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Abstract

A lot of computation time of chess computers is spent in evaluating leafs of the game tree. Time is 
wasted on bad positions. In this research, a method that predicts the maximum evaluation result of 
sibling chess positions is defined. The idea is to prune brothers of a bad position without information 
loss. 
The resulting algorithm is a forward pruning method on leafs of the game tree, which gives correct 
minimax results. A maximum positional difference of the evaluation function on siblings must be 
correctly measured or assessed for the algorithm to work properly.
The results of this thesis cannot be generalized because of the dependencies on the evaluation function, 
but are intended as a proof of concept and show that it is worthwhile to investigate Sibling Prediction 
Pruning Alpha-Beta in a broader context. 

Organization
The organization of this thesis is as follows. First, a little history and theoretic background about the 
game of chess are provided. Then, an introduction to existing search algorithms is given. After this is 
done, the principles and conditions for the Sibling Prediction Pruning (SPP) Alpha-Beta search 
algorithm are covered. The system and test setup for the investigation of this thesis are described. 
Finally the results are presented and interpreted, followed by the conclusion and future investigation.
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1 Introduction

1.1 Chess computer history
The first chess automaton was created in 1770. It had to contain a human inside to do the thinking... - 
that does however illustrate the point that people have been fascinated by the complexity of the game 
and have been trying to create automated chess. 

The first electro-mechanical device dates back to 1890 and it could play chess end-games with just the 
kings and one rook, the so called KRK end games. 

In terms of computer history, computer chess has a long history. Since the 1940's chess has been in the 
picture of automation and computer science. Much effort was put in developing theory and creation of 
chess programs on early computers. The paper  “Programming a Computer for Playing Chess” by 
Claude Shannon [5] is recognized as a primary basis for todays computer chess theory.

In 1997 a chess computer called Deep Blue defeated chess grandmaster Gary Kasparov. Recently (June 
2005), another super chess computer, Hydra, defeated Micheal Adams with big numbers – the era that 
computers dominate humans in chess has begun.

Many researchers in the field of computer chess argue that chess is seen as the Drosophila of Artificial 
Intelligence, but that in contradiction to the insights that the fruit fly has brought to biology, not much 
progress has been achieved in knowledge of chess for A.I. (Donald Michie [27], Stephen Coles [11]). 
This observation certainly reflects practice, where chess computers get their strength from brute force 
search strategies, rather than specific A.I. techniques. 

Research on chess mainly focuses on two fields. 

– The quest for search efficiency, which resulted in many optimizations to the search algorithms of 
chess computers. This field concentrates mainly on pruning (cutting) branches from the game tree 
for efficient search. Donskoy and Shaeffer argue that it is “unfortunate that computer chess was 
given such a powerful idea so early in its formative stages” [28]. They also note that new ideas, 
where the search is guided by chess knowledge are being investigated – that the research becomes 
more A.I. oriented - again.

– Representing chess knowledge in chess computers. This field concentrates on the evaluation of a 
position on the chess board, in order to differentiate which of given positions is better. Techniques 
used to represent knowledge in the evaluation function of chess computers range from tuning by 
hand, least squares fitting against grandmaster games (used for Deep Thought and later Deep Blue 
[24]), to  Genetic algorithms [2, 3].

1.2 Basics
Chess is a zero-sum, deterministic, finite, complete information game. 

– Zero-sum means that the goals of the competitors are opposite – a win is a loss for the opponent. In 
case of a draw , the sum of the game is zero. Suppose a position could be valued as +10 for one 
player, then the score for its opponent is and must be -10.

– Deterministic means that all possible games are either winning for white,  winning for black, or a 
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draw. 

– Finite, because games cannot not take forever (three repetitions of a position result in a draw, also 
the 25 move rule, where 25 moves occur without a hit or a pawn move is a draw).

– Complete information means that there is no hidden information or uncertainty like in a card game 
such as poker and the game is played in a sequential fashion: both players have the same 
information.

A two player game such as chess, can be represented by a tree. Each node is a position on the board, 
starting at the root with the beginning position of the game. The vertices then are the possible moves, 
leading to the next nodes (positions). This way, every possibility after one move can be generated and 
added to the tree. A game after it has been played can be viewed as a path in the “game tree”.

A single move by black or white is called a ply. A (full) move contains the move from both white and 
black. Sometimes a ply or half move is also called a move; the terminology in the literature is 
inconsistent. 

In the example below a simplified game tree.

It must be stressed that the game tree of chess is actually a directed acyclic graph in the case of chess. 
It is not cyclic because the rules of chess prohibit eternal loops and as a result, each sequential position 
is unique. Because different paths may lead to the same position it is a graph and not a tree. But since 
such a graph can be represented as a tree, it is often referred to as a tree and search methods treat it as 
such. 

1.3 Computer Chess
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Figure 1: Game tree

Root node (starting position), white to move

All possibilities after 1 ply, black to move

Moves can lead to the same position

A final node or leaf. Win loss or draw.



The 1950 paper by Shannon (“Programming a Computer for Playing Chess” [5]) still describes the 
basis of today's chess computers. Since then nothing much has changed in the way computers are 
programmed to play chess. A chess program usually contains three modules that make playing chess 
possible. These are:

– move generator

– evaluation function

– search algorithm

The move generator module is used to recursively generate the (legal) moves and form a game tree. 
The evaluation function assigns a value to the leafs of the tree. The search method finds the path to the 
best position (value) in the tree. Logically, when a winning position is found, the evaluation function 
will return the highest possible number within the system, because it is the best position possible. The 
values for the opponent should be the exact opposite, negated value (zero sum property). All other non 
winning or non final leafs will get a numerical value between these maximum values, assessed by the 
evaluation function. How the search engine uses this information to find a move will be covered in the 
section about search algorithms. 

1.5 Complexity
The term complexity used in this paper's context is to describe the computer time or space that is 
needed to solve a chess problem. Solving a chess problem is searching a forced  sequence of moves 
that leads to the position that is looked for in the problem (usually a win for one of the players).

To get a numerical idea of the search space of a chess problem, a few numbers on chess are presented 
next. An average game situation on a chess board allows 30 legal moves [5]. With a complete 
information game, all possible games that can ever be played can be generated by recursively applying 
the rules of the game. This way, the game-tree can be generated. The root node is the starting position 
of the game. The 20 vertices from this root node, are the first possible moves of the white player (16 
pawn moves plus 4 knight moves). All resulting nodes at the first level of this game tree can be seen as 
the search space when looking 1 ply ahead. 

Looking one ply ahead requires looking at the resulting 30 configurations (average case). 2 plies 
requires another 30 moves per configuration, setting the counter at 30*30 (302 = 900).  For 6 plies 
ahead, the search space will contain 306 = 729.000.000 leafs. 

Taking an average of 30 moves and an average game duration of 40 moves (80 plies) [1], there are 3080 

(14.7*10117) possible chess games. This number is also called the Shannon number, to honor the father 
of computer chess, and usually rounded to 10120. The previous statement that all possible games that 
can ever be played can be generated is practically impossible. Computer processing speed will keep 
growing, but generating 10120 games is practically impossible. This can be argued by taking the smallest 
theoretical measurable time and space, the Planck time and Planck space, which are respectively 10-43 s 
and 1.6*10 -35 m. Suppose a computer could be build with a processors of that size, using that amount of 
time to generate one game. Taking a computer with the size of the earth (~3.5* 1021 m3), this still 
leaves1055 seconds (120-43-22 = 55) for calculation. 

As a result, the statement that because the game is finite all chess problems can be solved in constant 
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time is true, but practically impossible: chess as a whole cannot be solved.

In “Languages and Machines” [12], Sudcamp describes that the complexity of an algorithm is ideally 
described as a function of the input size such that it can be compared to other algorithms in terms of 
“the big O”. In practice, it is hard to define an input size for a chess problem. The board has 8x8 
squares and there are 32 or less pieces on the board. The size of the input as number of pieces on the 
board is not necessarily related to the solution space that has to be explored. There can be a situation 
which occurs in the beginning of the game (bigger input size) that can be solved by only looking one 
move ahead (early mate). In another situation an endgame (small input size) could be at stake, needing 
a lot of foresight to find the solution. 

A better parameter for the input size would the number of plies that define the search space containing 
the solution to the problem. Note that the number of plies needed to find a solution must then be known 
beforehand. 

2 Overview of search algorithms
In this chapter, an overview of existing search algorithms is provided before introducing the new 
method of this thesis. Not all methods are directly relevant for this thesis and these are marked with an 
asterisk (*). All methods are methods that get their efficiency from pruning techniques. SPP-Alpha-
Beta finds its origin here as a pruning technique but is quite different.

As mentioned before, complete information games can be recursively generated in a game tree, as far 
as memory and time allow. Since most final leaves of the tree cannot be reached (some final leaves 
may be seen for short games, or when the game has reached its final stage), complete knowledge of the 
game is impossible. As a result, non final positions must be evaluated to be able to make a choice for a 
move. Positions that are visited by the search algorithm can be evaluated by the evaluation function, 
giving a numerical value to those leafs. The best value of the game tree is the so called minimax value 
of the tree and determines which move (branch) should be picked. 

2.1 Minimax
The goals of the opponents are opposite. Each player will try to maximize its future score, while the 
other will try to minimize that. Players switch turn, so looking ahead means that the players must be 
aware of choices for branches in the tree that the opponents can make. The minimax principle is to 
minimize the maximum of the opponent, maximizing the minimum reachable.

Below a figure of a game tree that is expanded to depth 3, where every leaf has been assigned a value 
by the evaluation function. 

Reasoning for the player who has the turn in this position, after 3 plies a value of 9 is the best position. 
However, after a choice for the left branch, his opponent is at turn and will choose the branch that 
leaves a remaining maximum obtainable result of 4. A choice for the right branch turns out to be the 
best, where 7 is the best score that can be obtained by the opponent. Therefore the minimax value of 
this tree is 7. Notice that at even levels (plies) in the tree, the nodes maximize the values of their 
children and at odd levels minimizing is needed.
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A pseudo code example for an algorithm that finds the minimax value in a tree, starting at the board 
position contained in the board ChessBoard object:

// usage for a search to depth 5:
// minimaxValue = minimax(board, 5)
int minimax(ChessBoard board, int depth)
{

return maxLevel(board, depth);
}
int maxLevel(ChessBoard board, int depth) 
{
  int value;
  if(depth == 0 || board.isEnded())
    return evaluate(board);
  board.getMoves();
  int best = -MATE;
  int move; ChessBoard nextBoard;  
  while (board.hasMoreMoves()) 
  {
    move = board.getNextMove();
    nextBoard = board.makeMove(move);
    value = minLevel(nextBoard, depth-1);
    if(value > best) 
      best = value;
  }
  return best;
}
int minLevel(ChessBoard board, int depth) 
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Figure 2: Minimax
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{
  int value;
  if(depth == 0 || board.isEnded())
    return evaluate(board);
  board.getMoves();
  int best = MATE;
  int move; ChessBoard nextBoard;  
  while (board.hasMoreMoves()) 
  {
    move = board.getNextMove();
    nextBoard = board.makeMove(move);
    value = maxLevel(nextBoard, depth-1);
    if(value < best) 
      best = value;
  }
  return best;
}

Pseudo source code for the minimax algorithm

The complexity of minimax is directly proportional to the search space of size Wd, where W is the 
width of the tree and d the depth. The algorithm will visit every node – not only the leaves - so the 
number of nodes visited will be W(d+1). But the evaluation function will be the method consuming the 
most time and only works on the leaves, so visiting the nodes can be ignored. Using the average 
number of moves in chess, it can be formulated as: 

tc d =30d tcevaluation=O 30d

Here, tc stands for time complexity. Note that tcevaluation may be dependent on the position it evaluates (a 
more complex a position may take longer to evaluate), so this number changes during a game.

A lot of time can be saved by using smarter search algorithms such as alpha-beta, that do not visit all 
leaves. Methods that will still find the correct minimax value of the tree follow the so called type A 
strategy. Type B strategy algorithms will filter the move alternatives and leave out moves that are 
considered bad moves. This can save enormous amounts of space in the game tree because whole 
branches are discarded (pruned) beforehand. In practice type B strategy solutions produce huge 
blunders because a “bad move” was actually an alternative that should have been considered. Most 
chess programs therefore incorporate a mix of type A and B where only after a “safe” depth a move is 
considered good or bad and will be followed or left out. Note that this strategy like the type B strategy 
does not return the absolute true minimax value of the original tree, but the minimax value of the 
reduced tree. 

The following sections will cover search algorithms by their principle, algorithm (in pseudo code when 
not available in the case study) and complexity (when possible). 

2.2 Alpha-Beta
The majority of search algorithms used by chess computers on game trees make use of or are derived 
from the alpha-beta algorithm. This algorithm is an improvement on minimax. Whereas minimax tests 
all leaves to find the minimax value, alpha-beta prunes leaves that cannot effect the outcome. 
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In the figure below an example of alpha-beta pruning is given. 

Two leafs are cut-off from the search. In the leftmost leafs, 6 is the maximum value. This value is 
propagated to the next level in the direction of the root. In the branch where the 9 is found, the other 
leafs cannot influence the outcome of the minimum between 6 and 9 (Any value giving a bigger 
maximum than 9 will never be smaller than 6).

The algorithm uses a lower and upper bound (alpha and beta) to be able to prune branches that are 
outside these boundaries. The bounds are initialized at -MATE for the lower bound and +MATE for the 
upper bound – the minimum and maximum values within the algorithm. Every time a maximum value 
smaller than the current upper bound is found, the upper bound is updated with this new value. The 
lower bound is updated with a bigger minimum. At a minimizing level, nodes that have a child with a 
value bigger than the upper bound (the 9 in the example figure) can be pruned. At a maximizing level, 
branches with a value smaller than the lower bound can be pruned. This way, the pruning of leafs and 
branches using the alpha-beta algorithm leaves the minimax value intact.

In the next section about Nega Max a statement about the complexity will be given. 

2.3 Nega Max
Nega max is used to make the implementation of minimax or alpha-beta easier. It does so by making 
use of the following equivalence:
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max{ min {x1, x2, ...}, min {y1, y2...}} = max { - max {-x1, -x2, .. }, - max { -y1, -y2 }}

Here, the x's and y's are the values of leafs of a tree. Therefore his equivalence only holds when the 
evaluation results hold the zero sum property – which is the case with chess.

Instead of having to alternate minimum and maximum, the values only have to be negated from one 
level to the other (negation is the opposite value because of the zero sum property) and taking the 
maximum will do the trick.

Pseudo code for the alpha-beta algorithm using the nega max principle:

// method call with depth 5 and minimum and maximum boundaries
// minimaxValue = alphaBeta(board, 5, -MATE, +MATE)
int alphaBeta(ChessBoard board, int depth, int alpha, int beta) 
{
  int value;
  if(depth == 0 || board.isEnded())
  {
    value = evaluate(board);
    return value;
  }
  board.getOrderedMoves();
  int best = -MATE-1;
  int move; ChessBoard nextBoard;  
  
  while (board.hasMoreMoves()) 
  {
    move = board.getNextMove();
    nextBoard = board.makeMove(move);
    value = -alphaBeta(nextBoard, depth-1,-beta,-alpha);
    if(value > best) 
      best = value;
    if(best > alpha)
      alpha = best;
    if(best >= beta)
      break;
  }
  return best;
}

Pseudo source code for the Alpha-Beta algorithm

It is easy to argue that this algorithm has the same complexity as minimax in the worst case scenario, 
where the minimax value is located in the rightmost branch (when iterating from the left to right) and 
all leaves must be visited. This directly shows the big effect in which order the branches are examined. 
The best case scenario is where only the so called minimal tree is traversed (always the best move 
first). Slagle and Dixon [14] showed that the number of leaves visited by the alpha-beta search (through 
following this minimal tree) must be at least:
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McIllroy then shows that the alpha-beta search on a randomly generated tree, will be 4/3 times faster 
than an exhaustive minimax search [15].

With a move ordering mechanism, a better performance is possible. In practice, the use of the alpha-
beta algorithm will always be in combination with other improvements, such as move ordering and 
transposition table.

2.4 Transposition tables (*)
The mentioned search algorithms all work on trees, while the actual search space is an acyclic graph. 
This means that positions that have already been evaluated may be evaluated more than once. 
Especially in the end-game, a lot of redundancy occurs in the game tree, because of the many ways the 
few pieces around can create the same position. The prior algorithms have no notion of this, and will do 
a completely redundant search from those nodes. Storing previous results in memory makes it possible 
to avoid expensive re-searches by using this so called transposition. At first, this is just introducing 
another problem, because tree size is exponential and storing a position takes up space.

Zobrist [10] introduced a hashing method that makes it possible to store a chess position in a 64 bit 
number. The idea is to use a 3-dimensional array with indexes for piece, color and position, filled with 
random numbers (64 bit). The array could be accessed like:

zobristArray[king][black][e8]

where king, black and e8 are enumerated values in their ranges (0-5 for the six types of pieces, 0-1 for 
black and white, 0-63 for the squares respectively).

A hash key for a chess position can be created by iterating over all pieces on the board and binary 
exclusive or (xor) the hash key (initially 0) with the value from the 3 dimensional array like in the 
example above. Zobrist showed that with a good quality of random numbers, the chance that two chess 
positions would result in the same hash key can be ignored. Another good property of this method, is 
that a new hash key (after a change in a position as the result of a move), can be easily calculated by 
just xor-ing the old value with the old zobristArray value of the piece that is moved, with the new 
zobristArray value of the piece that is moved. This way, the move e2-e4 can be expressed in terms of 
the new hash key like this:

hashKey ^= zobristArray[pawn][white][e2];
hashKey ^= zobristArray[pawn][white][e4];

Because of the reversibility of the xor, this method is guaranteed to give the same result as 
recalculating the hash key completely by the first method. In order to incorporate all chess rules 
properties into the hash key, also extra random values must be used to represent the side to move and 
short and long castling values.

A typical entry in a transposition table would store the hash key together with the value that comes with 
the position. This can be an “exact” value – the value of a leaf in the search space, or the value that 
resulted in a cut-off: an upper bound or a lower bound. Also the depth of the node in the search space 
must be stored, because a transposition at a depth that is smaller than the current search depth is 
worthless.

Transposition table sizes are smaller than the size that is needed to store all 64 bit possible hash keys. 
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Therefore, the index to access a transposition table is found by taking the hash key modulo the size of 
the table or another way to select an index from a hash key to map to the size of the table. 

In practice, using a table where positions are stored on the basis of an index, making the positions 
replaceable works out very well. For bigger search depths, a larger table is needed, otherwise too many 
entries will be re-used and a smaller benefit can be expected. For chess, an efficient size for 
transposition tables, relatively independent of the search depth, is 1024K entries [18]. 

A Pseudo code example of Alpha Beta enhanced with a transposition table:

// method call using depth 5:
// minimax = alphaBetaTT(board, 5, -MATE, +MATE);
// TT stands for Transposition Table
int alphaBetaTT(ChessBoard board, int depth, int alpha, int beta) 
{
  int value;
  TTEntry tte = GetTTEntry(board.getHashKey());
  if(tte != null && tte.depth >= depth)
  {
    if(tte.type == EXACT_VALUE) // stored value is exact
      return tte.value;
    if(tte.type == LOWERBOUND && tte.value > alpha)  
      alpha = tte.value;           // update lowerbound alpha if needed
    else if(tte.type == UPPERBOUND && tte.value < beta)
      beta = tte.value;            // update upperbound beta if needed
    if(alpha >= beta)
      return tte.value;            // if lowerbound surpasses upperbound
  }
  if(depth == 0 || board.isEnded())
  {
    value = evaluate(board);
    if(value <= alpha)            // a lowerbound value
      StoreTTEntry(board.getHashKey(), value, LOWERBOUND, depth);
    else if(value >= beta)         // an upperbound value
      StoreTTEntry(board.getHashKey(), value, UPPERBOUND, depth);
    else                           // a true minimax value
      StoreTTEntry(board.getHashKey(), value, EXACT, depth);
    return value;
  }
  board.getOrderedMoves();
  int best = -MATE-1;
  int move; ChessBoard nextBoard;  
  
  while (board.hasMoreMoves()) 
  {
    move = board.getNextMove();
    nextBoard = board.makeMove(move);
    value = -alphaBetaTT(nextBoard, depth-1,-beta,-alpha);
    if(value > best) 
      best = value;
    if(best > alpha)
      alpha = best;
    if(best >= beta)
      break;
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  }
  if(best <= alpha)            // a lowerbound value
    StoreTTEntry(board.getHashKey(), best, LOWERBOUND, depth);
  else if(best >= beta)         // an upperbound value
    StoreTTEntry(board.getHashKey(), best, UPPERBOUND, depth);
  else                           // a true minimax value
    StoreTTEntry(board.getHashKey(), best, EXACT, depth);
  return best;
}

Pseudo source code for the Alpha-Beta algorithm with Transposition Table

2.5 Aspiration search (*)
Aspiration search uses the alpha-beta principle in an optimistic way, by initializing the alpha and beta 
bounds to a small window around the previous value, typically plus and minus the value of a pawn. If 
the minimax value is within this window, the extra cut-offs pay off well. In the other case a re-search 
needs to be done. A re-search can be done by either using a sliding window by increasing one of the 
two bounds, or setting the bound that failed to + or – MATE. Using the sliding window approach can 
lead to large amounts of re-searches in the case of a mate or when a lot of material is lost or won. The 
cost of a re-search is not a big issue, since the expected value is the result of either material gain/loss or 
even a win/loss. The re-search might then be done with an extra ply. Moreover, this kind of search 
algorithm, where there is a chance that a re-search needs to be done, usually makes use of a memory 
table (transposition table) to cache previous results, making the re-search costs negligible.

Pseudo code with a single re-search in the case of a fail high or fail low:

// call method using depth = 5 and previous value = -3 and window size = 100
// minimax = aspiration(board, 5, -3, 100);
int aspiration(ChessBoard board, int depth, int prevValue, int window)
{
  int value = alphaBetaTT(board, depth, prevValue-window, prevValue+window);
  if(value >= beta)         // fail high
    value = alphaBetaTT(board, depth, value, +MATE);
  else if(value <= alpha)   // fail low
    value = alphaBetaTT(board, depth, -MATE, value);
  return value;
} 

Pseudo source code for the Aspiration algorithm

2.6 Minimal (Null) Window Search / Principle Variation Search (*)
It has been shown that it is cheaper to prove that a subtree is inferior, than to determine its exact value 
[6]. The minimal window search makes use of this property by using the smallest alpha and beta 
window (beta = alpha+1).
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Pseudo code example (with negamax principle, adapted from Marsland [6]):

int PVS(ChessBoard board, int depth, int alpha, int beta)
{
  if(depth == 0 || board.isEnded())
    return evaluate(board)();
  board.getOrderedMoves();
  int move; ChessBoard nextBoard;
  move = board.getNextMove();
  nextBoard = board.makeMove(move);
  int i, temp, value = -PVS(nextBoard, -beta, -alpha, depth-1);  
  while (board.hasMoreMoves()) 
  {
    if(value >= beta)
      return value;
    if(value > alpha)
      alpha = value;
    move = board.getNextMove();
    nextBoard = board.makeMove(move);
    temp =  -PVS(nextBoard, -alpha-1, -alpha, depth-1);
    if(temp > value) // fail high
    {
       // check if temp value within bounds
      if(alpha < temp && temp < beta && depth > 2)
        value = -PVS(-beta, -temp, depth-1);
      }
      else
        value = temp;
  }
}

Pseudo source code for the Principle Variation Search algorithm

2.7 Iterative deepening (*)
Searching every branch of a tree until a certain depth using a depth first strategy is expensive and not 
flexible. E.g, the depth first methodology is not suitable for time-constraints. The algorithm can be 
stopped after a certain time has elapsed, but then possibly a complete branch of the tree is not evaluated 
and a bad result is very likely. Or the algorithm may be finished searching and have spare time that 
could give an advantage when it was used. In order to overcome these limitations another way of 
(selectively) extending the search can be used. This is called iterative deepening or progressive 
deepening, introduced by de Groot [17].

One of the advantages that can be gained by using iterative deepening is that at each level, moves can 
be re-ordered or parameters adjusted depending the current result. Also time limitation for a search can 
be easily implemented without the problems of depth first.

In the example code, adapted from Aske Plaat's website [32], the possibility to adjust a variable 
(firstguess) at each level. Stop the search when the time is up is also demonstrated.
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int iterativeDeepening(ChessBoard board, int depth, int firstguess)
{

for(d = 1; d <= depth; d++)
{

firstguess = searchMethod(board, firstguess, d);
if timeUp() 

break;
}
return firstguess; 

}
Pseudo source code which  uses iterative deepening

2.8 Best first search (*)
As the name of the algorithms suggests, this algorithms will follow the best alternative first. It does so 
by using the iterative deepening method, which gives the possibility to follow the best alternative found 
so far at each level of the tree.

At first, best first search algorithm complexity was different compared to the depth first (alpha-beta) 
algorithms, because they did not use transposition tables. This caused a lot of redundancy when for 
each level the previous search is repeated and continued one level deeper and slow move lists had to be 
used to overcome this problem.  The authors of “SSS* = α-β + TT” [9], show that SSS (a best first 
search algorithm) can be implemented as an alpha-beta algorithm enhanced with a transposition table, 
giving roughly the same time complexity.

2.8.1 SSS*

As mentioned above, alpha-beta can be adapted to behave like a best first search using iterative 
deepening. SSS* uses a null window alpha beta search, with a window starting with upper bound of 
MATE. This window will cause a fail-high, giving a new upper bound. The continuous re-searches are 
fast, because of the transposition table.

The example code is adapted from [9] and should be called from an iterative deepening function 
(replace searchMethod  by alphaBetaSSS in the iterative deepening algorithm of the previous section).

int alphaBetaSSS(ChessBoard board, int depth)
{

int g = MATE;
int w;
do
{

w = g;
g = alphaBetaTT(board, depth, w-1, 1);

}while(g != w);
return g;

}
Pseudo source code for the SSS* algorithm
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2.8.2 MTD(f)

The SSS* algorithms can be extended not only an upper bound, but also a lower bound to change the 
boundaries of the window, as it is being done in aspiration search. Also g can be initialized by the 
previous value of g or another first guess [9]. The algorithm is named MTD(f) because it is Memory 
Table Driven using firstguess.

Example code, again adapted from [9]:

int MTDf(ChessBoard board, int first, int depth)
{
  int g = first, beta;
  int upperbound = +MATE, lowerbound = -MATE;
  do
  {
    if(g == lowerbound)
      beta = g + 1;
    else 
      beta = g;
    g = alphaBetaTT(board, beta - 1, beta, depth);
    if g < beta 
      upperbound = g;
    else 
      lowerbound = g;
  }while(lowerbound < upperbound);
  return g;
}

Pseudo source code for the MTDf algorithm

2.9 Forward pruning
Until now, only safe pruning mechanisms have been discussed. These methods prune leafs or complete 
branches of the search tree without information loss. 

Forward pruning uses pruning mechanisms that prunes before anything about the leafs or branches has 
been actually evaluated. Most forward pruning methods do not return sound minimax values from the 
game tree.

In the standard forward pruning mechanism, moves are ordered and only the best N moves are 
followed. Usually N will be decreased in deeper levels of the tree. This type B strategy method and has 
proved not to be reliable. The major problem is the selectiveness of the search. When a key move at a 
low level in the tree is pruned, a blunder can be the result. Pruning at deeper levels of the tree is called 
razoring and was introduced by Birmingham and Kent in 1977 [22]. This is a widely used method, but 
the same basic problems will remain.

The authors of Risk Management in Game-Tree Pruning [16], discuss important aspects of forward 
pruning regarding risk management, applicability, cost-effectiveness and domain-independency.
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2.9.1 Null Move heuristic (*)

Not making a move can be regarded as the worst thing that could be done in chess. Passing (not making 
a move, a null move) is not allowed in chess, but it is used to find if an alternative should be extended. 
At the level in the tree to decide to extend the search or to prune (usually at depth D-R-1, where D is 
the search depth and R the forward pruning height, usually 2), a so called null move is performed. 
Should the evaluation result of an evaluation of a board after the second move of the opponent be better 
than the upper bound of the search, the upper bound is returned and the the node at which the null 
move was done is pruned. The idea is that the opponent could find a good refutation to an actual move 
anyway, since the result is bigger than beta (the best minimax value possible).
The null move heuristic is not reliable at the final stages of the game, because here so called zugzwang 
positions could apply. A zugzwang position is a position where the player that moves first will loose (if 
they could, they would pass in such a situation).

2.9.2 ProbCut 

ProbCut [20], is based on the idea that the result v' of a shallow search is a rough estimate of the result 
v of a deeper search. This is modeled with the following linear equation:

v=av 'be

Here, e is a normally distributed error variable with mean 0 and standard deviation σ. The variables a, b 
and σ can be computed with linear regression on the search results of thousands of positions [21].
Using this property in Alpha-Beta search, a branch can be pruned if v' gives v >= beta. Where the null 
move heuristic uses a pass to make the shallow search result safer, ProbCut uses the approximated 
value v' to guide a null window search for v. 

Pseudo code adapted from [21]:

// using a probability check depth D, a cut-treshold of T and 
// shallow search depth S
int probCutAlphaBeta(ChessBoard board, int alpha, int beta, int depth)
{
  if(depth == 0 || board.isEnded())
    return evaluate(board);
  if(depth == D)
  {
    int bound;
    bound = round((T * sigma + beta – b) / a);
    // is v >= beta likely?
    if(alphaBeta(board, bound-1, bound, S) >= bound)
      return beta;
    bound = round((-T * sigma + alpha – b) / a);
    // is v <= alpha likely?
    if(alphaBeta(board, bound+1, bound, S) <= bound)
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      return alpha;
  }
  // rest of the alpha-beta algorithm
  ...
}

Pseudo source code for the PrbCut algorithm

2.10 Move ordering (*)
The alpha-beta algorithm complexity is dependent on the order of the moves. Cut-offs occur when 
good moves are followed first. Trying the move that produces the minimax value at each node, 
produces the minimal tree. The worst case results in the same complexity as a minimax search. The 
importance of a good move ordering mechanism is therefore essential. 

2.10.1 Killer heuristic

Ordering moves can be done by using heuristics. Two methods commonly used are described by 
Gillogly, 1972 [23]. First he states that: “since the refutation of a bad move is often a capture, all 
captures are considered first in the tree, starting with the highest valued piece captured”. Secondly: ‘‘If 
a move is a refutation for one line, it may also refute another line, so it should be considered first if it 
appears in the legal move list”. This is done by keeping track of the minimax scores of moves while 
searching. In the next search, the moves with the highest scores will be explored first (when a legal 
move). This high scoring move is called a killer move. Algorithms that implement this idea usually 
store one or two moves per node in the tree and re-order the moves according to these moves. 

2.10.2 Refutation tables

Transposition tables are large, so for systems with restricted memory, there is another way to re-use 
calculated results. A refutation table will hold the path of moves that lead to the minimax value of the 
previous search. For the next search, this “refutation path” will be followed first. This way, the property 
that the refutation of the move has a high probability to be the refutation of the next move is used (the 
second observation from Gillogly in the previous section about the killer heuristic).

2.10.3 History heuristic

Another more general method from Schaeffer [25] is to keep a history table of the moves, that keeps 
track of the number of times a move has been a successful refutation instead of a two move/score pair 
in the case of the killer heuristic. The most frequent moves should be tried first, regardless of the 
current position. This way, the information about the effectiveness of the moves is shared along the 
complete tree, instead of only between nodes at the same level in the tree. 

2.11 Quiescent search
When a search stops at a certain depth, the position reached may contain a situation where a piece is 
about to be captured, a king about to be checked or a pawn about to be promoted. Evaluating such a 
situation gives unreliable results, because the next position may contain a big advantage to the other 

20



player after that capture, check or promotion. On the other hand, “dead” positions – positions that have 
no active moves such as hit, check or promotion, are “relatively quiescent” and give a more reliable 
score. This reliability issue is a consequence of the correlation between the number and quality of the 
pieces and winning the game [30]. In a dead position, the chance that number and quality changes 
(after hit or promotion) is smaller – it might happen after the next move, but not in this position. 
Because the score at a quiescent position is not reliable by this definition, a further continuation of the 
search is needed.

A quiescent search intends to find the moves that complicate a position (there are situations thinkable 
that hit, check or promotion are not the only active moves). Different strategies exist to deal with 
further exploration of the tree because exploring all moves is expensive and search time is limited. A 
common strategy is to only explore all captures in the case of a capture, covering an exchange of 
pieces. Following all quiescent moves until “dead” positions are reached, only reveals a restricted 
future because not all moves are followed. This results in an incomplete (and therefore still incorrect) 
evaluation. But it will result in a more reliable score concerning the number and quality of the pieces 
on the board.

2.12 Horizon effect
The depth at which a search stops, is the horizon of the search. Any continuation that happens after the 
search has stopped is beyond this horizon. It can be seen as a more general case of a quiescent position, 
where danger may be hidden at deeper search depths. A perfectly acceptable result from a certain 
depth, may lead a player into a dangerous branch of the tree, where all nodes behind the horizon lead to 
losing the game.

An example of the horizon effect, from Kaindl [6]:

In the example diagram, it is blacks turn – the search has ended, but a quiescent situation is discovered. 
In order to “save” the queen, even a 10 ply deep search would not rate the queen as lost because yet 
another pawn can be put in the line of the bishops attack. The situation for black is completely lost – 
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even though black has a rook in stead of the white bishop, and more pawns. This shows the horizon 
effect problem, which, in this case could not be solved by an extra quiescent search of 10 plies.

2.13 Diminishing returns
The strength of chess programs is strongly related to the search depth. Experiments show that a 
program playing at depth D+1 will win approximately 80% of games played against the same program 
playing at depth D [1]. 

The point where an additional  ply does not yield better moves is called the diminishing return. In their 
conclusion, the authors of “Diminishing returns for additional search in chess” [1] state that 
diminishing returns for chess can be found, but in order to do so, the length of the games must be 
limited. For lengthy games the high error rate of moves has too much influence (every extra move 
another possibility for an error). They also found that the effect is hidden because it starts at high 
search depths – around 9 plies.

2.14 Search methods measured
The complexity of the above search algorithms is hard to asses mathematically. It has been done for 
minimax and alpha-beta, but these results are not practically usable. Minimax is inefficient and the 
results for alpha-beta have been generated using random numbers in trees, which turns out to be a bad 
comparison to chess trees in practice. As a result, usually Alpha-Beta is used as a reference method 
when the efficiency of a search algorithm is measured. The methods and results of other research will 
be used in this thesis to define the tests for SPP Alpha-Beta. 

A research that is representable in this context is “The History Heuristic and Alpha-Beta Search 
Enhancements in Practice” by Schaeffer [13]. It gives an overview of measurements of experiments on 
a variety of search algorithms. In his research, single and dual enhancements to the alpha-beta 
algorithm are made. In his results, he uses both NBP (node bottom positions, leaves) and NC (node 
count) as a measurement of performance. He argues that these numbers give a good measurement of 
performance, because NC has a good correlation with CPU time, whereas CPU time alone depends too 
much on implementation and platform. Since NBP is a measurement used in other research as well, he 
also provides this number. A summary of his results is given, starting with a list of the enhancements 
used.

– Killer move

– History heuristic

– Aspiration search

– Null move

– Transposition table

– Refutation table

To get a number for the reduction percentage he uses the formula (no = no enhancement, enh = 
enhanced, best = best enhancement):
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reduction=
N no−N enh
N no−N best 

100

As a single enhancement, Null move and Aspiration only contribute to a small improvement on Alpha-
Beta. History heuristic shows a good enhancement until depth 7, where after the number of varieties 
flood the table and show a drop in performance. The improvement of a Transposition table grows with 
the depth, provided that enough memory is available. The Killer move shows a constant improvement 
but smaller than History heuristic.

In combination as a dual enhancement History heuristic and Transposition table shows by far to give 
the best performance, giving a reduction to 99% at high depths, while the others stay behind with 
insignificant numbers. 

History heuristic and Killer move even have a negative influence when they are combined, compared to 
single use of any of the two. This is because both methods have influence on the move ordering and 
disagreeing in some cases, giving a reduction in expected performance.
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3 Sibling Prediction Pruning Alpha-Beta
In An Analysis of Forward Pruning [26], Stephen Smith and Dana Nau conclude that forward pruning 
on minimax trees is most effective when there is a high correlation between sibling values in the tree. 
This thesis explores that idea further for chess, and tries to identify positions that have a high 
correlation in their evaluated values. In this chapter, properties of the evaluation result of sibling 
positions will be discussed. Where these properties can be used is the key to the Sibling Prediction 
Pruning Alpha-Beta algorithm.

In this chapter, the properties of evaluating chess board positions will be discussed. We will focus on 
board positions that originate from the same parent position (siblings). 

Because all positions are the result of a move on the parent position, it is likely that the positions share 
properties because: 

– Only one piece will be re-located (in the case of castling two).

– All other pieces keep their previous locations on the board, except when a piece has been hit. 

In this chapter, the positions under investigation are the positions that are the result of one non hitting, 
non checking and non promoting move, and will be referred to as siblings or sibling positions with 
spatial locality. The reason that the “active” moves are left out is because they can have a big influence 
in the evaluation result of the resulting positions. This will become clear in the next section about the 
evaluation function.

The main question is: how does a move affect the evaluation result of sibling positions. What 
properties are reflected in the evaluation results of positions with spatial locality and when can they be 
used. In order to answer these questions, the evaluation function itself will be analyzed next.

3.1 Evaluation function
For any position under investigation, the evaluation function either returns a final status (win, loss or 
draw), or returns the summation of a weighted feature vector. If the feature exists in the position, it will 
be added with its specified weight to the summation.

In mathematical terms, the result of the evaluation function can be defined as:
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value=∑
i=1

n

wi f i ∣ w∈ℚ , f ∈0,1

In this term, the evaluation function knows n features with their corresponding weights. In the case that 
the feature exists on the board, it is equal to 1 and the weight is added to the sum. In the other case it is 
equal to 0 and the weight has no influence. 

In this thesis, a distinction between the material balance and positional balance of a position is made. 
This is because the weights of the material (piece) features are dominant in most evaluation functions, 
giving possible big differences in evaluations of positions with different material balances. By 
definition, the sibling positions with spatial locality all have the same material balance because hits and 
promotions (moves that have influence on the material balance) are specifically left out.

When comparing two positions, that is, values from an evaluation function, three cases can be 
identified:

1. The material balance is decisive. The material difference is bigger than the positional 
difference. 

2. There is a zero material balance and positional features make the difference. 

3. The difference in positional quality is bigger than the material difference. Some material is 
compensated by a positional advantage.

The three cases are depicted in the following figure.

With an equal material balance, such as in case 2, it is clear that the positional balance is decisive. In 
case 3, the positional balance must count for more than the value of a pawn in order to be different 
from case 1. When the positional balance is bigger than a pawn (the smallest piece in value), it is 
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possible that material will be compensated by position. The distinction of these three cases is made 
because it identifies the importance of the positional balance for siblings with spatial locality.

For sibling positions with spatial locality, the material balance is fixed. If a maximum difference of 
positional features can be found between these siblings, this  can be used as a powerful prediction 
method to predict the maximum value of these siblings. If the positional balance plus this maximum 
positional difference is  less than the best value found so far, all remaining brothers of this position can 
be pruned because they cannot reach a value bigger than the best value found so far.

3.2 Maximum difference
For both material and positional heuristics, a maximum difference between siblings can be identified. 
This is an important property that will be used in the search algorithm. 

For the material part this maximum difference is easy: the highest capture possible. But captures (and 
promotions) are not taken into account. 

Positionally, one (half) move also must have a maximum difference possible between the resulting 
positions. Important here is that captures are ignored because they can have big impact on positional 
properties (a piece with a big positional influence might be hit). The following figure illustrates 
possible values of sibling positions.

The maximum difference must be the result of one piece relocation. As a result of a piece relocation the 
properties on the board change. New features can be created, others may disappear – a new permutation 
of the feature vector will emerge.
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Only one piece is moved and the positional features of other pieces will ensure a certain correlation 
between the evaluation results of the siblings because most features (existing or non-existing) will 
remain unchanged in the feature vector.  

With weights scaled such that they range from 0 to x, in stead of -y ... +y, with x = 2y, the maximum 
theoretical difference between two positions is the result of the two feature vectors, one with all fi  =0, 
the other with all 1's:
0,0,0,.... 0 an d 1,1,1,... 1

Giving a maximum difference of the sum of weights:

∑
i=1

n

wi ∣ 0wix

It is unlikely that the difference in the permutations of the feature vectors result in such a summation 
because of the features of pieces that remain on their positions. Reasoning from the parent position, it is 
possible for any of the features to determine if it will possibly occur in one of its siblings by simply 
evaluating every sibling. The maximum difference between siblings with given parent position can be 
determined: it is the the result of the summation of two siblings that share the least features. Keeping 
track of the features that change from parent to child is a complex and doing this runtime costs 
processing time. It might still be feasible because time is won by pruning bad positions, but for SPP 
another approach is used. 

The approach used in SPP, is to define a maximum positional difference beforehand. This saves 
processing time, but will be less precise. A maximum difference can be found by analyzing the 
evaluation function by hand, checking the effect of a feature that changes due to a move. Another, more 
pragmatic method is to use a test set of positions to automatically search for a maximum difference. 
The positional balance difference of all sibling positions encountered in the search is administrated, 
leaving a maximum difference when the test is finished. 

The maximum difference between two sibling positions depends on the kind of features and weights 
that are used within the evaluation function. It could be possible that for two given positions, one 
evaluation function will give a bigger difference than another evaluation function. 

For this research, an automatic search is done to find a maximum difference beforehand and this 
method will be used further in this thesis. The reason that determining the maximum positional 
difference at runtime is not used is the following: It makes it hard to compare to another algorithm. The 
time spend for prediction cannot be ignored in the results because it depends on the evaluation function 
used, making it extra hard to proof that the algorithm can be more efficient in general. In the general 
case it then must be clear that the calculation time for prediction will be smaller than the time spent in 
evaluating the positions that were pruned. This is not obvious because of implementation dependencies. 
Also, the implementation of an efficient method that determines the maximum difference of siblings 
given a parent position is complex, and scalability in the case of expanding the evaluation function can 
therefore expected to be difficult. The “keep it safe and simple” principle is regarded more promising.

3.3 SPP Alpha-Beta
The maximum positional difference (MPD) between siblings is the property that will be used by SPP 
Alpha-Beta.
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The algorithm is constructed as an ordinary alpha-beta with alpha and beta as lower and upper 
boundaries. Move ordering will ensure that any hits, promotions or checking moves will be evaluated 
first at the deepest level of the tree. This way, the siblings with defined properties remain. If the first of 
these remaining positions gives a score lower than alpha or lower than the best value found so far, a 
check is performed whether any of its brothers can get a value bigger than alpha or the best value. If 
not, all its brothers are pruned. 

In the following figure, 3 leafs that are evaluated are drawn. With a MPD of 7, the remaining siblings 
with spatial locality can be pruned.

In the figure, the first two leafs are the result of a hit, promotion or checking move. The 3rd leaf is the 
first of the remaining siblings with spatial locality properties. The maximum value any of its brothers 
can obtain is lower than the the best value found so far (1+7 < 9). As a result, the leafs with dotted lines 
can be pruned.

A pseudo code example, adapted from the source code used in the experiments:

int SPPAlphaBeta(ChessBoard board, int depth, int alpha, int beta) 
{
  int value = 0;
  if(board.isEnded())
    return evaluate(board); 
  int best = -MATE-1;
  int move; ChessBoard nextBoard;

  board.getOrderedMoves();
  while (board.hasMoreMoves()) 
  {
    move = board.getNextMove();
    nextBoard = board.makeMove(move);
    if(depth == 1)
    {
      // negamax principle: value is negative of evaluation nextBoard
      value = - evaluate(nextBoard);

if(Move.isHIT(move) || Move.isCheck(move) || Move.isPromotion(move))
      {

28

Figure 8: SPP cut-off

9 7 1

Positions with defined 
spatial locality

Positions resulting from 
active moves

SPP (cut-off)



        // active move gets usual treatment
        if(value > best)
          best = value;
      }
      else
      {
        // passive move – sibling with spatial locality
        if(value > best)
          best = value;
        else if((best > value + MPD) || (alpha > value + MPD))
          break;  // prune (break from loop; done)
      }
    }
    else
    {
      value = -SPPAlphaBeta(nextBoard, depth-1,-beta,-alpha);
      if(value > best)
        best = value;
    }
    if(best > alpha)
      alpha = best;
    if(best >= beta)
      break;
  }
  return best;
}

Pseudo source code for the SPP Alpha-Beta algorithm

3.3.1 Correctness

For any method that uses pruning, correctness is at stake, because a position may be pruned that could 
give a different minimax value. With SPP, pruning of mates cannot occur, because checking moves are 
always followed and evaluated first. The other final game status, a draw, may be outside the maximum 
predicted values as it may not be the result of a maximum positional difference, but the result of 
repetition (e.g. 25 move rule). 

A draw may be the result of a passive (non hitting non checking) move and can therefore be one of the 
siblings sharing spatial locality. As a result, it may happen that a draw is pruned, while this is possibly 
a good result. The draws that can be pruned by SPP are draws resulting from repetition or stalemates. A 
draw in material, where none of the sides can win, will be detected because when a certain material 
balance is reached, this is always the result of a hit. 

– For a stalemate, the next search will reveal this final leaf that was pruned in the previous search and 
can probably be avoided when the search depth is not too shallow. The deeper a search, the more 
possibilities remain to avoid the stalemate in the next search.

– For draw due to repetition (3 identical positions due to move repetition or 25 move rule), the draw 
will also be detected in the next search and can be avoided just as it could have been in the previous 
search. In this case, the draw can also be detected by checking the parent position, where the 
repetition counter will yield a possible draw. Then the MPD can then be set such that it will catch 
the draw.

The stalemates need to be investigated further because positionally a stalemate is very close to a normal 
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mate. When the search depth is deep enough, the stalemates will not be a problem, unless a forced 
stalemate combination deeper than the search depth is at stake. These situations will be rare, but the 
user of SPP must be aware of this problem. A possible way to detect the stalemates, may be to keep 
track of the number of possible moves of the opponent in the parent of the parent position. This number 
must be low in the case of a stalemate because after the next move, no moves remain. This is not 
investigated any further for this thesis.

3.4 Expected behavior
In this section the expected behavior of the SPP Alpha-Beta algorithm is described: why it is expected 
to work. The issues will be taken into consideration for the test setup.

It is expected that SPP Alpha-Beta will never be less efficient than Alpha-Beta, because in the worst 
case scenario for SPP, no pruning can be done and the same algorithm as Alpha-Beta is followed.

The algorithm uses forward pruning, which means that correctness of the results is a concern. It is 
expected that when the MPD is correct, the pruning can be done safely without information loss 
because the maximum value of siblings is correctly predicted. Positions can only be pruned without 
information loss if their value does not affect the minimax value. 

Pruning of siblings is expected when the MPD is not too big. Alpha and the best value found so far will 
then have values bigger than the maximum sibling value when examining certain branches in the tree. 
This is expected because chess has the property that only a few moves at the root are good alternatives 
[1], leaving a greater distance than the MPD between the best position found so far and a position in 
another branch. 

The material balance is dominant in evaluation of chess. When comparing siblings of different 
branches of the tree with different material balances, pruning can be expected if the MPD is smaller 
than the value of a pawn (the smallest material imbalance). A MPD is the summation of positional 
features alone: among siblings it is believed that a difference of the value of a pawn is too much. This 
is however dependent on the evaluation function.

3.4.1 Evaluation function and MPD

A small MPD probably causes more pruning used in combination with the same evaluation function 
compared to a big MPD, simply because the possible maximum sibling value is smaller, leaving a 
greater change to be smaller than the best value or alpha. This is made explicit in the following case 
scenario: 
best or alpha = 24
evaluation result of first sibling = 10
MPD <=13: prune brothers
Does another evaluation function with a bigger MPD (>=14) cause less pruning? This is not 
straightforward. Taking the positions of the previous case scenario, the other evaluation function results 
are likely to be different, e.g.:
best or alpha = 30
evaluation result of first sibling = 12
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MPD <= 18: prune brothers
Even though the MPD is bigger, this position still causes pruning when it is smaller than 19. 

The spreading of evaluation results of siblings is depends on the evaluation function. Also the 
overlapping of evaluation results of different positions influences pruning. This is depicted in the 
following figure.

Here, position 1 could be the parent of the siblings containing the best position found so far, and 
position 2 a position which siblings are investigated. For evaluation function 1, it is clear that the 
remaining siblings can be pruned after investigating any of the siblings of position 2. The MPD, or 
rather the overlapping of the results, of evaluation function 2 prevents pruning. 

Not only the size of the MPD, but also the overlapping of evaluation results in different branches of the 
tree is of influence for SPP. This is hard to predict for a given evaluation function.

3.4.1 Move ordering

Another practical issue is the effect of the move ordering on the overall pruning. The move ordering for 
SPP is simple. Killer moves or other heuristics for move ordering can still be used, and they usually 
share hit, check and promotion preference. Apart from that, for non iterative deepening methods, only 
the specific move ordering of checks, hits and promotions first, need to be done at the deepest level of 
the tree. 

Because move ordering plays a role in Alpha-Beta pruning, a fair comparison is hard when the move 
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ordering of the algorithms being compared are different. Since the move ordering is practical and 
overlapping with regular move ordering, this is not considered an issue.

3.4.2 Stacking

It is also expected that the combined (stacked) use of other enhancements such as transposition table 
and or aspiration window will decrease the effect of this method, because these are also pruning 
methods, leaving less positions to prune for SPP which is done at the deepest level. The enhancement 
with transposition table is hard to predict, because it is expected that SPP pruning causes less storage of 
positions and their corresponding values (a pruned leaf is not stored). This might behave contra 
productive because then they compete for pruning.

3.4.3 Balance and material

The best behavior is expected when the game is balanced – the evaluation result of a board position is 
near zero. When a position is materially balanced, a smaller positional imbalance can be expected 
because the opponents features will balance the score. The smaller the positional imbalance, the smaller 
the maximum sibling value can become as a result of the MPD, causing more cut-offs. Also the more 
pieces are on the board, the more pruning can be expected,  in combination with the material balance 
property. With less pieces on the board, the positional influence per piece becomes bigger. The 
positional balance will then fluctuate more, causing less pruning of siblings with spatial locality  
because the maximum sibling value depends on the positional balance.

4 Test setup
The conceptual work has been done and empirical test results must proof if the principle works in 
practice. The chess search space is incomprehensibly big (~10120  leafs on the complete game tree). It 
will be clear that only a small (possibly representable) subset of this search space can be taken to use 
for measurements. 

Somewhat the same kind of problem exists for the evaluation function because the number of features 
and their weights can be endlessly configured.

This thesis is intended as a proof of concept for SPP Alpha-Beta. Therefore, proving correctness of the 
results is the most important objective. Correctness alone is not enough, the efficiency of the SPP 
enhancement must be measured in some way.

As a result of the discussion on the expected behavior in the previous section and the objectives, the 
following considerations are taken for the test setup:

– Which search algorithms are used for comparison.

– Which evaluation function is used. 

– Which positions are used in the test set
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– Correctness of the results

– Which measurements on the algorithm should be taken

– Testing environment & software used

Every item on this list is handled in a separate section of this chapter, starting with the choice for a 
search algorithm.

4.1 Search algorithms for comparison
For this research, the standard Alpha-Beta algorithm is used as the algorithm to compare the other 
algorithms with. It is the base algorithm of many search algorithms including SPP and is therefore a 
good representative for comparing complexity. Also because the obvious reason that it needs to be 
shown that SPP Alpha-Beta is more efficient than Alpha-Beta.

One of the issues in the discussion about the expected behavior applies to the stacking of multiple 
enhancements. As a consequence, also measurements of Alpha-Beta enhanced with transposition table 
and SPP Alpha-Beta with transposition table will be taken and compared.

4.2 Evaluation function dependencies
The results of SPP enhancement to Alpha-Beta depends on the properties of the evaluation function 
because the evaluation function defines the MPD for sibling positions and the best value to beat.

Usually the only dependency of the evaluation function on performance of a search algorithm that 
needs to be considered is execution time (complexity of the evaluation function). The difference 
between SPP Alpha-Beta and Alpha-Beta in execution time for visiting a node is can be neglected 
because it only involves an if statement containing the summation of the evaluation value with the 
MPD to check if it is outside the range of alpha or the best value found so far.

The previous chapter about the expected behavior indicates the dependency on the evaluation function, 
but also that it is not straightforward what kind of relation can be expected between MPD and pruning. 
As a consequence, more evaluation functions could be tested and the differences interpreted. For this 
research, only one evaluation function will be used in the tests. The intention is to proof that SPP 
Alpha-Beta works. 

It will be clear that using an evaluation function that only sums the material value on the board, will 
have a MPD of 0, because no positional features weigh in the sum. The evaluation function taken, must 
therefore have positional features, preferably represented in existing chess programs.

The following features and weights are selected for the evaluation function.

Feature Weight
pawn 100
knight 300
bishop 300
rook 600
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Feature Weight
queen 1000
Center square attacked 2
Square next to opponent king attacked 2
Attacked square 1
Opponent piece attacked 1
Doubled pawn -10
Passed pawn 10
Castled king 10
Early queen -30
Central knight 5
Developed knight 2
Bishop range 2
Rook on 7th rank 10
Rook on open file 10

Most of these features are common and used in chess programs such as CRAFTY [30], gnu-chess [31] 
and Beowulf [4]. 

Features and weights used for end-game evaluation (after gnu-chess [31]).

– King+mating material against king. 150 – value of square opponent king can be mated on. Corner 
squares are 0, center squares up to 48. The evaluation function favors moves that push the opponent 
king to a corner square such that it can be mated.

– A KBNK (king, bishop and knight against king) routine. Weights for positions range from 0 to 70. 

4.3 The test set
The test set contains 16 chess positions. Each position is used as a starting point for the search 
algorithm that is tested. The search algorithm will search the best move for that given position and a 
given search depth, and return the move score pair. Every position will be searched to different search 
depths, ranging from depth 4 to depth 8. Depths 1 to 3 are left out. For the algorithms with 
transposition tables, only depths beyond 4 plies are of interest, because transpositions only occur after 4 
plies.

4.3.1 The positions

The first position is a chess problem that contains a mate in 6 plies. The idea behind this is that when 
picking positions, at least a clear winning position should be taken.

Positions 2 to 13 are positions taken from the Bratko Kopec test set [29]. This is a set of 24 positions, 
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used in much research on evaluation function and search algorithm efficiency [6, 7, 13]. The 12 
selected positions are relatively balanced positions and are taken from just after the opening (openings 
itself are of no interest since these are covered by opening databases in chess computers), in the mid 
and mid to end game phase. The reason that 12 out of 16 positions are taken from the mid game, is 
because at this stage, the most exponentially growing game trees can be observed – where efficiency in 
pruning will pay off well.

Positions 14, 15 and 16 are end-game positions. Position 14 only has the two kings, two bishops and 
one side with more pawns. Position 15 is a KPK, 16 a KRK position. 

The positions are not picked randomly. Intuitively this is not a good characteristic for testing, because 
of favoritism. On the other hand, randomly picking positions form a space of 10120 positions is another 
problem. The Bratko Kopec positions have been designed for testing and have been used as such. The 
added positions (1, 14, 15 and 16) are not expected to behave in favor of SPP.

An overview of the used positions can be found in Appendix B.

4.4 Measurements
In most research on search algorithms, the NBP (node bottom positions) count is used to indicate 
performance, because this measurement usually correlates with execution time [8, 13, 14]. In the 
benchmark for this research, NBP is measured because there is a direct linear relation to execution 
time. Execution time is not a good indication of what to expect on another system because of 
dependencies on implementation and environment. Execution time has only been measured on a single 
system to ensure relation to NBP count. The benchmarks were run as batches on workstations with an 
unknown workload, so execution time has been discarded from the test results.

Node count (NC) is used in other research because it also correlates with execution time. Because SPP 
only occurs at the deepest level of the tree, the algorithm has no influence on NC and is therefore 
omitted.

The efficiency of SPP Alpha-Beta is expected to come from extra pruning at the deepest level of the 
tree. This is why NBP count alone is sufficient for comparison with the other search algorithms. The 
pruning of Alpha-Beta is of influence on SPP, but since it always occurs before SPP, the percentage of 
pruning as a result of SPP can be safely determined. For the comparison between SPP Alpha-Beta with 
transposition table, this is not the case. SPP pruning is expected to result in fewer storage of values in 
the transposition table. In this case, only the pruning percentage can be determined, but not which 
enhancement contributed to it in what scale.

4.5 Correctness
In the case of a forward pruning method, correctness is at stake because pruning is done on non-
investigated leafs. Correctness will be checked by comparing all move score pairs to the standard 
alpha-beta results. The same move ordering for both algorithms is used, so the path through the tree is 
the same. Therefore the results must also be the same. This is not true for all pruning mechanisms, 
where a branch with the same minimax value might be pruned, giving a different move. This is not the 
case with SPP, because pruning only occurs at the deepest level of the tree.
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4.6 Testing environment & software used
The chess application is developed with development platform Eclipse [7], using programming 
language Java. The data structure for the board and pieces is adapted from the source code of gnu-chess 
[31]. The Java source of the application contains 38 classes with a total of 329 methods implemented 
using 5050 NCLOC (non commented lines of code). The code has been organized such that a search 
algorithm is an object, making it run-time configurable which search algorithm is used.

For the benchmark, the so called “ChessProblem” object is used, that contains one of the 16 positions. 
For every depth (from 4 to 9), a vector of 16 ChessProblem objects is iterated, starting the search on 
every ChessProblem and administrating the search result: the move score pair and the number of calls 
to the evaluation function to determine NBP count. The output is tab delimited text, which is imported 
into excel to create diagrams of NBP count and the resulting pruning percentages of the two 
algorithms. The list of move score pairs is compared to the list of the other algorithms to test 
correctness.

The MPD used in SPP has been determined by self play. The program uses a random opening database, 
and 10 different games were played. The MPD turned out to be 70, which is not a surprise when 
looking at the feature-weight table, where 70 is the biggest weight of a feature in certain end-games. 

5 Results
In this chapter, the results of the tests with Alpha-Beta, SPP Alpha-Beta, SPP Alpha-Beta with 
Transposition table and Alpha-Beta with Transposition Table on the test set are presented. 

The results for even and odd depths are presented separately in most cases. It is common practice in 
most publications. This is because a search on odd depths is cheaper than on even depths. The 
incremental cost of growing the tree an additional ply to an odd depth is greater than for an even depth 
for Alpha-Beta based algorithms [6, 13]. 

All diagrams containing measurements from the test are presented in Appendix A, for readability and a 
better overview.

Abbreviations used for the methods:

Abbreviation Method
AB Alpha-Beta
SPP SPP Alpha-Beta
SPPT SPP Alpha-Beta with Transposition Table
ABT Alpha-Beta with Transposition Table

The following convention is used to indicate the percentage of extra pruning of algorithm A1 vs 
algorithm A2: A1/A2. This percentage is calculated as follows:
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100 – NBP A1
NBP  A2

100

Here, NBP(A1) is the NBP count of algorithm A1.

5.1 Exceptional results
This section is used to discuss exceptional results. This is done preliminary to the actual presentation 
and interpretation of the results, because the exceptional results are observed for all depths and all 
algorithms. Exceptional results are observed for positions 14, 15 and 16 of the test set, which are end 
game positions with only a few pieces on the board. 

The NBP count of all algorithms for the selected depths is low for these positions. This is because the 
branching factor of the game tree is relatively low for positions with a few pieces.

Positions 15 and 16 are end game positions where one side only has its king. The other side has one 
extra piece. The consequence is that there are almost no capture possibilities. A king cannot be 
captured, and if the one remaining piece of the opponent is captured, an immediate draw follows. For 
SPP, this means that all siblings have spatial locality and no pruning can be done because the best 
value found so far only differs in positional quality, not in material quality.

Position 14 is an end game that needs a sacrifice to be solved. It turns out that all search depths are too 
shallow to solve the problem. Therefore, any continuation where a piece is lost, is seen as a bad 
continuation. As a result, again, only positional differences in quality can be taken to find the minimax 
value – loosing a lot of SPP. From position 14, also the big difference between searching at on odd or 
even depth can be observed. In this regard, the results of position 14 are not exceptional, but it must be 
noted that at even depths less to no SPP is observed in comparison to odd depth searches. This is 
because the refutation of a move at an odd depth in this particular case will almost always be a capture. 
The number of possibilities of the opponent are limited, but do contain captures.

With the use of a transposition table, positions 14, 15 and 16 also give exceptional results. This is due 
to the fact that when only a few pieces are on the board, the number of transpositions in comparison to 
the branching factor is high. This is normal behavior for transposition table based algorithms.

5.2 Presentation & Interpretation of the results
The results are presented pairwise, comparing the results of two algorithms per case. This is done to 
make it easier to observe the differences in efficiency due to the enhancements. Comparisons are made 
between:

– AB and SPP, in order to find the efficiency of sibling prediction pruning

– AB and ABT, in order to find the pruning effect of a transposition table

– SPPT and SPP, in order to find the effect of transposition table as stacked enhancement 

– SPPT and ABT, to compare with SPPT and SPP to find negative effects
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5.2.1 AB vs SPP

In the results, the NBP count of SPP is always less or equal compared to the NBP count of AB. This 
indicates that SPP is never less efficient than AB. This is an expected result because when the SPP 
algorithm cannot prune, the same instructions as for the AB algorithm are followed. 

In diagram 7 and 8, it can be seen that for positions 15 and 16, SPP has the the same NBP count as AB 
for all depths. The reason that no extra pruning occurs, is explained in the previous section about 
exceptional results.

For even depths, the results give different pruning percentages (diagram 7), in comparison to odd 
depths (diagram 8). This shows the big difference in NBP count for searching on even and odd depths . 
Specially in combination with SPP, where expanding the tree with an active move is much cheaper on 
odd depths. Any hit will cause all its brothers to be pruned because the MPD is smaller than the value 
of a pawn. The resulting pruning percentages for odd depths range between 60% and 85%, except for 
positions 15 and 16. The pruning percentages on even depths are much more spread and lower than on 
odd depths. Chess computers usually use odd depths on Alpha-Beta based search algorithms, because 
this is more efficient. This is observed in other research [6, 13] and is certainly true for SPP. Except for 
the noted positions (15 and 16), the percentages do not fluctuate much on odd depths and are greater 
than on even depths.

The bad pruning percentages for positions 14, 15 and 16 show that there are positions that are not 
suitable for SPP pruning – some only at even depths (14). The effectiveness of SPP for the other 
positions is clearly visible and is between 60% and 80% with speedups between 2.5 and 5 respectively.

5.2.2 ABT vs AB

In order to interpret the difference in NBP for methods SPP and SPPT, AB and ABT are also 
compared. The transposition table enhancement improves over the search depth. This due to the 
caching of the results of transpositions and is also observed in other research [13]. 

In diagram 9, it can be seen that the extra pruning by the use of a transposition table, gives percentages 
that are spread in a range from 13% to 98%. The lower percentages can be observed at depth 4 and the 
high percentages at depth 9. The highest percentages can be seen on positions 14, 15 and 16. These 
positions have more transpositions in relation to their branching factor – as mentioned in the discussion 
of exceptional results. 

5.2.3 SPPT vs SPP

Diagram 10 shows the extra pruning percentage that SPPT has over SPP. The extra pruning from the 
use of the transposition table gets better at higher depths. The diagram shows a similarity to diagram 9 
from ABT vs AB, but percentages are shifted down. At higher depths, the similarity is the greatest, 
while at depth 4 almost no extra efficiency due to the transposition table is shown.

Especially at positions 14, 15 and 16 a lot of transpositions can be expected because of the few pieces 
in these end-game positions. The effectiveness of a transposition table however is much smaller than 
expected when comparing to AB vs ABT. This shows that the algorithms compete for pruning, giving a 
negative effect when used in combination. This effect will be further elaborated in the next section 
about SPPT vs ABT.

38



5.2.4 SPPT vs ABT

For this comparison, just as is done for SPP vs AB, the measurements are presented separately for even 
and odd depths. Diagrams 11 and 12 show the extra pruning percentage of SPPT over ABT for even 
and odd depths respectively. 

The behavior is compared to that of SPP vs AB (diagrams 7 and 8). This is made visible in diagrams 13 
and 14, where the stacked percentages of SPPT/ABT and SPP/AB are drawn. For even depths the 
biggest differences can be observed, whereas for odd depths the stacked percentages are more equal 
(around 50%) for most positions. For positions 14, 15 and 16 the negative effect of combining SPP and 
transposition table is clearly visible. The negative percentages of these positions show the inefficiency 
of SPPT compared to ABT. 

All positive stacked percentages of SPP/AB in diagrams 13 and 14 (where SPP is efficient), are all 
above 50%, which indicates that for all these cases SPP and Transposition Table compete for pruning, 
because the efficiency of SPPT over ABT is smaller. The benefit of combining SPP and Transposition 
Table still pays off for these positions, but for even depths this is less stable. 

5.3 Correctness

The move score pair lists of all used methods are identical. This is expected, because all methods use 
the same move ordering. It can be concluded that there is no information loss in the SPP algorithms for 
the test set used.

6 Conclusions
The proof of concept on SPP is a success. It is a new forward pruning method without information loss 
regarding to the minimax value of the game tree. This is an important property, because information 
loss is the down-side of other forward pruning mechanisms. The efficiency ranges from 1 to 5 times as 
efficient as Alpha-Beta on the test set.

The prediction mechanism depends on the MPD of the evaluation function. As such, it can be stated 
that the MPD contains some of the chess knowledge that is part of the evaluation function and that this 
knowledge is used to guide the search. In that sense, SPP is remotely related to ProbCut, which uses the 
heuristic that a shallow search predicts the evaluation result of a deeper search with a certain 
probability. SPP only predicts evaluation results of passive moves and does so without information 
loss: probability 1. ProbCut has no move selectiveness and cannot guarantee a search without 
information loss. 

SPP enhanced algorithms should be used with odd search depths because the test results clearly show 
more efficiency at odd depths. SPP has been specially designed for the use in chess programs, and uses 
properties such as material dominance from the evaluation function for prediction pruning. SPP can be 
used on other games, but a certain spatial locality in evaluation results must be identified in order for 
the algorithm to work. The efficiency then strongly depends on the distinctiveness of the branches (for 
chess the number of good moves is low, giving excellent pruning perspectives). Efficiency and 
correctness must be shown by testing because for any complex game (such as Chinese chess or another 
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candidate), the behavior is hard to predict.

With the evaluation function chosen and the test set taken, SPP is a good enhancement. Tests with 
different weights must be done to learn more about the method; when to use it and when not to use it. 
Also the dependency on the starting position of the search plays a role. SPP does not work well on end-
game positions because at these positions the evaluation function is tuned for position rather than 
material. It must be concluded that the use of SPP not efficient in all cases. This is not regarded as a 
problem because SPP is most efficient on positions with a high branching factor – the area that benefits 
most from pruning.

The extra enhancement of a transposition table competes for pruning with SPP. On positions where 
SPP does not work, this even gives a negative effect. It is possible however to turn SPP on and off, 
depending on its pruning efficiency. A counter can be used to see if any prediction pruning occurs. 
When this is not the case, SPP can be turned off completely. This may overcome the problem of 
inefficient competition between SPP and transposition table usage. 

SPP can be used as a replacement for ABT on a system with not enough or slow memory, such as a 
mobile phone. As a single enhancement it is more efficient than ABT for positions with a high 
branching factor. 

7 Future investigation
Some interesting questions that have raised during the research are recommendations for future 
exploration.

– Can the MPD be used as a quality measurement for an evaluation function. If it is too big, it might 
be the case that no distinction can be made between different branches of the tree. Apart from the 
fact if that is a good thing or not, the MPD might play a role in the investigation of this matter.

– Is there a linear relation between MPD and the material balance of the parent position? The bigger a 
material difference in a position, the bigger the positional influence? 
MPD = a * [material balance] + b?
Also the number of pieces involved may play a role here, as this is the case in end-games and in 
end games the positional influence of pieces becomes bigger. 

– Is it possible to determine an even more precise MPD whit a ProbCut like methodology? A shallow 
search would identify positional differences to determine the current MPD.

– How does SPP with transposition table perform when SPP can be turned on and off?

Acknowledgments
I would like to thank:

40



Prof. Dr. Paul Klint, my supervisor, for his clear and honest advise.

Drs. Daniel Vis for his proof reading and smart feedback. 

Ir. Rolf Doets for his interest in my work and discussions on the topic.

Last but not least my wife drs. Yanming Tong for her advise and patience.

Abbreviations

AB Alpha-Beta
ABT Alpha-Beta with Transposition Table
KBNK King, bishop and knight against king end game
KPK King and pawn against king end game
KRK King and rook against king end game
MPD Maximum Positional Difference
MTDf Memory Table Driven with first guess
NBP Node Bottom Positions: leafs of a tree
NC Node Count, number of visited nodes in a tree
SPP Sibling Prediction Pruning
SPP Alpha-Beta with Sibling Prediction Pruning
SPPT Sibling Prediction Pruning (Alpha-Beta) with Transposition Table
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Appendix A, Test Results
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Diagram 1: NBP Counts of all methods (logarithmic scale) - depth 4

Diagram 2: NBP Counts of all methods (logarithmic scale) – depth 5
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Diagram 3: NBP Counts of all methods (logarithmic scale) – depth 6

Diagram 4: NBP Counts of all methods (logarithmic scale) – depth 7
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Diagram 5: NBP Counts of all methods (logarithmic scale) – depth 8

Diagram 6: NBP Counts of all methods (logarithmic scale) – depth 9
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Diagram 7: Extra pruning percentage of SPP over AB on even depths

Diagram 8: Extra pruning percentage of SPP over AB on odd depths
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Diagram 9: Extra pruning percentage of ABT  over AB

Diagram 10: Extra pruning percentage of SPPT over SPP



49

Diagram 11: Extra pruning percentage of SPPT over ABT on even depths

Diagram 12: Extra pruning percentage of SPPT over ABT on odd depths
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Diagram 13: Stacked percentages of SPPT/ABT and SPP/AB on even depths (4,6,8)

Diagram 14: Stacked percentages of SPPT/ABT and SPP/AB on odd depths (5,7,9)
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Position 1 Position 2 Position 3

Position 4 Position 5 Position 6

Position 7 Position 8 Position 9
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Position 10 Position 11 Position 12

Position 13 Position 14 Position 15

Position 16
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