Incremental ‘
Parsing

Wouter Pasman, August 1991

Contents

Chapter1 The problem 4
ADSEFACL csvereesisirerrerssesaseseressssessrsossassatstisasssssatsasasansbssssEsssons aseanaresnastansssssassniion 4
Notation and CONVENHONS ...couvremieernrmscuresmceninasssrsssaioasesssasersersnssass 4
Text ANd PATSE tTEES wruerrerisisrsrrnrissectismrisssssmssssssisss st ssana e sisesiees 5
Incremental ParSingoerecsererseerssusserssissnssamriitsssserssisssstsssmssssssssssessasisecs 6
Overview Of the thesis.....cccimimiein et 7

Chapter2 Introduction to incremental parsing 8
Finding a node t0 rePlACE .. rsissens s senss 8
An algorithm for incremental Parsingeorcriusissmmssismmenriissessscenss 9
How hard is CheckFOorTree? ... iisssnisomsnamoesessnmstnssas 11

Chapter 3 Partial solutions for CheckForTree ' 12
The CheckForTree algorithimu. ..o, w12
Some non-partial but eXpensive tests c i 12
Partial testing Without Parsing....oiiimormreermccrinmsstsmmmisssmanssssencsnaisiseies 13

TARA 1.vereereeicirereremcesronsermsssrs st ssseraesbabasesm b an b ou s snpm s nasa e s b bt sres st e s 13
TACA 2eereereeraisrareeressisesesrsssstsstsasssssassersassisossntansseisesansasassonsarastassssansisasines 13
TAEA Bneercserersecsesisrressssssersarmessaressmsmsssssnracssatorsiassssatotsnsasessesearismacasaassass 16
TAEA G evreerseriersererssnssesransrmasorsarmtstsbssasmssssessaassstossasiatsssmssvarmansensrasssssossasase 17
CORCIIISIONS . ccveremnrarrrivereasessresssmasessarorsssstaressassosssssasatsnssssasssntsesnsarssasessnmsiontsasss 17

Chapter4 Bidirectional recognising.......cceeeceere- 18
T T O A UCELOM e cerreraerecasrsnamscriebisresstmsbamersarstssorsnassansssrasnaseassrensossanensarsuatsssansisess 18
A short description of Earley's reCOgMISErccccumississmmimisserssmssseness 18
Adapting Earley fOr SyMMELTY occcimeercimsismmismisismmrsmesssssssenssssssissssssses 19
Recognising with these NOtOMS wocuwiiriuenmmissssrisismscs et 20
An algorithm for Left to Right reCOgnising ... wrcsserrissnssmmiasees 27
Comparison with Earley's algorithim ...t 28

Discussion of the symmetry difference......coisnasineciiies 31
Example of Right to Left reCOgRiSing.......omermismussimminimenessssersaissnisesasseess 31
Chapter 5 Island Parsing 33
I
Adapting the bidirectional recogniser for island recognising....33
The cOMEEXE 1A c.orvvrrreermrrmisirsiimssinasenstsessts s nasass s ssns s snessses 33
USINEG @ CONEEXE SEL rnerunrrusermnmmissssmsssserassnsissrasisssassamsisssenaasitsssssmsssssases 36
Switching the context to the other side.......ovmmimsirmisisenanss 39
Deciding about the reSult e it 42
An algorithm for island recOgRISING.......c.immmmamrisessmssssssusseeses 43
BUilding PATSe fTRES meueresrerissisnrmmmsssssmssssesserrstssserssasssnsassess s sreastens 44
I
Removing useless itemSvuiercscsismsssmnnmuseneraisassseasseeess 45
An invariant for the HemSs ... 47
A solution for removing useless ItemS ..o eenmnisinniisireaisons 47

Incremental removal of useless Hems ..o 48

Chapter 6 An implementation of an Island Parser

Implementation in pseudo-Pascal.....mimimiimnn e 53
A NOLION Of COTTECINESS .uvverrisissatrarsesrnimsansesissenesssssnstssesmssassssssasasasnssnsiatossassens 58
Chapter7 Optimizations 59
Goal Of this CRAPLET...ccvvimremeemsete ettt s sttt araens 59
Alternative ways to make island parsers......onnnnas 59
Relation between Tomita's and OUT ParSer.......irsessenescranins 61
Optimization ideas for our island Parser....c.w i 61
An ImMPLCit CONEEXE.urrrrirrrererrrimsiiisisisiiniins st cassnsnins 62
Efficient parse tree StOTAE.......ccewmceniinisisirrensstnssisasisessssssssesenssennsses 64
Chapter 8 A more efficient implementation ' 66
DEfiNtiONS. csveerrissrsinrrrrrensasssenersmibsmssssssrassessatossesnsssassssitessonsmasasanassisensasassnassase 66
A SPECIICALION....ovrvuereerersereasersorasisssmsns st s 66 .
AN iMPlementation e sttt 68
Chapter 9 An implementation in Lisp 73
LeLisp introduction . senssersesss st er st masscsssssasaees 73
ISIANA PATSEE ..corruirrrmmmrrsrssesrrssiiseesserassimsastbesasmm st st st st saes ettt s st 77
Improved island ParSeT ... strsossas s saness 80
Help fUNCHONS cvovvrvurisssssssmrcrsesstinssrnsnmiissassimmsssssssssssrassssssssams sy st sssassesses 83
Grammar FUNCHONS. ... eiesmerersarmisisiesssnemsstsssrsrssesssstorsrsarasssistsiersrsssassarsrsasssas 83
INARX cervvrrrrnssnsssasorsnrssssarercomsmnssssssarsossssrassssses 85
References 87
88

Colofon...

1 The problem

Abstract

During syntax-directed editing, a text and a corresponding parse tree exist. When the
user makes a change in the text, it is desirable to update the parse tree in an
incremental way, in stead of reparsing the whole text. We will do this by means of an
island parser that allows us to start parsing at any place in the text, and to parse in both
left and right direction until a tree is found that fits into the existing parse tree. The
island parser is presented as an adaption of the Earley parser.

Notation and conventions

In this section, wel will give some definitions that we use.
A terminal is a character in {a..z} followed by an arbitrary sequence of characters, or

the empty sequence &£. For example, 'apple’ and 'aA94$@' are terminals. A
nonterminal is a character in {A..Z}, followed by an arbitrary sequence of characters. 50
'Apple’ is a nonterminal. A symbol can be either a terminal or a nonterminal. Lower

case Greek characters (like o,p,5, excepted & since it is the empty sequence) stand for an
arbitrary sequence of symbols. Two symbols in a sequence are separated by a white
space ('). To avoid confusion, we do not allow spaces in symbols.

For T1 and T3 being terminals, we can concatenate Ty and T3. We write T1-T2. Two

terminals are concatenated by simply sequencing them. For example, golf-club =
golfclub.

1f N is some nonterminal, and ¢ is some sequence of symbols, then 'N z:= ¢ is a rule.
SoP:a=abc,'Su=¢ and 'Apple ::= a51 Apple Bear' are rules. A" I" in a rule has a
special meaning: N == o | B is short for two rules: N = o and N := . A grammaris a
set of rules. For example {5 :==5 8, 5 ::= x, S i=¢) is a grammar.

Assume we have a grammar G. If N is a nonterminal, a,p are arbitrary sequences and
there is a rule N u= g in G, then oo N p = « ¢ f is called a derivation step. Ho=pf=.
= yor o=y then a =" 7. If there is a nonterminal N such that N =" S; .. S, and each §;
is a terminal, then we say that G produces S1-52-..-5n. L(G) is the set of all sequences that
are produced by G.

Example: take G={S :==aMbM,Mu=p | g}.
Now the following holds: 5= aMbM=apbM=>apbq Therefore S =‘apbgq,.
and we say that G produces apbq.

1T would be better, but it seems a nonwritten rule to use 'we'. After all, it is reassuring to know that
someone else has exactly the same ideas.

In each derivation step, one nonterminal is substituted by a sequence of symbols. But
if different nonterminals occur in the same sequence of symbols, it does not matter in
what order these nonterminals are replaced. In the example, we can also make a
derivation S=aMbM = aMbq = apb q. There is no real difference between these
two derivations: in both cases the first M is replaced by p, and the second by q.

The derivation we make to proof that N =" ¢ can be put in a picture called a parse
tree. A parse tree is a (directed) acyclic graph. The direction is implicit downwards. A
node in a parse tree has children. Unlike acyclic graphs, these children are ordered in a
way corresponding to their ordering in the rule. In the pictures, the children are placed
under their parent in order from left to right. Each symbol in a derivation has a
corresponding symbol in the graph. If, in a derivation, S; is substituted by S'1 .. S'n,
then S; gets children 5'1 .. S'n in this oxder.

The parse tree of our example looks as follows (a):

(a)

Each node in such a parse tree has a symbol, called the sort of the node.

Given a grammar G and a sequence of terminals ¢, an algorithm deciding whether
there is an N with N =" ¢ is called a recogniser. If the algorithm returns a parse tree it
is called a parser. If, for some N and o, there are two derivations N =" ¢ with different

parse trees, we say that ¢ is ambiguous.

Text and parse trees

We assume the reader to be familiar with syntax directed editors. In these editors, the
user works with a kind of text editor. The editor knows the grammar the user is
working with, and checks whether the text the user types is correct. For example, if the
used grammar is Pascal, the editor will only allow correct Pascal text to be entered. Of
course, there are moments when this is not possible. For example if the user wants to
type 'begin’, and he types the first 'b' of it, we do not yet have a correct Pascal text.

Usually, syntax directed editors update the parse tree as soon as possible. For example
the Synthesizer Generator and the Generic Syntax-directed Editor ({[DK90}) work in this
way. This can be useful for several reasons:

e The user can be informed as soon as possible about syntax errors in his text.
« It is easy to provide parse tree dependent commands to the user, for example a 'go

to parent node' or a 'pretty print’ command.
e When the text the user typed is needed in a parsed format, the parse tree is directly

available.

Incremental parsing

In most cases, the user edits a smail part of his text. Usually, these small changes have
little effect on the parse tree. For example, when the user changes the statement 'x:=3'
in 'x:=6' in a Pascal editor, only the assignment has to be changed. In a picture, this
looks as follows (a):

Program
Declarations begin Statements end
StAm
Stm Stm

A Stm Stm

Ax

Identifier = Exp
i |

X Natural

!’»4——+6

As we can see in the picture, to correct the tree, only the 3 has to be replaced by a 6. We
do not have to look at the other nodes. However, it is not always as easy as in this

picture. Consider the following example.

(a)

Grammar:
E:=Nat+E | E*Nat | Nat

Natz=0111213141516171819
Note that in this grammar, a * multiplies anything before it with the number directly

following it.

When the + is changed into an * as in
2+3+4+5 > 2+3+4*5

it

the parse tree before the edit looks like (b), and the one after the edits like (c).

E E

~T 2T
Nat + E E * Nat
[T |
2 Nat + E Nat + E 5
| T | T
3 Nat + E 2 Nat + E
| | | |
4 Nat 3 Nat
| |
(b) 5 {0 4

The change of only one character therefore changes the whole tree up to the top node.
In general, the work involved in correcting the parse tree depends on the grammar
and the specific edit actions.

The job of updating the parse tree with as little work as possible is called 'incremental
parsing', and is the subject of this thesis.

Overview of the thesis

In chapter 2, we will give one way of updating the parse tree after an edit action. The
algorithm for correcting the parse tree needs to decide about what is the right place to
do a correction. There are various ways to make this decision. One way to make an
algorithm for deciding it is given in chapter 3. We will show that in general, the
decision is at least as hard as a recogniser. And after all, we need to parse if we found
the place to do a correction. So it seems better to make an island parser doing both jobs
in one time. This is done in chapter 4-6. In chapter 7, we consider some optimizations.

2 Introduction to incremental parsing

Finding a node to replace

Assume that the user of a syntax-directed editor has changed a part of the text. This
text can be found at the leaves of the parse tree. We want to replace at most one node
to correct the parse tree. The reason for this is that although it may be possible to
replace a number of smaller trees, it is not clear to us how an algorithm to do this
should be like. So, we have the following picture (a).

QldTree Higher in the tree

Replacing Node

Lower in the tree
Edited part

(@)

There is always such a replacing node if there is a correct parse tree: the root node.
However, replacing that node means that we have to make a new root node, and this
implies reparsing of the whole text. This is not really incremental parsing. So we
prefer a lower node than the root node.

How do we find the lowest Node that has to be replaced? In general, this is a difficult
problem. We choose for the following solution: Start at a certain node, and try to

replace it. If this fails, try to replace the parent of the node.

N Root

l Changed part I
I Part coveredby N |

(b)

What is a useful start node? Consider picture (b). When the user has changed some
text, the characters he changes correspond to some leaf nodes in the parse tree. The
node we are looking for must at least cover the leaves that are changed. We find this
node by finding the lowest common parent of the leftmost and the rightmost leaf that
has been changed. In the picture, this is N.

If there is no correct parse tree, we can not do the correction step. In stead, we place the
new text as unparsed text under the N node of the old parse tree, just to have the parse
tree correspond with the text. We will have to wait for more corrections until we can
make up the new parse tree. We remember the sort of the old node, because we only
may place trees of that sort at that place in the parse tree without problems. For
example when the user again edits this text, and retypes the old text, we can put back
the old parse tree at the same place.

If the user does a plain insert, without replacing old leaves of the parse tree, we have a
problem with finding the start node. In this case, no leaves have changed, so there is
no common parent node. But for our algorithm, we still need a start node. In a
picture, the problem looks like (c). T1 and T2 is the text under the lowest common
parent node of the leaf directly at the left and right of the insertion point. To choose
Node should be the worst choice, since T3 might be placed under node A, but giving
Node as the edit node would prevent us from replacing A.

Node

Insert T3 here
()

We solve this problem by just taking the parent of the leaf at the left of the edits as the
edit node, node A in the picture. But this can be the wrong choice, if T3 appended to
T2 could make a new B node. In this case, we are parsing text T1 while this could be
avoided by just choosing the other node. But as long as we have no better solution,

this seems the only solution.

An algorithm for incremental parsing

With the ideas of the previous sections in mind, we can give an algorithm for
incremental parsing. We start looking at the lowest node considering only the last edit
action. Previous edit actions have been handled already, and it is useless to hope that
the last edit action will solve the unparsed pieces in the parse tree, since previous edit

10

actions may get important automatically when they get covered during the search for
the node that has to be replaced.

In this specification, we first place the unparsed text in the tree. Thereafter, we try to
remove the unparsed text from the tree.

inc_parse (last edit actiocn)
/* first find the lowest shared parent node of last action */

if only insert has been done in last edit action then

P := parent of the leaf direct at left of insert point
else
1 := leftmost leaf that has been changed in last action
R := rightmost leaf that has been changed in last action
P := lowest common parent of L and R
£fi
Text := the text covered by P

replace P by unparsed Text ¢f the same sort as P
/* and now try to remove the unparsed text from the tree */
loop
C := text covered by P
/* Now decide the allowed sorts at replace point P */

if P=root node

then TopSort := ‘'any' else TopSort := sort of P fi

result := CheckForTree (C, TopSort)

if result=a parse tree

then
replace tree at P by that parse tree
return /* changes inserted in tree */

elseif result = 'failure' or P=root node

then return /* could not make new tree */

£fi

P:=parent of P

end loop

CheckForTree can be described as follows. A sequence of terminals Tp .. Tnisa

substring of L(G) < 3 p,o such that p-T1 .. Tp-o is in L(G). We call p,c invented. If T; ..
T, is in L{G), it is not necessary to invent symbols. TopSort is required nonterminal (in
the parse tree, we can only replace a node by another node with the same top sort).

CheckForTree {(Text,TopSort)
if a parse tree with right TopSort for Text exists

then return that parse tree

elseif Text is not a substring of L{G)
then return 'failure'

else return 'more-context'

fi

The test for 'failure' is needed in the case that the user is editing in a text for which no
parse tree exists. In such cases, we want to stop trying to make a correct parse tree as
soon as possible, and not go on trying parent nodes until we are at the root of the parse

tree. :

In chapter 3, we have separate solutions that can check if we are in a successful, failure
or more-context situation or not. In chapter 4, an integrated solution is presented. The
island parser only needs the context, (the new covered text without the old covered

[PN TN 0B 0T 0 N 0 N 0 0 N 0 BN 0 B 00 N]
1 . B 1

text) and not the whole text to decide about parse trees and failures. Therefore, the
CheckForTree call looks a little different in that case.

How hard is CheckForTree?

With the following algorithm it is shown that the CheckForTree algorithm in general
is as hard as the membership question for context-free grammars (the question is

we G’ with G such a grammar):

is-element-of (w,G) /* decide if weG */
if CheckForTree(w, 'any') is a parse tree
then return ’'accept'
ealse return ’'reject'’
£fi

It is clear that is-element-of returns 'accept’ if w can be parsed starting with the start
nonterminal of G. Furthermore, CheckForTree can never return a parse tree when
this is not the case. In that case, is-element-of returns 'reject’.

11

12

3 Partial solutions for CheckForTree

The CheckForTree algorithm

In this chapter, we present some partial solutions for implementing the
CheckForTree as described in chapter 2. CheckForTree now gets the following form:

CheckForTree (Text, TopSort)
if there is a Test (Text,TopSort)='failurxe'
then return 'failure' f£fi
if there is a Test {Text, TopSort)='more-context'
than return 'more-context' fi
return parse (Text, TopSort}

The strategies to choose a test can differ. It depends a bit on the price {in calculation
time) of the different tests, and their chance to return a useful result. How do our tests

lock like?

Some non-partial but expensive tests

Since CheckForTree has to be certain about the case, as it only can return 'failure’,
'more-context' and a parse tree, we need to do a non-partial test in the case that all
partial tests failed. An obvious test uses the substring parser ([RK90D). This substring
parser makes parse trees given a subsiring of L(G) by inventing context symbols. It does
not seem hard to adapt their substring parser such that it returns information about

the need to invent symbols.

Testsubstring (Text, TopSort)
<Regult, TokensInvented> := substring_parse(Text,TopSort)
if Result=a parse tree then :
if TokensInvented
then return 'more-context'
else return nil /* Correct tree exists */
£i
else return 'failure'

fi

It does not seem very hard to adapt the substring parser such that it returns a tree of
Sort if a normal parse of the text is possible. This way, we do not need to do a normal
parse after the test. if this is done, we can make the following test, which decides in all

cases:

CheckForTree' {(Text,SortTop)
<Result, TokensInvented> := substring~parse(Text,TopSort)

if Result = a parse tree then
if TokensInvented then return 'more-context’

else return Result fi
else return 'failure' f£fi

These tests all are quite expensive in the case that a parse at the root is needed because
of a small change, like in the second example of chapter 1. This is especially the case
since these tests each time reparse the total Text, and do not reuse results from
previous parses. There are two solutions for this:

» Try cheaper tests first, avoiding parse actions.
¢ make a parser that reuses the previous work.

The last solution is worked out in chapter 4-7. We will now consider some examples
of the first solution.

Partial testing without parsing
Ideal

The idea behind the following test is to check whether the nonterminal Sort can
produce all symbols in the Text. If this is the case, a parse might succeed, but we cannot
be sure of this, so we return nil, forcing a parse of the test. If one or more symbols
cannot be produced by the Sort nonterminal, a parse for this nonterminal will fail. But
maybe another nonterminal higher in the parse tree can help.

Testcharclass (Text; Sort)
if set of symbols in Text C ProducedSymbols(Sort)

then return nil /* parse might succeed? */
else return 'more-context' f£fi

ProducedSymbols(Sort) is a set containing all the symbols that Sort can produce:

ProducedSymbols (N) = {S | N =*a 5B }. In the special case that Text only contains
terminals, this set can be restricted to the terminals in it.

Idea 2

Another idea is to check for standard combinations of symbols. For example, an (' is
usually accompanied by a). Caution is needed for example in the if-then and if-then-
else case. The if needs a then, but not an else. But when you see an else, there surely is
an if and a then. For the resulting test, we need a multiset and some operations on it:

A multiset is a kind of set, but elements can occur multiple times. So {1,1,1,1,22} is a
multiset, and it is not equal to {1,2}. The ordering is not important, so it is equal to
{1,1,2,2,1,1}. Furthermore, we have the following operations:

M - x: remove one occurrence of x from M, if there is such an x. Otherwise do nothing.
M + x: add x to M once.

I M | the number of occurrences of x in M. _

M1 A M2 =M with IM |, =min{IM1lx,IM21,) for each x

M1 U M2 =M with IM{,=max(IM1lyx,|M21,) for each x

M1 cM2 < IM1ix< M2y for each x
M1-M2 =M with [Mlx= IM1lx- IM2Ixforeachx(onlypossibleifMZQMl)

13

14

Examples:
2234}-2=1{2,34}
2,2} +2=1{2,2,2}
{1,234} - (1,23} = 4}
(1,2,2,334} - (1,234} ={2,3}
(1,23} n (2,4} = (2}
22,2} n{1,2,2} ={2,2}

12,2234} n{2,23}={2,2,3}

First, we make a multiset for each rule in the grammar. These multisets have to
contain all the terminals in that grammar rule.

Example

syntax of G:
Suz=abScaTd (1)
Su=beTfg 2)
Su=bah (4)
Tu=aube 3)

Now the multisets become:
Mi={a,b,ca,d}
M= (be/fg)
M3= {a,u,be}
My= {b,ah}

These sets intend to express what tokens have to be produced in one nonterminal. If
we want to recognise a nonterminal successfully, all its symbols have to appear in the
text, otherwise it cannot succeed. The idea is to see the text as a symbol multiset SM of
symbols. We try to remove all symbols from SM. If we don't succeed, then it is certain
that the nonterminal can not be produced.

We take a symbol from SM, and check which symbols are accompanied by this
symbol, with the multisets M; to My. Now we strip all these symbols from SM.

Example

Syntax: G as in the previous example.

Text: "abdcafed"” - SM = {a,b,d,c.e,d f,a}
Question: is this text in L(G)?

Approach:
1 Take a symbol from SM, say c.
2 The only set that contains a 'c' is My, therefore remove all symbols that are in

M from SM. This gives SM={e,d f}

3 Take another symbol from the new SM. For example f.

4 The only set that contains an 'f' is Ma.

5 Subtract My from SM. This cannot be done, since not M; c SM. Therefore we
can be sure that "Tabd ca f e d" is not in I(G).

In some cases there are more choices. If we had chosen an 'a’ in step 1, both M1, M3
and My told something about an 'a'. In that case the only thing you can be sure of, is
that a 'b’ is needed, because any of the 3 multisets contain a 'b'. Anyway, it is

important which symbol is chosen from SM. When there is only 1 set containing the
chosen symbol, it's easy, therefore the first check should be for this case. This idea was
used in the example. Difficulties arise when this is not the case, as shown in

the following example.

Text: "aebea” = FM = {a,e,b,ea}
Question: What symboi is the best to choose from FM?
We can choose 3 symbols in this case: a,b and e. What are the consequences?

Chosen symbol Multisets containing M u UM
that symbol:
a 1,4 {ab} {ab,cdh} {c,dh}
b 1,24 {ab} f(ab,cdefgh} {c,d,ef,ghl
e 23 {be} fabefgul {af,gul

What happens if we choose an 'a’, for example? Then we can be sure that there has to
be a 'b’ symbol in SM. Thus we remove both ‘a’ and 'b' from SM. But there are other

symbols that could be produced (this is the "w-n' set). The view we take is to note
them as 'possibly stripped', and remove them from SM. We note them as 'possibly
stripped’ because another symbol, that is left in SM, may need it. In that case it can find
it in the possibly-stripped-set.

With this possibly-stripped approach in mind, a useful tactic is to choose the symbol
with the smallest number of elements in the "U—' set. In the case that only one
multiset contains the symbol, it is &, so it's a good choice in this case, too. In the case
of example 9, symbol 'a’ is chosen with this tactic (the set {c,d,h} corresponding to
choosing an 'a' contains 3 elements, other choices give 4 or 6 elements). The test

becomes:

Testgers (Text,Symbol)
SM := multiset containing the symbols in Text
PossiblyStripped = @
/* As long as there are symbols not stripped */
while SM = & do
for each x in SM do

Intersectiong := Y {Mj | x € M;i}
Unionyx := \J (M; | x € Mj}
Differencey := Uniony - Intersectiony
od /* Now select minimal difference */
k := a number such that |Differencex| is minimal

/* Strip symbols in the chosen intersection from SM. */
for each x in Intersectiony do
Intersectionyx := Intersectiony - X
/* Check if symbol appears in SM*/
if x in SM :
then /* Yes, strip it */ SM := SM - x
else /* No, perhaps moved to PossiblyStripped? */
if x € PossiblyStripped then
/* Yes, strip it there because now */
/* We're sure that token is needed */

15

16
PossiblyStripped := PossiblyStripped - x
aelse
/* Symbol isn't there! parse will fail */
return 'more-context'
£fi
£fi
od
/* All symbols in intersection stripped.*/
/* Now move symbols that can be stripped to PossiblyStzr*/
for each x in Differencex do
if x € SM then
PossiblyStripped := PossiblyStripped + x
SM := 8M -~ X
fi
od
od
/* Everything went ok, nothing concluded.. */
return nil
Idea 3

We will describe the following test only briefly. For each nonterminal in the
grammar, we can make a regular expression that can recognise 'about the same' as the
nonterminal in the grammar. This approximation can never be perfect, since there
context-free grammars are more expressive than regular expressions ([HU79} p.61). We
aim for a regular expression that accepts as little too much as possible (but never to
little) . Some examples of the conversion that can be done:

Definition: TN ={S | N="aSp}

Grammar example approximations with a regular expression
S:=aS!|b REg = a*b

S:=aSb | ¢ REg = a*cb*

Su=aSb | ¢ REg = ¢ | aa*cb*b

E:=(E) | E+E | E'E REg ='(Tg* " | Yg* '+ Zg* | Zp* "™ 28"
Pu=aPbPc i d REp = a*d[b2p*c]*

Hint for conversion of the last: convert P ::= aPbYp*c | d instead.

Now, we make the following test. We return 'more-context' if the Text is not
produced by the regular expression that we made for Symboil: we made that expression
produce more than really is produced by Symbol, so if our regular expression does not
produce the text, Symbol certainly won't.

TeStregexp (TeXt, Symbol)
if Text is produced by REsgymbol
then return nil /* Text seems ok? */
else return 'more-context' /* Parse here will fail */

We can also make partial solutions returning ‘failure’ in stead of 'more-context'. For
this, we look for certain restrictions for the whole grammar, and check whether the

given Text part can fulfil them. Test 3 can be transformed in such a test by making a
regular expression that accepts all substrings of G. We will not work this out.

Idea 4

This idea uses some knowledge about the order of terminals in the grammar. Such a
restriction for the whole grammar appears in the following example:
Grammar: S:=aSblc

In this grammar, we will never find an 'a' after a 'c’. In this case, we could writea < c.
A precise definition of <:

S<T & aSBETy € LG)
The test we can make with this relation:

Testorder (Text,Symbol}
X1 .. Xp = Text
if there are Xp and Xq with p<q and not Xp £ Xgq
then return 'failure'
else return nil f£fi

Conclusions

All the given tests without parsing are partial, and this is not surprising, since we
showed that the test is at least as hard as parsing. If there is a partial solution that
works good enough in practice, then this is an attractive way to solve the
CheckForTree in this way. But we have no performance indications for these tests, so
we can draw no conclusions about practical performance of these tests.

17

18

4 Bidirectional recognising

Introduction

Although we have no performance tests, We don't expect the partial solutions of
chapter 3 to be good enough in practice. And after all, we still need to parse when we
found the right node. We saw in the CheckForTree' algorithm that a slightly adapted
substring parser can decide the CheckForTree algorithm by itself. The problem with
this solution is that the text that has to be parsed after going to the parent node (in
inc_parse of chapter 2) will always include the text that we already parsed, but the
substring parser can not reuse the work it has done. In a picture, the situation looks

like (a).

Parent of N
Parse trees for old text

Node N
Parse trees for new text

(a)

In essence the substring parses does work for all parse trees in which the old text can
fit. So in fact, the work we will encounter in building the bigger parse tree has already
been done. So why not reuse it? If we do so, we have an island parser. We will adapt
Earley's parser for island parsing, unlike the substring parser, which adapts Tomita's

parser.

A short description of Earley's recogniser

We will describe Earley's recogniser ({E70]) in short. Although a recogniser does not
return parse trees, it is not hard to change it into a parser. Earley's recogniser tells
whether the string 51 .. Sy is in L{(G). We are not interested in lookahead, so we
remove this from Earley's algorithm. To explain his parser, we need a few definitions:
A dotted rule is a rule of the grammar, with a dot (#) placed in it. So if N z=a bcisa
rule, then N z=a b * c is a dotted rule. The * indicates where we are with recognising
that rule.

An item is a tuple containing a dotted rule and a number StartPos, with 0<StartPossn
(n is the length of the input string). StartPos denotes where the recognition according
to this rule started. An item set Uy, with 0sksn, is a set containing items. Only items
that are in some way 'useful’ according to input symbols 51 .. Sk are placed in Uk.
More precise:

An item <N u= aef}, i> is in Uk
=
Jnonterminal M: M =" 7w N©O A 1="51..5 A ¢="S5i41 5k

19

In a picture, the item sets are placed as follows around the input symbols (b):

Initially, we place all items <N::=#q,0> in item set Ug, where N::=¢t is a grammar rule.

This represents that we can recognise the first 0 (zero) input symbols using rule Ni:=a.
The 0 in the tuple indicates that we started trying this rule in set Up. After this initial
step, the sets are filled further using one of the following actions:

Scanner: /* continue parsing if next input symbol is ok */
if <N ::= d*Sk+1p,StartPos> in Ux
then add <N ::= OSkt1*P,StartPos> to Uk+1 fi

Predictor: /* adds items that can produce needed nonterminals */
if <M ::= ONB,StartPos> in Ux
with N nonterminal and N ::= O in G for some O
then add <N ::= *g,k> to Uk fi

Completer: /* 'Scans' other items after a nonterminal is produced */
if <M ::= osNfB, StartPos> in Uy
and <N ::= O¢,k> in Up
then add <M ::= oNef,StartPos> to Uy fi

Adapting Earley for symmetry

The first step towards bidirectional recognising (recognising in the normal left-to-
right way and in the reverse way) is to remove the left-to-right bias from Earley's
algorithm. The left-to-right bias appears in the StartPos in the item tuple. We will
replace it by the left and right 'immediate neighbour items' of the state. So our item is
a triple containing a dotted rule, a set of left neighbour items and a set of right
neighbour items. The left neighbours are items having a dotted rule with the » moved
one symbol to the left, and the right neighbours have the ¢ moved one symbol to the
right.

Bgut written in this way, there seems to be double storage of this data: an item A has
neighbour B, and B has neighbour A. It seems more convenient to think about a
relation between A and B. We express this relation by a link. A link is a tuple
<Left Right>, where Left is an item in an item set, and Right is another item with the
e in its dotted rule moved one symbol to the right. In a picture, links look like (c).

20

Left _—‘___'Right
(©

If there is a link with left'=A and 'right'=B, we say that there is a link between A and

B. We also write A = B. If A= ... =B (or A=B), we write A ="B.
A link is an explicit reflection of Earley's Completer action: when we found a
roduction for a useful nonterminal, we trigger a completer action. Earley does not
make links, but just adds new items, if it finds old items that need the nonterminal.

We also make a link from the old to these new items.

Furthermore, we make shift possibilities. A shift possibility is a triple <8,Um,Un>. 5 is
some symbol, Uy, and Uy, are itemsets. A shift possibility indicates that symbol S has
been recognised, using the input symbols Sm+1 .. Sn. Usually, S will be a nonterminal,
but this definition allows us to make shift possibilities for terminals. Formally:

<S,Um,Un> is a shift possibility = (S =" Sm+1 .- Sn)-

We define the following properties of items:
We call an item left-complete < its dotted rule is of the form S == ¢ .
We call an item right-complete < its dotted rule is of the form 5 :: = o .
We call Item complete &

Jitem' : (Item =" Item' and Item' is right-complete} and

Jltem” : (Item" =" Item and Item" is left-complete)
Intuitively, an item is complete if it is between some left- and right-complete item.

Recognising with these notions

We will first give some examples, to show how these notions can be used to make a
recogniser. '

Grammar: Su=ab

Input string: ab

We start with an initial itemset that is located before the 'a' symbol of the input. We
want to try to recognise 5, so the dot is placed at the left of the production rule. This
looks like (a). To save space, we remove the spaces that separate the terminals from
the production rules. In our example, this gives no problems, since all symbols consist

of only one character.

~_»This is set UO. Used for reference.
_ weanl item set

euthe dotted rule of an item in this set

(a)

Now, we want to process the 'a' of the input string. Therefore, we make a new, empty
item set and a shift possibility that indicates that an 'a’ has been 'recognised:

a shift possibility for 'a’ between 0 and 1.

The S::=eab item can use this shift possibility, since the left side of the shift possibility

oints at the set the item is in, and the item just needed to shift an 'a', which is made
possible by the shift possibility. So the item shifts its ', and makes an item and a link
to it in set 1, the other end of the shift possibility. The result is (c).

S males mm ot
(o)

As we can see, a link is a kind of reflection of an existing shift possibility. So it is not
necessary to make the links explicit. Instead, we can refer to that shift possibility. But
we will draw the link in our pictures, because it makes the situation more clear than a

reference to a shift possibility.

Next, we want to process the 'b' of the input string. So we make a new item set and a
new shift possibility for the 'b'. The S:=a*b item in set 1 uses this shift, resulting in a
new link and a new item in the new set. The situation now looks like (d).

e3>
(d

The S::=abe item is complete (it is right-complete and S:=*ab=5::=a ob=»S::=abe). This

means that the S nonterminal has been recognised. Therefore, a new shift possibility
for S between set 0 and set 2 is added. The situation now looks like (). The creation of
this shift possibility does not trigger any further actions, since there are no items
having the ® before an S in set 0.

21

S e A a2
z >

(e) .
The input sentence 'ab' has been recognised, because we found a shift possibility
between the leftmost itemset (0) and the rightmost itemset (2). The top nonterminal of
the tree we found is S.

Now we will look at an ambiguous grammar.
Grammar: Su=x 1885
Input string: XXX
We place both rules with the dot at the left in the initial set, and we make a shift
possibility for x between set 0 and 1. The situation looks like (a).

41
< >

=3

The S::=ex item can use this shift possibility, and makes a new link and item in set 1.
This item is complete, so a new shift possibility for S between 0 and 1 is made. The
situation is like (b). This new shift possibility is be used by Sz=+55. A new item and

link is made (c).

<«

o
vt

(© (d)

vy

Something more has to be done. The S:=S#S item tries to shift an S, but there are nc
production rules for S with a ¢ at the left in set 1, so there will never be a shift

possibility with the left side at this set, if we do nothing. So a predictor action like in
Earley's algorithm is needed. In fact, nothing is predicted, but we simply put all the
rules that can recognise an S with the dot at the left in set 1. The situation now looks
like (d), and nothing more can be done.

Next, we process the second x of the input string. We add another shift possibility for
x, between set 1 and set 2. The S:=ex item can use it, and makes an S:=xe item in 2.
Because S:=xe is complete, a shift possibility for S between 1 and 2 is made. Both the
S::=#SS and the S:=SeS item can use it, resulting in two new items and links (e).

e e
B o B o g
(&

The S::=SSe item is complete, so a new shift possibility is made between 0 and 2. The
G::=#SS item in O can use it, resulting in a new link to the S:=5¢S item in set 2. The

item already exists, 50 no new item has to be made (f).

Again, a predictor step is needed, because the S:=5¢$ item tries to recognise an S.
Therefore, the items S:=*x and 5::=55 are added to set 2 (g).

24

YYY

444

e e
><
@®

Now, we are ready to process the last x of the input string. We make a new shift
possibility for x. The S:=ex makes a new link and item. The item is complete, so a new
shift possibility for S between sets 2 and 3 is made. Items S:=¢SS and S:=5¢S use that
shift possibility. They make new items S::=SS and 5:=55+¢ (h).

S O ot E g g A WA B
4S54 1S PSS
<4 5 >

(h)

The item S:=SSe is complete, in two ways. First, because it is linked to 5:=#5S in set 1.
This results in a shift possibility for S between 1 and 3. Second, because it is linked to
§::=e58 in set 0. This results in a shift possibility for S between 0 and 3 ().

o

<
45
<

>
>
>

e R
>«
<

Y VvV

S S
®
The shift possibility between 0 and 3 is used by S::=¢S5, resulting in a link to item
S::=SeS in 3. The shift possibility between 1 and 3 is used by 2 items in set 1: S::=55
makes a link to S:=5¢S in 3. 5:=5¢S makes a link to S::=55 in 3 (j).

2 3

B e B g e g
S e 5

< 5 > |
- 5 >
- 5 >

$)

The item S::=SSe in set 3 now has another way to be complete: by following the link
to S::=SS in 1, and then back to S:=#8S in 0. But this gives a shift possibility between 0
and 3, which already exists. This double way to make a shift possibility exactly
represents the ambiguity in our grammar, Now, we have processed all input symbols,
and we found a shift possibility for S between the leftmost and the rightmost set. This
means that we recognised the input string. The two parse trees representing the input

are (k):

26

parse tree 1 parse tree 2
S S

o P

S S S 5
| | 7\
S S x x S S
I I I |
3 x X X

(k)

Finally, we will look at an example with an empty production.

Grammar: Su=x |55 1¢

Input string: X

Again, we start with placing all rules with a dot at the left in a set (a). The S::=+ item is
complete, so a shift possibility between 0 and 0 is made, indicating that an S was

recognised without using any symbois (b).

(a) (b}

The S::=#SS item uses this shift possibility. The situation now looks like {(c) (We made
the link somewhat thinner in the picture, otherwise the new item would be
unreadable). The S:=SeS item can do its shift directly after it is added. It adds an
S::=SSe to the set. Although this item is complete, nothing is done, since the resulting

shift possibility already exists (d).

(d) (e)

27

We are ready to process the 'x' of the input string. We add a shift possibility for x
between 0 and 1. The S:=ex item uses it. It is complete, and a shift possibility for S
between 0 and 1 is made. The S::=¢SS and S::=SeS in 0 use this shift possibility, and
also make a link to set 1 (e). The S:=5Se is complete, but the shift possibility already
exists, so nothing happens.

Because the S::=5eS item tries to shift an S, we add all rules that can produce an 5 to
set 1. Because item S::=* is added, a shift possibility for S between 1 and 1 (f) is added."

t I 9

415 =5
® ®
The items S::=*SS and S::=SeS were waiting for this, and new links are made (g). The

5::=GSe in set 1 now is complete in 2 new ways, but both shift possibilities already exist.
The x has been recognised, since we found an S shift possibility between Oand 1.

An algorithm for Left to Right recognising

In this section, we give a more formal description of the parsing method illustrated in
the previous sections. In the algorithms, S is a symbol, N a nonterminal.

recognise (X1 .. Xn,G)
for X = 0 to n do Uy := & od
for each N ::= O in G do add(N ::= «a,Ug) od

for k = 1 to n do
make shiftposs between Ux-1 and Ux for Xx

while an action is possible do action od

od
if there is a shiftposs between Ug and Uk

then return 'accept' else return 'reject' £i

The possible actions are as follows. Note that the scanner only makes moving the ¢ to
the right possible. The predictor only predicts to the right. This still is a kind of left-to-

right bias.

28

scanner /* makes new items and links */
if there is some set Ux containing an Item N ::= oe3Sf

and there is some kSm<n /* n=#input symbols */
and is a shift possibility for S between Uy and Up

then
Ttem' := add(N ::= oS+*B,Up)
make a link from Item to Item’
£i

completer /* makes new shift possibilities */
if Item with dotted rule N ::= #0 in some set A
and Item' with dotted rule N ::= o* in some set B

and Item =** Item' then
make new shift possibility for N between A and B

£i

predictor /* adds items that produce needed nonterminals */
if Item with dotted rule M ::= c*Nf} in some set A
and N::=Y is preoduction of G
then add Item' with dotted rule N ::= ey to A £i

add (N=oef, Set) /* find the item with this dotted rule */

Item := find an item with dotted rule N ::= 0+f in Set
if Item not found
then add Item without links with dotted rule N ::= oef to Set

£fi
return Item

Comparison with Earley's algorithm

In this section, we will compare Earley's algorithm and our left-to-right algorithm.
First we look at an example.

Grammar: A=x|AA
Input string: XX XX

If we follow Earley's algorithm, the result is this table ([E70] p.99). We removed look-
ahead data and end-of-input markers, and adapted it to our notation.

29

Item set Dotted rule StartPos Item set Dotted rule StartPos
Us A n=xe 2
Ug A u=ex 0 A= AAe 1
A n=eAA 0 A n=AAs 0
A n=AesA 2
Uj A n=xe 0 A n=AeA 1
An=AeA 0 A u=AsA 0
A = ex 1 A = ex 3
An=eAA 1 A= sAA 3
Uz A n=xe 1 Uy A n=xe 3
A = AAe 0 A un=AAs 2
A n=AeA 1 A n=AAe i
A n=AeA 0 A = AAe 0
A n=xe 2 A n= AeA 3
A =eAA 2 A= AsA 2
A u= AeA 1
A = AsA 0
A u=ex 4
A un=eAA 4

We want to compare these sets with our pictures. Therefore, we put the items that are
produced by Earley's algorithm in a picture, and make links with arrows. The result is

(a).

(a)

If the same grammar and input string is provided to our algorithm, we get picture (b).

30

3> <« 3> <BF» < =3>
<> <> <> <>
< A > = >
- A >
- -
< >
- >

As illustrated by these pictures, we notice the following similarities and differences:

similarities

Both use dotted rules.

Both have a set between each two input symbols.

Each dotted rule can occur at most one time in a set between two input tokens.

The invariant! is the same for the items2. This can be seen in the pictures because
the sets in Earley's and our recogniser contain states with exactly the same dotted
rules.

We have similar actions as in Earley:

'scanner’ handles the shift of some symbols.

'predictor’ does exactly the same.

'‘completer' works out similar

differences
e Our scanner handles all shifts, Earley's scanner handles only terminal shifts.

We have an explicit notation for recognised nonterminals: the shift possibilities. In
Earley, this is not the case.

« We do not have a look-ahead possibility.
¢ We have links between two items, Earley has links between an item and a set.

e Perhaps the most important difference is that our recogniser is symmetric for L-R

and R-L recognising.

1 The invariant was given at the beginning of this chapter.
2 This only holds for the left-to-right version of our parser without removing of useless items.

Discussion of the symmetry difference

Earley's algorithm gives troubles if we try to reverse the parse direction. This is caused
by the way the links are made. In Earley, a link is maintained to the set containing the
'left-compiete' (in our terminology) item. This works perfect if only is parsed from left
to right, since an item is always left-complete in that case. However, in the island
parser of our final goal, we need to start somewhere in the middle of recognising an
jtem, resulting in items with only a temporary left-complete item. In this case, it gives
problems to link to a left-complete item. In our recogniser, an item maintains links to
immediate neighbours of it. Because of this, a recognise action is more complicated
and will cost more. We will ook at a possible solution for this problem in chapter 7,
and work it out in chapter 8.

Example of Right to Left recognising

Because right-to-left recognising is symmetric to left to right recognising, we limit
ourselves to an example of right to left recognising.

Grammar: Su=b | ¢S
Input string: cb

Just as in the case of left to right recognising, we start by placing all rules in a set, with
the dot at the start. In right to left parsing, this means placing the dot at the right (a).
To process the first (the rightmost in right to left recognising!) symbol, we make a new
shift possibility for b between 0 and a new set 1. Note that this set is left of the old set!
(b). Also note that our numbering gets a little inconsistent, but that is no real problem.

(a)

The S::=be item can use the shift, and places an Su=eb item in 1. That item is

complete, and it adds an S shift possibility between 0 and 1. The S:=cSe item uses that

shift, resulting in an S:=ce$ item in 1 (c). The predictor does nothing, because there is
no nonterminal at the left of the .

31

32

b
<

W

vVYY

unj o

>
> <%
(© (d)

<
<4

Next, we add a shift possibility for the first 'c’ (when reading from right to left)
between 1 and 2. The S::i=ceS uses it, and makes an item S:=*c5 in 2. This item is
complete, so a new shift possibility for S between 2 and 0 is made (d). The S::=cSe item
in 0 uges it, and makes an item S::=c*S in 2 (e).

<1
451

- 5 >
(e)

We expect that the reader now understands the symmetry in our parsing methods.

5 Island Parsing

This chapter consists of two parts. First, we will make an island recogniser. Then, we
will turn this island recogniser into an island parser.

I: Adapting the bidirectional recogniser for island recognising

The context idea

The basis idea for island recognising is simple: since the data structures look the same
for both directions, we simply parse in the direction we need. But there is a problem
when we want to turn the direction: initially, we placed all rules with the dot at the
start in an initial set, indicating that we want to recognise these rules. But what is the
start side when we may change the direction? In fact, the 'initial’ item set may end up
somewhere in the middle of the input string, when we allow turning the direction.

The solution is to put the dot at any place in any production rule. The items that are
needed certainly exist in this case. But this does not solve all the problems. We are
going to give some examples to show that we need some notation for unknown

context. Look at the following example:

Grammar:
B:=ba
Su«=¢B

input string:
first an 'a' at the right, and then 'c b’ at the left

As said, we put the production rules with the dot at any place in the initial itemset (a).
Now, we make a shift possibility for the 'c’, at the right side. The item Bu:=a *b uses it,
and makes a new item Br:=abe in set 1. This item is not complete, so we are ready (b).

33

Next, we make a shift possibility for 'b', but now on the left side. The B::=b*a can use
it, is complete and makes a shift possibility (c).

4+t
<4 B >

(©)

As a last step, a shift possibility for 'c’ is made (d). But no action is possible! We expect
a shift possibility for S between 3 and 1.

>
< H—
(d)

3
|

The problem is caused by the absence of an S:=cBe item in set 1. That item was not
added, because the B:=bae was found to be right-complete, but not left-complete. The
B::=eba was located somewhere in an unknown context at that time (b).

As shown, some sets contain too much items (set 0, e.g. the B::=*ba is useless, since it
will never be able to shift the 'b') and others too little (set 1, where we missed an
S::=cBe item). We will show how the situation of a set containing too little items can

be avoided, by means of a context sef.

Another interesting point to use a context is to decide between 'failure’and 'more-
context' (chapter 2). Consider the following example:

Grammar:
Su:=A|B
Au=aA lE
Bu:=bBle

Input:
'a’ at the right, then 'b' at the left (note that 'b a’ is no string in L(G))

After all dotted rules are placed in 0, and a shift possibility for 'a’ to set 1 is made, the
situation looks like (a) (only items and shift possibilities that are of interest for us to
show the point are shown).

J W &

== S e T
bl == i < >
| o e g - —
415 S——P
(@) (b)

We make a shift possibility for 'b', between 0 and 2. Now, the situation looks like (b).
Since we found no shift possibility between 1 and 2, we know that we did not
recognise the input. But what can we say about usefulness to continue parsingl, by
only looking at this picture? We think that the best solution is to place something
representing any possible left context at the left of set 2, and something representing
any right context at right of 1. If it is possible to create at least one shift possibility
using the left or right context, we know that it still is possible to recognise the input
(the 'more-context' case), otherwise we can safely return 'failure’.

We make an object representing any possible context as follows: we place items with
all possible dotted rules in a set. This represents that each possible dotted rule can be
reached with an appropriate input. Next, we make a shift possibility for ?between that
set and itself, and do all possible actions to get the appropriate links. The ?is a symbol
that matches any other symbol. This shift possibility represents that it is possible to
recognise any symbol in the context?.

Grammar:

Su=SSx!p

1The question whether we should return ‘more-context' or 'failure’, see chapter 2
2 We assume that all nonterminals can produce some terminal-only string. If this is not the case, a T'shift
possibility (next section) in stead of an s shift possibility can be used.

36

The context set now looks like (c). Note that no additional shift possibilities for S are
made, although they are complete. This is because we already have a 7 shift possibility.

fown 7 puet

(©

Using a context set

In this section, we will illustrate the use of a context set. If we are working from left to
right, we only need a left context, because we are in a situation very similar to Earley
without lookahead: items are added without knowledge about the rest of the symbols
that are going to be parsed. For the same reason, we only need a right context if we
parse from right to left.

Because of this, we need to swap the context set to the other side, if we want to change
the parse direction. This is one of the reasons to keep a separate context set, and not
just change the outermost sets into context sets.

So the intention is that the context can only be reached by shifting at least one
unknown input symbol. We enforce this by making a shift possibility for 7 from the
outermost sets to a context set. The 7 matches with any terminal, but not with
nonterminals. Working this way, shift possibilities to the context are made explicit,
which is just what we needed. The situation is shown in (a).

&

<> <>
(@)

While parsing, we use only one context. But when we need to decide about failure
(chapter 2), we need a context at both sides. We will look at this after the following

example of left to right parsing using a context.

Grammar:
Su=BISS
B:=ab

Input string:bab

Now, we start with a situation like (b). Note that both B::=¢ ab and B::=aeb can shift
their terminal, since both matches with the 7 shift possibility. We have not added the
right context, since we want to parse to the right. The B shift possibility was made
because the B::=abe item in 0 is complete with appropriate left context. Because of this
shift possibility, The S:=Be is also complete, causing an S shift possibility.

f <+«F3»
- ? oot
<>
<> =
> <=3
<=3 - B —>
(b) ©

We start parsing by adding a shift possibility for b between 0 and 1. Item B::i=a*b can
use it, and makes Bi:=abe in 1. This item is complete because it is linked to B:=eab in C.
Note that this was not true if we did not have a context, in that case nothing would
happen. So a shift possibility between Cand 1 for B is made ().

The S::=¢B in C can use this shift possibility, and makes an S::=Be in 1. This item is
also complete, so a shift possibility for S between Cand 1 is made. This shift possibility
is used by S::=+SS and S:=Se$ in C. Finally, the predictor adds items S::=eB, S:=e55
and B:=eab to set 1 (d).

At this point, we can see that only the b gives no complete parse tree, since there is no
shift possibility between 0 and 1. We can also see that an appropriate left context can
give both a tree with B and a tree with S at the top. Now, we process the rest of the
input string. First we make a shift possibility for 'a’ between 1 and 2. Only B::=*ab uses
it, and it only makes B::=a*b in 2.

37

)

(d)
(e

38

Finally, we make a shift possibility for the last 'b' of the input string, between 2 and 3.
The Bi=aeb in 2 uses it, makes B::=abe in 3, which is complete. This makes a shift
possibility between 1 and 3. This is used by S:=¢B in 1. This causes a shift possibility for
S between 1 and 3 (e).

This S shift possibility is used by S::=*5S and S::=5eS, resulting in S:=5¢5 and S:=55¢
in 3. The S:=SSe is compete, resulting in a shift possibility for S between C and 3. This
is used by S::=+SS and S::=SeS, resulting in new links. At the end, the predictor adds
S::=eSS, S:=¢B and B::=#ab to 3. Then we are ready (f).

tF_f >
= < B —>
7> -—F >
<>
D
> z >
- g >
- g >
63

Switching the context to the other side

If we want to change the working direction, the context has to be moved to the other
side. An easy way to do this is as follows. To distinguish between the two contexts, we

call the left context £ and the right context &,

39

SwapContextToRight
s rightmost set
L left context set
R := Make a new context set /* the new context set */

put R at rightmost position
Make a 7 shift possibility between S and R

while an action is possible do action od
remove {L)

remove (ItemSet)
Remove all links to items in ItemSet
Remove all shift possibilities between ItemSet and other sets

Remove the items in Itemset
Remove the emptied ItemSet

Example:
We start from situation (d) of the previous example. We want to add the missing ‘a

at the left. Before this can be done, we need to move the context to the right.
Therefore, we add a T shift possibility to a new context £, and we do all actions (e').

Q

:
e

?—"’l b 7 !
411 <41
<451 <41
<4151 4151
< B >

4 5 >

<4

v

(e")

Next, we remove £, resulting in (f').

(.

{

Ab)
dH R
vey

(£

We are ready to parse leftwards, so we add a shift possibility for 'a’ between 0 and 2,
with 2 at the left of 0, and we do the possible actions. The resulit is (g".

41

We found a successful parse for ab because of the shift possibility for S between 1 and
2, and we know that extending the context to the right may be successful because of the
shift possibility between 2 and %,

Deciding about the result

If we found a shift possibility between the left and the right normal set, we can accept
the input. But if no such a shift possibility has been made, the next question is
whether it is useful to try a larger context!. As we saw in several examples, we can
decide for this by looking for shift possibilities using context. During parsing, we only
have one context, say the left context. But it may be possible that the parsed input
string can only be extended to the right. There can be no shift possibility representing
this, as we assumed that there only was a left context. So to decide between failure and
more context, we need both a left and a right context. We can make two contexts
without problems, as we saw in the previous section. We only need to remove one of
them when we want to continue parsing. The algorithm for deciding about the resuit

is as follows:

decide result (S)
7% 8 is the needed topnode sort in the parse tree */

Ug := leftmost normal set
Up := rightmost normal set
if there is a shift possibility for S between Ug and Up
then return 'accept' fi

/* no accept. Find a shift possibility using some context */
if there is only one context then make other context £i

L := left context set
R := right context set
3if there is a shift possibility between L and (R or Un)

or there is a shift possibility between Up and R

then return 'more-context’
else return 'failure' fi

With the shift possibilities between left and right context as described here, it is
possible to make a more sophisticated incremental parser than the one described in
chapter 2. In the algorithm of chapter 2, we go to the parent when more context seems
to be useful. The following options are not considered there:

e We can see what nonterminals will possibly result from more context by looking at
the shift possibilities. For example if the parent is nonterminal Q, but we have no
shift possibility for Q using context, we already know that that parse will not
succeed (but both 'fail' and 'more-context’ are still possible at node Q)

o If we have no shift possibilities using right context, but the node one higher has
right context, we already know that we are in a 'failure' situation.

And there are other similar tests that can be done.

IThe question whether we should return 'more-context’ or failure’, see chapter 2

.

An algorithm for island recognising

In this section, we will look at the methods that are needed for an island recogniser.
'new' makes a new recogniser, and 'extend’ continues the recognising of some text in
a given direction. It returns the result, either 'accept’ (this is not a parser), 'more-
context' or 'failure’, conform to the ideas of chapter 2.

In the algorithms in chapter 4, there still is a left-to-right bias. This way, we prevented
the addition of too much items. But now it is possible to turn the direction during
recognising, returning the problem of addition of many items. For example, in
example (g") two pages back, the shifter now can add B=aeb to set 1, because it is
possible to shift the b using shift possibility 7from % We did not do so, because this is
not what we aimed for: we already added all the items that once might be important,
before we continued with the next input symbol.

We solve the problem by only permitting addition of items to the last made itemset.
To make this explicit, we use a global variable '‘Outermost’ indicating that item set.

Some definitions:

+ We distinguish between 'normal' and 'context' itemsets. An itemset is 'context' if
there is a ? shift possibility between the set and itself.

o left’! = right; right1 = left

e S stands for a symbol, that is a (non)terminal. N stands for a nonterminal.

e In the actions, outermost is the rightmost set in left-to-right parsing. It is the only
set that can be changed. Direction is the current working direction.

« Direction-most should be read as leftmost when Direction="left', and as 'rightmost’
when Direction="right'. Direction is a global variable in this specification.

new {(Grammar)
start in an empty situation
Direction := 'right'
G := Grammar /* for later references to it */
L := a new context itemset, at leftmost position
Outermost := a new itemset with all dotted rules, at right of L

make a T shift possibility between L and Qutermost
while an action is possible do action od

extend {Xi..Xn,Pirection,S)
/* § is the needed sort in the parse tree */
set direction(Direction) /* context at correct side */
for 1<k<n with k counting in Direction do

U := Direction-most itemset
Outermost := a new Direction-most itemset without items

make shift possibility for Xx between U and Qutermost
while an action is possible do action od

od
return decide result (S)

set_direction {Direction)
if not Direction-most itemset is a normal set then

/* context at wrong side.. */
if there is only one context then make other context £i

remove (Directicn-most itemset)
£i

The possible actions, adapted to use Direction and Last:

scanner
if Item in set A has dotted rule DR with an § at the

Direction side of the »
and there is a shift possibility for S between A and Cutermost

then
Ttem' := add(DR with ¢ moved 1 symbol to Direction)

make a link between Item and Item', peinting to item
with the ¢ at right side of 8
£fi

completer
if Item with dotted rule N=e¢ in set A
and Ttem' with dotted rule N=0Oe in set B

and (A=Outermost or B=Outermost) and Item =»* Item' then
make new shift possibility for N between A and B
£i
predicter
if Ttem in Outermost has N at Direction side of the ¢

and N::=Y is production of G then
/* add item with this production and dot at start */

DottedRule := N::=y, with the e at Direction~!
add (DottedRule)

£i
add (N=aef}) /* returns item with this dotted rule in Outermost*/

Ttem := find an item N::=0*f in Outermost
if Item not found then :
add Ttem N::=0+f to Outermost
if DottedRule is an empty production then
make shift possibility for N
between OQutermost and Outermost
£i
£fi
return Item

We are getting close to the implementation, but before we give it, another problem
has to be solved.

Building parse trees

As usual with parsing problems, we started building a parser, and ended up with a
recogniser. In this section, we will turn the recogniser into a parser.

We have ended up with a situation containing a shift possibility from the leftmost
normal to the rightmost normal set, producing the right nonterminal. The recogniser
now simply returns 'accept’, but the parser has to return a parse tree instead. We know
two ways to derive parse trees when we have ended up with this situation:

1. Find out how the shift possibility was made. This can be done by searching a
production rule for which there are adjacent shift possibilities, such that the left shift
possibility starts in the leftmost normal set, and the right shift possibility ends in the
rightmost normal set. This search seems to imply a lot of work. Even removing
useless items (next section) seems of little use here.

2. When a shift possibility is made, remember how it was made. We can do so by
remembering the links that were used, or better the shift possibilities that made these
links possible. This way, the search of the solution 1 is avoided. Furthermore, the
resulting data structure is very close to a parse free.

We will use the second solution, because it makes deriving parse trees easy.
What happens with ambiguities? With the chosen solution, a shift possibility will be
added twice, but with different used links. We can handle ambiguities in two ways:

1. Discard the second way to make this shift possibility. Although saving some storage,
this does not seem to have any advantages.
2. Store the second way as alternative of the first way.

We will use the second way to handle ambiguities. The result is a way of storing parse

trees similar to the structure described in [R92], Chapter 2. This way of storing parse
trees may be expensive. For very ambiguous grammars, it will require exponential
space to store the parse trees. In chapter 7, an idea to store them in O(n?) is described.

II: Removing useless items

Useless items are items that do not help in building a useful shift possibility. A shift
possibility is useful if it helps us for deciding the result (so if it is a shift between the
leftmost normal or context set and the rightmost normal or context set). A shift
possibility is also useful if it helps creating a useful shift possibility, by making one of
the links for it.

Example. Take the second grammar of this chapter,

Grammar:
Sx=A|B
Ar=aAls
B:=bBl¢

As shown there, we get situation (b) after giving a right context 'a', and a left context
lbl:

A
o
¥

A,

We provided 'b a' to the parser, which is no string in L(G), and cannot be extended to
be one either. We can see this by making two contexts. If we do so, the situation looks
like {c). In this situation, we can see that more context does not help: there is no shift
possibility between (£ or 2) and (1 or R). So there are no useful shift possibilities and no
useful items. The aim of this section is to remove all useless items (this means, all the
items in set 0,1 and 2 in case (c)!)

Another good example is picture (g"), on page 41. In set 0 for example, only B::i=a *b is
useful, because it is the only item that helps constructing a useful shift possibility
between 2 and 1.

An invariant for the items
In fact, we want the items to fulfil the following invariant:

If we have processed input Xj .. Xp, and we have itemsets Up .. Uy, then:

Item with dotted rule N=ap € Uy
=
AN N =" yNB& = yopd A yo =" @X1. Xk A B8 =" Xi+1..Xne' for some m,0’

That is, we want each item to have possibilities to be fit into a derivation that has
X1.Xp as (sub)string of L(G) ([RK90]). We say that an item is useful if it fulfils this
invariant. An item is useless if it does not.

Note that the context sets do not fit into this invariant notation because they' are not
an Uy in our notation. Furthermore, an item in L can contain items that produce
many context before actually producing Xj..Xa. So if we want an invariant for the

context, it is like
Item with dotted rule N=o*p € £ & IN N' =" N3 = yod A Bd =" pX1..Xn0

Ttem with dotted rule N=asp € . IN: N' =" 1N& = 1opd A 1o =7 pX1..Xn0

We will only remove useless items from the normal item sets, and not look at the
context sets. It is not very hard to do so, but we introduced a context set as a set with all
dotted rules, which conflicts with the idea of removing items from it. Furthermore,
we do not see any advantages in doing so.

A solution for removing useless items

A solution to find useful items is to mark the useful shift possibilities, like we noted
in the examples. If a shift possibility is marked as useful, we can conclude that the
items that were needed for that shift possibility are also useful. For example, if a shift
possibility for S between A and B is known to be useful, and we know that that shift
possibility was made by using the production S::=aSb, the items S::=#aSb in set A and
S-:=aSbe in set B are useful. Note that we can easy decide the rule and and shift

47

possibilities that were used for making a shift possibility by remembering the cause of
a shift possibility when we make it, and do not discard ambiguities, like described in
the section 'Building parse trees'.

But what to do with the other items? In our example, the items between S:i=eaSb and
S:=aSbe (some items with dotted rule S::=a*Sb and S:=aSeb) are also useful. In our
solution, we do not recognise them as useful, but they will be save as long as they are
'hanging' with their links between two useful ends.

This approach gives the following algorithm:

remove_ useless
mark all items and shiftpossibilities as useless

for each ShiftPoss between (leftmost normal or context set)
and (rightmost normal or context set)

do useful (ShiftPoss) od
for each ShiftPoss marked with useless do remove ShiftPoss od

for each unmarked left- or right-complete Item
do remove (Item) od

useful (ShiftPoss)
if ShiftPoss already marked as useful then return £i

mark ShiftPoss as useful
for each way to make ShiftPoss do
IN::=0' := rule that was used
mark item in left set that ShiftPoss points to

that has dotted rule N:i:=eQ
mark item in right set that ShiftPoss points to

that has dotted rule N::=0*
for each ShiftPoss' used for one of the links
between these two items
do useful (ShiftPoss') od
od

remove [Item)
for each Link between Item and Item' do

remove Link
if Ttem' now has no more links at the side

where we removed the link
then remove (Item') £i

od
remove Item

Incremental removal of useless items

In this section, we will try to make the removal of useless items incremental. At first
glance, one thinks that there must be an easy way to remove them, directly after the
parser is extended with one terminal. It seems easy to see which items can not do their
shift, remove them and check whether this influences other items. Once an attempt is
done to make an algorithm for it, this approach turns out to give troubles. We will iry
to show the problem with an incorrect algorithm.

49

Consider the following incremental 'solution'.

Assume that there is a left context, and we are parsing to the right. The general idea is
to mark the items that can 'reach the right side'. Since any item reaches the left side
because of the way we add items, we expect that the marked items are useful. After the
marking process, we remove all unmarked items. We have 2 possible marks: needed
(N) and reaches right side (R). An item is marked N if another item uses the shift it
produces. An item is marked R if it is uplinked to an item in the rightmost set, or
wants to shift a nonterminal and there is a rule producing that nonterminal in the
same set, marked with R. Furthermore, we have an ordering on this marks: R>N>no
mark. Each item prefers the highest possible mark. If this approach would work, we
could try to update the marks in an incremental way.

remove_uncompletables(ItemSets)
for each Item do Item.mark := no mark od
for each Item in rightmost itemset do Item.mark := R od
while an action is possible do action od
for each Item with Item.mark = no mark
do remove item and links od
/* note that we do (can) not remove shift possibilities. */

We have the following actions to give Item higher mark. An action is only done if it
gives a higher mark to Item.

use mark of_ neighbour
if J3Item =» Item'
then Item.mark := Item'.mark f£i

someone_needs_us
if dTtem' with dotted rule M ::= [JNey in Uy
and Ttem'.mark = N or R /* item is useful */
and JItem with dotted rule N ::= O* in Uk
/* then mark all rules that produce needed nonterminal */
then Item.mark := N fi

some item is working_for_ us
if JItem with dotted_rule M::= 0*NP in Uk
and dTtem' with dotted rule N ::= *Y in Ux

and Item'.mark = R
then mark item with R fi

The following example shows where this algorithm fails in removing some items.
The algorithm works incorrect in the someone_needs_us action, where all the dotted
rules are marked that produce a nonterminal that is shifted by a useful item, which is

an overkill.

Counter example:

Grammar:
Su=pL
T:=La

Luz=qlpgqg

50

Input sentence: pqa

The resulting situation after processing input (for ease, we do a normal parse, starting
only with productions with the * on the left) and marking all items is (a):

> <«=F> <=3
o o

- i >

< T —

®)

The L::=q® item in 2 is useless because it builds no subtree for the T::=L a production.
So it should not be marked. The problem is that the L::=q* is marked because T:=Lea
can reach set 3. But actually, not the Li:=q but the Li=p q production caused the T::=Lea
to appear.

This problem can be solved by making a link from the T:=Lea item to the Li=pq*
item, indicating that this item caused the T::=Lea to be added. The problem with this
approach is that it is not symmetric. The problem can also be solved by making a link
from the Li:=pqe item to the L shift possibility from 0 to 2, the shift possibility it caused
to be added. This looks more symmetrical, since both L::=epq and L:=pq® can get such
a link. But in fact, this looks like another way to get the first solution we gave.

A better way to make removing of useless items incremental is to make the first
solution incremental. Therefore, it seems necessary for all shift possibilities and items
to remember why they are useful. For the shift possibilities, this implies that they
have to remember all shift possibilities that made them useful. For left- and right-
complete items, this implies that they have to remember the shift possibilities that

used them for constructing their shift.

The algorithm we think of maintains both a left and a right context during parsing.
More context symbols are inserted by making a shift possibility for that symbol
between the outmost normal set and a new set, and a 7 shift possibility from that new

set to the old context (a).

51

0Old outermost sNew outermost

normal set

>

<@~t=T—1—P» Shift for new symbo¥
-«

(a) 3
Old shift to context+" New shift to confext

Next, the old 7 shift possibility from the old outermost normal set to the old context is
'retracted’ in an incremental way, with remove_shift (b).

u?-#" e et

e S
(b)

remove_shift {ShiftPoss)

remcove the ShiftPoss

foxr each left- and right-complete Item that ShiftPoss
could use for its shift do
forget that Item was useful because of ShiftPoss
if Ttem knows no more useful shift possibilities
then remove (Item) f£fi

od _

for each ShiftPoss' that was useful because of ShiftPoss do
forget that ShiftPoss' was useful because of ShiftPoss
if ShiftPoss' has no other reasons to be useful
then remove_shift(ShiftPoss‘) £i

od

for each link that uses ShiftPoss de remove link od

We will not work out this algorithm in more detail. The reason is that (at least?) two
things are remembered in duplicate:

52

1. Shift possibilities remember their children, and their children remember the shift

possibility that made them possible.
2. Links remember the shift possibility that makes them possible, and shift possibilities
what links they made.

This duplication seems waste of space and computation time. But it is not clear how
this can be done better. This duplication of data seems closely related to the aim of

incrementality.

E 2 B &8 2 B BB B B E B B B B B BB BB BB

6 An implementation of an Island Parser

Implementation in pseudo-Pascal

In this chapter, we gather all the results of chapter 4 and 5 to make an island parser.
The methods we provide are new and extend. With this, we can make an incremental
parser in the same way as the DecideResult’ test of chapter 3, with the difference that
the island parser only needs the new symbols and not the old as well. In Chapter 9, a
Lisp implementation is given. The objects we use look as follows:

object 'ParserObject”
itemsets
outermost
shift_possibilities
G
direction

object 'itemset":
items

fype

object 'ends':
left
right

object 'item':
dotted_rule
links

itemset

object 'link':
arrow
shift_possibility

object 'shift_possibility':

symbol
sefs

alternatives
object 'alternative"

production
shifts

/* A parse situation consists of */

/* a list of our itemsets. Ordering is important */

/* the direction-most itemset=the only changing set*/
/* a set of shift possibilities */

/* the grammar */

/* the direction we're working in */

/* a set of items */
/* is it a 'normal’ or a 'context’ set? */

/* many things consist of two sides.. */
/*aleft*/
/* and a right side */

/* an ends-object: */
/* in 'left' the links to us, in 'right' links from us */
/* the itemset where this item is in */

/* an ends-object: link from left to right */
/* who made this link possible */

/* the recognised symbol */

/* an ends-object containing the sets between which
/* this shift_possibility is */

/* different ways to make this shift possibility */

/* an alternative to make a shift possibility */

/* the production that was used */

/* the shift possibilities that were needed to complete
/* that production */

54

'no_alternative' represents an object without production and shifts. It is used for the
leaves, which are not produced. Self indicates the ParserObject we are talking about.
Field names of the ParserObject refer to the 'Self object that is passed in all functions.
For example, 'itemsets’ is short for Self.itemsets; 'direction’ is short for Self.direction
etcetera. Variables (excepted some index variables) and parameters start with an upper
case character. We use = to indicate matching symbols. e.g. 'a'='a'=7=? and 'S'=?.

The methods now look as follows:

new (Grammar) /* returns a new, empty ParserObject */

L := make a context set
Up := make a normal set
Self := make an empty ParserObject, with

G=Grammar, direction='right', itemsets=list of L and Uog,
outermost=Ug
for each possible DottedRule of G
do add(Self,DottedRule) od
add_shiftﬂpossibility(Self,Q}L,‘no_alternative')
raeturn Self

extend (Self,X1..Xn,Direction, Symbol)
/* Symbol is the topnonterminal we want in parse tree*/
/* ? if any top symbol is OK */
set_direction(Self,Direction) /* context at correct side */
for 1<k<n with k counting in Direction do

U := ocutermost
ocutermost := a new Direction-most 'normal' itemset

without items
add_shift_possibility(Self,xk,U,'no_alternative‘)
od
return decide_result(Self,Symbol)

We used the following help functions. The actions are implemented as follows: each
action tests whether its action triggers other actions. If this is the case, these actions are

called.

set directicn (Self,Direction)
T /% first check if we are in the right situation */
if Direction-most itemset 1s a normal set then return £i
/* no. Make 2 contexts and remove the old one */
make context (Self) /* if it already is there nothing happens */
remove the Direction-most context set
direction := Directicn
outermost := Direction-most itemset

predictor (Self,N) /* Add N-producing rules to outermost */
for each Rule in G deo
DottedRule := Rule with the * at direction™l
add (Self,DottedRule)
£i

55

add (Self,N::=osB) /* add item to outermost */

Item := find an item with dotted rule N::=0*B in outermost
if Ttem not found then
Item := an item-ocbject with dottednrule=N::=a-B,

links=an new empty ends-object, itemset=outermost
add Item to outermost
if o=B=¢ then
Alt := an alternative-cobject with
production='N=€', shifts=empty list
add shift possibility(Self,N,outermost,Alt)
else
S := symbol directly at direction side of * in N=qef
if S exists then
/* Check for predictor and scanner actions */
UsableShifts := set of all shift possibilities
in shift possibilities with
sets.direction~l=cutermost and symbol=S
for each ShiftPoss in UsableShifts
do shift(Self,Item,ShiftPoss) od
if S is nonterminal then predictor(Self,S) fi
fi
£fi
fi
return Item

add_shift_possibility (Self,S,FromSet,Alternative)
/* make a shift poss. for $§ between FromSet and outermost */

Ends := a new ends-object
Ends.direction™} := FromSet
Ends.direction := ocutermost

find in shift possibilities a ShiftPoss with
sets=Ends and symbol=S
if ShiftPoss is found then
add Alternative to ShiftPoss.alternatives
/* it existed already so no check for items using it */
else
/* create new shift poss and check who uses it */
ShiftPoss := a new shift possibility object with symbol=S,
sets=Ends, alternatives={ Alternative }
add sShiftPoss to shift pessibilities
/* and check whether this causes new links */
Ttems := all items in FromSet having a dotted rule
with a symbol=S at direction of
for each Item in Items do shift (Self,Item,S8hiftPoss) od
£i

shift is the most difficult function in our situation. It makes a new link to an item.

The item can already exist, but the link can not, since shift can be called in two ways:

1. From add_shift_possibility, which only calls shift when the shift possibility for the
link did not exist, so the link can not exist.

2. From add, which only calls shift when the item did not exist, so a link between that
item and other items can not exist.

shift (Self,Item,ShiftPoss) /* Item can use ShiftPoss */
/* shiftPoss.direction should be outermost !! */
/* shift makes a new link to an item. */
ShiftedRule := Item.dotted rule,

with * moved one symbol to the direction
NewItem := add(Self,sShiftedRule)
Arrow := a new ends-cbject
Arrow.direction := Newltem
Arrow.direction™l := Item
/* Now create the link */
L := a new link-object, with arrow=Arrow,
shift possibility=ShiftPoss
/* link to right for left item, and to left for right item */
add L to Arrow.left.links.right
add L to Arrow.right.links.left
ToComplete := a new ends-object
ToComplete.direction :=
shifts to complete (Arrow.direction,direction)
/* Check if item completed in the working direction */
if ToComplete.direction=nil then return fi
/* complete! now check for the other direction */

ToComplete.direction™! :=
shifts_;o_complete(Arrow.direction‘l,direction'l)

Production := remove the dot from Item.dotted_rule
Symbol := nonterminal that is produced by Production
for each combination of a LeftToComplete in ToComplete.left
and a RightToComplete in ToComplete.right
/* For each such combination, a shift poss can be made! */

do
if direction="'right'
then From := LeftToComplete.endset
else From := RightToComplete.endset fi
Alternative := a new alternative~cbject, with
production=Production,
shifts=append LeftToComplete.shiftlist,
ShiftPoss and RightToComplete.shiftlist
add_shiftwpossibility{Self,Symbol,From,Alternative)
od

When a new link is made, we need to check if it makes items complete. Therefore, we

need to follow all the arrows in two Directions and give all the ways to reach a
complete item. This function looks in the given way, starting at a given item. It
returns a set containing all possible shift-to-complete objects:

object 'shift-to-complete”: /* one way to reach a dir-complete item */
shiftlist /* shifts to be done up to a complete item */
endset /* in which set was the complete item */

shifts to complete (Item,Direction)
if Item.dotted_rule has the ¢ at Direction
then
ShiftToComplete := a shift-to-complete-object, with
shiftlist=empty list, endset=Item.itemset
return { ShiftToComplete }
else /* ITtem is not complete, look back */

57

ShiftsToComplete := @
for each Link in Item.links.Direction de
ShiftsToComplete' :=
shifts to_complete(Link.arrow.Direction
;Direction)

LinkShift := Link.shift_possibility
for each ToComplete'! in ShiftsToComplete' do
append LinkShift at Direction~l-side of
ToComplete'.shiftlist

od
add ShiftsToComplete' to ShiftsToComplete
od
return ShiftsToComplete
£fi
decide_result (Self,Symbol}
Up := leftmost normal set
Up := rightmost normal set

if there is a ShiftPoss in shift possibilities
for a symbol=Symbol between Up and Up

then return select a tree(ShiftPoss) f£i

/* no tree. Find a shift possibility using some context */
make context (Self}
L := left context set
R := right context set
if there is a shift possibility between I and (R or Up)

or there is a shift possibility between Ug and R
then return 'more-context'
else return 'failure' £i

Since we need two contexts for the remove_useless algorithm, and because there are
two contexts when make context is called, it is attractive to have make_context to
remove useless items directly. Without it, the algorithm also works correct.

make_context (Self) /* add a context at end of working dir */

Up := outermost
if U,.type='context' then return fi
outermost := a new direction-most context set

add_shift_possibility(Self,Q}Un,'no_alternative')
/* The following call is optional */
remove_useless(Self)

select a tree (ShiftPoss)
7* returns one tree derived from the cyclic parse forest
/* that we created. This job is not trivial but outside the

/* scope of this algorithm */

If remove_useless is used, the objects 'item' and 'shift_possibility’ need an additional
'mark' field.

remove useless (Self) /* both contexts required */
make context (Self)
for each normal ItemSet do
for each Item in ItemSet de Item.mark:=false od
od

58

for each ShiftPoss in shift_possibilities
do ShiftPoss.mark:=false od

I, := leftmost context set
Ug := leftmost normal set
Up := rightmost normal set
R := rightmost context set

for each ShiftPoss in shift_possibilities
with ShiftPoss.sets.left=L or Up
and ShiftPoss.sets.right=R or Uy

do useful (ShiftPossg) od

shift possibilities := {SPeshift possibilities | SP.mark=true}

for each normal itemset Uy do
for each Item in Uy with Item.mark=false
and (Ttem.links.left=g or Item.links.right=@)
do remove(Item) od
od

useful (ShiftPoss)
if ShiftPoss.mark=true then return f£i /* already done */

SshiftPoss.mark := true

/* now mark the other shift possibilities that this ShiftPoss

/* needs to be created (all alternatives) and
/* the items that were used */

for each Alternative#'no_alternative' in ShiftPoss.alternatives

do
'N::=q@' := Alternative.production
for each ShiftPoss in Alternative.shifts
do useful (ShiftPoss) od
mark item with dottedrule N::=e+(in ShiftPoss.sets.left
mark item with dottedrule N::=X* in ShiftPoss.sets.right
od

remove {Item)
for Side in {'left','right'} do

for each Link in Item.links.Side do
LinkedItem := Link.arrow.Side
remove Link from LinkedItem.links.Side~?l
if LinkedItem.links.Side l=g
+hen remove (LinkedItem) f£fi

od

od
remove Item from Item.itemset

A notion of correctness

We have no proof of correciness for our algorithms. To give an idea of correctness, we

can show two things:

1. If the input string is in L(G), a shift possibility representing this can be made by

means of (some of) the actions.
2. This implementation does all possible actions.

Point 2 seems easy to proof: each action checks for the need to trigger other actions

due to his own action. Proving point 1 seems more complicated.

7 Optimizations

Goal of this chapter

In this chapter, we have a brief look at alternative solutions for several problems, and
look whether these ideas can improve our algorithms. This chapter considers the
following points:

s alternative ways to make an island parser
e relations with Tomita's parser
* optimizations for our island parser

Alternative ways to make island parsers

The first idea is to adapt the substring parser ([IRK90]) for island parsing. This is an
adapted Tomita parser, that invents symbols when a reduce beyond the stack
boundaries is attempted. The substring parser can parse only from left to right. If we
want to extend a parse to the right, we can simply go on parsing from the situation just
before the end-of-input symbol was scanned. If we want to extend a parse to the left,
we start a new substring parser at the left of the new context, and parse until we reach
the part that we already parsed. Then, we need to attach the parse stacks to each other.

The substring parser invents the missing symbols. But in our case, we may not invent
symbols, since the actual context may be given in a next call to extend. Instead, we
block the parsers that try to reduce beyond their stack boundary, until their stack is
large enough to do a complete reduction. This blocking causes troubles because the
blocked parsers cannot go on scanning the input. So when they get unblocked their
scanning position is wrong. Furthermore, we need to keep any peace of produced stack
in stead of only the stacks under the running parsers, to prevent double work. This
may cause high overhead. ,

If we unblock a parser, and after a few actions we can attach its stack to an existing
part, we need to replay all reduce actions ever done over that stack, now using the new
stack part we just connected.

A specification for this idea is not very difficult, but an efficient implementation for it
seems hard. Furthermore, this approach lacks the symmetry that we think to be
essential to the problem.

A second idea seems more practical: just start a left-to-right parser and use it when
more right context is provided, and start a right-to-left parser using the reversed
grammar when left context is provided. This approach has been used in [590], but an
algorithm is not worked out there. With this idea, we still have to keep track of the
reductions that are done over the boundary between these two parsers.

Although not clear from [S90], the parsers need to know at what position in the input
they started parsing after the last communication. This is because a communication
between two parsers is only allowed if the trees they already built cover the same part
of the input symbols.

59

With this, we get the following data structure for a parser:

object 'Parser’:

direction /* working direction, left or right */

startpos /* Start position after last communication */

otherstartpos /* Start position of other parser after last communication */
scanningpos /* our current scanning position */

stack /* our stack */

situation /* the things we're doing. usually 'parsing' */

We will not describe a complete algorithm, but only sketch some actions to give an
idea of what has to be done. We only describe the allowed actions, not the parsing
itself, as this is done in the same way as Tomita's parsing algorithm. stack is short for
Parser.stack. Initially, in each possible state S of the L—R table a left-to-right parser
with S on the stack is started, and similar for the R—L table, like in the substring
parser ({RK90]).

shift (Parser,state’)
push state' on stack

error (Parser)
remove Parser from set of active parsers

reduce {Parser,A ::= off) /* o, may be £. */
if there are at least |0f|+1 entries on stack
then

pop |ofB| entries from stack
push GOTO(top of stack,A) on stack

else
there are only |B| entries on the stack
biock (Parser,"A ::= asf")
/* The block function handles unblocks */
£fi

block (Parser,d ::= 0*SPB) /* One state is always on the stack */
/* A::=0*SP means that only |Bl+1 entries are on the stack */

/* and the parser tried to reduce according to A::=0SB */

Parser.situation := Situation
for each blocked Parser'
with Parser'.direction=(Parser.direction)~?

and Parser'.situation="A::=f lesa-l"

and Parser'.startpos = Parser.otherstartpos
do complete reduction of Parser and Parser', by using the

o of Parser', S and the P of Parser
if both parsers have no remaining context
and A=Start nonterminal of used grammar
then we found a successful parse fi
restart (Parser,A,Parser'.scanningpos)
restart (Parser',A,Parser.scanningpos)

od

N TR T R

5 Tl

E TNl U B R el

restart (Parser, Symbol,OtherParserStartPes)
if never restarted a parser after recognising Symbol
with the same scanningpos then
for esach State that can be reached directly by a Symbol
trangition
do make a new Parser’
with direction=Parser.direction,
startpos=scanningpos=Parser.scanningpos,
otherstartpos=0therParserStartPos,
stack contains only State,
gituation='parsing'
od
£fi

Some problems with this algorithm are:

» It is difficuit to see that it is correct.

e The synchronization is lost, because some parsers can be delayed while waiting for
the other side to give some missing parts. Because of this we need to keep parts of
the stack that could be removed in normal Tomita parsing, to prevent duplication
of work. This makes the algorithm waste some storage space.

Relation between Tomita's and our parser

Tomita made a parser that uses parse tables in stead of bare grammar ([T85]). It may be
attractive to use parse tables, since it is a way to do some preprocessing over the
grammar. What exactly is preprocessed by building a parse table? It mainly combines
uncertainties related with future input symbols. Say, we want to recognise an 5, but
both S=eab and S=eac can be used when we see the first a. In our case, we shift both
items. Tomita's table catches this case in one, because there is a state in his table
representing that both S=a*b and S=aec are applicable.

Can we adapt this idea for our own parser? It seems hard to do so. The problems we
encountered are caused by the need to parse in two directions, while Tomita's idea
basically works with extension to one side. We have no good ideas to solve this

probiem.

Optimization ideas for our island parser

There are a number of possible optimizations and attempts for optimization for our
parser. We will give a short overview, and then work out the last two in more detail.

1. Because a link is a reflection of a shift possibility, the link can reuse the sets object of
the shift possibility.

2. We expect that many optimizations as described in [GHR80] can be applied to our
aigorithm.

3. In the algorithm for removing useless items, it is possible to use a new mark in
stead of deleting all old marks.

61

62

4. In our shift algorithm, a check is done whether the item is complete, by first looking
in the working direction. It is inefficient to use the all-paths scanning function
'shifts_to- complete’ in this case, since there will be at most one link from an item
in the outermost set in the working direction. Furthermore, if something is
returned, the 'endset' of the returned shift-to-complete object is not interesting,
since it always will be outermost. An algorithm that returns 'direction-complete’ or
'not direction-complete’ would be sufficient.

5. A context is basically the same in all cases. Making the context implicit might
improve the performance.

6. Because of the way we store parse trees by storing alternatives in the shift
possibilities, the space complexity may be exponential in the number of input
symbols. This is the case with very ambiguous grammars. We have an idea to solve
this problem, by improving the data structure for storing parse trees. We expect that
this will also improve the performance of the parser in general, since we do not
need to build the alternative-objects.

An implicit context

The idea is implemented by making a special link indicating that a link to a context is
ment. This way, we do not need to make the context itself. If we use such an implicit
context, we still need to do the same actions as in the case that a context was present.
Therefore, we keep the idea that there are £ and ® contexts, but these are not
represented by itemsets. Shift possibilities to a context get a special pointer at the side
where they need to point to a context. It is easy to correct the specification, by doing as
if the link exists if there is a shift possibility to the context by extending the definition
for =»:

Ttem with dotted rule N::=aSep in U and Jshift possibility for S between £ and Uy
=
Ghostltem with dotted rule Ni:=+oSf = Item
and
Item with dotted rule Nz=c#SP in Uy and Jshift possibility for S between Uk and X
=
Item =» Ghostltem with dotted rule Nu:=aSpe

So we do as if there is a link when there is a corresponding a shift possibility. In the
usual case, this is not correct. But in the case that one side is a context set, it is correct.
This is so because in the island parser, a link to a context exists if and only if there is a
corresponding shift possibility. This can be seen in the following way: if, in the island

arser, a new shift possibility is made to a context (in this case, we are at work in the
context), all items that can make a link will do so. The other way round, if a shift
possibility is made from a context, any item that can shift to the context will be
uplinked, because the context contains all possible items.

\-'-'-'-'-’-'-'-'-'-'-'-'-'-'-"-'-'-'-'-

It is less easy to implement this idea. The only working solution we know is to
'reconstruct’ (in an implicit way) the context that is missing, and do the actions as if it
were there. We will describe what has to be changed in our parser to use implicit
contexts,

new: no context has to be made. The 7T shift possibility between £ and Up now does not
result in a link to a context.

extend: stays the same.

set_direction: in stead of testing for Direction-most set to be a normal set, we need to
check for the existence shift possibilities to £ or &,

predictor: stays the same.

add: stays the same.

add_shift_possibility: if FromSet is a context set and the ShiftPoss did not yet exist, we
only need to shift all items from the context to the outermost set. No link has to be
made, since the shift possibility represents the links. The algorithm now becomes:

add_shift_ possibility {Self,S,FromSet,Alternative)
/* Make shift poss. for S between FromSet and outermost */

Ends := a new ends-object
Ends.direction™l := FromSet
Fnds.direction := outermost

find in shift possibilities a ShiftPoss with
sets=Ends and symbol=S
if ShiftPoss is found then
add Alternative to ShiftPoss.alternatives
/% it existed already so no check for items using it */
alse
/* create new shift poss and check who uses it */
ShiftPoss := a new shift possibility object with gymbol=5,
sets=Ends, alternatives={ Alternative }
add ShiftPoss to shift possibilities

if outermost = a context then
/* we made an implicit link. */
if FromSet = a context then return f£i

/* all items shifting an S now are right-cplt */
/* check if they are left-complete */

for each Item N::=0¢*SB in FromSet do

CompleteToLeft :=
shifts_to_pomplete(Item,direction'l)
for each ShiftToComplete in CompleteToLeft do
add_shift possibility
(Self,N,ShiftToComplete.endset,
'no_alternative')
/* alternative not clear: a part of the
/* parse has been invented implicitly */
od
od
elseif FromSet = a context then

for each DottedRule N::=0gSef with N::=asP a
production of G
do add(Self,DottedRule} od
elsea
/* normal case: check if new links caused */
Items := all items in FromSet having a dotted rule

with * directly at direction of a symbol=3
for each Item in Items
do shift (Self,Item,ShiftPoss) od
£i
fi
shift: we only call it for shift possibilities between two normal sets. Therefore, it stays
the same.
shifts_to_complete: Now, we also need to check for shift possibilities to a context that
can replace a normal link. In stead of ShiftsToComplete=J we set
if there is a shift possibility between Direction context
and Item.itemset
then ShiftsToComplete := a set containing
a shift-to-complete-object with shiftlist=empty list,
endset=Direction context,
else ShiftsToComplete := &
£fi
decide_result: stays the same.
make_context: stays nearly the same, but no context set has to be made.

What do we gain? In shifts_to_complete, we can stop following links when we find a
shift possibility to the context, in stead of going on following arrows. But since the
search path along the arrows does not split any more in the context, and the usual
grammar rules are not very long, the gain seems marginal.

Something can be gained from add_shift_possibility, because we can precompute
which items can use a certain shift possibility. But if in the old situation the items are
sorted on the symbol that they want to shift, the same gain can be archived there.

Concluding, this algorithm will be slightly faster, but the gain is not very high.

Efficient parse iree storage

We expect the following optimization to give better improvements of the
performance. As noted before, our way of storing parse trees may need exponential
space {our algorithm runs in exponential time in that case). We made another way to
store parse trees, such that parse trees always fit in space O(n3).

The idea is to annotate at each item the sets that contain linked left- and right-
complete items. In an example picture, this looks like (a). In this picture, only the sets
containing right-complete items are annotated. The left-complete items can be
annotated at each item in the same way.

When we make a new link, this data has to be updated. This can be done as follows:
all items at the left side of the new link now also can reach the right-complete items of
item B directly at the right of the link, so we pass the sets containing a right-complete
item (these are annotated in B) to the left. The same holds for the items at the right
side of the link, which can also reach the left-complete items annotated at the item
directly at the left of the new link.

How can we derive a parse tree from this annotation? Take the picture of (a). If we
want a parse tree for S that covers all input symbols, we start looking for an item

S::i=eq in set O that promises to reach set 3 (has 3 in its annotated sets). In our case, only
S::=eSS can be chosen, but if there are more possibilities, we have an ambiguity. So we
choose S::=¢SS. Now,we want to find a way to reach set 3. Therefore, we check which
jtems at the other side of outgoing links still promise to reach set 3. In our case, the
items S::=5%S in 1,2 and 3 do so. We choose one of these, say the one in 2. This item
still is not right-complete, so we again check which links can be followed. This time,
only one link brings us to an item reaching set 3 (the 5:=5S# in 3), so we have no real
choice. We follow that link, and are in a right compete item, so we are ready. But with
following the links, we did not yet reconstruct the subtrees, in a picture, we have

found a parse tree like (b).

Si '52 53
(b}

The ?? trees are unknown parts of the tree. But we can be sure that these parts exist,
otherwise the S::=¢SS would not have these links. So the ?? trees can be reconstructed

in the same way as the main tree. The left tree is reconstructed by looking for an 5:=+a
in set 0 that promises to reach set 2, the right tree by looking for an 5:=¢a. in set 2 that
promises to reach set 3.

With this idea, its gets harder to reconstruct a parse tree from the data structure.
Producing a non-leaf node in the tree may take O(nlGIl) work, in very ambiguous
grammars. But this seems much better then exponential space storage of the trees.
Maybe the work for each non-leaf node can be lowered by not only annotating which
sets can be reached, but also along which links they can be reached.

With this notation, we don't really need shift possibilities, since we can easily see

what shift possibilities exist for S by looking at S::=¢ items.

65

8 A more efficient implementation

Definitions

This chapter contains a specification and an impiementation that realizes a more
efficient way to store parse trees. The idea was described in the last section of the

previous chapter.

For convenience, we define the = direction relation, similar to the = relation:

Item “¥right ltem' & Item = [tem’
Item =Peft [tem' & Item' = Item

In the brief description that we gave in chapter 7 for efficient parse tree storage, we
already saw that each item directly maintains the sets containing uplinked left- and
right-complete items. For a specification, it seems more convenient to make a kind of

relation. Therefore, we define a relation = direction’

Item Dright Itemset > Sltem’ with dotted rule N=a* in Itemset: Item =" Item'
Item)eft ltemset <& Jltem’' with dotted_rule N=eq in Itemset : Ttem'=»" Item

Note that the @ ¢ relation is equivalent to the links Earley makes. The ©right is the
equivalent relation for right to left parsing. Making shift possibilities seems waste of
time, since we know that there is a shift possibility for N between A and B if and only
if there is an Item with dotted rule N=+o in A with Item = B. Therefore, we remove

the shift possibilities from the scenery.
With the © relation, it is easy to reconstruct a parse tree from the parser situation

itself, as shown in the example of chapter 7.

We don't make shift possibilities, and no alternative-objects, which was what we
aimed for. Because of this, we also do not need to remember for each link how it was
made. But then, a link would only consist of a left and a right side. In this case, we can

also make the link directly, in stead of making a special link object.
There are at most [G! items, and at most n @ links from each item, so there are at

most nlGl links to be checked when we look for a shift possibility. Since there are
O(n2|Gl) shift possibilities in the old situation, this is an improvement.

A problem is caused by removing the shift possibilities: we can not notate a terminal
shift possibility explicit.Therefore, we need to handle the shift of terminals implicit.

A Specification

With these relations, we can specify the new parser actions as follows. As in the
previous parser, new items can only be added to Outermost.

67

new {(Grammar)
start in an empty situation

Direction := 'right'

G := Grammar /* for later reference to G */
L := make a context set

Outermost := a new itemset at right side of L

add all possible dotted rules of G to Cutermost
add_shift (L, T)

extend (Xj..Xn,Direction, TopNonterminal)

set_direction{Direction)
for 1<k<n with k counting in Direction do

U := OCutermost
Qutermost := a new Direction-most 'normal' itemset

add_shift (U, Xk)
while an action is possible do action od

od
return decide_result(TopNonterminal)

The actions are as follows. They are mainly concerned in making new links/relations
between items.

shifter /* U is an arbitrary set */
if JItem in set U with wants_to“shift(Item.dotted rule) =3

and JUsefulltem in U
with dotted rule 'S::=a' with e+ at Direction~1
and Usefulltem pjirection Outermost

then shift (Item) £fi

completer /* now only passes the = relation */
if 3dir,Item,Item',Itemset
with Item =$air Item' and Item’ 24ir ItemSet
then Item =4ir ItemSet fi

predictox
if JItem in Outermost with wants to_shift(Item.dotted rule)=N

and N::=y is production of G
then add('N::=y' with e« at Direction™l) £i

wants_to_shift (DottedRule) /* help function */
Teturn the symbol at the Direction side of »

in DottedRule, or € if there is no such symbol

ghift (Item) /* shift an item to outermost */

ShiftedItem :=
add (Item.dotted rule with moved 1 symboel to Direction)

Item =pirection ShiftedItem

68

add_shift (FromSet, S)
for each Item in FromSet
with wants_to_shift(Item.dotted_rule}=35
do shift(Item) od
while an action is possible do action od

add (N::=oef)
Item := find an item with dotted rule N::=*B in Outermost
if Item not found
then add Item with dotted rule N::=defJ to Outermost

if o=¢ then Item j1gfr Outermost fi

if P=t then Item Dright Outermost £i
fi
return Item

set_direction(Dir) /* set new Dir */
if not Dir-most itemset is a normal set then
/* watch out! the variable Dir#Direction! */

add a Direction-most context set if not yet present
remove_pontext(Dir)
Qutermost := Direction-most itemset
Direction := Dir

£1

remove context (Side) /* remove Side context */
for each Item in Side context
do retract all Item =Pgjgde ! Item' relations od
/* This implies retraction of = relations! */
remove Side context

decide result (S)

Up := lefmost normal set
Unp := rightmest normal set
if there is an Item in Uy with dotted rule S ::= <O

and Item ®right Un
then return select_a_tree(Item)
else /* no accept. Find tree that uses some context */

make a direction-most context set

I := left context set

R := right context set

if there is an Item in L

with (L ':D:r:ight Unp ©r L Qright R)

or there is an Item in Ug with Item “right R
then return 'more-context'’

else return 'failure' fi

An implementation

Preventing double work gets harder because we dropped the shift possibilities. When
add_shift is called, we need to find out if the shift between FromSet and outermost for
S was made before, to prevent shift from adding a link twice, and to prevent

S W W Y OO e W OE RO EOw

duplication of work. We can not find out about it by checking all the items in FromSet

of the form S:u=eq. (in the left-to-right case) whether they have a = link to Outermost.
The reason is that the creation of such a link causes a call to new_shift. We also

cannot find out by looking for items of the form Nu:=e5p in FromSet, whether they
have a = link to some item in outermost. If this is the case, new_shift was called
before, but it is possible that shift already has been called, but no such link has been
made yet. This can be the case if add_shift has to add another item before it can make
the link, and the add of that other item causes another call to shift. To solve the
problem, we temporary store the shifts that are done to the context set. When a new
outermost set is created, we can forget the old shifts that are done, because only actions
on the outermost set are allowed. The shifts made since the last creation of an
outermost set are stored in the 'created_shifts’ field of ParserObject. In Chapter 3, a

Lisp implementation is given.

object 'ParserObject’:

itemsets /* a list of our itemsets */

direction /* the direction we're currently working in */
outermost /* the direction-most itemset=the only changing set */
G /* the grammar */

created_shifts /* list of tuples of the form <FromSet,ShiftedSymbol> */

object 'itemset":

items /* a set of items */
type /* ‘normal’ or 'context' */
object 'ends":
left
right
object 'item'
dotted_rule
links /* the links we have, an ends-object */
completes /* ends-object: the sets with uplinked x-complete items */
itemset /* the itemset this item is in */

We have the two following methods for parsing:

new (Grammar) '
Self := a new ParserObiject, with G=Grammar, directicn='right',

itemsets=empty list
L := add_context (Self)
new__outermost__set (Self)
add dotted_rules {(Self)
addﬂshift(Self,L,T)
return Self

extend (Self,Xi..Xn,Direction, Symbol)
set_direction(Self,Direction)
for 1<k<n with k counting in Direction do
U := cutermost
new_outermost_set (Self)

69

add shift (Self,U,Xy)

od
return decide_;esult(Self,Symbol)

Other functions we need are as follows. We use the same conventions as in the
previous algorithms.

add shift (Self,FromSet, S)
/* prevent double work */

if there is a <FromSet,Symbol> tuple in created shifts

with Symbol=S then return £i

add <FromSet,S> to created shifts

Ttems := set containing all Items in FromSet.items
with wants_;o_shift(Item.dotted_rule,direction)=s

for each Item in Items do shift (Self,Item) od

shift (Self,Item)

/* shift does not check for existing links */

/% So only call when the link does not yet exist */
ShiftedItem := add(Item.dotted_rule with ¢ moved 1 symbol

to direction)

add ShiftedItem to Item.links.direction
add Item to ShiftedItem.links.directien™?
complete(Self,Item,ShiftedItem.completes.direction,direction
complete(Self,ShiftedItem,Item.completes.direction‘l,direction)

_l)

Complete passes completes-data to uplinked items. When a direction-l-complete item
gets ReallyNew complete sets, add_shift is called to process the new 'shift possibility’.

complete(Self,Item,NewCompleteSets,PassDirection)
/* ReallyNew := completes that are new for this item */

ReallyNew := NewCompleteSets - Item.completes.PassDirection'1

if RealiyNew=Z then return fi .

add ReallyNew to Item.completes.PassDirection”

DottedRule := Item.dotted rule

if wants_to_shift(DottedRule,direction‘l)=E then
/* then we made a new shift possibility */

add_shift (Self, Item.itemset,
nonterminal produced by DottedRule)

1

alsa
for each LinkedItem in Ttem.links.PassDirection

do complete(Self,LinkedItem,ReallyNew,PassDirection) od
£i

add (Self,DottedRule)
Item := find an item with dotted rule=DottedRule

in outermost.items

if Ttem not found then
Item := a new item—-cbject, with dotted_rule=DottedRule,

links=new ends-object with left=right=@,
completes=a new ends-object with left=right=2,
itemset=outermost

add Item to outermost.items

if wants_ﬁo_shift(DottedRule,direction'1)=8

then Item.completes.direction‘1 := {outermost} £i

\----mm-‘-“—i'—i’-’-’-'—

/* Now do possible actions */
S := wants_;o_shift(DottedRule,direction)
if S#t then
if 8 is a nonterminal then
/* terminals are handled implicit */
/* check if Item can shift its nonterminal */
if find shift (outermost,5,

outermost,direction}#€

then shift(Self,Item) fi
/* do predict actions */
for each S::=Y in G do
do add(Self,S::=y with ¢ at direction~!) od
£i
alse
ccmplete{Self,Item,ioutermost},direction‘l)
fi
£fi
return Item

set direction (Self, Direction)
if not Direction-meost itemset of itemsets is 'normal' then

make context (Self)
remove context (Self, Direction)
outermost := Direction-most itemset of itemsets
direction := Direction
£i

remove_context (8elf,Side)
Context := Side-most itemset of itemsets
for each Item in Context.items do
for each LinkedItem in Items.links.Side™! de
uncomplete (LinkedItem,Context, Side)
remove Item from LinkedItem.links.Side
od
od
remove Context from itemsets

uncomplete (Item,Context,Side) /* retract context annotations */
if Context & Item.completes.Side then
remove Context from Item.completes.Side

for each LinkedItem in Item.links,Side™l
do uncomplete (LinkedItem,Context,Side) od

fi

new outermost_set (Self)
outermost := a new itemset with items=g, type='normal’
Self.created shifts := @&

add outermost at direction side of itemsets
return outermost

add dotted_rules(Self) /* add all dotted rules to outermost */
for each possible DottedRule of G do add(Self, DottedRule) od

adq_context(Self}
Context := new_putermost_set(Self)
Context.type := 'context'
add_dotted_rules(Self)
add_shift(Self,Context,ﬂ

raturn Context

make context (Self) /* make direction-most context if not present */
if outermost.type = 'context'
then return
else U, := outermost
add_context(Self)
add_shift(Self,Un,T)

fi

decide result (Self,S)
Up := lefmost normal set in itemsets
U, := rightmost normal set in itemsets
Item := find_shift(Uo,S,Un,'right')

if Item#nil
then return select_a_tree(Self,S)
else /* no accept. Find tree that uses some context */

make_context(Self)

L := left context set

R := right context set

if find_shift(L,P,Un,'right')¢nil
or find_shift(L,?,R,'right')inil
or find_shift(Uo,P,R,'right')xnil
then return 'more-context'

else return 'failure' fi

fi

£find shift (StartSet, S,EndSet,Direction)
/* find an S-producing item in StartSet that can reach */
/* Destination in Direction, or nil if no such Item exists */

if there is an Item in StartSet
with dotted rule 'N=0' with * at Direction~! and N=S

and EndSet € Item.completes.Direction

then return Item
else return nil £i

L- . B B & B B B E B OEOE TR OERECEREECRERETRERTETET Y

9 An implementation in Lisp

LeLisp introduction

This chapter contains an implementation of the algorithms given in this theses. The
algorithms are written in LeLisp [L90]. This Lisp dialect has a number of features that
differ from normal Lisp. We will explain these differences first. A semicolon (')
indicates that the rest of the sentence is no Lisp code but a comment, e.g.

; this is an island parser.

(defvar #:sys-package:colon 'ParserCbject)

causes all atoms starting with a colon (:) being prefixed by '#:ParserObject’. This way, it
is easy to prevent name clashes with other modules.

(defstruct :ends left right)

This is a definition of a data structure, similar to a Pascal record. This example defines
an ends-object containing a field named ‘left' and a field named 'right'. These fields
are typeless. We call an instantiation of such a data structure an object.

LeLisp has the following functions to manipulate objects. An object of type ends can
be created with (omakeq :ends). It is possible to initialize the fields immediately. For
example, we can put an ends-object in a variable named 'Link’, with the left field
initialized to 1, and the right field initialized to 2, in the following way:

(setg Link {(omakeq :ends left 1 right 2))

A field is read from an object by send-ing the field name to the object, as follows:
{send 'left Link)

A field can be changed into new value by providing that value as third parameter:
(send 'left Link 8)

It is also possible to call a function with the send function. For example

{send 'shift AParserCbject AnItem)

results in the following function call (AParserObject is of type #ParserObject, which is
prefixed to the 'shift’ function):

(#:ParserCbject:shift AParserObject AnItem)

If provided, the user-defined 'prin’ functions are used for printing an object.

Some functions that might be LeLisp specific:

{(mapcar Function List)

applies Function on each element in List, and returns the resulting list.

{any Function List)

does the following: if there is an Item in List for which Function applied to Item is not
nil, that Item is returned. If such an item does not exist, nil is returned.

{(progn S1..Sn)

evaluates the expressions s .. sp in sequence, and returns the value of sp-

We have halved the formats of the code, to save paper. Island parser is the first
version of the island parser. Improved island parser is the implementation of the
version of chapter 8. Help functions and Grammar functions are used by both parsers.

Performance

In this section, we give some performance comparisons. The lisp code was not
compiled. We used the Tomita parser of the ASF+SDF system [R92] for comparison.
The code for this system is compiled, so the comparison is not very fair. But the
difference will be a constant factor, so it gives some indication.

The first grammar is:

Eu=TI|E+T
Tu=PI|T*P
Pu=a
The performance with input string a(+a)™*a (n some natural) is (a):
100 f"f s Igland parser
ol :)
80 i — [mproved parses
. Ve
Time ~
(se0) ¢ > & Tomita parser
e
40 f
" '
20 v ”)‘Jﬁ
MW aranpone
 —
0 5 10 15 20 25 30 35 40

- e wE Y

e e ‘way waE B B W O W W W

o

| | .

" I——— I — N

The next grammar is:
An=x|xAx

The input string is x* with n odd.

The result is (b).

100 f
80 J
Time j
(sec) 60 f
40 Mgﬁ
7 /
0 5 10 15 20 25 30 35
()] n

Take the grammar:
Auw=xlAA
Again, the input string is x™.

The performance is picture (c). Note the sharp edge in the performance of the Tomita

parser. We can not explain this.

!

100
;ﬁ
80 Fi
Time 7
i
40 % '
20
A
_.”!:_f_;;_wﬁ/
o 5 10 15
(©

Now, we take the grammar
Az=AAlxle
With input string x®. We get picture (d):

20

40

——

76
100 l?
80 A—
Time fé
(sec) 60 i;
i
40 lgg /
20 / /
e v
0 5 10 15 20 25 30
(d) n

The last grammar we take has a very high ambiguity:
Ax=AAAAAAAAIlX]E
With input string x* we get picture (e):

100 /ig
80 i
Time !f

(sec) 60 7
40 s
//
20 i
P
a EE?‘:"WM If'_—f'/ e

0 1 2 3 4 5

(e) n

Although these grammars are not practical, they give an impression of the strengths
and weaknesses of our parsers. Our parser performs the worst in comparison with
Tomita when simple grammars are used. The difference is about a factor 10. Maybe the
compiler can improve the performance this much. The higher the ambiguity, the

more efficient is our improved parser.

'

Island parser

; an implementation of an island parser..
; Wouter Pasman, 020791.

(defvar #:sys-package:colon 'ParserObject)

; OBJECTS
(defstruct :ParserObject
itemsets
outermost

shift_possibilities
G

direction
id_count ; additional, for generating id's

(defstruct dtemset
print_id ; an id to ease printing
items

)fYPe

{ defstruct :ends
left
right
)
(defstruct :item
dotted_rule
links
itemset
mark ; for remove_useiess
)

(defstruct :link
arrow
shift_possibility
)

(defstruct :shift_possibility
symbol
sets
alternatives
mark ; for remove_useless

)

(defstruct :alternative
production
shifts

)

jesansussussrsss PRINTING FUNCTIONS ##¢ssesasinsnn

(de :ParserObject:prin (self)
(print " IslandParser:")
(mapcar "print (send ‘itemsets self))
(print " Shift Possibilities:")
(mapear 'print (send 'shift_possibilities self))
(print (send 'G self))
(‘print "outermost=" (:saveprin_id (send "outermost seif)))
(print "direction=" (send 'direction self))
)

(de citemset:prin (self)
(print (send ‘type self) " itemset " (:saveprin_id seif))
(mapcar 'print (send 'items self))

(de :saveprin_id (self) (if (eq self nil) 2" (send 'print_id self)))
; checks if object has an id. if not, ? is printed

(de :shift_possibility:prin (self)
(prin
"<" (:saveprin_id (send ‘left (send 'sets self)))
" " (send 'symbol self) " "

(if (send 'mark self) "+" "-")

(:saveprin_id (send 'right (send 'sets seif))) ">"

(de stem:prin (self)
(prin
"
(mapear
(lambda (Link)
(:saveprin_id (send 'itemset (send 'left (send 'arrow Link))))

)
(send 'left (send 'links self))
)

(send 'dotted_rule seif)
(if (send 'mark self) "+" "-")
(mapcar
(lambda (Link)
(:saveprin_id (send ‘itemset (send 'right (send ‘arrow Link))))
)
(send 'right (send 'links self))

(de link:prin (self)
(prin "link from "

(send 'dotted_rule (send 'left (send "arrow self)))

i "

(:saveprin_id (send 'itemset (send 'left (send 'arrow self))))

"to"

(:saveprin_id (send ‘itemset (send ‘right (send ‘arrow self))))
»

(de :PrintTree (ShiftPoss) (;print_tree ShiftPoss 0))

; PrintTree randomiy selects a tree from the cyclic parse forest
;andprintsit.lfthereisanmﬁmtenmbiplity,thel’dnﬂree

; may not terminate...

; it is only an extra function, to attempt to view the parse forest

(de :print_tree (ShiftPoss Indentatie)
; help function to process Indentation
(let (Alternatives Alternative)
(print
(makestring (* 2 Indentatie) 32)
(send 'symbol ShiftPoss)
)

(setq Alternatives (send ‘alternatives ShiftPoss))
; we are not interested in ? shift possibilities
(if (neq (send 'symbol ShiftPoas) D

(progn
; select at random an alternative and print its shifts

(setq Alternative (nth (random 0 (length Alternatives)) Alternatives))

(if (neq Alternative ‘no_alternative)
(mapaar
(lambda (Shift) (;print_tree Shift (1+ Indentatie)))
(send 'shifts Alternative)
»)
122

(eensssesnensnnnssrrrrntsNETHODS* 44 1etsrenersssnss

(de :new (Grammar)
(let (L. UQ Self)
(setq Self
{ omakeq ParserObject
G Grammar direction ‘right
outermost U0
id_count 100
itemsets nil
)
(setq L (-add_context Self))
(setq U0 (:new_outermost_set Self))
(:add_dotted_rules Seif)
(add_shift_possibility Self 7T L 'no_alternative)
Self
)

(de :extend (Self Text Direction Symbol)
(:set_direction Self Direction)
(let (Range U)
(if (eq Direction 'right)
(setq Range (range 1 (length Text)))
(setq Range (range (length Text) 1))

)
(foreach Range
(lambda (k)
(setq U (send "outermost Self))
(new_outermost_set Self)
(:add_shift_possibility Self (nth (1- k) Text) U 'no_alternative)
)))
(:decide_result Self Symbol)
)

;seesenssscesssenssQTHER FUNGCTIONSG*#+#sssessesnsensa
(de dnv (Direction) (if (eq Direction left) 'right ‘Teft))

(de mewid (self)
(send 'id_count self (1+ (send 'id_count self)))

)

(de :new_outermost_set (Self)
; returns new Dir-most set
(let (NewSet ItemSets)
(setq NewSet
(omakeq itemset items nil type ‘normal
print_id (concat 'I (newid Self))

)

(setq ItemSets (send ‘itemsets Self))
{ send 'outermost Self NewSet)

(send 'itemsets Self

78

(if (eq (send 'direction Self) 'right)
(append] ItemSets NewSet)
(cons NewSet ItemSets)
»
NewSet
»

(de :add_dotted_rules (Self)
; put all dotted rules in outermost set
(foreach
(send 'dotted_rules (send 'G Self))
(lambda (DottedRule) (:add Self DottedRule))
N

(de :add_context (Self)
; add_context adds a new outermost context set
; returns that set
(let ((Set (:new_outermost_set Seif)))
(:add_dotted_rules Self)
(send 'type Set 'context)
(:add_shift_possibility Self '? Set 'no_alternative)
Set
)

(de :direction-most (ItemSets Direction)

; returns the direction-most set

{ if (eq Direction 'right) (lastq ItemSets) (car ItemSets))
)

(de find_jtem (ItemList DottedRule}
; check if item with DottedRule is in ItemList
(any
(lambda (Item)
(if (equal (send 'dotted_rule Item) DottedRule)
Item
nil
)
TtemList
]

(de :append_at (Side List Elt)
(if (eq Side 'right)
(append1 List Elt)
(cons Elt List)
N

;--sn-.v-.-:»n--anvonnootHE LP FUNCTIONS*##reeesstssvnnssse

(de :set_direction (Self Direction)
(let
(Otherltem
(InvDir (inv Direction))
(Set (:direction-most (send 'itemsets Self) Direction))
)
(if
(eq 'normal (send 'type Set))
nil;dunothing,Setisnormal
(progn
(xmake_context Self) ; make_context if set not already present
; Set 2w the wrong sided context set
(setq Set (:direction-most (send 'itemsets Self) Direction))
; start with removing links to Set
(foreach (send 'items Set)
(lambda (Item)
(foreach (send InvDir (send links Item))
(lambda (Link) (remove_link Link))
1)
; remove shifts to Set
(send 'shift_possibilities Self
(filter (send 'shift_possibilities Self)
(lambda (Shift) (neq (send Direction (send 'sets Shift)) Set))
»
; remove the context set from the list of sets..
(send "itemsets Self (remq Set (send "itemsets SelH))

(send 'direction Self Direction)
(send 'outermost Self
(:direction-most (send ‘itemsets Self) Direction)
}220))

(de :remove_link (Link)
; removes a link, that is the pointers that are to this link
; easy, since a link has pointers to the items that have a link to the link
(let
({ LeftitemLinks (send 'links (send left (send 'arrow Link))))
(RightltemLinks (send 'links (send 'right (send ‘arrow Link))))
)
(send 'right LeftltemLinks (remq Link (send ‘right LeftltemLinks)))
(send 'left RightltemLinks (remq Link (send ‘left RightltemLinks)))
; now, no pointers exist to Link. It will be removed by the g.c.
»

(de :predictor (Self N)
(foreach (send 'predict_rules (send 'G Self) N (send ‘direction Self))

(lambda (DottedRule) (:add Self DottedRule)}
)2

(de :add (Seif DottedRule)
(let
(tem Alt S UsableShifts
(Outermost (send 'outermost Self))
(Direction (send 'direction Seif))
)
(setq Item (:find_item (send 'items Outermost) DottedRule)}
(if (eq Item nil)
(progn
(setq Item
(omakeq :tem dotted_rule DottedRule itemset Outermost
links (omakeq :ends left nil right nil)
»
(send 'items Outermost (cons Item (send 'items Outermost)))
(if (send 'is_empty DottedRule)
(progn
(setq Alt
(omakeq :alternative production (send 'remove_dot DottedRule)
shifts nil

N
(:add_shift_possibility Self (send ‘nonterminal DottedRule)
Outermost Alt
N
(progn
(setq S (send 'wants_to_shift DottedRule Direction))
(if (neq S nil)

(progn
(setq UsableShifts
(filter (send 'shift_possibilities Self)
(lambda (ShiftPoss)
(and
(match (send 'symbol ShiftPoss) S)
(eq (send (:inv Direction) (send ‘sets ShiftPoss))
Qutermost
N
(fareach UsableShifts
(lambda (ShiftPoss) (:shift Self Item ShiftPoss))
)
(if (is_nonterminal S) (:predictor Self 5))
M)
M)
Ttem
)

(de :get_shift (Self 5 Left Right)
; find one shift between Left and Right for S

(any
(lambda (ShiftPoss)
(if
(and
(eq (send leit (send 'sets ShiftPoss)) Left)
(eq (send 'right (send 'sets ShiftPoss)) Right)
(match (send 'symbol ShiftPoss) 5)
)
ShiftPoss
nil
n
(send 'shift_possibilities Self)
»

(de :add_shift_possibility (Self S FromSet Alternative)
(let
((Ends (omakeq :ends))
(Direction (send 'direction Self))
ShiftPoss ltems
)
(send (:inv Direction) Ends FromSet)
(send Direction Ends (send 'outermost Self))
(setq ShiftPoss
(get_shift Self § (send 'left Ends) (send 'right Ends))
)
(if (neq ShiftPoss nil)
(send 'alternatives ShiftPoss
(cons Alternative (send "alternatives ShiftPoss))
)
(progn
(setq ShiftPoss
(omakeq :shift_possibility
symbal S sets Ends alternatives (list Alternative)
))

(send 'shift_possibilities Self
(cons ShiftPoss (send 'shift, __poadbiliﬁe- Self))
)
(setq ltems
(filter (send 'items FromSet)
(lambda (Item)
(match
(send 'wants_to_shift (send ‘dotted_rule item) Direction)
S
NN
(foreach Items (lambda (Item) (:shift Self Item ShiftPoss)))

»nn

(de wshift (Self Item ShiftPoss)

(let
(L Links ToComplete ShiftedRule Newitem Production Symbol From Alternative

(Dir (send 'direction Self))
(InvDir ¢inv (send 'direction Self)))

L S N S T " T B B . B B B B B

(Arrow (omakeq :ends))
)

(setq ShiftedRule (send 'shift (send 'dotted_rule Item) Dir))
(setq Newltem (:add Seif ShiftedRule))
(send Dir Arrow Newitem)
(send InvDir Arrow Item)
(setq L (omakeq link arrow Arrow shift_possibility ShiftPoss))
(setq Links (send ‘'links (send 'left Arrow)))
{ send 'right Links (cons L (send 'right Links)))
(setq Links (send 'links (send 'right Arrow)))
{ send "eft Links (cons L (send 'left Links)))
(setq ToComplete (omakeq :ends))
(send Dir ToComplete
(shifts_to_complete (send Dir Arrow) Dir)
)
(if (eq (send Dir ToCompiete) nil)
nil ; then return
(progn
(send InvDir ToComplete
(:shifts_to_complete (send InvDir Arrow) InvDir)

(setq Production (send 'remove_dot (send 'dotted_rule Item)))
(setq Symbol (send 'nonterminal Production))
(permute
(lambda (LeftToComplete RightToComplete)
(if (eq Direction 'right)
(setq From (send 'endset LeftToComplete))
(setq From (send ‘endset RightToComplete))
)
(setq Alternative
(omakeq :alternative production Production
shifts
(append
(send 'shiftlist LeftToComplete)
(list ShiftPoss)
(send ‘shiftlist RightToComplete)

Y
(:add_shift_possibility Self Symbol From Alternative)
)
(send 'left ToComplete)
(send 'right ToComplete)
N

(defstruct :shift-to-complete
shiftlist
endset

)

(de :shifts_to_complete (Item Direction)
(let
(ShiftsToComplete ShiftToComplete LinkShift ToCompeteA ShiftsToCompleteA
(InvDir (dnv Direction))

}
(if (eq (send ‘wants_to_shift (send 'dotted _rule Item) Direction) nil)
(progn
(setq Shift ToCompiete
(omakeq :shift-to-complete shiftlist nil
endset (send 'itemset Item)

1)
(list ShiftToComplete)
)

(progn
(setq ShiftsToComplete nil)
(foreach (send Direction (send 'links Item))
(lambda (Link)
(setq ShiftsToCompleteA
(:shifts_to_complete
(send Direction (send ‘arrow Link))
Direction
»
(setq LinkShift (send 'shift_poesibility Link))
f h ShiftsToCompleteA
(lambda (ToCompleteA)
(send 'shiftlist ToCompleteA
(append_at InvDir (send 'shiftlist ToCompleteA) LinkShift)

M)
(‘setq ShiftsToComplete (append ShiftsToCompleteA ShiftsToComplete))

1)
ShiftsToComplete
NN

(de -firstnormal (ItemSets)
; returns first set if it is normal, else the second.
(if (eq (send 'type (car ItemSets)) ‘normal)
(car ItemSets)
(cadr ItemSets)
]

(de :decide_result (Self Symbol)
(let (U0 Un ItemSets Shift)
(setq ItemSets (send ‘itemsets Self))
(setq UQ (:firstnormal ItemSets))
(setq Un (:firstnormal (reverse ItemSets)))
(setq Shift (:get_shift Self Symbol U0 Un))
; if we found a Shift, then there is a shift poss we need
(if Shift
Shift ; no select_a_tree, just return the shift poss

(progn ; check for failure or more-context
(:make_context Self)
(setq ItemSets (send. "itemsets Self))
(setq L (car JtemSets))
(setq R (lastq ItemSets)}
(if
(or
(:get_shift Self '? L R}
(:get_shift Self ? L Un)
(:get_shift Self ? UO R)
)
‘more-context
‘failure

N

(de mmake_context (Self)
(let ((Un (send ‘outermost Self)))

(if (eq (send 'type Un) ‘context)
nil ; then return
(progn
(:add_context Self)
(:add_shift_possibility Self '?T Un 'no_alternative)
; optional: (:remove_useless Self)

»nn

1 jtematterereerese

f ions to rem

(de :remove_useless (Self)
(let

(L UO Un R Reverseltemsets
(ItemSets (send 'itemsets Self))
(Shifts (send ‘shift_possibilities Self))
)
(:make_context Self)
(foreach ItemSets
(lambda (ItemSet)
(if (eq (send 'type [temSet) ‘'normal)
(foreach (send 'items ltemSet) (lambda (Item) (send ‘mark Item nil}))}
m
(foreach Shifts (lambda (Shift) (send ‘mark Shift niD)))

(setq L (car ItemSets))
(setq U0 (cadr ItemSets))
(setq R it (reverse ItemSets))
(setq Un (cadr Reverseltemsets))
(setq R (car Reverseltemsets))
(foreach Shifts
(lambda (ShiftPoss)
(if
(let ({Sets (send 'sets ShiftPoss)))
(and
(let ((Left (send 'left Sets)))
(or (eq Left L) (eq Left U0))

)
(let ((Right (send 'right Sets)))
(or (eq Right R) (eq Right Un)}
m
(:useful ShiftPoss)
1))
(send 'shift_possibilities Self
(filter Shifts
(lambda (ShiftPoss) (send 'mark ShiftPoss))
»
(foreach ItemSets
(lambda (Uk)
(if (eq (send 'type Uk) ‘normal)
(foreach (send ‘items Uk)
(lambda (Item)

(if
(let ((Links (send 'links Item)))
(and
(eq (send ‘mark Item) ail)
(or
(eq (send ‘left Links) nil)
(eq (send 'right Links) nil)
m

(xemove Item)

)
NN

(de :useful (ShiftPoss)
(if (send 'mark ShiftPoss)

nil ; we're not happy with returns in lisp
(progn
(send 'mark ShiftPoss t}
(foreach (send 'alternatives ShiftPoss)
(lambda (Alternative)
(if (neq Alternative 'no_alternative)
(let ((Production (send 'production Alternative)))
(foreach (send 'shifts Alternative)
(lambda (ShiftPoss) (;useful ShiftPoss))
)
(send ‘'mark
(:find_item (send 'items (send 'left (send ‘sets ShiftPoss)))
(send 'put_dot_at_start Production 'right)
)
t
)
(send 'mark

79

80

(find_item (send 'items (send 'right (send 'sets ShiftPoss)))
(send 'put_dot_at_start Production ‘left)
)
t
M
NN
)}

(de xemove (Item)
(let
({ Links (send 'links Item)}
(ItemSet (send 'itemset Item))

)
(foreach (list 'left 'right)
{ lambda (Side)
(let ((InvSide (:inv Side)))
(foreach (send Side Links)
(lambda (Link)
(let ((LinkedItem (send Side (send 'arrow Link))) HisLinks}
(setq HisLinks (send 'links Linkedtem))
(send InvSide HisLinks (remgq Link (send InvSide HisLinks)))
(if (eq (send InvSide HisLinks) nil)
(Temove LinkedItem)
NN
(send 'items ItemSet (remq Item (send 'items ItemSet)))
)

Improved island parser

; improved island parser, 040791 W.Pasman

(defvar #sys-package:colon 'ParserObject)

; OBJECTS
(defstruct :ParserObject

itemsets

direction

outermost

G

id_count

created_shifts ; shifts made to outermost set: (FromSet.Symbol)
)

(defstruct :itemset
items

id ; for reference to sets while printing
}

(defstruct :ends
left
right
)
(defstruct dtem
dotted_rule
links
completes
itemset ; just for print purposes
}

;"”"“"""”PRINTING FUNCTIONS *t+tessnssssses

(de 5id (AnltemSet) (if (eq AnltemSet nil) ‘? (send ‘id AnitemSet)))

(de ParserObject:prin (self)
(print " IslandParser:")
(mapcar 'print (send 'itemsets self))
(print "outermost=" (:id (send 'outermost self)))
(print "direction="(send 'direction self))
(print (send ‘G self))
)

(de :itemset:prin (ItemSet)
(print(send'typel Set) " i t " (:id ItemSet))
(mapaar 'print (send 'items ItemSet))

)

(de :item:prin (Item)
(prin
(may
(lambda (Otherltem) (:id (send 'itemset Otherltem)))
(send 'left (send 'links Item))
)
(mapear (lambda (Set) (id Set)) (send 'left (send ‘completes Item)))
(send 'dotted_rule Item)
(mapcar (lambda (Set) (dd Set)) (send 'right (send ‘completes Item)))
(mapcar
(lambda (Otherltem) (:id (send 'itemset Otherltem)))
(send ‘right (send 'links Item))
)
»

(de :PrintResult (Result)
(if (eq (type-of Result) ‘cons)
(let (ItemSets (Self (car Resuit)) (Symbol (cdr Result)))
(setq ItemSets (send ‘itemsets Self))
(:PrintTree
(:firstnormal ItemSets) Symbol (:firstnormal (reverse ItemSets)) 0
))
(print Result)
)
nil
}

(de :PrintTree (StartSet Symbol EndSet Depth)
; print one of the ways to produce Symbol with symbois between
; Start and EndSet
(print (makestring (* 2 Depth) 32) Symbol)
; if Symbol is terminal, then we cannot produce it.
; furthermore, it is not useful to explain how a shift
; can be produced in a context
(if

(or

T O T O O S ' T S O e T O OEE O ‘sE EE O OEE O OeE e ' .

{ not (is_nonterminal Symbol))
(and (eq (send 'type StartSet) ‘context) (eq StartSet EndSet))
)
nil ; 30 we print nothing more
(let (Alternatives Alternative)
; else we choose a useful production rule (item)
(setq Alternatives
(filter (send 'items StartSet)
(lambda (Item)
(let (DottedRule (send 'dotted_rule Item)))
(and
(match (send 'nonterminal DottedRule) Symbol)
(eq (send 'wants_to_shift DottedRule ‘left) nil)
(memberq EndSet (send 'right (send 'completes Item)))
I220)]
(setq Alternative (nth (random 0 (length Alternatives)) Alternatives))
(:GetToEnd Alternative EndSet Depth)
M)

(de :GetToEnd (Item EndSet Depth)
(let
(ToShift UsefulLinkedItems Chosenitem
(DottedRule (send 'dotted_rule Item))

)

(setq ToShift (send 'wants_to_shift (send 'dotted_rule Item) 'right))
; if we are at the end, stop it

(if (eq ToShift nil)

nil

; else follow links until we reach right-complete item in EndSet
; first find useful links: linked items that promise to reach EndSet
(setq UsefulLinkedItems
(filter (send 'right (send 'links Item))
(lambda (LinkedItem)
(memberq EndSet (send 'right (send 'completes LinkedItem)))
)))
; choose one of these links
(setq Chosenltem
(nth (random O (length UsefulLinkedlItems)} UsefulLinkedltems)
)
;andprinthcwthelinkwasmade
(:PrintTree
(send 'itemset Item) ToShift (send 'itemset Chosenltem) (1+ Depth)
)
; and print the rest of the links
(:GetToEnd Chosenltem EndSet Depth)
)

. * £33 *
JeRRRRRRSENERIGLILLY sren [ETHODS*esnrvsnsnnssssatss

(de mew (Grammar)
(let (SelfL)
(setq Self
(omakeq :ParserObject
G Grammar direction 'right id_count 1 itemsets il

M)
(setq L (tadd_context Self))
(:new_outermost_set Self)
(:add_dotted_rules Seif)
(:add_shift Self L "7T)
Self
»

(de :extend (Self Symbols Direction Symbol)
(when Symbols ; check if there is really work to do
(let (Range U)
(:set_direction Self Direction)
(if (eq Direction 'right)
(setq Range (range 1 (length Symbols)))
(setq Range (range (length Symbols) 1)

(setqU (send 'outermost Self))
(:new_outermost_set Self)
(:add_shift Self U (nth (1- k) Symbols))
)
(:decide_result Self Symbol)
)

jesessesessssssstesTHE REAL WORK*##essnessssiun

(de :add_shift (Self FromSet S)
(if
(any
(lambda (DoneBefore)
(and (eq {car DoneBefore) FromSet) (match (cdr DoneBefore) S))

)
(send ‘created_shifts Self)
)
nil ; return: done before
(let (Items (Direction (send 'direction Self)))
(:add_eit 'created_shifts Self (cons FromSet 5))
(setq Items
{ filter (send 'items FromSet)
(lambda (Item)
(match S
(send 'wants_to_shift (send 'dotted_rule Item) Direction)

81

NN
(foreach Items (lambda (Item) (:shift Self Item)))
)

(de :add_elt (ListField Object Item)

; add Item to the Object.ListField

(send ListField Object (cons Item (send ListField Object)))
)

(de :rem_elt (ListField Object Item)

; remove Item from Object.ListField

(send ListField Object (remq Item (send ListField Object)))
)

(de shift (Self Item)
(let
((direction (send 'direction Self))
invdir Shifteditem

)
(setq invdir (:inv direction))
(setq ShiftedItem
(:add Self (send 'shift (send 'dotted_rule Item) direction))

)

; check for debug purposes!

(if (memberq Shiftedltem (send direction (send 'links Item}))
(error ":shift "shift twice” Item)

)

(:add_elt direction (send 'links Item) Shiftedltem)

(:add_elt invdir (send 'links Shiftedltem) Item)

(:complete Self
Item (send direction (send 'completes ShiftedItem)) invdir

)
(:complete Self
Shiftedltem (send invdir (send "completes Item)) direction
)
)

(de :complete (Self Item NewCompleteSets PassDirection)
(let

(ReallyNew
(InvPassDir (inv PassDirection))
(Completes (send 'completes Item))
(direction (send 'direction Self))
(DottedRule (send 'dotted_rule [tem))

)

(setq ReallyNew (subtract (send InvPassDir Compl) NewCompleteSet:))

(if (eq ReallyNew nil)
nil ; return
(send InvPassDir Completes
(append ReallyNew (send InvPassDir Completes))
)
(if
(eq (send 'wants_to_shift DottedRule (:inv (send 'direction Self))) nil)
(:add_shift Self (send 'itemset Item) (send ‘nonterminai DottedRule))
(foreach (send PassDirection (send 'links Item))
(lambda (LinkedItem)
(:complete Self Linkedltem ReallyNew PassDirection)
))
NN

(de :add (Self DottedRule)
(let
((outermost (send 'outermost Self))
(direction (send 'direction Seif)}
Item 5 ItemA invdir
)
(setq invdir (inv direction))
(setq Item (:find_item DottedRule outermost))
(when (eq Item nil)
(setq Item
(omakeq stem
dotted_rule DottedRule
links (omakeq :ends left nil right nil)
completes (omakeq :ends left nil right nil)
itemset outermost
)
(:add_elt ‘items outermost Item)
(if (eq (send ‘wants_to_shift DottedRule invdir) nil)
(send invdir (send 'completes Item) (list outermost))

)
(setq S (send 'wants_to_shift DottedRule direction))
(if (neq S nil)
(when (is_nonterminal S)
(if
(:find_shift outermost 5 outermost direction)
(:shift Self Item)
)
(foreach (send ‘predict_rules (send ‘G Self) S direction)
(lambda (PredictedDR) (:add Self PredictedDR))
N
(:complete Self ftem (list outermost) invdir)
)
Item

))
(de find_item (DottedRule ItemSet)

82

(any
(lambda (Item)
(if (equal (send 'dotted_rule Item) DottedRule)
Item
nil
)]
(send 'items ItemSet)
)

(de :set_direction (Self Direction)
(when
(neq 'normai
(send 'type (:directi ost (send 'i

)
(anake_context Self)
(:;remove_context Self Direction)
(send 'outermost Self (:direction-most (send ‘itemsets Self) Direction))
(send 'direction Seif Direction)

»

Self) Direction))

(de remove_context (Self Side)
(let ((Context (:direction-most (send 'itemsets Self) Side)))
(foreach (send 'items Context)
(lambda (Item)
(foreach (send (:inv Side) (send 'links Item))
(lambda (LinkedItem)
(;uncomplete Linkedltem Context Side)
(rem_elt Side (send 'links LinkedItem) Item)
M)
(:rem_elt 'itemsets Self Context}
)

(de uncomplete (Item Context Side)
(let ((Compl (send 'completes Item)))
{ when (memberq Context (send Side Completes))
(:rem_elt Side Completes Context)
(foreach (send (:inv Side) (send 'links Item))
(lambda (LinkedItem) (-uncomplete LinkedItem Context Side))

NN

(de mew_outermost_set (Self)

(let ((outermost (omakeq ‘temset items nil type normal id (newid Self))))

(send 'outermost Self outermost)
(send 'created_shifts Self nil) ; no shifts made to it right now
(send 'itemsets Self
(if (eq (send 'direction Self) ‘right)

(appendl (send 'itemsets Self) outermost)

(cons outermost (send 'itemsets Self))
)
outermost

R

(de :add_dotted_rules (Self)
(foreach (send 'dotted_rules (send 'G Self))
(lambda (DottedRule) (:add Self DottedRule}))
M

(de :add_context (Seif)
(let ((Context (:new_outermost_set Self)))
(send 'type Context ‘context)
(:add_dotted_rules Seif)
(:add_shift Self Context '?)
Context
)

(de make_context (Self)
(let ((Un (send 'outermost Self)))
(if (eq (send ‘type Un) 'context)
nil

(:add_context Self)
(:add_shift Self Un ?T)
)

(de :decide_result (Self S)
(let
(U0 Un Item LR
(ItemSets (send 'itemsets Self))

)
(setq UO (firstnormal ItemSets))
(setq Un (:firstnormal (reverse itemSets)))
(setq Item (find_shift U0 S Un 'right))
(if (neq Item nil)
 cons Self S); no select_a_tree
(progn
(make_context Self)
(setq L (car ltemSets))
(setq R (lastq ItemSets))
(if
(or
(#find_shift L '? Un 'right)
(:find_shift L '? R 'right)
(:find_shift U0 ? R 'right)
)
"more-context
‘failure
)Y

(de find_shift (StartSet S EndSet Direction)
(setq InvDir (:inv Direction))
(any
(lambda (Item)
(let ((DottedRule (send 'dotted_rule ftem)))
(if
(and
(match (send 'nonterminal DottedRule) S)
(not (send 'wants_to_shift DottedRule InvDir))
(memberq EndSet (send Direction (send 'completes Item)))
)
Item
nil
)))
(send 'items StartSet)
)

;tltl..”'.‘!-.-lliMISCELLANEOUS FUNCTXONS"Q“.IQI.""".‘
(de dnv (Direction) (if (eq Direction left) ‘right left))

(de mewid (Self)
(send 'id_count Self (1+ (send 'id_count Self)))
)

(de :direction-most (List Direction)
(if (eq Direction 'right) (lastq List) (car List))
)

(de firstnormal (ItemSets)
(if (neq (send 'type (car ItemSets)) ‘'normal)
(cadr ItemSets)
{ car ItemSets)
)]

T B BN N I B B B B B B B B B B B T T O e

Help functions

; common functions

(defvar #:sys-package:colon ‘CommonFunctions)

dunlicat

; removes dupliatres from a list.
(de remove-duplicates (List)
(if (eq List nil)
ndl
(cons {car List) (remove-duplicates (delq (car List) (cdr List)))
»

e h

I; for each element x in List do Function(x)
(de foreach (List Function) (mapcar Function List))

P Fo1 O P —

; filter from a list only that elements e for which TestFunctions(e)=true
(de filter (List TestFunction)

(if (eq List nil)

nil
(if (apply TestFunction (list (car List)))
(cons (car List) (filter (cdr List) TestFunction))
(filter (cdr List) TestFunction)
M)

; range——-——
;(:range37)->(34567)
;(zxange 83)—>(876543)
(de range (Begin End)
(if (eq Begin End)
(list End)
(progn
(if (< Begin End)
(cons Begin (range (1+ Begin) End))
(cons Begin (range (1- Begin) End))
)]

; same as membe;l,butusingeqin stead of equal
; for recursive structures!i!
(de memberq (s
(cond
((atom 1))
((eqs(car D)
(t (memberq s (cdr D))
»
; e T list.
; makes one list from list of lists
; ex: (to-one-list '((123) (456) (789))=(123456789)
(de to-one-list (List) (apply 'append List))

j———permute—————-
; permute each member of first list with each of second.
; apply f to them.
; ex: (permute ‘cons 123)'@E5)=
SEQ.HA.5N2.HR2.50((3.49H3.50
(de permute (f1112)
(mapcar
(lambda (el)

(mapcar
(lambda (e2) (apply f (list el e2)))
12

)
1
»

j———lastq
; gives last element of a list.
(de lastq (List) (car (last List)))

;———subtract——-
; subtract setl from set2
; this is remove all items in setl from set2
{ de subtract (Set1 Set2)
(if (eq Setl nil)

Set2
(subtract {cdr Set1) (remq (car Set1) Set2))
)]

Grammar functions

; grammatica definitions, dotted rules etc.

(defvar #sys-package:colon 'Grammar)

H OBJECTS

(defstruct :Grammar
rules ; bag (list) of rules

)

(defstruct xule
nonterminal ; the left side of the rule
production ; list of (non)terminals

)

(defstruct :dotted_rule

nonterminal ; the left side of the rule
reverse-of-before-dot ; useful for shifting left
after-dot ; a list of (non)terminals

jestesensssenssSPECTAL FUNCTIONS#ssssssssss

(de :print_list_without_brackets (List)
(mapaar (lambda 0O (prinx ") List)
)

(de #:Grammar:Grammar:prin (seif)
(print "{")
(mapear (lambda (rule) (print " " rule)) (send 'rules self))
(print "}")

)

(de #:Grammar:rule:prin (self)

(prin (send 'nonterminal self) " =)

(:print_list_without_brackets (send 'production self))
)

(de #:Grammar:dotted ruleprin (self)
(prin (send 'nonterminal self) " = ")
(:print_list_without_brackets (reverse (send 'reverse-of-before-dot self)))
(")
(:print_list_without_brackets (send ‘after-dot self))
)

B is_nonterminal
(de is_nonterminal (Symbol)
(let ((Asdii (car (explode SymboD))))
: test whether first char. of Symbol between Aand Z
(and (>= Asdii 65) (<= Asdii 90))
)

LressenssnenirOrRE eesrananeeenren
Pabhhad . METHODS

; dotted_ruls
;gives all rules of Grammar
(de :dotted_rules (Grammar)

{ to-one-list

(mapcar
(lambda (rule) (send 'dots rule))
(send 'rules Grammar)
)

s————d otg———
; given a production rule, returns a list of all dotted rules with that
; production
(de :dots (Rule)
(let
((Nonterminal (send 'nonterminal Rule))
(Production (send 'productian Rule))
Length
)
(setq Length (length Production))
(mapcar
(lambda (DotPos)
(omakeq :dotted_rule nonterminal Nonterminal
reverse-of-beforedot (reverse (firstn DotPos Production))
after-dot (lastn (- Length DotPos) Production)

)
(range 0 Length)
M

; dict_rul
; gives ail rules that can produce a nonterminal, with dot at start
(de :predict_rules (Grammar Nonterminal Direction)

(foreach

83

84

(filter
(send 'rules Grammar)
(lambda (Rule) (eq (send 'nonterminal Rule) Nonterminai))

)
(lambda (Rule) (send "put_dot_at_start Rule Direction})
))

5 put_dot_at_start
; given a Rule, make a dotted rule with dot at start (opposite of Direction)
(de :put_dot_at_start (Rule Direction)
(let {(dr { omakeq :dotted_rule nonterminal (send 'nonterminal Rule))))
(if (eq Direction 'right)
(progn
(send ‘reverse-of-before-dot dr nil)
(send 'after-dot dr (send ‘production Rule))
)

(progn
(send ‘reverse-of-before-dot dr (reverse (send 'production Rule)))

(send 'after-dot dr nil)
)

dr
n
;———=—-shift
; shift the dot of the given dotted rule one in Direction
(de :shift (DottedRule Direction)
(et
(
(dr (omakeq :dotted_rule inal (send ' inal DottedRule)))

(after (send ‘after-dot DottedRule))
(before (send 'reverse-of-before-dot DottedRule))
)
(if (eq Direction right)
; shift dot right
(progn
(send 'reverse-of-before-dot dr (cons (car after) before))
(send ‘after-dot dr (cdr after))
)
; shift dot left
(progn
(send 'reverse-of-before-dot dr (cdr before))
(send 'after-dot dr (cons (car before) after))
)
)
dr
N

;——=——-wants_to_shift
; given a dotted rule, look what symbol can be shift in Direction
; if dot at outermost position for Direction, return nil

(de :wants_to_shift (DottedRule Direction)

(if (eq Direction 'left)
(car (send 'reverse-of-before-dot DottedRule))
(car (send 'after-dot DottedRule))
)

5 emove_dot.
; converts dotted rule back into a rule
(de xemove_dot (DottedRule)
(omakeq rule
nonterminal (send 'nonterminal DottedRule)
production
(append
(reverse (send 'reverse-of-before-dot DottedRule))
(send ‘after-dot DottedRule)
)

; _em)
;checks if a Dottsdf:i{u]e is empty (before dot and after dot both empty)
(de :is_empty (DottedRule)
(and
(eq (send 'reverse-of-before-dot DottedRule) nil)
(eq (send 'after-dot DottedRule) nil)
H

; match-
; checks if two symbols match
; because we use '? and '?T symbols
(de match (xy)
(and (neq x nil) (neq y nil) ; empty must NEVER match
(or
(eqxy)
(eqx'?)
(eqy'D
(and (eq x ‘7T) (not (is_nonterminal y)))
(and (eq y ?T) (not (is_nonterminal x)))
1))

Index

abstract 4

accept 42

actions 19, 27, 67
alternative 45, 53, 62
ambiguity 25

ambiguous 5, 22, 62
bidirectional recognising 19
block 59, 60

CheckForTree 10, 11, 12, 17
CheckForTree' 12, 18
children 5

common parent 9, 10
complete 20

Completer 19, 20, 28,44, 67
concatenate 4

Contents 2

context 10, 33, 34, 35, 36, 62
context-free 11, 16
correctness 58
decide_result 42
derivation step 4
differences with Earley 30
dotted rule 18

Earley 28, 66

Earley's recogniser 18
empty production 26
expensive 13

exponential space 45, 62, 64
extend 43, 53

failure 10, 12, 34, 35, 36, 42
grammar 4

Greek 4

hard 7, 11

hardware 88

immediate neighbour 19
implicit context 62
incremental 4
incremental parsing 7, 9
insert 9

invariant 47

invent 10, 59

island parser 7

island recogniser 43

item 18, 19, 20

item set 18

LG) 4

last edit 9, 10

last made itemset 43
leaves 9

left context 36, 39
left-complete 20
left-to-right bias 19, 27, 43
left-to-right parser 59
LeLisp 73

link 19, 20, 21, 31
lock-ahead 28, 30
lowest Node 8

mark 47, 49, 61
membership 11
more-context 10, 12, 34, 35, 42
multiset 13
necessary to invent 10
new 43, 53

node 5

non-partial 12
nonterminal 4

object 73

one context 36

order of terminals 17
outermost 43

parent 5, 8, 10

parse table 61

parse tree 5, 45, 64
parser 5, 66

partial 12, 17
performance 74
Predictor 19, 23, 28, 44, 67
preprocessing 61
produces 4

recognise 25, 27, 31
recogniser 5, 18, 20
regular expression 16
remove_useless 48
replace 8, 10

reverse 31

reversed grammar 59
right context 36, 39
right-complete 20
right-to-left 31, 59
root 8, 10

rule 4

Scanner 19, 28, 30, 44
shift possibilities 30

85

86

shift possibility 20

shifter 67

sort 5

standard combinations 13
start node 9

substring 10, 12

substring parser 12, 18, 59, 60
successful 10

supervisors 88

swap the context 36
symbol 4

symmetric 30

syntax directed editor 5
terminal 4

Tomita 18, 59, 60, 61

turn the direction 33
unparsed 9, 10

useful 18, 47

Useless 45, 47

I B S L S L L L L B B Bl L B B B B B e Bl e |

[BL89]

[DK90]

[E68]

[E70]
[GHR80]

[HKR39]

[HU79]

89l
[K89]
(L88]

{L90]
[N89]

{R92]
[RKS0]
[590]
[T85]
[V75]

References

Sylvie Billot, Bernard Lang, "The Structure of Shared Forests in Ambiguous
Parsing”, To appear in "Proceedings of the 27th Annual Meeting of the
Association for Computational Linguistics”, Vancouver (British Columbia),
26~29 June 1989.

M.H.H. van Dijk, J.W.C. Koorn,"GSE, a Generic Syntax-Directed Editor",
Report CS-R9045, September 1990, Centre for Mathematics and Computer
Science, Amsterdam.

J. Earley, "An efficient context-free parsing algorithm”, PhD Thesis,
Cargenie-Mellon university. Pittsburgh, 1968.

J. Earley, "An Efficient Context-Free Parsing Algorithm® in
"Communications of the ACM 13" (1970) p. 94-102.

S.L. Graham, M.A. Harrison, W.L. Ruzzo, "An improved Context-Free
Recogniser”, in "ACM Transactions on Programming Languages and
Systems” Vol. 2, No. 3, July 1980.

J. Heering, P. Klint,]. Rekers, "Incremental generation of parsers”, pp. 179-
191 in "Proceedings of the SIGPLAN'89 Conference on Programming
Language Design and Implementation , SIGPLAN Notices 24(7), ACM Press
(1989)

John E. Hopcroft, Jeffrey D. Ullman: 'Introduction to automata theory,
languages, and computation’. Addison-Wesley publishing company, 1979.
ISBN 0-201-02988-X

Mark Johnson, "The Computational Complexity of Tomita's Algorithm", in
"International Parsing Workshop '89"

James R. Kipps, "Analysis of Tomita's algorithm for general context-free
parsing’, in "International Parsing Workshop '89"

Bernard Lang, "Parsing Incomplete Sentences”, To appear in "Proc. of the

87

12th Internat. Conf. on Computational Linguistics”, Coling'88, Budapest .

(Hungary), August 1988.
INRIA, "Le-Lisp Version 15.23 Reference Manual”, Domaine de Voluceau

Rocquencourt, 78153 Le Chesnay Cedex, France, April 1990. :
Rahman Nozohoor-Farshi, "Handling of Ill-designed Grammars in
Tomita's Parsing Algorithm", in "Proceedings of the International Parsing
Workshop", 1989.

J. Rekers, "Parser Generation for Interactive Environments”, PhD thesis,
University of Amsterdam, 1992,

J. Rekers, J.W.C. Koorn, "Substring parsing for arbitrary context-free
grammars”, CWI Report CS-R9037. Sigplan Notices nr. 5, may 1991.

Hiroaki Saito, "Bi-directional LR Parsing from an Anchor Word for Speech
Recognition”, in "COLING '90", vol. 3

M. Tomita, "Efficient Parsing for Natural Languages”, Kluwer Academic
Publishers, 1985.

L.G. Valiant, "General Context-free Recognition in Less than Cubic Time",
in "Journal of Computer and System Sciences” 10,p 308-315. 1975.

Technical information
Used hardware:

Programs used:

Printer:
Fonts:

#Characters:

Other information
Me:

My supervisors:

Ideas worked out:
Thests written:

Colofon

Macintosh Ilci for this thesis

Sun 3/60 and 3/140 for the LeLisp implementation
Microsoft Word Version 4.00C

MacDraw Version 1.9.5

Le-Lisp Version 15.24

Agfa P3400 PS laserprinter

Palentino for normal text and Le-Lisp code
Symbol, Zapf Dingbats and Zapf Chancery for some
special characters

Courier for pseudo pascal code

160208

Wouter Pasman

Koedijk 15, HUIZEN, Hoiland

Paul Klint for general remarks on this thesis
Jan Rekers for the parsers

Wilco Koorn for Chapter 2 and 3

4th of February 1991 ... 7th of June 1991

7th of June 1991 ... August 1991

1| " e ! & | 1 " 1 1 " 1 " 1 1 T 1 ' 1 " 1 T 1 1 R 1 ol 1 1 'L I 1

