Module Interconnection Languages

Module Interconnection Languages [PDN86] and modules in programming languages are the classical
solution to the problem of decomposing large software systems into smaller components. Modules can
provide certain operations to be used by other modules and they can require operations from other
modules. It is the task of the Module Interconnection Language (or the module mechanism) to establish
a type-safe connection between provided and required operations. The dynamic behaviour of modules is
usually not taken into account, e.g., the fact that the proper use of a “stack” module implies that first a
“push” operation has to be executed before a “pop” operation is allowed.

The approach to component interconnection to be presented in this paper, concentrates on these
dynamic, behavioural, aspects of modules. It shares many of the objectives of the work on “formal
connectors” [AG94], where (untimed) CSP is used to describe software architectures. Their work is more
ambitious than ours, since it aims at describing arbitrary software architectures, while we use a fixed
(bus-oriented) architecture. The mechanisms we use to configure our bus architecture are, however, more
powerful than the ones described in [AG94] (i.e., dynamic process creation, dynamic connection and
disconnection of components, time).

1.3 Ouwur approach

1.3.1 Requirements and points of departure

Before starting a more detailed analysis of component integration, it is useful to make a list of our
requirements and state our points of departure.

To get control over the possible interactions between software components (“tools”) we forbid direct
inter-tool communication. Instead, all interactions are controlled by a “script” that formalizes all the
desired interactions among tools. This leads to a communication architecture resembling a hardware
communication bus, and therefore we will call it a “TooLBUs”. Ideally speaking, each individual tool
can be replaced by another one, provided that it implements the same protocol as expected by other
tools. The resulting software architecture should thus lead to a situation in which tools can be combined
with each other in many fashions. We replace the classical procedure interface (a named procedure with
typed arguments and a typed result) by a more general behaviour description.

A “ToorLBus script” should satisfy a number of requirements:

e It has a formal basis and can be formally analysed.
e It is simple, i.e., it only contains information directly related to the objective of tool integration.

e It exploits a number of predefined communication primitives, tailored towards our specific needs.
These primitives are such, that the common cases of deadlock can be avoided by adhering to certain
styles of writing specifications.

e The manipulation of data should be completely transparent, i.e., data can only be received from
and sent to tools, but inside the TooLBUS there are no operations on them.
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e There should be no bias towards any implementation language for the tools to be connected. We
are at least interested in the use of C, Lisp, Tcl, and ASF+SDF for constructing tools.

e It can be mapped onto an efficient implementation.

1.3.2 The TooLBUS

Compared with other approaches, the most distinguishing features of the TooLBUS approach are:

e The prominent role of primitives for process control in the setting of tool integration. The major
advantage being that complete control over tool communication can be achieved.

e The use of time primitives.

e The absence of user-defined datatypes. Compare this with the abstract datatypes in, for instance,
LOTOS [Bri87], PSF [MV90, MV93], and uCRL [GP90]. We only depend on a free algebra of
terms and use matching to manipulate data. Only a small set of built-in operations on terms is
provided. Transformations on data can only be performed by tools, giving opportunities for efficient
implementation.
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Chapter 2

Overview of the ToolBus architecture

2.1 Global architecture

The global architecture of the TooLBUS is shown in figure 2.1. The TooLBUS serves the purpose of
defining the cooperation of a variable number of tools T; (i = 1,...,m) that are to be combined into
a complete system. The internal behaviour or implementation of each tool is irrelevant: they may be
implemented in different programming languages, be generated from specifications, etc. Tools may, or
may not, maintain their own internal state. Here we concentrate on the external behaviour of each tool.
In general an adapter will be needed for each tool to adapt it to the common data representation and
message protocols imposed by the TooLBuUSs.

The TooLBUSs itself consists of a variable number of processes! P; (i = 1,...,n). The parallel com-
position of the processes P; represents the intended behaviour of the whole system. Tools are external,
computational activities, most likely corresponding with operating system level processes. They come
into existence either by an execution command issued by the TooLBUS or their execution is initiated
externally, in which case an explicit connect command has to be performed by the TooLBus. Although
a one-to-one correspondence between tools and processes seems simple and desirable, we do not enforce
this and permit tools that are being controlled by more than one process as well as clusters of tools being
controlled by a single process.

Communication inside the TooLBuUs. Inside the TooLBUSs, there are two communication mech-
anisms available. First, a process can send a message (using snd-msg) which should be received, syn-
chronously, by one other process (using rec-msg). Messages are intended to request a service from
another process. When the receiving process has completed the desired service it usually informs the
sender, synchronously, by means of another message (using snd-msg). The original sender can receive
the reply using rec-msg. By convention, part of the the original message is contained in the reply (but
this is not enforced).

Second, a process can send a note (using snd-note) which is broadcasted to other, interested, pro-
cesses. The sending process does not expect an answer while the receiving processes read notes asyn-
chronously (using rec-note) at a low priority. Notes are intended to notify others of state changes in
the sending process. Sending notes amounts to asynchronous selective broadcasting. Processes will only
receive notes to which they have subscribed.

Communication between TooLBUs and tools. The communication between TooLBUs and tools
is based on handshaking communication between a TooLBUS process and a tool. A process may send
messages in several formats to a tool (snd-eval, snd-do, and snd-ack-event) while a tool may send the

1By “processes” we mean here computational activities inside the ToolBus as opposed to, for instance, processes at the
operating system level. When confusion might arize, we will call the former ToolBus processes” and the latter “operating
system level processes”. Typically, the whole ToolBus will be implemented as a single operating system level process. This
is also the case for each tool connected to the ToolBus.
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snd snd
TooLBUSs: e ‘ e
A

A

A 1

eval value
do
ack-event event

Y
Adapters:

TOOIS: B

Figure 2.1: Global organization of the TooLBUS

messages snd-event and snd-value to a TOOLBUS process. There is no direct communication possible
between tools.

The execution and termination of the tools attached to the TooLBUS can be explicitly controlled. It
is also possible to connect or disconnect tools that have been executing independently of the TooLBuUSs.

2.2 Types and terms

The only values that can be exchanged between the TooLBUS and tools or can be manipulated inside the
TooLBUS are terms: prefix expressions like, for example, true, add(3, mul(4,5)), and pair("eva",
age(7)). In some cases, the full generality of these terms can be used, but there are many cases that it
is better to formulate constraints that characterize the more specific forms of terms that are expected.
For instance, when maintaining a counter we know in advance that its only permitted values are integers
(and not arbitrary terms). As in many programming languages, we introduce a notion of type to express
such constraints.

Variables appearing in TooLBUS scripts will have to be declared to be of some type and it will be
enforced that only terms of the appropriate type will be assigned to variables.

We will use the following types:

e bool is a type and represents Boolean values.

e int is a type and represents integer values.

e stris a type and represents string values (strings of characters).

e list is a type and represents lists whose elements may have arbitrary types.

e list(Type) is a type and represents lists whose elements are of type Type.

e termis a type and represents arbitrary terms.

e A single identifier Id is a type and represents any constant term with function symbol Id.

e Id(Type;, Typez, ...) is a type, provided that T'ype;, T'ypes, ... are also types. It represents
terms of the form Id(Term,, Termz, ...) such that Term; is Type;.
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e [Typei, Types, ...1 isatype, provided that Type;, Types, ... are also types. It represents terms
of the form [Term;, Terms, ...] such that Term; is Type;.

We define terms as follows:
e A Boolean value Bool is a term.

e An integer value Int is a term.

e A string value String is a term.

e A variable Var is a term. We enforce the convention that variables start with an uppercase letter.

e A result variable Var? is a term.

e A single identifier Id is a term. We enforce the convention that identifiers start with a lowercase
letter.

e An application Id(Term;, Termz, ...) is a term, provided that Term;, Terms, ... are also
terms.

e Alist [Term;, Terms, ...] is a term, provided that Term;, Terms, ... are also terms.

e A placeholder <T'ype> is a term.

The basic data types Boolean, integer, and string are standard, and we will not elaborate on them in
this document.
We distinguish two kinds of occurrences of variables:

e Value occurrences of the form V whose value is obtained from the context in which they are used.

e Result occurrences of the form V'? who get a value assigned depending on the context in which they
occur; this may be either as a result of a successful match with another term, or as a result of an
assignment.

For instance, in a context where variable X has value 3, the term f(X) is equivalent to £(3). When,
on the other hand, the terms £(X?) and £(3) are matched, the value 3 will be assigned to variable X as
a result of this successful match.

Placeholders are intended to define term patterns in which certain positions are marked with the
required type at that position. For instance, add(<int>,<int>) defines the type of a function add with
two arguments of type int.

2.3 T scripts

A “TooLBus script” (or T script, for short) describes the complete behaviour of a system. A script
consists of the parallel composition of a number of process names, each defined by a process expression.
We start by defining “minimal T scripts” to which various extensions will be made later on.

2.3.1 Minimal T scripts

Minimal T scripts consist of the notions of atomic process, process expression, process definition, and
tool definition. The only atomic processes available are:

e delta: the atomic process corresponding to inaction,? mainly used for representing process termi-
nation.

e tau: an internal step of a process.

2Also know as “deadlock”, this explains the use of the (greek) letter “d”.
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Composite process expressions may have the following form:
e An atomic process.

e P; . P,: the sequential composition of process expression P; and process expression P;, i.e., P;

followed by Ps.

e P; + P;: the choice between process expression P; and process expression P;. Note that “+” has
lower precedence than “.”.

e A process invocation has the form Pname(Actuals). Pname will be replaced by its definition in
which formal parameter names are first replaced by their corresponding actual values. The actual
values should correspond with the declared formal parameters in number and type. Recursive
invocations are not allowed.

A process definition can define a process as follows:
process Pname (Formals) is P

Formals are optional and contain a list of formal parameter names (and their types).
A tool definition can define a tool as follows:

tool name (Formals) is { ... }

A tool has a name, formal parameters, and is characterized by a number of features: a list of (identifier,
string) pairs. Before a tool is executed, occurrences of formal parameter names in the strings defining
features are replaced by their actual value.

Our general approach here is that a tool definition should contain all information needed to execute an
instance of the tool, but we do not specify how a tool instance comes into existence. The interpretation
of the names of features is therefore not fixed here, but in the examples we will assume the following
feature names:

e command: the command needed to start the execution of a tool at the operating system level;
e host: the computer on which the tool will be executing.

A TooLBUS configuration is an encapsulated parallel composition of processes invocations. It has the
form:

toolbus (Pname;(Formalsi), ..., Pname,(Formals,))
A complete T script consists of a list of process and tool definitions followed by a single TooLBuUs

configuration.

2.3.2 Other features available in T scripts

The following primitives will be defined as orthogonal extensions to minimal T scripts:

Iteration (Section 6.1)

e P;* Py zero or more repetitions of process expression P; followed by process expression P, (binary
Kleene star). Note that “*” has a higher precedence than “.”.

Free merge (Section 6.2)

e P; || P,: the parallel composition of process expressions P; and P, inside one TOOLBUS process.
Note that no communication is possible between P; and P, since this is only permitted between pro-
cess expressions appearing in different TOOLBUS processes. This operator has a lower precedence
than +.
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Introduction of variables (Section 6.3)

e let Var;:Typer, ... 1in P endlet: introduce new variables and their required type in process
expression P. Variables are initialized to themselves, i.e., the initial value of Var; is the term
Var;: Type;.

Expressions (Section 6.5)

e V := Term: assigns the result of evaluating T'erm to variable V. Variables occurring in Term
are replaced by their current value. As a matter of principle, the number and meaning of function
symbols that can be used in Term is extensible rather than being fixed here. Each TooLBuUs
implementation may provide its own set of functions and we only require a function functions
that gives a list of all available functions and their signature. In a minimal system, the value
of functions will only contain its own signature, i.e., a function with name “functions”, zero
arguments, and a result of type list:

[function(functions,<list>)]

However, to be able to give meaningful examples the following function symbols will be given a
predefined meaning in this specification:

— Functions on Booleans: not, and, and or.

— Functions on Integers: add, sub, mul, mod, less, less-equal, greater, greater—equal, sec
(convert to seconds), and msec (convert to mill-seconds).

— Functions on lists: first, next, join, member, subset, diff, inter, and size.

— Miscellaneous: equal, not-equal, process-id (the identification of the current process),
process-name (the name of the current process), current-time (the current absolute time),
quote (literal term that is not evaluated, only the variables appearing in it are replaced by
their value), and functions (gives a list of all function symbols, and their signature, that have
a meaning in expressions).

For this collection of functions the value of functions will be:

[function(not (<bool>), <bool>),
function(and(<bool>,<bool>), <bool>),
function(or(<bool>,<bool>), <bool>),
function(equal(<term>, <term>), <bool>),
function(not-equal(<term>, <term>), <bool>),
function(add(<int>,<int>), <int>),
function(add(<int>,<int>), <int>),
function(sub(<int>,<int>), <int>),
function(mul(<int>,<int>), <int>),
function(less(<int>,<int>), <bool>),
function(less-equal(<int>,<int>), <bool>),
function(greater(<int>,<int>), <bool>),
function(greater-equal(<int>,<int>), <bool>),
function(first(<list>), <term>),
function(next (<list>), <list>),
function(join(<list>,<1list>), <list>),
function(member(<term>,<list>), <bool>),
function(subset (<1list>, <list>), <bool>),
function(diff(<1list>, <list>), <list>),
function(inter(<list>, <list>), <list>),
function(size(<1list>), <int>),
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function(process-id, <int>),
function(process-name, <str>),
function(quote(<term>), <term>),
function(functions, <list>)]

Conditionals (Section 6.6)

e if Term then P; else P, fi: Term should evaluate to a Boolean value. If it evaluates to true,
P; is executed, otherwise P is executed.

e if Term then P fi: Term should evaluate to a Boolean value and if it evaluates to true, P;
is executed. Otherwise, this construct reduces to delta meaning that the process in which this
conditional occurs can not further proceed and becomes inactive.

Dynamic process creation (Section 6.7)

e create: dynamically create a new TooLBUS process, given the name of its process definition
and actual parameter list (which may be empty). Formal parameters are textually replaced by
corresponding actual values and thus act as constants in the resulting process expression.

Discrete time, delay and timeout (Sections 6.9 and 6.10) The following attributes can be attached
to atomic processes, in order to define their behaviour in time:

e delay: relative execution delay.
e abs-delay: absolute execution delay.
e timeout: relative timeout for execution.
e abs-timeout: absolute timeout for execution.
We only permit the following combinations of these attributes:
e relative time: delay, delay/timeout, timeout.
e absolute time: abs-delay, abs-delay/abs-timeout, abs-timeout.

Other combinations, e.g., mixtures of relative and absolute time are forbidden. Note that time is deter-
mined by the actual clock time of the TooLBUSs and not by the clocks of the tools, since these may be
executing on different computers and their clocks are likely to be in conflict with each other.

Communication between TooLBUs processes. We make a distinction between messages (for bi-
nary, synchronous communication) and notes (for asynchronous broadcasting).
The primitives for messages are (Section 6.4):

e snd-msg and rec-msg: used for sending and receiving messages between two processes using syn-
chronous communication. A snd-msg can communicate with exactly one rec-msg that matches
the snd-msg’s argument list. Both atoms will assign values to result variables (marked with ?)
appearing in their argument lists; these can be used later on in the process expression in which
these atoms occur.

The primitives for notes are (Section 6.8):

e subscribe and unsubscribe: subscribe, respectively unsubscribe, to notes of a given form. A
process will only receive notes to which it has subscribed.
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e snd-note, rec-note, and no-note: used for sending and receiving notes via asynchronous, selective,
broadcasting. A snd-note is used to send to all (i.e., zero or more) processes that have subscribed
to notes of that particular form. Each process maintains a queue of notes that have been received
but have not yet been read. In this way, notes can never be lost. A rec-note will inspect the note
queue of the current process, and if the queue contains a note of a given form, it will remove the
note and assign values to variables appearing in its argument list; these can be used later on in the
process expression in which the rec-note occurs. A no-note succeeds if the note queue does not
contain a note of a given form; it does not affect the note queue.

Primitives for communication with tools (Section 7) The first group of primitives deals with the
explicit execution and connection of tools. They require a tool definition in the script in order to define
a mapping between the name of a tool as used in the script and the command needed to execute it.

e execute: start the execution of a tool.

e rec-connect: receive a request to establish a connection with a tool already executing outside the
TooLBuUs.

The second group of primitives deals with the communication between TooLBUS and tools:

e snd-eval: request a tool to evaluate a term. The first argument serves as the identification of the
tool, while the second argument is the term to be evaluated.

e rec-value: receive from a tool the result of a previous evaluation request.
e snd-cancel: cancel a previous snd-eval.
e snd-do: request a tool to evaluate a term and ignore the resulting value.

e rec-event: receive an event from a tool. The first argument of rec-event is a tool identification.
The second argument serves as an identification of the source of the event. The remaining, optional,
arguments give the details of the event in question.

e snd-ack-event: send an acknowledgement to a previous event received from a source. The as-
sumption is made (and enforced) that the next event from that particular source will not be sent
before the previous one has been acknowledged. Since one tool can generate events with different
sources, a certain internal concurrency in tools can be supported.

The third group of primitives deals with the monitoring of ToOLBUS processes by tools. We make a
distinction between three kinds of monitors:

e loggers are intended for the non-interactive recording of the behaviour of the processes being mon-
itored. Typical examples are system logging, generation of play back scripts, and the gathering of
performance information and statistics.

e wviewers are intended for interactive, but non-intrusive, viewing of processes. The monitored pro-
cesses wait for a continue message from the viewer before they proceed. Typical example is a
non-intrusive tracer/debugger.

e controllers are intended for the interactive, intrusive, control over processes. The monitored pro-
cesses wait for a continue message from the controller before they proceed. This continue message
may contain modifications to be made to the internal state of the processes or even to their process
expressions. Typical applications are intrusive debuggers, and applications that perform arbitrary
computations that want to use (parts of) the facilities of the TooLBUS during their computations.

The monitoring primitives are:
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e attach-monitor: attach a monitoring tool to a process. Note that any tool can act as a monitor
for any TooLBUS process. As a result, information will be sent to the tool allowing the detailed
monitoring of the execution of the process.

e detach-monitor: detach a monitoring tool from a process.
The fourth and last group of primitives deals with the termination and disconnection of tools:

e snd-terminate: terminate a currently executing tool.

e rec-disconnect: receive a request to disconnect a tool from the TooLBus(without terminating
its execution).

e shutdown: terminate all currently executing tools as well as all TooLBUS processes.

e reconfigure: reconfigure the TooLBUS by reading a new script, selectively deleting processes and
tools, and restarting the bus using the new script.



Chapter 3

Examples

3.1 A calculator

3.1.1 Informal description

Consider a calculator capable of evaluating expressions, showing a log of all previous computations, and
displaying the current time. Concurrent with the interactions of the user with the calculator, a batch
process is reading expressions from file, requests their computation, and writes the resulting value back
to file.

The calculator is defined as the cooperation of five processes:

e The user-interface process UI can receive the external events button(calc), button(showLog) and
button(showTime).

After receiving the “calc” button, the user-interface is requested to provide an expression (probably
by asked the user via a dialogue window). This may have two outcomes: cancel to abort the
requested calculation or the expression to be evaluated. After receiving the “showLog” button all
previous calculations are displayed.

The external event button(showTime) leads to the display of the current time. The user-interface
has the property that the “showTime” button can be pushed at any time, i.e. even while a calcula-
tion is in progress. This is reflected in the use of the merge operator (| |) in the process definition.

e The calculation process CALC which depends on a tool calc for performing the actual calculations.

e A process BATCH that reads expressions from file (by way of a tool batch) calculates their value,
and writes the result back on file.

e A process LOG that maintains a log of all calculations performed. Observe that LOG explicitly
subscribes to “compute” notes.

e A process CLOCK that can provide the current time on request (by way of a tool clock).

This example illustrates the, not completely trivial, connection of a user-interface and various tools.

3.1.2 T script for calculator

We present a complete, annotated, listing of the T script for the calculator. The actual script is presented
in a typewriter font, comments appear as ordinary (roman) text.

process CALC is
let Tid : calc, E : str, V : int
in
execute(calc, Tid?) .

15
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( rec-msg(compute, E?) . snd-eval(Tid, expr(E)) .
rec-value(Tid, V?) .
snd-msg(compute, E, V) . snd-note(compute(E, V))
) * delta
endlet

We take a closer look at the definition of the CALC process. First, three typed variables are introduced:
Tid (of type calc, a tool identifier representing the calc-tool, see below), E (a string variable representing
the expression whose value is to be computed), and V (an integer variable representing the computed value
of expressions). The first atom,

execute(calc, Tid?)

executes the calc-tool using the command (and optionally also the desired host computer) as defined
in calc’s tool definition. The result variable Tid gets as value a descriptor of this particular execution
of the calc-tool. All subsequent atoms (e.g., snd-eval, rec-event) that communicate with this tool
instance will use this descriptor as first argument. Next, we encounter a construct of the form

( rec-msg(compute, E?) ... ) * delta

describing an infinite repetition of all steps inside the parentheses. Note that inaction (delta) will be
avoided as long as there are other steps possible. Next, we see the atom

rec-msg(compute, E?)

for receiving a computation request from another process. Here, compute is a constant, and the variable
E will get as value a string representing the expression to be computed. Next, an evaluation request goes
to the calc-tool as a result of

snd-eval(Tid, expr(E))
The resulting value is received by
rec-value(Tid, V?)

Observe the combination of an ordinary variable Tid and a result variable V. Clearly, this atom should
only match with a value event coming from the calc-tool that was executed at the beginning of the CALC
process. It is also clear that V should get a value as a result of the match. A reply to the original request
rec-msg(compute, E?) is then given by

snd-msg(compute, E, V)
and this is followed by the notification
snd-note(compute(E, V))

that will be used by the LOG process.
The definition for the calc tool is:

tool calc is {command = '"calc'"}

The string value given for command is the operating system level command needed to execute the tool. It
may contain additional arguments as can be seen in the definition of the ui-tool below.

The user-interface is defined by the process UI. First, it executes the ui-tool and then it handles three
kinds of buttons. Note that the buttons “calc” and “log” exclude each other: either the “calc” button or
the “log” button may be pushed but not both at the same time. The “time” button is independent of
the other two buttons: it remains enabled while any of the other two buttons has been pushed.
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process UI is

let Tid : ui

in
execute (ui, Tid?)
( CALC-BUTTON(Tid) + LOG-BUTTON(Tid) ) * delta
I

TIME-BUTTON(Tid) * delta
endlet

tool ui is {command = "wish-adapter -script ui-calc.tcl"}

The treatment of each button is defined in a separate, auxiliary, process definition. They have a common
structure:

e Receive an event from the user-interface.

e Handle the event (either by doing a local computation or by communicating with other TooLBUSs
processes that may communicate with other tools).

e Send an acknowledgement to the user-interface that the handling of the event is complete.

process CALC-BUTTON(Tid : ui) is
let N : int, E : str, V : int
in

rec-event(Tid, N?, button(calc)) .

snd-eval(Tid, get-expr-dialog).

( rec-value(Tid, cancel)

+ rec-value(Tid, expr(E?))
snd-msg(compute, E) . rec-msg(compute, E, V?)
snd-do(Tid, display-value(V))

) . snd-ack-event(Tid, N)

endlet

process LOG-BUTTON(Tid : ui) is
let N : int, L : term

in
rec-event (Tid, N?, button(showLog))
snd-msg(showlog) . rec-msg(showlog, L?)
snd-do(Tid, display-log(L))
snd-ack-event (Tid, N)

endlet

process TIME-BUTTON(Tid : ui) is
let N : int, T : str

in
rec-event (Tid, N?, button(showTime)) .
snd-msg(showTime) . rec-msg(showTime, T?)
snd-do(Tid, display-time(T))
snd-ack-event (Tid, N)

endlet

The BATCH process executes the batch tool, reads expressions from file, computes their value by exchang-
ing messages with process CALC and writes an (expression, value) pair back to a file.

process BATCH is
let Tid : batch, E : str, V : int
in



18 3 Examples

execute(batch, Tid?)

( snd-eval(Tid, fromFile). rec-value(Tid, expr(E?)) .
snd-msg(compute, E). rec-msg(compute, E, V?).
snd-do (Tid, toFile(E, V))

) * delta

endlet

tool batch is {command = "batch"}

The LOG process subscribes to notes of the form compute (<str>,<int>),i.e., a function compute with a
string and an integer as arguments.

process LOG is

let Tid : log, E : str, V : int, L : term

in
subscribe(compute(<str>,<int>))
execute (log, Tid?)
( rec-note(compute(E?, V7)) . snd-do(Tid, writeLog(E, V))
+ rec-msg(showLog) . snd-eval(Tid, readLog)

rec-value(Tid, L?) . snd-msg(showLog, L)

) * delta

endlet

tool log is {command = "log"}

There are alternatives for the way in which the process definitions in this example can be defined. The
LOG process can, for instance, be defined without resorting to a tool in the following manner:

process LOG1 is

let Thelog : list, E : str, V : int

in
subscribe(compute (<str>,<int>))
TheLog := [1 .
( rec-note(compute(E?, V?)) . TheLog := join(TheLog, [[E, V1I)
+ rec-msg(showlLog) . snd-msg(showLog, TheLog)
) * delta

endlet

Instead of storing the log in a tool we can use a variable (TheLog) for this purpose in which we maintain
a list of pairs. We use the function “join” (list concatenation) to append a new pair to the list. Note
that join operates on lists, hence we concatenate a singleton list consisting of the pair as single element.
The process CLOCK executes the clock tool and answers requests for the current time.

process CLOCK is
let Tid : clock, T : str
in

execute(clock, Tid?)

( rec-msg(showTime)
snd-eval (Tid, readTime)
rec-value(Tid, T?)
snd-msg(showTime, T)

) * delta

endlet

tool clock is {command = "clock"}
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Finally, we define one of the possible TooLBUS configurations that can be defined using the above
definitions:

toolbus (UI, CALC, LOG1, CLOCK, BATCH)

3.2 A distributed auction

3.2.1 Informal description

Consider a completely distributed auction in which the auction master (auctioneer) and the bidders are
cooperating via a workstation in their own office. The problem is how to synchronize bids, how to inform
bidders about higher bids, and how to decide when the bidding is over. In addition, bidders may connect
and disconnect from the auction whenever they want.!

The auction is defined by the following processes:

e The auction is initiated by the process Auction which executes the “master” tool (the user-interface
used by the auction master) and then handles connections and disconnections of new bidders,
introduction of a new item for sale to the auction, and the actual bidding process. A delay is used
to determine the end of the bidding activity per item.

e A Bidder process is created for each new bidder that connects to the auction; it describes the
possible behaviour of the bidder.

This example illustrates the dynamic connection/disconnection of tools and the use of time.

3.2.2 T script for auction

The overall steps performed during an auction are described by the process Auction.

process Auction is
let Mid : master, Bid : bidder

in
execute (master, Mid?) . %% execute the master tool
( ConnectBidder (Mid, Bid?) %% repeat: add new bidder between sales
+ %% or
OneSale (Mid) %% perform one sale
) *
rec-disconnect (Mid) . %% until auction master quits
shutdown("Auction is closed") %% close the auction
endlet
tool master is { command = "wish-adapter -script master.tcl" }

The auxiliary process ConnectBidder handles the connection of a new bidder to the auction. It takes
the following steps:

e Receive a connection request from some bidder. This may occur when someone executes a bidder
tool outside the TooLBUS (may be even on another computer). As part of its initialization, the
bidder tool will attempt to make a connection with some TooLBUSs (the particular TooLBuUS is
given as a parameter when executing the bidder tool).

e Create an instance of the process Bidder that defines the behaviour of this particular bidder.

1This example is an extension of the example given in [Yel94], where it was used in the context of protocol conversion
and the generation of protocol adapters. We have added certain features, e.g., dynamic connection and disconnection of
bidders and time considerations, to approximate the behaviour of a “real” auction.
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e Ask the bidder for its name and send that to the auction master.

process ConnectBidder (Mid : master, Bid : bidder?) is
let Pid : int, Name : str

in
rec—connect (Bid?) . %% receive connection request from new bidder
create(Bidder (Bid), Pid?) . %% create a new Bidder process
snd-eval (Bid, get-name) . %% ask bidder for its name, and send it
rec-value(Bid, Name?) . %% to the master tool
snd-do (Mid, new-bidder(Bid, Name))

endlet

The auxiliary process OneSale handles all steps needed for the sale of one item:
e Receive an event from the master tool announcing a new item for sale.

e Broadcast this event to all connected bidders and perform one of the following steps as long as the
item is not sold:

— receive a new bid;
— connect a new bidder;
— ask for a final bid if no bids were received during the last 10 seconds;

— declare the item sold if no new bids arrive within 10 seconds after asking for a final bid.
The process definition is:

process OneSale(Mid : master) is

let Descr : str, %% Description of current item for sale
InAmount : int, %% Initial amount for item
Amount : int, %% Current amount
HighestBid : int, %% Highest bid so far
Final : bool, %% Did we already issue a final call for bids?
Sold : bool, %% Is the item sold?
Bid : bidder %% New bidder tool connected during sale

in

rec-event (Mid, new-item(Descr?, InAmount?))
HighestBid := InAmount .
snd-note(new-item(Descr, InAmount))
Final := false . Sold := false .
( if not(Sold) then
rec-msg(bid(Bid?, Amount?))
snd-do (Mid, new-bid(Bid, Amount))
if less-equal(Amount, HighestBid) then
snd-msg(Bid, rejected)
else
HighestBid := Amount .
snd-msg(Bid, accepted)
snd-note (update-bid (Amount))
snd-do(Mid, update-highest-bid(Bid, Amount))
Final := false

fi

if not(or(Final, Sold)) then
snd-note(any-higher-bid) delay(sec(10))
Final := true

fi
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+
if and(Final, not(Sold)) then
snd-note(sold(HighestBid)) delay(sec(10)) .
Sold := true
fi
+
ConnectBidder (Mid, Bid?) . %% add new bidder during a sale
snd-msg(Bid, new-item(Descr, HighestBid))
Final := false
) *
if Sold then snd-ack-event(Mid, new-item(Descr, InAmount)) fi
endlet

The Bidder process defines the behaviour of one bidder.

process Bidder(Bid : bidder) is

let Descr : str, %% Description of current item for sale
Amount : int, %% Current amount
Acceptance : term %% Acceptance/rejection of our last bid
in

subscribe(new-item(<str>, <int>)) . subscribe(update-bid(<int>)) .
subscribe(sold(<int>)) . subscribe(any-higher-bid)
( ( rec-msg(Bid, new-item(Descr?, Amount?))
+
rec-note(new-item(Descr?, Amount?))

)
snd-do (Bid, new-item(Descr, Amount)) .
( rec-event(Bid, bid(Amount?)) .
snd-msg(bid(Bid, Amount)) . rec-msg(Bid, Acceptance?)
snd-do (Bid, accept(Acceptance)) . snd-ack-event(Bid, bid(Amount))

rec-note(update-bid (Amount?)) . snd-do(Bid, update-bid(Amount))

rec-note(any-higher-bid) . snd-do(Bid, any-higher-bid)
+
rec-disconnect (Bid) . delta
) *
rec-note(sold(Amount?)) . snd-do(Bid, sold(Amount))
)
* delta
endlet

tool bidder(Name : str) is
{ command = "wish-adapter -script bidder.tcl -script-args -name Name" }

The complete auction is, finally, defined by the TooLBUS configuration:

toolbus (Auction)

3.3 Simulation of the one-dimensional wave equation

3.3.1 Informal description

In [KPvW95], an algorithm is described for computing the one-dimensional wave equation that models, for
instance, vibrations in a string. It computes the wave amplitudes y;(¢) at sample point 7 (1 <:< N —1)
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on the z-axis and sample moment ¢ by introducing a processor per sample point using the following
definitions:

vt + At) = F(yi(t), vi(t — At), yi-1(t), vira(t)) (3.1)
and

At 2
F(21,22,23,24) = 221 — 22 + (CE) (23 — 221 + 24), (3.2)

where Az is the (small) interval between the sampling points and ¢ is a constant representing the prop-
agation velocity of the wave in transversal direction.

We present a T script that performs precisely this computation. It consists of the following processes
and tools:

e The auxiliary process F is used to compute function F' defined above. We assume, in this example,
that terms may also be floating point numbers and that the functions radd (real addition), rsub
(real subtraction), and rmul (real multiplication) are available in expressions.

e The process P models a processor per sample point. It holds two values D and E representing,
respectively, the amplitude in the sample point at time ¢ — At and ¢.

e The process Pend models the end points of the string.
e The process MakeWave constructs N connected instances of P and two end points.

e A tool display is used to visualize the progress of the simulation.

This example illustrates the use of the TooLBUs for simulation purposes.

3.3.2 T script for wave equation

Compute the function F'. Note the use of the result parameter Res.

process F(Z1 : real, Z2 : real, Z3 : real, Z4 : real, Res : real?) is
let CATdX2 : real

in
CdTdX2 := 0.01 . %% arbitrary value for (c dt/dx)"2
Res := radd(rsub(rmul(2.0, Z1), Z2), %h 2z1 - z2 +
rmul (CATdX2, %h (c dt/dx) "2 *
radd(rsub(Z3, rmul(2.0, Z1)), Z4))) %% (z3 - 2z1 + z4)
endlet

Process P describes the behaviour of sample point I with left neighbour L and right neighbour R. The
amplitude in point I at time ¢ — At and ¢ is, respectively D and E. The current amplitude in point I is
written to display tool Tid. The global behaviour of P is:

e Receive the amplitudes of both neighbours.
e Send the amplitude E to both neighbours.
e Compute the new amplitude E at ¢ + At using auxiliary process F defined above.

e Repeat these steps.
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process P(Tid : display, L : int, I : int, R : int, D : real, E : real) is
let AL : real, AR : real, D1 : real

in
( ¢ rec-msg(L, I, AL?) %h receive amplitude of left neighbour
|l rec-msg(R, I, AR?) %% receive amplitude of right neighbour
Il snd-msg(I, L, E) %% send own amplitude to left neighbour
|l snd-msg(I, R, E) %% send own amplitude to right neighbour
|| snd-do(Tid, update(I, E)) %’ update own amplitude on the display
) .
D1 :=E .
F(E, D, AL, AR, E7?)
D :=D1
) * delta
endlet

Define the processes at the end points. I is the index of the end point, NB is its immediate neighbour.

process Pend(Tid : display, I : int, NB : int) is
let W : real
in
( rec-msg(NB, I, W?) || snd-msg(I, NB, 0.0) || snd-do(Tid, update(I, 0.0))) #* delta
endlet

Construct the processes Pendy, Py, ..., Py_1, Pendy.

process MakeWave(N : int) is
let Tid : display, Id : int, I : int, L : int, R : int

in
execute(display, Tid?) . %% create the display
snd-do (Tid, mk-wave(N)) . %% make an N point wave
create(Pend(Tid, 0, 1), Id?). %% create left end point
L := sub(l,1)
create(Pend(Tid, N, L), Id?) . %% create right end point
I:=1. %% create the P’s in between

if less(I, N) then
L := sub(I, 1) . R := add(I, 1)
create(P(Tid, L, I, R, 1.0, 1.0), Id?)
I := add(I, 1)
fi *
delta
endlet

Define the display tool.

tool display is { command = "wish-adapter -script ui-wave.tcl" }

Define the initial TooLBUS configuration.

toolbus (MakeWave (8))
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Chapter 4

Elementary notions used in the
ToolBus specification

As a preparation for the definition of the specification to be presented later on, we need the following
common notions:

e Terms: the basic term structures used (Section 4.1) and their typed variant (Section 4.2). Several
utility functions on terms are defined in Section 4.3.

e Environments: for associating values with variables (Section 4.4).

e Matching and substitution: for determining the match (or mismatch) between terms, and for re-
placing, in terms, variables by their value (Section 4.5).

4.1 Terms

The sort TERM will represent terms constructed from Booleans, integers, strings, prefix functions (with
or without arguments), lists of terms, variables, and term patterns as already explained in Section 2.2.
We assume the existence of appropriate modules Booleans and Integers; they are not further presented

here.

Module Terms
imports Integers(*1)
exports
sorts ID VNAME STRING TERM TERM-LIST VAR GEN-VAR
lexical syntax
[L\t\n] — LAYOUT
“% %" ~[\n]* — LAYOUT
[a-z][A-Za-20-9\—]* — ID
A\ [\ ]\ — STRING
context-free syntax

BOOL — TERM
INT — TERM
STRING — TERM
VNAME — VAR

VAR — GEN-VAR
VAR “7” — GEN-VAR
GEN-VAR — TERM
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“<” TERM *>" — TERM

ID — TERM

ID “(" TERM-LIST “)” — TERM

{TERM *" }x — TERM-LIST

“I" TERM-LIST “]" — TERM
variables

T [0-9')x — TERM

Ts[0-9%  — {TERM "} +
OptTs [0-9']% — {TERM “,” }x
Vname [0-9']* — VNAME

Var [0-9'])* — VAR

Vars [0-9"1x  — {VAR “" }x
GenVar [0-9']x — GEN-VAR
GenVars [0-9']x— {GEN-VAR “" }x
Id [0-9']* — ID

Int — INT

String [0-9']* — STRING

Note that the sort VNAME is defined here, but we postpone a definition of the actual syntactic form of
variables until Section 5.1. The sort VNAME may therefore be considered as a parameter as the definition
of terms.

4.2 Typed terms

The purpose of types is to control the use of and the assignment to variables (see Section 2.2). Technically,
types and terms have exactly the same syntactic structure, except that types may not contain variables.
For simplicity, we will represent types as terms and enforce this additional constraint.

Module TypedTerms
imports Terms(%1)

exports
sorts TYPE
context-free syntax
TERM — TYPE
VNAME “” TYPE — VAR
outermost-type-of( TERM) — TYPE
has-no-vars(TYPE) — BOOL
require-type (TYPE, TERM) — BOOL
variables
Type [0-9']x— TYPE
equations

Determine the outermost type of a term, i.e., the outermost function symbol of its type.

outermost-type-of( Bool) = bool [out-type-of-1]

outermost-type-of(/nt) = int [out-type-of-2]
outermost-type-of( String) = str [out-type-of-3]
outermost-type-of( Vname) = term [out-type-of-4]
outermost-type-of( Vname : Type) = Type [out-type-of-4]
Vname: Type ?) = Type [out-type-of-5]
/d) = Id [out-type-of-6]

/d(Opth)) = Id [out-type-of-7]

outermost-type-of

outermost-type-of

—_—= =N = =N =) = =2

outermost-type-of



4.3 Term utilities

outermost-type-of([Opt Ts]) = list
outermost-type-of(< T >) = out-type-of(T)

Check that a term does not contain variables.

has-no-vars(Bool) = true
has-no-vars(/nt) = true
has-no-vars(String) = true
has-no-vars( Var) = false

= true

has-no-vars(/d(OptTs)) has-no-vars([OptTs])

(
(
(
(
has-no-vars(/d)
(
(
(
(<

has-no-vars([T, OptTs]) = has-no-vars( T) A has-no-vars([OptTs])
has-no-vars []) = true
has-no-vars(< T >) = has-no-vars( T)

Check that a term has a certain required type.
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[out-type-of-7]

[out-type-of-8]

[has-no-vars-1]
[has-no-vars-2]
[has-no-vars-3]
[has-no-vars-4]
[has-no-vars-5]
[has-no-vars-6]
[has-no-vars-7]
[has-no-vars-8]

[has-no-vars-9]

[require-type-1]
[require-type-2]
[require-type-3]
[require-type-4]

[require-type-6]

require-type (bool, Bool) = true
require-type (int, Int) = true
require-type (str, String) = true
require-type (1ist, [OptTs]) = true
require-type (1ist(7T1), [T2, OptTs]) = require-type(T1, T2) A require-type( Ty, [OptTs]) [require-type-5]
require-type (1ist(T), []) = true
require-type (term, T) = true

Id = outermost-type-of( T)
require-type (/d, T) = true

require-type (/d(OptTs), Id(OptTs')) = require-type ([OptTs], [OptTs))

require-type ([T, OptTs;], [Tz, OptTs,]) =
require-type( Ty, T2) A require-type ([OptTs,], [OptTs,)])

require-type ([}, []) = true
require-type (< T1 >, T2) = require-type( Ty, T3)
require-type( Ty, T3) = false otherwise

4.3 Term utilities

Module TermUtils
imports Terms(%1)
exports

context-free syntax
ms-eq “(" TERM “” TERM *)” — BOOL

[require-type-7]

[require-type-8]

[require-type-9]

[require-type-10]

[require-type-11]
[require-type-12]
[require-type-13]
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append “(” TERM-LIST “;” TERM-LIST )" — TERM-LIST
is-elem “(” TERM “;" TERM-LIST )" — BOOL
ms-subset “(” TERM-LIST “;” TERM-LIST “)” — BOOL
ms-diff “(" TERM-LIST “” TERM-LIST “)” — TERM-LIST
ms-inter “(” TERM-LIST " TERM-LIST “” TERM-LIST “)” — TERM-LIST
ms-size “(” TERM-LIST “)” — INT
mk-term-list(TERM) — TERM-LIST
equations

The sort TERM-LIST will represent lists of terms. Several of the operations on lists below (i.e., ms-eq,
ms-subset, ms-diff, mk-inter) treat their argument list(s) as multi-set(s).
Equality predicate.

ms-eq(T; T) = true [ms-eq-1]

ms-eq([T, OptTs|; [OptTs;, T, OptTs,]) = ms-eq([OptTs|; [OptTs;, OptTs,]) [ms-eq-2]

ms-eq([]; []) = true [ms-eq-3]

ms-eq( T1; T2) = false otherwise [ms-eq-4]
Append.

append(OptTs;; OptTs,) = OptTs,;, OptTs, [append-1]

Is-element-of predicate.

is-elem(T; T, OptTs) = true [is-elem-1]
T#T = is-elem(T; T, OptTs) = is-elem(T; OptTs) [is-elem-2]
is-elem(T; ) = false [is-elem-3]

Subset predicate.

ms-subset(; OptTs) = true [ms-subs-1]

ms-subset( T, OptTs; OptTs,, T, OptTs,) = ms-subset(OptTs; OptTs,, OptTs,) [ms-subs-2]

ms-subset(OptTs;; OptTs,) = false otherwisgms-subs-3]
Set difference.

ms-diff(OptTs;, T, OptTs,; T, OptTsy) = ms-diff(OptTs;, OptTs,; OptTs3) [ms-diff-1]

ms-diff(OptTs,; ) = OptTs,; [ms-diff-2]

ms-diff(OptTs,; T, OptTs,) = ms-diff(OptTs;; OptTs,) otherwise  [ms-diff-3]
Set intersection

ms-inter(OptTs;, T, OptTs,; OptTsy, T, OptTs,; OptTsy) = [ms-inter-1]

ms-inter(OptTs;, OptTs,; OptTss, OptTs,; OptTsg, T)

ms-inter(OptTs;; OptTsy; OptTsy) = OptTs; otherwise [ms-inter-2]
Size (number of elements).

ms-size() =0 [ms-size-1]

ms-size( T, OptTs) = ms-size(OptTs) + 1 [ms-size-2]
Finally, we define a conversion operation that converts a term, if necessary, into a term list.

mk-term-list([OptTs]) = OptTs [mk-tl-1]

mk-term-list( T) =T otherwise [mk-tl-2]
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4.4 Environments

Environments are needed for representing the values of variables. They are also used for representing
variable bindings during the matching of terms.

Module Environments
imports TypedTerms(%2)
exports
sorts ENV ENTRY ENV-PAIR
context-free syntax

VAR “—" TERM — ENTRY
“I" {ENTRY “)" }x “I" — ENV
assign(VAR, TERM, ENV) — ENV
assign1(VAR, TERM, TERM, ENV) — ENV
value(VAR, ENV) — TERM
valuel(VAR, TERM, ENV) — TERM
update(ENV, ENV) — ENV
delete(TERM, ENV) — ENV
“(" ENV )" ENV )" — ENV-PAIR
nullEnvP — ENV-PAIR
envl(ENV-PAIR) — ENV
env2(ENV-PAIR) — ENV
declared-type (VNAME, ENV) — TYPE
env2term(ENV) — TERM
term2env(TERM) — ENV
variables

Entry [0-9']x — ENTRY

Entries [0-9']%*— {ENTRY “" }*

Env [0-9']% — ENV

EnvP [0-9']x — ENV-PAIR
equations
Environments (ENV) consist of zero or more (VAR, TERM) pairs, on which the operations assign and
value are defined yielding, respectively, an environment reflecting an assignment to a variable, and the
current value of a variable.

assign(Var, T, [Var— T, Entries]) = assignl(Var, T, T, [Entries)) [assign-1]

assign(Var, T, [|) = [Var+— T] [assign-2]
assign(Var, T, [Entries]) = [Entries']

assign(Var, T, [Var' — T, Entries]) = [Var' + T, Entries']

otherwise [assign-3]

The actual modification of the environment is performed by the auxiliary function assignl in which
essentially two cases are distinguished. If the old value of the variable Var whose value is to be updated is
not a result variable, then just replace the old value by the new one. If the old value is a result variable,
then perform the assignment to that result variable in the remaining environment. In this manner, a
mechanism resembling call-by-reference is defined that permits assignment to formal (result) parameters
of processes that are visible in the invoking process.

assignl(Var, T, Var', [Entries]) = [Var— T, Entries] [assign1-1]

assign(Var', T, [Entries]) = [Entries']
assignl(Var, T, Var' ? | [Entries]) = [Var — Var ?, Entries']

[assign1-2]

assignl(Var, T, T', [Entries]) = [Var T, Entries] otherwise [assign1-3]
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Observe that assignment to a variable that does not occur in the environment leads to the extension of
the environment with a new pair. In a similar way, we define the value function. Observe that the value
of an undefined variable is the variable itself.

value(Var, [Var— T, Entries]) = valuel(Var, T, [Entries]) [value-1]
value(Var, [|) = Var [value-2]
value(Var, [Var — T, Entries]) = value(Var, [Entries]) otherwise [value-3]
valuel(Var, Var', Env) = value(Var, Env) [value1-1]
valuel(Var, Va’ ? , Env) = value(Var, Env) [value1-2]
valuel( Var, T, Env) =T otherwise [value1]

The declared type of a variable can be retrieved from an environment in the following manner:

declared-type (Vname, [Vname : Type — T, Entries]) = Type [decl-type-1]
declared-type (Vname, []) = term [decl-type-2]
declared-type (Vname, [Vname' : Type' — T, Entries]) = [decl-type-3]

declared-type(Vname, [Entries]) otherwise

Given two environments, define an update function that updates the values of the variables in the second
environment with those in the first one.

assign(Var, T, [Entries']) = [Entries']

update([Var — T, Entries), [Entries']) = update([Entries], [Entries']) [update-1]

update([], [Entries]) = [Entries] [update-2]
Delete a list of variables from an environment.

delete([OptTs,, Var, OptTs,], [Entriesy, Var— T, Entriesy]) = [delete-1]

delete([OptTs,, OptTs,)], [Entries1, Entries;])

delete([], Env) = Env [delete-2]

delete( T, Env) = Env otherwise [delete-3]

Introduce the notion of environment pairs to represent pairs of variable-bindings. The empty pair is
defined as a useful value. In addition, two projection functions are defined on environment pairs.

nullEnvP = (D, |:|) [nullEnvP-1]
env1(([Entries1], [Entries3])) = [Entries;) [env1-1]
env2(([Entriesy], [Entriesy])) = [Entries;) [env2-1]

For reasons that will only become clear in Section 7.7, we will define a two way mapping between
environments and terms.

env2term([Entries]) = [OptTs]

env2term([Var — T, Entries]) = [entry(Var, T), OptTs] [e2t-1]

env2term([]) = ] fe212]
term2env([OptTs|) = [Entries]

[t2e-1]

term2env([entry(Var, T), OptTs]) = [Var— T, Entries]

term2env([]) = ] [t2e-2]
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4.5 Matching and substitution

Module Match
imports Environments(+4) TermUtils(*3) TypedTerms(%-2)

exports
context-free syntax
substitute(TERM, ENV) — TERM
nomatch — ENV-PAIR

match(TERM, ENV, TERM, ENV) — ENV-PAIR
match1(TERM, TERM, ENV-PAIR) — ENV-PAIR

cmatchp(TERM, TERM) — BOOL
equations
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Given a term, a process name and an environment, define the result of replacing all variable occurrences

in the term by their corresponding value in the environment.

substitute(Var, Env) = value(Var, Env)

substitute([OptTs|, Env) = [OptTs']
substitute(/d(OptTs), Env) = Id(OptTs')

substitute( T, Env) = T, substitute([OptTs|, Env) = [OptTs']
substitute ([T, OptTs|, Env) = [T', OptTs']
substitute([], Env) = []

substitute(T, Env) = T otherwise

[substitute-1]

[substitute-2]

[substitute-3]

[substitute-4]

[substitute-5]

Given two terms, and two environments, first replace all variables by their respective values and then
apply the auxiliary function matchl. Observe that the case of multiple occurrences of the same variable
in one of the terms is handled automatically by this preliminary substitution operation. The function
matchl has as arguments the two terms resulting from the substitution just mentioned and two lists
of variable bindings under construction (represented by an environment pair). matchl will fail if one
of the terms contains an uninstantiated variable. When successful, matchl yields an environment pair
representing the variable bindings needed to match the two terms. A failing match is represented by the

(new) constant nomatch.

T:' = substitute( Ty, Envi),
T>' = substitute( T2, Enva)

match( Ty, Envy, Ta, Envz) = match1(Ty', T2/, nullEnvP)

match1(Bool, Bool, EnvP) = EnvP
match1(/nt, Int, EnvP) EnvP
match1(String, String, EnvP) = EnvP

[Entries;] = envl( EnvP),
value(Var, [Entries;]) = Var,
Var = Vname : Type,
require-type( Type, Tp) = true

match1(Var ? , Ty, EnvP) = ([Var — T,, Entries], env2(EnvP))

[match-1]

[match1-1]
[match1-2]
[match1-3]

[match1-4]
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value(Var, envl(EnvP)) = T,

[match1-5]
matchl(Var ? |, Ty, EnvP) = EnvP
[Entries] = env2( EnvP),
value(Var, [Entriesy]) = Var,
Var = Vname : Type,
require-type( Type, T1) = true
- [match1-6]
match1( Ty, Var? , EnvP) = (envl(EnvP), [Var — Ty, Entries;))
value(Var, env2(EnvP)) = Ty
[match1-7]
match1( Ty, Var? , EnvP) = EnvP
match1(/d(OptTs,), Id(OptTs,), EnvP) = match1([OptTs,], [OptTs,], EnvP) [match1-8]
match1(T1, T2, EnvP) = EnvP,
match1([Tsi1], [Tsz], EnvP1) = EnvP;
[match1-9]
match1([ Ty, Tsi1], [Tz, Ts2], EnvP) = EnvP,
match1([Ty], [T2], EnvP) = matchl(Ty, T, EnvP) [match1-10]
match1([], [, EnvP) = EnvP [match1-11]
match1(T, T, EnvP) = EnvP [match1-12]

require-type( Ty, T2) = true
matchl(< Ty >, Ta, EnvP) = EnvP

require-type( Tz, T1) = true
match1( Ty, < T2 >, EnvP) = EnvP

[match1-13]

[match1-13]

match1( Ty, T2, EnvP) = nomatch otherwise [match1-13]

The function cmatchp matches two closed terms, i.e., terms not containing any variables. Observe that
matchl will always return nomatch when any of the terms does contain variables. The result is Boolean
value.
match1( Ty, Tz, nullEnvP) = ([Entries;], [Entries;])
cmatchp( Ty, T3) = true

[ecmatchp-1]

cmatchp( Ty, T2) = false otherwise [cmatchp]



Chapter 5

A framework for the interpretation
of T scripts

Interpreting a TooLBUs. Our next concern is the description of the operational behaviour of T
scripts. The Process Algebra semantics given in [BK94], describes all possible execution paths of a given
script. A usual approach to prototyping and verification would be to build a simulator that allows the
exploration of all these possible execution paths.

Here, we take a different approach since our goal is to obtain a real implementation of the system
as characterized by the script. This can only be achieved by interpreting the script in such a way that
specific execution paths are selected. We will therefore develop an interpreter for T scripts that includes
scheduling rules for selecting execution paths.

Randomized execution of T scripts. T scripts can be interpreted or compiled and the interpreter
to be described here is, in fact, a symbolic evaluator of process expressions. We insist that T scripts
are executed using randomized ezecution. This means that execution is performed in such a way that if|
according to the process algebra semantics, execution can go into different directions a “non-deterministic”
choice is made (probably involving the use of a random number generator). Using randomized execution
we guarantee that process algebra equations are correctness preserving transformations on T scripts.
This will prevent writing T scripts that make use of implementation dependent run-time properties of
execution that may turn out to be different in new implementations.

This is similar to the situation where a programming language contains equationally specified data
types and randomized execution is needed to guarantee that the data type axioms can be used as cor-
rectness preserving transformations.

Representing a TooLBUs. Our overall strategy is as follows. At any moment during interpretation
each process, say process k, is represented as px(Agny (<KAP1+ ...+ AP,>)). Each AP; is an action-prefiz
form, i.e., a process expression starting with an action, and represents a possible choice in the process.
AP; does not itself contain any +-operators. The operator Ag,, represents the local state of AP, where
Env is a mapping from variables to their respective values. The operator p represents a renaming that
identifies all atoms as belonging to process k. All other information related to a process is maintained in
a global bus state to be described in a moment.

The behaviour of the ToOLBUS can be characterized completely by the following parallel composition
of all processes in the TooLBUS:

)\BS(EScript({Pl(AEnvl(<AP11 + ...+ AP1n1>))||||Pm()\Envm(<APm1 + ...+ APmnm>))}))

The operator Escrip: represents process creation where Script is the T script being executed. The
operator Apggs represents, finally, the global state of the TooLBUSs. It consists of a variable number of
“bus assignments” of the form F := V where F is an identifier optionally indexed with a process index,
e.g., time or name(k).
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One interpretation step consists of selecting one alternative AP;; in each process—according to certain
fixed scheduling rules defined by the interpreter—and computing a new bus.

For descriptive purposes, we also model the tools connected to the ToOLBUS as processes. The
interpreter as a whole thus captures the input/output behaviour of the system described by the script:
given a T script and events coming from the tools connected to the TooLBUS, it computes responses
modeled by messages to the connected tools.

We should—once more—emphasize that interpretation implies scheduling, which excludes certain
possible execution paths. However, the path selected is among all possible paths as defined by its Process
Algebra semantics.

Specifying a ToorLBus. Our main concern is now to guarantee the eztensibility of the interpretation
method sketched above as well as of its specification. We have taken the following measures to ensure
this:

e New atomic or composite processes can always be added by extending the appropriate sorts in the

definition of T scripts (see Section 5.1: sorts ATOM, ATOMIC-FUN, and PROC).

e We use extensible record structures for representing the bus state (BUS-STATE). In this way, new
information can be added when the interpretation of new features requires this.

e Two functions are defined on the bus state:

— simple-atomic-step: for defining an atomic action in a single TooLBUS process.

— atomic-steps: for defining primitives that involve more than one process or tool.
By extending the definitions of these functions, new features can be added.
The kernel of our interpretation framework consists of the following notions:

e Minimal T scripts: Section 5.1.

e Prepare processes and terms: a general preparation phase whose primary aim is to resolve names,
i.e., postfix all variable names in process definitions with the name of the process definition in which
they occur. This phase can, however, be used to define local preprocessing and transformation of
terms, atoms and processes. (Section 5.2).

e The bus state: the representation of the complete TooLBUS state (Section 5.3).

e Action prefiz form: transform a process expression into a form that is well-suited for interpretation

(Section 5.4).

e The actual TooLBUS: represent the process behaviour of the TooLBUs and define fundamental
interpretation functions on it (Section 5.5).

Several TooLBUS interpreters using this framework are described separately in Section 5.6.

Structure of the specification. An overview of the import structure of the specification is shown in
Figure 5.1. The interpretation framework itself is represented by the solid boxes in the figure. All dashed
boxes represent language features described in Sections 6 and 7. The dashed arrows entering the box
labeled “interpreter(s)” represent imports of modules defining specific TooLBUSs features. By including
or excluding such imports, interpreters for a complete family of TooLBUS languages can be defined.
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Rationale for the style of specification. The specification presented here has the following charac-
teristics:

e An attempt has been made to stay as close as possible to the concepts and notations of Process
Algebra. When defining operations on process expressions, the standard approach is to normalize
them, i.e., replace all operators by simpler ones thus obtaining a normal form containing a limited
set of operators. The major advantage of this approach is simplicity, since more complex operators
can be defined axiomatically in terms of simpler ones. Operationally, however, this approach is less
suitable, since the resulting normal forms may become very large and their computation may be
very expensive.

In this specification we will use a fixed format of process expressions (as described above) and
manipulate them directly, without normalisation. This approach can be characterized as “lazy” as
opposed to “eager” normalisation before interpretation.

e A modular structure has been designed in which one feature is defined per module and modules
can be combined in (nearly) arbitrary fashions. The result is an extensible framework, but certain
artifacts of this modularisation are visible in the specification. For instance, we are forced to use
a representation of the global state of the TooLBUS that permits the addition of new fields later
on. Without this modular structure, we could have used a simpler representation that contains all
elements of the global state as fixed fields. Another artifact is the necessity to spread the definition
of certain functions (e.g., atomic-step) across several modules rather than defining it in one module.

e The specification should also give a very clear guidance for an implementation in C. Although not
immediately visible from the specification text itself, there is an obvious mapping from process
algebra operators to record constructors. From that perspective they play the role of containers of
information that is needed for the interpretation function.

The process algebra primitives used in the TooLBUSs. Process Algebra (ACP) is an algebraic
approach to the description of parallel, communicating, processes originally proposed in [BK84]. We will
use the axiom systems BPAs, PA and ACP as well as operators for renaming [Vaa90], iteration [BBP94],
process creation [Ber90], and state manipulation [BB88]. A summary of these axiom systems and operator
definitions is given in Appendix E. We refer to [BW90] for an elaborate description of Process Algebra.

The specification formalism AsF+SDF. AsF+SDF is a specification formalism for describing all syn-
tactic and semantic aspects of (formal) languages. It is an amalgamation of the formalisms Spr [HHKR89,
HK89b] for describing syntax, and AsF [BHK89b] for describing semantics.

ASF is a conventional algebraic specification formalism providing notions like first-order signatures,
import/export, variables, and conditional equations. The meaning of ASF specifications is based on their
initial algebra semantics. If specifications satisfy certain criteria, they can be executed as term rewriting
system.

SDF introduces the idea of a “syntactic front-end” for terms and equations defined over a first-order
signature. This creates the possibility to write first-order terms as well as equations in arbitrary concrete
syntactic forms: from a given SDF definition for some context-free grammar, a fixed mapping from strings
to terms can be derived. SDF specifications can be executed using general scanner and parser generation
techniques [HKR90, HKR92].

As already pointed out in [HK89a), significant abbreviations of algebraic specifications are possible by
permitting negative conditions in equations. In ASF+SDF we go one step further and also provide default
equations intended for defining in a single equation all “the remaining cases for defining a certain function”.
This is typically advantageous when defining equality-like functions, where all true cases are defined by
separate equations and all false cases can be captured by a single default equation. Semantically, default
equations can always be eliminated provided that the specification is sufficiently complete. Operationally,
they can be implemented using priority rewrite rules [BBKW89].

Support for writing ASF+SDF specifications is given in the ASF4+SDF Meta-environment described
in [K1i93].
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5.1 The syntax of minimal T scripts

Here we define the syntax of atoms (ATOM) and processes (PROC), process definitions (PROC-DEF), and
TooLBUs configurations (TB-CONFIG), and T scripts (T-SCRIPT).

Observe that we introduce here a sort for script variables (SVAR) that is used to extend the sort VAR
of variables in terms (see Section 4.1).

This definition of T scripts is “minimal” in the sense that several of the sorts introduced here (i.e.,
ATOM, ATOMIC-FUN, PROC, TOOL-DEF) are either empty, or are only minimally defined here. They will all
be extended later on.

A T script should satisfy the following static constraints:

e All names of defined processes should be different (even if they differ in number of formal parame-
ters).

e All process names appearing in a ToOLBUS configuration or in any process definition should have
been defined in some process definition.

e The number and type of actual parameters following a process name should be equal to the number
and type of formal parameters in the corresponding process definition.

e Recursive process invocations are not allowed.

Checking these constraints is straightforward. In the sequel, we will only consider T scripts that
satisfy all these constraints.

Module Tscript
imports Terms(*1)
exports
sorts ATOM ATOMIC-FUN PROC NAME PROC-APPL FORMALS
TB-CONFIG DEF T-SCRIPT

lexical syntax
[A-Z][A-Za-20-9\—]* — NAME

delta — ATOMIC-FUN
tau — ATOMIC-FUN

context-free syntax
NAME — VNAME
ATOMIC-FUN “(" TERM-LIST )" — ATOM
ATOMIC-FUN — ATOM
ATOM — PROC
PROC “ +" PROC — PROC {left}
PROC “” PROC — PROC {right}
“(" PROC “)’ — PROC {bracket}
NAME “(" TERM-LIST “y" — PROC-APPL
PROC-APPL — PROC
“(" {GEN-VAR “"}x “)" — FORMALS

process NAME FORMALS is PROC — DEF
toolbus “(" {PROC-APPL “"} + “)” — TB-CONFIG

DEFx TB-CONFIG — T-SCRIPT
priorities

PROC “”PROC — PROC > PROC “ 4+"PROC — PROC
variables

Pnm [0-9']* — NAME
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Name [0-9']x — NAME

Vars [0-9']* — {VAR “" }x

P [0-9')* — PROC

Atom [0-9']* — ATOM
AtomicFun [0-9']x— ATOMIC-FUN
ProcAppls — {PROC-APPL “"} +
TB-Config — TB-CONFIG
T-Script [0-9"]x — T-SCRIPT
Script [0-9']* — T-SCRIPT
Defs [0-9']* — DEFx

Formals [0-9']x — FORMALS

Chars — CHARx
exports
context-free syntax
“6" — ATOMIC-FUN
fun(ATOM) — ATOMIC-FUN
args(ATOM) — TERM

v(ATOMIC-FUN, ATOMIC-FUN) — BOOL
v1(ATOMIC-FUN, ATOMIC-FUN)  — BOOL

process-definition(NAME, T-SCRIPT) — DEF

parse(STRING) — T-SCRIPT

proc2term(PROC) — TERM

term2proc(TERM) — PROC

atomic-fun2string(ATOMIC-FUN) — STRING

name2string(NAME) — STRING
equations

To gain maximal flexibility, we will never access atoms directly using their concrete syntactic form.
Rather, we will obtain their function symbol and arguments through the following access functions fun
and args. In this way, it will be possible to make extensions of the sort ATOM without affecting other
modules in the specification.!

fun(AtomicFun(OptTs)) = AtomicFun [fun-std-1]
fun(AtomicFun) = AtomicFun [fun-std-2]
args(AtomicFun(OptTs)) = [OptTs| [args-std-1]
args(AtomicFun) = [args-std-2]

In TooLBUS scripts one can use the constants delta, but in this specification it will be represented by
the constant 6.

delta = § [delta-1]
Define the communication function +; it defines which atomic functions can communicate.

vy(AtomicFuny, AtomicFunsy) = [communication-1]

v1(AtomicFuny, AtomicFuns) V 1 (AtomicFuny, AtomicFun,)

Since v itself is commutative, we introduce an auxiliary (non-commutative) version of it (y;) that is
applied twice in the above definition. The default definition for v, is given below. Later on in the
specification, new communication pairs will be introduced by extending the definition of 7.

v1(AtomicFuny, AtomicFuny) = false otherwise [cm-def]

1See Section 6.6 for an example of such an extension.
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Define a lookup function on TooLBUS scripts to retrieve a process definition with a given name.

process-definition (Pnm, Defs; process Pnm Formals is P Defsy TB-Config) = [process-definition-1]

process Pnm Formals is P

In Section 7.8 the need will arize to have a two-way mapping between process expressions and terms.
Below we define these mappings for the constructs defined so far. In the remainder of the specification
we will systematically extend them for new constructs at the moment that new constructs are introduced
in the specification.

proc2term(atomic-fun( Chars)(OptTs)) = atom(string(""" Chars """), OptTs) [p2t-std]
proc2term(§) = atom("delta") [p2t-delta-1]
proc2term(delta) = atom("delta") [p2t-delta-2]
proc2term(tau) = atom("tau") [p2t-tau]
proc2term(P; + P2) = plus(proc2term(Py), proc2term(Pz)) [p2t-plus]
proc2term(Py . P;) = dot(proc2term(P;), proc2term(Pz)) [p2t-dot]
proc2term(Pnm(OptTs)) = call(Pnm, OptTs) [p2t-call]
term2proc(atom(string(""" Chars """), OptTs)) = atomic-fun(Chars)(OptTs) [t2p-std]
term2proc(atom("delta')) = delta [t2p-delta]
term2proc(atom("tau")) = tau [t2p-tau]
term2proc(plus( Ty, T2)) = term2proc(T1) + term2proc(Ts) [t2p-plus]
term2proc(dot( 71, T2)) = term2proc( T1) . term2proc(T3) [t2p-dot]
term2proc(call(Pnm, OptTs)) = Pnm(OptTs) [t2p-call]
atomic-fun2string(atomic-fun(Chars)) = string(""" Chars """) [af2s-1]
name2string(name( Chars)) = string(""" Chars """) [n2s-1]

5.2 Prepare atoms, processes and terms

Module Prepare
imports Tscript(®1) Environments(+4)

exports
context-free syntax
NAME “$” NAME — VNAME
prep-term(TERM, NAME, ENV) — TERM
prep-term-list(TERM-LIST, NAME, ENV) — TERM-LIST
prep-proc(PROC, NAME, ENV) — PROC
equations

One global name space is shared between all processes in the TooLBUS. To avoid name conflicts, each
name is implicitly postfixed with the name of the process in which it occurs. Clashes between names
declared in different process definitions are avoided by resolving names in process expressions in the
following manner:

e Suffix all variable names with the name of the process expression in which they occur. This avoids
name clashes when a process name appears inside a process expression and is expanded into its
corresponding definition.
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e Replace all variables that have an associated value in a given environment E by their value. This is
used for formal/actual parameter binding both for process instantiation (e.g., the use of a process
name inside a process expression), and for process creation (by means of create). In both cases,
formals are replaced by their actual values throughout the process expression associated with the
given process name. Note that result occurrences of formal/actual parameters (both marked with
?), are accessed via the environment to ensure that modifications made by a called process are

propagated to the environment of the calling process.

For convenience in the specification, also uniformly replace constants in terms by function applications

with an empty list of arguments (see, (prep-term-8), below)
Resolve names in terms.

prep-term(Bool, Pnm, Env) = Bool
prep-term(Int, Pnm, Env) = Int
prep-term(String, Pnm, Env) = String

Var = Name $ Pnm : declared-type(Name $ Pnm, Env),
value(Var, Env) = T, T# Var

prep-term (Name, Pnm, Env) = T

Var = Name $ Pnm : declared-type(Name $ Pnm, Env),
value(Var, Env) = Var

prep-term(Name, Pnm, Env) = Var

Var = Name $ Pnm : Type,
value(Var, Env) = T, T # Var

prep-term (Name : Type, Pnm, Env) = T

Var = Name $ Pnm : Type,
value( Var, Env) = Var

prep-term(Name : Type, Pnm, Env) = Var

prep-term(Name ? , Pnm, Env) = MName $ Pnm : declared-type(Name $ Pnm, Env) ?

prep-term(Name : Type ? , Pnm, Env) = Name $ Pnm : Type ?
prep-term(/d, Pnm, Env) 1d()
prep-term (/d(OptTs), Pnm, Env) = Id(prep-term-list(OptTs, Pnm, Env))

prep-term(T, Pnm, Env) = T', prep-term([OptTs|, Pnm, Env) = [OptTs']
prep-term ([T, OptTs|, Pnm, Env) = [T', OptTs]

prep-term([], Pnm, Env) = ||
Resolve names in term lists.

prep-term( T, Pnm, Env) = T', prep-term-list(OptTs, Pnm, Env) = OptTs'
prep-term-list( T, OptTs, Pnm, Env) = T', OptTs'

prep-term-list (T, Pnm, Env) = prep-term(T, Pnm, Env)
prep-term-list(, Pnm, Env) =

[prep-bool]
[prep-int]

[prep-str]

[prep-name-1]

[prep-name-2]

[prep-name-3]

[prep-name-4]

[prep-name-5]

[prep-name-6]
[prep-id-1]
[prep-id-2]

[prep-list-1]

[prep-list-2]

[prep-tl-1]

[prep-tl-2]
[prep-tl-3]
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prep-proc(AtomicFun(OptTs), Pnm, Env) = AtomicFun(prep-term-list(OptTs, Pnm, Env)) [prep-atom-1]

prep-proc(AtomicFun, Pnm, Env) = AtomicFun
prep-proc(Py + P2, Pnm, Env) =

prep-proc(Py, Pnm, Env) + prep-proc(P,, Pnm, Env)
prep-proc(P;y . Py, Pnm, Env) =

prep-proc(P1, Pnm, Env) . prep-proc(P2, Pnm, Env)

prep-proc(Pnm(OptTs), Pnm', Env) = Pnm(prep-term-list(OptTs, Pnm', Env))

5.3 The global state of the TooLBUs

[prep-atom-2]

[prep-plus]

[prep-dot]

[prep-call]

The global state of the TooLBUS will be represented by the sort BUS-STATE. We will introduce it in

two steps:
e Define a generic, extensible, datastructure for representing records (Section 5.3.1).

e Use this notion to define the specific bus state needed (Section 5.3.2).

5.3.1 Representing the TooLBUs state

Module StateRepr

imports Tscript(®1) Environments(+4)

exports
sorts BUS-VAL BUS-ASG FIELD BUS-STATE PROC-ID
context-free syntax

proc-id (INT) — PROC-ID
PROC-ID — TERM

ID — FIELD

ID “(” PROC-ID “)” — FIELD
FIELD “:=" BUS-VAL — BUS-ASG
no-bus-val — BUS-VAL
bus-state({BUS-ASG ;" }x) — BUS-STATE
BUS-STATE “.” FIELD — BUS-VAL
BUS-STATE “[" BUS-ASG “]” — BUS-STATE
duplicate (BUS-STATE, PROC-ID, PROC-ID) — BUS-STATE
dup1(BUS-STATE, PROC-ID, PROC-ID, BUS-STATE) — BUS-STATE
del-proc-id (BUS-STATE, PROC-ID) — BUS-STATE

variables

BS[0-97x  —» BUS-STATE
BusVal [0-9« — BUS-VAL
BusAsg [0-9']x — BUS-ASG
BusAsgs [0-9']x— {BUS-ASG “;" }x
Field [0-9')x = — FIELD
BS[0-9)x  — BUS-STATE

Pid [0-9  — PROC-ID
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equations

Introduce extensible records of (FIELD,BUS-VAL) pairs to represent the state of the TooLBUSs (sort BUS-
STATE). The actual sorts to be used have to be embedded in BUS-VAL. Access to this representation is
provided by the operator «.”
defined as follows.

Retrieve the value of a field.

. Values can be modified using the operator “[ ]”. This framework can be

bus-state( BusAsgs,; Field := BusVal, BusAsgs,) . Field = BusVal [retrieve-bus-1]

bus-state( BusAsgs) . Field = no-bus-val otherwise [retrieve-bus-2]
Assign a new value to a field.

bus-state( BusAsgs, ; Field := BusVal, BusAsgs,)[Field := BusVal] = [asg-bus-1]

bus-state(BusAsgs,; Field := BusVal'; BusAsgs,)

bus-state( BusAsgs, )[Field := BusVal] = bus-state(BusAsgs,; Field := BusVal) otherwise [asg-bus-2]
Duplicate all bus assignments for a given process identifier.

duplicate (BS, Pidy, Pidy) = dupl(BS, Pidy, Pids, bus-state()) [duplicate-1]

dup1(bus-state(/d(Pid1) := BusVal, BusAsgs,), Pid1, Pidz, bus-state( BusAsgs,)) = [dup1-1]
dupl(bus-state( BusAsgs, ), Pid1, Pid2, bus-state( BusAsgs,; Id(Pid,) := BusVal; Id( Pid;) := BusVal))

dup1(bus-state(), Pidy, Pidy, BS) = BS [dup2-2]

dup1(bus-state( BusAsg; BusAsgs,), Pid1, Pids, bus-state( BusAsgs,)) = [dup1-3]
dup1(bus-state( BusAsgs, ), Pid1, Pidz, bus-state( BusAsgs,; BusAsg)) otherwise

Remove all bus assignments for a given process identifier.

del-proc-id (bus-state( BusAsgs, ; Id(Pid) := BusVal; BusAsgs,), Pid) = [del-proc-id-1]
del-proc-id (bus-state( BusAsgs,; BusAsgs,), Pid)
del-proc-id(BS, Pid) = BS otherwise [del-proc-id-2]

This framework provides considerable flexibility that will be fully exploited in this specification:

e The constant no-bus-val will be used to catch uninitialized fields, giving an opportunity for properly
initializing them.

e The default equations for retrieval and assignment can be overruled by using fields whose value
is not explicitly stored in the bus state, but is rather recomputed on each retrieval and stored in
other parts of the bus state on each assignment. In this way, the access to specific fields can be
completely controlled by adding an equation for these cases.

e The duplicate function is used to define inheritance in a modular fashion.

5.3.2 Bus state

Module BusState
imports  StateRepr(5-3-1)
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exports
sorts CONTEXT
context-free syntax

PROC-ID — BUS-VAL
TERM — BUS-VAL
get-proc-name(BUS-STATE, PROC-ID) — TERM
get-new-proc-id (BUS-STATE) — PROC-ID
context(PROC-ID, ENV, T-SCRIPT, BUS-STATE) — CONTEXT
get-proc-id(CONTEXT) — PROC-ID
get-env(CONTEXT) — ENV
get-script(CONTEXT) — T-SCRIPT
get-bus-state(CONTEXT) — BUS-STATE
CONTEXT “/" ENV — CONTEXT
CONTEXT “/" T-SCRIPT — CONTEXT
CONTEXT “/" BUS-STATE — CONTEXT
is-enabled (ATOM, CONTEXT) — BOOL
variables

C [0-9')x— CONTEXT

equations

The bus state contains at least the following global fields:
e new-proc-id: a global counter for generating unique process identifiers.
e name(k): the name of the process definition used to create this process.

See Appendix D for a summary of all the global fields that will be used in this specification. As a
convention, define for each field F' of sort S that may occur in a BUS-STATE, a function with name get-F
with sort S as result sort.

BS . proc-name(Pid) = proc-name( String)

[get-proc-name-1]

get-proc-name(BS, Pid) = proc-name(String)

BS . new-proc-id = Pid = get-new-proc-id(BS) = Pid [get-new-proc-id-1]
get-proc-id (context(Pid, Env, Script, BS)) = Pid [cont-get-proc-id]
get-env(context(Pid, Env, Script, BS)) = Env [cont-get-env]
get-script(context(Pid, Env, Script, BS)) = Script [cont-get-script]
get-bus-state(context(Pid, Env, Script, BS)) = BS [cont-get-but-state]
context(Pid, Env, Script, BS) / En/ = context(Pid, Env', Script, BS) [cont-set-env]
context(Pid, Env, Script, BS) / Script'’ = context(Pid, Env, Script', BS) [cont-set-script]

context(Pid, Env, Script, BS) / BS'

context(Pid, Env, Script, BSI) [cont-set-bus-state]

By default, an atom is always enabled. By extending the definition below, conditionals will be defined
(see Section 6.6).

is-enabled (Atom, C) = true otherwise [is-enabled-def]
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5.4 Normalizing process expressions—action prefix form

Module ActionPrefixForm

imports Prepare(>-2) BusState(5-3-2) Match(%-5)

exports
sorts AP-FORM
context-free syntax

ATOM
ATOM “." PROC
“(” AP-FORM *)”

“<” {AP-FORM “ +"}x “>"

expand(PROC, CONTEXT)
sum(AP-FORM, AP-FORM)
make-sum(AP-FORM)
dot(AP-FORM, PROC)

create-env({GEN-VAR “"}x, NAME, {TERM “"}x, ENV)
bind-list({GEN-VAR “” }x, NAME, {TERM “"}%, ENV, ENV) — ENV

variables
AP [0-9']* — AP-FORM

APs [0-9')x — {AP-FORM “ +"} +
OAPs [0-9")x— {AP-FORM “ +" }x

equations

Transform process expressions into the action-prefic form < APy + ...

— AP-FORM
— AP-FORM
— AP-FORM
— AP-FORM

— AP-FORM
— AP-FORM
— AP-FORM
— AP-FORM

— ENV

{bracket}

+ AP, > that is well-suited

for interpretation. This will permit the use of list matching instead of associative matching over the
binary +-operator (associative matching is not available in AsF+SDF). In the specification, we represent
action prefix form by the sort AP-FORM. The function expand defines the actual conversion from PROC

to AP-FORM (using Process Algebra axioms A2, A4, and A5).

expand(Atom, () = Atom

expand(Atom . P, C) = Atom . P

expand((Py . P;) . Ps, C) = expand(P; . P2 . P;, C)

expand(P; . Pz, () = dot(expand(P1, C), P2) otherwise
expand(P; + P, () = sum(expand(P;, C), expand (P2, C))

[exp-atom]
[exp-dot-1]
[exp-dot-2]
[exp-dot-3]

[exp-plus]

Create a “flat” sum by eliminating é’s and by flattening nested +-operators. (using Process Algebra

axioms Al, A6, and AT).

sum(é, AP)

sum(AP, §)

sum(< OAPs; >, < OAPs; >)
sum(Atom, < OAPs >)
sum(Atom . P, < OAPs >)
sum(< OAPs > , Atom)
sum(< OAPs > , Atom . P)
sum(APy, AP3)

AP

AP

< OAPs; + OAPs, >
< Atom 4+ OAPs >

< Atom . P + OAPs >

= < OAPs + Atom >

< OAPs + Atom . P >
< APy + AP; >

otherwise

[sum-1]
[sum-2]
[sum-3]
[sum-4]
[sum-5]
[sum-6]
[sum-7]
[sum-8]

Conceptually, we add a final equation to the definition of sum to ensure the random expansion of sums.
It may be (but need not be) applied at any moment during the calculation of sum and permutes its

arguments.?

2In order to execute this specification, this equation has to be left out since it causes non-termination.
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sum(APy, AP;) = sum(AP2, AP;)

When necessary, the function make-sum turns an action prefix form into a sum of alternatives. It is used
to ensure that the top-level process expression of each process is always a sum.

make-sum(< OAPs >) = < OAPs > [make-sum-1]
make—sum(AP) = < AP > otherwise [make-sum-2]

Construct the “dot” of two process expressions P; and P, taking into account the inward propagation
of P, into sums occurring in P;.

dot(é, P) =6 [dot-1]
dot(Atom, P) = Atom. P [dot-2]
dot(Atom . Py, P;) = Atom.P; . P; [dot-3]
dot(< é + OAPs > , P») = dot(< OAPs >, P3) [dot-4]
dot(< Atom + OAPs > , P3) = sum(Atom . P, dot(< OAPs > | P;)) [dot-5]
dot(< Atom . Py + OAPs >, P,) = sum(Atom . Py . P;, dot(< OAPs >, P,)) [dot-6]
dot(< >, P) =6 [dot-7]

The function expand also takes care of expansion of process names. Recall that a process can be defined
by an equation of the form:

process Pnm Formals is P

Whenever Pnm appears as the leftmost operand of a process expression it is changed (by the expand)
into the disambiguated and expanded version of the process expression P. In this way, process names
are expanded into their definition only when needed and endless recursion due to the leftmost innermost
reduction strategy used by the ASF+4SDF system can be avoided.

process-definition ( Pnm, get-script(C)) = process Pnm (GenVars) is P,
Env = create-env(GenVars, Pnm, OptTs, get-env(C))

expand(Pnm(OptTs), C) = expand(prep-proc(P, Pnm, Env), C)

[exp-call]

Define the function create-env that is used for the construction of a new environment during process
creation.

create-env(GenVars, Pnm, OptTs, Env) = bind-list( GenVars, Pnm, OptTs, [|, Env) [create-env-1]

It uses the auxiliary function bind-list. Note the two forms of binding for “by-value” parameters (repre-
sented by the use of an ordinary variable as formal) and “by-reference” parameters (represented by the
use of a result variable as formal). See Section 4.4 for the treatment of both forms of binding.

require-type( Type, T) = true,
T' = substitute(T, Env),
[Entries'] = [Name $ Pnm : Type — T', Entries|

bind-list-1
bind-list(Name : Type, GenVars, Pnm, T, OptTs, [Entries], Env) = [bind-list-1]
bind-list( GenVars, Pnm, OptTs, [Entries'], Env)
[Entries'] = [Name $ Pnm : Type — Vname : Type ?, Entries]
[bind-list-2]

bind-list(Name : Type ?, GenVars , Pnm, Vname : Type ?, OptTs , [Entries], Env) =
bind-list(GenVars, Pnm, OptTs, [Entries'], Env)

Observe, in the following equation the two occurrences of the empty term list (denoted by the empty
string!).

bind-list(, Pnm, , [Entries|, Env) = [Entries] [bind-list-3]
bind-list(SVars, Pnm, OptTs, [Entries], Env) =[] otherwise [bind-list-4]

Observe that applying bind-list to lists of unequal length yields an empty environment.
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5.5 Representation and interpretation of a TooLBUS

Module ToolBus
imports ActionPrefixForm(54) Match(4-5)
exports
sorts TOOLS BUS E-PROCESSES PROC-REPR PROCESSES

NEXT-INFO L-AP-FORM
context-free syntax

“A" “ ENV “(” AP-FORM *)” — L-AP-FORM
“o" “” PROC-ID “(” L-AP-FORM *)" — PROC-REPR
mk-proc-repr(PROC-ID, ENV, AP-FORM) — PROC-REPR
get-pid(PROC-REPR) — PROC-ID
“0” — ATOM
“0” — PROC-REPR
“{* {PROC-REPR “ ||"}* “}" — PROCESSES
“E” “ T-SCRIPT “(” PROCESSES “)” — E-PROCESSES
“X" “ BUS-STATE “(" E-PROCESSES “)" — BUS
“v" “" NEXT-INFO “(" AP-FORM *)” — AP-FORM
info(ATOM, CONTEXT, PROC-ID) — NEXT-INFO
simple(ATOM, CONTEXT, PROC-ID) — NEXT-INFO
add-proc(PROC-APPL, PROC-ID, BUS) — BUS
add-procs({PROC-APPL “"} 4+, PROC-ID, BUS) — BUS
tools({PROC " }x) — TOOLS
add-tool(PROC, BUS) — BUS
add-tools(TOOLS, BUS) — BUS
create-bus(TOOLS, T-SCRIPT) — BUS
simple-atomic-step (ATOM, CONTEXT) — CONTEXT
atomic-steps(BUS, BOOL) — BUS
all-atomic-steps (BUS) — BUS
variables

Procs [0-9']x— {PROC “," }x

Tools [0-9']x— TOOLS

Chars [0-9']*— CHARx

B[0-9']« — BUS

w — BOOL

PR[0-9]x — PROC-REPR

PRs [0-9')+ — {PROC-REPR * |
equations

n}*

Structure of a BUS. Recall from Section 5 that a TooLBUSs is completely characterized by the following
process expression

)\BS(EScript({Pl(AEnvl(<AP11 + ...+ AP1n1>))||||Pm()\Envm(<APm1 + ...+ APmnm>))}))

The operands of the merge operator || all have the form pg(Agny(<AP; + ...+ AP,>)) and are the actual
“processes” that are executing in parallel. They will be represented by the sort PROC-REPR (process
representation) defined by the following functions. We will use the constant “00” (of sort ATOM)) as a
“cursor” in an action prefix form.

mk-proc-repr(Pid, Env, AP) = Ppid (/\Env (AP)) [mk-proc-repr-1]

get-pid ('OPid (’\Env (AP))) = Pid [get-pid-1]
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The merge operator itself will be represented as an n-ary operator of the form {PRil|...||PRy} (sort
PROCESSES) and we will use the constant “0” (of sort PROC-REPR) as a “cursor” in such a list of
processes.

A complete BUS is defined by enclosing a list of merged processes by a process creation operator
containing the complete T script (Escrip:) and a state operator containing the bus state (Aps).

The operator v will be used to determine the “next” step to be taken in a process expression. It is
parameterized with a function info with the following default meaning.

info(Atom, C, Pid) = simple(Atom, C, Pid) otherwise [info-def]

By extending the default definition of the function v below one can define, for instance, monitoring (see
Section 7.7.

Vsimple(Atom, C, Pidy) (O . P) = make-sum(expand(P, C)) otherwise [nu-def]

Construction of a BUS. A list of process names—as appearing in each TooLBUS configuration (TB-
CONFIG), see Section 5.1—can be transformed into a complete bus as follows. First, add-proc extends the
bus with a new process given a process name with optional actual parameters. This function will be used
in two manners: for the construction of the initial bus and, during interpretation, for the construction of
a new process resulting from a create atom (see Section 6.7).

process-definition (Pnm, Script) = process Pnm (GenVars) is P,
Pid; = get-new-proc-id (BS),
Pidy = proc-id(/Int),
Env = create-env(GenVars, Pnm, OptTs, []),
Pnm = name(Chars), String = string(""" Chars """),
AP = expand(prep-proc(P, Pnm, Env) . §, context(Pid,, Env, Script, BS)),
PR = mk-proc-repr( Pidy, Env, make-sum(AP)),
BS' = duplicate(BS, Pid;, Pids),
BS"” = BS[new-proc-id := proc-id(/nt + 1)][proc-name(Pid;) := proc-name(String)]

add-proc(Pnm(OptTs), Pidy, Ags (EScript ({PRs}))) = Agg! (EScript ({PRs || PR}))

[add-proc-1]

A complete bus can then be constructed by repeated application of add-proc:

add-proc(Pnm(OptTs), Pid, B) = B'
add-procs(Pnm(OptTs), ProcAppls, Pid, B) = add-procs(ProcAppls, Pid, B')

[add-procs-1]

add-procs(Pnm(OptTs), Pid, B) = add-proc(Pnm(OptTs), Pid, B) [add-procs-2]
Finally, define how a list of processes (representing tool behaviour) can be added to the bus state.

Pid = get-new-proc-id (BS),
Pid = proc-id(/nt),
AP = expand(prep-proc(P, TOOL, []) . é, context(Pid, [], Script, BS)),
PR = mk-proc-repr(Pid, [], make-sum(AP)),
BS' = BS[new-proc-id := proc-id(/nt + 1)][proc-name(Pid) := proc-name("TOOL")]

add-tool(P, Agg (Eg ., ({PRSY))) = Aggr (Eg iy ({PRs [[PRY)

[add-tool-1]

add-tool(P, B) = B’
add-tools(tools( P, Procs), B) = add-tools(tools( Procs), B')
add-tools(tools(), B) = B [add-tools-3]

[add-tools-1]
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Define the creation of a complete bus state.

Script = Defs toolbus(ProcAppls),

B= )‘bus—state(new—proc—id:: proc-id(0)) (EScript ({B3).
B' = add-procs(ProcAppls, proc-id(— 1), B),
B" = add-tools(tools( Procs), B')
create-bus(tools( Procs), Script) = B

[create-bus-1]

Interpretation of a BUS. Define the basic interpretation function atomic-steps which will be used later
on to define specific features. It loops through all processes in a bus and performs all possible atomic
steps in each process by repeatedly applying simple-atomic-step as long as this is possible. The function
simple-atomic-step will be defined separately for each specific feature (see Sections 6 and 7).

Perform a simple atomic step in the current process.

PR=pp., ()‘Env (< OAPs + Atom . P + OAPS' >)),

C = context(Pid, Env, Script, BS),
is-enabled (Atom, C) = true,
[OptTs] = args(Atom),
simple-atomic-step (fun(Atom)(OptTs), C) = C,
C' = context(Pid, Env', Script', BS'),
I _
PR = P pid (/\Em/ (Vinfo(Atom, C, proc-id(- 1)) (0. P))
atomic—steps(/\BS (EScript ({PRs1 || O || PR || PRs2})), W) =
({PRs; || PR" || O || PRsy})), true)

[as-1-trans]

atomic-steps(A BS/ (EScript'

Remove a process that has no choices left.
PR = P pid (/\Env (< 6 >)), BS' = del-proc-id(BS, Pid)

stomic-steps(\g (Egorpy ((PRor 1101 PR || PReD), W) =
atomic-steps(Agg (EScript ({PRs1 || O || PRs2})), W)

[as-2]

When all processes have been visited, continue, provided that some atomic step was executed in the
last iteration. The list of processes is randomly permuted® before proceeding to the next iteration of
atomic-steps.

{PRs} = {PRs; || PRs;}
atomic—steps(x\BS ( ({PRs || O})), true) =
({0 || PRsz || PRs1})), false)

E [as-3]
Script

atomic-stePS()‘Bs (EScript

The function atomic-steps terminates when all processes have been visited and no atomic step has been
executed,

atomic-steps()\BS (EScript ({PRs || O})), false) = Ags (EScript ({T || PRs})) [as-4]

Continue with the next process, if no atomic step can be done in the current one.

atomic-steps()\BS (EScript ({PRs1 || O || PR || PRs2})), W) = [as-5]

atomic—steps()\BS ( ({PRs1 || PR || O || PRs2})), W) otherwise

EScript

3This random permutation is important at the level of the formal specification given. When ezecuting this specification,
probably an arbitrary, fixed, choice will be made. We insist, however, that an actual implementation makes a random choice
here.
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Perform all possible atomic steps.
all-atomic-steps()\BS (EScript ({8 || PRs}))) = [all-at-steps-1]

atomic-steps()\BS ( ({8 || PRs})), false)

EScript
In the remainder of this specification we will give equations for the function simple-atomic-step for the
various atoms that can appear in T scripts. Here, we define only the case for a single 7 step.

simple-atomic-step (tau(), C) = C [tau]

5.6 Interpreters for T scripts

In this section we present two typical interpreters that can be defined in our framework. The first one
describes an untimed system, while the second one includes a notion of discrete time. Although the
definition of specific features is postponed until Section 6 and Section 7, we give the following definitions
here to illustrate the use of our framework.

5.6.1 A TooLBUS interpreter

Module Interpreter
imports ToolBus(®-%) |teration(6:1) FreeMerge(®-2) Messages(®4) Notes(®-8) Expressions(®-5)
Conditionals(®-®) Create(®”) Reconfigure(”8) Connect-Disconnect(7-3)

Execute-Terminate(”4) Eval-Do(7-5) Monitoring("") ToolControlProcess(7-2:2)
exports

context-free syntax
interpret(TOOLS, T-SCRIPT) — BUS

equations

The interpretation function interpret takes a description of the behaviour of tools executing in the outside
world and a TooLBUs configuration as input and produces the resulting BUS as result. To this end, the
external tool processes as well as the TooLBUS configuration are first converted into a new bus, which
is then interpreted using all-steps. The function add-TCP-defs will be defined in Section 7.2.2 and adds a
number of standard process definitions to the given T script.

interpret( Tools, Script) = [interpret-1]
all-atomic-steps (create-bus( Tools, add-TCP-defs( Script)))

Variations on this interpreter can made by including or excluding certain features from the list of
imports of this module.

5.6.2 A TooLBUS interpreter with time

The second interpreter, extends the previous one by also including a notion of “time” as defined in Sec-
tion 6.9 and the notions of “delay” and “timeout” as defined in Section 6.10. In the previous interpreter,
external actions completely dictate the behaviour of the system. In the following system, atomic actions
may be executed in each time slice resulting in a somewhat different structure of the interpretation rules.

Module InterpreterWithTime

imports  ToolBus(®-%) lteration(®-1) FreeMerge(®-2) Messages(®%) Notes(6®)
Expressions(®-5) Conditionals(®®) Create(6:7) Reconfigure(7:8)
Connect-Disconnect(73) Execute-Terminate(”:4) Eval-Do("-5) Monitoring(""")
ToolControlProcess(7-2:2) Delay-Timeout(6-10)



50 5 A framework for the interpretation of T scripts

exports
context-free syntax
interpret-dt(TOOLS, T-SCRIPT, INT) — BUS

variables
Time — INT
MaxTime— INT
equations

At time 1, the discrete time bus is created. The bus variables time and max-time are set to, respectively,
1 and the maximal time slice. (Both variables are introduced in Section 6.9.)

create-bus( Tools, add-TCP-defs(Script)) = ABs (EScript ({PRs}))

: p - [interpret-dt-1]
interpret-dt( Tools, Script, MaxTime) =

a||-atom|c-steps(/\Bs[time := ljmax-time := MaxTime)] (EScript ({PRs})))
We add a new equation for atomic-steps that may increment the state variable time until the maximal
time slice. Note that this new equation may always be applied until the maximal time slice. However,
we define not when it should be applied. This is as close as we can get to modeling a system in which
the execution time of atomic steps may vary and the time slice transitions are determined by an external
clock. An actual implementation will only apply this rule on predetermined moments, e.g., every second.
get-time(BS) = Time, Time < get-max-time(BS)
atomic—steps()\BS (EScript ({PRs})), W) =
atomlc—steps()\BS[time = Time + 1] (EScript ({PRs})), W)

[time-trans]



Chapter 6

Features of ToolBus processes

Given the interpretation framework defined in the previous sections, we are now in the position to define
features that can be fitted in the framework. When defining a new feature, the following extensions
can be made. Recall from Section 5.5 that the function atomic-steps is the fundamental interpretation
function defined on a bus.

New atoms can be added by extending the sort ATOMIC-FUN (Section 5.1) or by introducing atoms
with a completely new syntactic structure. In the latter case, the definitions of the functions fun, args
(Section 5.1) and prep-proc (Section 5.2) have to be extended as well. The interpretation of atoms can
be defined by extending the definition of the function simple-atomic-step (Section 5.5).

New composite process expressions can be added by extending the sort PROC (Section 5.1). The prepa-
ration of new process expressions has to be defined by extending the definition of prep-proc (Section 5.2).
Conversion to action prefix form has to be defined by extending the definition of expand (Section 5.4).

The function simple-atomic-step applies to “simple” atoms, i.e., atoms whose interpretation only relies
on information that is directly available to the process in which the atom appears.

When the interpretation of an atom involves information from other processes, extensions of atomic-
steps is the definition method of choice.

The features that will be introduced are:

e [teration (Section 6.1).

e Free merge (Section 6.2).

e Let (Section 6.3).

e Messages (Section 6.4).

e Ezpressions (Section 6.5).

e Conditionals (Section 6.6).

e Dynamic process creation (Section 6.7).
e Notification of processes (Section 6.8).
e Discrete time (Section 6.9).

e Delay and timeout (Section 6.10).

6.1 Iteration

Repeated execution of process expressions is achieved by the binary Kleene star P; * P,: it executes zero
or more repetitions of process P; followed by process Ps.
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Module Iteration
imports ToolBus(®-%)
exports
context-free syntax
PROC “¥" PROC — PROC {left}
priorities
PROC “«¥”PROC — PROC > PROC “"PROC — PROC

equations
Extend the preparation of processes (Section 5.2) for the iteration operator.

prep-proc(Py * Py, Pnm, Env) = prep-proc(Py, Pnm, Env) * prep-proc(Pz, Pnm, Env) [prep-iter]

Extend the expansion of process expressions (Section 5.4) for the iteration operator. Expansion of the
process expression P; * P, yields P; ; Py * P, + Pj, where P and Pj are the expanded version of
Py, respectively, Ps.

expand(P; x Py, C) = sum(expand(P; . Py * Py, C), expand(P2, C)) [exp-iter]
Extend the two-way mapping between process expressions and terms for the iteration operator.

proc2term( Py * P,)
term2proc(star(Ty, T2)) = term2proc(Ty) * term2proc(Tz) [t2p-iter]

star(proc2term(P;), proc2term(P;)) [p2t-iter]

6.2 Free merge

The parallel composition of two process expressions P; and P, inside one TooLBUS process is achieved
by the free merge operator P; || P,. Note that no communication is possible between P; and P, since
this is only permitted between process expressions appearing in different ToOLBUS processes.

Module FreeMerge
imports ToolBus(®-%)

exports
context-free syntax
PROC “||” PROC — PROC {right}
PROC “|| " PROC — PROC {right}
Imerge(AP-FORM, PROC) — AP-FORM
priorities
PROC “ ||"PROC — PROC < PROC “ +”"PROC — PROC(, PROC “|| "PROC — PROC <«
PROC “ +"PROC — PROC
equations

Extend the preparation of processes (Section 5.2) for the free merge operator.
prep-proc(Py || P2, Pnm, Env) = prep-proc(Py, Pnm, Env) || prep-proc(Ps, Pnm, Env) [prep-mrg]

Extend the expansion of process expressions (Section 5.4) for the free merge operator.

expand(P; || Pz, C) = sum(expand(Py || P2, C), expand(P: || P1, 0)) [exp-mrg-1]
expand((Py || Pz) || Ps, ) = expand(Py || Py || P3, O) [exp-mrg-2]
expand((P1 || P2) || Ps, C) = expand(Py || P2 || P3, O) [exp-mrg-3]
expand(P; || Ps, C) = Imerge(expand(Py, C), P2) [exp-mrg-4]



6.3 Let

Imerge(é, P) =6
Imerge(Atom, P) = Atom.P
= Atom. P1 || P2

Imerge(< AP 4+ OAPs >, P) = sum(Imerge(AP, P), Imerge(< OAPs >, P))

(
(
Imerge(Atom . P1, P3)
(
(

Imerge(< >, P) =6

Extend the two-way mapping between process expressions and terms for the merge operator.

proc2term(Py || P2) = merge(proc2term(P1), proc2term(P2))

term2proc(merge( Ty, T2)) = term2proc(T:1) || term2proc(Tz)

6.3 Let
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[Imerge-1]
[Imerge-2]
[Imerge-3]
[Imerge-4]
[Imerge-5]

[P2t-mrg]
[t2p-mrg]

New variables (and their required type) can be introduced in a process expression P by let Var; :

Typei1, ... 1in P endlet.

Module Let
imports ToolBus(®-5)
exports
sorts VAR-LIST
lexical syntax
delete-vars — ATOMIC-FUN
context-free syntax
{VAR “" }x — VAR-LIST
let {VAR “"}x in PROC endlet — PROC

extend (VAR-LIST, ENV) — ENV

prep-vars(VAR-LIST, NAME, ENV) — VAR-LIST

vars2term(VAR-LIST) — TERM

term2vars(TERM) — VAR-LIST
equations

Extend the preparation of processes (Section 5.2) for the let operator.

Var' = prep-term(Var, Pnm, Env),
Vars' = prep-vars(Vars, Pnm, Env)

prep-vars(Var, Vars, Pnm, Env) = Va/, Vars
prep-vars(, Pnm, Env) =

prep-vars(Vars, Pnm, Env) = Vars

prep-proc(let Varsin P endlet, Pnm, Env) =
let Vars' in prep-proc(P, Pnm, extend(Vars', Env)) endlet

has-no-vars( Type) = true,
extend (Vars, [Entries]) = [Entries’]

extend(Vname : Type, Vars, [Entries]) = [Vname : Type — Vname :

extend(, Env) = Env

Type, Entries']

[prep-vars-1]

[prep-vars-2]

[prep-let]

[extend-1]

[extend-2]
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Extend the expansion of process expressions (Section 5.4) for the let operator.

expand(let Varsin Pendlet, C) = expand(P . delete-vars(vars2term(Vars)), C / extend(Vars, gep-tnys(C)))
Delete the variables previously introduced by the let operator.

simple-atomic-step (delete-vars(T), C) = C / delete(T, get-env(C)) [endlet-1]
Extend the two-way mapping between process expressions and terms for the let operator.

vars2term( Vars) = [OptTs]
vars2term(Var, Vars) = [Var, OptTs|

[vars2term-1]

vars2term() = |:| [vars2term-2]

term2vars([OptTs]) = Vars
term2vars([Var, OptTs]) = Var, Vars

[term2vars-1]

term2vars([]) = [term2vars-2]

proc2term(let Varsin Pendlet) = letin(vars2term(Vars), proc2term(P)) [p2t-let]

Vars = term2vars( Ty)
term2proc(letin( Ty, T2)) = let Varsin term2proc(T;) endlet

[t2p-let]

6.4 Messages

The atoms snd-msg and rec-msg are intended for sending and receiving messages between two processes
using synchronous communication. A snd-msg can communicate with exactly one rec-msg that matches
the snd-msg’s argument list. Both atoms will assign values to result variables (marked with ?) appearing
in their argument lists; these can be used later on in the process expression in which these atoms occur.

Observe that the following specification defines binary, synchronous communication in its full gener-
ality, i.e., not only for the atoms snd-msg and rec-msg but for all pairs of atoms that can communicate.

Module Messages

imports ToolBus(®-5)

exports

lexical syntax

snd-msg — ATOMIC-FUN
rec-msg — ATOMIC-FUN

equations

Define relevant communications.

v1(snd-msg, rec-msg) = true [cm-msg]



6.5 Expressions

Define binary, synchronous, communication between processes.

PR; = P Pid, ()‘Envl (< OAPs; + Atom; . P1 + OAPs' >)),
PR, = PPid, (,\Em/2 (< OAPs; + Atom, . Py + OAPs,’ >)),
v(fun(Atomy), fun(Atoms)) = true,
C;1 = context(Pidy, Envy, Script, BS), C; = context(Pids, Enva, Script, BS),
is-enabled (Atomy, C;) A is-enabled (Atoms, C;) = true,
[Ts1] = args(Atomy), [Tsz] = args(Atomz),
([Entries1], [Entries3]) = match([Ts1], Envy, [Ts2], Envz),
Envi' = update([Entries1], Env1), Envy' = update([Entriesz], Envs),
r_
PRy = ppigy (MEnvy’ Winfo(Atoms, €1/ Envi!, Pidyy (B - P)).

"
PR = Ppig, (AEnvy' Winfo(Atoms, C, 1 Envy', Pidyy (O - P2)))

atomic—steps()\BS (EScript ({PRs || O || PRy || PRS || PRy || PRS"})), W) =
atomic-steps(Agg (EScript ({PRs || PRy || PRy’ || O || PRS' || PRs"})), true)

An explanation of the thirteen conditions of this equation is as follows:
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[msg-trans]

1-3 The list of processes contains processes PR; and PR; whose action prefix form has an alternative
that begins with communicating atoms Atom; and Atomy. Recall that the communication function

v was defined in Section 5.1.

4-6 Determine the context of each atom and check that each atom is enabled in its context.

7-9 If the arguments of these atoms match, we get a pair of variable bindings.

10-11 These variable bindings are used to update the environments of PR; and PR;. Observe that a
two-way flow of information between sender and receiver is possible due to the possible occurrence

of the ? operator in the arguments of both atoms.

12-13 The next step is determined in both process expressions.

In the right-hand side of the conclusion of this equation, the parallel merge of processes is updated. Also
note, that the second argument of atomic-steps is set to true to indicate that work could be done in some

process.

6.5 Expressions

The atomic process V' := Term assigns the result of evaluating T'erm to variable V. Variables occurring
in Term are replaced by their current value. Function symbols occurring in Term are interpreted as

already explained in Section 2.3.2.

Module Expressions
imports ToolBus(®-%)
exports
lexical syntax
asg — ATOMIC-FUN
context-free syntax
VAR “:=" TERM — ATOM
interpret(TERM, CONTEXT) — TERM
is-asg-compatible(VAR, TERM) — BOOL
equations
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Extend the preparation of processes (Section 5.2) to the assignment operator:

Var = prep-term(Name, Pnm, Env)

prep-proc(Name := T, Pnm, Env) = Var := prep-term (T, Pnm, Env) [prep-asg]
Extend the definition of the functions fun and args (Section 5.1).

fun(Var:= T) = asg [fun-asg]

args(Var:=T) = [Var, T [args-asg]

Define an interpretation function for expressions. In many of the following equations (e.g., interpret-1)
seemingly unnecessary conditions appear. These conditions are, however, necessary to convert the type
of the result of interpret (always of sort TERM) to a more specific type that is included in TERM (e.g.,

sort BOOL).
Interpretation of elementary values.

interpret(Bool, () = Bool [interp-bool]
interpret (/nt, C) = Int [interp-int]
interpret (String, C) = String [interp-str]
interpret(Var, C) = value(Var, get-env(()) [interp-var]
interpret(/d, C) = Id [interp-id]

interpret ([OptTs], C) = [OptTs']
interpret ([T, OptTs|, C) = [interpret(T, C), OptTs]

[interp-list-1]

interpret([], C) = [] [interp-list-2]

We leave the remaining, elementary, cases undefined (i.e., placeholder and application with one or more
arguments). Function application with one or more arguments are therefore only permitted if they are
defined by one of the following equations.

Operations on Booleans.

interpret(T, C) = Bool
interpret (not(T), C) = — Bool

[interp-not]

interpret( Ty, C) = Booly, interpret(T,, C) = Book
interpret(and( Ty, T3), C) = Booly A Bool,

[interp-and]

interpret( Ty, C) = Booly, interpret(T,, C) = Bool

 rerp.
interpret(or( Ty, T3), C) = Bool; V Bool, [interp-or]

Equality and inequality.
interpret(equal( Ty, T3), () = ms-eq(interpret( Ty, C); interpret( Ty, C)) [interp-equal]
interpret(not-equal( Ty, T3), () = — ms-eq(interpret( Ty, C); interpret( T2, C)) [interp-not-equal]

Operations on integers.

interpret( Ty, C) = Inty, interpret( Tz, C) = Inty
interpret(add( Ty, T3), C) = Int; + Int,

[interp-add]
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interpret( Ty, C) = Inty, interpret( Tz, C) = Inty
interpret (sub( Ty, T2), C) = Int; — Inty

interpret( Ty, C) = Inty, interpret( Tz, C) = Int;
interpret (mul( 71, T3), C) = Inty x Int,

interpret( Ty, C) = Inty, interpret( Tz, C) = Inty
interpret (less( Ty, T2), C) = Int; < Int,

interpret( Ty, C) = Inty, interpret( Tz, C) = Inty
interpret (less-equal( Ty, T3), C) = Int; < Inty

interpret( Ty, C) = Inty, interpret( Tz, C) = Int;
interpret (greater( Ty, T3), C) = Int; > Int,

interpret( Ty, C) = Int;, interpret( Ty, C) = Int,

interpret (greater-equal( Ty, Tz), C) = Int; > Int;
Operations on term lists.

interpret( T, C) = [Ty, OptTs|
interpret(£irst(7), () = T

interpret(T, C) = [Ty, OptTs|
interpret (next(T), C) = [OptTs

interpret(T1, C) = Ty, interpret( T2, C) = To'

interpret(join( Ty, T;), C) = [append(mk-term-list( T;'); mk-term-list( T5'))]

interpret(T1, C) = T1/, interpret( Ty, C) = T»'

interpret (member( Ty, T2), C) = is-elem( T1'; mk-term-list( T2'))

interpret( Ty, C) = T;/, interpret( T, C)

interpret (subset(T1, T2), C) = ms-subset(mk-term-list( 7;'); mk-term-list( T>"))

interpret(T1, C) = T1', interpret(T2, C) = T

interpret (diff( Ty, T2), C) = [ms-diff(mk-term-list( 71'); mk-term-list( 73'))]

interpret( Ty, C) = T, interpret( Ty, C) = T’

interpret (inter( Ty, Ta), C) = [ms-inter(mk-term-list( T;'); mk-term-list( T2'); )]

interpret(7, () = T'
interpret (size(T), C) = ms-size(mk-term-list( T"))
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[interp-sub]

[interp-mul]

[interp-less]

[interp-less-equal]

[interp-greater]

[interp-greater-equal]

[interp-first]

[interp-next]

[interp-join]

[interp-member]

[interp-subset]

[interp-diff]

[interp-inter]

[interp-size]
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Miscellaneous functions.

interpret(process-id, C) = get-proc-id(C) [interp-process-id]

get-proc-name(get-bus-state( C), get-proc-id(C)) = proc-name(String)

. . [interp-process-name]
interpret (process-name, C) = String

Quoting of terms.
interpret(quote(T), C) = substitute(T, get-env(C()) [interp-quote]
The signature of all predefined functions in expressions.

interpret (functions, C) = [function(not(< bool >), < bool >), [interp-functions]
function(and(< bool >, < bool >), < bool >),
function(or(< bool >, < bool >), < bool >),
function(equal(< term >, < term >), < bool >),
function(not-equal(< term >, < term >), < bool >),
function(add(< int >, < int >), < int >),
function(add(< int >, < int >), < int >),
function(sub(< int >, < int >), < int >),
function(mul(< int >, < int >), < int >),
function(less(< int >, < int >), < bool >),
function(less-equal(< int >, < int >), < bool >),
function(greater(< int >, < int >), < bool >),
function(greater-equal(< int >, < int >), < bool >),
function(first(< list >), < term >),
function(next(< list >), < list >),
function(join(< list >, < list >), < list >),
function(member(< term >, < list >), < bool >),
function(subset(< list >, < list >), < bool >),
function(diff(< list >, < list >), < list >),
function(inter(< list >, < list >), < list >),
function(size(< list >), < int >),
function(process-id, < int >),
function(process—name < str >)
function(quote(< term >), < term >),
function(functions, < list >)]

Define the atomic step resulting from interpretation of an assignment.

T = interpret(T, ),
is-asg-compatible(Var, T') = true,
EnV' = assign(Var, T', get-env(C))
simple-atomic-step (asg(Var, T), C) = C/ Env

[asg]

Define the notion assignment compatible. Assignment to a variable is allowed if it is either of type term
or it has the same type as the interpreted right hand side of the assignment.

is-asg-compatible(Mame $ Pnm : term, T) = true [is-asg-compat-1]

is-asg-compatible(Name $ Pnm : Type, T) = require-type(Type, T) otherwise [is-asg-compat-2]
Extend the two-way mapping between process expressions and terms for the assignment operator.

proc2term(Vname := T) = asg(Vname, T) [p2t-asg]
term2proc(asg(Vname, T)) = Vhame:=T [t2p-asg]
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6.6 Conditionals

Conditionals may have one of the two forms:

e if Term then P; else P, fi: Term should evaluate to a Boolean value. If it evaluates to true,
P; is executed, otherwise P is executed.

e if Term then P fi: Term should evaluate to a Boolean value and if it evaluates to true, P is
executed. Otherwise, this construct reduces to delta.

Module Conditionals
imports Tscript(®1) Expressions(®-5) StateRepr(®-3-1) Booleans(*1)
exports
context-free syntax
if TERM then PROC else PROC fi — PROC
if TERM then PROC fi — PROC

TERM “:—" ATOM — ATOM

add-cond(TERM, AP-FORM) — AP-FORM
equations
Conditionals are defined by extending atoms with a Boolean test (denoted by the conditional operator
:—) and by propagating tests appearing in conditionals to the level of atoms where they will ultimately
be evaluated. Observe that the evaluation of the test and, when it yields true, execution of the following
atom should be an indivisible, atomic, action in order to avoid possible intervening changes of the global
state.

fun(T :— Atom) = fun(Atom) [fun-cond]
args(T :— Atom) = args(Atom) [args-cond]

Extend the preparation of processes (Section 5.2) for conditionals.

prep-proc(if T then Py else P, fi, Pnm, Env) = [prep-ifte]
if prep-term (T, Pnm, Env) then prep-proc(P1, Pnm, Env) else prep-proc(Pz, Pnm, Env) fi

prep-proc(if T then Pfi, Pnm, Env) = [prep-ift]
if prep-term (T, Pnm, Env) then prep-proc(P, Pnm, Env) fi

Extend the expansion of process expressions (Section 5.4) for conditionals.

expand(if T then P; else P; fi, C) = [exp-ifte]
sum(expand(if T then Py fi, C), expand(if not(T) then P; fi, C))

expand(if T then Py fi . P;, C) = dot(add-cond(T, expand(Py, C)), P3) [exp-ift]
add-cond(T, 6) =46 [add-cond-1]
add-cond( T, Atom) = T:— Atom [add-cond-2]
add-cond( T, Atom . P) = T:— Atom . P [add-cond-3]
add-cond(T, < AP + OAPs >) = sum(add-cond(T, AP), add-cond( T, < OAPs >)) [add-cond-4]
add-cond(T, < >) =46 [add-cond-5]

Flatten nested conditions.

T, :— T, :— Atom = and(Ty, T;) :— Atom [flat-cond]
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Extend the is-enabled predicate for atoms with a non-empty condition.

interpret(T, C) = Bool
is-enabled (T :— Atom, C) = Bool

[is-enabled-cond]

Extend the two-way mapping between process expressions and terms for conditionals.

proc2term(Atom) = atom(OptTs)
proc2term( T :— Atom) = atom(OptTs, cond(T))

Atom = term2proc(atom(OptTs,, OptTs,))
term2proc(atom(OptTs;, cond(T), OptTs,)) = T :— Atom

[p2t-cond]

[t2p-cond]

6.7 Dynamic process creation

Dynamically create a new process, given the name of its process definition and actual parameter list
(which may be empty). Formal parameters are textually replaced by corresponding actual values and
thus act as constants in the resulting process expression.

Module Create
imports ToolBus(®%)
exports

context-free syntax

create “(" NAME “(" TERM-LIST “)* “” TERM “)” — ATOM

create — ATOMIC-FUN
pname(ATOM) — NAME
equations

Extend the preparation of processes (Section 5.2) for process creation.

prep-proc(create( Pnm(OptTs), T), Pnm', Env) = [prep-create]
create( Pnm(prep-term-list(OptTs, Pnm', Env)), prep-term (T, Pnm', Env))

Extend the definition of the functions fun and args (Section 5.1).

fun(create(Pnm(OptTs), T)) = create [fun-create]
args(create(Pnm(OptTs), T)) = [[OptTs|, T) [args-create]

Define an auxiliary function to extract the process name from a create atom.
pname(create(Pnm(OptTs), T)) = Pnm [pname-1]

Define the atomic steps for process creation.

PR=ppig (Ag,, (< OAPs + Atom . P + OAPs" >)),

C = context(Pid, Env, Script, BS),
is-enabled (Atom, C) = true,
fun(Atom) = create, [[OptTs|, Var ?] = substitute(args(Atom), Env),
Pnm = pname(Atom),
C' = C / assign(Var, get-new-proc-id (BS), get-env(C)),
r_
PR = Ppid (/\Env (Vinfo(Atom, C, proc-id(- 1y) (0. P))

atomic—steps()\BS (EScript ({PRs1 || O || PR || PRs2})), W) =

atomic-steps(add-proc(Pnm(OptTs), Pid, ABs (EScript ({PRs; || PR' || O || PRs;}))), true)

fereate-trans]
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Extend the two-way mapping between process expressions and terms for the create operator.

proc2term(create(Pnm(OptTs), T)) = [p2t-create]
atom("create", name2string(Pnm), [OptTs], T)
term2proc(atom("create", string(""" Chars """), [OptTs], T)) = [t2p-create]

create(name(Chars)(OptTs), T)

6.8 Notes

Notes provide an asynchronous, reliable, broadcasting mechanism. They are defined by the following
atoms:

e subscribe and unsubscribe: subscribe, respectively unsubscribe, to notes of a given form. A
process will only receive notes to which it has subscribed.

e snd-note,rec-note, and no-note: used for sending and receiving notes via asynchronous, selective,
broadcasting. A snd-note is used to send to all (i.e., zero or more) processes that have subscribed
to notes of that particular form. Each process maintains a queue of notes that have been received
but have not yet been read. In this way, notes can never be lost. A rec-note will inspect the note
queue of the current process, and if the queue contains a note of a given form, it will remove the
note and assign values to variables appearing in its argument list; these can be used later on in the
process expression in which the rec-note occurs. A no-note succeeds if the note queue does not
contain a note of a given form.

Module Notes
imports ToolBus(®-5)
exports
sorts SUBSCRIPTIONS NOTES
lexical syntax
snd-note — ATOMIC-FUN
rec-note — ATOMIC-FUN
no-note — ATOMIC-FUN
subscribe  — ATOMIC-FUN
unsubscribe — ATOMIC-FUN
context-free syntax

subs-list(TERM-LIST) — SUBSCRIPTIONS
note-list(TERM-LIST) — NOTES
NOTES — BUS-VAL
SUBSCRIPTIONS — BUS-VAL
get-subs(BUS-STATE, PROC-ID) — SUBSCRIPTIONS
get-notes(BUS-STATE, PROC-ID) — NOTES
matching-subscription (TERM, SUBSCRIPTIONS) — BOOL
matching-note(TERM, NOTES) — BOOL
del-notes(TERM, NOTES) — NOTES
distr-note(TERM, PROCESSES, BUS-STATE) — BUS-STATE

exports

variables

S [0-9"]* — SUBSCRIPTIONS
N [0-9* — NOTES
Note — TERM
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Notes [0-9']x— {TERM “)" }x%
equations
Extend PROC-REPR to support notes. This is achieved by adding two new components to the process
representation:

e subs: a list of subscriptions (representing all forms of notes to which the process has subscribed).
e notes: a list of notes (representing received but unread notes).

Define access functions to support subscriptions and notes.

BS . notes(Pid) = no-bus-val = get-notes(BS, Pid) = note-list() [get-notes-1]
BS . notes(Pid) = N = get-notes(BS, Pid) = N [get-notes-2]
BS . subs(Pid) = no-bus-val = get-subs(BS, Pid) = subs-list() [get-subs-1]
BS . subs(Pid) =S = get-subs(BS, Pid) = S [get-subs-2]

Define three utility functions for deleting notes from a list of notes, for finding a matching subscription
in a list of subscriptions, and for distributing a note to all subscribed TooLBUS processes.

Delete notes from a list of notes.

del-notes( T, note-list()) = note-list() [del-notes-1]

cmatchp(T, Note) = true
del-notes( T, note-list(Note, Notes)) = del-notes( T, note-list(Notes))
cmatchp(T, Note) = false, del-notes(T, note-list(Notes)) = note-list(Notes')
del-notes( T, note-list(Note, Notes)) = note-list(Note, Notes)

[del-notes-2]

[del-notes-3]

Find a matching subscription.

S = subs-list(OptTs,, T', OptTs,), cmatchp(T, T) = true
matching-subscription (T, S) = true

[matching-subs-1]
matching-subscription (7, S) = false otherwise [matching-subs-2]

Find a matching note.

N =notes(OptTs,, T', OptTs,), cmatchp(T', T) = true
matching-note(T, N) = true

[matching-note-1]
matching-note( T, N) = false otherwise [matching-note-2]

Distribute a note to all subscribed ToOLBUS processes.

Pid = get-pid(PR),
matching-subscription (Note, get-subs(BS, Pid)) = true,
note-list( Notes) = get-notes(BS, Pid),

BS' = BS[notes(Pid) := note-list( Notes, Note)]
distr-note( Note, {PR || PRs}, BS) = distr-note(Note, {PRs}, BS')

[distr-nts-1]

Pid = get-pid(PR),
matching-subscription (Note, get-subs(BS, Pid)) = false
distr-note(Note, {PR || PRs}, BS) = distr-note(Note, {PRs}, BS)

[distr-nts-2]
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distr-note(Note, {}, BS) = BS
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[distr-nts-3]

Define the atomic steps required for the atoms snd-note, rec-note, no-note, subscribe and unsubscribe.

PR = P pid ()\E - (< OAPs + Atom . P + OAPs"’ >)),

C = context(Pid, Env, Script, BS),
is-enabled (Atom, C) = true,
fun(Atom) = snd-note, args(Atom) = [T],
T = substitute( T, Env),

BS' = distr-note(T’, {PRs; || PRs,}, BS),
PR = Ppid ()‘Env (v Vinfo(Atom, C/ BS', proc-id(- 1)) (0. P))
atomic- steps()\ (E Script ({PRs1 || O || PR || PRs2})), W) =
atomic- steps()\BS/ (EScript ({PRs; || PR" || O || PRs2})), true)

BS = get-bus-state( (),
Env = get-env( (),
Pid = get-proc-id( (),

T' = substitute( T, Env),

get-notes(BS, Pid) = note-list(Notes, T, Notes'),
([Entries], [Entries;]) = match(T', Env, Ty, []),
Env' = update([Entries], Env),
BS' = BS[notes(Pid) := note-list(/Notes, Notes')]
simple-atomic-step (rec-note(T), C) = C/ Env' / BS'

T = substitute( T, get-env(()),
matching-note( 7', get-notes(get-bus-state( C), get-proc-id(C))) = false

simple-atomic-step (no-note(T), C) = C
Observe that the subscription list is a multi-set of note names.

BS = get-bus-state( (),
Pid = get-proc-id( 0),
get-subs(BS, Pid) = subs-list(OptTs),
T' = substitute( T, get-env(C)),

has-no-vars(T') = true,

S = subs-list(OptTs, T'),

BS' = BS[subs(Pid) := 9

simple-atomic-step (subscribe(T), C) = C / BS'

BS = get-bus-state( (),
Pid = get-proc-id( (),
T = substitute( 7, get-env(()),
has-no-vars(T') = true,
get-subs(BS, Pid) = subs-list(OptTs;, T', OptTs,),
S = subs-list(OptTs;, OptTs,),
N = del-notes( T, get-notes(BS, Pid)),
BS' = BS[subs(Pid) := S][notes(Pid) := N
simple-atomic-step (unsubscribe(T), C) = C / BS'

[snd-note]

[rec-note]

[no-note]

[subscribe]

[unsubscribe]
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6.9 Discrete time

Module DiscreteTime
imports BusState(5:3-2) Expressions(6-5)
exports
context-free syntax
get-time(BUS-STATE) — INT
get-max-time(BUS-STATE) — INT
equations
Extend the bus state with a time field.

BS . time = no-bus-val = get-time(BS) =

BS . time = Int = get-time(BS)

Extend the bus state with a max time field.

BS . max-time = no-bus-val = get-max-time(BS)

BS . max-time = Int = get-max-time(BS) =

6

Features of TOOLBUS processes

[get-time-1]

[get-time-2]

[get-max-time-1]

[get-max-time-2]

Extend expressions with a new function for obtaining the current (absolute) time.

interpret(current-time, C) = get-time(get-bus-state(())

6.10 Delay and timeout

[interp-current-time]

The following attributes can be attached to atomic processes in order to define their behaviour in time:

We only permit the following combinations of these attributes:

e relative time: delay, delay/timeout, timeout.

delay: relative execution delay.
abs-delay: absolute execution delay.

timeout: relative timeout for execution.

abs-timeout: absolute timeout for execution.

e absolute time: abs-delay, abs-delay/abs-timeout, abs-timeout.

Other combinations, e.g., mixtures of relative and absolute time are forbidden. This is a static constraint

on the T script. For reasons of simplicity, however, we do not enforce this constraint in the following
specification.

Module Delay-Timeout

imports ToolBus(5-5) DiscreteTime(®-?) Conditionals(6-6)

exports
sorts TIMER-FUN TIMER
lexical syntax

delay — TIMER-FUN
abs-delay — TIMER-FUN
timeout — TIMER-FUN
abs-timeout — TIMER-FUN
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context-free syntax
TIMER-FUN “(” TERM )" — TIMER

ATOM TIMER — ATOM
variables
Time — INT
Start — INT
End — INT
TimerFun— TIMER-FUN
equations

Extend the preparation of processes (Section 5.2) to atoms with delays and timeouts.

Atom' = prep-proc(Atom, Pnm, Env), T' = prep-term(T, Pnm, Env)
prep-proc(Atom TimerFun(T), Pnm, Env) = Atom’ TimerFun(T')

[prep-timer]

Extend expansion for atoms with delays and timeouts. At the moment of expansion, a condition is
constructed representing the desired delay or timeout. It contains the subexpression current-time that
will yield the current time at the moment that the condition is evaluated. In the generated condition,
relative time is always converted into absolute time.

Start = interpret( T, C), Atom' . P = expand(Atom . P, C),
Time = get-time(get-bus-state(C))
expand(Atom delay(T) . P, C) =

greater-equal(current-time, Start + Time) :— Atom' . P

[exp-delay]

Start = interpret(T, C), Atom' . P = expand(Atom . P, C)

expand(Atom abs-delay(T) . P, C) =
greater-equal(current-time, Start) :— Atom' . P

[exp-abs-delay]

End = interpret(T, C), Atom' . P = expand(Atom . P, C),
Time = get-time(get-bus-state(C))
expand(Atom timeout(T) . P, C) =

less-equal(current-time, End + Time) :— Atom' . P

[exp-timeout]

End = interpret( T, C), Atom' . P = expand(Atom . P, C)

expand (Atom abs-timeout(T) . P, C) =
less-equal(current-time, End) :— Atom' . P

[exp-abs-timeout]

Extend the two-way mapping between process expressions and terms for timer functions.

proc2term (atomic-fun( Charsy)(OptTs) timer-fun(Charsz)(T)) = [p2t-timer]
atom(id( Charsy )(OptTs), id(Charsz)(T))
term2proc(atom(id( Charsy)(OptTs), id(Charsz)(T))) = [t2p-timer]

atomic-fun( Chars;)(OptTs) timer-fun( Charsy)(T)
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Chapter 7

Features of ToolBus tools

7.1 Tool definitions

We extend T scripts (Section 5.1) with tool definitions. A tool has a name, formal parameters, and
is characterized by a number of features: a list of (identifier, string) pairs. Before a tool is executed,
occurrences of formal parameter names in the strings defining features are replaced by their actual value.

Our general approach here is that a tool definition should contain all information needed to execute an
instance of the tool, but we do not specify how a tool instance comes into existence. The interpretation
of the names of features is therefore not fixed here, but in the examples we will assume the following
feature names:

e command: the command needed to start the execution of a tool;
e host: the computer on which the tool will be executing.

In a similar manner as for process definitions (see Section 5.1), we introduce a function definition to
map a tool name onto its definition.

Module ToolDefs
imports ToolBus(®-5)
exports
sorts FEATURE-ASG FEATURES TOOL-ID
context-free syntax
ID “:=" STRING — FEATURE-ASG
“{* {FEATURE-ASG “"}* “}* — FEATURES
tool ID FORMALS is FEATURES — DEF
tool-definition (ID, T-SCRIPT) — DEF

ID “(" INT “)” — TOOL-ID
TOOL-ID — TERM
TOOL-ID — BUS-VAL
get-new-tool-id (ID, BUS-STATE) — TOOL-ID

variables
Features [0-9']x— {FEATURE-ASG “;" }*

exports

context-free syntax
string-repr(TERM) — STRING
replace(STRING, ENV) — STRING
features2term(FEATURES, ENV) — TERM
add-TCP-defs(T-SCRIPT) — T-SCRIPT

get-controlled-tool (BUS-STATE, PROC-ID) — TOOL-ID
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get-controlled-ext-tool (BUS-STATE, PROC-ID) — INT
get-controlling-process(BUS-STATE, TOOL-ID) — PROC-ID
exports
variables
Tid [0-9']*— TOOL-ID
hiddens
variables
Chars [0-9']%— CHARx
equations
Add a field new-tool-id to the bus state to keep track of tool instances.

BS . new-tool-id = no-bus-val =  get-new-tool-id(/d, BS) = /d(0) [get-new-tool-id-1]
BS . new-tool-id = tool-id(/nt) = get-new-tool-id(/d, BS) = /d(/nt) [get-new-tool-id-2]

Define an auxiliary function string-repr that maps a term onto a string representation (if possible). Observe
that ASF+SDF gives access to the text of lexical items by means of a standard convention: the sort name
in question (e.g., STRING) (written in all lower case letters, e.g., string) acts as a conversion function
from lists of characters (the built-in sort CHAR) to e.g. STRING. In the following equations, the functions
string, nat-con, and svar play this role.

string-repr(string(""" Chars """)) = string(""" Chars """) [str-repr-1]
string-repr(nat-con( Chars)) = string(""" Chars""") [str-repr-2]
string-repr(T) =T otherwise [str-repr-3]

Define a replacement function on strings: given a string and an environment (representing the replace-
ments to be performed) a new string is constructed in which all variables have been replaced by their
string representation.

replace(String, [|) = String [replace-1]

Vname = name( Chars,),
String_repr(n — String(nnn Char54 nun)

lace-2

replace(string(""" Chars; Charsy Charsg """), [Vname : Type — T, Entries]) = [replace-2]
replace(string(""" Chars; Charsy Charsg """), [Vname: Type — T, Entries])

replace(String, [Var — T, Entries]) = replace(String, [Entries]) otherwise [replace-3]

Given a list of features and an environment, transform the features into a list of terms representing the
features after proper replacement of variables.

features2term({}, Env) = || [f2t-1]

replace(String, Env) = String',
features2term ({ Features}, Env) = [OptTs]
features2term({/d := String; Features}, Env) = [Id(String'), OptTs]

[f2t-2]
Define a function that extracts the tool definition from a ToOLBUS script corresponding to given tool
name.

tool-definition (/d, Defs; tool Id Formals is { Features} Defs; TB-Config) = [tool-definition-1]
tool /d Formals is {Features}

Get the tool identification of the tool controlled by a (tool control) process.

BS . control-tool(Pid) = [Tid, Int] = get-controlled-tool(BS, Pid) = Tid [get-ct-1]
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TooLBuUs:

Tools: Ti:

Figure 7.1: Organization of the TooLBUS including control over tools

get-controlled-tool (BS, Pid) = tool-id(— 1) otherwise [get-ct-2]
Get the external tool identification of the tool controlled by a (tool control) process.

BS . control-tool(Pid) = [Tid, Int] = get-controlled-ext-tool (BS, Pid) = Int [get-cet-1]

get-controlled-ext-tool (BS, Pid) = — 1 otherwise [get-cet-2]
Get the process identification of the tool control process controlling a given tool.

BS = bus-state( BusAsgs;; control-tool(Pid) := [Tid, Tid']; BusAsgs,)
get-controlling-process(BS, Tid) = Pid

[get-cp-1]

7.2 Controlling tools

In order to make explicit how tools are being controlled by the TooLBUS, we will now refine the global
architecture of the TooLBUS as already sketched in Figure 2.1.

A refined view of the TooLBUS architecture is shown in Figure 7.1. It is more detailed in the following
respects:

e For each tool instance we introduce one tool control process (TCP): a process inside the TooLBUS
that controls the interactions between all processes in the TooLBuUs with this instance of the tool.

e For each tool instance we introduce (outside the TooLBUS): a single tool instance process (TIP): a
process that controls the behaviour of this particular tool instance.

Observe that TCPs are TooLBUS processes (and thus run inside the TooLBUs), while TIPs run “in
the outside world”, i.e., they are introduced for the purpose of modeling the behaviour of tools in the
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| TooLBus Proc. || Tool Control Process || Tool ||| §

rec-connect snd-connect-by-TCP rec-connect-before-TCP snd-connect 7.3
new-tool-idf 7.3

control-tool-by-TCP 7.3
execute 7.4
snd-execute-to-toolf rec-execute 74
snd-eval rec-eval-by-TCP snd-eval-by-TCP rec-eval 7.5
rec-value snd-value-by-TCP rec-value-by-TCP snd-value 7.5
snd-cancel rec-cancel-by-TCP snd-cancel-by-TCP rec-cancel 7.5
snd-do rec-do-by-TCP snd-do-by-TCP rec-do 7.5
rec-event snd-event-by-TCP rec-event-by-TCP snd-event 7.6
snd-ack-event rec-ack-event-by-TCP snd-ack-event-by-TCP rec-ack-event 7.6
rec-disconnect snd-disconnect-by-TCP | rec-disconnect-by-TCP snd-disconnect 7.3
snd-terminate rec-terminate-by-TCP snd-terminate-by-TCP rec-terminate 7.4
attach-monitor rec-attach-monitor-by-TCP snd-attach-monitor 7.7
detach-debugger rec-detach-debugger-by-TCP || snd-detach-monitor ||| 7.7
snd-monitort 7.7
rec-monitort 7.7
continuationt 7.7
shutdown 7.8
reconfigure rec-reconfigure-by-TCP snd-reconfigure 7.8
restart} 7.8

pick 7.2.1
Figure 7.2: Overview of tool-related primitives
Notes:

(1) Primitives labeled with t are auxiliary notions used in the definition, but they are not directly
available when defining TooLBUS processes.

(2) All primitives in the two columns labeled Tool Control Process are intended for defining the Tool

Control Process, but they are not directly available when defining other ToOOLBUS processes.

outside world, but they are not part of the TooLBUs proper. Each TIP can be understood as the potential

of the outside world to execute one instance of a certain tool. Also note that the phrase “tool instance”

is used to indicate that several tool instance processes executing in the outside world may correspond to

a single tool definition in the T script.
In Figure 7.1 we see:

e Ordinary TooLBUS processes Pi, ...

P,

€%,

e Two tool instance processes for tool “a”:

TIP(a); and TIP(a),.

e One tool instance process for tool “b”: TIP(b);.

e Three tool control protocols: T'C P(a); (controls TIP(a);), TC P(a); (controls TIP(a)2), TCP(b):
(controls TIP(b),).

The behaviour of the tools represented in Figure 2.1 by boxes labeled T7, T3, T3, is now actually
described by the processes TIP(a)1, TIP(a)2, and TIP(b)1, respectively.
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rec-do
snd-event
rec-ack-event

snd-connect .
snd-attach-monitor

snd-detach-monitor

rec-execute snd-connect

(i)
#0 = #1 >
N

~— 1
rec-terminate
snd-disconnect
rec-eval snd-value
rec-cancel
| ZZmN
rec-terminate 43

snd-disconnect

Figure 7.3: The tool instance process (TIP)

The tool instance process is now first described in Section 7.2.1. The tool control process is described
in Section 7.2.2. For reference purposes, we give here already a preview of all tool-related primitives in
Figure 7.2.

7.2.1 The tool instance process

The control over tools is best understood by first considering the behaviour of a tool as shown in Figure 7.3.
We give here now a simplified textual description of tool behaviour. A tool can be in one of four states:

e State #0: the tool is either not executing at all, or it is executing but not connected to the
TooLBUs. In this state an execution request from the TooLBUS (rec-execute) can be received
causing a transition to state #1, or a connection request can be sent to the TooLBUS (snd-connect)
causing a transition to state #2. In both cases, the tool receives a unique tool identification from
the TooLBUS that remains valid until the execution or connection of this tool instance ends.

e State #1: the tool has already accepted an execution request before entering this state; it will leave
this state when the preparations for executing/connecting the tool have been completed by sending
a connect request (snd-connect) and going to state #2.

e State #2: the tool is executing and connected to the TooLBuUSs. The atom rec-eval causes a
transition to state #3. The atoms rec-do, snd-event and rec-ack-event cause a self-transition. The
atoms rec-terminate and snd-disconnect cause a transition back to state #0.

Occurrences of events of the form snd-event(T'oolld, Term) and their acknowledgement rec-ack-
event(Toolld, Term) are controlled by maintaining a list of pending, unacknowledged, events U
and enforcing the following rules:

— a snd-event transition is only allowed if Term does not occur in U;
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— when a snd-event transition is made, Term is added to U;

— a rec-ack-event transition for event T'erm is only possible if T'erm occurs in U; it is removed
from U when the transition is made.

e State #3: the atom snd-value causes a transition to state #2, while the atoms rec-terminate and
snd-disconnect cause a transition back to state #0.

This behaviour of a tool can be specified as follows.

Module ToolInstanceProcess

imports Execute-Terminate(”4) Connect-Disconnect(?-3) Eval-Do("-5) Events(7-¢)
Iteration(®-1) Conditionals(®-®) Notes(®®) Create(®:”) Monitoring("-7)
Reconfigure(7-8) Let(6-3)

exports
context-free syntax
pick(TERM-LIST) — PROC
def-TIP — DEF
def-TIP-EVAL-DO — DEF
def-TIP-EVENTS — DEF

def-TIP-MONITOR — DEF

def-TIP-RECONFIGURE — DEF
equations
A tool instance process TIP describes the behaviour of one instance of one tool. We do not know, of
course, anything about the internals of each tool instance. It is impossible to describe which values the
tool computes, which events it generates, and how long it takes to perform these computations. The only
thing we do know, and that we should make precise, is the external behaviour of each tool instance as
seen from the TooLBuUSs.

We define a skeleton process definition for tool instances and introduce the process pick to model the
aspects we cannot describe: it assigns an arbitrary term to the result variables appearing in its argument
list. We do not give a further definition for pick. Each actual tool instance process should satisfy the
following constraints:

e It is a specialization of the process TIP defined below.
e All occurrences of pick are replaced by specific steps to compute the desired values.
e It may implement a subset of TIP.

The definition of process TIP is as follows. It has two parameters: the name of the tool and the (unique)
external identification of this tool instance.

def-TIP = [def-TIP-1]
process TIP (ToolName : str, ExtToolId: int)
is let TidInTB : term, PendingEvents : 1ist, Term : term, Feat : term
in (rec-execute(ToolName, Feat ?, TidInTB)
. snd-connect(ToolName, ExtToolId, TidInTB)
+ snd-connect(ToolName, ExtToolId))
. PendingEvents := [
. (TIP-EVAL-DO(ExtToolId)
+ TIP-EVENTS(ExtToolld, PendingEvents ?)
+ TIP-MONITOR(ExtToolId)
+ TIP-RECONFIGURE(ExtToolId))
* (snd-disconnect(ExtToolId)
+ rec-terminate(ExtToolId, Term ?)) endlet

The handling of eval/do requests by a tool instance consists of two alternatives:
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e Receive a do request (from the Tool Control Process): perform the desired operation.

e Receive an eval request (from the Tool Control Process): perform the desired operation and send the
resulting value back to the Tool Control Process. This may be interrupted by a cancel or terminate
request (from the Tool Control Process).

def-TIP-EVAL-DO = [def-TIP-EVAL-DO-1]

process TIP-EVAL-DO (ExtToolId : int)
is let Term : term, AnyVal : term
in rec-do(ExtToolId, Term ?)
+ rec-eval(ExtToolld, Term ?)
. (pick(AnyVal ?)
. snd-value(ExtToolId, AnyVal)
+ rec-cancel(ExtToolld)
+ rec-terminate(ExtToolId)
. delta) endlet

The handling of events produced by a tool instance consists of two steps:
o Generate an event and send it to the Tool Control Process.

e Receive an ack-event (from the Tool Control Process) that indicates that the handling of a previous
event has been completed.

In both cases, the second argument of snd-event/rec-ack-event identifies the event in question.

def-TIP-EVENTS = [def-TIP-EVENTS-1]

process TIP-EVENTS (ExtToolId : int, PendingEvents : 1list ?)
is let Term : term, AnyTerm : Term, AnyTerms : list
in pick (AnyTerm ?, AnyTerms ?)
. if not(is-element(AnyTerm, PendingEvents))
then snd-event(ExtToolId, AnyTerm, AnyTerms)
. PendingEvents := join(PendingEvents, [AnyTerm])
else tau fi
+ rec-ack-event(ExtToolld, Term ?)
. if is—element(Term, PendingEvents)
then PendingEvents := diff(PendingEvents, [Ternm]) fi endlet

A tool instance may first attach itself as monitor to a selection of processes in the TooLBUSs and, later
on, it may detach itself as monitor from a (possibly different) selection of processes.

def-TIP-MONITOR = [def-TIP-MONITOR-1]
process TIP-MONITOR (ExtToolId : int)
is let AnySel : 1ist, AnyKind : term
in pick (AnySel ?, AnyKind ?) . snd-attach-monitor(ExtToolId, AnyKind, AnySel)
+ pick(AnySel ?) . snd-detach-monitor(ExtToolld, AnySel) endlet

A tool instance may generate a reconfigure request, that will effectively load a new T script into the
current TooLBuUSs.

def-TIP-RECONFIGURE = [def-TIP-RECONFIGURE-1]

process TIP-RECONFIGURE (ExtToolId : int)
is let AnyScript : str, AnySel : list
in pick(AnyScript ?, AnySel ?) . snd-reconfigure(ExtToolId, AnyScript, AnySel) endlet
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7.2.2 The tool control process

Viewed from the TooLBUS, a tool control process will enforce the behaviour of a tool. It is in many
respects the complement of the tool instance process given above.

Module ToolControlProcess

imports Execute-Terminate(”4) Connect-Disconnect(?-3) Eval-Do("-5) Events(7-6)
Messages(®%) Iteration(®1) Conditionals(®-®) Notes(®-8) Monitoring("")
Reconfigure(7-8) Let(6-3)

exports
context-free syntax
def-TCP — DEF
def-EVENTS — DEF
def-EVAL-DO — DEF
def-LOGGER — DEF
def-VIEWER — DEF

def-CONTROLLER — DEF
def-MONITOR — DEF

def-TERM — DEF
def-END-TOOL  — DEF
equations

Each instance of the tool control process TCP controls the behaviour of one tool instance. It has one
parameter: the identity of the tool instance (both in the external world and inside the TooLBUs). The
overall behaviour of a tool control process is an infinite loop in which the following alternatives are
handled:

e Receive events/acknowledgements (see process EVENTS, below).
e Handle eval/do communication (see process EVAL-DO, below).
e Handle monitoring communication (see process MONITOR, below).
The loop ends when the execution of the tool instance terminates (see process END-TOOL, below)

def-TCP = [def-TCP-1]
process TCP (ToolId : term, ExtToolId : int)
is let PendingEvents : 1ist, PendingViews : 1list, PendingControls : list
in control-tool-by-TCP(Toolld, ExtToolld)
. PendingEvents := []
. PendingViews := ]
. PendingControls := []
. (EVENTS(Tool1d, ExtToolId, PendingEvents ?)
+ EVAL-DO(Tool1Id, ExtToolId)
+ MONITOR(Toolld, ExtToolld, PendingViews ?, PendingControls ?))
* END-TOOL(ToolId, ExtToolId) endlet

Handling events consists of the following two alternatives:

e Receive an event from the tool instance. The event is allowed if its second argument (a term) does
not yet occur in PendingEvents. Add that term to PendingEvents and forward the event to a
TooLBUS process.

e Receive an acknowledgement of a previous event from a ToOLBUS process. This is only allowed if
the second argument of the acknowledgement (a term) does occur in PendingEvents. If so, delete
it from PendingEvents and forward the acknowledgement to the tool instance.
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def-EVENTS = [def-EVENTS-1]

process EVENTS (ToolId: term, ExtToolld: int, PendingEvents: list ?)
is let Term : term, Terms : list
in rec-event-by-TCP(ExtToolId, Term ?, Terms ?)
. if not(is-element(Term, PendingEvents))
then PendingEvents := join(PendingEvents, [Term|)
. (snd-event-by-TCP(ToolId, Term, Terms) + TERM(ToolId)) fi
+ rec-ack-event-by-TCP(Toolld, Term ?)
. if is—element(Term, PendingEvents)
then PendingEvents := diff(PendingEvents, [Term|)
. snd-ack-event-by-TCP(ExtToolId, Term) fi endlet

Handling eval/do requests consists of the following two alternatives:
e Receive a do request (from a TooLBUSs process): forward it to the tool.

e Receive an eval request (from a TooLBUS process): forward it to the tool. It may be followed by
a value produced by the tool or a cancel request from a process.

def-EVAL-DO = [def-EVAL-DO-1]
process EVAL-DO (ToolId : term, ExtToolId : int)
is let Term : term, Val : term
in rec-do-by-TCP(ToolId, Term ?) . snd-do-by-TCP(ExtToolld, Term)
+ rec-eval-by-TCP(Toolld, Term ?)
. snd-eval-by-TCP(ExtToolId, Term)
. (rec-value-by-TCP(ExtToolId, Val ?)
. (snd-value-by-TCP(Toolld, Val) -+ TERM(ToolId, ExtToolId))
+ rec-cancel-by-TCP(ToolId) . snd-cancel-by-TCP(ExtToolId)) endlet

Handling of monitoring communication consists of the following alternatives:
e Communication related to loggers.
e Communication related to viewers.

e Communication related to controllers.

Process termination messages to monitors.

Attach or detach monitors.

Reconfiguration requests.

def-MONITOR = [def-MONITOR-1]

process MONITOR (ToolId : term, ExtToolld : int, PendingViews : 1ist ?, PendingControls : list ?)
is let ProcId : int, Sel : list, TScript : str, Kind : term
in LOGGER(ToolId, ExtToolId)
+ VIEWER(ToolId, ExToolld, PendingViews ?)
+ CONTROLLER(ToolId, ExToolId, PendingControls ?)
+ rec-monitor(Toolld, terminates(ProcId ?))
. snd-do(ExtToolId, terminates(ProcId))
+ rec-attach-monitor-by-TCP(ExtToolId, Kind ?, Sel ?)
. (attach-monitor(Toolld, Kind, Sel) + TERM(ToolId, ExtToolId))
+ rec-detach-monitor-by-TCP(ExtToolId, Sel ?)
. (detach-monitor(Sel) + TERM(Toolld, ExtToolId))
+ rec-reconfigure-by-TCP(ExtToolId, TScript ?, Sel ?)
. (reconfigure(TScript, Sel) + TERM(Toolld, ExtToolId)) endlet
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The following three processes LOGGER, VIEWER, and CONTROLLER describe the communication with the
three kinds of monitors.

def-LOGGER = [def-LOGGER-1]

process LOGGER (Toolid : term, ExtToolId: int)
is let PID1 : term, AF : term, Args : 1ist, EV : list, NL : 1ist, PID2 : term, Proc : term
in rec-monitor(Toolld, logpoint(PID1 ?, AF ?, Args ?, EV ?, NL ?, PID2 ?, Proc 7))
. snd-do-by-TCP(ExtToolld, logpoint(PID1, AF, Args, EV, NL, PID2, Proc)) endlet

def-VIEWER = [def-VIEWER-1]

process VIEWER (Toolid : term, ExtToolld: int, PendingViews: list ?)
is let PID1 : int, AF : term, Args : 1ist, EV : 1list, NL : 1ist, PID2: int, Proc : term
in rec-monitor(Toolld, viewpoint(PID1 ?, AF ?, Args ?, EV ?, NL ?, PID2 ?, Proc ?))
. if not(is-element(PID1, PendingViews))
then PendingViews := join(PendingViews, [PID1])
. snd-do-by-TCP(ExtToolld, viewpoint(PID1, AF, Args, EV, NL, PID2, Proc)) fi
+ rec-event-by-TCP(ExtToolId, continue(PID1 ?))
. if is—element(PID1, PendingViews)
then PendingViews := diff(PendingViews, [PID1])
. snd-monitor(Toolld, continue(PID1))
. snd-ack-event-by-TCP(ExtToolld, continue(PID1)) fi endlet

def-CONTROLLER = [def-CONTROLLER-1]

process CONTROLLER (Toolid : term, ExtToolId: int, PendingControls: list ?)
is let PID1 : int, AF : term, Args : 1ist, EV: 1ist, NL : 1ist, PID2: int,
Proc: term
in rec-monitor(Toolld, controlpoint(PID1 ?, AF ?, Args ?, EV ?, NL ?, PID2 ?, Proc 7))
. if not(is-element(PID1, PendingControls))
then PendingControls := join(PendingControls, [PID1])
. snd-do-by-TCP(ExtToolId, controlpoint(PID1, AF, Args, EV, NL, PID2, Proc)) fi
+ rec-event-by-TCP(ExtToolId, continue(PID1 ?, Proc ?, EV ?))
. if is—element(PID1, PendingControls)
then PendingControls := diff(PendingControls, [PID1])
. snd-monitor(Toolld, continue(PID1, Proc, EV))
. snd-ack-event-by-TCP(ExtToolld, continue(PID1, Proc, EV)) fi endlet

The execution of a tool instance ends when:
e A disconnection request is generated by the tool instance.

e A termination message is sent by a TooLBUS process.

def-END-TOOL = [def-END-TOOL-1]

process END-TOOL (ToolId : term, ExtToolId : int)
is let Term : term
in (rec-disconnect-by-TCP(ExtToolId) . snd-disconnect-by-TCP(ToolId)
+ rec-terminate-by-TCP(Toolld, Term ?) . snd-terminate-by-TCP(ExtToolId, Term)) . delta endlet

The explicit termination of this tool instance by a process appears as explicit alternative in several of the
above scripts. The termination request is forwarded to the tool and the Tool Control Process as a whole
becomes inactive.

def-TERM = [def-TERM-1]

process TERM (ToolId : term, ExtToolId: int)
is rec-terminate-by-TCP(ToolId) . snd-terminate-by-TCP(ExtToolId) . delta
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Extend a TooLBUS script with all definitions needed by the tool control process.

add-TCP-defs( Defs toolbus( ProcAppls)) = [add-TCP-defs-1]

Defs def-TCP def-EVENTS def-EVAL-DO def-LOGGER def-VIEWER def-CONTROLLER
def-MONITOR def-TERM def-END-TOOL toolbus(ProcAppls)

7.3 Connection and disconnection of tools

The following primitives handle the connection and disconnection of tools:

e rec-connect assigns a new tool identifier to its second argument (a result variable) that is needed
in all subsequent operations addressing this tool instance.

e rec-disconnect receives a disconnection request from a tool instance.

TooLBUs Process || Tool Control Process || Tool |

rec-connect snd-connect-by-TCP rec-connect-before-TCP || snd-connect
new-tool-idt
control-tool-by-TCP
rec-disconnect snd-disconnect-by-TCP | rec-disconnect-by-TCP snd-disconnect

Module Connect-Disconnect
imports  ToolBus(5-5) ToolDefs(”-1) Expressions(®-3) Create(6-7)

exports
lexical syntax
snd-connect — ATOMIC-FUN
snd-disconnect — ATOMIC-FUN

rec-connect-before-TCP — ATOMIC-FUN
snd-connect-by-TCP — ATOMIC-FUN
rec-disconnect-by-TCP — ATOMIC-FUN
snd-disconnect-by-TCP — ATOMIC-FUN
rec-disconnect — ATOMIC-FUN

new-tool-id — ATOMIC-FUN
control-tool-by-TCP — ATOMIC-FUN
context-free syntax
rec-connect(TERM-LIST) — PROC
equations
Define relevant communications.

v1(snd-connect, rec-connect-before-TCP) = true [cm-connect]
v1(snd-disconnect, rec-disconnect-by-TCP) = true [cm-disconnect]
v1(snd-disconnect-by-TCP, rec-disconnect) = true [cm-disconnect-TCP]

Extend the preparation of processes (Section 5.2) for rec-connect.
prep-proc(rec-connect( Ts), Pnm, Env) = rec-connect(prep-term-list(Ts, Pnm, Env))  [prep-rec-connect]

Extend the expansion of process expressions (Section 5.4) for rec-connect. There are two cases to be
distinguished here:

e The initiative for the connection is taken by the tool. In that case, a new tool identifier has to be
generated for this new tool instance.
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e The connection is the result of a previous execute action. In that case, the tool identifier has already
been generated at the moment that the execute action was performed.

In the first case, the rec-connect atom is expanded into the sequence rec-connect-before-TCP, assignment
of a new tool identification to variable Var in the current process, and creation of a new tool control
process for the tool just connected. The new tool control process is instantiated with both the internal
(i.e., inside the TooLBUS) and the external identification of this tool instance.

T = Var?,
outermost-type-of( Var) = /d,
tool-definition (/d, get-script(C)) = tool Id Formalsis { Features},
require-type (/d, Var) = true
expand (rec-connect(T), C) =
rec-connect-before-TCP(/d(), ExtToolId: int ?)
.new-tool-id(/d, Var ?) . create(TCP( Var, ExtToolId : int), Cid : int ?)

[exp-rec-connect-1]

In the second case, the rec-connect atom is expanded into the sequence rec-connect-before-TCP, and the
creation of a new tool control process.

Id(Int) = substitute( T, get-env((C))

expand(rec-connect(T), C) =
rec-connect-before-TCP(/d(), ExtToolId : int ?, /d(/nt))
. create(TCP(/d(/nt), ExtToolId: int), Cid: int ?)

[exp-rec-connect-2]

The auxiliary atom new-tool-id computes a new tool identification:

BS = get-bus-state( (),
get-new-tool-id (/d, BS) = Id(Int),
EnV = assign(Var, Id(Int), get-env(C)),
BS' = BS[new-tool-id := tool-id(/nt + 1)]
simple-atomic-step (new-tool-id(/d, Var?), C) = C / Env' / BS'

[new-tool-id]

The auxiliary atom control-tool is used in the definition of TCP (see Section 7.2.2) to establish a “control-
tool” relation between each tool control process and the tool it controls. This information is used in the
definitions of shutdown and reconfigure (see Section 7.8).

BS = get-bus-state((), Pid = get-proc-id(C), Env = get-env((),
BS' = BS[control-tool(Pid) := substitute([Ty, T2], Env)]
simple-atomic-step (control-tool-by-TCP( Ty, T2), C) = C / BS'

[control-tool]

7.4 Execution and termination of tools
Execution and termination of tools is achieved by the following primitives:
e execute: start the execution of a tool.

e snd-terminate: terminate the execution of a tool.

| TooLBUS Process || Tool Control Process || Tool |
execute
snd-execute-to-toolt rec-execute
snd-terminate rec-terminate-by-TCP | snd-terminate-by-TCP || rec-terminate




7.5 Evaluation and do requests to tools

Module Execute-Terminate
imports ToolBus(5-5) ToolDefs(”-1) Connect-Disconnect(7-3)
exports
lexical syntax
snd-terminate — ATOMIC-FUN
snd-execute-to-tool — ATOMIC-FUN
rec-terminate-by-TCP — ATOMIC-FUN
snd-terminate-by-TCP — ATOMIC-FUN
rec-execute — ATOMIC-FUN
rec-terminate — ATOMIC-FUN
context-free syntax
execute(TERM-LIST) — PROC
equations
Define relevant communications.

v1(snd-execute-to-tool, rec-execute) = true
v1(snd-terminate, rec-terminate-by-TCP) = true
v1(snd-terminate-by-TCP, rec-terminate) = true

exec(Ts)

execute( Ts)

proc2term (execute( Ts)) =
term2proc(exec(Ts)) =

Extend the preparation of processes (Section 5.2) for execute.

prep-proc(execute( Ts), Pnm, Env) = execute(prep-term-list(Ts, Pnm, Env))
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[em-execute]
[cm-terminate]

[em-terminate-TCP]

[p2t-execute]

[t2p-execute]

[prep-execute]

Extend the expansion of process expressions (Section 5.4) for execute. Tool execution is treated by re-
placing the execute atom by new-tool-id, snd-execute-to-tool followed by rec-connect. The features defining
the tool are first retrieved from its tool definition and formal parameters appearing in the features are
replaced by their actual value. Next, the features are converted into a list of terms which contains all
information needed to execute the tool. When the tool is successfully executing, it will send a request
to connect containing the tool name and the newly generated tool identifier. This will uniquely identify
the connection request with the execution command just executed. Note that concurrently performed

execute command can be distinguished in this manner.

outermost-type-of(Var) = /d,

tool-definition (/d, get-script(C)) = tool Id (GenVars) is { Features},

Env = get-env((),
[OptTs'] = substitute([OptTs|, Env),

T = features2term({ Features}, create-env(GenVars, TOOL, [OptTs'], Env))

expand (execute(/d(OptTs), Var ?), C) =
new-tool-id(/d, Var?) .

7.5 Evaluation and do requests to tools

The following primitives send a request to a tool:

snd-execute-to-tool(/d(), T, Var) .

rec-connect( Var)

[exp-execute]

e snd-eval: request a tool to evaluate a term. The first argument serves as the identification of the
tool (as produced by rec-connect or execute), while the second one is the term to be evaluated.

e rec-value: receive from a tool the result of a previous evaluation request.

e snd-cancel: cancel a previous snd-eval.
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e snd-do: request a tool to evaluate a term and ignore the resulting value.
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TooLBUS Process || Tool Control Process || Tool |
snd-eval rec-eval-by-TCP snd-eval-by-TCP rec-eval
rec-value snd-value-by-TCP | rec-value-by-TCP snd-value
snd-cancel rec-cancel-by-TCP | snd-cancel-by-TCP || rec-cancel
snd-do rec-do-by-TCP snd-do-by-TCP rec-do

Module Eval-Do

imports

exports

ToolBus(5-5)

eq

lexical syntax
snd-eval
rec-value
snd-do
rec-eval-by-TCP
snd-value-by-TCP
rec-do
rec-eval
snd-eval-by-TCP
rec-value-by-TCP
snd-value
rec-do-by-TCP
snd-do-by-TCP
snd-cancel
rec-cancel-by-TCP
snd-cancel-by-TCP
rec-cancel

uations

— ATOMIC-FUN
— ATOMIC-FUN
— ATOMIC-FUN
— ATOMIC-FUN
— ATOMIC-FUN
— ATOMIC-FUN
— ATOMIC-FUN
— ATOMIC-FUN
— ATOMIC-FUN
— ATOMIC-FUN
— ATOMIC-FUN
— ATOMIC-FUN
— ATOMIC-FUN
— ATOMIC-FUN
— ATOMIC-FUN
— ATOMIC-FUN

Define relevant communications.

v1(snd-eval, rec-

eval-by-TCP)

v1(snd-eval-by-TCP, rec-eval)

v1(snd-value, rec-value-by-TCP)

2

1
Y1

snd-value-by-

snd-do, rec-do-by-TCP)

TCP, rec-value)

v1(snd-do-by-TCP, rec-do)

true
true
true
true
true

true

v1(snd-cancel, rec-cancel-by-TCP) =

(
(
(
(
(
(
(
(

v1(snd-cancel-by-TCP, rec-cancel) =

true

true

7.6 Events produced by tools

[em-eval]
[cm-eval-TCP]
[em-value]
[em-value-TCP]
[em-do]
[em-do-TCP]
[em-cancel]

[em-TCP]

Tools can also take the initiative by sending an “event” to the TooLBUS which can be handled by a
TooLBUS process using the following primitives:

e rec-event: receive an event from a tool. The first argument of rec-event is a tool identification.
The second argument serves as an identification of the source of the event. The remaining, optional,

arguments give the details of the event in question.
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e snd-ack-event: send an acknowledgement to a previous event received from a source. The assump-
tion is made that the next event from that particular source will not be sent before the previous
one has been acknowledged. Since one tool can generate events with different sources, a certain

internal concurrency in tools can be supported.

| TooLBUs Process ||

Tool Control Process

Tool |

rec-event
snd-ack-event

snd-event-by-TCP

rec-ack-event-by-TCP

rec-event-by-TCP
snd-ack-event-by-TCP

snd-event
rec-ack-event

Module Events
imports BusState(5-3:2)
exports

lexical syntax

snd-event — ATOMIC-FUN
rec-event-by-TCP — ATOMIC-FUN
snd-event-by-TCP — ATOMIC-FUN
rec-event — ATOMIC-FUN
snd-ack-event — ATOMIC-FUN
rec-ack-event-by-TCP — ATOMIC-FUN
snd-ack-event-by-TCP — ATOMIC-FUN
rec-ack-event — ATOMIC-FUN

equations
Define relevant communications.

v1(snd-event, rec-event-by-TCP)
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(
(
(
(

v1(snd-ack-event-by-TCP,
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snd-event-by-TCP, rec-event)

snd-ack-event, rec-ack-event-by-TCP)

rec-ack-event)

true
true
true

true

Monitoring of T scripts is possible with the following primitives:

[em-event]
[em-event-TCP]
[em-ack-event]

[em-ack-event-TCP]

e attach-monitor: attach a monitoring tool to a process. Note that any tool can act as monitor
for any TooLBUS process. As a result, information will be sent to the tool allowing the detailed
monitoring of the execution of the process.

e detach-monitor: detach a monitoring tool from a process.

TooLBUs Process ||

Tool Control Process || Tool

attach-monitor
detach-monitor
snd-monitort
rec-monitort
continuationt

rec-attach-monitor-by-TCP
rec-detach-monitor-by-TCP

snd-attach-monitor
snd-detach-monitor

Module Monitoring

imports ToolBus(5-5) Messages(6%) Notes(6-8) ToolDefs(7-1)

exports
sorts MONITOR
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lexical syntax
attach-monitor
detach-monitor
rec-attach-monitor-by-TCP
rec-detach-monitor-by-TCP
snd-attach-monitor
snd-detach-monitor
snd-monitor
rec-monitor
continuation

context-free syntax
ID “(" TOOL-ID )"
none

MONITOR

— ATOMIC-FUN
— ATOMIC-FUN
— ATOMIC-FUN
— ATOMIC-FUN
— ATOMIC-FUN
— ATOMIC-FUN
— ATOMIC-FUN
— ATOMIC-FUN
— ATOMIC-FUN

get-monitor(BUS-STATE, PROC-ID)
has-monitor-attached (BUS-STATE, PROC-ID)
is-monitor-atom (ATOMIC-FUN)
selects(TERM, PROC-ID, BUS-STATE)

select-and-set-monitor(TERM, PROCESSES, MONITOR, BUS-STATE)

mk-logpoint(PROC-ID, ATOM, ENV, BUS-STATE, PROC-ID)

mk-viewpoint(PROC-ID, ATOM, ENV, BUS-STATE, PROC-ID)
mk-controlpoint(PROC-ID, ATOM, ENV, BUS-STATE, PROC-ID, PROC) — TERM
monitor-info(MONITOR, ATOM, CONTEXT, PROC-ID)

exports
variables
Mid [0-9']x — TOOL-ID
MonitorKind— |D
Monitor — MONITOR
hiddens
variables
Break [0-9']x— TERM
Chars [0-9']%x— CHAR=x
Sel — TERM
equations
Define relevant communications.

v1(snd-attach-monitor, rec-attach-monitor-by-TCP) =
v1(snd-detach-monitor, rec-detach-monitor-by-TCP) =

v1(snd-monitor, rec-monitor) =

true
true

true
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— MONITOR
— MONITOR
— BUS-VAL

— MONITOR
— BOOL

— BOOL

— BOOL

— BUS-STATE

— TERM
— TERM

— NEXT-INFO

[em-attach-monitor]
[em-detach-monitor]

[em-monitor]

Add a field monitor to each process representation. Its value is a term of the form Monitor Kind(Tid),
where Monitor Kind if logger, viewer, or controller, and T'd is the tool identification of the monitoring
tool attached to the process. The value of the monitor field is none if no monitoring tool is attached).
Also define the predicate has-monitor-attached to test whether a process is being monitored or not.

BS . monitor(Pid) = no-bus-val =

get-monitor(BS, Pid) =

BS . monitor(Pid) = MonitorKind(Tid) = get-monitor(BS, Pid) =

BS . monitor(Pid) = none =
get-monitor(BS, Pid) = none = has-monitor-attached (BS, Pid) = false

has-monitor-attached (BS, Pid)

get-monitor(BS, Pid) =

= true otherwise

none [get-monitor-1]
MonitorKind( Tld) [get-monitor-2]

none [get-monitor-3]

[hma-1]

[hma-2]
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Special care is needed to exclude from monitoring the exchange of monitoring information between
monitored process and the tool control process of its attached monitoring tool. The atoms snd-monitor
and rec-monitor are equivalent to snd-msg and rec-msg except that no information will be sent to any
monitor when they are executed. The atom continuation is executed by a process being monitored by a
controller.

is-monitor-atom(snd-monitor) = true [is-monitor-atom-1]

is-monitor-atom(rec-monitor) = true [is-monitor-atom-2]
is-monitor-atom(continuation) = true [is-monitor-atom-3]

is-monitor-atom

—_— o~ o~ —~

AtomicFun) = false otherwise [is-monitor-atom-4]

Attaching and detaching monitors to/from processes requires a selection mechanism for processes. We
introduce a selects predicate that given a “selection criterion” (a term-list) and a process representation
yields true when either the name or the process identifier of the process occur in the given term-list.

get-proc-name(BS, Pid) = proc-name(String)

I
selects([proc-name(String), OptTs|, Pid, BS) = true feel-1]
selects([Pid, OptTs], Pid, BS) = true [sel-2]
selects([], Pid, BS) = false [sel-3]
selects([ T, OptTs], Pid, BS) = selects([OptTs|, Pid, BS) otherwise [sel-4]

Set the monitor of selected processes. Observe that we explicitly forbid attachment of a monitor to a
process that has already a monitor attached, respectively, removing a monitor from a process that has
no monitor attached. We also forbid attaching a monitor to either a tool or a tool control process.

Pid = get-pid(PR), selects(Sel, Pid, BS) = true,
Monitor # none,
has-monitor-attached (BS, Pid) = false,
get-proc-name(BS, Pid) # proc-name("TCP"), get-proc-name(BS, Pid) # "T0OL",
BS' = BS[monitor(Pid) := Monitor]
select-and-set-monitor (Sel, {PR || PRs}, Monitor, BS) =
select-and-set-monitor (Sel, { PRs}, Monitor, BS')

[sel-and-set-1]

Pid = get-pid(PR), selects(Sel, Pid, BS) = true,
has-monitor-attached (BS, Pid) = true,
get-proc-name(BS, Pid) # proc-name("TCP"), get-proc-name(BS, Pid) # "ToOL",
BS' = BS[monitor(Pid) := none]
select-and-set-monitor(Sel, {PR || PRs}, none, BS) =
select-and-set-monitor (Sel, { PRs}, none, BS')

[sel-and-set-2]

select-and-set-monitor (Sel, {}, Monitor, BS) = BS [sel-and-set-3]

select-and-set-monitor (Sel, {PR || PRs}, Monitor, BS) = [sel-and-set-4]
select-and-set-monitor(Sel, { PRs}, Monitor, BS) otherwise

The interface with a monitoring tool strictly follows the standard data formats for tools. As a consequence,
some notions (process expressions, environments) have to be converted to terms. We use the conversion
functions env2term and proc2term for this purpose. The functions mk-logpoint, mk-viewpoint and mk-
controlpoint construct a term containing all necessary information to completely characterize the execution
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of one atom in a process for each kind of monitoring. Note that the format of each monitoring point is
identical, but that note all components are used, i.e., the last component containing a process expression
is only used for control points.

get-notes(BS, Pid;) = note-list (Notes)
mk-logpoint(Pid1, Atom, Env, BS, Pid;) =
logpoint(Pid;, atomic-fun2string (fun(Atom)), args(Atom),
env2term(Env), [Notes], Pidy, "delta")
get-notes(BS, Pid;) = note-list (Notes)
mk-viewpoint ( Pid;, Atom, Env, BS, Pidy) =
viewpoint(Pid;, atomic-fun2string (fun( Atom)), args(Atom),
env2term(Env), [Notes], Pidy, "delta")
get-notes(BS, Pid;) = note-list( Notes)
mk-controlpoint (Pidy, Atom, Env, BS, Pid>, P) =
controlpoint(Pid;, atomic-fun2string(fun(Atom)), args(Atom),
env2term(Env), [Notes], Pid>, proc2term(P))

[mk-logpoint-1]

[mk-viewpoint-1]

[mk-controlpoint-1]

After these preparations, define two functions for executing a step in a process. When a process is being
monitored, the following equation transforms the normal “next” information into additional monitoring
information.

BS = get-bus-state( (),

Pid; = get-proc-id( (),
has-monitor-attached (BS, Pid;) = true,
is-monitor-atom(fun(Atom)) = false,

get-monitor(BS, Pid1) = Monitor

info(Atom, C, Pid2) = monitor-info(Monitor, Atom, C, Pids)

[info-mon]

The “next” operation in the case of monitoring is now defined by inserting appropriate monitoring atoms
to inform the monitor about the atom just executed. Recall, that the default case for this function was
already defined in Section 5.3.2.

Pid, = get-proc-id(C)

Ymonitor-info(Logger( Tid), Atom, C, Pidy) (0.P)=
< snd-monitor( Tid, mk-logpoint(Pid1, Atom, get-env(C), get-bus-state(C), Pid,)) . P >

[nu-log]

Pid, = get-proc-id( ()

Vmonitor—info(viewer( Tid), Atom, C, Pid3) (O.P)=
< snd-monitor( Tid, mk-viewpoint (Pidy, Atom, get-env(C), get-bus-state(C), Pid,))
. rec-monitor(Tid, continue(Pid)) . P >

[nu-view]

Pid; = get-proc-id(C)

Vmonitor—info(controller( Tidy, Atom, C, Pids) (O.P)=
< snd-monitor( Tid, mk-controlpoint(Pid;, Atom, get-env(C), get-bus-state(C), Pidz, P))
. rec-monitor(Tid, continue(Pid;, NewP ?, NewEnv ?)) . continuation(NewP, NewEnv) >

[nu-ctl]
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Define the atomic steps for attach-monitor and detach-monitor

PR = Ppid ()‘Env (< OAPs + Atom . P + OAPs" >)),
C = context(Pid, Env, Script, BS),
is-enabled (Atom, C) = true,
fun(Atom) = attach-monitor, args(Atom)= [Ty, T,, T3],
[Tid, MonitorKind(), T3'] = substitute([Ty, T2, T3], Env),
has-monitor-attached(BS, Pid) = false,
BS' = select-and-set-monitor( 7', {PRs; || PRs2}, MonitorKind(Tid), BS),
1 _
PR = P pid (/\Env (Vinfo(Atom, C/ BY', proc-id(- 1)) (O . P))
atomic—steps(/\BS (EScript ({PRs1 || O || PR || PRs:})), W) =
atomic-steps(Agg (EScript ({PRs; || PR" || O || PRs:})), true)

[attach-monitor-trans]

PR=pp;y (Ag,, (< OAPs + Atom . P + OAPS" >)),

C = context(Pid, Env, Script, BS),
is-enabled (Atom, C) = true,
fun(Atom) = detach-monitor, args(Atom) = [T], [T'] = substitute([T], Env),
BS' = select-and-set-monitor(T', {PRs; || PRs,}, none, BS),

1 __
PR'= ppig M Eny Vinfo(Atom, €/ BS', proc-id(— 1)) (7 - P))
atomic—steps()\BS (E5cript ({PRs1 || O || PR || PRs2})), W) =
({PRsy || PR" || O || PRs;})), true)

[detach-monitor-trans]

atomiC-StePS()‘BS' (EScript

PR=pp, (Ag,, (< OAPs + Atom . P + OAP{' >)),

C = context(Pid, Env, Script, BS),
is-enabled (Atom, C) = true,
fun(Atom) = continuation,
args(Atom) = [Ty, T], [T1', T2'] = substitute([T1, T2], Env),
P = term2proc(T1'),
Env' = term2env(T,'),
1 _
PR = P pid ()‘Env' (Vinfo(Atom, C, proc-id(- 1)) (@ . P))
atomic—steps()\BS (EScript ({PRsy || O || PR || PRs:})), W) =
atomic-steps(Agg (EScript ({PRsy || PR" || O || PRs2})), true)

[continuation-trans]

7.8 Reconfiguring the TooLBUS

A complete shutdown or a dynamic reconfiguration of a running TooLBUS is achieved by the following
primitives:

e shutdown: terminate all currently executing tools as well as all ToOOLBUS processes.

e reconfigure: reconfigure the TooLBUS by reading a new script, selectively deleting process and
tools, and restarting the bus using the new script. Observe that, in combination with the moni-
toring primitives described earlier, the TooLBUS itself can be used to fully support the interactive
development of T scripts.
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| TooLBUSs Process || Tool Control Process || Tool |
shutdown
reconfigure rec-reconfigure-by-TCP || snd-reconfigure
restartt

Module Reconfigure
imports ToolBus(5-5) Expressions(®-5) Execute-Terminate(7-4) Monitoring(7'7) Eval-Do(7-5)

ToolDefs(7-1)
exports

sorts PB-PAIR
lexical syntax

shutdown — ATOMIC-FUN
reconfigure — ATOMIC-FUN
restart — ATOMIC-FUN
rec-reconfigure-by-TCP — ATOMIC-FUN
snd-reconfigure — ATOMIC-FUN

context-free syntax
detach-deleted-monitor(TERM, PROC-ID, BUS-STATE) — BUS-STATE

“<” PROC “” BUS “>" — PB-PAIR
select-or-terminate (TERM, TERM, BUS) — PB-PAIR
equations

Define relevant communications.
'yl(snd—reconfigure, rec—reconfigure—by—TCP) = true [em-reconfigure]
Remove a monitor from a process if the tool control process for that monitor is not selected.

has-monitor-attached (BS, Pidy) = true,
get-monitor(BS, Pidy) = MonitorKind(Tid),
get-controlling-process(BS, Tid) = Pids,
selects( T, Pidy, BS) = false
detach-deleted-monitor (T, Pid;, BS) = BS[monitor(Pid;) := none]

[ddm-1]

detach-deleted-monitor (T, Pid;, BS) = BS otherwise [ddm-2]

Both in case of a complete shutdown of the TooLBUS and in case of a reconfiguration, it is necessary to
gracefully terminate all (or a selection of) processes. The function select-or-terminate does the following:

e constructs a list of remaining processes.

e constructs a processes expression containing (a) snd-terminate-to-tool atoms to terminate all cur-
rently active tools (i.e., tool instance processes) that are not selected; (b) snd-monitor atoms to
inform a monitor about the termination of a monitored process.

For a selected process, only take care that a monitoring tool that is not selected is detached from the
process:

Pid = get-pid(PR),
selects( Ty, Pid, BS) = true,
detach-deleted-monitor ( Ty, Pid, BS) = BS'

select-or-terminate( 71, T2, ABs (EScript ({PRs1 || O || PR || PRs2}))) =
select-or-terminate( 71, T2, Agg! (EScript ({PRs1 || PR || O || PRs2})))

[sot-1]
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For a process that is not selected but has an attached monitor whose tool control process is selected,
inform the monitor about the termination of this process:

Pid; = get-pid(PR),

selects( Ty, Pidy, BS) = false,
has-monitor-attached (BS, Pid;) = true,

Mid = get-monitor(BS, Pid),
get-controlling-process(BS, Mid) = Pids,

selects( T1, Pid3, BS) = true,

BS' = del-proc-id(BS, Pid1),

select-or-terminate( 71, T3,

Ags' (Escript ({PRet [1T 11 PR2)) - < p e (Egeipet ({PRs3})) >

select-or-terminate( 71, T2, Ags (EScript ({PRs1 || O || PR || PRs2}))) =
< snd-monitor(Mid, terminates(Pidy, T)) . P, Agg (EScript' ({PRss})) >

[sot-2]

For a tool control process that is not selected, delete the process and construct an appropriate snd-
terminate-by-TCP atom to terminate the tool it controlled.

Pid = get-pid(PR),
selects( Ty, Pid, BS) = false,
get-proc-name(BS, Pid) = proc-name("TCP"),
BS' = del-proc-id (BS, Pid),
select-or-terminate( Ty, T, Agg! (E5cript ({PRsy || O || PRs3}))) = < P, Agg! (E5cript' ({PRs3})) >

feat=2]
sot=3]

select-or-terminate ( Ty, T3, Ags (EScript ({PRsy || O || PR || PRs2}))) =
< snd-terminate-by-TCP(get-controlled-ext-tool (BS, Pid), T,) . P, Ags! (EScript' ({PRss})) >

The remaining cases:

select-or-terminate( Ty, To, ABs (EScript ({PRs || O}))) = < tau, Ags (EScript ({PRs})) > [sot-4]
BS’ = del-proc-id (BS, get-pid(PR))
select-or-terminate( Ty, T2, Agg (EScript ({PRs1 || O || PR || PRs2}))) =
select-or-terminate( 71, T2, Agg! (EScript ({PRs1 || O || PRs2})))

otherwise [sot-5]

A shutdown of the TooLBUS proceeds in three steps:

e Apply select-or-terminate to all processes. As a result, all tool instance processes and the current
process are selected.

e Execute all atomic steps generated by the previous step in the current process. This amounts to
sending a sequence of snd-terminate-to-tool messages to the tool instance processes.

e Stop the current process (and hence all activities in the TooLBUS).
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Observe that any monitoring of the process containing the shutdown atom is turned off before any further
atomic step is performed.

PR=pp., ()‘Env (< OAPs + Atom . P + OAPS' >)),

fun(Atom) = shutdown,
C = context(Pid, Env, Script, BS),
is-enabled (Atom, C) = true,

args(Atom) = [T],
T = substitute( T, Env),

B=gg (EScript ({3 || PRsy || PRs2})).
select-or-terminate ([proc—name("T00L")], T', B) = < P, B' >,
B = ABs’ (EScript' ({PRs3})),

BS” = BS'[monitor(Pid) := none],

PR = Ppid (/\Env (Vinfo(Atom, C ) BS", proc-id(- 1)) (0. F.8)
atomic—steps(/\BS (EScript ({PRs; || O || PR || PRs3})), W) =

atomic-steps(Agcr (EScript' ({0 || PR" || PRs3})), true)

[shutdown-trans]

A reconfiguration of the TooLBUS is based on a new T script and a selection of processes that should
survive the reconfiguration. It consists of the following steps:

e Apply select-or-terminate to all processes. As a result, all tool instance processes, the current process,
and an optional list of other processes (as indicated by the argument of reconfigure) are selected.

e Execute all atomic steps generated by the previous step in the current process. This amounts to
sending a sequence of snd-terminate-to-tool messages to the tool instance processes.

e Restart the TooLBUS with a new script; this is achieved by inserting a restart atom in the current
process.

Observe that the process containing the reconfigure atom always survives the reconfiguration.

PR=ppy (/\Env (< OAPs + Atom . P + OAPS' >)),
C = context(Pid, Env, Script, BS),
is-enabled (Atom, C) = true,
fun(Atom) = reconfigure, args(Atom) = [Ty, T2, T3],
[Ty, T, T3'] = substitute([ Ty, T2, T3], Env),
[OptTs] = T/,
B= )‘BS (EScript ({3 || PRsy || PRs2})).
select-or-terminate ([proc-name("T0OL"), OptTs|, T3', B) = < P/, B' >,
B’ = )\le (ESCI'IptI ({PRSQ,})),
BS" = detach-deleted-monitor ([OptTs|, Pid, BS'),
C = C/ Script' | BS",
' ]
PR = Ppid (/\Env (Vinfo(Atom, C, proc-id(- 1) (0. P restart(7y) . P)))
atomic—steps()\BS (E5cript ({PRs1 || O || PR || PRs3})), W) =
({0 || PR" || PRs3})), true)

[reconfigure-trans]

atomic-steps( A BS" (EScript'

The restart atom is defined by a sequence of steps that resembles the sequence used for initializing a
complete interpreter (see Section 5.6.1). Observe that we do not further specify the function parse here.
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We assume that it is defined using standard parsing techniques.

PR=ppyy (Ag,, (< OAPs + Atom . P + OAPs" >)),
C = context(Pid, Env, Script, BS),
is-enabled (Atom, C) = true,
fun(Atom) = restart, args(Atom) = [T],
String = interpret(T, C),
parse(String) = Defs toolbus(ProcAppls),
Script’ = add-TCP-defs( Defs toolbus( ProcAppls)),

1 _
= Ppid (/\Env (Vinfo(Atom, C / Script’, proc-id(- 1) (B P))
atomic-steps(\gg (Egig (1PRs1 [0 1| PR || PRs;}), W) =

atomic-steps(add-procs(ProcAppls, Pid,
)\BS (EScript' ({PRsi || PR" || O || PRs;}))), true)

PR

[restart-trans]

Reconfiguring a TooLBUS is a very powerful operation and one may have, legitimate, concerns about the
overall consistency of the resulting, reconfigured, TooLBUS. The approach taken here gives no guarantees,
since the reconfigure atom only keeps an indicated list of old processes and creates new processes in the
reconfigured TooLBUS. All other consistency considerations have to be programmed explicitly in the T
script itself. In particular, all attempts to communicate with no longer existing tools or processes should
be avoided by properly informing old processes that still exist in the reconfigured bus.



90

7 Features of TooLBUS tools



Chapter 8

Discussion

In this paper we have:
e introduced the Discrete Time TooLBUS architecture for interconnecting software components;
e created a framework for the definition of and experimentation with TooLBUs features;
e given a formal, executable, specification of a Discrete Time TooLBUS interpreter.

We consider as its main contributions:

e the systematic use of discrete time process algebra in the setting of interconnecting software com-
ponents;

e the symbolic treatment of process expressions yielding “lazy” interpretation rules that are supe-
rior (regarding execution performance) over rules that fully normalize process expressions before
interpreting them;

e various aspects of the ToOOLBUS design itself, i.e., the specific form of terms and their use, among
others, for matching and information transfer during communication, the monitoring of processes,
and the reconfiguration of a TooLBUS.

e the idea of randomized execution, that enforces more discipline on the writer of T scripts, but has
as benefit that T scripts are insensible to changes in the scheduling strategy of the implementation
by which they are executed.

There are two global views on the TooLBUS that we now discuss in some detail.

8.1 The TooLBUS as software interconnection architecture

The primary motivation for the TooLBUs has always been the desire to create an open, flexible, ar-
chitecture for interconnecting heterogeneous software components. The design presented here already
incorporates improvements and extensions based on experiments with the previous version of the TooL-
Bus as described in [BK94]. This has led to the addition of primitives for dynamic execution/termination
and connection/disconnection of tools, simple operations on the built-in data type of terms, conditions,
and time. Other primitives, e.g., monitors, were added anticipating various classes of usage of the TooL-
Bus. For instance, we expect that loggers will play a role in gathering performance data and statistics
about the execution of a TooLBUS. They may also be used for creating automatic “replay” facilities
that record all steps executed by a system based on the TooLBuUs. Later on, this record can be used to
replay the previously recorded session. Viewers have clear applications in interactive, non-intrusive, de-
bugging. Controllers can be used for intrusive debuggers, but have other applications that are described
below. Finally, the reconfiguration primitive is a first step in the direction of providing support for the
maintenance of T scripts.
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8.2 The TooLBUS as generic run-time environment

A different view on the TooLBUS is to consider it as a generic run-time environment that can be used by
tools. Controllers play a crucial role in this approach. Recall that controllers can modify both the process
expression and the local state of the process they are controlling. One scenario is then to implement some
application in a tool T and to attach it as controller to one ToOLBUS process P. Whenever the tool
needs to interact with its environment (for instance, to interact with a user-interface or to use some
other facility available in the TooLBUS), it can send the appropriate process expression to P. After
executing it, T' gets again control and can continue its own computation. In this way, one can build,
for instance, interpreters for arbitrary languages and connect them as controllers to the TooLBuUSs, thus
re-using existing facilities.

8.3 Concluding remarks

The ultimate yardstick for judging the architecture presented here is in its use. Although initial ex-
periments are encouraging, we anticipate further developments in extending and refining the current
design.

However, when using the TooLBUs the largests investments will be made in the development of
tools that will be connected to it rather than in the T scripts used to connect them. This implies that
the stability of the Tool Interface Protocol and the representation of terms should have the highest
priority. Unfortunately, “stability” and “further development” are not necessarily good friends of each
other. Hereby, we commit ourselves to a further development strategy that ensures maximal (albeit not
absolute) stability for tool developers.
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Appendix A

Primitives available in T scripts

| Primitive | Description §

delta deadlock 5.1
tau internal step 5.1
+ choice 5.1
. sequential composition 5.1
* iteration 6.1
[ free merge 6.2
if ... then ... fi guarded command 6.6
if ... then ... else ... fi | conditional 6.6
create process creation 6.7
let ... in ... endlet variable introduction 6.3

expressions 6.5
= assignment 6.5
snd-msg send a message (binary, synchronous) 6.4
rec-msg receive a message (binary, synchronous) 6.4
snd-note send a note (broadcast, asynchronous) 6.8
rec-note receive a note (asynchronous) 6.8
no-note no notes available for process 6.8
subscribe subscribe to notes 6.8
unsubscribe unsubscribe from notes 6.8
delay relative time delay of atom 6.10
abs-delay absolute time delay of atom 6.10
timeout relative timeout of atom 6.10
abs-timeout absolute timeout of atom 6.10
rec-connect receive a connection request from a tool 7.3
rec-disconnect receive a disconnection request form a tool | 7.3
execute execute a tool 7.4
snd-terminate terminate the execution of a tool 7.4
shutdown terminate TooLBUS 7.8
reconfigure reconfigure TooLBUS 7.8
attach-monitor attach a monitoring tool to a process 7.7
detach-monitor detach a monitoring tool from a process 7.7
snd-eval send evaluation request to tool 7.5
snd-cancel cancel an evaluation request to tool 7.5
rec-value receive a value from a tool 7.5
snd-do send request to tool (no return value) 7.5
rec-event receive event from tool 7.6
snd-ack-event acknowledge a previous event from a tool 7.6

97




98

A Primitives available in T scripts



Appendix B

Annotated list of sorts

| Sort | Description | Module | § |
AP-FORM Action prefix forms for process expressions ActionPrefixForm 5.4
ATOM Atomic actions in process expressions TSCI‘ipt 5.1
ATOMIC-FUN Function symbols of atomic actions Tscript 5.1
BOOL Boolean datatype Booleans 4.1
BOOL-CON Boolean constants (true and false) Booleans 4.1
BUS Complete StatRepr 5.3.1
BUS-ASG Bus state assignments: one (field, value) pair StateRepr 5.3.1
BUS-STATE Complete state StateRepr 5.3.1
BUS-VAL Values to be assigned to fields of bus state StateRepr 5.3.1
CONTEXT Context of one process BusState 5.3.2
DEF Process and tool definitions Tscript 5.1
ENTRY (identifier, value) pair in environment Environments 4.4
ENV Environments representing bindings of variables Environments 4.4
ENV-PAIR Pair of environments Environments 4.4
E-PROCESSES Process creation (E) applied to merge of processes ToolBus 5.5
FEATURES Features in tool definition ToolDefs 7.1
FEATURE-ASG Feature asg. in tool definition: one (id, string) pair ToolDefs 7.1
FIELD Field in bus state StateRepr 5.3.1
FORMALS Formal parameters of process definition TSCI‘ipt 5.1
GEN-VAR Generalized variables Terms 4.1
ID Identifiers (names of function symbols in terms) Terms 4.1
INT Integers Integers 4.1
L-AP-FORM State operator () applied to action prefix form ToolBus 5.5
NAME Names of variables and processes (in T script) TSCI‘ipt 5.1
NAT Natural numbers Integers 4.1
NAT-CON Natural constants (numerals) Integers 4.1
NOTES List of notes received by process Notes 6.8
NEXT-INFO Information for the next operator (v) ToolBus 5.5
PNAME Process names Tscript 5.1
PROC Process expressions Tscript 5.1
PROC-APPL Application of named process expression TSCI‘ipt 5.1
PROC-ID Process identifications StateRepr 5.3.1
PROC-REPR Representation of one process ToolBus 5.5
PROCESSES Parallel merge of processes ToolBus 5.5
PB-PAIR (Process expression, Bus) pair Reconfigu re 7.8
STRING String constants Terms 4.1
SUBSCRIPTIONS | The subscriptions of one process Notes 6.8
TB-CONFIG configurations Tscript 5.1
T-SCRIPT T scripts Tscript 5.1
TERM Terms (prefix tree structures) Terms 4.1
TERM-LIST List of terms Terms 4.1
TIMER Delay or timeout Delay-Timeout 6.10
TIMER-FUN Function symbols for delay or timeout Delay-Timeout 6.10
TOOLS List of processes representing tools BusState 5.3.2
TYPE Types (of variables) TypedTerms 4.2
VAR Variables in T script Terms 4.1
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Appendix C

Functions defined by equations in

several

modules

Function

Description

| Defining equations

args

simple-atomic-step

atomic-steps

expand

Y1

info
interpret

is-enabled
v

prep-proc

proc2term

term2proc

Arguments of atom

Atomic step in one process

Atomic step in several processes
(like communication) or involv-
ing a transformation of a process
expression

Expansion of action prefix form

Function symbol of atom

Communication function

Information for “next” function
(v)

Interpret expression

Is atom enabled in a context
Next step in action prefix form
Prepare process expression

Convert a process expression to
a term

Convert a term to a process
expression

Tseript (5.1), Conditionals (6.6), Create (6.7),
Delay-Timeout (6.10)

ToolBus (5.5), Expressions (6.5), Notes (6.8),
Connect-Disconnect (7.3), Monitoring (7.7), Re-
configure (7.8)

ToolBus (5.5), Messages (6.4), Condition-
als (6.6), Create (6.7), Notes (6.8), Delay-
Timeout (6.10), Execute-Terminate (7.4), Mon-
itoring (7.7), Reconfigure (7.8)
ActionPrefixForm (5.4),
lteration (6.1), FreeMerge (6.2), Let (6.3),
Conditionals (6.6), Connect-Disconnect (7.3),
Execute-Terminate (7.4), Delay-Timeout (6.10)
Tscript (5.1), Expressions (6.5), Condition-
als (6.6), Create (6.7), Delay-Timeout (6.10)
Tscript (5.1), Mes-
sages (6.4), Connect-Disconnect (7.3), Execute-
Terminate (7.4), Eval-Do (7.5), Events (7.6),
Monitoring (7.7), Reconfigure (7.8)

ToolBus (5.5), Monitoring (7.7)

Expressions (6.5), DiscreteTime (6.9)

BusState (5.3.2), Conditionals (6.6)

ToolBus (5.5), Monitoring (7.7)

Prepare (5.2), Iteration (6.1), FreeMerge (6.2),
Let (6.3), Expressions (6.5), Conditionals (6.6),
Create (6.7), Delay-Timeout (6.10), Connect-
Disconnect (7.3), Execute-Terminate (7.4)
Tscript (5.1), Env (4.4),
lteration (6.1), FreeMerge (6.2), Let (6.3), Ex-
pressions (6.5), Conditionals (6.6), Create (6.7),
Delay-Timeout (6.10)

See proc2term
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Appendix D

Fields of the bus state

| Field | Sort Description | Module | §
control-tool | TERM Internal and external id of | ToolDefs 7.1
the tool controlled by a
process (per TCP)
monitor TOOL-ID | Attached monitor (per | Monitoring 7.7
process)
name TERM Name of process definition | BusState 5.3.2
(per process)
new-proc-id | PROC-ID | Counter for unique pro- | BusState 5.3.2
cess identifiers
new-tool-id | TOOL-ID | Counter for unique tool | ToolDefs 7.1
identifiers
time INT Absolute time DiscreteTime | 6.9
max-time INT Maxiaml absolute time DiscreteTime | 6.9
Notes.

o All fields marked as

name(Pid).

e The control-tool field has as value a list consisting of an (internal) tool identifier followed by an

“(per process)” or “(per TCP)” are indexed with a process identifier, e.g.,

integer representing the external identification of the tool, i.e., [Tid, Int].

e The name field has as value a term of the form proc-name(String).
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Appendix E

Discrete time process algebra for
the ToolBus

E.1 Preliminaries

With aV(n+ 1) we denote a process that may perform the action a during the course of time slice number
n + 1 or, alternatively, it may idle indefinitely. The n + 1-time slices takes time from time = n to
time = n + 1. Within a slice actions take place in interleaved fashion.

We follow discrete time process algebra in [BB95] in our explanation. In the syntax used there, we
have a¥(n + 1) = a(n + 1) +  where a(n + 1) is a process that must perform a in time slice n+ 1 and §
is a process that idles forever.

To model T scripts, it suffices to work in a subalgebra of the parametric time process algebra of [BB95].
This subalgebra is generated by actions aV(n) rather than a(n). Parametric discrete time processes allow
initialisation at any time t € N. With n >> P we denote the process that P develops into P after
initialization at n. n >> P itself is a so called absolute discrete time process. Its actions are all timed
with reference to the same initial time 0

Using time spectrum abstraction we introduce parametric time processes: P = \/dm.F. When ini-
tialised at n this P behaves as P[n/z] (or, more precisely, as n >> P[n/z]). Time spectrum abstraction
in the real time case was introduced in [BB93]. The discrete time case occurs in [BB92].

Two parametric time processes are equal if they are equal after all possible initializations. In this
way equality is reduced to the simple notion of strong bisimulation for absolute discrete time transition
systems. The Extensionality for Parametric Discrete Time rule

foraln:n> X =n>Y
X=Y

(EPDT)

embodies this version of process equality in parametric time. Notice that relative time notation is easily
obtained on the basis of time spectrum abstraction: a"[n] = \/dm.av (n + z). Hence, a¥[n] can perform
a in slice “n after initialization” or idle.

Using oV (z), time spectrum abstraction, and infinite sums > icn Pi we can define the meaning of the
actions script(a) that occur in the TooLBuUs by

script(a) = Z a’ (z+1).
1EN

This means that to explain a as an action in a T script in the discrete time setting, we replace it by an
infinite sum of a¥’s. We will write a for script(a) when no confusion arizes.

Timed atoms are now described in the following table. Note that e is an expression with free variable
time, and the empty sum equals 6.
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absdelay(a, €)
abstimeout(a, €)

reldelay(a, €)
reltimeout(a, )

absinterval(a, e1, e3)

=y Lien (8> e[n/time]) :— aV(3)
=y Yien (@ < e[n/time]) :— aV(4)

=y Lien (i > ea[n/time]) A (i < ez[n/time]) :— a” (i)

=V Yien(i > e[n/time] +n) :— a¥ (i)
=/ Lien (i < e[n/time] +n) :— a¥ (i)

relinterval(q, e, e3)

=/ 2ien(i > ex[n/time] + n) A (i < ea[n/time] + n) :— aV (7)

In the axiomatization below we will avoid time spectrum abstraction and infinite sums, thus obtaining
equations that are closer to an implementation though (perhaps) less intuitive.

E.2 Untimed process algebra axioms

For reference purposes, we include here first a table of standard (untimed) process algebra axioms as it
was given in [BK94]. (But see the notes below).

Basic Process Algebra (BPA) Encapsulation operator
z+y =y+ez Al Og(a) =a,iffa¢ H
(z+y)+z =z+(y+2) A2 Og(a) =6,ifa€e H
zt+z == A3 Op(z+y) =0m(z)+3u(y)
(z+y)z =zz+yz A4 O (z.y) = du(z).0m(y)
(z.y).z ==z.(y.2) A5
Renaming operator
Deadlock (BPAy) ps(6) =
z+é6 == A6 ps(a) = f(a)
bz =6 AT pi(z+y) = ps(z)+ps(y)
pt(z-y) = pp(z).ps(v)
Free merge operator pia(z) =z
zlly =z y+yl = M1 psopg() = prog()
all (0> 2z) =a (0> 2) M2
az| (0>>y) =a(z] (0>y) M3 Process creation operator
(z+y)| 2z ==z|] z+y|_ = M4 E4(a) =a,ifa ¢ cr(D)
Ey(er(d)) =cr(d).Eg(¢(d)), for d € D
Merge operator E4(a.z) = a.Eg(z),if a ¢ cr(D)
alb =+(a,b),if v defined CF1 | Eg(er(d).z) =cr(d).Ey(é(d) || z) for de D
a|b =6, otherwise CF2 Eg(z+y) = Ep(z)+ Ey(y)
zlly =z|| y+yll z+z|y CMI1 State operator
al| (0> 2) =a. (0> z) CM2 As(6) =6
azl] (0>y) =a(z] (0> y) CM3 As(a) =a(9)
(z+y)| 2z =z| z+y|_ = CM4 As(a.z) = a(S)As(a)(z)
az|b =(a]bd).z CM5 As(z+y) =As(z)+ As(y)
albz =(a]bd).z CM6
az|by =(al]bd).(z]v) CM7 Iteration operator
(z4+y) |z =z|z+y]|=z CMs8 z*y =z.(z*y)ty
z|l(y+z) =z|yt+z]|z CM9
Conditional control
T:—»z ==
F:sz =6

D1
D2
D3
D4

RNO
RN1
RN2
RN3
RR1
RR2

CR1
CR2
CR3
CR4
CR5

S01
SO2
SO4
SO5

C1
C2
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Notes:
e BPA consists of A1 ... A5.
e PA consists of BPA plus free merge operator.

e ACP consists of BPAs plus merge and encapsulation.

Axioms M1, M2, (CM2), M3 (CM3) have been modified using 0 >> z instead of z. Here, 0 >> =
denotes the initialization of z in 0. In the absence of time bound actions, 0 >> z is just z. This
modification guarantees consistency with the setting involving time bounds.

In the following sections we extend the above table with additional axioms for discrete time process

algebra.

E.3 Axioms for timed atoms and initialization

Timed atoms

aV (0) =6
8" (k) —5
a(k+1)z =a"(k+1)k>=z

Initialization
k> a =a'(k+1)+(k+1)>a
k> (z+7y) —k>z+k>y
k> (z.y) = (k> 2z).y
k>> (z [ y) = (k> =2)| (k> y)
k> (2] v) =(k>2)| (k>y)
k> (z|y) =(k>z)|(k>v)
k>> 0p(z) = 0u(k > vy)
k>> ps() = ps(k > z)
k> As(z) = As(k > z)
k> Ey(z) = Ey(k > z)
E>1> 0 =maz(k,l) > zif k <1
Ek>1>m>2 =maz(k,)>m>z

E.4 Initialization axioms for atoms with time constraints

Delays and timeouts

k >> absdelay(a, €) = maz(k, e[k/time]) >> a
k >> abstimeout(a, €) =e[k/time] > k :— (a¥(k + 1) + (k + 1) >> abstimeout(a, e[k /time]))
k >> absinterval(a,e1,e3) = maz(k,e1[k/time]) >> abstimeout(a, ez[k/time])
k >> reldelay(a, €) = (k + e[k/time]) >> a
k >> reltimeout(a, €) =e[k/time] > 0:— (aV(k + 1) + (k + 1) >> reltimeout(a, e[k /time] — 1))
k >> relinterval(a,e1,e2) = (k + e1][k/time]) >> reltimeout(a, ez [k/time])
Extensionality

foralln:n>z=n>=

r=2z
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E.5 Operator evaluation axioms for timed atoms

Left merge

av (k)| (1> z) =a"(k).(I > =) M2Y CM2Y
av(k).z| (I>y) a’(k).(z||1>>y) M3Y CM3Y

Communication merge

av(k)|dV(l) =6ifk#I
a’(k) | b¥(k) = (alb)"(k)
Encapsulation
Ou(a¥(k)) =av(k)ifag H
Ou(a¥(k)) =éb6ifac H
Renaming

Lps(a¥(k) = (f(a)(k) |

State operator

As(a(k))  =a(S)" (k)
As(a¥(k).z) =a(S)V(k).Asa)(z)

Here a(S)Y (k) is the action that takes place if within the scope of As a takes place in time slice k. S(a)
is the new state after performing « in state S during time slice k.

Process creation

Ey4(aV(k)) =av(k) if a ¢ cx(D)
Ey(cr(d)”(k))  =cx(d)"(k)-Eg(4(d))
Fa(er(d) ().2) = o (k). Fy(o)
Ey(cr(d)”(k)-z) =cx(d)"(k)-Ey(z || $(d))

Remark Observe that all axioms where some operator distributes over + can also be applied to infinite

sums, e.g.,
(Z X)).Y = Z(X,-.Y)

This is helpful to rewrite the expressions that emerge if T scripts are assigned a meaning by means of
the definitions given in Section E.1.
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ActionPrefixForm (module), 44, 46 def-END-TOOL — DEF, 74
add-cond(TERM, AP-FORM) — AP-FORM, 59 def-END-TOOL, 76, 77
add-proc, 47 def-EVAL-DO — DEF, 74
add-proc(PROC-APPL, PROC-ID, BUS) — BUS, def-EVAL-DO, 75, 77

46 def-EVENTS — DEF, 74
add-TCP-defs(T-SCRIPT) — T-SCRIPT, 67 def-EVENTS, 75, 77
add-tool(PROC, BUS) — BUS, 46 def-LOGGER — DEF, 74
add-tools(TOOLS, BUS) — BUS, 46 def-LOGGER, 76, 77
all-atomic-steps(BUS) — BUS, 46 def-MONITOR — DEF, 74
AP-FORM (sort), 44, 46, 52, 59 def-MONITOR, 75, 77
args(ATOM) — TERM, 38 def-TCP — DEF, 74
assign(VAR, TERM, ENV) — ENV, 29 def-TCP, 74, 77
assign1(VAR, TERM, TERM, ENV) — ENV, 29 def-TERM — DEF, 74
ATOM — AP-FORM, 44 def-TERM, 76, 77
ATOM — PROC, 387 def-TIP — DEF, 72
ATOM (sort), 37, 38, 43, 44, 46, 55, 59, 60, 65, def-TIP, 72

82 def-TIP-EVAL-DO — DEF, 72
ATOM TIMER — ATOM, 65 def-TIP-EVAL-DO, 73
ATOMIC-FUN — ATOM, 87 def-TIP-EVENTS — DEF, 72
ATOMIC-FUN (sort), 37, 53-55, 60, 79-82, 86 def-TIP-EVENTS, 73
atomic-fun2string(ATOMIC-FUN) — STRING, 38 def-TIP-MONITOR — DEF, 72
atomic-steps(BUS, BOOL) — BUS, 46 def-TIP-MONITOR, 73

def-TIP-RECONFIGURE — DEF, 72
BOOL — TERM, 25 def-TIP-RECONFIGURE, 73
BOOL (sort), 25-28, 31, 38, 43, 46, 55, 61, 82 def-VIEWER — DEF, 74
Booleans (module), 59 def-VIEWER, 76, 77
BUS (sort), 46, 49, 50, 86 del-notes(TERM, NOTES) — NOTES, 61
BUS-ASG (sort), 41 Delay-Timeout (module), 49, 64
BUS-STATE (sort), 41, 43, 46, 61, 64, 68, 82, 86 delete(TERM, ENV) — ENV, 29
BUS-VAL (sort), 41, 43, 61, 67, 82 DiscreteTime (module), 64, 64
BusState (module), 42, 44, 64, 81 dot(AP-FORM, PROC) — AP-FORM, 44
cmatchp(TERM, TERM) — BOOL, 31 E-PROCESSES (sort), 46
Conditionals (module), 49, 59, 64, 72, 74 ENTRY (sort), 29
Connect-Disconnect (module), 72, 74, 77, 79 ENV (sort), 29, 31, 39, 43, 44, 46, 53, 67, 82
CONTEXT (sort), 43, 44, 46, 55, 82 ENV-PAIR (sort), 29, 31
Create (module), 49, 60, 72, 77 envl(ENV-PAIR) — ENV, 29
create — ATOMIC-FUN, 60 env2(ENV-PAIR) — ENV, 29
create, 60 env2term(ENV) — TERM, 29
create-bus(TOOLS, T-SCRIPT) — BUS, 46 Environments (module), 29, 31, 39, 41
Eval-Do (module), 49, 72, 74, 80, 86

declared-type(VNAME, ENV) — TYPE, 29 Events (module), 72, 74, 81
DEF (sort), 37, 38, 67, 72, 74 execute(TERM-LIST) — PROC, 79
def-CONTROLLER — DEF, 74 Execute-Terminate (module), 49, 72, 74, 79, 86
def-CONTROLLER, 76, 77 expand(PROC, CONTEXT) — AP-FORM, 44
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Expressions (module), 49, 55, 59, 64, 77, 86
extend(VAR-LIST, ENV) — ENV, 53

false, 27, 28, 32, 38, 48, 49, 62, 63, 82-87
FEATURE-ASG (sort), 67

FEATURES (sort), 67
features2term(FEATURES, ENV) — TERM, 67
FORMALS (sort), 37, 38, 67

FreeMerge (module), 49, 52

fun(ATOM) — ATOMIC-FUN, 38

GEN-VAR — TERM, 25
GEN-VAR (sort), 25, 26, 37, 44
get-bus-state(CONTEXT) — BUS-STATE, 43
get-env(CONTEXT) — ENV, 43
get-max-time(BUS-STATE) — INT, 64
get-new-proc-id(BUS-STATE) — PROC-ID, 43
get-new-tool-id(ID, BUS-STATE) — TOOL-ID, 67
get-notes(BUS-STATE, PROC-ID) — NOTES, 61
get-pid(PROC-REPR) — PROC-ID, 46
get-proc-id(CONTEXT) — PROC-ID, 43
get-proc-name(BUS-STATE, PROC-ID) — TERM,
43
get-script(CONTEXT) — T-SCRIPT, 43
get-time(BUS-STATE) — INT, 64

has-no-vars(TYPE) — BOOL, 26

ID — FIELD, 41

ID — TERM, 26

ID (sort), 25, 26, 41, 67, 82

ifTERM thenPROC elsePROC fi — PROC, 59
ifTERM thenPROC fi — PROC, 59

info(ATOM, CONTEXT, PROC-ID) — NEXT-INFO,

46
INT — TERM, 25
INT (sort), 25, 26, 28, 41, 50, 64, 65, 67, 68
Integers (module), 25
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