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Abstract

This thesis deals particularly with an experimental postmortem debugger, EDB, de-
veloped for the ASF+SDF term rewriting system. It has been found desirable to have a
debugger that does not run concurrently with the ASF+SDF system. This implies that
for a specification to be debugged, the rewrite process must have run through to the end
and collected enough information which will be used by the debugger. Only after this
information is collected can the debugger function commence.
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1 The ASF+SDF system

Before describing the debugger itself, the rest of this section will briefly introduce the
ASF+SDF system - the environment in which the debugger is expected to run. Being
postmortem, however, the debugger does not actually run in the ASF+SDF environment.
But the interaction is such that one should not notice it is a separate program.

Except when explicitly stated, the debugger referred to in this section is the current
version and is not the new version that this thesis is about.

1.1 A Bird-Eye View Of ASF4SDF

ASF+4SDF is an integrated software system for the automatic generation of programming
environments for formal language specifications. ASF+SDF is a highly interactive soft-
ware system. It allows the editing of specifications for which it generates a programming
environment. The environment consists of syntax-directed editor, type checkers, program
evaluators and many other tools. A number of components can be distinguished in the
ASF4SDF system; these include the :

e Syntax Manager
which is respousible for the syntax.

e Equation Manager
handles the rewriting process.

¢ Module Manager
handles the modular structure defined in the specification.

e Generic Syntax-directed Editor
rather instances of it, enable the edition of terms and specifications so that textual
editions are reflected in the structure of the term or specification.

e Supervisor
drives all other components of the system and interprets user-commands.

e Equation Debugger
enables interactive debugging of a specification and provides a trace to the rewrite
process.

A specification, for this purpose, has two parts; a syntax definition and a semantic
definition. These are respectively the SDF and the ASF of the specification.

1.2 SDF - The Syntax Definition Formalism

The SDF part of a specification defines both the abstract and concrete syntax of the formal
language using the formalism described by [HHKR89]. Both abstract and concrete syntax
are expressed by regular and context-free grammar rules. A fixed mapping is defined from
a syntax combination in the concrete syntax to another syntax in the abstract syntax.
This mapping makes the definition of function overloading, functions, list, etc, a matter
of course.

Terms that correspond to more than one abstract syntax tree are said to be ambiguous;
ambiguity can be resolved by expressing priority and associativity on such a grammar.
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Associativity is expressed as left-, right- or non-associativity. There is also the bracket
directive that transforms the concrete syntax of a bracketed term into its abstract syntax
representation.

Language definitions are modular and a definition generally consist of a set of modules.
This modularity, in part, allows a degree of object hiding by using the hidden directive. A
specification can also import the definitions of another specification; but the hidden part
of the syntax can not be used by an importing specification.

Variables to be used in the semantic part of the specification must be declared in
the SDF part, the type (sort, in ASF+SDF terminology) of which has been previously
declared in the current or an imported module.

1.3 ASF - The Algebraic Specification Formalism

The ASF part of a specification defines the semantic definition of the formal language. The
semantics are presented in the form of conditional equations - equations with conditions
attached to them; there may be zero or more conditionals. A condition is an equation in
which the left and right hand sides are compared, and is of the form S = T or S != T
for positive and negative tests respectively. However, if one side of a condition is a newly
introduced variable, the value of the other side will be assigned to the variable, the value
of which can be used in subsequent conditions and the main equation.

Below are three ways in which non-zero conditional equations can be written:

(a) [Tagld] S = T when C1, C2, ...

(b) [Tagld] C1, C2, ... ====>8S=T

(c) [Tagld] C1, C2, ...

where C1, C2, ... are conditions.






1.4 Structure of an ASF+SDF Specification

module M
export — syntax visible to importing modules
sorts S1 S2 S3

— declaration of sorts (non-terminals).

context-free syntax
— declaration of sorts and functions (non-terminals).
— definition of grammar rules in the concrete
— syntax and corresponding to functions in the
— abstract syntax

variables
imports M1 M2 M3 - list of imported modules
hiddens - syntax having only local visibility.
sorts 54 S5 S6
— see exports section
lexical syntax
— see exports section
context-free syntax
— see exports section
variables
— see exports section

priorities
— definition of priority relations between
— rules in the context-free syntax section.

equations
— conditional equations of the abstract syntax.

Table 1 The global structure of an ASF+SDF module..

Table 1 shows the global structure of an ASF+SDF Specification. With this table at
hand, a general introduction will be presented in this subsection of global structure of
a specification. It is worth pointing out that the structure can be segmented into some
five parts beginning at the words, namely, exports, imports, hiddens, priorities and
equations.

The structure of the segments export and hiddens are identical and describing one
describes the other. The keyword ’export’ indicates the part of the module that is visible
to all other modules that will be importing the specification. On the contrary, the part
of the module that is supposed to have only a local visibility is defined in the section
hiddens. These segments can further be segmented into the following; sorts, lexical
syntax, context-free syntax, imports, priorities and variables. A sort is declared
by listing its name in the sort section of the module. A sort is basically any non-terminal
in the concrete grammar and is defined in the lexical and context-free syntax. The name
of a sort should be made up of letters; the first of which must be in upper case. LAYOUT
and CHAR are predefined sorts.







In the section of lexical syntax, regular grammar and literals can be used to map
lexical lexical construction onto a resulting sort. The common additives of regular gram-
mar; repetition, character classes, etc, can be used in a definition. The example below
defines the sort 'Sort’ as being any number of alpha-numeric characters the first of which
must be an uppercase character. An 'Int’ is defined as a string of digits containing at
least one digit.

sorts Sort Int
lexical syntax
[A-Z][a-zA-Z0-9]* -> Sort
[0-9]+ > Int

There are well-defined rules to resolve ambiguities at the lexical level.

In the context-free syntax section, both the concrete and abstract syntax can be
defined. The syntax of this section is very much like the lexical syntax, but the con-
struction is more sophisticated; a combination of sorts and lexical tokens can be mapped
onto a result sort. Further, there can be other modifications for associativity and the
bracket function. Below is an example of a context-free syntax section. In this exam-
ple, multiplication and addition are defined as in-fixed functions taking two integers the
result sort being an integer. Further, these two functions have been defined to have a left
associativity. An example is given of the bracket function and a function, succ, which

combines lexical tokens, ’succ’, ’(’ and ’)’, and a sort 'Int’ to result in the sort 'Int’.

context-free syntax

Int * Int -> Int {left}

Int + Int —> Int {left}

7(” Int ”)” —> Int {bracket}
succ ”(” Int ”)” —> Int

As mentioned above, variables that will be used in the equations below must be de-
clared in the variable section.

A list of modules that are being imported is presented in the section imports.

The section of priorities is used to define the priority relations between priorities. A
priority is defined using the arithmetical comparism operators.

The section of equations is where the semantics of the language are associated to
the syntax by way of conditional equations. An equation is composed of a tag, a set of
conditions and a simple equation.

A typical module of ASF+SDF is contained in two text files - one for the SDF defini-
tions and the other for the ASF. (A real life example is presented in section 2.)

1.5 Rewriting a Specification

When a specification is presented to the ASF+SDF system, it generates a programming
environment for it. The environment checks the syntactic validity of the term presented
to it and, if there are no errors, reduces the term. The ASF+SDF system uses the leftmost
innermost reduction strategy; this implies that if a term has sub-terms, the sub-terms will
be be evaluated in a left-to-right order before the main term.
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Reduction of a term involves parsing the term and matching it against the equations
in the specification. A term that matches any equation is called a redex; if the conditions
attached an equation are true, the term is rewritten with the rhs of the equation. An
evaluated redex is a reduct.

A term matches a rule when for all variables and sub-terms in the left hand side of
the equation, a binding can be found to instantiate the left hand side into the term.
Evaluating the rhs involves instantiating variables in rhs with bindings established from
evaluating the left hand side and the conditions.

It is not defined which equation the system will choose when a term matches more
than one equation. This will result in a non-deterministic specification - a term having
more than one normal form. This is considered bad coding style and can be prevented
by adding distinguishing conditions. Another way to prevent multiple normal forms is
that if the tag of an equation contains the word default, that equation will be treated as
a default and will only be chosen if the term fails to match any other equations except
the default equation. A valid term that cannot be matched to any equation is said to be
in normal form.

1.6 Debugging a Specification

The Equation Debugger, EDB, provides a debugging facility for the semantics of an
equation. Debugging, in its most general form, is the tracing and interruption of the
rewrite process. A specification can only be debugged it has passed all syntactic tests.
The debugger provides the user with a powerful means to monitor the behavior of a
specification.

The current version, which runs concurrently with the evaluating machine, has two
modes:- the Step and Go mode. The step mode communicates with the debugger just
before an equation is applied to a term and provides detailed information as regards the
status of that application. The information includes the success, or failure of applying
the term to a chosen equation. The go mode, on the other hand, provides a situation
where the rewrite process is only interrupted at the breakpoint, and provides no interim
information on the status of the debugger.

The user interface of the debugger can be started by clicking the 'Debugger On’ option
in the ASF+SDF Meta Environment. The debugger has its own user interface window
that is constructed around the term to be evaluated. It has options for adding and deleting
patterns, adding and deleting break points and setting of various flags.

It is rather unfortunate that the user cannot alter or affect the rewrite process in any
way; he is reduced to an observer of the process. It should have been possible to alter the
rewrite process considering the debug process run concurrently with the rewrite machine.

1.7 The New Debugger

It has been found desirable for the new debugger to be executed independently of the
ASF+SDF system. In this sense, it should be a separate process that makes use of infor-
mation provided to it by the ASF+SDF system. But before the ASF+SDF system can
have any information, it must evaluate the term presented to it and save the information
in a file. This explains why the techniques of a post-mortem debugger have been chosen






over and above all else. The new debugger should increase flexibility and enhance the
user-interface by making use of the current visualization techniques available.

2 Debugging

Decarbonate, defreeze, debug; these words have a touch of negativity about them - remove
carbon, freeze or bug respectively. That removing a bug should have anything to do with
computer science is remarkable. Legend has it that a bug played a significant part in the
failure of an important software project in the days of yore - when computers were more
self-respecting and took a whole building to themselves; hence debug.

The essence of debugging is derived from the rarity with which computer programs,
initially at least, behave as expected of them by programmers. It is essential to point
out that a bug, as referred in this paper, occurs only in syntactically correct computer
language constructs. Whereas both syntactic errors and bugs must be corrected from the
source code, a source code with a syntactic error will not proceed to the code-generation
stage of a compiler. A bug is actually a semantic error and is perfectly acceptable to most
compilers.

Dijkstra [DIJK78] and others have proposed that debugging time could be shortened by
rigorous reasoning about a program’s correctness. In fact, experimental results described
in [WEIS82] show that this is exactly what most programmers do and that they only
resort to other means when their mental process fails.

2.1 Locating Bugs

The job of a debugger is primarily to locate a bug. Debugging is a difficult job since the
programmer has little guidance locating the bugs. As often happened, there is an interval
between when the bug occured and the time when the effects of the bug are noticed. This
interval only complicates the task of locating the bug. There is the particular difficulty in
locating a bug that originates from outside the program; consider faulty computer devices
such as the standard output. The location of a bug becomes more vague when programs
run in parallel, see [CM85].

2.1.1 BreakPoints

Breakpoints are user-specified conditions that break the execution of a program when
the condition is attained. Breakpoints are most useful, when set at vital areas of the
program execution in order to speed up the debug process. Two types of breakpoints can
be crystalized, namely control breakpoints and data breakpoints. Control breakpoints are
break conditions specified in terms of the program’s control such as a call to a procedure.
Data breakpoints, on the other hand, are conditions defined in terms of the memory state
of a program, an example is to set a condition to when a variable has attained a specified
value.

In a way, control break points are a subset of data break points. Certainly, control
break points are less complex than data break points and the complexity, alone, is an
outstanding differentiating factor. Control break points are a one-to-one mapping of a






condition to the fulfilment of the condition. Data breakpoints have a one-to-many relation
since there is a multiple of ways in which a memory address can be updated.

Some hardware such as Intel 1386 [INT386] and SPARC [SPARC] provide direct means
for monitoring memory locations; an essential service in implementing relatively nonex-
pensive data breakpoints. But there is a catch: the number of memory locations that can
be monitored simultaneously is rather very limited. Other ways in which the hardware
may provide some inexpensive monitoring include a trap each time the virtual memory
page of the location is accessed. This method [VAXDEB], however, is not that satisfactory
since a memory location is often a small part of the virtual page and reference to other
parts of the page will just as well cause a trap. ’

Wahbe et al [WLG93] have developed a code patching approach to check memory
updates efficiently. Performance gains by [WLG93] has been achieved by using inexpensive
techniques to determine whether a target address is part of a data break condition and
eliminate update checks on these locations.

2.1.2 Program slicing

Weiser [WEIS82] introduced the method of program slicing as an important step in the
debugging process. Program slicing reduces the amount of source code to be inspected
when debugging by ignoring the part of the code that is most irrelevant to the bug. A
program slice at a point p on a variable v is all statements and predicates of the program
that might affect the value of v. Dataflow analysis [ASU88] can be used to automatically
find small program slices.

Table 2 shows an example of a program slice. In the example, a slice of the program is
shown on variable total at line 13. The slice is instructive. Notice how the use of dataflow
analysis becomes evident; since total depends on variables x and y, line 4, which modifies
the values of x and y, has been included in the slice.

1 program p; program p;

2 var x,y,z,total,sum : integer; | var x,y,total: integer;
3 begin begin

4 read(x,y); read(x,y);

5 total := 0; total := O;

6 sum := 0;

7 if x<= 1 then if x<= 1 then
8 sum = ¥

9 else else

10 read(z);

11 total := xx*y total := x*y
12 end; end;

13 bf end. end.

Table 2 An original program and a slice of it..
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2.2 Algorithmic Debugging

The original form of algorithmic debugging, introduced by [SHAP83], is an interactive
process where the debugging system aquires knowledge of the expected behaviour of the
bugged program. This knowledge is used to locate the bug. However, [SHAP83] has
the drawback of being limited to small Prolog programs and an unacceptably large num-
ber of interaction with the user. Improvements in the original method by [FSKG92] has
broadened the scope of languages to include procedural, fourth generation (4GL) and
lazy functional languages. Whereas interactions with the user cannot be eliminated com-
pletely, their number have been reduced significantly. Program slicing and algorithmic
debugging has been combined to provide improvements in locating bugs, see [SHAH90|.

1 procedure insert(elem : integer);

2 var ind : integer;

3 begin

4 if index=0 then

5 list[1] :=elem

6 else

7 Dbegin

8 ind := 1;

8 while ((ind < MAX) and

9 (list[ind] > elem)) {(* bug inserted here.
10 should be: elem > list[ind] *)
11 do ind := ind + 1;

12 ShiftRightAndInsert(list,ind,elem)

13 end;

14 end.

Table 3 The bugged procedure insert..

The example below is the interaction session of an algorithmic debugger. The example in-
volves an erroneous implementation of the insert-sort algorithm. The error, as was found
out by this algorithmic debugger, is in the function "insert". (The bug introduced in
this example swaps the arguments of the predicate greater in "insert".) Sort([2,1,3])
should return [1,2,3].

sort(in:list=[2,1,3], out: sort=[3,1})?

> no

sort(in:list=[1,3], out: sort=[3,1])?

> no

sort(in:list=[3], out: sort=[3])?

> yes

insert(in:elem=1,list=[3], out: insert=[3,1])?
> no

insert(in:elem=1,list=[], out: insert=[1])?

> yes '

An error has been localized inside the body of function ”insert”
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2.3 Comparison of the Debugging of TRS versus conven-
tional languages

This subsection is attributed to Tip[89]. The concepts of Term Rewrite System, TRS,
are very different from conventional languages. The notion of procedure, for instance,
is unknown in TRS’s. However, there are points where these concepts converge. Some
features of breakpoint debugging mentioned in [FER83] will be compared below for;
1) imperative languages such as PASCAL

2) Prolog

3) a term rewrite system

Size of the smallest execution step

The size of the smallest execution step must be chosen so that the user is not drowned
in an unnecessary abundance of information. The smallest step for any computer program
is the machine instruction. However, propagating this as the smallest execution step will
be quite unacceptable.

The concept of statements is quite inherent to imperative languages and is also the
smallest execution step. Statements, however, can be very complicated in C, for instance.

In C-Prolog, a Procedure Box is used to express control flow. A procedure box has
four ports namely, Call, Exit, Fail and BackTo. Interested parties may find the func-
tionalities of ports in [PROLOGS86]. The smallest step for the C-Prolog debugger is a
transition between the ports.

The smallest execution step in a TRS is a rewrite-step. Evaluation of a condition is
also a rewrite-step so there must be a way to differentiate such steps from the ordinary
rewrite for an equation.

The notion of levels

Imperative languages associate the concept of level with the recursion of subprogram
calls.

In C-Prolog, the notion is associated with entering and leaving procedures. Back-
tracking, however, complicates this notion. The user may choose to step through the
procedures or skip them all together.

The levels of a TRS are based on the nesting of the evaluation of the conditions at-
tached to the equations.

Breakpoints

Breakpoints in imperative languages are often associated with line numbers in the
source code. Control of execution is taken over from the user until the next breakpoint is
encountered.

The C-Prolog debugger allows the user to set breakpoints on predicates.

Breakpoints in TRS debuggers can be set to both patterns occuring in the term, or
rewrite rules. Setting breakpoints to rewrite rule can be made broader by also having the
possibility to set breakpoints on syntax rules. Setting a breakpoint on a syntal rule is
equivalent to setting a breakpoint on the cluster of rewrite rules generated by that syntax
rule.
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Inspection of Variables and source-level expressions

Inspection of variables is available for all three types of languages being compared here.
It is nearly unthinkable to have a debugger that does not provide this feature. Compu-
tation of source-level expressions is a different story all together. Whereas source-level
expressions can be computed for nearly all imperative language debuggers and C-Prolog,
TRS’s may not provide this feature that readily.

Modification of variable values and source code modification

Modification of variable values should, preferably, be available for imperative debug-
gers. However, program behaviour may not be predictable for variables that determine
the control-flow of a program. Modifying the program may at best have no effect on
imperative languages, since most imperative language source codes must go through the
routine of compilation before being useful. On modification of the source code, some
debuggers terminate debugging, compile the source and start debugging anew.

The C-Prolog debugger allows modification of the prolog-database during debugging.
Modifying the database, however, can lead to unpredictable behaviour when backtracking
re-enters a procedure box whose predicates have been modified.

Modifying the value of TRS variables should be possible but quite often a rewrite
rule is chosen solely on the value of a variable. This situation is very much like the
situation above for imperative languages where a certain value for a variable determines
the control-flow. Changing the value of a variable after a rewrite rule is chosen could lead
to an incorrect evaluation of a term. Changes to the source code must be analysed before
it is useful so modifying the source code should not be considered.

3 An ASF+4SDF Example

The syntax, evaluation and user interface of the Meta Environment of ASF+4SDF will be
introduced in this section by way of an example.

3.1 The Meta Environment
Figure 1 is the user interface of the Meta Environment, and it has the following buttons:

e Specification
This button has another sub-menu attached to it; the buttons of the sub-menu are:
— Add: This button request the name of a module to be added to the specification.
— Clear: removes all module from a specification

— Save: writes all edited modules and terms to a physical medium.

|

LateX: choosing this button will result in the production of a latex representa-
tion of all the modules in the specification.

Debug On: this button is flag that requires whether the debugging facility of
the ASF+SDF system should be turned off or on.

Quit: obviously quits the Meta Environment.

13






8] 85F+5DF Meta-enwironment

Status: [idle |

 Specification Delete Edit-Hodule Edit-fterm Errors

3.2

Figure 1: The Meta Environment

Delete

When this button is chosen, the user is presented with a list of all the modules in the
specification. Clicking the mouse on a particular module, deletes the module from
the specification. (Doing this, however, could endanger the integrity of specification
if some other modules depend on the deleted module.)

Edit-Module

When this button is chosen, the user is presented with a list of all the modules
in the specification. Clicking the mouse on a particular module, spawns a Generic
Syntax-directed Editor, GSE, to edit the module. The GSE integrates textual and
structural editing so that changes in the module are directly reflected in the syntax
of a specification.

Edit-term

When this button is chosen, the user is presented with a list of all the modules
in the specification. Clicking the mouse on a particular module, spawns a Generic
Syntax-directed Editor, GSE, to edit a term that can reduced by that module (and
all others it imports). This is also the button at which terms can actually be reduced
by choosing the reduce button. Figure 2 shows a term editor for the example of this
section.

Errors

This button gives a helping hand on the handling of errors. It has the a sub-menu
and below is their functionality.

— Next requires the system to move on to the next error in the specification.
— Explain attempt to explain the course of an error, as far as it is explicable.
— Source give an indication as to the source of an error.

— Forget request the system to ignore this error. Ignoring an error is not men-
tioning the same error if it occurs again.

Booleans - the specification

The example that will be used here is a specification of logical booleans with some of the
functions that are applied to booleans.
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module Booleans
imports Layout

exports
sorts BOOL
context-free functions
true — BOOL
false - BOOL

BooL “|" BooL  — BooL {left}
BOOL “&" BOOL  — BOOL {left}
not “(" BOOL )" — BOOL

“(" BooL )" — BoOL {bracket}
xor BOOL BOOL ~ — BOOL
variables

Bool [0-9']% — BOOL
priorities
xor BOOL BOOL — BOOL < BOOL “{” BOOL — BOOL < BOOL “&" BOOL — BOOL

equations
[e1] Bool, = true
Booh | Bool = true
[62] Bool; = false
Bool, | Bool = Bool
[B3] Bool; = true
Booli & Bool = Bool
Bool; = false
[B4]
Bool; & Bool = false
[e5] Bool = false
not(Bool) = true
Bool = true
[Be]
not(Bool) = false
[BT] Bool = Booly

xor Bool Bool; = false

[B8-default] xor Bool Bool = true

3.3 Booleans - a term

In Figure 2 a valid term of the specification is introduced in the previous section. The term
has been partially indented to ease readability and to show the levels of the sub-terms in
the term.

15






not{tLrus }

{false | true)

not{true }

Figure 2: The term

3.4 Booleans - the reduction repertoire

The evaluation process starts by creating a programming environment for the syntax of
the Booleans specification. The programming environment is in many ways comparable
to the generation of a compiler - that subscribes to the grammar of Booleans. The term
is then parsed according to the grammar of Booleans and duly flattened. Again, this
stage could be compared to compiling a program, in this case a term, by the the Booleans
compiler. Several error checks - type-check, syntax, etc - will be executed on the term.
Flattening out the term will result in a term with the following. sub-terms:

e (a) xor
e (b) true
o (c) not(true) “&” (false | true) | not(true) “&” false | true

This is because the function zor requires two booleans in order to be grammatically
correct. Since the innermost left-to-right reduction strategy is being applied, sub-term (b)
will be chosen for reduction. However, this is already in normal form so the next leftmost
sub-term (c) will be chosen. This is not an atomic term, in that it has other sub-terms,
so it will be reduced to a normal form for the reduction to proceed at this point.

There is an ambiguity in term (c) but this is resolved by the fact that priority of ” “&””
has been defined to be higher than that of ”|”. The priority definition, therefore, plays a
role in determining how that the term is flattened out into the following sub-terms:

e (c.1) not(true) “&” (false | true)
o (c.2) not(true) “&” false | true

Reducing term (c.1) is more interesting; the sub-terms are not(true) and (false | true).
The first sub-term, not(true) can be reduced by applying either equation B5 or B6. The
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conditions on both equations, however, narrows down the choice to equation B6 only. The
result of reducing the first sub-term of (c.1) is true. The ASF+SDF system uses the lazy
- incremental reduction strategy, and goes off to reduce the interim term of c.1‘ which is
false “&” (false | true). The next step will be to reduce c.1‘ by applying equation B4.
The lazy qualities of the system will be used in this reduction. It is clear that the value
Bool in equation B4 is not necessary to determine the result of applying this equation.
Accordingly, the second sub-term of term (c.1), (false | true), will not be evaluated at all.
The reduct of term (c.1) is false

Term (c.2) will not be reduced separately - that would have been in contention with the
lazy - incremental nature of ASF+SDF, rather, the interim term, (c.12), false | not(true)
“%” false | true comprising the reduct of term (c.1) and term (c.2).

Once again, term (c.12) would have an ambiguous expression had it not been for the
left-associativity relationship defined on ”|”. Therefore, term (c.12) will the following
sub-terms:

e (c.12.1) false | not(true) “&” false
e (c.12.2) true

The lazy nature will again be exploited in equation B2 to reduce term (c.12.1) to
not(true) “&” false, which in turn will be reduced by equations B6 and B4 respectively
to reduce the term (c.12.1) to its reduct of false. The reduct of term (c.12.1) is prefixed
to term (c.12.2) and reduced to true; which is also the reduct of term (c).

The very last term to be reduced is zor false true. There are two equations to choose
from. If equation ‘B8-default’ is chosen the term will always be evaluated to true, regard-
less of the parameters of the function. However, this is not how the function is evaluated.
Since the tag of the equation ‘B§-default’ includes the string ‘default’, the equation will
be treated as default - and will only be chosen when equation B8 fails. Considering the
condition of equation B8 which will fail, equation ‘B8-default’ will be applied and the
term is evaluated to true

3.5 Booleans - a summary

A list of the steps taken to reduce the term to a normal form is presented here. The terms
are reduced incrementally. The actual sub-term that is reduced is italicized.

e xor false not(true) “&” (false | true) | not(true) “&” false | true
e xor false false “&” (false | true) | not(true) “&” false | true

e xor false false | not(true) “&” false | true

e xor false not(irue) “&” false | true

e xor false not(true) “&” false | true

e xor false false “&” false | true

e xor false false | true

e zor false true

e lrue
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+ and functionality of the various buttons in the current debugger will
is section. Figure 3 shows the user interface of the debugger.

ser Interface

fat 1o Tetugder v
palete-pattern  add-Break  Delete-Break Settings

| £DB v7.2, april 1993,

STEPS: 0/LEVEL: 0

Figure 3: The EDB User Interface

1tton is selected, the user is presented with a sub-menu. The sub-menu
an entry field labeled ,’#’ Go, Skip and Stack.

'h a term to an equation, the system first considers a list of plausible
1s against which the term will be matched. The ’Step’ button requires
:m to attempt to match the term to one of the equations in the said list.
t or not there is a successful match is irrelevant, a step has been per-
f there has been an attempt to match. In effect, the step button reveal
:d trace into the rewrite procedure explicating why certain equations
re executed.

=ld, #

rer value can be entered here. This value will be used by the Go button
d below. However, if the Return key is pressed during the entry the
11 be equivalent to selecting the *Go’ button.

;ioned above, the ’Go’ button functions in association with the Entry
>ve. When this button is selected rewriting continues until as many
the entry has been rewritten. An entry value of 0 is intended to place
ite process at its end. However, the behavior of ’Go’ is affected by other
ns. If the debugger is in skip mode, the rewriting of conditions will be
If a break pattern is encountered, the rewrite process will stop. If there
1s many steps in the rewrite process as the entry value, the process will
the begin or end of the rewrite process.

» button has the effect of the rewrite process jumping out of a condition

18






and placing the process at just after the condition. Selecting the button will be
ignored if no condition is being rewritten.

— Stack
The stack button displays the condition stack, if any, of the rewriting process.

Edit Pattern

Editing a pattern involves adding the structure of a term. If a term matches the
structure of a pattern, then this will be regarded a break point and rewriting is put
on hold.

Delete Pattern
This is a corollary of the previous menu; patterns that have been added in that menu
may be removed in this.

Add-Break

Adding a break point is tantamount to adding the tag of an equation to a list. The
rewrite process will be put on hold when a term matches an equation with the same
tag.

Delete-Break

Again, this menu is the opposite of the previous one; it removes a tag from list of
tags that have added at the Add-Break menu.

Settings
When this button is selected, the user is presented with a sub-menu. The sub-menu
is a check button comprising the following entries:-

— Show Bindings
If this flag is set, the bindings will be displayed.
— Show Equation
If this flag is set, the equation that matches the term will be displayed.
— Show Redexes
If this flag is set, the term or redex that is to be matched against an equation
will be displayed.
— Show Reducts
If this flag is set the term resulting from having successfully matched the redex
to an equation or reduct will be displayed.
— Instantiate Conditions
Checking this button will allow the variables, bindings, status, etc. of the
conditions of an equation to be displayed.
— Show Tags
Checking this button will allow the tag of equations to be displayed.
— Restrict PP
Checking this button will allow the pretty printing of all (interim) results.

— Stop at Breaks
Checking this button will allow the actually allow the rewrite process to stop
at break points that have been previously set.
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4.2 Shortcomings

The current debugger runs concurrently with ASF+SDF system; the debugger is actually
an integral part of the ASF+SDF system. Unfortunately, this has led to a significant
slowdown of the debug process, not to mention the inherent lack of flexibility and mod-
ularity. The debugger makes little use of the current visualization techniques available.
Some users find it too liberal with the information it provides - they cannot make head
or tail from all the information.

The most outstanding shortcoming of the current debugger is that it runs concurrently
with ASF+SDF system - this leads a handful of undesirable properties.

It is not possible to fully control the rewriting of conditions - one cannot, for instance,
directly determine which conditions of an equation to rewrite and which to ignore. The
conditions are treated as though they were one bulk and there is no means to differentiate
between them.

4.2.1 Direction of Execution

The rewrite process is, as far as the debugger is concerned, mono-directional; it moves in
the forward direction. In other words, there is no history of previously executed rewrite
steps.

4.2.2 Setting of Break points

A break point can be set only by providing the tag of an equation. Since equation tags
are not unique, the effective break point that is set is any equation with that tag. This
could be seen as an advantage in its own rights, but when the unicity of a break point is
considered this is a drawback.

4.2.3 Spooling of Results

All the results of a rewrite are displayed in one window; resulting in a seemingly over-
crowded window. Besides that, the cut-and-paste functions of the X-Window are disabled
and there is not that easy to redirect these results to a file.

5 The Metamorphosis

Figure 4 shows the modus operandi of the old debugger - a direct co-operation between the
debugger and the rewrite engine. The debugger requests the execution of a procedure in
the rewrite engine and the rewrite engine, on its part, sends information to the debugger.

Figure 5 is a sketch of the reality of the new debugger; it has no direct link to the
rewrite engine. The rewrite engine provides, at a go, all the information the debugger will
ever requests in the intermediate file. The debugger refers to the intermediate file for all
the information it needs about the rewrite process.
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Equational

Rewrite Engine
Debugger

procedure calls

Figure 4: The Structure of the Old Debugger.

Equational

Rewrite Engine

data

Intermediate File

Figure 5: The Structure of the New Debugger.

6 New Features

In this section we shall consider the new debugger; its new features and how it differs
from the previous version.

6.1 Handling Conditions

A feature has been added to adequately control the rewriting of conditions attached to an
equation. The conditions are not treated as one block; so each condition can be accessed
independently of the others. To access a condition, the whole equation will be presented
and a condition can be selected by clicking a mouse button. The rewrite process is made
to proceed to the first step of a chosen condition. Conditions will be rewritten in the
numeric order of their condition number and there is no significant side effect and the
access time for one condition is equal to the other.
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6.2 Spooling of Results

The results of a rewrite movement are displayed on the screen, a separate window per
category; the separate windows are for the display of bindings,equations,redexes,reducts
and the current status of the debugger. Besides the display, there is the possibility of
writing the same information to a named file. The cut-and-paste functions of the X-
Window are enabled on this window.

6.3 Direction of Execution

The rewrite process is, in as far as the debugger is concerned, bi-directional and, moves
in both directions : backward and forward. In other words, the rewrite process can jump
back a number of steps and, seemingly, redo the rewriting.

7 Implementation of the Debugger

The debugger has been implemented as a series of tools that communicate with each
other via the ToolBus architecture. Basically, the ToolBus is an architecture that allows
a number tools, that are to be combined into a single system, to intercommunicate. Each
tool, in turn, has to provide its adapter to the common data representation and message
protocols provided by ToolBus. Tools do not communicate directly with each other. A
communication repertoire between two tools, T1 and T2, requires T1 to send a message
to ToolBus which forwards it to T2, T2 must then receive the message. ToolBus, in
this sense, works very much like the modern mailman. Refer to [BK94] for a detailed
description of the ToolBus architecture.

7.1 Overview of tools

e user—interface is the tool that handles the interface with the user, it is actually
the visible part of the debugger. It creates and destroys all the windows that will
be used by the system. Typically, it requests information from the intermediate file
and for the textual processing of ASF+SDF specifications.
user-interface is a TCL/TK script that will be translated by wish-adaptor, a
version of TCL/TK.

e stepper basically, has the function of reading the intermediate file and storing it as
a linked list in computer memory. All other retrievals from the intermediate file are
done by this tool. It has a multiple of interfaces with the ToolBus architecture.

Stepper has been implemented in C++.
e opener has the single task of passing the name of the intermediate file to the Tool-
Bus script. It does no other useful task and chances are that with the expected

improvements in the command line of the ToolBus utility itself, opener will become
obsolete.

Opener has been implemented in C++-.
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e spec2Tblist has a single interface to the ToolBus. ToolBus
name of an ASF+SDF equation module. Spec2Tblist reads and
and returns a TCL/TK list. Appendix B throws some light ¢
TCL/TK list.

Spec2Thblist has been implemented in C++.

7.2 The ToolBus script

The ToolBus script that controls the inter-tool communications of
sented below.

The ToolBus Script

process F2LIST(UI:user-interface, SPEC2TBLIST:spec2Tblist
let
FileToOpen : str,
List : str,
Eventnr : int,
Steps : int
in
rec-event (UL, f2list(Eventnr?,Steps?, FileToOpen?))
snd-ack-event (UI, f2list(Eventnr,Steps, FileToOpen))
snd-eval (SPEC2TBLIST, f2list(FileToOpen))
rec-value (SPEC2TBLIST,f21ist (List?))
if equal(4,Eventnr) then
snd-do (UI,snd~window(FileToOpen,List))
else if equal(5,Eventnr) then
snd~do (UI,spec~1list (FileToOpen,List))
else printf("Bad Event: £21ist(%d,%d,%s)",Eventnr,St
shutdown("Debugger exists without any grace
fi
fi
endlet

process KAMIKAZE(

OPENER : opener,
SPEC2TBLIST: spec2Tblist,
STEPPER : stepper,

Ul : user-interface,

DebugFile : str) is
let
Eventnr : int
in
rec-event(UIl, kamikaze(Eventnr?))
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pr

en

pr
1

rent (UL ,kamikaze (Eventnr))

-minate (OPENER, suicide) 11
rminate (SPEC2TBLIST, suicide) ||
-minate (STEPPER, kamikaze)

1ate (UI, DebugFile)
'End of Debug Run'")

{IP-ETC (
: stepper,
: user—-interface

: str,
: int,
: int

1tnr 1

mt (UL, step(Eventnr?, Steps?, ignorecond))
t—event (UI,step(Eventnr, Steps, ignorecond))
11 (STEPPER, ignorecond(Steps))

itnr 2

mt (UL, step(Eventnr?, Steps?, steps))
i—event (UI,step(Eventnr, Steps, steps))
11 (STEPPER, steps(Steps))

ttnr 3

mt (UL, step(Eventnr?, Steps?, skip))
(-event (UI,step(Eventnr, Steps, skip))
\L (STEPPER, skip)

.STEPPER, expr (DelVal?))
. stepvalue(DelVal))

R is
: str,
;ions : str,
: opener,
iT : spec2Tblist,
: steppef,
: user-interface
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execute (opener ,O0PENER?) I

execute (spec2Tblist,SPEC2TBLIST?) ||

execute (stepper,STEPPER?) Il

execute (user—interface,UI?)
) .
snd-eval {OPENER, initiate) .
rec-value (OPENER, expr(DebugFile?)) .
snd-eval (STEPPER, initiate(DebugFile)) .
rec-value (STEPPER, spec(Specifications?))
snd-do (STEPPER,readfile) .
snd-do (UI ,name-of~-specifications(Specifications)) .
(

%% Eventnr 1, 2 and 3

STEP-SKIP-ETC(STEPPER,UT)

+

%% Eventnr 4 and 5

F2LIST(UI, SPEC2TBLIST)

+

%% Eventnr T=kamikaze=suicide

KAMIKAZE (OPENER, SPEC2TBLIST, STEPPER, UI,DebugFile)
)* delta
endlet

tool spec2Tblist is {command = "spec2Tblist"}

tool user-interface is {command = "wish-adapter -script ui.tcl"}
tool opener is {command = "opener"}

tool stepper is {command = "stepper"}

toolbus (DEBUGGER)

End of Seript

Basically, the script defines a process called DEBUGGER and three other auxiliary
processes: STEP-SKIP-ETC, F2LIST and KAMIKAZE. DEBUGGER is the main process
and it starts by initiating in parallell the tools opener, user-interface and stepper. The
next step in sequence is that opener is requested to provide the name of the debugger’s
intermediate file; which is passed on to stepper. Stepper compiles a list of all the names
of the ASF+SDF specifications used for the evaluation of a term and passes this list to
toolbus. Thereafter stepper goes back and reads the rest of the intermediate file while the
said list is passed on to user-interface.

After the preparatory steps of the DEBUGGER, control is passed on to an alternation
of the auxiliary processes: user-interface actually takes over the debug process in that the
debugger depends on events emanating from user-interface.

STEP-SKIP-ETC handles control communication between stepper and user-interface.
STEP-SKIP-ETC succeeds when it receives, and duly acknowledges, an alternation of
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appropriate events from, and to, user-interface. STEP-SKIP-ETC requests a service
from stepper the result is passed on to user-interface.

F2LIST handles control communication between step2Tblist and user-interface. After
receiving the event from user-interface . The event contains the name of a file and an
event number in the variables FileToOpen and Eventnr respectively. A request is sent to
SPEC2TBLIST which returns a list. (The format of the list received from step2Tblist is
explained in Appendix C.) Depending on the event number received from user-interface,
an appropriate request is sent to user-interface.

KAMIKAZE, receives an event from user-interface and promptly acknowledges the
event. Thereafter a terminate message is sent to all the tools requesting them to commit
suicide.

8 Format of the Intermediate File

8.1 Informal description of the Intermediate File’s format

Since information can be of any length or character combination, the notion of escape
character has been used to delimit the information and make the underlying structure
obvious. Three escape characters: “\,”, “\[” and “\]|” referred to as Dell, Del2 and Del3
respectively, have been declared for this purpose. There is the requirement, however,
that information containing an escape characters combination, should be preceeded by a
backslash character.

A unit has been defined as the character combination enclosed by Del2 and Del3. A
binding has been defined to be two units; one for the name of the variable and the other
for its value. A set of bindings delimited with Del2 and Del3 is a Bindingset.

A Delta is defined to describe each rewrite step - it includes information such as an
equation description, two integers for the step and level numbers, a set of bindings, a
reduct and a redex and a set of deltas which describe the rewrite steps for the conditions
attached to the equation. The intermediate file is ultimately defined as a set containing
the name of files and a delta.

The implementation of the intermediate file’s structure allows for comments. This
is useful for hand-generated intermediate files. A comment is all text that appears just
before a delimiter, it is not part of a unit.

module Intermediate File
imports Nint Layout
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exports
sorts Dell Del2 Del3 Unit
Binding Bindingset Reduct Redex FILESET
Delta Eqn_des Log file String Conditions

lexical syntax

u\\\," — Dell
u\\[" — Del2
u\\\]" ~> Del3
7 [\ \n]x “\" ~+ String

Del2 [a-zA-Z0-9\[\t\n\b\r) (x&\ " %$#QN\— <>,./7{}~" ;; “[\\ ]¥ ~[\\] ~[\]] Del3 — Unit

context-free functions

Del2 String Del3 — Unit

Unit Unit — Binding
Del2 Binding* Del3 — Bindingset
Del2 {Unit “”}* Del3 — FILESET
Del2 String String Del3 — Eqn_des
Unit — Reduct
Unit —> Redex
Del2 Deltax Del3 — Conditions

Del2 Eqn_des INT " INT “"

Bindingset Reduct Redex
" Conditions* Del3 Deltax —+ Delta
FILESET Delta - Log_file

8.2 Operations on the Intermediate File

Set is by far the most essential operation defined on the intermediate file. Set sets a
position in the intermediate file where all operations by the debugger are to take place.
In a way, the operations are step, stepfore and stepback, skip and skipback are all variants

of Set.

8.3 Example of an Intermediate File

Below is an example of an intermediate file - it is essentially the intermediate file that
should be generated for the term shown in Figure 1.

\[Booleans\] \\Name of specifications
\ [
\["Booleans" "B6"\] \\ Equation applied is has tag B6 in Booleans
10 \\ step 1 level 0
\[\[Bool\]\[true\]\] \\ bindings: Bool = true
\[false\l \\ reduct
\[not ( true )\] \\ redex
\[ \] \\ no separate evaluation of condition
\]
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\ [

\]
\L

\]
\[

\]
\L

\1
\[

\["Booleans" "B4"\]

20

\[
\[Bool\l\[false | true\]
\[Booli\]\[false\]

\]

\[false\l]

\[false & false | true \]

\[ \]

\["Booleans" "B2"\]

30

\[
\[Bool\I\[false | not (true ) &
\[Booli\]\[false\]

\1]

\[ not (true ) & false | true\l
\[false | not (true ) & false | true
\[ \]

\["Booleans" "B6"\]

4 0

\[ \[Bool\]\[true\] \]
\[ false \]

\[not (true ) \]

\[ \]

\["Booleans" "B4"\]

50

\[
\[BooI\]\[false | true\]
\[Booli\]\[false\]

\]

\[ false \]

\[not (true ) \l

AL\

\["Booleans" "B8-default"\]
6 0 V
A\

\[Bool\]\ [false\]
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\ [Booli\]\[true\]
\]
\[ true \]
\[xor true false \]

\[\]
\]

8.4 Status of the Debugger

This subsection presents the syntax of the operators that maintain the internal stat
the debugger. The function flip takes a flag and returns its opposite. A flag is a bo
value. The functions init_dbstat and init_settin initializes the status of a file an
settings respectively.

module Intermediate Functions

imports Intermediate-File
exports
sorts STATUS-FILE Flag SetVal

lexical syntax

ngnp" -> Flag
uQff ~> Flag

context-free function

flip n(n Flag nym 4 Flag

%% SBind SEq SRedex SReducts SCond STag SSkip
"{" Flag Flag Flag Flag Flag Flag Flag "}" -> SetVal

“{" INT INT Flag EQSTACK SetVal "}" -> STATUS~FILE
init_dbstat ’ ~-> STATUS-FILE
init_settin -> SetVal
SetVal "~>" "Bind" ~> Flag

SetVal "->" "Eq" ~> Flag

SetVal "->" "Redx" -> Flag

SetVal "->" "Redu" ~-> Flag

SetVal "->" "Cond" -> Flag

SetVal "->" "Tag" -> Flag

SetVal "->" "Skip" -> Flag
chSBind SetVal -> SetVal
chSEq SetVal -> SetVal
chSRedx SetVal ‘ -> SetVal
chSRedu SetVal -> SetVal
chSCond SetVal -> SetVal
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chSTag SetVal
chSSkip SetVal

variables
F1[0-9]+*
Flag[0-9]*
SetVal[0-9]*
Sf[0-9]*

8.5 Syntax of Debugger operations

This subsection presents the syntax of the functions that operate on the ini
file. The functions include step, stepfore, break, skip, stepback, skipback, breakl
setback. Step take the status of an intermediate file and places the file positic
pointer to a number of steps forward or backward depending on the a value in 1
Stepfore and Stepback are variants of step, in that they position the said file point
or backward respectively. Skip and Skipback are responsible for skipping the

-> SetVal
-> SetVal

-> Flag
~-> Flag
-> SetVal

-> STATUS-FILE

of conditions: skipback, if it succeeds, rewinds the file pointer.

module Debug
imports Status
exports

sorts DB-STATUS Dfile Filepos

context-free functions

ins Eqn_des EQSTACK

II__>II

FILESET Delta* Filepos Delta*
STATUS-FILE Dfile

db " (" FILESET Deltax ")"
step "(" DB-STATUS ")"
stepfore "(" DB-STATUS ")"
break "(" DB-STATUS ")"
skip Dfile

stepback "(" DB-STATUS ")"
skipback Dfile

breakbc "(" DB-STATUS ")"
set " (" DB~-STATUS ")"
setback " (" DB-STATUS ")*

"Pretty-Print" "(" DB-STATUS ")"

set_stepcount "(" INT "," DB-STATUS ")*"
set_break "(" Eqn_des "," DB-STATUS ")*"
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EQSTACK
Filepos
Dfile
DB-STATUS
DB-STATUS
DB-STATUS
DB-STATUS
DB-STATUS
Dfile
DB-STATUS
Dfile
DB-STATUS
DB-STATUS
DB-STATUS

DB-STATUS

DB-STATUS
DB-STATUS






variables
Dbfile[0-9]* -> Dfile
Fpos -> Filepos

9 Evaluation and Conclusion

9.1 Reading Specifications

Currently, the new debugger has no access to a parse tree of the specifications being
debugged. Rather it performs naive textual searches in the source text.

As it is now, the debugger encounters difficulties analyzing specifications - there is no
way to determine and ignore comments, for instance, in the specifications. In ASF+4SDF,
every single byte specification of a module is inherently part of the syntax or seman-
tics of the specification. The notion of whitespace and comment are foreign. (However,
whitespace and comment can be defined as being of the reserved sort LAYOUT; in which
case, they will be ignored by the parser of the ASF+SDF system.) Since the debugger
deals with the textual level of a specification, it cannot determine what is whitespace and
comment - the effect of which is that the debugger completely ignores the syntax part of
a specification and views the semantic part in a rather simplistic textual mode.

Below is a segment of a properly defined module. The first line is a comment on the
second. Whereas the ASF+SDF system analyses this correctly, the debugger fails in its
attempts and may see the first line as a misformed equation.

%% The ’or’ operator when the first parameter is true
[B1] Bool = true

Booh | Bool = true

Another difficulty encountered when dealing with specifications is the identification
of the conditions of an equation. The effects of this shortcoming is that the debugger is
limited to the representation of conditions of the form below:

[Tagld] Condition;

Conditiony,

This problem could be solved by a tool powerful enough to parse a specification,
strip it of all comments and whitespace, and return a version of the specification that
is segmented into equations; equations sub-segmented into tag, conditions and left - and
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right hand side. The debugger as it is now does not have to be changed - the current tool
does the same but the list it produces has not been adequately analysed.

9.2 Pattern Recognition

At the textual level, it seems rather impossible to recognize patterns. Consider the module
below where Bool and Int are sorts.

module Sizeof

context-free functions
sizeof “(" BOOL “)" — Int

sizeof (' Int ")" — Int

For a pattern of the form sizeof(K), it cannot be determined at the textual level whether
K is a Bool or an Int. The solution for this problem, is to enhance the information that
is received by the debugger. The information must include such detail as the reason to
which a certain equation is applied - in fact each equation must be traced to the syntax
that justifies it’s validity. And if an equation is applied, there should be less difficulty
tracing its possible patterns.

9.3 Loop Recognition

Loops, as referred to here, are those that terminate; those that do not terminate cannot
be considered since debugging only starts after execution has terminated. Some of the
advantages that can be accrued if loops could be identified include more flexibility and a
significant reduction in the size of the intermediate files that contain a recurring number
of similar loops. The user could be informed he is about to enter a loop of a certain size
and if he so desires, decide to skip the loop all together.

There is no easy way to recognize these loops but techniques developed for code op-
timalization in compiler research can be very useful here. The compiler technique of
common subexpression could be of particular interest if loop could be viewed as a subex-
pression. See [ASU92| for more details.

9.4 Influencing the Rewrite Process

It is rather unfortunate that the user cannot alter or affect the rewrite process in any
way; he is reduced to an observer of the process. This point is intrinsic to the postmortem
nature of this debugger; ability to alter terms during debugging should be reflected in
the term that was rewritten - the debugger only plays back the steps done by the rewrite
engine.

9.5 Size of the Intermediate File

The size of the intermediate file can be remarkable and it would have been commendable,
considering only size, to apply con:ipression methods to it. Another point to consider is
the typically short lifespan of an intermediate file; after all, the file holds information on
the term that has reduced.
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A Equation of Intermediate Functions

Below is the equational part of the ASF-SDF specification of the Intermediate functions.
The syntax of the specification has been introduced previously in the text.

module Status
equations
[fi1] flip(On) = Off
[m] flip(Off) = On

[vll} {FI Fl; Fls Fl3 Fly Fis F/s} — > Bind = FI
[VIZ] {F/l FI Flp Fl3 Fly Fls FIG} —>Eq=Fl

[v3] {Fll Fls FI Flg Fly Fly F/G} — > Redx = FI
fvi4] {F/l Fly Fl3 FI Fly Fl5 Flﬁ} — > Redu = FI
[vi5] {F/l Fly Fl3 Fly FI Fl5 Fle} — > Cond = FI
[vig] {Fll Fls Flg Fly Fi5 FI F/ﬁ} — > Tag = FI
[w17] {F/l Fly Fls Fly Fls Flg FI} — > Skip = FI

| chSBind {FI FI Fly Fls Fly Fls Flg} = {flip(Fi) Fly Fly Fls Fly Fls Fig}

| chSEq {Fly FI Fly Fls Fly Fls Flg} = {Fl flip(Fi) Fly Fls Fly Fls Flg}

] chSRedx {Fi FI Fly Fls Fly Fls Flg} = {Fh Fh flip(Fl) Fls Fly Fls Flg}
cha] chSRedu {Fly FI Fly Fls Fly Fls Flg} = {Fl Fly Fls flip(Fi) Fly Fls Flg}

] chSCond {Fly FI Fly Fls Fly Fls Flg} = {Fl Fly Fls Fly flip(Fi) Fls Flg}

| chSTag {Fl FI Flp Fls Fly Fls Flg} = {Fh Fly Fls Fly Fls flip(Fl) Flg}

| chSSkip {Fl FI Fly Fls Fly Fls Flg} = {Fl Fly Fls Fly Fls Flg flip(Fl)}

[in0] init_dbstat = {0 0 Off {} init_settin}
[in1] init_settin = {Off Off Off Off Off Off Off}
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B Equations of the Debugge

This appendix contains the equational part of the ASF
functions. The syntax part of the specification has al
the text.

module Debug

equations
[db1] db(Fset Delta) = init_dbstat Fset —— > Delta

Sf = {int inty FI Break_Pattern SetVal},
Sfy = {int 0 Off Break_Pattern SetVal}

1
[pe1] Pretty-Print(Sf Dbfile) = Sf; Dbfile
fsto1] Sf = {int inty On Break_Pattern SetVal}
*PY " step(Sf Dbfile) = Pretty-Print(Sf Dbfile)
Sf = {int inty Off Break_Pattern SetVal},
Dbfile = Fset Deltay Fpos ,
int > 0 = true
[stp2] . : .
step(Sf Dbfile) = Pretty-Print(Sf Dbfile)
Sf = {int inty Off Break_Pattern SetVal},
Dbfile = Fset Deltay Fpos Delt Deltas,
int > 0 and intyg > int = true
[stp3] : - .
step(Sf Dbfile) = Pretty-Print(Sf Dbfile)
Sf = {int inty Off Break_Pattern SetVal},
Dbfile = Fset Deltay Fpos Delt Deltay,
int > 0 and int > inty = true
[stp4] - "
step(Sf Dbfile) = stepfore(Sf Dbfile)
Dbfile = Fset Deltay Fpos ,
Sf = {int inty Off Break_Pattern SetVal},
Sfy = {int 0 Off Break_Pattern SetVal},
[sto5] int > 0 = true
*tP step(Sf Dbfile) = Sf Dbfile
Dbfile = Fset Deltay Fpos Delt Deltas,
Sf = {0 inty Off Break_Pattern SetVal}
[stpﬁ]

step(SF Dbfile) = stepfore(Sf Dbfile)
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[stp7]

[stpS]

[stp9]

[stfl]

[stf2]

[stf3]

[skl]

[skZ]

Sf = {int inty Off Break_Pattern SetVal},
Dbfile = Fset Fpos Deltay,
int < 0 = true

step(Sf Dbfile) = Sf Dbfile

Sf = {int int FI Break_Pattern SetVal},
Dbfile = Fset Delta; Fpos Deltas,
int < 0 = true

step(Sf Dbfile) = Pretty-Print(Sf Dbfile)

Dbfile = Fset Delta Delt Fpos Deltay,
Sf = {int inty Off Break_Pattern SetVal},
Sfy = {int 0 Off Break_Pattern SetVal},
int < 0 and inty > int = true

step(Sf Dbfile) = stepback(Sf Dbfile)

Dbfile = Fset Deltay Fpos Delt Deltas,
Sf = {int inty Flag Break_Pattern SetVal},
SetVal — > Skip = On,

Dbfile; = skip Dbfile

stepfore(Sf Dbfile) = break(Sf Dbfiles)

Dbfile = Fset Delta; Fpos Delt Deltas,
Sf = {int inty Flag Break_Pattern SetVal},
SetVal — > Skip = Off

stepfore(Sf Dbfile) = break(Sf Dbfile)

Dbfile = Fset Delta; Fpos

stepfore(Sf Dbfile) = set(Sf Dbfile)

Dbfile = Fset Deltay Fpos Delt Deltas,
Delt = Dely Eqn_des, Step, 0, Bindingset Reduct Redex Cond_Stack Del

skip Dbfile = Dbfile

Dbfile = Fset Deltay Fpos Delt Deltay,
Deit = Dely Eqn_des, Step, Level, Bindingset Reduct Redex Cond_Stack Dels,
Level £ 0

skip Dbfile = skip Fset Deltay Delt Fpos Deltay

[sk3] skip Fset Deltay Fpos = Fset Delta; Fpos
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[brl]

[default-bra]

[scl]

[sc2]

{Fll Fly Fls Fiy Fls On F/} = SetVal

break(
{int inty Flag {Eqns Eqn_des Eqns, } SetVal} Fset Delta; Fpos Dely Eqn_des, Step,
Level, Bindingset Reduct Redex Cond_Stack Dels Deltay) =
Pretty-Print(
{int inty Flag { Eqns Eqn_des Eqns;} SetVal} Fset Delta; Fpos Dely Eqn_des, Step,
Level, Bindingset Reduct Redex Cond_Stack Dels Deltas)

Dbfile = Fset Delta; Fpos Delt Deltay,
Sf = {int inty Flag Break_Pattern SetVal},
Dbfiley = Fset Deltay Delt Fpos Deltas,
Sfy = {int inty + 1 Off Break_Pattern SetVal}

break(Sf Dbfile) = step(Sf; Dbfile;)

Sf = {inty inty Fl Break_Pattern SetVal},
Sfy = {int O FI Break_Pattern SetVal}

set_stepcount(int, Sf Dbfile) = Sfy Dbfile

Sf = {int inty FI {Eqns} SetVal},
Sfy = {int inty Flins Eqn_des { Eqns} SetVal}

set_break(Eqn.des, Sf Dbfile) = Sf; Dbfile

[inst] ins Eqn.des { Eqns, Eqn_des Eqns} = {Eqns; Eqn_des Eqns}
[default-ins1] ins Eqn_des { Eqns} = { Eqn_des Eqns}

[stbl]

[sth]

[stb3]

[skb1]

Dbfile = Fset Delta; Delt Fpos Deltas,
Sf = {int inty Flag Break_Pattern SetVal},
SetVal — > Skip = On,

Dbfileg = skipback Dbfile

stepback(Sf Dbfile) = breakbc(Sf Dbfiles)

Dbfile = Fset Delta; Delt Fpos Deltas,
Sf = {int inty Flag Break_Pattern SetVal},
SetVal — > Skip = Off

stepback(Sf Dbfile) = breakbc(Sf Dbfile)

Dbfile = Fset Fpos Delta;

stepback(Sf Dbfile) = Pretty-Print(Sf Dbfile)

Dbfile = Fset Deltay Delt Fpos Deltas,
Delt = Del, Eqn_des, Step, 0, Bindingset Reduct Redex Cond_Stack Dels,
Dbfile; = Fset Delta; Fpos Delt Deltay

skipback Dbfile = Dbfile;
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Dbfile = Fset Delta; Delt Fpos Deltas,
Delt = Dely Eqn.des, Step, Level, Bindingset Reduct Redex Cc
Level # 0,
Dbfiley = Fset Delta; Fpos Delt Deltay
skipback Dbfile = skipback Dbfile;

[skb2]

[skb3] skipback Fset Fpos Deltal = Fset Fpos Delta;

[bbr1] {Fh Fly Fl3 Fly Fls On FI} = Set
T.

breakbc(
{int inty Flag {Eqns Eqn_des Eqns, } SetVal} Fset
Deltay
Del, Eqn_des, Step, Level, Bindingset Reduct Redex Cor
Pretty-Print(
{int inty Flag {Eqns Eqn_des Eqns, } SetVal} Fset Delta
Fpos Dely Eqn_des, Step, Level, Bindingset Reduct Redex
Deltag)

Dbfile = Fset Delta; Delt Fpos Deltay,
Sf = {int inty Flag Break_Pattern SetVal},
SetVal = {Fh Fly Fl3 Fly Fl5 Off Fi},
Dbfile; = Fset Delta; Fpos Delt Deltas,
Sfi = {int inty — 1 Flag Break_Pattern SetVal}
breakbc(Sf Dbfile) = step(Sfy Dbfile;)

[bbr2]

[bbr3] breakbc(Sf Fset Fpos Delta) = step(Sf Fset Fpos Delta)

Dbfile = Fset Delta; Delt Fpos Deltay,

Sf = {int inty Flag Break_Pattern SetVal},
Dbfile; = Fset Deltay Fpos Delt Deltas,
Sfi = {int inty — 1 Off Break_Pattern SetVaI}
breakbc(Sf Dbfile) = step(Sfy Dbfile;)

[default-bbra]

38






C Format of List returned by spec2Tblist

The tool spec2Tblist, as mentioned above, processes an ASF4+SDF specification and,
essentially, returns a list containing information about the specification. The list has
information on the number of equations and a description of each equation in the speci-
fication. An equation in turn, has the information on the number conditions attached to

an equation and the equation itself.

The structure of the list built up as follows:

List HH
length D=
equations
line

conditions ::=
equation

<length> <equations>*

’<? integer ’>’

<length> <conditions> <equation>
<length> <string>

<length> <lines>*

<lines>

A <string> is defined as a sequence of characters of a fixed length whereas an <integer>
is of the traditional defition.
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D Example of a debug trail

+50F Equatior Debbogoer

Figure 6: The Debugger - the user interface

In this section the term shown in Figure 1 will be debugged. The intermediate file gen-
erated for this term is shown in the previous section. We will begin by introducing the
user interface of the debugger and continue to show how this is applied to the various
instances of the term from its initial term right through the normal form.

Figure 6 shows the basic user interface for the new debugger - a climb down from the
old. The buttons that can be chosen from this interface, shown on the first row, are Step,
Add Break, Delete Break and Settings. On selecting the Step button one gets a sub-menu
as shown in Figure 7.

+5IF vKl.Jatiajr': Tiebbuy

Figure 7: The Debugger - Step chosen

The menu button ” Add Break” is chosen to set a break point. Setting a break point
is a two-step procedure: it first requires the user to choose a module from which the
break point is to originate and then the equations of the chosen module are presented
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in a window. The first step, however, is necessary only when there is more than one
specification. In this example, there is only one module so the first step is bypassed. A
break point is selected by clicking button three on the chosen equation. Figures 8 and
10 show how, for this example, a break point was set on the last equation of the module.
The chosen equation will be highlighted and added to a list of break points. (Figure 8 is
not a reality and has been added only to show how it would have been had there been
more than one module in the specification.)

Figure 8: The Debugger - choosing a specification

Figure 9: The Debugger.5

Figure 12 show a list of windows - the result of having done a trace of 1 step; the
windows in Bindings, Equation and ‘Conditional jump to [B6]’. The windows Bindings,
Equation are shown because they were requested Settings to show bindings and equation.
The other window, ‘Conditional jump to [B6]’ is particularly interesting - it has been
shown because the equation has a condition and it provides a way to influence the rewriting
the condition.
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Figure 10: The Debugger - Setting a break point

Figure 11: The Debugger.6
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Figure 12: The Debugger - A step taken
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