Programming Research Group

| %} [University of Amsterdam
S

Generic Programming
Re-engineering Language Technology

Re-engineering needs Generic
Programming Language Technology

Mark van den Brand
Paul Klint
Chris verhoef

Report P9618 November 1996

&3
&S
&3

University of Amsterdam
Department of Computer Science

Programming Research Group

Re-engineering needs generic programming language
technology

Mark van den Brand
Paul Klint
Chris verhoef

Report P9618 November 1996

M.G.]. van den Brand

Programming Research Group
Department of Computer Science
University of Amsterdam

Kruislaan 403
NL-1098 S] Amsterdam
The Netherlands

tel. +31 20 525 7593
e-mail: markvdb@fwi.uva.nl

P. Klint

Programming Research Group
Department of Computer Science

University of Amsterdam CWI

Kruislaan 403 P.O.Box 94079
NL-1098 S] Amsterdam 1090 GB Amsterdam
The Netherlands The Netherlands

tel. +31 20 525 7585 tel. +31 20 592 4126
e-mail: paulk@fwi.uva.nl e-mail: paulk@cwi.nl
C. Verhoef

Programming Research Group
Department of Computer Science
University of Amsterdam

Kruislaan 403
NL-1098 S] Amsterdam
The Netherlands

tel. +31 20 525 7581
e-mail: x@fwi.uva.nl

Universiteit van Amsterdam, 1996

Re-engineering needs Generic Programming
Language Technology

Mark van den Brandl, Paul K]intz’l, Chris Verhoef' *

! University of Amsterdam, Programming Research Group

Kruislaan 403, NL-1098 SJ Amsterdam, The Netherlands

2CWI, Department of Software Technology
P.O. Box 94079, NL-1090 GB Amsterdam, The Netherlands

markvdb@wins.uva.nl, paulk@cwi.nl, xQwins.uva.nl

Abstract

Generic language technology and compiler construction techniques are
a prerequisite to build analysis and conversion tools that are needed for
the re-engineering of large software systems. We argue that generic lan-
guage technology is a crucial means to do fundamental re-engineering.
Furthermore, we address the issue that the application of compiler con-
struction techniques in re-engineering generates new research questions in
the field of compiler construction.

Categories and Subject Description: D.2.6 [Software Engineering]: Programming
Environments—Interactive; D.2.7 [Software Engineering]: Distribution and Main-
tenance—Restructuring; D.3.2 [Programming Languages]: Language Classifica-
tions—Specialized application languages;

Additional Key Words and Phrases: re-engineering, reverse engineering, system ren-
ovation, intermediate data representation, compiler construction techniques, generic
language technology, programming environment generator

1 Introduction

In 1977, Mathew Hecht wrote in his book [Hec77] on flow analysis of computer
programs “Flow analysis can be used to derive information of use to human
beings about a computer program”, in fact he was referring to what we nowadays
call program understanding or reverse engineering. He further motivated the
use of flow analysis by stating that “some automatic program restructuring
may be possible” and that “perhaps remodularization could be accomodated”,
techniques that are relevant to restructure and remodularize legacy systems.
So, it comes hardly as a surprise that we will argue here that classical compiler
construction techniques are extremely useful to aid in re-engineering.

*The authors were all in part sponsored by bank ABN AMRO, software house DPFinance,
and the Dutch Ministry of Economical Affairs via the Senter Project #ITU95017 “SOS Re-
solver”. Chris Verhoef was also supported by the Netherlands Computer Science Research
Foundation (SION) with financial support from the Netherlands Organization for Scientific
Research (NWO), project Interactive tools for program understanding, 612-33-002.

Re-engineering is becoming more and more important. There is a constant
need for updating and renovating business-critical software systems for many
and diverse reasons: business requirements change, technological infrastructure
is modernized, governments change laws, or the third millennium approaches, to
mention a few. So, in the area of software engineering the subjects of program
understanding and system renovation become more and more important. The
interest in such subjects originates from the difficulties that one encounters
when attempting to maintain large, old, software systems. It is not hard to
understand that it is very difficult—if not impossible—to renovate such legacy
systems.

The purpose of this paper is to show that a substantial part of the technol-
ogy used in re-engineering often originates from these fields. We want to make
researchers in the field of compiler construction and generic language technol-
ogy aware of the application of their techniques in the field of re-engineering.
Furthermore, we will identify topics for further research that are particularly
relevant for re-engineering.

In [BKV96b] generic language technology is used as a core technology for
re-engineering. For more information on the subject of re-engineering we refer

to the annotated bibliographies [Arn93] and [BKV96a).

2 Reverse Engineering and System Renovation
Terminology

The term reverse engineering finds its origins in hardware technology and de-
notes the process of obtaining the specification of complex hardware systems.
Now the meaning of this notion has shifted to software. As far as we know there
is not (yet) a standard definition of what reverse engineering is but in [CC90]
we can read:

“Reverse engineering is the process of analyzing a subject system to
identify the system’s components and their inter-relationships, and
to create representations of the system in another form at higher
levels of abstraction.”

According to [CC90] the following six terms characterize system renovation:

e Forward engineering.
e Reverse engineering.

Redocumentation.

e Design recovery.
e Restructuring.

e Re-engineering (or renovation).

Forward engineering moves from a high-level abstraction and design to a
low-level implementation. Reverse engineering can be seen as the inverse pro-
cess. It can be characterized as analysing a software system in order to, firstly,

identify the system components and their interactions, and to, secondly, make
representations of the system on a different, possible higher, level of abstraction.
This can be seen as a form of decompilation. It may be necessary to move even
from assembler (or from the executables) level to a higher level.

Reverse engineering restricts itself to investigating a system. Adaptation of a
system is beyond reverse engineering but within the scope of system renovation.
Redocumentation focuses on making a semantically equivalent description at the
same level of abstraction. It is in fact a simple form of reverse engineering. Tools
for redocumentation include, among others, pretty printers, diagram generators,
and cross-reference listing generators. In design recovery domain knowledge and
external information is used to make an equivalent description of a system at
a higher level of abstraction. So, more information than the source code of the
system is used. The notion restructuring amounts to transforming a system from
one representation to another one at the same level of abstraction. An essential
aspect of restructuring is that the semantic behaviour of the original system
and the new one should remain the same; no modifications of the functionality
is involved. The purpose of re-engineering or renovation is to study the system,
by making a specification at a higher abstraction level, adding new functionality
to this specification and develop a completely new system on the basis of the
original one by using forward engineering techniques.

3 Specific Languages and Re-engineering

In this section we will give the reader an impression on the relation between
specific programming languages and re-engineering.

Since many business-critial systems that need re-engineering are written in
COBOL there are quite a number of papers available that discuss methods and
techniques that focus on COBOL. For instance, in [GBW95] the re-engineering
of 50,000 lines of COBOL to Ada is described. The goal was to do it as auto-
matically as possible using compiler construction techniques. An example of the
use of program slicing to aid in re-engineering COBOL can be found in [NEK93]
and [CFV93]. In [NM93] Software Refinery, a tool originally developed primarily
to generate programming environments, is used to build a modularization tool
for COBOL. In [Zuy93] aspects of re-engineering and their relation to language
technology are discussed. We mention the compilation of COBOL code to equa-
tional specifications, their restructuring and simplification, and regeneration of
COBOL code from them. Moreover COBOL is compiled to an intermediate
language supporting both all the features of COBOL as well as those of JCL.
Various tools support these compilations. In [BFK*94] and [BFKO093] denota-
tional semantics is advocated as a formal foundation for understanding COBOL
programs. These ideas are implemented in a tool for the reverse engineering of
COBOL-74 programs.

Not only COBOL is subject to reverse engineering. We mention [0OC93] in
which a tool combining static and dynamic information for analyzing C pro-
grams is described. In [CCC93] a method is described to produce design level
documents by static analysis of Ada programs using data flow analysis. Finally,
in [Byr91] we can find a method to convert Fortran programs into Ada code.
This is done via analysis of the Fortran code followed by a reimplemention of
the extracted design in Ada. Needless to say that in the above cases generic

language technology and compiler construction techniques play an important
role.

4 Compiler Construction Techniques and Re-
engineering

Many re-engineering tools use compiler construction techniques. When con-
structing a compiler these techniques are used to go from a high-level language
to a low-level implementation. When re-engineering a legacy system those tech-
niques are used to move from a low-level implementation to a more abstract
level. In compiler construction terms we could say that re-engineering amounts
to the decompilation of source code into its specification.

A number of standard techniques in compiler construction are listed below
together with their applications in the field of re-engineering.

e Scanning. Usually a scanner performs the lexical analysis of a program, it
tokenizes programs to be fed to the parser. In re-engineering, the technique
of lexical analysis serves the purpose of program understanding. It can be
used to locate, for instance, a specific identifier in the source code and it
can thus be considered as an intelligent grep(1) facility. Many so-called
Y2K-tools! like SEEC COBOL Analist [SEE96] use scanning techniques to
find date related identifiers and variables, e.g., YEAR, YY, MONTH, CENTURY,
etc., in the code of legacy systems.

The usefulness of scanner generators for re-engineering is quite obvious.
For the COBOL language numerous dialects exists among which even non
official ones and the development of scanners for each of these dialects
is too expensive. Since the scanners are only slightly different, a generic
approach using a scanner generator is appropriate.

e Parsing. Usually a parser is used to determine whether or not a string of
tokens could be generated by a grammar. Re-engineering tools work on
the (abstract) syntax trees yielded by the parser. They can be used to
calculate, for instance, the McGabe and McClure cyclometric complexity
measures. Such metrics characterize the complexity of programs and give
an indication of the costs to re-engineer them.

At the syntactical level, there are many variations in the various COBOL
dialects, and it is time-consuming to develop specific parsers for them from
scratch?. The use of parser generators ensures the correctness of parsers
and gives a considerable reduction in implementation effort.

e Type checking. One of the standard static checks of a compiler is type
checking. In the realm of re-engineering type checking results can be stored
in the (abstract) syntax tree to be used for inspection later on. It can also
be used to locate variables of the same type, for instance, variables of the

1Y2K stands for year 2000.

280, it is not suprising that in comp.compilers (a Usenet newsgroup on compilers) fre-
quent requests appear for public domain COBOL grammars in some standard format, e.g.,
LEX+YACC [Joh86, LS86] or BNF, probably to be used in formal analysis tools. Until now
there has been no positive reply.

type PIC 99 in COBOL programs, in order to locate possible date related
variables that may give rise to year 2000 problems.

Type checkers can be defined using syntax directed translation mecha-
nisms, such as attribute grammars [AM91] or algebraic formalisms [DHK96].
The benefits of these formalisms are the strong relationship between syn-
tax and semantics, and the ease of constructing such specifications. For-
malisms that support some form of modularity provide facilities for re-
usability in case of dialects.

e Control flow analysis. The purpose of this analysis is to encode the flow of
control of a program for use in the ensuing data flow analysis. In the field
of program understanding it is used to make the structure of a program
apparent. A number of interesting papers on the subject of control flow
and re-engineering are, for instance, [Amm92], [CNR90], and [Oul82].

e Data flow analysis. Usually data flow analysis is the process of extracting
information from a computer program about the possible run-time modifi-
cation, preservation and usage of certain quantities in it. In re-engineering
such techniques are useful to detect dependencies between variables such
as def-use chains. A typical example is to locate all the variables that are
dependent on date variables to aid in making software year 2000 compli-
ant. More information on data flow analysis can be found in [MR90].

e Abstract interpretation. A classical application of abstract interpretation
is the nonstandard exectution of a program by casting out nines to check
arithmetic computations in that program. It is used for program validation
and analysis. In re-engineering abstract interpretation can be used for
analysis as well, for instance, to do range checks on certain variables to
see whether or not they remain in a certain range.

e Program slicing. Program slicing is a technique to identify the minimal
amount of executable code that is needed to give a certain variable its
value. Slicing can also be used to calculate the pieces of a program that
depend on a given variable, and it can be used to debug a program. In
re-engineering it can be used for the same kind of analysis, for instance,
to identify parts of code that are responsible for date related calculations.
Tip [Tip95] gives an overview of program slicing techniques. A few papers
on re-engineering and program slicing are [BE93], [GL91], [GHS92], and
[Hal95].

We saw above that there are many applications of compiler construction
technology in re-engineering. Several phases in which source code is processed
by a compiler can be related to the phases that such code will pass during re-
engineering. As is well-known (see, e.g., [ASU86] or [WM95]) we can distinguish
the following analytic phases in a compiler: the lexical, syntactic, and semantic
analyzer where the bulk of the analysis is taken care of. In re-engineering we
have exactly the same phases that are also meant for analyzing the source code:
the lexical phase for a rough inspection of the code, the syntax analysis for both
composing a parse tree and for more involved analysis and the semantic analysis
for even more involved analyses as we discussed above.

Of course the target of a compiler is to generate code from a source pro-
gram. In that respect re-engineering and compiler construction differ, however,
in [CM96] code generation is used for binary translation of systems from a
(legacy) architecture to a modern architecture. Note that code optimization
techniques are used in re-engineering as well. To generate optimal code it is
necessary that the structure of a program and the dependencies between the
variables in the program are made clear. To make a program understandable
for human beings its structure and dependencies have to be clear as well. So,
it is not surprizing that the compiler optimization techniques such as control
flow analysis, data flow analysis and abstract interpretation, are also relevant
in re-engineering (see above).

We conclude that re-engineering techniques benefit from compiler construc-
tion techniques and that the other well-established techniques that are available
in the compiler design field could be fruitfully applied in re-engineering as well.
We believe that these techniques will attract new interest by their application
in re-engineering.

5 Generic Programming Language Technology
and Re-engineering

To what extent depend various re-engineering tools on specific programming
languages? Many tools are geared towards COBOL (or some of its dialects),
but some re-engineering tools claim to be language independent.

We will classify language (in)dependence in the following categories:

o We call a system language-independent if it has no built-in knowledge of
a specific language. An example is the UNIX? tool grep(1), that can be
used for simple textual searches in source files.

e We call a system language-dependent if the knowledge of a language is
hard-wired in the system, e.g., a C-compiler. This knowledge can be
implemented in the system by hand, via a generator, or via a combination
of these approaches.

e We call a system language parameterized (or generic) if the language is a
parameter of the system and upon instantiation with a language defini-
tion a language-specific system is obtained. Examples are the Synthesizer

Generator [RT89] and the ASF+SDF Meta-Environment [K1i93, DHK96].

Generic language technology developed during the eigthies and embodied in
programming environment generators such as, for instance, the Synthesizer Gen-
erator [RT89], Software Refinery [Rea92], the PSG system [BS86], CENTAUR
[BCD*89] and the AsF+SDF Meta-Environment [K1i93], forms now the basis for
interactive re-engineering systems. Such systems provide facilities for program
analysis, visualization, code restructuring, and automatic language conversions.

Since many legacy systems are polylingual it is important that re-engineering
systems are based on generic language technology. We are confronted with
programs or even complete systems written in numerous dialects of old fashioned
programming languages which have to be understood and analyzed. Developing

3UNIX is a registered trademark of UNIX System Laboratories

new tools for all the dialects is far too expensive and can be done more effectively
using generic techniques. So, there is a strong connection between re-engineering
and the fields of programming environment generators and compiler generators.
The generic aspect is thus extremely valuable in re-engineering, see [PP94a].

The def-use relations in programs, for example, are in fact language indepen-
dent, however their implementation is often language dependent. In [Mo096] a
generic data flow language is defined which is powerful enough to do all kinds
of data flow analysis. An arbitrary language is translated to this data flow
language.

Various new, generic, approaches to program analysis exist. In [BDFH96]
an equational logic language, PIM [Fie92], is presented which can serve as a
intermediate language representation to solve problems in the field of program
slicing, symbolic evaluation, and dependence analysis. It is designed to be used
by compilers and analysis tools to process imperative langauges and can be
used for re-engineering purposes as well. Other approaches include static shape
analysis, security analysis, and the generation of static analysis algorithms from
semantic definitions. An overview of recent work in these areas can be found in

[HN96).

6 Research Directions

One of the challenges is how to formally define the syntax and the semantics of
the old fashioned programming languages one encounters during re-engineering.
For example, in [Man96] the syntax of COBOL-85 is formally defined in SDF
[HHKR92] using the ANSI definition of COBOL-85 [ANS85]. Are the various
language definition formalisms powerful enough to be used for this purpose?

Below we will list a number of research questions generated by applying
compiler construction techniques in re-engineering.

e Higher-level techniques for lexical analysis, that permit easy extraction of
information, such as call graphs, from programs written in languages for
which no parser is available.

e Application of GLR parsers [Tom85, Rek92] to generate parsers for families
of COBOL or PL/I language dialects. Note that conventional LALR-
techniques break down (i.e., generate many shift-reduce conflicts) when
various dialects have to be covered by a single parser.

e Generic data flow analysis.
e Visualization techniques for presenting the results of program analysis.

¢ Knowledge representation techniques for encoding certain implicit aspects
of programs such as dependencies on their operating context, program-
ming conventions and techniques, and application specific information.

e Query techniques to retrieve all kinds of syntactic and semantic informa-

tion about a program, see [PP94b, BKV96a].

e (Automatic) program transformation techniques for dialect conversion,
systematic editing and correction, and conversion to object-oriented lan-
guages.

Concluding we could say that challenging research in (generic) programming
language technology is inspired by problems encountered in the field of re-
engineering.

References

[AMO1]

[Amm92]

[ANSS5]

[Arn93)

[ASUS6]

[BCD+89]

[BDFH96]

[BE93]

[BFK+94]

[BFKO93]

H. Alblas and B. Melichar, editors. International Summer School
on Atribute Grammars, Applications and Systems, volume 545 of
Lecture Notes in Computer Science. Springer-Verlag, 1991.

Z. Ammarguellat. A control-flow normalization algorithm and its
complexity. IEEE Transactions on Software Engineering, 18(3):237—
251, 1992.

ANSI Programming Language — COBOL, ANSI X3.23-1985. Amer-
ican National Standards Institute, 1985.

R.S. Arnold. Software Reengineering. IEEE Computer Society Press,
1993.

A.V. Aho, R. Sethi, and J.D. Ullman. Compilers. Principles, Tech-
niques and Tools. Addison-Wesley, 1986.

P. Borras, D. Clément, Th. Despeyroux, J. Incerpi, B. Lang, and
V. Pascual. CENTAUR: the system. In Proceedings of the ACM
SIGSOFT/SIGPLAN Software Engineering Symposium on Practi-
cal Software Development Environments, pages 14-24, 1989. Ap-
peared as SIGPLAN Notices 24(2).

J. A. Bergstra, T. B. Dinesh, J. Field, and J. Heering. A complete
transformational toolkit for compilers. In H. R. Nielson, editor,
Programming Languages and Systems (ESOP ’96), volume 1058 of
Lecture Notes in Computer Science, pages 92—107. Springer-Verlag,
1996. Full version: Technical Report RC 20342, IBM T. J. Wat-
son Research Center, Yorktown Heights, and Technical Report CS-
R9601, Centrum voor Wiskunde en Informatica (CWI), Amsterdam.
The full version will appear in TOPLAS.

J. Beck and D. Eichmann. Program and interface slicing for reverse
engineering. In [WC93], pages 54-63, 1993.

P. Baumann, J. Fassler, M. Kiser, Z. Oztiirk, and L. Richter.
Semantics-based reverse engineering. Technical Report 94.08, De-
partment of Computer Science, University of Zurich, Switzerland,

1994.

P. Baumann, J. Fassler, M. Kiser, and Z. Oztiirk. Beauty and the
Beast or A Formal Description of the Control Constructs of Cobol
and its Implementation. Technical Report 93.39, Department of
Computer Science, University of Zurich, Switzerland, 1993.

[BKV96al]

[BKV96b]

[BS86]

[Byr91]

[CC90]

[CCC93)

[CFV93]

[CMO6]

[CNR90]

[DHK96]

[Fie92]

[GBW95]

[GHS92]

M.G.J. van den Brand, P. Klint, and C. Verhoef. Core technolo-
gies for system renovation. Technical Report P9614, University of
Amsterdam, Programming Research Group, 1996. To appear in the
proceedings of SOFSEM’96.

M.G.J. van den Brand, P. Klint, and C. Verhoef. Reverse engineer-
ing and system renovation — an annotated bibliography. Technical
Report P9603, University of Amsterdam, Programming Research
Group, 1996. To appear in ACM Software Engineering Notes.

R. Bahlke and G. Snelting. The PSG system: from formal lan-
guage definitions to interactive programming environments. ACM
Transactions on Programming Languages and Systems, 8(4):547—

576, 1986.

E.J. Byrne. Software reverse engineering: A case study. Software—
Practice and Ezperience, 21(12):1349-1364, 1991.

E.J. Chikofsky and J.H. Cross. Reverse engineering and design re-
covery: A taxonomy. IEEFE Software, 7(1):13-17, 1990.

G. Canfora, A. Cimitile, and U. De Carlini. A reverse engineering
process for design level document production from ada code. Infor-

mation and Software Technology, 35(1):23-34, 1993.

F. Cutillo, P. Fiore, and G. Visaggio. Identification and extraction
of “domain independent” components in large programs. In [WC93],
pages 83-92, 1993.

C. Cifuentes and V. Malhota. Binary translation: Static, dynamic,
retargable? In N.F. Schneidewind, editor, International Conference

on Software Maintenance, pages 340-349. IEEE, 1996.
Y-F. Chen, M.Y. Nishimoto, and C.V. Ramamoorthy. The C infor-

mation abstraction system. IEEE Transactions on Software Engi-
neering, 16(3):325-334, 1990.

A. van Deursen, J. Heering, and P. Klint, editors. Language Proto-
typing: An Algebraic Specification Approach, volume 5 of AMAST
Series in Computing. World Scientific Publishing Co., 1996.

J. Field. A simple rewriting semantics for realistic imperative pro-
grams and its application to program analysis. In Proc. ACM SIG-
PLAN Workshop on Partial Evaluation and Semantics-Based Pro-
gram Manipulation, pages 98-107, San Francisco, June 1992. Pub-
lished as Yale University Technical Report YALEU/DCS/RR-909.

R. Gray, T. Bickmore, and S. Williams. Reengineering cobol systems
to ada. Technical report, InVision Software Reengineering, Software
Technology Center, Lockheed Palo Alto Laboratories, 1995.

R. Gupta, M. Harrold, and M. Soffa. An approach to regression
testing using slicing. In [Kel92], pages 299-308, 1992.

[GLO1]

[Hal95]

[HecT7]

[HHKR92]

[HN96]

[Johs6]

[Kel92]

[K1i93]

[LS86]

[Man96]

[Moo096]

[MR90]

[NEK93]

[NM93]

[0C93]

K. Gallagher and J. Lyle. Using program slicing in software mainte-
nance. IEEE Transactions on Software Engineering, 17(8):751-761,
1991.

R.J. Hall. Automatic extraction of executable program subsets by
simultaneous dynamic program slicing. Automated Software Engi-

neering, 2:33-53, 1995.

M. S. Hecht. Flow Analysis of Computer Programs. Elsevier, Ams-
terdam, 1977.

J. Heering, P.R.H. Hendriks, P. Klint, and J. Rekers. The syn-
taz definition formalism SDF - reference manual, version 6 Decem-
ber, 1992. Earlier version in SIGPLAN Notices, 24(11):43-75, 1989.
ftp:/ /ftp.cwi.nl/pub/gipe/reports/SDFmanual.ps.Z.

C. Hankin and H.R. Nielson. Symposium on models of programming
languages and computation. ACM Computing Surveys, 28(2):293—
359, 1996.

S.C. Johnson. YACC: yet another compiler-compiler. Bell Laborato-
ries, 1986. UNIX Programmer’s Supplementary Documents, Volume

1 (PS1).

M. Kellner, editor. Proceedings Conference on Software Mainte-
nance. IEEE Computer Society Press, 1992.

P. Klint. A meta-environment for generating programming environ-
ments. ACM Transactions on Software Engineering and Methodol-
ogy, 2(2):176-201, 1993.

M.E. Lesk and E. Schmidt. LEX - A lexical analyzer generator. Bell
Laboratories, unix programmer’s supplementary documents, volume
1 (psl) edition, 1986.

P.I. Manuel. ANSI COBOL III in SDF + an ASF definition of a
Y2K tool. Master’s thesis, University of Amsterdam, Programming
Research Group, 1996.

L. Moonen. Data flow analysis for reverse engineering. Technical
Report P96113, University of Amsterdam, Programming Research
Group, 1996.

Marlowe and Ryder. Properties of data flow frameworks. A unified
model. Acta Informatica, 28:121-163, 1990.

J. Ning, A. Engberts, and W. Kozaczynski. Recovering reusable
components from legacy systems. In [WC93], pages 64-72, 1993.

Ph. Newcomb and L. Markosian. Automating the modularization of
large COBOL programs: application of an enabling technology for
reengineering. In [W(C93], pages 222230, 1993.

D. Olshefski and A. Cole. A prototype system for static and dynamic
program understanding. In [WC93], pages 93-106, 1993.

10

[Oul82]

[PP94a]

[PP94b]

[Rea92]

[Rek92]

[RTS9]

[SEE96]

[Tip95]

[Tom85]

[WC93]

[WMO5]

[Zuy93]

G. Oulsnam. Unraveling unstructured programs. The Computer

Journal, 25(3):379-387, 1982.

S. Paul and A. Prakash. A framework for source code search us-
ing program patterns. IEEE Transactions on Software Engineering,
20(6):463-475, 1994.

S. Paul and A. Prakash. Supporting queries on source code: A
formal framework. International Journal of Software Engineering
and Knowledge Engineering, 4(3):325-348, 1994.

Reasoning Systems, Palo Alto, California. REFINE User’s Guide,
1992.

J. Rekers. Parser Generation for Interactive Environments. PhD
thesis, University of Amsterdam, 1992. Available by ftp from
ftp.cwi.nl:/pub/gipe/reports as Rek92.ps.Z.

T. Reps and T. Teitelbaum. The Synthesizer Generator: a System
for Constructing Language-Based Editors. Springer-Verlag, 1989.

SEEC, Inc., 5001 Baum Boulevard, Pittsburgh, PA 15213. SEEC
COBOL Analyst, 1996.

F. Tip. A survey of program slicing techniques. Journal of program-
ming languages, 3:121-189, 1995.

M. Tomita. Efficient Parsing for Natural Languages. Kluwer Aca-
demic Publishers, 1985.

R.C. Waters and E.J. Chikofsky, editors. Proceedings of Working
Conference on Reverse Engineering. IEEE Computer Society Press,

1993.

R. Wilhelm and D. Maurer. Compiler Design. Addison-Wesley Pub-
lisher Ltd., 1995.

H. van Zuylen, editor. The ReDo compendium: reverse engineering
for software maintenance. Wiley, 1993.

11

Technical Reports of the Programming Research Group

Note: These reports can be obtained using the technical reports overview on our
WWW site (http://www.fwi.uva.nl/research/prog/reports/) or by anony-
mous ftp to ftp.fwi.uva.nl, directory pub/programming-research/reports/.

[P9618]

[P9617]

[P9616]
[P9615]

[P9614]

[P9613]
[P9612]

[P9611]
[P9610]

[P9609]
[P9608]

[P9607]

[P9606]

[P9605]

[P9602b]

[P9604]
[P9603]

[P9602]
[P9601]

M.G.J. van den Brand, P. Klint, and C. verhoef. Re-engineering needs
Generic Programming Language Technology.

P.I. Manuel. ANSI Cobol III in SDF + an ASF Definition of a Y2K
Tool.

P.H. Rodenburg. A Complete System of Four-valued Logic.

S.P. Luttik and P.H. Rodenburg. Transformations of Reduction Sys-
tems.

M.G.J. van den Brand, P. Klint, and C. Verhoef. Core Technologies

for System Renovation.

L. Moonen. Data Flow Analysis for Reverse Engineering.

J.A. Hillebrand. Transforming an ASF+SDF Specification into a Tool-
Bus Application.

M.P.A. Sellink. On the conservativity of Leibniz Equality.

T.B. Dinesh and S.M. Uskiidarl. Specifying input and output of visual
languages.

T.B. Dinesh and S.M. Uskiidarh. The VAS formalism in VASE.

J.A. Hillebrand. A small language for the specification of Grid Proto-
cols.

J.J. Brunekreef. A transformation tool for pure Prolog programs: the
algebraic specification.

E. Visser. Solving type equations in multi-level specifications (prelim-
inary version).

P.R. D’Argenio and C. Verhoef. A general conservative extension the-
orem in process algebras with inequalities.

J.A. Bergstra and M.P.A. Sellink. Sequential data algebra primitives
(revised version of P9602).

E. Visser. Multi-level specifications.

M.G.J. van den Brand, P. Klint, and C. Verhoef. Reverse engineering
and system renovation: an annotated bibliography.

J.A. Bergstra and M.P.A. Sellink. Sequential data algebra primitives.

P.A. Olivier. Embedded system simulation: testdriving the ToolBus.

12

[P9512]

[P9511]

[P9510]

[P9509]

[P9508]

[P9507]

[P9506]

[P9505]

[P9504]

[P9503]
[P9208¢|

[P9502]
[P9501]

[P9426]

[P9425]

[P9424]
[P9423]
[P9422]

[P9421]

J.J. Brunekreef. TransLog, an interactive tool for transformation of
logic programs.

J.A. Bergstra, J.A. Hillebrand, and A. Ponse. Grid protocols based on

synchronous communication: specification and correctness.

P.H. Rodenburg. Termination and confluence in infinitary term
rewriting.

J.A. Bergstra and Gh. Stefanescu. Network algebra with demonic re-
lation operators.

J.A. Bergstra, C.A. Middelburg, and Gh. Stefanescu. Network algebra

for synchronous and asynchronous dataflow.

E. Visser. A case study in optimizing parsing schemata by disambigua-
tion filters.

M.G.J. van den Brand and E. Visser. Generation of formatters for
context-free languages.

J.M.T. Romijn. Automatic analysis of term rewriting systems: proving
properties of term rewriting systems derived from ASF+SDF specifica-
tions.

M.G.J. van den Brand, A. van Deursen, T.B. Dinesh, J.F.Th. Kam-
perman, and E. Visser (editors). ASF+SDF ’95: a workshop on Gen-
erating Tools from Algebraic Specifications, May 11612, 1995, CWI
Amsterdam.

J.A. Bergstra and A. Ponse. Frame-based process logics.

J.C.M. Baeten and J.A. Bergstra. Discrete time process algebra (re-
vised version of P9208b).

J.A. Bergstra and P. Klint. The discrete time ToolBus.

J.A. Hillebrand and H.P. Korver. A well-formedness checker for
pCRL.

P. Klint and E. Visser. Using filters for the disambiguation of context-
free grammars.

B. Diertens and A. Ponse. New features in PSF II: iteration and
nesting.

M.A. Bezem and A. Ponse. Two finite specifications of a queue.
J.J. van Wamel. Process algebra with language matching.

R.N. Bol, L.H. Oei JJW.C. Koorn, and S.F.M. van Vlijmen. Syntaz and

static semantics of the interlocking design and application language.

J.A. Bergstra and A. Ponse. Frame algebra with synchronous commu-
nication.

13

