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Abstract

We describe a formatter for ASF+SDF. Since the syntax of an ASF+SDF
specification is highly flexible, specifications to be formatted should first
be translated to the fixed format AsFix. The formatter defines a mapping
from AsFix to Box. This mapping can be fine-tuned by the user with
linear non-duplicating term reduction rules. Termination of the formatter
can be shown using induction with respect to the structure of the AsPix
term to be rewritten, provided no rules are given whose lefthand side is
a single variable. It turns out that formatting AsFix cannot be handled
properly by context-free rules, and special functions have been defined to
circumvent this problem.
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1 Introduction

1.1 Prettyprinting as translation

A prettyprinter is a program that has a syntax tree of some language L as its
input, and a syntactically correct text in L as its output. A prettyprinter does
not require input during its execution; it can be viewed as a system to translate
syntax trees into specific text forms. Therefore, prettyprinters can be specified
using term rewriting, if a target language is provided that can be represented by
terms. This paper discusses the front-end of such a translation, the translation
of AsFix [K1i94] into Box [BV94b]. Box is a formatting language. A formatting
language is essentially a formal language for the purpose of describing how text
should be formatted. People familiar with formatting languages will discover
some “familiar faces” in Box; for example, they will find similarities with PPML
[PPML86]. In our system, Box is meant to be an interlingua: an intermediate
representation. AsFix is translated to Box; Box can be translated to a number
of “devices”, like BWTFX or HTML. The interlingua approach has the advantage
of compositionality: every language only needs a back-end and a front-end for
the interlingua. It has the drawback of loosing information: even an interlingua
cannot be assumed to keep track of every aspect of a particular language. For
example, consider the sequence BTEX— Box - HTML — Box — ETEX. (This
is a purely hypothetical sequence, for illustration purposes only). Although it
starts with WTEX and ends with BWTEX, the mapping is not guaranteed to yield
the identity function, even though that would be desirable.

1.2 Introduction to the ToBox system

The ToBox system is an executable ASF+SDF [BHK89] specification which
translates AsFix [K1i94] to Box [BV94b]. We will now give a brief introduction
to ASF+SDF, AsFix, and Box.

ASF4SDF is a formalism for defining programming languages. It allows
the user to define a syntax and give it semantics in the form of an equational
specification. The ASF+SDF formalism is supported by the ASF+5SDF Meta-
environment [K1i93]. (“Meta” because it helps to generate programming en-
vironments). In the Meta-environment, the equational part of an ASF+SDF
specification is interpreted as a TRS (Term Rewriting System). Now ASF+SDF
allows users to define part of the syntax of their rewriting rules. This flexibility
is a great strength, but also has some shortcomings. Writing meta-level ap-
plications -like prettyprinters- for ASF+SDF becomes problemaric. and that's
where AsFix comes into play.

AsFix is a fixed format for ASF+SDF. It has the same expressive power
but a fixed syntax. In other words, for every ASF+4SDF specification there is
a representation in AsFix. This greatly simplifies developing meta-applications
for ASF+SDF: just develop them for AsFix instead.



Finally. we arrive at explaining a little about Box. Box is a formatting
language. It serves as an interlingua, that is, an intermediate representation
during translation. Informally, an interlingua is what is exchanged between a
front-end and a back-end.

The place of the ToBox system can be seen in Fig. 1:

;.. User options BoxdTeX ]

[ ASF+SDF |—{ AsFix %+ ToBox Box2HTML |
|

Figure 1: ToBox as part of a larger mapping

In this schema, the mappings are shown as arrows. Note that the ToBox
system has two sets of inputs: the AsFix specification to be formatted and the
“user options”. The latter are an optional set of user-defined prettyprinting
rules. These allow the user to influence the formatting.

1.3 ToBox as an exercise in self-application

Term rewriting can be described in terms of term rewriting. Phrased more
clearly, it is possible to build a TRS that implements a term rewriting engine.
An example of such a TRS is presented in [Deur94].

The ToBox system is such a system. It is written as a TRS, using the
ASF+SDF formalism. It implements a term rewriting engine that rewrites
(closed) AsFix-terms to (closed) Box-terms .

What'’s new is that the ToBox system allows a user to add his or her own
rewriting rules to the system. These rules are bound to some restrictions to
prevent abuse of the prettyprinter and to guarantee termination of the system.
This is described in further detail in section 5.4.

For clarity, we will from here onward make a difference between “definable
rules” and “ASF+SDF rules”. The former are the parameters for the pret-
typrinting process. The latter are the set of rewriting rules that make up the
specification of the ToBox system. Further distinctions between specific kinds
of rules will be made later on.

Previously, we have discussed information loss during translation processes.
This is not a problem when translating ASF+SDF to AsFix. No piece of infor-
mation is lost in this particular translation scheme, since an AsFix representa-
tion of a module retains the source text of the specification. This is important,

1Strictly speaking, this is term rewriting with respect to the language defined by the union
of the signatures of AsFix and Box.



because the source text, in turn, contains the comments which are lost in the
syntax tree. As AsFix is mostly concerned with providing a fixed format for
a syntax tree, comments are lost in all other parts of the AsFix representation
of a specification. Otherwise, however. AsFix has all the expressive power of
ASF+SDF, in a more easily processable and less easily legible format.

1.4 The main question

Having discussed the preliminaries, we now get to the main question of this
thesis. Suppose one is writing a paper which involves one or more ASF+SDF
specifications, developed with the Meta-environment. Naturally. one wants to
add these specifications to the paper. In addition, one wants these specifications
to be typeset, if this can be done without too much effort.

In order to add legible specifications to an article. a specification in the
Meta-environment can be typeset using the ToOBRTEX system. ToE'TEX generates
BTEX representations of ASF+SDF modules. Alternatively. one can use a
prettyprinter generator [Bra93b]. The prettyprinter generator takes SDF files as
input, and outputs a prettyprinter. Then, the equational part of a specification
(the ASF part) can be prettyprinted using the generated prettyprinter. Thus
we have a two-step process, which is a drawback. In addition, if one doesn’t like
the result the output of the generator must still be modified. To remedy the
problem, it was proposed to make a translation system that accepted production
rules as parameters. This thesis is about the ToBox system, which is meant to
replace ToI#TEX. It is a system that defines a mapping between AsFix and Box.
Users can influence the mapping by parametrizing it with special production
rules. But they don’t have to: the parameterization is completely optional.



2 ASF4SDF: rapid prototyping of programming
languages

In this and the next section, we shall have a more “intimate” look at ASF+4+SDF
and AsFix. This section is devoted to the ASF+SDF formalism and the
ASF+SDF Meta-environment. In the next section, we shall explore AsFix.
At first glance, ASF+SDF and AsFix seem quite different. We will see that
AsFix, despite its illegible appearance, is just ASF+SDF in disguise.

Before continuing, one more point should be addressed. “TRS” is the ab-
breviation of “Term Rewriting System” or “Term Reduction System”. To avoid
confusion, I will refer to the set of rewriting rules as the TRS. I will refer to the
(virtual) device that performs these rewritings as the “term rewriter” or “term
rewriting engine”.

2.1 Overview

ASF+SDF [BHK89) is an algebraic specification formalism. It should not be
confused with the ASF+SDF Meta-environment, which is a tool supporting
the development of ASF+SDF specifications.

The formalism results from the combination of SDF [HHKR92] and ASF
[BHKS89]. SDF, or “Syntax Definition Formalism”, is a formalism for defining
lexical and context-free syntax. ASF, or “Algebraic Specification Formalism”.
is a specification formalism based upon many-sorted algebras.

In ASF+SDF the two formalisms are combined. For example, the nonter-
minals of SDF become the sorts of ASF. Thus TRS-es can be written using a
user-defined syntax. Intuitively, but not guite correct. one could think of this
as a parser generator which parses a text (the equations in the user-defined
syntax), and hands their parse trees to a term rewriting engine. More specific,
the abstract syntax of a language is mapped to a many-sorted signature.

The Meta-environment is the implementation of ASF+4-SDF. It accepts (ex-
ecutable) ASF+SDF specifications and interprets them as term- rewriting sys-
tems. Figure 2 is an example of such an (executable) specification.

At the core of the ASF+SDF system is a term rewriting engine and a parser
generator. The parser generator accepts a syntax definition in SDF format. The
term rewriter accepts conditional rewriting rules, where the terms are written in
the given syntax. The rewriting rules are reduced using an leftmost-innermost
reduction strategy.

An ASF+SDF specification consists of modules. This is for the same
reason that many programming languages support writing programs in mod-
ules: it eases the creative effort involved, and it allows one to re-use previous
work {which is usually easier in ASF+SDF since it is a specification language
and therefore avoids complex constructs). In addition, modularity can simplify
proofs of correctness, which is an important consideration for specification lan-



imports Layout
exports
sorts BOX-BOOL BOX-BOOL-LIST
context-free syntax
true — BOX-BOOL
false — BOX-BOOL
BOX-BOOL “” BOX-BOOL - BOX-BOOL
BOX-BOOL or BOX-BOOL — BOX-BOOL
BOX-BOOL “&” BOX-BOOL — BOX-BOOL
BOX-BOOL and BOX-BOOL — BOX-BOOL
not BOX-BOOL — BOX-BOOL
“(” BOX-BOOL “)” — BOX-BOOL
“{” {IBOX-BOOL “"}* “}7 — BOX-BOOL-LIST
variables
Bool [0-9'}x - BOX-BOOL
priorities

{BOX-BOOL “|"BOX-BOOL — BOX-BOOL,
BOX-BOOL or BOX-BOOL — BOX-BOOL} <
{BOX-BOOL “&"BOX-BOOL — BOX-BOOL,
BOX-BOOL and BOX-BOOL — BOX-BOOL} <
not BOX-BOOL - BOX-BOOL

equations

{1jtrue | Bool = true[2}false | Bool = Bool
[3]true & Bool = Bool4}false & Bool = false
{5]not false = truel6]not true = false

and and or are synonyms for & and |, respectively.

(6] Booly or Bool, = Booly | Bool,
[7} Booly and Bool, = Bool, & Bools

{left}
{left}
{left}
{left}

{bracket

Figure 2: Example ASF+SDF specification

10



guages. The reader is reminded that ASF+SDF is based on a term rewriter,
and that of confluence and strong normalization, only the former property is
modular. Strong normalization is a modular property only when certain condi-
tions are met; the details can be found in [BKM89]. Another aspect that should
be mentioned is that the Meta-environment allows circular imports; it will issue
a warning but not an error.

We have already seen a concrete ASF+SDF module; the reader might be
interested in a more abstract representation. An ASF+SDF module looks like
this:

imports Names-of-imported-modules
section*
priorities
Priority-relations-between-context-free-rules
equations
Conditional-equations

The section* represents zero or more sections. Each section has the follow-
ing format:

exports-or-hiddens
sorts Names-of-sorts
lexical syntax
Rules-of-the-lezical-syntaz
context-free syntax
Rules-of-the-contezt-free-syntaz
variables
Names-of-variables

If the section starts with “hiddens”, then the language constructs defined
there will be visible only in the module in which it is declared. Otherwise, they
will be visible in every module that imports this module.

The conditional equations in the equations-part are written in the syntax
defined by the corresponding SDF module and the exported language constructs
of the imported modules. That is, the equations are written in the language
defined by the user, with some auxiliary constructs (in the hiddens-sections).

Obviously, the ASF4SDF system has a very flexible syntax. The grammar
to be defined must be context-free but is not otherwise restricted. The price
of this is ambiguity. Three ambiguation tools are available for the specifier:
brackets, priorities and attributes. All of these are described in the section
about SDF.
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2.2 About SDF

There are some features of the SDF system. as it ¢s implemented in the Meta-
environment, that should be mentioned. These are layout, lists, chain functions.
and disambiguation. .

2.2.1 Layout and comments

The sort names “LAYOUT”, “REJECT” and “IGINORE?” are predefined.
When a lexical construct is defined to be a member of these sorts, it will be
ignored by the parser. Thus it is possible to separate lexical tokens by whitespace
(tabs and blanks) by defining, for instance,

[\t ] » LAYOUT.
This is the appropriate way of defining comments in a language. For example,

when defining the syntax of C, one would have a statement like:
LL/*‘7'[£( % /77]“* /77__) LAYOUT

2.2.2 Lists

A special feature of ASF+SDF are lists.

A list is an iteration of elements of the same sort, sometimes separated by
a special separator symbol. This is often the format of a group of statements
in an imperative programming language (cf. Pascal, where the separator is the
semicolon (“;”)). Similarly, the syntax of variable declarations usually lends
itself well to being described by lists.

Lists occur in two formats: the “*” and the “+”, corresponding to their
well-known analogons for regular expressions. In addition, the user may specify
separators. This makes for four distinct cases:

1. SORT* — SORT': Terms of SORT’' are zero or more terms of sort
SORT. There is no top function symbol to combine them. so syntactically
this is an extension of standard term rewriting. The same holds for the
other three cases.

2. SORT+ — SORT": As above, but for an element to be of sort SORT’,

it must consist of at least one element of sort SORT.

3. {SORT “SEP”}* — SORT': Terms of sort SORT" consist of zero or
more terms of sort SORT, separated by SEP.

1. {SORT “SEP"}+ — SORT': Terms of sort SORT" consist of one or
more terms of sort SORT, separated by SEP.

12



2.2.3 Chain functions

A chain function is a sort directly injected into another sort. In other words.
anything of the form SORT — SORT" is a chain function. Chain functions may
contain list sorts, and this happens quite often. The list sorts may not occur on
the righthand side of a function definition, though. So SORT1* — SORT2 is
legal, but SORT'1 — SORT2x* is not. In other words, a single sort cannot be
forced into being a list.

Chain functions are the appropriate way of implementing context-free chain
rules in SDF2. This construction is used to abstract away from lower levels of
syntax definition. It can also be used as an abbreviation mechanism:

{statement “;"}* — stats
“program” decls stats “end” — program

2.2.4 Disambiguation

ASF+SDF allows a user to define any context-free language (s)he desires. Since
ambiguity of context-free languages is not in general decidable, the user should
have a means of disambiguation. ASF+SDF offers three methods: associativity

attributes, brackets, and priorities.
An associativity attribute can be added to a context-free grammar rule.

provided it is of the form
SORT *operator” SORT.
Four attributes are available. The user should select the appropriate one

and at it to his rule, like this:
SORT “operator” SORT — SORT {attribute}

1. left: the operator associates to the left.
right: the operator associates to the right.

assoc: the operator is associative.

- W N

non-assoc: the operator is not associative.

Brackets can be added in a similar manner. Given a function

< lhs-bracket>< sort-name> < rhs-bracket>,
the user should add the attribute { bracket } .

The third way of disambiguation is by priorities. Suppose we have the well-
known grammar for arithmetic expressions (see Figure 3).

Note that it has four nonterminals, and it isn’t even complete: < Number >
was not developed further since it has it’s intuitive meaning anyway. In Figure
4, we have another version with priorities.

2A chain rule is a context-free grammar rule of the form <A>—<B>.
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'ERM FACTOR

ntax

[ERM — EXPR

[ERM — EXPR
— EXPR

" TERM — TERM
" TERM — TERM
— TERM

) — EXPR

The “classical” grammar for arithmetic expressions.

ntax

P — EXP {right}

P — EXP {right}

(P - EXP {right}

(P - EXP {right}
— EXP {bracket}

P - EXP, EXP “/"EXP - EXP} >
KP — EXP, EXP “~"EXP — EXP}

A grammar for arithmetic expression, using priorities.
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Notice that the second version, thanks to its use of priorities. has less non-
terminals. One may use the “<”-sign to declare a function to be of less priority
than another. One may thus write increasing or decreasing sequences of priori-
ties; obviously, the >- and <- symbols should not be used in a single chain. As
a final remark, the associativity attributes.are allowed in a priority chain. They
were left out in the example only to enhance legibility.

2.3 About ASF

“ASF” stands for “Algebraic Specification Formalism”. Without SDF, an ASF
module is simply an equational specification over a many-sorted algebra. With
SDF, it becomes an equational specification with a context-free grammar for
the signature. These specifications can be interpreted as TRS-es. The Meta-
environment interprets the “=" symbols as “—” when considering the specifi-
cation as a TRS. The ASF+SDF also system supports default rules. When
rewriting a term, the default rules are the last rules that the system tries to
match. It can be considered an abbreviation mechanism. It can be used to
avoid spellng out each and every condition of an equation. The cases in which a
particular condition fails must usually be addressed anyway. So the specifier de-
fines equations for these cases. Then (s)he marks the original rule as “default”.
The system is spared from re-calculating conditions for every rule it encounters.
If it gets to the default rule. all normal rules with conditions have failed. This
is not meant to say that a default rule will always succeed; a default rule may
still have conditions of its own, and it may still fail to match a term. In that
case, this particular part of the reduction simply doesn’t reduce.

The ASF+SDF system allows a user to write any TRS (s)he wants. There-
fore it cannot guarantee strong normalization or even confluence. This is the
responsibility of the author of the specification. Theoretically, the TRS-es writ-
ten in ASF-+SDF don't have to be complete. But in practice, this is considered
the most elegant way of specification using term rewriting.

The Meta-environment uses a leftmost-innermost reduction strategy. This
is of particular importance for those writing a regular TRS, since for regular
TRS-es this strategy will always find the non-terminating rewriting in a TRS
[BKMS89].

2.4 Some practical aspects of the Meta-environment

In order for the user to further visualize the Meta-environment, I shall highlight
some if its practical aspects. Users only interested in the theory may skip this
subsection.

There are to kinds of editors in the Meta-environment: module-editors and
term-editors. The difference is in purpose, not in the way the actual text editing
is performed. Module-editors are used to edit ASF+SDF modules, whereas
term-editors are used to edit terms over the languages defined by these modules.

15



Module editors consist of two parts: one part contains the syntax of a speci-
fication, the other part contains the equations. The syntax part corresponds to
the SDF part of the specification; the equations part contains the ASF part.

When a user wishes to rewrite a term, (s)he can edit it with a term editor.
The term can be edited in an ordinary text editor as well, and then loaded in
the term editor. A term editor is bound to a module; the term editor for a
module M will only accept terms over the language defined in M. This is one
way in which the Meta-environment supports modularity of specifications.

A term editor can be extended with buttons. These will evaluate a function
in the specification or a part of LeLisp? code. For example, suppose one has
designed a programming language P. Suppose we also have a typechecker for P.
One could make it easy for the user to type-check a term over the P-language
by making a button that calls the type-checker.

Even with a specification language, the result of our “program” (our ex-
ecutable specification) is not always what we expect. That’s why the Meta-
environment offers a debugger. The equation debugger traces the execution of
a term reduction, allowing a user to pinpoint the source of an irregularity.

3LeLisp is (-yet-) the language in which the Meta-environment is written.
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3 ToETgX: the original ASF4+SDF typesetter

The ASF+SDF Meta-environment introduced in the last section provides a
typesetting mechanism for ASF+SDF specifications. This is the ToETEX
[VK94] system, which translates an ASF+SDF specification to BTEX code.

3.1 A brief history of pretty printing ASF+SDF specifi-
cations

Default pretty printer: the default pretty printer is part of the ASF4SDF
Meta-environment. It is used for pretty printing within the Meta-environment.
The most obvious part of its work is pretty printing the normal form of a
reduced term.

It has seen two incarnations. The old version was written in LeLisp code,
and translated an ASF+SDF term to text. It used the language PPML
(described in [PPMLS86]), for intermediate representation.

The new version is also written in LeLisp, but no longer uses PPML.
Instead, it maps an ASF+SDF term to a term over Box (described in
section 4.3. This intermediate representation is then used to generate the
textual output.

ToBTEX: The TolATEX [VK94, Vis94] tool is a typesetting facility for ASF+SDF
specifications. Like the default pretty printer, it is written in LeLisp.
ToXTEX is used to format ASF+SDF specifications for use with BTEX.
It is described in more detail below.

AsFix to Box: This is the original system for translating AsFix (described in
section 3.3) to Box. The built-in formatting rules of the ToBox system
are direct translations of the rules in this specification.

Pretty printer generator: The pretty printer generator [Brad3b] takes an
ASF+SDF specification as its input. It outputs a specification to trans-
late terms over the defined language to Box. The generator is incremental:
if a user extends the original input specification, new rules are added in
separate modules. There is a drawback to the use of the prettyprinter gen-
erator: it is a two-step process. One must first generate a prettyprinter.
and then apply it to the specification that is to be pretty printed.

3.2 Usage

The Meta-environment has a button to activate the Tol#TEX tool. When acti-
vated, the system will generate several files for each module - unless the module
hasn’t been changed since the last time the tool was used. Tol2TEX supports
literate specification. Literate specification is what is comparable to literate
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programming. applied to specification languages rather than imperative pro-
gramming languages.

The ToIATEX tool is very useful for extensive documentation. The idea be-
hind literate programming is that a program contains its own explanation. Since
ASF+SDF modules are often used in courses, this property is very desirable.

In order to add comments to a specification in BTEX, a user just has to add
“%%” — LAYOUT to the SDF part of an ASF+SDF specification. Anything
that is put behind the “%%” mark in the specification will then be considered
comment by the ASF+SDF Meta-environment tools, such as the term rewriter
and the parser. ToIATEX, however, will process these “comments” and interpret
them as BTEX text.

The ToXTEX system uses a file “ASF+SDF-options.sty” containing a num-
ber of options. For example. there is the “\Modulels” macro. It determines the
kind of header for modules in the specification that is being typeset. Figure 5

%\Modulels{chapter}
%\Modulels{section}
%\Modulels{subsection}
%\Modulels{subsubsection}

Figure 5: Options for the “\Modulels” macro.

shows the code to define the *\Modulels” macro. Note that all commands start
with a *%" sign, forcing BTEX to ignore the remainder of the line. By removing
one of these “%"-signs, the line will no longer be ignored and the command will
be executed.

Choosing the font in which the specification is to be shown is done in almost
the same manner. The “default” font is “\ComputerModernStyle” (CMR font
family). One may replace it with “\SansSerifStyle” or “\TypeWriterStyle”.

There are many more options, they can be found in [Vis94].

3.3 Shortcomings

The ASF+SDF typesetters. formatters and prettyprinters have evolved into
ToBTEX and some other products, but the evolution is not yet complete.

ToBTEX cannot be parametrized; it can only be slightly influenced. For
example. the “=" signs can be turned into = signs. Also, all comments are
considered IMTEX text, unless they are preceded by “%%%” instead of “%%".
And there are restrictions on comments on the I¥TgXlevel in the SDF part.
{Remember that only the ASF part of a module has a user-defined syntax).

The prettyprinter generator on the other hand allows some modification
of the prettyprinting rules used. But this is a two-step process. First the
prettyprinter must be generated, then it must be debugged. This debugging is
tedious and error-prone.
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4 AsFix: A fixed format for ASF+SDF

AsFix [K1i94] is a fixed format for ASF+SDF (hence the name: Asf+Sdf-
FIXed format). AsFix has the same expressive power that ASF+SDF has,
but its syntax is fixed. Thus, it becomes easier to design meta-specifications
and prove theorems about them; it was used thus in, for example, [Rom95].
However, AsFix is not designed to be read by human beings.

AsFix is built upon special terms called “ATerms”. One could think of
ATerms as atoms or toy bricks from which larger components of AsFix are
built.

4.1 ATerms
ATerms are defined by the following syntax (in the SDF formalism).

imports Literals
exports
sorts ATerm
context-free syntax
Literal — ATerm
“I” ATerm ATerm “I" — ATerm
ATerm “” ATerm  — ATerm {right}

nil — ATerm

ATerm “/” ATerm  — ATerm {left}

“(” ATerm *)" — ATerm {bracket}
variables

T [0-9")% — ATerm
Ts [0-9']* — {ATerm “" }*
Ts “+7[0-9'1%* — {ATerm “,"}+
L [0-9']* — Literal
priorities
ATerm “/”ATerm — ATerm > ATerm “;” ATerm — ATerm

Note that variables whose names begin with an L are literals, whereas vari-
ables whose names begin with a T may represent any ATerm.
This syntax is interpreted as follows.

[To T1]: Thisis a very frequently used operation in AsFix, representing function
application. It should be read as “Ty applied to 1;”.

To: T and nil: These two functions are used to construct lists. The nil repre-
sents an empty list of ATerms. In Tp;Th, Tp is the head of the list and T3
is the tail.
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To/Ty: This operator is used for annotation. The T} is an annotation at ATerm
T, for internal use by applications.

4.2 Format of a specification

An AsFix specification of an ASF+SDF module has the following format:
[“Module” L1; L2; T1; T2;T3; T4]. Here L1 is the module name, and L2 is the
full module name (i.e., the module name including the directory path). The
other for ATerms are of the form

[“SourceSyntaz” T,)
[“PrefizSyntaz” Ty
[“SourceEquations” T
[“PrefizEquations” Tg]

respectively. They are described in more detail below.

4.2.1 SourceSyntax and SourceEquations

The [“SourceSyntaz” T;] and [“SourceEquations” T;] parts of a module in AsFix
format keep the original ASF+SDF text present in an AsFix representation of
an ASF+SDF module. The text is kept in the sub-ATerm (that is, T; or Tj.
in this case). The text has the form of a list of literals: that is, a set of literals
separated by the AsFix list constructor, a semicolon (“").

The purpose of maintaining the original code is to keep comments. Com-
ments are removed in the prefix-forms of syntax and equations, but must be
restored when prettyprinting. Note that comments are not inserted by the pret-
tvprinting rules we give; this is done by an algorithm described in [Bra93a).

4.2.2 PrefixSyntax

The PrefizSyntaz section of an AsFix specification gives the SDF part in prefix
format. It closely follows the format of the syntax part of an ASF+SDF mod-
ule. The PrefizSyntaz part consists of zero or more sections. Here a section is
{*Imports”.. ], [“Exports”...], or [“Hiddens”...].

The [“Imports”...] Section has as its arguments a list of identifiers; obviously
these represent the imported modules.

Example: [“Imports”[“Id” “Booleans”]; [“Id” “Ints”"]].

The [“Ezports”...] and [“Hiddens”. . ] sections both consist of zero or more
“SyntaxSections”. This can be a sorts declaration, a “LexicalSyntax” or “Con-
textFreeSyntax” section, a set of priorities or the definitions of the variables. An
example is shown in Figure 6. Note that, syntactically, it is perfectly acceptably

to have a section like:
[*Imports”[“Sortsnill; [“Sorts”[“Id” “Bool”]]]
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[“Ezports”
[“Sorts”. . ];
[“LezicalSyntaz”. . ];
[“ConteztFreeSyntaz”. . .];
[*Priorities”. . ]

Figure 6: Example “Ezports”-part of an AsFix PrefixSyntax section.

We will now briefly discuss the precise construction of these SyntaxSections;
the reader is referred to [K1i94] for a complete description. Alternatively, one
could examine the AsFix specification of a well-understood and sufficiently rich

ASF4+SDF module.

e Sorts: a list of sorts. Sorts in AsFix have the form [“Sort” “sortname”],
and this is no exception.

e LexicalSyntax: a list of zero or more lexical functions. These have the
form [“LezicalFunction” LezElems; [“Sort” Result]]. Res is the result sort
of the function: The LexElems are zero or more lexical elements; e.g.
literals and quoted literals.

o ContextFreeSyntax: a list of CfFunctions. These have the form
[“Cffunction” [“CfElems” Ty); [“Sort” Ty]; [ “ Attributes” T]]
Here T, is a list of terminals and nonterminals; T}, is the name of the result
sort of the function; and T} yields the attributes (“bracket”, “assoc”, etc).

CfFunctions appear within the function application operation:
[« CfFunction” [“ CfElems” T,]; [“Sort” Ty); [ “ Attributes” Tc]|T4]
Here T contains the instantiations of the nonterminals in Tj,.

e Priorities: this may be an increasing priority chain (i.e. of the form f <
g < h, a decreasing priority chain (i.e., of the form h > g > f), or a list
of functions that have the same priority (i.e., g and h in f > {g,h} > t.
In ASF+SDF, priorities may be expressed with only the function name
or with full representation. In other words, one may write “*” > “+”
or INT*«"INT — INT > INT“+”INT — INT. In the former case.
the function is represented in AsFix using the “Abbrev” function. (ie.,
[“Abbrer”. . ]).

e Variables: as its name implies, this syntax section contains the variable
declarations.
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4.2.3 PrefixEquations

The PrefixEquations-part of an AsFix specification is simply a list of zero or
more conditional equations in prefix format. It has the form:

[“Pre ﬁquuatioﬁs ”
[“CondEquation” ...};

[“CondEquation” .. ]

]

The format of an equation in AsFix is
[“CondEquation” “Implies”; “Tag”; “Lhs”; “Rhs”; “Conditions”] Here Tag is the
tag (name) of the equation. Lhs and Rhs are ATerms, usually of the form
[“CfFunction”...]. Occasionaly they are something else. Examples of this are
iterations and meta-variables.

The Conditions is [“Conditions” “List”], where List is a list of conditions.
An example of a condition is [“Condition” “Neg”; Tp; T1]. Neg is an abbreviation
of “not equal to”. It could also be “Eq”.

Let’s finish this part by an example of a complete conditional equation.
We shall use an axiom of process algebra concerning abstraction. For clarity,
irrelevant subterms have been replaced with their textual counterparts. The <
and > have been used to denote this.

The axiom is 77 (a) = Tif ael. Let’s assume this is represented in an ASF+SDF
specification as “T(I,a)=i when (a is-member-of I)=true”.

[*CondEquation” “When”;“TI-2";

[[“CfFunction” <T>] <I>;<a>];

[[“CfFunction” <i>]];

[“Conditions”

[“Condition”

“Eq” ;
[[“CfFunction” <is-member-of>] <a>;<I>];
[[“CfFunction” <true>] nil ]

4,2.4 CfFunctions

The [“CfFunction” T;] function deserves some special attention. It has the
format [“CfFunction” [“CfElems” LIST]; [“Sort” “Res"];[“Attributes”T]].
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CfElems: the list following the keyword “CfElems” represents zero or more
members of the context-free function, be they terminals or nontermi-
nals. Terminals are represented by Literals or a function application
[“QLit” Literal], for “Quoted Literal”. Nonterminals are simply repre-
sented by the names of the corresponding sort: [“Sort” “subterm — sort”].

Res: this is the result sort of the equation.
Attributes: this is a list of ASF+SDF attributes, as described in 1.4.

Textually, this corresponds to something like f(<sub-expression>). This in
turn corresponds to a context-free syntax rule
< Res >¢— “f"*(" < sub — expression > *)"

In the prefix-syntax part of a specification in AsFix format, these are all the
constructs that can be used. In the prefix-equations part, the signature of a
function is subsequently applied to a list of parameters, which instantiate the
nonterminals. Note that these instantiations may themselves be CfFunctions.
Thus, in the prefix-equations part, we get CfFunctions that are closed with
respect to instantiation of nonterminals.

4.3 About AsFixGram

The correctness of AsFix is to a certain extent the responsibility of the user. It
is possible to make a syntactically correct but none the less quite nonsensical
ATerm. The “AsFixness” of an ATerm can be checked using an executable
specification described in [K1i94]. There is also another approach, which is called
AsFixGram [K1i94]. As the name suggests, this is a finer-grained grammar for
AsFix. It has separate nonterminals for sorts, conditions, metavariables... all
in all, it has over 50 nonterminals. This makes it unfit for writing general
applications [K1i94]. For this reason, it is not used.
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5 About Box

Box is a formatting language. A sentence in Box is a recursive structure. It
is either an “atomic” box, or a box built from smaller boxes. This description
neatly fits a context-free grammar rule or a term in a TRS, and therefore it
naturally translates into ASF-+SDF. Since sentences in the language Box are
so close to prefix terms, the words “Box-term” and “Box-sentence” will be used
for the same thing: a sentence in the language Box. The kind of box at the
top of a term describes how the children are placed relative to each other. In
spite of this, some boxes are context-sensitive. We are mostly interested in the
box-terms, and not in their interpretation. Interpreting a term over the Box
language is the task of back-ends like Box2TEX [BV94a]. Some of these back-
ends will be reviewed for completeness.

Here’s an example of a sentence in the box language.

V vs = 1 [“Bozing :” “the noble art” HV [“of”“formatting”]]

Here V and HV are operators. Their arguments are the strings between the
square brackets. The vs = 1 statement is a user option to customize the output.
These customization options will be discussed later in this section.

5.1 Box

A term over the Box language has the form
Op options [.. .}
Now the “..." represent boxes, so we get a nested structure like
Opy optionsg | Op, options; [...] Ops options, [...]].
The lowest level of the recursion is a simple string. So we get a recursive
definition for a sentence in the Box language.
A Box is:
e A string, or
e H[By...B,], where 0 < i < n. “H” means horizontal composition. The
sub-boxes are aligned next to each other, regardless of the screen size. If

the screen is not wide enough, boxes beyond the righthand side of the
screen will be invisible.

e V[By...B,], where 0 < ¢ < n. This is vertical composition: the sub-boxes
are all placed below each other.

e HV[Bp...B,], where 0 < : < n. This should be read as *horizontal and
vertical composition”. The system tries to fit all of its boxes on a row.
When the right margin is encountered, a new line is inserted.

e HOV|[By...B,), where 0 < i < n. This should be read as “horizontal or
vertical composition”. This operator will act as a V[By ... By,] operator if
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its arguments consist of more than one line. This happens if the operator
has a V-subterm or a list of boxes that don’t fit on a single line.

e I[B]: this is the Indentation operator. It prints its argument boxes with
a few spaces indented.

e WD[B]: this operator takes the width of it’s argument box and yields that
much white space. For example, WD [ “Boo” | = « 7

The LST box is not a standard operator, but should be mentioned for its
importance in the ToBox system.

e LST[By...By,]: this operator is mostly a syntactic affair. It converts its
arguments into an ASF+SDF list of boxes. Intuitively, LST[Bg ... B] =
By...B,. While not a proper formatting operator, the LST box has
turned out to be quite useful.

Now we get to parametrizing the system. The formatting of the Box-terms
can be influenced with “Space-options”. Let’s get back to our example.

V vs = 1 [“Bozing :" “the noble art ” HV [“of” “formatting”]]

The vs = 1 is a space-option. There are three such options, all set between
the name of the box and the start of its argument list.

1. vs == n,n > 0: this parameter is for use with V, HOV and HV operators.
“ys” is an abbreviation of “vertical space”. “vs = n” instructs the system
to print n blank lines between the argument boxes.

2. hs = n,n > 0: this parameter is the horizontal equivalent of vs. Tt
instructs the system to leave n spaces between the argument boxes.

3. is = n,n > 0: this parameter addresses the indentation. I-boxes with the
is = n parameter must be indented n positions.

The attentive reader will have noticed that for all space-options, n > 0.
This implies the possibilities of having 0 spaces or lines between boxes, or 0
indentation. This comes in very useful, as the default values for hs, is and vs
are usually set to 1, 2 and 0, respectively.

Notice that Box strongly resembles PPML (a prettyprinting formalism de-
scribed in Section 7.1), but it has been extended with operators not found in
that language. The free format of ASF4-SDF allows users to define boxes of
their own (although implementation in the back-ends may prove a problem). I
will discuss a few of these extensions. Many others exist in other modules; all.
however, have the basic format

BOX — NAME options x [BOX ... BOX]

o KW{Boxz]: the argument is a keyword, and must be typeset accordingly.
In ToBTEX and most other systems, this means printing the string in a
bold font.
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e M AT H|[Boz]: the argument of the box is a mathematical expression and
must be typeset accordingly. This will be quite familiar to users of BTEX.

e O s — options [Boz Boz — String Boz]: this is slightly more complicated.
The three arguments must be set above each other, and centered with
respect to the Box-String. This is used for drawing the horizontal line in
a conditional equation.

KW and MATH are defined in the module “Fonts” of [BV94b], together
with several other extensions. The “O”-box is defined in the module “Over”
[BV94b], which defines only this operator (since Of...] is a highly specialized
operation).

5.2 Life after Box: Box2Text

Box2Text [BV94b, BV94a] is the simplest back-end for interpreting Box. It
converts a Box term to a list of strings. The Box2Text system implements the
basic semantics of the Box language, thus yielding the fundamentals for other
back-ends. The Box2Text back-end was developed using the ASF4+SDF Meta-
environment, meaning that it is an executable specification over ASF+SDF. It
is designed as a mapping from Box to terms over a sort “Text”, where a “Text”
is a list of strings. It offers several options and operators to typeset the text, to
ease the effort of translating. It has been extended with “Text-Laws”, a module
which models the interactions of the operators defined in the module “Text”.
A full listing of the system can be found in [BV94b, BV94a].

5.3 Life after Box: Box2TgX

As the name implies, Box2TEX [BV94b, BV94a] is a back-end to translate Box
to TgX. The output can also be used with BTEX [BV94a]. Readers familiar
with TEX will at first glance suppose that this is not too hard, since TEX like
Box, is a box-language. Unfortunately, life is rarely that simple. For starters,
TEX has a maximum nesting depth of 40 boxes.

That’s why the module Box-Laws [BV94b, BV94a] was written. It is an
executable specification in ASF+SDF. The module rewrites a Box-term as
much as possible, aiming at minimizing the amount of typesetting work that
the Box-term requires. The name Box-Laws is a bit ambitious: while most of the
laws are simple to understand. some have not yet been proven*. This is the case
for two reasons. First, some of the operators (like I]...]) are context-sensitive.
making the writing of a proof prone to error. Second, the semantics of Box are
dependent upon the back-end used to interpret the Box-term. There is not yet
a model that captures the essence, and only the essence, of the Box operators.

4The Box-to-Text-Alg ASF+SDF specification yields the semantics for the Box-Laws; a
law is correct if and only if, for all terms over box, the same text results before and after
application of the law.
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6 The ToBox system

ToBox translates AsFix to Box, using user-defined rules. In this section, we
describe the basic functionality, and take a look at its components and their
interaction. ‘

6.1 General overview

The ToBox system consists of a set of modules. Their hierarchy is shown in
Figure 7.

[ Aterms | [ Box :

N
| Holes |
— !

{ Rules f—1 SepBox |
I
[ AsfRules | [ SdfRules ]

[ Match |

M PrepCf ]

J  PpaAsFix |

Figure 7: Import graph of the ToBox system.

The core of the system is the module “PpAsFix” (described in detail in Sec-
tion 6.2.1). “PpAsFix” is offered an ASF+SDF specification in AsFix format
and a set of user-defined formatting rules.

In order to apply the formatting rules to the AsFix specification, “PpAsFix”
calls “Match” (described in section 6.2.2). “Match” tries to match the specifi-
cation in AsFix to the lefthand sides of the rules. Failing this, built-in default
rules take care of the “offending” parts.

The module “Rules” (described in section 6.3) describes the syntax of the
user-definable formatting rules. It has a sister module “Rule-correct” which is
not part of the system, but can be used to test if the rules are semantically
correct. {Some of the correctness issues of the rules are context-sensitive, and
therefore cannot be properly described in a context-free syntax: for example,
formatting rules must be left-linear). The modules “AsfRules™ (described in
section 6.3.1) and “SdfRules” (described in section 6.3.1 give the “default” rules
for formatting AsFix. The modules “SepBox” and “PrepCf” define auxiliary
functions of the same names, respectively. They are needed to circumvent the
context-free nature of the formatting rules.
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The module “Holes” is strictly syntactic. It defines the holes (ToBox-specific
variables) in a term over the Box-language. In other words, a term over Box is
open if it contains a hole.

6.1.1 Taxonomy of rules

| Formatting rules

l Definable rules | [Hard-specified default rules|

b

[ User-defined rules | [ System rules |

Figure 8: Taxonomy of rules in the ToBox system

There are several different kinds of rules in the system; it is vital to under-
stand the differences between them in order to understand the remainder of
this chapter. Their interaction is shown in Figure 8.

Definable rules Definable rules are the rules that the ToBox system takes as
parameters. Intuitively, these are the rules of the form < ATerm, Boz >.
They are called “definable” because they can be defined by the user and
the implementor (e.g, the module AsfRules is a set of implementor-defined
definable rules).

User defined rules User defined rules, also called user rules, are definable
rules that the user has provided as parameters. These are the rules that
the user may use to fine-tune the ToBox output. An example of such a
rule is < [“Sort” N[0]], KW[ [0] | > which causes the system to print all
sort-names as keywords.

System rules System rules are definable rules built into the specification.
These are the “standard” rules for formatting ASF+SDF. They come
into play when the user rules fail to address a case. Thus. the user is
saved from having to specify every case that may occur in a specification.
allowing him/her to concentrate on the details. In addition, as the system
rules are definable, they can be altered to supply support for modifica-
tions or extensions of AsFix, without having to change essential parts of
the system. Note that the only difference between a user defined rule and
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a system rule is the location: a user defined rule is a parameter, whereas
a system rule is part of the module. In other words, a user rule is user-
defined, and a system rule is implementor-defined.

Hard-specified default rules Hard-specified default rules are ASF+SDF rules,
used as defaults for translating AsFix to Box. They come into play when
the formatting rules fail to cover a case. The difference between these
rules and the system rules is that these are “hard-specified” (hard-coded).
The difference in purpose is that the system rules are strictly for AsFix,
whereas the hard-specified default rules are defaults for any ATerm.

The hard-specified default rules should never be activated, with one ex-
ception: the rule that translates a Literal in ATerm to a String in Box.
This transformation takes place at such a low level of implementation that
it cannot be described by the definable rules.

Formatting rules Finally, formatting rules are all the rules that directly in-
fluence the translation of AsFix to Box. They consist of the user defined
rules, the system rules, and the hard-specified rules.

6.2 The core of the rewriting system

We can now look at the core of the system. At the heart of the system is a
top-down recursive tree traversal process . (The “tree” is the ATerm to be
formatted; remember that an AsFix ATerm is the syntax tree of an ASF+SDF
specification). At each node, the system tries to match the current node to the
given rules. If a match succeeds, the system recursively formats the subtrees.
If all matches fail, a set of hard-specified default-rules is activated. Once their
work is done, the system recursively calls the main loop for formatting the
subterms.

6.2.1 PpAsFix and substitute

The module “PpAsFix” has a number of entry points: PpAsf, PpSdf. PpAsFix,
and PpATerm. Which one is used depends on the user’s situation. For exam-
ple, if one is only interested in formatting the ASF section of an ASF+SDF
specification, one calls PpSdf. All these entry points, however, eventually lead
to a call of the function “DoPpATerm”.

DoPpATerm is the function that implements the outer recursive loop. It
accepts two parameters: a list of user defined rules and an ATerm to be format-
ted. The user defined rules are added to the system rules, yielding a complete
list of the definable rules to be used. The user defined rules form the front of
this list. Thus it is guaranteed that they will be considered before the system
rules; this implements a simple scheme for maintaining priority.

The eventual call of DoPpATerm has as its arguments an ATerm and two
identical lists of formatting rules:
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DoPpATerm(Rules, Rules, T)

The first list of rules is a “master copy”. The second list is scanned element
after element to find a matching rule. We will see this in more detail below.

DoPpATerm checks the list of definable rules to match the head of the given
ATerm. As soon as a match is found, it is applied. This happens in equations
[DoPpATerm-0] and [DoPpATerm-2], which are listed below.

[DoPpATerm-0)
M = match(ATy. AT),
M # NoMach

DoPpATerm(SystemRules, < ATy, By >; PPrule — list, AT) =
substitute (SystemRules, M) in By

[DoPpATerm-1]
M = match(AT,, AT),
M = NoMatch

DoPpATerm(SystemRules, < ATy, Bo >; PPrule — list, AT) =
DoPpATerm(SystemRules, PPrule — list, AT)

There is a third equation in the main loop, which is responsible for the call
of the “prep” function. This will be detailed in section 6.5.1; it is listed here for
completeness.

[DoPpATerm-2]
AT = [["CfFunction"
["CfElems" AT)};["Sort" AT]; ["Attributes" ATy
] AT‘I}’
AT, # nil

DoPpATerm(SystemRules, PPrule — list, AT) =
DoPpATerm(SystemRules, PPrule — list, prep(AT))

Thus, the first matching rule in the list of definable rules is always used. The
precise operation of matching is explained in section 6.2.2; for now. all we need to
know is that it returns either “NoMatch” (=matching failed), “EmptyMatch”
(=matching succesful with 0 bindings), or a non-empty list of bindings. At
first glance, it seems illogical to have an “EmptyMatch” instead of an empty
list of bindings. The main reason for doing so is elegance; a condition “B* =
EmptyMatch” is more legible than “Bx = ".

On a succesful match, DoPpATerm calls the function substitute with the
result of the matching operations, and the complete set of definable rules.
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“substitute” now has the complete list of rules, and a set of ATerms that are
bound to nonterminals. These ATerms are recursively translated to Box. This
is where the aforementioned “master copy” of the rule list comes into play. It is
this complete list of rules, not the partially emptied list, that must be handed
over to lower levels of recursion.

If no rule matches succesfully, the hard-specified default rules come into
play. Without these, it would be possible for the system to terminate with a
partially unformatted output. The default rules guarantee that every ATerm is
eventually translated to a proper Box-term.

The hard-specified default-rules are®:

[DoPpATerm — 4] DoPpATerm(SystemRules,, L) = L2S(L)
The L2S function translates a character string of sort Literal to an equivalent
character string of sort Boz-String.

[DoPpATerm-5] DoPpATerm(SystemRules,,[ATy AT,]) =
V' [ DoPpATerm(SystemRules, SystemRules, AT,),
DoPpATerm(SystemRules, SystemRules, AT,)

1
[DoPpATerm-6] DoPpATerm(SystemRules,, ATo; AT;) =
LST[ DoPpATerm(SystemRules, SystemRules, ATy),
DoPpATerm(SystemRules, SystemRules, AT;)

]

[DoPpATerm-7] DoPpATerm(SystemRules, ,nil) = HJ|
[DoPpATerm-8] DoPpATerm(SystemRules,, ATy /AT,) =
DoPpATerm(SystemRules, SystemRules, ATy)

6.2.2 Match

The module “Match” is an almost independent but vital element of the ToBox
system. It implements only one function, named “match”. “match™ accepts two
parameters: a closed ATerm (meaning an ATerm without Nonterminals) and an
ATerm that may contain Nonterminals. The system then tries to match these
two. If succesful, it returns the bindings (if any) of the Nonterminals in the open
ATerm. If it is succesful but there were no Nonterminals (meaning. in practice,
that the ATerms were syntactically equal) it returns “EmptyMatch”. If no rule
succesfully matches the two ATerms, the default rule comes into play. This rule
returns “NoMatch”. As the default rule is without conditions and doesn’t look
at the structure of the ATerms offered, it always succeeds, thus guaranteeing
termination of the “match” function. Care was taken to make the executable
sub-specification “Match” confluent. “match” makes recursive calls: if even one
subterm fails to match, the “NoMatch” result is propagated upwards. In addi-
tion, “EmptyMatch” may only be returned if there is no binding at all; it doesn’t

5 Attentive readers may notice that there is no equation “DoPpATerm-3”. This is a result
of the systems development history; it is not the case that equations have been omitted.
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make sense to have “EmptyMatch” as part of a list of bindings. When com-
bining bindings, “EmptyMatch” is always removed. When two “EmptyMatch”
results are combined, the result is still an “EmptyMatch”. (The same, of course,
applies to “NolMatch”; but then "NoMatch” combined with any result will yield
“NoMatch”, as a match can only be achieved when every subterm succesfully
matches). Note that the match-function does not lock for consistent bindings!
This would needlessly complicate the function, since only left-linear definable
rules are allowed. Even checking the offered ATerms is beyond the scope of this
module; the module Rule-correct sees to that part. Incorporating such a check
into “Match” would mean it was carried out every time the “match” function
was called, putting an undesired strain on the time performance of the system.

6.3 Rules

This section takes a closer look at the definable rules, as described in the module
“Rules”. The module defines a new kind of ATerm, the Nonterminal, and a new
kind of Box, the Hole. A rule is then defined as a 2-tuple < T, B >, where T
is an ATerm, and B is a term over Box. We shall use an example for the toy
language Pico.

A Pico program has the format

"begin® Decls Stats "end"

A formatting rule for Pico (in pseudo-AsFix notation) would look like this:

< "begin";N[0];N[1];"end", V["begin"HOV[ [0] ] [1] ]"end"] >

Here "begin";N[0];N[1];"end" is the lefthand side of the rule the part that
must be matched to a closed ATerm.

V["begin"HOV] [0] ] {1] |"end"] is the righthand side of the rule. If the
lefthand side succesfully matches an ATerm, then the righthand side tells how
it is to be formatted. In this case, “N[0]” and “N[1]” are the variables in the
lefthand side. The ATerms that are bound to them will be translated to a Box-
term recursively; and these Box-terms are then filled in for the “[0]* and “[1]” on
the righthand side. Simplified, “[0]” and *[1]" are the variables corresponding
to “N[0]” and “N[1]”, respectively.

6.3.1 AsfRules and SdfRules

These modules are based upon the previously written specifications “PpSyn”
and “PpEqgs” described briefly in [Bra95]. This approach was chosen to make the
ToBox system correspond as much as possible to existing translation systems.
However, the mapping between the original rules (in ASF+SDF) and our rules
is not perfect. In the “PpSyn” and “PpEqgs” specifications, variables can be
of sort “Literal” or “ATerm” (note that Literal is a subset of ATerm). Our
system, on the other hand, only has variables of the sort ATerm.

Another issue is the separation of formatting rules for ASF and SDF. The
reason is that SDF has a fixed syntax (as described in section 1.4). There
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is much agreement over how the SDF-part of a module should be formatted.
Therefore, the rules for formatting SDF are more sophisticated, and larger in
number, than the rules for formatting ASF.

6.4 Rule-correct

The module Rule-correct is separate from the ToBox system itself. It tests a
given set of rules for semantical errors. There are four such errors:

1. A nonterminal as the only part of the left-hand side of a rewriting rule.
This is forbidden in all TRS-es. If one allows this kind of rule, every term
always matches this rule. Therefore there are no normal forms anymore,
and hence no termination. In addition, in ToBox, the strong normalization
of the formatting rules is based upon the stepwise descent of an ATerm.
Rules which have only a nonterminal on the lefthand side do not descend
the term to be rewritten.

2. A rule has the same nonterminal more than once on the lefthand side. In
other words, the system is not left-linear. This is forbidden for efficiency
reasons. If the system allowed such rules, the matching system would have
to keep track of the consistency of bindings, which causes overhead. The
price paid for this is that it is not possible to emphasize repetitions (e.g,
multiple occurences of the same variable in a single condition). Another
reason is that allowing rules that are not left-linear allows the user to
(ab)use the system for program transformations. Here’s an example of
such an abusive rule.
<"if" NJ[0] "then" N[1] "else" N[1],[1] >

3. A rule has the same nonterminal more than once on the righthand side.
This, too, is forbidden because it might be (ab)used for program transfor-
mations instead of rewriting. Here's an example of a rule that does some
program transformation instead of formatting. For example, consider the
rule
<"for"i=1"to" 2"do" N[0]";". V[[0][0]] >
This is erroneous if V[0] equals, for example, “ write(i); ”.

4. A rule has nonterminals on the righthand side that do not occur on the
lefthand side. This, too, is forbidden in all term rewriting systems. The
reason is obvious: every variable on the righthand side must have some-
thing to be instantiated with.

One more thing should be said about program transformations. It would
seem that using formatting rules for program transformations is not inherently
wrong. A computer scientist of sufficient skill could avoid simple errors like the
one mentioned above. But the formatter is not meant for this. Anyone wanting
to do program transformations should use a proper program transformation
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tool, since it will alert him/her to errors and refuse to perform some erroneous
transformations. The ToBox system, on the other hand, is not at all concerned
with the semantics of the specification to be formatted and will not issue such
warnings. The most secure way of enforcing this is to make the “transforming
rules” illegal.

6.5 Additions to the system

Thus far, the system has been straightforward. There are two complications in
the systems’ operation though. The one concerns the formatting of context-free
functions in the “equations” section of a specification. The other complication
concerns separators between boxes. Both complications are introduced as a
result of the restrictions on the expressive power of the rewriting rules.

The problem with context-free functions is that an AsFix “CfFunction” is
represented in AsFix by a signature first. and its actual arguments following.
Simply put. we get (in pseudo-AsFix): :

[ some-function (sortl, sort2, sort3) terml;term2; term3]

This is inherently context-sensitive. Since the rules are context-free, they can-
not handle this kind of function unless the arity of some-function is known
beforehand.

The problem with separators is best illustrated by the formatting of so-called

priority chains. Syntactically, a “priority chain” is a list of function names sep-
arated by “>” or “<” (the same separator is applied throughout a chain). The
problem is that priority chains are represented in AsFix as
[ type-of-chainTy . .. T,)
The type of chain (“IncrChain” or “<”, versus “DecrChain” or “>”) is known
only when processing the entire term. When processing the subterms (i.e,
Ty ...T,), this information is no longer available. Therefore, the system doesn’t
know whether the subterm should be affixed with an “>", an “<”. or not affixed
at all! (The latter is the case for the last element of the chain).

Both problems can be eliminated by allowing the system to pass context-
sensitive information to lower levels of recursion. This would require the ASF+SDF
rules to have an additional parameter to inform the system about the current
context. An example of such a parameter would be a simple tag which could
take the values of symbolic constants. The constants would have expressive
names like “in_alist” and “not.in_alist”. This will result in a more beautiful
but almost certainly slower system, since another argument must be matched
at every rewriting step.

6.5.1 PrepCf

The function “PrepCf” comes into play when a context-free function with ar-

guments is to be formatted. These have the form
[[“CfFunction™ [“CfElems” To); [“Sort” T]; [“Attributes” T3]|Ts]
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This reads as “Apply the declaration” ([“CfFunction” ...]) “to the list of
arguments given in T3". It is the application to T3 that gives the problem. T3 is
a list of terms that may contain any finite number of elements. So we have the
declaration of a context-free function, followed by its instantiation. Obviously,
in the output of the formatter, we want the instantiations substituted at the
proper places in the signature.

This is where PrepCf comes into play. As soon as the system encoun-
ters a “CfFunction”, it calls the auxiliary function “prep”. “prep”, being an
ASF+SDF function, has full rewriting power. It substitutes the elements of T3
in Tp (or, substitutes the instantiations in the signature).

So, if we go back to our earlier pseudo-AsFix example, here is the input to
prep:

[ some-function(sortl, sort2, sort3)terml; term2; term3]
The function “prep” will translate this into:
[ some-function(terml, term2, term3) nil]

Note the “nil” in the output of prep. It represents an empty list of arguments,
keeping the ATerm as correct as possible. (Remember that the square brackets
are interpreted as function application, and therefore always have iwo ATerms
between them. Putting a “nil” there is the only proper solution).

Since this function is called only when a CfFunction is encountered, the
rules-defining user does not have to worry about it; everything about AsFix will
remain as it was until the system is no longer able to stall the preparation. Even
then, only one level of substitution is performed. Thus, deeper sub-CfFunctions
retain the same basic structure that they had before PrepCf starts to work.
Should the formatter get to these parts, it will call “prep” to rewrite them just
before it starts the formatting process. This makes the system more orthogonal,
and prevents “prep” from preparing sub-ATerms that will never be formatted in
the first place. Note that “prep” will be called whether we're formatting AsFix
representations of ASF or of SDF, since ToBox doesn’t know the difference. All
it knows is that a “CfFunction” should be prepared by “prep”. However, as T3
always equals nil in a context-free function declaration (i.e., a CfFunction in the
AsFix representation of SDF), T3 will immediately terminate in this case.

6.5.2 SepBox

As was noted, the SepBox module was implemented for the same reason that
PrepCf was: because there are things the system cannot do without passing
context-sensitive information to lower levels of recursion. The SepBox is a new
kind of Box-term, which has for its subterms a BOX-LIST and a BOX. We will
refer to the latter box as the “separator”. When the separator-box is a closed
boxterm, it will be rewritten into a standard boxterm: a BOX-LIST, where the
BOX that was given as an argument is used to separate the elements. There
are three separator-boxes: SEP-I, SEP-A and A-SEP. The intuitive meaning of
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these names is, respectively, “separate by insertion”, “separate by appending
behind”, and “separate by appending before”. “separate by insertion” is the
naive way of separation: it simply changes the BOX-LIST by inserting the sep-
arator between any two boxes. This will result in the following structure when
dealing with an H-box:

BOX sep BOX sep BOX

And the following structure when dealing with a V-box:

BOX
sep
BOX
sep

BOX

It should be clear that the latter result is not always desired. For instance,
the conditions in an equations section of AsFix are one thing for which we’d like
to use SepBox, with “,” as separator. But. we want the comma to come directly
after each condition. This is where SEP-A comes in useful: it will generate
H-boxes, with the elements of the BOX-LIST (the conditions in our example)
followed by a comma as subterms. Thus, we get:

SEP-A [“" LST[Cond! Cond2 Cond3]] —

LST [H[Cond1 “”] H[Cond2 “”] H[Cond3]]

If we had used A-SEP, we would have gotten the commas before the conditions,
like:

LST[H[Cond1]H[“,” Cond2]H[“,” Cond3]].

Note that in none of these cases the separator is the start or end of a BOX-LIST.
It is, after all, a separator.

With this functionality of SEP-A in mind, it should be clear why there is
no “I-SEP” box as a counterpart to SEP-I. The two boxes would have the same
functionality.

Some words need being said about the conditions under which SepBox will
rewrite into a LST. When given an open boxterm (meaning a boxterm contain-
ing a hole), the SepBox shouldn’t rewrite. To see this, assume the hole is the
separator. Now, since in this counterexample the open box-term could be rewrit-
ten, the rule itself would be modified. The system would rewrite SEP{“X”[0]]
into [0]. Obviously, this is not the intended result.
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7 Creating your own formatting rules

A set of formatting rules is a set of rewrite rules, separated by semicolons. The
formatting rules consist of an ATerm and a BOX-term each. So a template of
a set of formatting rules is

< To,Bs > ;
<T1, B >;
< T3, Bs >

Of course. this doesn’t suffice to create generic formatting rules. Therefore
both ATerms and BOX-terms have been expanded with operators usable in
ToBox rules only.

For ATerms, we have nonterminals. A Nonterminal has the form “Nin|”,
where n is a natural number or zero. It represents an unknown sub-ATerm.
During the rewriting process, any {closed) sub-ATerm may be bound to a non-
terminal.

For BOX-terms, we have so-called “holes”. A hole has the form [n], where n
is again a natural number or zero. It represents the place to substitute a BOX.

When the rewriting engine encounters an ATerm that matches the ATerm
in a rule, the nonterminals of the latter ATerm are bound. (This sounds com-
plicated, but it’s really standard term rewriting). Now the system descends the
BOX-term, keeping these bound nonterminals and their bindings with it. Every
time we encounter a hole, we look for the corresponding nonterminal. So, if
we encounter (3], we look for the binding of N[3]. This binding is recursively
translated and substituted for the hole.

A small example should clarify things. Suppose we have the rules
< ["Example" N[2]], H["e.g." [2]] >;
< N0l / w21, [0] >
and the term
["Example" ["look" "here"] / "this is an example"].

The system will first try to match the first rule. (We will see later that rules
are always tried out in the order in which they appear}. This rule matches the
to-be-rewritten ATerm, yielding the binding.

N{2] = ["1ook" "here"]/"this is an example"

Now the system recursively rewrites N[2]. I will explain below how this works.
but for the moment, just accept that it yields V [ "look" "here" |. Therefore.
the box V["look" "here"] is substituted for the [2] in H[“e.g.” [2]], yielding

H|["e.g." V ["look" "here"]]

Now we come to how the box ["look" "here"] was obtained. At first,
the system tries again to match the first rule, this time to the term ["look"
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"here"]/"this is an example". This match fails, and the next rule is tried.
The next rule does match, yielding the bindings

N[0] = ["1look" "here"] N[2] = "this is an example"

Note that the N[2] of the second rule has no bearing whatsoever upon the
N[2] of the first rule; nonterminals are like variables in PROLOG, they have their
own meaning in every rule. In other words: the scope of a nonterminal is limited
to the rule in which it appears. Since the matching was succesful, we may now
substitute. The system once again descends the BOX-part of the appropriate
rule, which is simply [0]. This means that we have only the translation of N[0]
to substitute; N[2] is ignored, since no corresponding hole appears in the BOX-
term! This is not a bad thing; you will often want the formatter to ignore parts
of an ATerm.

So, the system must now translate ["look" "here"]. Since no rules are
provided, the system is on its own. Fortunately, there are default formatting
rules in the system for just this kind of thing. The rules for ATerms of the form
[ TO T1] tell the system to build the box V [ BO Bl ], where B0 and B1 are
the translation of T0O and T1, respectively. The translation of TO and T1 will
take in account all the rules the user supplied. In our case, the literals “look”
and “here” will be translated to the strings “look” and “here”, which is also
the work of a default rule. So the system has translated ["1look" "here"] to
V{"look" "here"].

The end result of our rewriting session is therefore H [ "e.g." V["look"
"here"]]

which is prettyprinted as

e.g. look
here
7.1 Summary
e The scope of a number (nonterminal or hole) is a single rule.
e The left hand side of a rule can never be a single nonterminal.

o The numbers of the holes in the right handside of a rule should be a subset
(not necessarily a proper subset) of the numbers of the nonterminals on
the lefthand side.

The same nonterminal shouldn’t appear twice in the same rule.

The same hole shouldn’t appear twice in the same rule.
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8 Related work
8.1 Oppen

Oppen [Opp80] was the one of the first papers to discuss an implementation
of language-independent prettyprinting. Oppen’s algorithm breaks a text into
blocks. It has two interacting procedures, scan and print. (Oppen calls them
“functions”, but this is not correct since they do not return data: worse yet. if
they were functions, they would have serious side effects).

The procedure scan receives tokens from an auxiliary function receive. These
tokens are stored in a FIFO buffer named stream. The tokens are used to build
blocks; parallel to stream is a buffer of integers called size, containing the sizes
of these blocks. (These blocks basically behave like our H]...] boxes). The size
information in size is used by print to decide if a block can be printed on the
current line; the procedure does, of course, have to keep track of the remaining
space on a line. A complete description of the algorithm. together with a listing
in the Pascal-like language MESA, can be found in {Opp80].

The system is remarkable because it performs on-line prettyprinting without
intervention of a parser. A very simple on-line lexical analysis is performed to
determine which symbols constitute a string.

8.2 Blaschek & Sametinger

Blaschek and Sametinger [BS89] describe a more or less general prettyprinter
for Pascal-like languages.

There is a language-dependent front-end that parses the program, yielding a
token stream. This token stream, which contains embedded control information.
is then prettyprinted using an extended version of Oppen’s algorithm.

The system is parametrized by a set of variables like " NewLineThen” (which
causes the "then” of an if-then-else statement to be printed on a new line if it
is set to “true”) and "DclCommentTab” (to control the amount of tabulation
for comments in declarations. The user may set it to 0 if (s)he doesn’t desire
tabulation). These parameters can be found in a separate parameter file {a
'user profile’). Since the set of variables may vary slightly depending upon the
language, this approach is only useful for languages whose grammar is fixed.

Comments in [BS89] are treated as if they concern the last statement pro-
cessed. The previously mentioned 'DclCommentTab’ allows for special treat-
ment of comments in a declaration environment. The system has a nice feature
with respect to comments and “END” commands, allowing to append auxiliary
comments to the end of a block. (e.g, “END (* FOR *)” for the end of a
FOR-loop; [BS89] doesn’t mention if procedures are appended with their name.
the appropriate keyword, or neither). Innermost blocks are not appended this
way, since doing so would impair, rather than enhance. the legibility.
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Rather than using a nested structure of formatting operators like the Box-
language, their pretty printer uses the less radical approach of inserting a special
symbol in the token stream where line breaks are allowed.

The extensions to Oppen’s algorithm are symbols tab, beginMargin, and
endMargin. tab has it’s intuitive meaning, whereas text between beginMargin
and endMargin has extra indentation.

8.3 PPML

The first default pretty printer of the ASF+SDF Meta-environment used PPML
[PPMLS6], and the basic constructs of Box are straightforward adaptations of
similar PPML constructs. (E.g. the V[...]-box is the Box counterpart of PPM-
Lsfv..]).

An example of a PPML rule is:

if(*cond, *statl, *stat2)

-> [v [hv "if" *cond][hv "then” *statl][hv "else” *stat2]];

In this example (the source of which is [PPML86]), the *cond, *statl and
*stat2 are the meta-variables.

PPML also has a construct similar to the separator-boxes: the seplist(...,...)
operator.

In a strange way, the ToBox system completes a circle. PPML also used
the ordering of the pretty printing rules to determine priority. However, in
order to deal with ambiguities, the PPML system has conditional rules. (By
contrast, AsFix does not suffer from ambiguities and therefore does not need
conditional rules). Another example from [PPML86] will illustrate this. It is
part of a specification for prettyprinting mathematical expressions in a Pascal-
like language. and determines whether or not a sub-expression should be put
between brackets.

plus(*a,*b) -> [hv *a "+" if *b in {plus} then "(" *b")" else *b end if ];

A similar construction is the case command for context-propagation, which
is used to solve the dangling-else problem.

PPML is stroniger than ToBox when it comes to comments: in PPML, one
can add rules concerning how to deal with comments. One uses ordinary PPML
rules for this purpose. These annotations are “mounted” in so-called frames.
and a list of frames we want to see is added to the call of the pretty printer.
Thus the PPML user can choose to ignoré comments.

The final difference is that PPML also has display options as part of its
specification: it does not use it’s box language as an interlingua, but rather as
a data structure.
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8.4 Arnon, Attali & Franchi-Zannettacci

The system described in [AAFZ92] is used to convert documents between BTEX
and Tioga, using a syntax tree as an interlingua. It is mentioned here because
there was a formal approach. The authors went as far as to define a class
“Article”. Two abstract syntaxes were given: one for the contents, and one
for the physical structure of an article. The first is concerned with sections,
subsections, citations etc. The second is defined in in terms of words, lines,
paragraphs and other physical layout concepts. PPML is used for unparsing.
Concrete syntaxes were constructed for both BTEX and Tioga. An example
of a grammar rule for BTEX is:
<abstract>::= "\begin{abstract}”’ <text> "\end{abstract}”;
abstract(<text>)
The second line in the example refers to the place this rule has in the signature
of the “Article” class.
Finally, a2 mapping is defined between the logical structure (section, subsec-
tion, paragraph...) and the physical structure (page, line, word...). A set of
conditional rules governs this translation.

8.5 Garlan

Garlan [Gar85] does not address pretty printing, but the related problem of
unparsing®. There is a complication in his work since the unparser must work
in a structure editing environment, which means that

1. The program to be unparsed changes dynamically.
2. He has to print the nonterminals of the language.

In addition, it is possible for a single parse tree to be displayed more than once,
and a change in one instance of the tree requires an update of all others.

Garlan [Gar83] introduces “VIZ” and “UAL”. “VIZ" is an unparse specifica-
tion language. “CAL” is the implementation of an unparser that uses VIZ. The
VIZ/UAL system contains various features, including a user-extendable library
of formatting environments.

In a VIZ specification, a set of unparse descriptors is given for each view
(“window”)”. These unparse descriptors are condition-scheme pairs. (As the
conditions may involve the parent node of the nonterminal to be unparsed,
context-sensitivity is introduced). In case of conflict, the first condition-scheme
pair whose conditions evaluate to “true” is used. Note that different views may
have different unparse descriptors.

5The difference is mainly that an unparser has access to a parse tree, wheras a pretty
printer often uses a lexical analysis tool with language-specific information.

"There is the possiblity of having a default window, and of assigning the same set of unparse
descriptors to multiple views.
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An example of a VIZ unparse scheme is

@myhighlight(If <bool-part> —— @+(Then <then-part>))

« ki

This example shows us that VIZ is not a box-language. The rep-
resents a newline. VIZ allows allows for optional newlines, using the related
command “II”.

While these directives are more primitive then boxes, the expressive power
of VIZ is strongly enhanced by the use of conditional attributes which affect the
style of a document. Examples are horiz-vert, which behaves more or less like a
HOV|...] box, and columnize, which formats a list as a table.

The interesting part of the UAL system is that, for reasons of efficiency,
it is incremental. When a node is changed in the program being displayed,
all nodes whose representation depends on it are updated. These changes are
then propragated to the “U-trees” (unparse trees), by means of a procedure
called the “U-machine”. These U-trees are similar to concrete syntax trees.
(By comparison, the node that was changed is part of an abstract syntax tree
representation).

The other half of the algorithm is the D-machine, or “display machine”. This
system translates the U-trees to display directives. Finally, these directives are
carried out: command sequences are issued to printers, bitmaps are altered,
etc.
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9 Conclusions and future work

This finishes the description of ToBox. All essential parts of the system have
been included in Appendix A. It has been shown that a “configurable” trans-
lation of AsFix to Box is feasible. In addition, it has been shown that a non-
confluent set of rewriting rules can be useful in a deterministic everyday tool,
when an easily comprehensible rewriting strategy is used.

As is the way with projects like this, there is still room for beautifying the
system. Anybody who would involve him- or herself with such a project is
therefore referred to the following summary. These are the points that I feel
should be adressed first.

e Currently, the user can translate AsFix to Box, but has nothing to say
about comments. This is a result of comments not usually being part the
prefix- part of an AsFix specification. The comments are added later by
an algorithm described in [Bra93a).

e The PrepCf-function and the SEP-boxes are the ugly part of the specifica-
tion. The specification would be more orthogonal, and therefore prettier.
if these were discarded in favor of a top-down parameter passing system.
Such a svstem would tell the lower levels of recursion in what kind of
context they found themselves. While this is a form of further context-
sensitivity. it does not threaten termination as long as the rules are strictly
top-down. Note that termination of the system can be shown by induction
on ATerms S.

o Currently, the ToBox system maps AsFix to Box. This means that a user
has to know AsFix to write rules. There are two solutions to this problem.
but both boil down to write the left hand sides of the rules in SDF.

1. Write a preprocessor to translate SDF lefthand sides to AsFix.

2. Rewrite the system to accept SDF, instead of AsFix. as lefthand
sides. Note that SDF has a fixed format; it is the ASF part of an
ASF+SDF specification that causes the problems for prettyprinting.

For either solution, the implementor should extend SDF with a “nonter-
minal” symbol, like the Nonterminal-sort that is injected into the sort
ATerms. Note that the end-user must retain the freedom to design any
context-free language (s)he wants. This slightly complicates the issue.
since such nonterminals should be kept separate from user-defined sym-
bols (sort-names and literal text).

8Provided there are no rules that have only a variable on their lefthand side. This is not
as strong a condition as it seems since this is forbidden in all TRS-es, for just this reason
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o AsFix has no explicit operation to represent cross-references, although Box
does (see the LBL- and REF-boxes in [BV94b], under module “Fonts”).
It is possible to pry the cross-reference marks from the SourceSyntaz and
SourceEquations parts of an AsFix specification. This takes extra time,
though, and is not entirely reliable. Rather than making an “opinionated”
system, it was decided to wait until AsFix has explicit cross-references in
the PrefizSyntaz and Prefiz Equations parts of a specification. It is the
author’s opinion that not having cross-references is better than unreliable
cross-references. This is even more so as cross-references will probably be
translated to hypertext links in the Box2HTML back-end.

A more elegant approach would be to insert rules using the logical names
of the modules. This causes two problems. The first problem is caused by
the use of the LBL-box. A rule for this box would look like:

< ["Module” N[0]; N[1]; N[2]; N[3]; N[4]; N[5], V["Module” (0] LBL[0] . . .| >
Obviously. this violates the restriction that non-duplicating rules are not
allowed in the ToBox system. This restriction can be easily removed,
however.

The second problem is caused by the REF-box. A list of imported may
have any finite length. Therefore we cannot simply give a rule like:

< [ Imports”["Id” N[0]]: ["1d” N[1]}; (" 1d” N[2]],
HV[H[[0|REF[[O|H[[1]REF[\]H[[2]REF [2]]]] >

We would have to define such a rule for every number of imported modules
that occur. (Note that the rules are duplicating, as well). One would like
to pass on the context-sensitive information that we are in a “referencing
environment” to lower levels of recursion. Failing that, a few ASF+4SDF
rules defining a REFLIST box may help a user out:

REFLIST| ["1d" To};T: ] = LST[REF|[To] REFLIST{T}]]

REFLISTinil] = H]

o At the release of this paper, a new AsFix, named AsFix2, is out already.

One of its features is a consistent use of the [“QLit"T] function. “QLit”
is an abbreviation of “Quoted Literal”, a literal between double-quotes (*
and 7).
In AsFix. how “QLit” should be interpreted depends upon the context.
If one is in the PrefitSyntar section of a specification in AsFix format.
[“QLit" “item”] should be interpreted as “<item>". If one is in the
PrefizEquations, it should be interpreted as item.

In AsFix2, this is no longer the case. An QLitis always to be interpreted as
“something between double-quotes”. Thus, with respect to double-quotes,
we don’t have to keep track of context anymore.
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A The Maintenance Manual

A.1 Extensions of AsFix

Before we start with extending the system, a word of warning: the system itself
has already extended ATerms with a new sort: the Nonterminal. All nontermi-
nals are of the form Nfi], and of sort “Nonterminal”. The sort “Nonterminal”
is exported, since it is needed to create prettyprinting rules.

If ATerms are extended, the ToBox system should be extended correspond-
ingly. Now the new ATerm operator may combine zero or more sub-ATerms. In
the examples, we will assume the new operator is &(...). If AsFix is changed but
ATerms retain the same structure, you only need look into the module PrepCf.
This is especially so for changes in the approach towards CfFunctions.

The following rules should be added:

¢ In module PpAsFix, a new hard-specified default rule should be added. It
should have the form

DoPpATerm(SystemRules, ,®(ATy...AT,) =
X [ DoPpATerm(SystemRules, SystemRules, ATy)

DoPpATerm(SystemRules, SystemRules, AT,)
]

Basically, the righthand side of the equation could be any box, with
DoPpATerm(AT;) for the box-version of ATerm AT;.

¢ In module Match, a new matching rule must be added. Matching rules
follow the pattern

match(S(Tg... Thna). S(Tio... Tnp)) =
matchcat(match(T q. Typ)...match{Tna, Thp))

If your new ATerm operator only yields constants (like Literal), things are
easier. Equal constants always match, yielding EmptyMatch. Unequal
constants are taken care of by a default-rule. Thus, when C is a variable
ranging over the new constants: match(C, C) = EmptyMatch is all you
need to add.

e The module PrepCf substitutes the actual parameters of a “CfFunction”
for the formal parameters. This is done recursively, yielding a complete
expression tree. As such, this module may have to be looked into every-
time AsFix is changed with respect to CfFunctions. If your new ATerm is
in no way concerned with CfFunctions, all you have to do is to complete
the recursion. [prep — nlprep(®(To,....T%)) = S(prep(To), ..., prep(Th))
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However, your ATerm may deal with CfFunctions in a way you didn’t
expect. The square brackets (function application) and semicolons (lists)
were used for CfFunctions and their arguments; your functions may also
become part of it. So the rule above may have to be made into a default
rule, with more specific rules for CfFunction-related purposes. Unfortu-
nately, no general guidelines can be given for such specific rules since these
changes to AsFix could be anything,.

¢ In module Rule-correct. you should add a rule to count the nonterminals
in an ATerm. These rules follow the pattern
[nont — X]
IntListy = nonterminals(Ty, IntList),
IntList, = nonterminals(Ty, IntListy),

IntList, = nonterminals(T,, IntList,_;

nonterminals(®(Ty...Ty). IntList) = IntList,

This looks a little complicated. Since most ATerm-operators work on only
two arguments, though. there is an easy shorthand. nonterminals(Ty @
Ty, IntList) = nonterminals(T;, nonterminals(Tp. IntList)) The IntList
variables are bags (multisets). The nonterminal(T, IntList) function ex-
tends the IntList with all nonterminals found in 7. When dealing with
many ATerms, all ATerms have their nonterminals added to the bag, one
after another. °

¢ You may wish to systematically adapt the rules the system uses for pret-
typrinting. The rules the system uses are found in modules AsfRules and
SdfRules. These rules work exactly as user-defined rules do; the pret-
typrinting engine itself doesn’t even know the difference. Don’t forget to
apply Rule-correct if you have changed AsfRules and SdfRules!

o If your extension of ATerms is specified in other modules than the module
ATerms, vou should import your new module in

— PrepCt
— Rules

— PpAsFix - but this is done automatically since PpAsFix imports
Rules

— Rule-correct - once again. this is done automatically

9Since bags are not ordered by definition, the order in which the nonterminals are added
doesn’t matter. Just make sure all ATerms are considered.
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— AsfRules and SdfRules, if they have rules using the new kind of
ATerm - again done automatically by importing Rules.

Summarizing, all modules in the ToBox system that deal with ATerms are
based on induction on the structure of the ATerm. Thus when ATerms are
extended you should add rules to complete the induction.

A.2 Extensions of Box

In this subsection, we will assume that the user has created a new box
X xo* [ B ]. Here X is the name of the new box, and xo* are its options. The
parameter B is a BOX or a BOX-LIST depending upon the situation; when it
makes a difference, B represents a BOX, and Bl represents a BOX-LIST. Often
it doens’t matter because functions are overloaded to accept both.

Should a user desire to extend BOX, there are two possibilities.

1. The new BOX can be rewritten to an existing BOX. See the module
SepBox for an example.

2. The new BOX cannot be rewritten to an existing BOX.

Even in the first case, we're not quite ready! Your new BOX may have sub-
boxes that are holes. In this case, the process of rewriting your box may yield
an unexpected result. An example of this is the SEP-box:
SEP — A[“”[0]] = [0] — LST[“1”“2”“3"]
Vvs.
SEP — A[*)[0]] > SEP — A[“"LST[“17%27“3"]] - SEP — A[*”“17“2"“3"]
= LST[«17«7 27« " «3"]
We notice that the ASF-rules are not confluent! It is obvious that the first
rewriting is the undesired one. It can be avoided very simply though: the
system must be told that it may only expand closed SEP-boxes. The same may
be the case for your new box. In any case, you should define “closed-boxterm”
for your new box. If you don’t need this predicate yourself, you can simply
import your new box in the module “Holes” and define the predicate there.
Otherwise, your module should import “Holes” instead.

If only the closed version of your BOX can be rewritten, you should also
update the module Rule-correct. You should add a function
[holes-n] holes(Xzo * [Bl], IntList) = holes(Bl, IntList)

In the second case, if your BOX cannot be rewritten into an existing BOX.
you should change some more. PpAsFix should be able to substitute in your
new box. You should add the following lines to PpAsFix:

[substitute-n] substitute(SystemRules, M) in Xzo = [B] =
Xzo = {substitute(Systemrules, M }inB|

for boxes that have a BOX as parameter, and
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[substitute-n] substitute(SystemRules, M) in Xzo + [Bl] =
X zo * [listsubstitute(SystemRules, M )inBl]

for boxes that have a BOX-LIST as parameter.

A.3 Summary
¢ define “closed-boxterm” for your box.

— If your system doesn’t use “closed-boxterm” itself, put the function
in module “Holes”. Add your module to the modules imported by
“Holes”.

— If your system does use “closed-boxterm” itself, put the function in

your own module and import “Holes”

e If only the closed version of your box can be rewritten, add a line to
Rule-correct to calculate how many holes the box has.

e As an option, you may import your module in “Rules”, as this will make
your box available to every module that uses “Rules”. These are just the
modules that are likely to use your new box, and it’s not a coincidence.
After all, why have a new BOX if you can’t use it in a prettyprinting rule?

The point mentioned below are only of consequence if your new box cannot
be rewritten into an existing box.

e Add a substitute-rule to module PpAsFix.
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B ASF+4SDF specification of The ToBox system

B.1 Literals

exports
sorts Literal
lexical syntax
[u\t\n] — LAYOUT
“%%” ~[\n]*“\n” - LAYOUT
“%" ~[%\n]+“%" - LAYOUT

“\"~0O0 — EscChar
“\”[01}{0-7][0-7] — EscChar

~[\000-\037"\] = L-Char
EscChar — L-Char
“\""L-Char+“\"" — Literal

B.2 ATerms

imports Literals
exports
sorts ATerm
context-free syntax
Literal — ATerm
“[” ATerm ATerm “|” — ATerm
ATerm “” ATerm  — ATerm ({right}

nil — ATerm

ATerm “/” ATerm  — ATerm {left}

“(” ATerm )" ~ ATerm {bracket}
variables

T [0-9']« — ATerm
Ts [0-9']= — {ATerm “,”}*
Ts “+7[0-9']* —» {ATerm “,"}+
L [0-9']* — Literal
priorities
ATerm “/”ATerm — ATerm > ATerm “;” ATerm — ATerm

B.3 Box

This module describes the most elementary box operators and their options.
The box language can be extended in a very simple way. We will give several
extensions.

imports Box-Strings Box-Ints
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exports
sorts SPACE-SYMBOL S-OPTION S-OPTIONS Space

options are used to adapt the amount of layout between the boxes. The horizon-
tal, vertical, and indentation offset between boxes can be adapted. Not every
combination of space option and box operator makes sense. E.g. the modifica-
tion of the vertical offset in combination of the H operator does not make any
sense.

context-free syntax

“hs” — SPACE-SYMBOL

“ys” — SPACE-SYMBOL

“is” — SPACE-SYMBOL

SPACE-SYMBOL “=” BOX-INT — S-OPTION

S-OPTION=* — S-OPTIONS
variables

“ss"[0-9'1* — SPACE-SYMBOL

“so”[0-9)x  — S-OPTION

“s0” “x”[0-9]* — S-OPTION=*

“0”[0-9]* — S-OPTION

“o" “x”[0-g]*+ — S-OPTIONx

We distinguish 6 basic operators in the box language: H (horizontal compo-

sition), V (vertical composition), HV (horizontal and/or vertical composition),
HOV (horizontal or vertical composition), | (indentation), and WD (invisible
box with the same width as some visible box). The most elementary box is a
plain string, enclosed by double quotes. A box term consists of a box operator,
zero or more space options, and followed by zero or more boxes. The kernel box
language is simple but can be easily extended. A specification writer can easily
define a new module which imports this kernel box language. For each extension
the text formatter and the tex formatter have to be adapted, but because of the
strong modularity of ASF+SDF this can be done in a clean manner.

sorts BOX BOX-LIST

context-free syntax
BOX-STRING — BOX
BOXx — BOX-LIST

“H” S-OPTIONS “[” BOX-LIST “|” — BOX
“y” S-OPTIONS “[” BOX-LIST “” - BOX
“HV” S-OPTIONS “[” BOX-LIST | - BOX
“HOV” S-OPTIONS “[” BOX-LIST “]" — BOX

“» S-OPTIONS “[” BOX " — BOX
“WD” u{n BOX “]77 — BOX
hiddens
variables

[B-E][0-9)« — BOX



[B-E}“+"([0-9]* — BOX+
[B-E}“+"[0-9]* — BOXx
exports
context-free syntax
BOX-LIST “+" BOX-LIST — BOX-LIST {right}
context-free syntax
“I+” S-OPTIONS “[” BOX-LIST “|” — BOX-LIST
“LST” “[* BOX-LIST ¢}” — BOX
equations

[CONC] B* + C*=B* C*

[0] Ix so*[] =
[0] Ix so*[B B*] =ls0* [B] + I* so*[B~]

[0] B* LST[C*] D* = B* C* D*

B.4 Rules

imports ATerms Box Box-Ints Box-Strings Holes Alignments Fonts Over

SepBox
exports

sorts Nonterminal PPrule PPrule-list
context-free syntax

“N” «[» BOX-INT “” — Nonterminal

Nonterminal — ATerm

“<” ATerm “,” BOX “>” — PPrule

{PPrule *;"}* — PPrule-list

“rulelistcat” “(” PPrule-list *,” PPrule-list “)” — PPrule-list

“dquote” - — BOX-STRING
variables

PPrule-list [0-9']% — {PPrule “"}x

PPrule [0-9'}x — PPrule

“ex” — CHARx
equations

' llistcat-0] rulelistcat( PPrule-listy. PPrule-list;) = PPrule-listy; PPrule-list;

[dquote—l] dquote = bOX’St-I"COn( i



B.5 PpAsFix

imports ATerms Alignments Box Box-Strings Over Fonts Match Rules
Box-Ints AsfRules SdfRules PrepCf

exports
context-free syntax
“PpAsFix” “(” ATerm “)” - BOX

“PpAsFix” “(” PPrule-list “” PPrule-list “,” ATerm “)” — BOX

“PpATerm” “(” PPrule-list “.” ATerm “y” — BOX
“PpAsf’ “(” PPrule-list “,” ATerm “)” - BOX
“PpSdf” “(” PPrule-list “.” ATerm “)” — BOX

With all the above functions, the users rules take precedence over the built-in
rules. Note that it is always possible to supply an empty set of rules.

hiddens

context-free syntax
“DoPpATerm” “(" PPrule-list “,” PPrule-list “,” ATerm “)” — BOX
“L28” “(” Literal “)” — BOX-STRING
“substitute” “(” PPrule-list “,” MatchResult “)” “in” BOX — BOX
“listsubstitute” “(” PPrule-list “,” MatchResult )" “in” BOX-LIST — BOX-LIST
“lookup” BOX-INT “n” MatchResult ~» ATerm

variables

“B”[0-9]* - BOX

“B” “*”[0_9]* ___) BOX*
“BI”[0-9}* — BOX-LIST
“SystemRules” — PPrule-list

“et” — CHAR+

“ex” — CHAR=*

“AT"[0-9']x — ATerm
equations

PpAsFix formats a module by calling PpSdf and PpAsf with 0 user-defined
rules, and placing the results below each other.

[PpAsFix-0] PpAsFix(AT) = V [PpSdf(, AT) PpAsf(, AT)]

An alternative PpAsFix rule calls PpSdf and PpAsf WITH some user-defined
rules.

[PpAsFix-1] PpAsFix(PPrule-list;. PPrule-list;, AT)
= V [PpSdf(PPrule-list,, AT) PpAsf(PPrule-lists, AT))

PpAsf first concatenates the user-defined rules and the built-in rules for equa-
tions. Note that the user-defined rules come first in the resulting list, thus
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implementing their precedence.

PPrule-listy = rulelistcat( PPrule-listy, ASF-RULES)

[PpAsf-0]

The PpSdf function is analogous to PpAsf.

PPrule-list; = rulelistcat{ PPrule-listy, SDF-RULES)
[PpSd£-0]

PpAsf(PPrule-listy. AT) = DoPpATerm(PPrule-list;. PPrule-listy, AT)

PpSdf( PPrule-listy. AT) = DoPpATerm(PPrule-listy, PPrule-list;, AT)

{PpATerm-0] PpATerm(PPrule-list, AT) = DoPpATerm(PPrule-list, PPrule-list, AT)

The function DoPpATerm is the heart of the prettyprinter. It has two copies of
the rule-list. The second copy of the rule-list only contains the rules that haven’t
been used yet in the current rewriting process. The first copy contains all the
rules in the system. When a rewriting operation is succesful, the full list of rules
must be applied on the children of the to-be-rewritten ATerm. DoPpATerm
takes the list of rules, and tries to match the current rule to the current ATerm.
If succesful, the match-function returns a list of 0 or more bindings. These
sub-ATerms are recursively rewritten and substituted in the box-part of the
rule. The box, with all its holes filled with (recursively) rewritten ATerms,
is the end result of the PpAsFix module. Note that the substitute-function
recursively calls DoPpAsFix. Therefore, it needs the full list of rewriting rules
(in SystemRules). This complete list is then passed on to DoPpAsFix during
the recursive call, assuring all rules in the system can be applied on all levels of
recursion.

M = match(AT,, AT),

M # NoMatch
[DoPpATerm-0]

DoPpATerm(SystemRules, < ATy, By >; PPrule-list , AT) =
substitute( SystemRules, M) in By

If the match between rule and ATerm fails (i.e, a NoMatch result), then the
?offending” rule is removed from the list of untried rules. Then the system
tries to match the ATerm to the next rule, using a recursive call. Note that
"SystemRules” is the list of rules that remains intact, so that it may pass on its
information to later generations, whereas “PPrule-list1” is the list of rules that
haven’t been tried yet. This latter list constantly shrinks during the rewriting
of an ATerm.

M = match(ATy, AT),
M = NoMatch

DoPpATerm-1
IDoPPATertn ] b p A Term(SystemRules, < ATy, Bo >; PPruleclist, AT) =

DoPpATerm(SystemRules, PPrule-list, AT)
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AT = [["CfFunction" ["CfElems" AT;]; ["Sort" AT]; ["Attribute
AT, # nil

DoPpATerm-2
[DoPpATerm-2] DoPpATerm(SystemRules, PPrule-list, AT) =

DoPpATerm(SystemRules, PPrule-list, prep(AT))

The equations DoPpATerm-4 to DoPpATerm-8 are the so-called "hard-specified
default rules”. (This prevents confusion with the built-in rules for rewriting ASF
and SDF, since these are also sometimes referred to as ”default rules”). These
rules are used when no single rule has matched the current ATerm.

[DoPpATerm-4] DoPpATerm(SystemRules, . L) = L2S(L)

[DoPpATerm-5] DoPpATerm(SystemRules, , [ATo AT1))
= V [DoPpATerm(SystemRules, SystemRules, AT,)
DoPpATerm(SystemRules, SystemRules, AT)]

[DoPpATerm-6] DoPpATerm(SystemRules, , ATo; ATy)
= LST[DoPpATerm(SystemRules, SystemRules, ATp)
DoPpATerm(SystemRules, SystemRules, AT)]

[DoPpATerm-7] DoPpATerm(SystemRules, , nil) =H{
[DoPpATerm-8) DoPpATerm(SystemRules, . ATy / AT,) = DoPpATerm(SystemRules.

The substitute-function is rather straightforward. Note the difference between
"substitute” and ”listsubstitute”. "substitute” results in a BOX. whereas ”list-
substitute” results in a BOX-LIST. The substitute-function descends in a box,
keeping in memory the set of rewriting rules and the to-be-substituted MatchRe-
sult. With an EmptyMatch result, of course, there is nothing to substitute in
the first place.

[substitute-0] substitute(SystemRules, EmptyMatch) in B= B

When a hole is found, the corresponding binding is found, prettyprinted, and
substituted. '

[substitute-1] substitute(SystemRules, M) in [Int] = PpATerm(SystemRules, lookup Int

Substitution in a string is substituting in a box without holes - there’s nowhere
to substitute something in.

[substitute-2] substitute(SystemRules, M) in String = String

The remainder of substitution functions implements the descent into the box-
expression.

[substitute-3] substitute(SystemRules, M) in H so*[Bl]
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= H so*[listsubstitute(SystemRules, M) in Bl]

[substitute-4] substitute(SystemRules, M) in V so*[Bl]
= V so*[listsubstitute(SystemRules, M) in B}

[substitute-5] substitute(SystemRules, M) in HV so*[Bl]
= HV so*[listsubstitute(SystemRules, M) in Bl]

[substitute-6] substitute(SystemRules, M) in HOV so*[Bl]
= HOV so*[listsubstitute(SystemRules, M) in Bl;]

[substitute-7] substitute(SystemRules, M) in I so*[B]
= I so*[substitute(SystemRules, M) in B]

[substitute-8] substitute(SystemRules, M) in WD[B]
= WD/substitute(SystemRules, M) in B]

[substitute-9] substitute(SystemRules, M) in f{B]
= flsubstitute(SystemRules, M) in B]

[substitute-10] substitute(SystemRules, M) in R[B}]
= R[listsubstitute(SystemRules, M) in Bl;]

[substitute-11] substitute(SystemRules, M) in A (ao*) so*[Bl]
= A (ao0*) so*[listsubstitute(SystemRules, M) in Bl,]

[substitute-12] substitute(SystemRules, M) in LST[B}]
= LST[listsubstitute(SystemRules, M) in Bl]

[substitute-13] substitute(SystemRules, M) in O so*[Bp String B,]
= O so*[substitute(SystemRules, M) in By
String
substitute(SystemRules, M) in Bs]

[substitute-14] substitute(SystemRules, M) in SEP-1[B Bl
= SEP-I[substitute(SystemRules, M) in B
listsubstitute(SystemRules, M) in Bl

fsubstitute-15} substitute(SystemRules, M) in SEP-A[B BI|
= SEP-A[substitute(SystemRules, M) in B
listsubstitute( SystemRules, M) in Bl

[substitute-16] substitute(SystemRules, M) in A-SEP[B Bl
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= A-SEP[substitute(SystemRules, M) in B
listsubstitute( SystemRules, M) in Bl

An empty list has no holes to substitute anything in. Therefore substituting in
an empty list yields an empty list.

[listsubstitute-1] listsubstitute(SystemRules, M) in =

Substituting in a non-empty list goes step by step: substitute in the head of the
list, then substitute in the tail.

[listsubstitute-2] listsubstitute( SystemRules, M) in B B*
= substitute(SystemRules, M) in B +- listsubstitute(SystemRules, M) in B~

The function "lookup” yields binding Int from MatchResult M, provided the
pretty-print rules were correct.

{lookup-0] lookup Intin (Int. AT)O M = AT

Int # Inty
lookup Intin (Int;, AT)O M = lookup Intin M

[lookup-1]

Note that equation lookup-2 only occurs when your rules weren’t correct.
[lookup-2] lookup Int in = ["PP-error" "Unknown,nonterminal"]

L2S translates a literal into a string. The trick that was used works only on
functions defined in the lexical syntax. That’s why we use ”"box-str-con” instead
of "box-string” or ”string”.

[L2S-0] L2S(literal(""" ¢* """)) = box-str-con(""" ¢* """)

B.6 Match

imports ATerms Box-Ints Rules
exports
sorts MatchResult Binding
context-free syntax
“match” *(" ATerm “.” ATerm “)” — MatchResult

“NoMatch” ~» Binding
“EmptyMatch” — Binding
“(™ BOX-INT «,” ATerm “)” -+ Binding
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{Binding “O” }* — MatchResult
variables
“Bind”[0-9)* — Binding
“M™[0-9* — {Binding “O”}=
hiddens
context-free syntax
“matchcat” “(” MatchResult “,” MatchResult “)” — MatchResult
equations
The purpose of module "Match” is to find out if an ATerm and an " ACon-
text” match. Two ATerms match when they are the same modulo instantiating
nonterminals. The result of the matching operation is a list those ATerms that
correspond to nonterminals. This may be an empty list (EmptyMatch), a single
ATerm, or a list of ATerms (injected in the sort ”Binding”) separated by "0O”
(capital "0”) symbols. Alternatively, if the matching process fails, it returns
NoMatch. All of the above values are injected in the sort MatchResult. The
following rule binds a nonterminal to an ATerm. Note that the Match- Result
still has to keep track of the numberof the nonterminal.

[match-0] match(N[Int], T) = (Int, T)

The following two rules are trivial: two equal ATerms without nonterminals
match, but don’t have bindings.

[match-1] match(L, L) = EmptyMatch

[match-2] match(nil, nil} = EmptyMatch

The following three rules follow the same pattern. Note how the NoMatch result
is propagated. If the lower levels have returned NoMatch, then the higher levels
won’t pass the conditions for further matching. Thus, the default rule remains
the only rule that can be applied to a pair of matches with one or more NoMatch
results. The default rule, however, yields NoMatch. Thus the NoMatch result
is propagated to a higher level.

M match( T, Tg),
M, match( T, T4),
M, NoMatch,
M, # NoMatch

match(Ty; Tz, T3; T4) = matchcat(M;, Mz)

It

[match-3]

M, = match(T, T3),
M, = ma,tch(Tg, T4),
M; # NoMatch,
M, # NoMatch

match([T) T»], [T5 T4]) = matchcat(M;, Ms)

[match-4]
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M1 = match( Tl, Tg),
My = rnat,ch( T5. T4),
M; # NoMatch,
M, # NoMatch

match(T) / Ty, T3 / Ty) = matchcat(Ml, M>)

[match-5)

[match] match(Ty, T1) = NoMatch otherwise

We are now ready to witness the non-propagation of EmptyMatch results. We
have seen above that non-leaf ATerms always call "matchcat()” for combining
their MatchResults. We have also seen that these MatchResults, when match-
cat() is called, can no longer be NoMatches. Now there are four possibilities:
(a) neither the left nor the right MatchResult is an EmptyMatch.

M; # EmptyMatch,
M, # EmptyMatch

matchcat(M,, M) = MO M,

[matchcat-0]

(b) The right MatchResult is an EmptyMatch.
[matchcat-1] matchcat(M, EmptyMatch) = M
(c) The left MatchResult is an EmptyMatch.
[matchcat-2] matchcat(EmptyMatch, M) = M

(d) Both MatchResults are EmptyMatch. In this case. we want matchcat()
to return a single EmptyMatch. Both equation [matchcat-1] and equation
[matchcat-2] will do just that when they must rewrite "matchcat(EmptyMatch,
EmptyMatch)”. This is why neither [matchcat-1] nor [matchcat-2] has condi-
tions concerning the value of M.

B.7 Holes

Holes
imports Box Alignments Fonts Over
exports
context-free syntax
“" BOX-INT «] — BOX
“closed-boxterm” “(” BOX “)” - BOX-BOOL
“closed-boxterm” “(” BOX-LIST ¢)” - BOX-BOOL
hiddens
variables

“B”[0-9'1* — BOX



“BI[0-9']+ — BOX-LIST
“Bx"[0-9'1x — BOXx

equations

[cb-1] closed-boxterm([Int]) = false

[cb-2] closed-boxterm(String) = true

[cb-3] closed-boxterm(H so*[Bl]) = closed-boxterm(BI)
[cb-4] closed-boxterm(V so*[Bl]) = closed-boxterm(BI)
[cb-5] closed-boxterm(HV so*[BI]) = closed-boxterm(BI)
[cb-6] closed-boxterm(HOV so*[Bl]) = closed-boxterm(Bl)
[eb-7] closed-boxterm(I so*[B]) = closed-boxterm(B)
[cb-8] closed-boxterm(WD[B]) = closed-boxterm(B)
[cb-9] closed-boxterm(f[B]) = closed-boxterm(B)
[cb-10] closed-boxterm(R[Bl) = closed-boxterm(BI)
[cb-11] closed-boxterm(A (ao™) so*[Bl]) = closed-boxterm(BI)

[cb-12] closed-boxterm(LST[B{) = closed-boxterm(BI)
[cb-13] closed-boxterm(O so*[By String Bs]) = closed-boxterm(Bo) & closed-boxterm(Bs)

Bl = BB*
closed-boxterm(Bl) = closed-boxterm(B) & closed-boxterm(B*)

[cb-20]

Bl =
closed-boxterm(Bl) = true

{eb-21]

B.8 PrepCf

PrepCf
imports Rules Box-Booleans
exports
context-free syntax
“prep” “(” ATerm “)” — ATerm
hiddens
context-free syntax
“prepare” “{” ATerm “with” ATerm “)” — ATerm
“is-list™ (" ATerm *)” - BOX-BOOL
variables
“L"[0-9']x — Literal
“T"[0-9"1%« — ATerm
equations

[prep-1] prep([["CfFunction" ["CfElems" Ti]; ["Sort" Ty]; ["Attributes” T3] Ty])
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= [["CfFunction" ["CfElems" prepare(T; with Tj)]; ["Sort" Ts]; ["Attributes"” T3] nil]

[prep-2] prep(L) =1L
[prep-3] prep(To; T1) = prep(To); prep(Ty)
[prep-4] prep(nil) = nil

[prep-5] prep(To / T1) = prep(Ty) / prep(T1)
[prep-6] prep([To T1]) = [prep(To) prep(Ti)] otherwise

Note that "prepare (["Sort” T1] with T3;T4) = T3;T4” has the same pattern
as [prepare-1]. So whether T3 = T4;T5 or not, the result remains the same in
[prepare-1].

[prepare-1] prepare(["Sort" T)] with T3) =T;
[prepare-2] prepare(["Soxt" T]; T, with T3; T4) = T3; prepare(T, with Ty)

is-list(73) = false
prepare(["Sort" Ti}; Tp with T3) = T3; T»

[prepare-3]

For [prepare-4]. same reasoning as for [prepare-1].
[prepare-4] prepare(["Iter" T;] with T3) =1T3
[prepare-5] prepare(["Iter" T]; T, with T3; T4) = Ts; prepare(T> with Ty)

is-list(T3) = false
prepare(["Iter" Ti}; Tp with T3) = T3; T»

[prepare-6]

[prepare-7] prepare( T1; T with Ts) = T); prepare(T> with T3) otherwise
{prepare-8] prepare( T} ‘with nil) = T, otherwise

[is-tist-0] is-list(To; T1) = true
[is-list-1] is-list( T) = false otherwise

B.9 SepBox

imports Box Holes
exports
context-free syntax
“SEP-I” “[" BOX BOX-LIST “” — BOX
“SEP-A" “[” BOX BOX-LIST " — BOX

61



“A-SEP” “[* BOX BOX-LIST “” - BOX

hiddens
variables

“separator” — BOX

“B”[0-91+ — BOX

“Bx"[0-9* — BOXx
equations

The following rewritings transform a SEP-box into a LST-box. However the

boxes within the SEP-box must be closed terms, or the following problem may
occur: SEP-I[”,” [1]] - [1] We get [1], instead of a list bound to [1]. Only
when the binding is fulfilled we are allowed to do rewriting. Since SEP is an
expansion of BOX, we must first define closed SEP-boxes. This will also help
us prevent the undesired rewriting mentioned above.

[cb-14] closed-boxterm(SEP-I[B B*]) = closed-boxterm(B) & closed-boxterm(B*)
[cb-15] closed-boxterm(SEP-A[B B*]) = closed-boxterm(B) & closed-boxterm(B*)
[cb-16] closed-boxterm(A-SEP[B B*]) = closed-boxterm(B) & closed-boxterm(B*)

Equations for the Insert-Separator, SEP-I Notice that an empty box-term is
automatically closed.

B* =

1-0 —
fsep-0] SEP-1[separator B*] =
B™ = B,
closed-boxterm(B) = true
[sepI-1] :
SEP-I[separator B*] = B
B* = B Bj,
By #,
closed-boxterm(B B]) = true
[sepl-2]

SEP-1[separator B*] = LST(B separator SEP-I[separator Bj]]

Equations for the post-append separator, SEP-A Once again, an empty box-
term is always closed.

BT =
SEP-A[separator B*] =

[sepA-0]

Note that SEP-A yields just "B” for a singleton list, not "B separator” - there
is nothing to SEPARATE.
B* = B,
closed-boxterm(B) = true
[sepA-1] -
SEP-A[separator B*] = B
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B* = BB,

B #

closed-boxterm(B B;) = true

SEP-Al[separator B*] = LST[H B separator] SEP-A[separator Bi]|

[sepA-2]

Equations for the pre-separator A-SEP. See comment at [sepA-1] and [sepI-1].

B* =

Asep-
[Asep-0] A-SEP[separator B*] =

See comment at [sepA-1].

B* = B,
(Asep-1 closed-boxterm(B) = true
>l SEP[separator B] = B
B* = B Bj,
By # ,
closed-boxterm(B By) = true

Asep-2
[Asep-2] A-SEP|[separator B*] = LST[H [B separator] A-SEP[separator Bj]]

B.10 AsfRules

AsfRules
imports Rules Fonts Over SepBox
exports
context-free syntax
“ASF-RULES” — PPrule-list

equations

Below are the built-in rules for prettyprinting ASF. They are translated from
dr. van den Brands module "PpEqs” as far as possible. Unfortunately, there is
no perfect correspondence.

[asfrules] ASF-RULES
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= < ["Modue" N[oJ; N{1J; N[zJ; N[3]; N{4]; N{sll, V [s]] >;
<nil, H[] >;
< ["PrefixEquations” nil], H [| >;
< ["PrefixEquations" N[0]], V vs = 2[KW["equations"] I [V vs = 2[[0]]]] >
< ["CondEquation” "Implies"; N[0]; N[1]; N[2]; ["Conditions" nil],
H [*[* [o] "1 BV [H [HV [[1]] "="] BV is = Off2]] >
< ["CondEquation” "Implies"; N[0]; N[1]; N[2]; ["Conditions" N[3]]],
H ["[" [0] "]" O [HOV [SEP-A["," [3]]] "=" HV [H [HV [[1]] "="] HV is = 0[[2]]]}] >;
< ["CondEquation" "When"; N[0]; N[1]; N[2]; ["Conditions" N[3]]],
H["["[0] "1" HOV [HV [H [HV [[1]] "="] HV is = 0[[2]]
KW(["when"] HV [SEP-A["," [3]]]]]] >;
< [["CfFunction” ["CfElems" N[0]}; ["Sort" N[1]}; [*Attributes" N[2]]] N[3]], [0] >;
< ["Sort"™ NJ[0]], [0] >
< [["Iter" N[0]; N[1 ] N{5]] nil], H [] >;
< [["Iter" N[0]; ""; N[5]] N[2]; N[3]], LST{[2] [3]] >;
< [[*Ttex" N[0 ["qLit” N[1]; N{s]] N[3]], SEP-I[[1] [3]] >
< [["Tvex™ N{oj; N[1J; N[s]] N{21}, (2] >;
< ["Var" N[0]; N[1}}, {0] >
< ["Lex" N[0]; ["Sort" "BOX-STR-CON"]], H hs = O[dquote [0] dquote] >;
["Lex" NoJ; N[, [0] >
["MetaVar" N[0]; N[1]], [0] >;
["Condition" "Eq"; N[0]; N[1]], H [HV [[0]] "=" HV [[1]]] >;
%"Condltlon" "Neq"; N[0]; N[1]], H [HV [[0]] "t="HV [[1]]] >;

<
<
<
<
< ["qLit" N[0]], [0] >

B.11 SdfRules

SdfRules
imports Rules Fonts Alignments SepBox
exports
context-free syntax
“SDF-RULES” — PPrule-list

equations

The rules below are the translation of dr. van den Brands ’ *PpSyn” module
for prettyprinting SDF. Once again there is no perfect correspondence between
these rules and "PpSyn”.

[sdfrules] SDF-RULES
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= < ["Module" N[0]; N[1]; N[2]; N[3]; N[4]; N[5]], V [H [KW[*"Module"] [0]] [3]] >;

<nil,H[]>:
N[o] / N[1], [0] >;

[’Prefleyntax N{o]], 0] >;
< ["Imports" N[0]], H [KW["imports"] HV is = 0[[0]]] >;
< ["Exports" N[0]], V [KW["exports"] I [V [[0]]] >;
< ["Hiddens" N[0]], V [KW["hiddens"] I [V [[0]]] >;
< ["Sort" N[O}, {0] >;
< [*1a" NJoJ, 0] >;

< ["QLit" N[0]], H hs = O[[0]] >;
< "left", KW["left"] >;
< "right", KW["right"] >;
< "non-assoc", KW["non-assoc"] >;
< "assoc", KW["assoc"] >;
< "bracket", KW["bracket"] >:
< ["CharClass" N[0]]. [0] >:
< ["Neg" N[0]}, H hs = 0["~" [0]] >;
< ["Iter" N[0]; ""; "], H hs = O[[0] "*"] >;
[I Iter™ N[O}, ||n; u+u], Hhs = O{[O] n+n] >: .
< ["Iter” N[0]; ["QLit" N[1]]; "*"], H hs = O["{" H [[0] dquote [1] dquote] "}" "="] >;
< ["Iter" N[0]; ["QLit" N[1]]; "+"], H hs = O["{" [[O] dquote {1 ]dquote] B3] >
< ["sorts" N[0]}, H [KW["sorts"] HV is = 0[[0]]] >
<
< ["ContextFreeSyntax" N[0]],
V [H [KW["context- free"] KW["syntax"]] I[A (1,¢c,1) [[0]]]] >;
< ["Priorities" N[0]}, V [KW["priorities"] I [V [SEP-I["," [O]]]]] >;
< ["Variables" N[0]], V ["" KW["variables"]| I [A (1, ¢, 1) [[0]]]] >
< ["CfElems" nil], "" >
["CfElems" N[0]], [0] >;
["LexElems" N[0]], [0] >;
["LexIter" N[0]; "*+"], H hs = 0[[0] "*"] >;
["LexIter" N[0]; "+"], H hs = 0[[0] "+"] >;
["IncrChain” ["FunctionList" N[0]; N[1 ]]]
Hhs = 0["{" KW[[0]] ":" SEP-A["," [1]] "}"] >;
< ["IncrChain" N[0]; N[l]],

V [SEP-A["<" LST{[0] [1]]]] >;
< ["DecrChain" ["FunctionList" N[0]; N[1]]],
H hs = O["{" KWJ[0]] ":" SEP-A["," [1]] "}"] >:

DecrChain" N[0]; N[1 ]]

}]

<
<
<
<
<

<[
V [SEP-A[">" LST[[ 1 (1]
'Functionlist" "*; N[1] =
"FunctionList" \[ ]; N[1]]. H hs
"FunctionList" N[0}], [0] >;
"Abbrevs" N[0]], HV is = O[SEP-I["," [0]]] >;
[

<[ o{" 1] "] >:
< =0["

<

<[t

< ["Abbrev" N[0]; ["Sort" ""] 1 ] HV is = 0[[0]]
<[

<[

<[

I?I hs "]
- € KWIO]) H [ [1]) 3] >

"Abbrev" N| O] N 1] N 0] ESC["->"] [1]] >
'MetaVar" N[O O]] >,
'Lex1ca1Funct10n" N[O] N[1]],

R[H [[0]} ESC["->"] [1]] >;

< ["CfFunction" N[0}; N[1]; ["Attributes" nil]],
R{H [[o]] ESC["->"] [1]] >;

< ["CfFunction” N[ J; N[1]; ["Attributes" N[2]]],
R[H [[0]] ESC["->"] H [[1] H hs = 0["{" SEP-I["," [2]] "}"]]] >;

< ["Variable" N[0]; N[1]],

R[H hs = 0[[0]] ESC["->"] [1]] >

["LexicalSyntax" N[0]], V [H [KW["lexical"] KW["syntax"]] I[AQ,c,1) {0 >:
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