
DeFato: Language-Parametri Fat Extrationfrom Soure Code
H.J.S. Basten and P. KlintCentrum Wiskunde & Informatia, P.O. Box 94079,NL-1090 GB Amsterdam, The NetherlandsH.J.S.Basten�wi.nl, P.Klint�wi.nl

Abstrat. Extrating fats from software soure ode forms the founda-tion for any software analysis. Experiene shows, however, that extrat-ing fats from programs written in a wide range of programming andappliation languages is labour-intensive and error-prone. We presentDeFato, a new tehnique for fat extration. It amounts to annotatingthe ontext-free grammar of a language of interest with fat annotationsthat desribe how to extrat elementary fats for language elements suhas, for instane, a delaration or use of a variable, a proedure or methodall, or ontrol ow statements. One the elementary fats have beenextrated, we use relational tehniques to further enrih them and toperform the atual software analysis.We motivate and desribe our approah, sketh a prototype implemen-tation and assess it using various examples. A omparison with otherfat extration methods indiates that our fat extration desriptionsare onsiderably smaller than those of ompeting methods.
1 IntrodutionA all graph extrator for programs written in the C language extrats (aller,allee) pairs from the C soure ode. It ontains knowledge about the syntax ofC (in partiular about proedure delarations and proedure alls), and aboutthe desired format of the output pairs. Sine all graph extration is relevant formany programming languages and there are many similar extration tasks, it iswasteful to implement them over and over again for eah language; it is betterto take a generi approah in whih the language in question and the propertiesto be extrated are parameters of a generi extration tool. There are manyand diverse appliations of suh a generi fat extration tool: ranging fromolleting relevant metris for quality ontrol during development or managingsoftware portfolios to deeper forms of analysis for the purpose of spotting defets,�nding seurity breahes, validating resoure alloation, or performing ompletesoftware renovations.A general workow for language-parametri software analysis is shown inFigure 1. Starting point are Syntax Rules, Fat Extration Rules, and Analy-sis Rules. Syntax Rules desribe the syntax of the system or soure ode tobe analyzed. In a typial ase this will be the grammar of C, C++, Java or

Fig. 1. Global workow of fat extration and soure ode analysis
Cobol possibly ombined with the syntax rules for some embedded or applia-tion languages. Fat Extration Rules desribe what elementary fats have tobe extrated from the soure ode. This may, for example, over the extrationof variable de�nitions and uses, and the extration of the ontrol ow graph.Observe that these extration rules are losely tied to the ontext-free grammarand di�er per language. Analysis Rules desribe the atual software analysis tobe performed and express the desired operations on the fats, e.g., heking theompatibility of ertain soure ode elements or determining the reahability ofa ertain part of the ode. The Analyzer reads the soure ode and extratsFats, and then produes Analysis Results guided by the Analysis Rules. Anal-ysis Rules have a weaker link with a programming language and may in someases even be ompletely language-agnosti. The analysis of multi-language sys-tems usually requires di�erent sets of fat extration rules for eah language, butonly one set of analysis rules.In this paper we explore the approah just skethed in more detail. Theemphasis will be on fat extration, sine experiene shows that extratingfats from programs written in a wide range of programming and appliationlanguages is labour-intensive and error-prone. Although we will use relationalmethods for proessing fats, the approah as presented here works for otherparadigms as well.The main ontributions of this work are an expliit design and prototypeimplementation of a language-parametri fat extration method.1.1 Related ResearhLexial analysis The mother and father of fat extration tehniques are prob-ably Lex [25℄, a sanner generator, and AWK [1℄, a language intended for fatextration from textual reords and report generation. Lex is intended to read a�le harater-by-harater and produe output when ertain regular expressions(for identi�ers, oating point onstants, keywords) are reognized. AWK readsits input line-by-line and regular expression mathes are applied to eah line toextrat fats. User-de�ned ations (in partiular print statements) an be assoi-ated with eah suessful math. This approah based on regular expressions is inwide use for solving many problems suh as data olletion, data mining, fat ex-tration, onsisteny heking, and system administration. This same approahis used in languages like Perl, Python, and Ruby. The regular expressions used in

an atual analysis are language-dependent. Although the lexial approah worksvery well for ad ho tasks, it annot deal with nested language onstruts andin the long turn, lexial extrator beome a maintenane burden.Murphy and Notkin have speialized the AWK-approah for the domain offat extration from soure ode [30℄. The key idea is to extend the expressiv-ity of regular expressions by adding ontext information, in suh a way that,for instane, the begin and end of a proedure delaration an be reognized.This approah has, for instane, been used for all graph extration [31℄ butbeomes umbersome when more omplex ontext information has to be takeninto aount suh as sope information, variable quali�ation, or nested languageonstruts. This suggests using grammar-based approahes.Compiler instrumentation Another line of researh is the expliit instrumenta-tion of existing ompilers with fat extration apabilities. Examples are: theGNU C ompiler GCC [13℄, the CPPX C++ ompiler [5℄, and the ColumbusC/C++ analysis framework [12℄. The Rigi system [29℄ provides several �xedfat extrators for a number of languages. The extrated fats are representedas tuples (see below). The CodeSurfer [14℄ soure ode analysis tool extrats astandard olletion of fats that an be further analyzed with built-in tools oruser-de�ned programs written in Sheme. In all these ases the programminglanguage as well as the set of extrated fats are �xed thus limiting the range ofproblems that an be solved.Grammar-based approahes A more general approah is to instrument the gram-mar of a language of interest with fat extration diretives and to automatiallygenerate a fat extrator. This generator-based approah is supported by toolslike Ya, ANTLR, Asf+Sdf Meta-Environment, and various attribute gram-mar systems [20, 33, 10℄. Our approah is an extension of the Syntax De�nitionFormalism SDF [16℄ and has been implemented as part of the Asf+Sdf Meta-Environment [4℄. Its fat extration an be seen as a very light-weight attributegrammar system that only uses synthesized attributes. In attribute grammarsystems the further proessing of fats is done using attribute equations that de-�ne the values of synthesized and inherited attributes. Elementary fats an bedesribed by synthesized attributes and are propagated through the syntax treeusing inherited attributes. Analysis results are ultimately obtained as synthe-sized attributes of the root of the syntax tree. In our ase, the further proessingof elementary fats is done by using relational tehniques.Queries and Relations Although extrated fats an be proessed with manyomputational tehniques, we fous here on relational tehniques. Relationalproessing of extrated fats has a long history. A unifying view is to onsiderthe syntax tree itself as \fats" and to represent it as a relation. This idea isalready quite old. For instane, Linton [27℄ proposes to represent all syntati aswell as semanti aspets of a program as relations and to use SQL to query them.He enountered two large problems: the lak of expressiveness of SQL (notablythe lak of transitive losures) and poor performane. Reent investigations [3,15℄ into eÆient evaluation of relational query languages show more promisingresults.

In Rigi [29℄, a tuple format (RSF) is introdued to represent relations anda language (RCL) to manipulate them. The more elaborate GXL format is de-sribed in [18℄. In [35℄ a soure ode algebra is desribed that an be used to ex-press relational queries on soure text. Relational algebra is used in GROK [17℄,Relation Manipulation Language (RML) [3℄, .QL [7℄ and Relation Partition Al-gebra (RPA) [11℄ to represent basi fats about software systems and to querythem. In GUPRO [9℄ graphs are used to represent programs and to query them.Relations have also been proposed for software manufature [24℄, software knowl-edge management [28℄, and program sliing [19℄. Vankov [38℄ has explored therelational formulation of program sliing for di�erent languages. His observationis also that the fat extration phase is the major stumbling blok.In [2℄ set onstraints are used for program analysis and type inferene. Morereently, we have arried out promising experiments in whih the relational ap-proah is applied to problems in software analysis [22, 23℄ and feature analy-sis [37℄. These experiments on�rm the relevane and urgeny of the researhdiretion skethed in this paper. A formalization of fat extration is proposedin [26℄.Another approah is proposed by de Moor [6℄ and uses path expressionson the syntax tree to extrat program fats and formulate queries on them.This approah builds on the work of Paige [34℄ and attempts to solve a lassiproblem: how to inrementally update extrated program fats (relations) afterthe appliation of a program transformation.To onlude this brief overview, we mention one example of work that on-siders program analysis from the perspetive of the meta-model that is used forrepresenting extrated data. In [36℄ the observation is made that the meta-modelneeds adaptation for every analysis and proposes a method to ahieve this.1.2 Plan of the PaperWe will now �rst desribe our approah (Setion 2) and a prototype implemen-tation (Setion 3). Next we validate our approah by omparing it with othermethods (Setion 4) and we onlude with a disussion of our results (Setion 5).
2 Desription of our ApproahIn this setion we will desribe our fat extration approah, alled DeFato,and show how it �ts into a relational analysis proess.2.1 RequirementsBefore we embark on a desription of our method, we briey summarize ourrequirements. The method should be:{ language-parametri, i.e., parametrized with the programming language(s)from whih the fats are to be extrated;{ fat-parametri, i.e., it should be easy to extrat di�erent sets of fats forthe same language;

Fig. 2. Global workow of the envisaged approah
{ loal regarding extrating fats for spei� syntax rules;{ global when it omes to using the fats for performing analysis;{ independent from any spei� analysis model;{ suint and should have a high notional eÆieny;{ ompletely delarative;{ modular, i.e., it should be possible to ombine di�erent sets of fat extrationrules;{ disjoint from the grammar so that no grammar modi�ations are neessarywhen adding fat extration rules.2.2 ApproahAs indiated above, the main ontribution of this paper is a design for a language-parametri fat extration method. To show how it an be used to aommodate(relational) analysis, we desribe the whole proess from soure ode to analysisresults. Figure 2 shows a global overview of this proess.As syntax rules we take a ontext free grammar of the subjet system'slanguage. The grammar's produtions are instrumented with fat annotations,whih delare the fats that are to be extrated from the system's soure ode.We de�ne a fat as a relation between soure text elements. These elements aresubstrings of the text, identi�ed by the nodes in the text's parse tree that yieldthem. For instane a delared relation between two Statement nodes of the useand the delaration of a variable. With a Relational Engine the extrated fatsare further proessed and used to produe analysis results. We will disuss thesesteps in the following setions.2.3 Fat Extration with DeFatoFat Annotations The fat extration proess takes as input a parse tree anda set of fat annotations to the grammar's prodution rules. The annotationsdelare relations between nodes of the parse tree, whih identify soure odeelements. More preisely, a fat annotation desribes relation tuples that shouldbe reated when its prodution rule appears in a parse tree node. This an be

arbitrary n-ary tuples, onsisting of the node itself, its parent, or its hildren.Multiple annotations an ontribute tuples to the same relation.As an example, onsider the following prodution rule1 for a variable dela-ration like, for instane, int Counter; or har[100℄ buffer;:Type Identifier ";" -> StatementA fat extration annotation an be added to this prodution rule as follows:Type Identifier ";" -> Statement {fat(typeOf, Identifier, Type)}The fat annotation will result in a binary relation typeOf between the nodesof all delared variables and their types.In general, a fat annotation with n + 1 arguments delares an n-ary rela-tion. The �rst argument always ontains the name of the relation. The othersindiate the parse tree nodes to reate the relation tuples with, by referring tothe prodution rule elements that will math these nodes. These elements arereferened using their nonterminal name, possibly followed by a number to dis-tinguish multiple elements of the same nonterminal. List elements are post�xedby -list and optionals by -opt. The keyword parent refers to the parent nodeof the node that orresponds to the annotated prodution rule.Annotation Funtions Speial funtions an be used to deal with the parsetree strutures that lists and optionals an generate. For instane, if the aboveprodution is modi�ed to allow the delaration of multiple variables within onestatement we get:Type {Identifier ","}+ ";" -> Statement {fat(typeOf, eah(Identifier-list), Type)}Here, the use of the eah funtion will extend the typeOf relation with a tuplefor eah identi�er in the list. Every tuple onsists of an identi�er and its type.In general, eah funtion or referene to a prodution rule element will yielda set (or relation). The �nal tuples are onstruted by ombining these setsusing Cartesian produts. Empty lists or optionals thus result in an empty setof extrated tuples.Table 1 shows all funtions that an be used in fat annotations. The fun-tions first, last and eah give aess to list elements. The funtion next is,for instane, useful to extrat the ontrol ow of a list of statements and indexan be useful to extrat, for instane, the order of a funtion's parameters.A funtion an take an arbitrary number of prodution rule elements asarguments. The nodes orresponding to these elements are ombined into a singlelist before the funtion is evaluated. The order of the prodution rule elementsspei�es the order in whih their nodes should be onatenated.1 Prodution rules are in Sdf notation, so the left and right hand sides are swithedwhen ompared to BNF notation.

Funtion Desriptionfirst() First element of a list.last() Last element of a list.eah() The set of all elements of a list.next() Create a binary relation between eah two sueeding elements of a list.index() Create a binary relation of type (int, node) that relates eah elementin a list to its index.Table 1. Funtions that an be used in fat annotations.
As an example, onsider the Java onstrutor body in whih the (optional) in-voation of the super lass onstrutor must be done �rst. This an be desribedby the syntax rule:"{" SuperConstrutorInvoation? Statement* "}" -> ConstrutorBodyTo alulate the ontrol ow of the onstrutor we need the order of its ontainedstatements. Beause the SuperConstrutorInvoation is optional and the list ofregular statements an also be empty, various ombinations of statements arepossible. By ombining all existing statements into a single list, the statementorder an be extrated with only one annotation using the next funtion:"{" SuperConstrutorInvoation? Statement* "}" -> ConstrutorBody {fat(su, next(SuperConstrutorInvoation-opt, Statement-list))}This results in tuples of sueeding statements to be added to the su relation,only if two or more (onstrutor invoation) statements exist.Seletion Annotations Sometimes however, the annotation funtions might notbe suÆient to extrat all desired fats. This is the ase when, depending on thepresene or absene of nodes for a list or optional nonterminal, di�erent fatsshould be extrated, but the nodes of this list or optional are not needed. Inthese situations the seletion annotations if-empty and if-not-empty an beused. They take as �rst argument a referene to a list or optional nonterminaland as seond and optionally third argument a set of annotations. If one or moreparse tree nodes exist that math the �rst argument, the �rst set of annotationsis evaluated, and otherwise the seond set (if spei�ed). Multiple annotationsan be nested this way.For instane, suppose the above example of a delaration statement is mod-i�ed suh that variables an also be delared stati. If we want to extrat a set(unary relation) of all stati variables, this an be done as follows:Stati? Type Identifier ";" -> Statement {if-not-empty(Stati-opt, [fat(stati, Identifier) ℄)}

Additional relations Apart from the relations indiated with fat annotations, wealso extrat relations that ontain additional information about eah extratednode. These are binary relations that link eah node to its nonterminal type,soure ode loation (�lename + oordinates) and yielded substring. Injetionhains are extrated as a single node that has multiple types. This way not everyinjetion prodution has to be annotated. The resulting relations also beomemore ompat, whih requires less omplex analysis rules.
2.4 Deoupling Extration Rules from Grammar RulesDi�erent fats are needed for di�erent analysis purposes. Some fats are ommonto most analyses; use-def relations, all relations, and the ontrol ow graph areommon examples. Other fats are highly speialized and are seldomly used. Forinstane, alls to spei� funtions for memory management or loking in orderto searh for memory leaks or loking problems.It is obvious that adding all possible fat extration rules to one grammarwill make it ompletely unreadable. We need some form of deoupling betweengrammar rule and fat extration rules. It is also lear that some form of modu-larization is needed to enable the modular omposition of fat extration rules.Our solution is to use an approah that is reminisent of aspet-oriented pro-gramming. The fat extration rules are delared separately from the grammar,in ombinable modules. Grammar rules have a name2 and fat extration rulesrefer to the name of the grammar rule to whih they are attahed. Analysis rulesde�ne the fats they need and when the analysis is performed, all desired fatextration rules are woven into the grammar and used for fat extration. Thisweaving approah is well-known in the attribute grammar ommunity and was�rst proposed in [8℄.
2.5 Relational AnalysisFat annotations only allow the delarations of loal relations, i.e., relations be-tween a parse tree node and its immediate hildren, siblings or parent. Howeverthis is not suÆient for most fat extration appliations. For instane, the de-laration and uses of a loal variable an be an arbitrary number of statementsapart and are typially in di�erent branhes of the parse tree.In the analysis phase that follows fat extration we allow the reation ofrelations between arbitrary parts of the programs. The extrated parse treenodes and relations do not have to form a tree anymore. They an now be seenas (possibly disonneted) graphs, in whih eah node represents a soure textelement. Based on these extrated relations, new relations an be alulated andanalyzed. Both for this enrihment of fats and for the analysis itself, we useRsript, whih is explained below.The fous of fat annotations is thus loal: extrating individual tuples fromone syntax rule. We now shift to a more global view on the fats.2 Currently, we use the onstrutor attribute ons of SDF rules for this purpose.

2.6 Rsript at a glaneRsript is a typed language based on relational alulus. It has some stan-dard elementary datatypes (booleans, integers, strings) and a non-standard one:soure ode loations that ontain a �le name and text oordinates to uniquelydesribe a soure text fragment. As omposite datatypes Rsript provides sets,tuples (with optionally named elements), and relations. Funtions may have typeparameters to make them more generi and reusable. A omprehensive set of op-erators and library funtions is available on the built-in datatypes ranging fromthe standard set operations and subset generation to the manipulation of rela-tions by taking transitive losure, inversion, domain and range restritions andthe like. The library also provide various funtions (e.g., onditional reahability)that enable the manipulation of relations as graphs.Suppose the following fats have been extrated from given soure ode andare represented by the relation Calls:type pro = strrel[pro , pro℄ Calls = {<"a", "b">, <"b", "">, <"b", "d">,<"d", "">, <"d", "e">, <"f", "e">,<"f", "g">, <"g", "e">}.The user-de�ned type pro is an abbreviation for strings and improves bothreadability and modi�ability of the Rsript ode. Eah tuple represents a allbetween two proedures. The top of a relation ontains those left-hand sides oftuples in a relation that do not our in any right-hand side. When a relationis viewed as a graph, its top orresponds to the root nodes of that graph. Usingthis knowledge, the entry points an be omputed by determining the top of theCalls relation:set[pro℄ entryPoints = top(Calls)In this ase, entryPoints is equal to {"a", "f"}. In other words, proedures"a" and "f" are the entry points of this appliation.We an also determine the indiret alls between proedures, by taking thetransitive losure of the Calls relation:rel[pro, pro℄ losureCalls = Calls+We know now the entry points for this appliation ("a" and "f") and theindiret all relations. Combining this information, we an determine whih pro-edures are alled from eah entry point. This is done by taking the right imageof losureCalls. The right image operator determines all right-hand sides oftuples that have a given value as left-hand side:set[pro℄ alledFromA = losureCalls["a"℄yields {"b", "", "d", "e"} andset[pro℄ alledFromF = losureCalls["f"℄

yields {"e", "g"}. Applying this simple omputation to a realisti all graphmakes a good ase for the expressive power and oniseness ahieved in thisdesription. In a real situation, additional information will also be inluded inthe relation, e.g., the soure ode loation where eah proedure delaration andeah all ours.Another feature of Rsript that is relevant for this paper are the equations,i.e., sets of mutually reursive equations that are solved by �xed point iteration.They are typially used to de�ne sets of dataow equations and depend on thefat that the underlying data form a lattie.
3 A Prototype ImplementationWe briey desribe a prototype implementation of our approah. With this pro-totype we have reated two spei�ations for the extration of the ontrol owgraph (CFG) of Pio and Java programs.
3.1 DesriptionThe prototype onsists of two parts: a fat extrator and an Rsript interpreter.Both are written in Asf+Sdf [21, 4℄.DeFato Fat extrator The fat extrator extrats the relevant nodes andfat relations from a given parse tree, aording to a grammar and fat anno-tations. We urrently use two tree traversals to ahieve this. The �rst identi�esall nodes that should be extrated. Eah node is given a unique identi�er andits non-terminal type, soure loation and text representation are stored. In theseond traversal the atual fat relations are reated. Eah node with an anno-tated prodution rule is visited and its annotations are evaluated. The resultingrelation tuples are stored in an intermediate relational format, alled Rstore,that is supported by the Rsript interpreter. It is used to de�ne initial valuesof variables in the Rsript (e.g., extrated fats) and to output the values ofthe variables after exeution of the sript (e.g., analysis results). An Rstoreonsists of (name, type, value) triples.Rsript interpreter The Rsript interpreter takes an Rsript spei�ationand an Rstore as input. A typial Rsript spei�ation ontains relationalexpressions that delare new relations, based on the ontents of the relations inthe given Rstore. The interpreter alulates these delared relations, and out-puts them again in Rstore format. Sine the program is written is Asf+Sdf,sets and relations are internally represented as lists.
3.2 Pio Control Flow Graph ExtrationAs a �rst experiment we have written a spei�ation to extrat the ontrol owgraph from Pio programs. Pio is a toy language that features only three typesof statements: assignment, if-then-else and while loop. The spei�ation onsists

of 13 fat annotations and only 1 Rsript expression. The CFG is onstrutedas follows. For eah statement we extrat the loal IN, OUT and SUCC relations.The SUCC relation links eah statement to its sueeding statement(s). The INand OUT relations link eah statement to its �rst, respetively, last substatement.For instane, the syntax rule for the while statement is:"while" Exp "do" {Statement ";"}* "od" -> StatementIt is annotated as follows:"while" Exp "do" {Statement ";"}* "od" -> Statement {fat(IN, Statement, Exp),fat(SUCC, next(Exp, Statement-list, Exp)),fat(OUT, Statement, Exp)}The three extrated relations are then ombined into a single graph ontain-ing only the atomi (non ompound) statements, with the following Rsriptexpression:rel[node, node℄ basiCFG = { <N1, N4> | <node N2, node N3> : SUCC,node N1 : reahBottom(N2, OUT), node N4 : reahBottom(N3, IN) }Where reahBottom is a built-in funtion that returns all leaf nodes of abinary relation (graph) that are reahable from a spei� node. If the graphdoes not ontain this node, the node is returned instead.3.3 Java Control Flow Graph ExtrationAfter the small Pio experiment we applied our approah to a more elaboratease: the extration of the intraproedural ontrol ow graph from Java pro-grams. We wrote a DeFato and an Rsript spei�ation for this task, withthe main purpose of omparing them (see Setion 4.2) with the JastAdd spei�-ation desribed in [32℄. We tried to resemble the output of the JastAdd extratoras lose as possible.Our spei�ations onstrut a CFG between the statements of Java methods.We �rst build a basi CFG ontaining the loal order of statements, in thesame way as the Pio CFG extration desribed above. After that, the ontrolow graphs of statements with non-loal behaviour (return, break, ontinue,throw, ath, finally) are added.Fat annotations are used to extrat information relevant for the ontrol owof these statements. For instane, the labels of break and ontinue statements,thrown expressions, and links between try, ath and �nally bloks. This infor-mation is then used to modify the basi ontrol ow graph. For eah return,break, ontinue and throw statement we add edges that visit the statements ofrelevant enlosing ath and �nally bloks. Then their initial suessor edges areremoved.The spei�ations ontain 68 fat annotations and 21 Rsript statements,whih together take up only 118 lines of ode. More detailed statistis are de-sribed in setion 4.

4 Experimental ValidationIt is now time to ompare our earlier extration examples. In Setion 4.1 wedisuss an implementation in Asf+Sdf of the Pio ase (see Setion 3.2). InSetion 4.2 we disuss an implementation in JastAdd of the Java ase (see Se-tion 3.3).
4.1 Comparison with Asf+SdfConeptual ComparisonAsf+Sdf is based on two onepts user-de�nable syntax and onditional equa-tions. The user-de�nable syntax is provided by Sdf and allows de�ning fun-tions with arbitrary syntati notation. This enables, for instane, the use ofonrete syntax when de�ning analysis and transformation funtions as opposedto de�ning a separate abstrat syntax and aessing syntax trees via a fun-tional interfae. Conditional equations (based on Asf) provide the meaning ofeah funtion and are implemented by way of rewriting of parse trees.Fat extration with Asf+Sdf is typially done by rewriting soure odeinto fats, and olleting them with traversal funtions. Variables have to be de-lared that an be used inside equations to math on soure ode terms. Theseequations typially ontain patterns that resemble the prodution rules of theused grammar. In our approah we make use of impliit variable delaration andmathing, and impliit tree traversal. We also do not need to repeat produ-tion rules, beause we diretly annotate them. However, Asf+Sdf an mathdi�erent levels of a parse tree in a single equation, whih we annot.
Pio ontrol ow extration using Asf+SdfCFG extration for Pio as desribed earlier in Setion 3.2 an be de�ned inAsf+Sdf by de�ning an extration funtion flow that maps language on-struts to triples of type <IN, SUCC, OUT>. For eah onstrut, a onditionalequation has to be written that extrats fats from it and transforms these fatsinto a triple.Extration for statement sequenes is done with the following onditionalequation:[fg-1℄ <In1, Su1, Out1> := flow(Stat),<In2, Su2, Out2> := flow(Stats)==================================flow(Stat ; Stats) =< In1,union(Su1, produt(Out1, In2), Su2),Out2 >The funtion flow is applied to the �rst statement Stat, and then to theremaining statements Stats. The two resulting triples are ombined using rela-tional operators to produe the triple for the omplete sequene.Extration for while statements follows a similar pattern:

DeFato + RsriptFat extration rulesFat annotations 11Unique relations 3Lines of ode 11Analysis rulesRelation expressions 1Lines of ode 2TotalsStatements 12Lines of ode 13

Asf+SdfSDFFuntion de�nitions 2Variable delarations 10Lines of ode 17ASFEquations 6Lines of ode 31TotalsStatements 18Lines of ode 48Table 2. Statistis of Pio Control Flow Graph extration spei�ations.
[fg-3℄ <In, Su, Out> := flow(Stats),Control := <unparse-to-string(Exp), get-loation(Exp)>==flow(while Exp do Stats od) =< {Control},union(produt({Control}, In), Su, produt(Out, {Control})),{Control} >The text as well as the soure ode loation of the expression are expliitlysaved in the extrated fats. Observe here (as well as in the previous equation)the use of onrete syntax in the argument of flow. The text while Exp doStats0 od mathes a while statement and binds the variables Exp and Stats0.Comparing the two CFG spei�ationsUsing these and similar equations, leads to a simple fat extrator that anbe haraterized by the statistis shown in Table 2. Comparing the Asf+Sdfversion with our approah one an observe that the latter is shorter and thatthe fat extration rules are simpler sine our fat annotations have built-infuntionality for building subgraphs, while this has to be spelled out in detailin the Asf+Sdf version. The behaviour of our fat annotations an atuallybe aurately desribed by relational expressions as our inside the Asf+Sdfequations shown above.The Asf+Sdf version and the approah desribed in this paper both useSdf and do not need a spei�ation for a separate abstrat syntax.4.2 Comparison with JastAddConeptual ComparisonWe have already pointed out that there is some similarity between our fatextration rules and synthesized attributes in attribute grammars. Thereforewe ompare our method also with JastAdd [10℄, a modern attribute grammarsystem. The global workow in suh a system is shown in Figure 3. Given syntaxrules and a de�nition of the desired abstrat syntax tree, a parser generator

Fig. 3. Arhiteture of attribute-based approah
produes a parser that an transform soure ode into an abstrat syntax tree.Attribute Delarations de�ne the further proessing of the tree; we fous hereon fat extration and analysis. Given the attribute de�nitions, an attributeevaluator is generated that repeatedly visits tree nodes until all attribute valueshave been omputed. The primary mehanisms in any attribute grammar systemare:{ synthesized attributes : values that are propagated from the leaves of the treeto its root.{ inherited attributes : values that are propagated from the root to the leaves.{ attribute equations de�ne the orrelation between synthesized and inheritedattributes.Due to the interplay of these mehanisms, information an be propagated be-tween arbitrary nodes in the tree. Synthesized attributes play a dual role: forthe upward propagation of fats that diretly our in the tree, and for the up-ward propagation of analysis results. This makes it hard to identify a boundarybetween pure fat extration and the further proessing of these fats. JastAddadds to this several other mehanisms: irular attributes, olletion attributes,and referene attributes, see [10℄ for further details.The de�nitional methods used in both approahes are summarized in Table 3.The following observations an be made:{ Sine we use SDF, we work on the parse tree and do not need a de�nition ofthe abstrat syntax, whih mostly dupliates the information in the grammarand doubles the size of the de�nition.{ After the extration phase we employ a global sope on the extrated fats,so no ode is needed for propagating information through an AST.{ In the onept of attribute grammars the alulation of fats is satteredaross di�erent nonterminal equations, while in our approah the globalsope on extrated fats allows for an arbitrary separation of onerns.

De�nition DeFato + Rsript JastAddSyntax SDF Any Java based parser grammarAbstrat Syntax Tree Not needed, uses Parse Trees AST de�nition + Java ationsin syntax de�nitionFat extration Modular fat extration rules(annotation of syntax rules) Synthesized attributes,Inherited attributes,Analysis Rsript (relational expressionsand �xed point equations) Attribute equations,Cirular attributes, Java odeTable 3. Comparison with JastAdd
{ The �xed point equations in Rsript and the irular attributes in JastAddare used for the same purpose: propagating information through the (poten-tially irular) ontrol ow graph. We use the equations for reahabilityalulations.{ JastAdd uses Java ode for AST onstrution as well as for attribute de�ni-tions. This gives the bene�ts of exibility and tool support, but at the ostof longer spei�ations.{ Our approah uses less (and we, perhaps subjetively, believe simpler) de�-nitional mehanisms, whih are ompletely delarative. We use a grammar,fat extration rules, and Rsript while JastAdd uses a grammar, an ASTde�nition, attribute de�nitions, and Java ode.Java ontrol ow extration using JastAddIn [32℄ an implementation of intraproedural ow analysis of Java is desribed,whih mainly onsists of CFG extration. Here we ompare its CFG extrationpart to our own spei�ation desribed earlier in Setion 3.3.The JastAdd CFG spei�ation delares a su attribute on statement nodes,whih holds eah statement's sueeding statements. Its alulation an roughlybe divided into two parts: alulation of the \loal" CFG and the \non-loal"CFG, just like in our spei�ation. The loal CFG is stored in two helper at-tributes alled following and first. The following attribute links eah state-ment to its diretly following statements. The first attribute ontains eahstatement's �rst substatement. The following example shows the equations thatde�ne these attributes for blok statements:eq Blok.first() = getNumStmt() > 0 ?SmallSet.empty().union(getStmt(0).first()) : following();eq Blok.getStmt(int i).following() = i == getNumStmt() - 1 ?following() : SmallSet.empty().union(getStmt(i + 1).first());These attributes are similar to the (shorter) IN and SUCC annotations in ourspei�ation:"{" BlokStatement* "}" -> Blok {fat(IN, Blok, first(BlokStatement-list)),fat(SUCC, next(BlokStatement-list)),fat(OUT, Blok, last(BlokStatement-list))}

DeFato + RsriptFat extration rulesFat annotations 68Seletion annotations 0Unique relations 14Lines of ode 72Analysis rulesRelation expressions 19Funtion de�nitions 2Lines of ode 46TotalsStatements 89Lines of ode 118

JastAddAnalysis rulesSynthesized attr. del. 8Inherited attr. del. 15Colletion attr. del. 1Unique attributes 17Equations (syn) 27Equations (inh) 47Contributions 1Lines of Java ode 186TotalsStatements 991Lines of ode 2871 Exluding Java statementsTable 4. Statistis of Java Control Flow Graph extration spei�ations.
Based on these helper attributes the su attribute values are de�ned, whihhold the entire CFG. This also inludes the more elaborate ontrol ow stru-tures of the return, break, ontinue and throw statements. Due to the loalnature of attribute grammars, equations an only de�ne the su attribute oneedge at a time. This means that for ontrol ow strutures that pass multipleAST nodes, eah node has to ontribute his own outgoing edges. If multiple on-trol ow strutures pass a node, the equations on that node have to handle allthese strutures. For instane, the ontrol ow of a return statement has to passall finally bloks of enlosing try bloks, before exiting the funtion. The equa-tions on return statements have to look for enlosing try-finally bloks, andthe equations on finally bloks have to look for ontained return statements.Similar onstruts are required for break, ontinue and throw statements.In our spei�ation we alulate these non loal strutures at a single pointin the ode. For eah return statement we onstrut a relation ontaining apath through all relevant finally bloks, with the following steps:1. From a binary relation holding the sope hierarhy (onsisting of bloksand for statements) we selet the path from the root to the sope thatimmediately enloses the return statement.2. This path is reversed, suh that it leads from the return statement upwards.3. From the path we extrat a new path onsisting only of try bloks that havea finally blok.4. We replae the try bloks with the internal ontrol ow of their finallybloks.The resulting relation is then added to the basi ontrol ow graph in one go.Here we see the bene�t of our global analysis approah, where we an operateon entire relations instead of only individual edges.

DeFato + Rsript JastAddExtration 68 / 61% Fat annos 68 {Seletion annos 0Propagation { 58 / 45% Syn. attrs + eqs 14Inh. attrs + eqs 44Helper stats 11 / 25% Relation exprs 10 22 / 32% Syn. attrs + eqs 4Funtion defs 3 Inh. attrs + eqs 18Calulation 10 / 14% Relation exprs 9 19 / 23% Syn. attrs + eqs 17Funtion defs 0 Coll. attrs + ontr. 2Table 5. Statement statistis of Java Control Flow Graph extration spei�ations
Comparing the two CFG spei�ationsSine both methods use di�erent oneptual entities, it is non-trivial to makea quantitative omparison between them. Our best e�ort is shown in Tables 4and 5. In Table 4, we give general metris about the ourrene of \statements"(fat annotation, attribute equation, relational expression and the like) in bothmethods. Not surprisingly, the fat annotation is the dominating statement typein our approah. In JastAdd this are attribute equations. Our approah is lessthan half the size when measured in lines of ode. The large number of lines ofJava ode in the JastAdd ase is remarkable.In Table 5 we lassify statements per task: extration, propagation, auxiliarystatements, and alulation. For eah statement type, we give a ount and theperentage of the lines of ode used up by that statement type. There is aninteresting resemblane between our fat extration rules and the propagationstatements of the JastAdd spei�ation. These propagation statements are usedto \deliver" to eah AST node information needed to alulate the analysisresults. Interestingly, the propagated information ontains no alulation results,but only fats that are immediately derivable from the AST struture. Our fatannotations also selet fats from the parse tree struture, without doing anyalulations. In both spei�ations the fat extration and propagation take upthe majority of the statements.It is also striking that both methods need only a small fragment of their linesof ode for the atual analysis 14% (Our method) versus 23% (JastAdd).Based on these observations we onlude that both methods are largely om-parable, that our method is more suint and does not need inline Java ode.We also stress that we only make a omparison of the onepts in both methodsand do not yet|given the prototype state of our implementation{ompare theirexeution eÆieny.
5 ConlusionsWe have presented a new tehnique for language-parametri fat extrationalled DeFato. We briey review how well our approah satis�es the require-ments given in Setion 2.1.

The method is ertainly language-parametri and fat-parametri sine itstarts with a grammar and fat extration annotations.Fat extration annotations are attahed to a single syntax rule and result inthe extration of loal fats from parse tree fragments. Our method does globalrelational proessing of these fats to produe analysis results.Sine arbitrary fat annotations an be added to the grammar, it is inde-pendent from any preoneived analysis model and is fully general. The methodis suint and its notational eÆieny has been demonstrated by omparisonwith other methods.The method is delarative and modular by design and the annotations anbe kept disjoint from the grammar in order to enable arbitrary ombinations ofannotations with the grammar. Observe that this solves the problem of meta-model modi�ation in a ompletely di�erent manner than proposed in [36℄.The requirements we started with have indeed been met.We have also presented a prototype implementation that is suÆient to assessthe expressive power of our approah. One observation is that the intermediateRstore format makes it possible to ompletely deouple fat extration fromanalysis. We have already made lear that the fous of the prototype was not onperformane. Several obvious enhanements of the fat extrator an be made.A larger hallenge is the eÆient implementation of the relational alulatorbut many known tehniques an be applied here. An eÆient implementation islearly one of the next things on our agenda.Our prototype is built upon Sdf, but our tehnique does not rely on a spei�grammar formalism or parser. Also, for the proessing of the extrated fats,other methods ould be used as well, ranging from Prolog to Java. We intend toexplore how our method an be embedded in other analysis and transformationframeworks.The overall insight of this paper is that a lear distintion between language-parametri fat extration and fat analysis is feasible and promising.
AknowledgementsWe appreiate disussions with Jurgen Vinju and Tijs van der Storm on thetopi of relational analysis. We also thank Magiel Bruntink for his feedbak onthis paper. Jeroen Arnoldus kindly provided his Sdfweaver program to us.
Referenes1. A.V. Aho, B.W. Kernighan, and P.J. Weinberger. Awk - a pattern sanning andproessing language. Software{Pratie and Experiene, 9(4):267{280, 79.2. A. Aiken. Set onstraints: Results, appliations, and future diretions. In SeondInternational Workshop on Priniples and Pratie of Constraint Programming(PPCP'94), volume 874 of Leture Notes in Computer Siene, 1994.3. D. Beyer, A. Noak, and C. Lewerentz. EÆient relational alulation for softwareanalysis. IEEE Transations on Software Engineering, 31(2):137+, 2005.

4. M.G.J. van den Brand, A. van Deursen, J. Heering, H.A. de Jong, M. de Jonge,T. Kuipers, P. Klint, L. Moonen, P.A. Olivier, J. Sheerder, J.J. Vinju, E. Visser,and J. Visser. The ASF+SDF Meta-Environment: a Component-Based LanguageDevelopment Environment. In R. Wilhelm, editor, Compiler Constrution (CC'01), volume 2027 of Leture Notes in Computer Siene, pages 365{370. Springer-Verlag, 2001.5. The CPPX home page. See http://swag.uwaterloo.a/~ppx/aboutCPPX.html,Visited July, 2008.6. O. de Moor, D. Laey, and E. van Wyk. Universal regular path queries. Higher-order and symboli omputation, 16:15{35, 2003.7. O. de Moor, M. Verbaere, E. Hajiyev, P. Avgustinov, T. Ekman, N. Ongkingo,D. Sereni, and J. Tibble. Keynote address: .ql for soure ode analysis. In SCAM'07: Proeedings of the Seventh IEEE International Working Conferene on SoureCode Analysis and Manipulation, pages 3{16, Washington, DC, USA, 2007. IEEEComputer Soiety.8. G. D. P. Duek and G. V. Cormak. Modular attribute grammars. The ComputerJournal, 33(2):164{172, 1990.9. J. Ebert, B. Kullbah, V. Riediger, and A. Winter. GUPRO - generi understandingof programs. Eletroni Notes in Theoretial Computer Siene, 72(2), 2002.10. T. Ekman and G. Hedin. The JastAdd system - modular extensible ompileronstrution. Siene of Computer Programming, 69(1{3):14{26, 2007.11. L.M.G. Feijs, R. Krikhaar, and R.C. Ommering. A relational approah to supportsoftware arhiteture analysis. Software Pratie and Experiene, 28(4):371{400,april 1998.12. R. Feren, I. Siket, and T. Gyim�othy. Extrating Fats from Open Soure Soft-ware. In Proeedings of the 20th International Conferene on Software Maintenane(ICSM 2004), pages 60{69. IEEE Computer Soiety, September 2004.13. The GCC home page. See http://g.gnu.org/, Visited July, 2008.14. GrammaTeh. Codesurfer. See http://www.grammateh.om/produts/odesurfer/, Visited July 2008.15. E. Hajiyev, M. Verbaere, and O. de Moor. Codequest: Salable soure ode querieswith datalog. In David Thomas, editor, Proeedings of the European Confereneon Objet-Oriented Programming, 2006.16. J. Heering, P.R.H. Hendriks, P. Klint, and J. Rekers. The syntax de�nition for-malism SDF - referene manual. SIGPLAN Noties, 24(11):43{75, 1989.17. R.C. Holt. Binary relational algebra applied to software arhiteture. CSRI 345,University of Toronto, marh 1996.18. R.C. Holt, A. Winter, and A. Sh�urr. GXL: Toward a standard exhange format.In Proeedings of the 7th Working Conferene on Reverse Engineering, pages 162{171. IEEE Computer Soiety, 2000.19. D. Jakson and E. Rollins. A new model of program dependenes for reverseengineering. In Pro. SIGSOFT Conf. on Foundations of Software Engineering,pages 2{10, 1994.20. M. Jourdan, D. Parigot, C. Juli�e, O. Durin, and C. Le Belle. Design, implemen-tation and evaluation of the FNC-2 attribute grammar system. In Proeedings ofthe ACM SIGPLAN'90 Conferene on Programming Language Design and Imple-mentation (PLDI), pages 209{222, 1990.21. P. Klint. A meta-environment for generating programming environments. ACMTransations on Software Engineering and Methodology, 2(2):176{201, April 1993.22. P. Klint. How understanding and restruturing di�er from ompiling|a rewrit-ing perspetive. In Proeedings of the 11th International Workshop on ProgramComprehension (IWPC03), pages 2{12. IEEE Computer Soiety, 2003.

23. P. Klint. Using rsript for software analysis. In Proeedings of Query Tehnologiesand Appliations for Program Comprehension (QTAPC 2008), June 2008. Toappear.24. D.A. Lamb. Relations in software manufature. Tehnial Report 1990-292,Queen's University Shool of Computing, Kingston Ontario, 1991.25. M.E. Lesk. Lex - a lexial analyzer generator. Tehnial Report CS TR 39, BellLabs, 1975.26. Y. Lin and R.C. Holt. Formalizing fat extration. In ATEM 2003: First Interna-tional Workshop on Meta-Models and Shemas for Reverse Engineering, VitoriaBC, November 13 2003.27. M. A. Linton. Implementing relational views of programs. In Proeedings of the �rstACM SIGSOFT/SIGPLAN software engineering symposium on Pratial softwaredevelopment environments, pages 132{140, 1984.28. B. Meyer. The software knowledge base. In Proeedings of the 8th internationalonferene on Software engineering, pages 158{165. IEEE Computer Soiety Press,1985.29. H. M�uller and K. Klashinsky. Rigi { a system for programming-in-the-large. InProeedings of the 10th International Conferene on Software Engineering (ICSE10), pages 80{86, April 1988.30. G.C. Murphy and D. Notkin. Lightweight soure model extration. In SIGSOFT'95: Proeedings of the 3rd ACM SIGSOFT symposium on Foundations of softwareengineering, pages 116{127, New York, NY, USA, 1995. ACM Press.31. G.C. Murphy, D. Notkin, W.G. Griswold, and E.S. Lan. An empirial studyof stati all graph extrators. ACM Transations on Software Engineering andMethodology, 7(2):158{191, 1998.32. E. Nilsson-Nyman, T. Ekman, G. Hedin, and E. Magnusson. Delarative intrapro-edural ow analysis of java soure ode. In Proeedings of 8th Workshop onLanguage Desriptions, Tools and Appliations (LDTA 2008), 2008.33. J. Paakki. Attribute grammar paradigms - a high-level methodology in languageimplementation. ACM Computing Surveys, 27(2):196{255, June 1995.34. R. Paige. Viewing a program transformation system at work. In M. Hermenegildoand J. Penjam, editors, Joint 6th International Conferene on Programming Lan-guage Implementation and Logi Programming (PLILP) and 4th InternationalConferene on Algebrai and Logi Programming (ALP), volume 844 of LetureNotes in Computer Siene, pages 5{24. Springer, 1991.35. S. Paul and A. Prakash. Supporting queries on soure ode: A formal frame-work. International Journal of Software Engineering and Knowledge Engineering,4(3):325{348, 1994.36. D. Strein, R. Linke, J. Lundberg, and W. L�owe. An extensible meta-model forprogram analysis. In ICSM '06: Proeedings of the 22nd IEEE International Con-ferene on Software Maintenane, pages 380{390, Philadelphia, USA, 2006. IEEEComputer Soiety.37. T. van der Storm. Variability and omponent omposition. In Jan Bosh andCharles Krueger, editors, Software Reuse: Methods, Tehniques and Tools: 8th In-ternational Conferene (ICSR-8), volume 3107 of Leture Notes in Computer Si-ene, pages 86{100. Springer, June 2004.38. I. Vankov. Relational approah to program sliing. Master's thesis, University ofAmsterdam, 2005. See www.wi.nl/~paulk/theses/Vankov.pdf.

