

agger 1

Contents

AUCHON ceiriecirerresiiesnsicsnscsnssisessssess st ssessessstsnsnsssssssessssssnnssasssnssansassnss 2
formalism ASF + SDFmivicceverisennsnsnrisssssnsssssssssssssssssssssssssssassases 4
2.1 INtrodUCHON ..coccicicterernrneintrass et s st st s se s ensnssesnsnssssn s snnsnsasssncs 4
2.2 ASF + SDF ..uvivivcrctcnctninnsissssenssssssssssssssssnssesssssassesssssssassssssnssssass 5
2.3 An example: the specification of arithmetic expressions 6
2.4 Basic MOAULESuiicriieecnncie s ssnsiensssssnsssssssssssssssassasaes 6
2.5 The syntax of eXPressionsc.eececsssrsssinissisnssssinsssnsisasisess 10
2.6 A typechecker for eXpressions ..., 11
2.7 An evaluator fOr eXpressions ... 13
ASF + SDF SYSTEIMcvrerererrasisnsustmsassscssesestssssstssssssassssssssassssssssassses 14
3.1 Overview eracevesiassRteT S SA RS AR bR RS AR SRR AR AR S SRR OROR S RO AR SRS A A0 14
3.2 The ASF + SDF meta-SYSteImccoceeeeeeereeresnsnrscstsrecscsnsssasscsnsssseacs 15
3.3 The Generic Syntax-directed Editor GSEccocconvnvcmnininnicncnnee 16
3.4 Term-EditOrS .cocoivmvcsismsisniinesnsssssnsssesesssnsestanssssssessensssssasasscsssssnsenes 18
3.5 MOAUIE-EItOrS ..ccoverrerieriicrinssinessnsesisesesssnsssssssssssscssssasnsnsassosasases 19
3.6 The internal structure of the ASF + SDF systemc.cccccuuuuee 20
-rewriting in the ASF + SDF systemcccocovcvminnnniecinineninsesnnneens 22
unctionality of the Equation Debuggercoonmimivmnmonennncrennnnnee. 26
5.1 INErOdUCHON .occorirrriirineisirnriensissenstnissenesssnsssesssssessnsesesssssassssnseseansss 26
52 Objectives and Design ISSUES ...ccovccvsrviiiniinniicniesnsnnsissnssssssssiseins 26
5.3 The user-interface of EDB ...ttt 27
5.4 The interface between EDB and EQMc.ccccceiniirnnnnneninncrncncnnns 33
55 An example: tracing the evaluation of a termcccoecvcireinnnce 36
Igging term rewriting systems compared with debugging

entional PrOGIramISccccouseriessessesemimsissississasississsssssssssessssssssessssssssssses 42
TUding ReMATKS ..ccoccvieeentseisessiseisnsns st sssisssesseseasessansassssssssssssss 44
10370 L1e F=05 4115 11 ROV TR PR 44
CIICES ..vvvvrnenerseseseossssesssesssossessessssssstesessasessastensassstssesstantsstastsmesisnessessasnsnensses 45

(o ole
~ CUm
0er | - G pgnnd

. gw%’i{, I AL ag@/
{ a.v- E@é’v\ L M !ﬂﬁl‘;‘ y{hw{@(j/aﬂ

The Equation Debugger 2

1. Introduction

The subject of this report is a debugger for term rewriting systems. Differences and
analogies between debugging term rewriting systems, and debugging
programming languages will be analysed. The debugger we present here is called
the Equation Debugger (EDB). Before we can describe the global design and
implementation issues of EDB, a short description of EDB's environment, the ASF
+ SDF system will be presented.

In Chapter 2, the formalism ASF + SDF will be presented. Chapter 3 sketches the
ASF + SDF system, an implementation of this formalism. Then, in Chapter 4,
term rewriting in the ASF + SDF system is described in detail. A full report of the
functionality of EDB, and of its user-interface can be found in Chapter 5. A
description of the interface between EDB and the rest of the system is also given in
Chapter 5. In Chapter 6, the techniques used in the Equation Debugger are
compared with debugging techniques for programming languages. Finally, some
concluding remarks are made in Chapter 7.

The ASF + SDF system is an integrated software system, with as purpose the
automatic generation of interactive programming environments. A full
description of this system can be found in [Kli90]. Programming environments are
generated from modular formal language specifications, and changes in these
specifications are processed incrementally. Each module of such a specification
consists of two parts. In the first part, the syntax of a language is described using the
syntax definition formalism SDF [HHKRS89]. In the second part of a module, the
semantics of the language under consideration are defined in the Algebraic
Specification Formalism, ASF [BHK89].

In an SDF-definition, both the concrete and abstract syntax of a language are
specified. The concrete syntax is expressed by regular and context-free grammars. In
SDF a fixed mapping is defined from non-terminals (sorts) and grammar rules in
the concrete syntax, to sorts and functions in the abstract syntax. Using this
mapping, sentences (text strings) in the concrete syntax, can be mapped on their
corresponding terms (abstract syntax trees) in the abstract syntax. In this way, SDF
provides its users with a correspondence between the concrete and abstract syntax
of a language.

If a sentence corresponds to more than one abstract syntax tree, i.e., the grammar is
ambiguous, the ambiguities can often be solved by declaring priorities in the SDF-
definition. These can, for example, be used to handle the precedence of arithmetic
operators in a language. Furthermore, functions can be declared as left-, right- or
non-associative. Language definitions in SDF are modular, generally, a definition
consists of a set of modules. A module can use the syntax of another module, by
importing it. Variables can be used as placeholders for subterms. Sorts, lexical and
context-free grammar rules can be declared as hidden, in which case, the syntax
associated can only be used in the module that defines them, it can not be used by

importing modules.

The Equation Debugger 3

As mentioned before, the ASF part of an ASF + SDF specification defines the
semantics of a language. This is accomplished by using a set of conditional
equations. These equations define equalities on terms of the same sort, and are
viewed as rewrite rules transforming the left-hand-side of an equation into the
corresponding right-hand-side. A list of conditions may be associated with each
equation. Each condition consists of an equality or inequality on terms of the same
sort. An equation is said to match with a term, when for all variables in the left-
hand-side of an equation, a binding can be found, such that instantiating the
variables with those bindings yields the given term. When an equation matches
with a term, the conditions of that equation are checked. If they all succeed,
possibly by binding more variables, the equation is applicable. Now, the variables
in the right-hand-side of the equation may be instantiated using the bindings
established so far, and the result may be substituted for the original term.

In the ASF + SDF system, equations are implemented as term rewriting rules, that
is, they are only interpreted from left to right. The (sub)term, for which some
equation is applicable, is called the redex. The application of an equation is called
rewriting. If the redex is a subterm of a larger term, its context does not change.
The process of rewriting continues until no more applicable rewrite-rules can be
found. The term is then in normal form. The algorithm that is used to select a
redex in a given term is called the reduction strategy. In the current
implementation of the ASF + SDF system, a leftmost-innermost reduction strategy
is used for the selection of redexes. Topics such as the reduction strategy, and the
evaluation of conditions will be addressed in detail in Chapter 4.

The ASF + SDF system is a system that allows the user to create a specification,
written in the combined formalism ASF + SDF. From this specification, a
programming environment is generated, consisting of a syntax-directed editor and
other tools, such as typecheckers and program-evaluators. In the system, a number
of components can be distinguished, each with a definite task. The most important
of these components are listed below.
* The Syntax Manager (SM) is responsible for the syntax part of specifications.
e The Equation Manager (EQM) is the component that handles the rewriting
process of terms.
¢ The Module Manager (MM) controls the modular structures, defined in the
specification.
e Various instances of the Generic Syntax-directed Editor (GSE) enable the
user to edit terms and specifications in a manner, that combines both text-
and structure editing. Instances of GSE are always parameterized with a
language definition in SDF. GSE-instances are currently used in the ASF +
SDF system for:

(1) Editing terms in the language for which the user has supplied a
specification. These GSE-instances are called term-editors, and are
parameterized with the SDF-part of the user's specification.

(2) Editing the syntax-part of specifications. These GSE-instances are
parameterized with an SDF-specification of SDF itself.

(3) Editing the equations part of specifications. Here, the GSE-instance is
parameterized with a language definition that was derived from the
user's definition, by extending it with the basic syntax for conditional

The Equation Debugger 4

equations. In the ASF + SDF system the combination of (2) and (3) is
called a module-editor.

(4) Finally, other instances of GSE will be used during the debugging-
process, for entering breakpoints, and for pretty-printing partially
rewritten terms. These GSE-instances will be discussed in Chapter 5.

A general overview of GSE's main features can be found in Section 3.3. In
[Koo091], GSE is described in detail.

The Equation Debugger is a new component of the ASF + SDF system, to be used
for debugging the semantics part of specifications. The main objectives of EDB are:

e Providing the user with a powerful means to detect errors in the equations
part of a specification, in a highly interactive manner.

e Tracing, i.e., visualizing the rewriting process. A solution to this will be
given in the form of pretty-printing partially rewritten terms, in which the
current redex is indicated.

A key issue in the implementation of EDB is that debugging is done interactively,
during the rewriting process. A basic design decision is that the user can only
observe the rewriting process, and is not allowed to change terms during
rewriting.

2. The formalism ASF + SDF

2.1 Introduction

In this chapter, the formalism ASF + SDF is presented by means of a sample
specification. This specification contains a set of modules, defining the syntax of a
small language of arithmetic expressions. In addition, the static and dynamic
semantics of this language will be specified (corresponding to typechecking and
evaluation, respectively). Usually, larger ASF + SDF specifications conform to the
following modular structure :

e A set of basic modules defines the format of layout, and the datatypes used

in the specification.

e A module for the syntax of the language.

e A typecheck module, expressing the static semantics of the language.

e Lastly, a module that specifies the dynamic semantics (evaluation).
In Section 2.2, the backgrounds of the formalisms ASF and SDF are summarized.
Section 2.3 illustrates an informal explanation of our expression-language. This is
followed by a description of the basic modules of the specification in Section 2.4.
The module defining the syntax of our language is explained in Section 25. In
Section 2.6, a typechecker for expressions is presented. Finally, in Section 2.7 we
will describe the module, that defines an expression-evaluator. While presenting
the modules of our specification, the features of ASF + SDF will be discussed in
some detail. The example of expressions, as presented in this chapter, will be used
throughout this report to illustrate the various features of EDB.

The Equation Debugger 5

2.2 ASF + SDF

In the Syntax Definition Formalism SDF [HHKR89] a modular specification
defines both the concrete syntax and the abstract syntax of a language. An
important feature of SDF is the implicit connection between syntax and semantics.
This is accomplished by a fixed mapping from parse-trees to abstract syntax trees
(terms). Parse-trees are constructed by parsing text-strings according to the concrete
syntax. The leaves of a parse-tree are the lexical tokens, that, when put in sequence,
form the sentence that was parsed. The interior nodes of the parse-tree are the
non-terminals of the grammar. Abstract syntax trees consist of the application of
functions on constants, variables, and other functions. The relation between parse-
trees, and their associated abstract syntax trees, will be illustrated in Section 2.4.

When combining SDF with the Algebraic Specification Formalism, ASF [BHK89],
ASF provides algebraic semantics for SDF, through a set of conditional equations,
over abstract syntax trees generated by SDF. Each module in the combined
formalism ASF + SDF, contains both an SDF part, and an ASF part. The structure
of such a module is outlined below, in Figure 1.

module M
exports ~- syntax visible to importing modules.
sorts S1 S2 S3
-= declaration of sorts (non-terminals).
lexical syntax
-- rules defining the lexical syntax.
context-free syntax
-~ definition of grammar-rules in the concrete
~-—- syntax, and corresponding functions in the
-—- abstract syntax.

variables ‘
-~ declaration of naming schemes for variables

imports M1 M2 M3 -=- list of imported modules
hiddens -~ syntax visible only inside this module.
sorts S4 S5 S6
-- see exports section.
lexical syntax
-- see exports section.
context-free syntax
-~ see exports section.
variables
-—- see exports section.
priorities ’
-~ definition of priority-relations between
-— rules in the context-free syntax sections.

equations
-- conditional equations over abstract syntax.

Figure 1. The global structure of an ASF + SDF module.

The Equation Debugger 6

2.3 An example: the specification of arithmetic expressions

In this example, expressions are constructed from integers constants and
identifiers, and operators for addition, subtraction, and multiplication. In order to
keep our example reasonably small, the common succ - 0 representation is used
for integers. Here, 0 represents the integer 0, succ ... succ 0 (n times succ)
represents the integer n, and pred ... pred 0 (m times pred) represents -m. If
constant values are used in expressions, the constructor-function const must be
applied to their integer value. The precedence of functions is, in descending order:

e ()

b let
® *
e +and-

In a let-expression, identifiers Id1,...,.Idn may be initialized for use in an expression
<EXP>.Such a let-expression takes the form :
let Idi=Valuei,... Idn=Valuen in <EXP>.

Constraints, such as for example the fact that all identifiers should be declared, will
be imposed by the expression-typechecker, in Section 2.6. Let-constructs can be
nested, in which case the following scope-rule applies. The value of an identifier
in an expression is the value assigned to it in the nearest surrounding let. For
example, the correct value of the expression in Figure 2 is succ succ succ succ
0.

let a=0, b=succ 0
in
let a=succ succ 0, c=succ sucec succ 0
in
(a* c-Db * const(succ succ 0))

Figure 2. A sample expression.

The typecheck-function takes an arbitrary expression as argument, and yields true
if and only if :

(1) every identifier used in the expression is declared.

(2) no identifier occurs more than once in the same declaration-list.
If typechecking an expression succeeds, applying the evaluate-function to that
expression returns its value. Otherwise, the expression itself is returned unaltered.

2.4 Basic Modules

Below, we will start with the basic module Layout as a first example. In module
Layout (see Figure 3), the format of layout in our language of expressions is
defined. Space-, tab- and newline-characters are layout. (The backslash symbol \ is
an escape-mechanism for non-printable characters.) A general description of
lexical syntax sections in ASF + SDF specifications will be given shortly.

The Equation Debugger 7

module Layout
exports
lexical syntax
[\t\n] -> LAYOUT

Figure 3. An ASF+SDF specification of layout.

In module Booleans (see Figure 4), a sort BOOL is declared, and constants t rue and
false of this sort are defined. There are two interpretations for sort-names
declared in a sorts section. The first corresponds to non-terminals in the
concrete grammar. The second interpretation is that of sorts in the algebra of terms
(abstract syntax), associated with the specification. The sorts LAYOUT (as used in
module Layout), and CHAR (not used in our example) are predefined, and do not
have to be declared. On sort BOOL, two left-associative operators and and or, and a
unary operator not are defined, representing the standard operations on booleans.
The syntax associated with module Layout is imported into module Booleans, by
listing it after the imports keyword. In the priorities section, the usual
priorities are expressed: not has the highest priority, then and, and finally or. A
bracket-function is defined to overrule these priorities, when necessary. Note that
in equation BOOLS5 the semantics of or are expressed using De Morgan's Law, in
terms of not and and. -

module Booleans
exports
sorts BOOL
context-free syntax

true -> BOOL
false -2 BOOL
BOOL and BOOL =-> BOOL {left}
BOOL or BOOL -> BOOL {left}
not BOOL -> BOOL
(" BOOL ")}" -> BOOL {bracket}
imports Layout
variables:
B[O-1]* -> BOOL
priorities
not > and > or
equations

[BOOL1l] not true = false

[BOOL2] not false = true

[BOOL3] true and B = B

[BOOL4] false and B = false

[BOOL5] BO or Bl = not ‘(not BO and not Bl)

Figure 4. An ASF+SDF specification of Booleans.

As mentioned, we ‘will describe the lexical syntax sections of an ASF + SDF
specification. In these sections, lexical notions of the language specified are
.defined, using regular grammars. In the rules of the context-free syntax
sections, these lexical notions will be utilised. The grammar of the lexical

The Equation Debugger 8

syntax section may contain character classes, and repetition-operators * and +,
denoting zero-or-more and one-or-more repetitions, respectively. An example can
be found in module Elements, which is presented below (see Figure 5). Here, the
elements of expressions are specified, i.e., integers and identifiers. In the rule

[a-z] [a-2z0-9]* - ID,
the lexical notion ID (identifier) is defined as a string starting with a letter,
followed by zero or more letters, digits or underscore symbols.
As stated before in Section 2.2, a dual view exists on the syntax defined by a
specification. In the context-free syntax section, both the concrete syntax, and the
abstract syntax are defined.

e The concrete syntax corresponds to interpreting sorts as non-terminals, and
reading the rules from right to left. Actually, a BNF-grammar is derived
from the rules in the specification, when parsing of sentences is necessary.
According to this grammar parse-trees are then constructed. Parse-trees
show how a particular sentence can be derived from a grammar. The
interior nodes of a parse-tree are the non-terminals of the grammar that is
used, and the leaves of a parse-tree are the lexical tokens. When these
tokens are put in sequence, they form the sentence that was parsed
originally. In Figure 6a, an example of a parse-tree is presented.

e The abstract-syntax defined by a specification corresponds to the domain-
interpretation of sorts. Here, a rule in the context-free syntax section is seen
as the declaration of a function. The sort-names occurring in the left-hand-
side of a context-free syntax rule correspond to the types of the arguments,
and the sort-name that forms the right-hand-side defines the result-type of
the function. Abstract syntax trees are constructed according to this abstract
syntax. Abstract syntax trees only contain the essential information,
necessary to describe a sentence, offering a much more concise
representation of sentences than parse-trees. Abstract syntax trees consist of
the application of functions to other functions, constants and variables. In
the SDF reference manual [HHKR89], the algorithm that maps a parse-tree
on its corresponding abstract syntax tree can be found. An example of an
abstract syntax tree is shown in Figure 6b.

If we consider for example the rule add INT INT =-> INT, as found in module
Elements, its two interpretations are :
(1) from a non-terminal INT, we can derive the terminal add followed by two
new INT non-terminals.
(2) the application of a function add on two operands of type INT yields a result
of type INT.
In the equations section of an ASF + SDF module, semantics are associated
with the syntax, by way of a set of conditional equations. First we will examine
some simple unconditional equations. For each sort s in the specification,
unconditional equations of the form [Tag] S1 = S2 can be written, where S1
and S2 are terms according to the abstract syntax of sort S, and Tag is a name that is
attached to the equation. Uniqueness of tags is not demanded, but is strongly
recommended for debugging purposes, that we will describe in Chapter 5. As an
example, we consider the equations with tags Int3, Int4 and Int5 of module
Integers (Figure 5), in which the semantics of integer-addition are defined. Using
- standard arithmetic notation we see that :
- equation Int3 correspondsto : =~ x+0=x

The Equation Debugger 9

- equation Int4 corresponds to : x+y+) =+ +y
- equation Int5 corresponds to x+(y-1)=x1D+y
A list of conditions (separated by commas) may be associated with an equation,
each condition being an equality or an inequality of terms of the same sort. So far,
we have not yet used an equation with conditions, but an example is equation Tc9
from module Exp-tc (Figure 8), to be presented in Section 2.6.
[Tc9] Id0 != Idl

[Id0] in (Idl Ids) = [Id0] in (Ids)
In variables sections, naming schemes for variables are defined. Declarations
in this section define the lexical structure of names of variables, using regular
grammars. For example, in module Elements (see Figure 5), the names of
variables of sort INT are defined to consist of the letters Int, followed by zero or
more digits 0 or 1 :
Int [0-1]* -> INT

module Elements
exports
sorts INT ID
lexical syntax

[a-z] [a-20-9 1%* - ID
context-free syntax
Tor -> INT
succ INT -> INT
pred INT -> INT
add INT INT -> INT
sub INT INT -> INT
mul INT INT -> INT
variables
Int{0-1]%* -> INT
imports Layout
equations

[Intl] succ pred Int = Int
[Int2] pred succ Int = Int
[Int3] add Int 0 = Int
[Int4] add Int0 succ Intl
[Int5] add Int0 pred Intl
[Int6] sub Int 0 = Int
[Int7] sub Int0 succ Intl
[Int8] sub Int0 pred Intl
[Int9] mul Int 0 = 0
[Int10] mul Int0 succ Intl
[Intll] mul Int0 pred Intl

add succ Int0 Intl
add pred Int0 Intl

i

sub pred Int0 Intl
sub succ Int0 Intl

add mul Int0 Intl Into
sub mul Int0 Intl Int0

Figure 5. The basic elements of expressions.

The Equation Debugger 10

INT add

AN |

<INT>\ sulcc

<INT> <INT> 0

add succ succ 0 0

(a) (b)

Figure 6. Parse-tree (a) and corresponding abstract syntax tree (b)
for the sentence 'add succ succ 0 0'.

2.5 The syntax of expressions

Having specified the set of basic modules, we are able to present the module
defining the syntax of our expression-language. This module, Expressions, can
be found below, in Figure 7. Two sorts, DECL and EXP are introduced in this
module. The sort DECL is related to one declaration in a let-construct. The other
sort, EXP, corresponds to the actual expressions.

We will now give a brief description of the grammar rules of module
Expressions. In the grammar rule ID = INT -> DECL, is expressed, that each
declaration consists of an identifier, followed by =, and an integer. The grammar
rule const " (" INT ")" -> EXP shows that a constructor-function const
allows us to use integer-constants in expressions. No such constructor function is
necessary for using identifiers in expressions, as stated by the rule ID -> EXP. This
kind of grammar rule, that in fact defines a subsort, is called a chain-function or
injection.

In the grammar rule EXP "+" EXP -> EXP {left}, an associativity-attribute is
used. This defines the + operator, working on expressions, to be left-associative.
Likewise, right- and non-associativity of binary functions S op S -> Scan be
expressed with the attributes {right}, and {non-assoc}.

Another attribute, {bracket}, is used to define bracket-functions, which are
needed to overrule priority- and assodiativity-constraints. An example of this is
the rule "(* EXP ")" -> EXP {bracket}. Bracket functions are used for
grouping purposes only, they do not contribute to the abstract syntax.

Intherule let { DECL "," }+ in EXP -> EXP, thelist-sort { DECL "," }+is
used. Generally, for every sort S defined in a specification, the list-sorts S*, and s+
are defined implicitly, representing zero-or-more , and one-or-more repetitions of
sort S, respectively. Furthermore, for lists with separators (in our example a
comma), the list-sorts { S sep }*,and { S sep }+ can be used. In the concrete
syntax, these sorts represent lists of zero-or-more, and one-or-more repetitions of
_sort S, separated by the separator sep. In the abstract syntax, no separators are
placed between the list-elements in both cases. Here, the list-elements are children
of a node, that indicates both the sort of the elements of the list, and the separator

The Equation Debugger : n

used. List-sorts are not allowed on the right-hand-side of context-free syntax rules.
However, this imposes no restrictions, since list-sorts on the right-hand-side can
always be simulated using an auxiliary sort.
In the priorities section, priority-relations between sets of context-free syntax
rules are defined, in priority-chains. These priority-chains consist of a list of (sets
_of) context-free syntax rules (without their attributes), separated by either < or >.
Rules in priority-chains may be abbreviated, by writing only the terminals
occurring in the left-hand-side. However, this is only allowed, if the abbreviations
thus found are unique.
If we consider the priority-chain in module Expressions (see Figure 7), we see
that Let-constructs have the highest priority, followed by *, and the set of + and
Associativity-attributes can also be attached to groups of operators, by placing the
appropriate attribute in front of a set of operators in a priority-chain. An example
of this is the declaration of + and - as a left-associative group, in the last line of the
priorities section of module Expressions.
Group-associativity declarations define how operators with the same priority
associate with each other. If we consider, for example, the string a + b - ¢, then
the declaration of + and - as a left-associative group, only leaves the interpretation
(a + b) - c.

module Expressions
exports
sorts DECL EXP
context-free syntax

ID "=" INT -> DECL

const " (" INT ")" -> EXP

D -> EXP

EXP "+" EXP -> EXP {left}

EXp "-" EXP -> EXP {non-assoc}
EXP "*" EXP -> EXP { left}

(™ EXP ")" -> EXP {bracket}

let { DECL "," }+ in EXP -> EXP
imports Elements Booleans
priorities
let in >
YWooe V8 >

. { 1eft: "+", w_n }

Figure 7. Syntax of expressions.

2.6 A typechecker for expressions

Now, we will present the module Exp-tc (see Figure 8), which defines the static
semantics of expressions. The type-constraints that will be verified are :

(1) Expressions do not contain undeclared identifiers. '

(2) The declaration-list of one let-construct does not contain the same

identifier more than once.

 We will use a scheme, that is often used for specifying typecheckers. Declarations
are entered in a so-called type-environment, that is passed as an argument to the
actual typecheck function. When a statement is typechecked, the type-constraints

The Equation Debugger 12

are verified, by comparing the type-information of the statement, with the
corresponding information in the type-environment. In our example, type-
environments only contain the identifiers, that are declared in let-constructs.

module Exp-tc
exports
sorts TENV
context-free syntax

te "[" EXP "]" -> BOOL
”w (" ID* ") " _> TENV
. "[" EXP "]" in TENV -> BOOL
add-to-tenv "(" { DECL ","™ }* ¥, " TENV ")"
-> TENV
doubles " (" TENV ™) " -> BOOL
variables
E[1-2]%* -> EXP
Int -> INT
Tenv ' -> TENV
Id[0-1]~* -> ID
Ids -2 ID*
Decls -> { DECL "," }*
imports Expressions
equations
[Tel] tc[.E] =[E] in ()
[Tc2] doubles(add-to-tenv(Decls , ())) = true

[let Decls in E] in Tenv = false
[Tc3] doubles(add-to~tenv(Decls , ())) != true

[let Decls in E] in Tenv =
[E] in add~to-tenv(Decls , Tenv)

[Tc4] [E1 + E2] in Tenv =

[E1] in Tenv and [E2] in Tenv
[Tch] [El - E2] in Tenv =

[E1] in Tenv and [E2] in Tenv
[Tc6] [El * E2] in Tenv =

[E1] in Tenv and [E2] in Tenv
[Tc7] [Int] in Tenv = true
[Tc8] [Id] in (Id Ids) = true
[Tc9] IdO != Idl

[Id0] in (Idl Ids) [Id0] in (Ids)
[Tecl0] [Id] in () = false
[Tecll] add-to-tenv(, Tenv) = Tenv
[Tc12] add-to-tenv(Id=Int,Decls , (Ids)) =
" add-to-tenv(Decls , (Id Ids))

[Tcl3] Tenv = (Ids0 Id Idsl Id Ids2)

doubles(Tenv) = true

Figure 8. An expression-typechecker.

A sort TENV is declared, indicating type-environments. Type-environments are
'lists of identifiers between brackets. The purpose of the function add-to-tenv is
adding elements of declaration-lists to a type-environment, returning a new type-

The Equation Debugger 13

environment. The function doubles checks, whether a type-environment
contains the same identifier more than once. It returns a boolean value. The
function tc "[" EXP "]" -> BOOL, is the actual typecheck-function. It uses the
auxiliary typecheck-function "[" EXP "]" in TENV -> BOOL, that typechecks an
expression in a particular type-environment. ;

In equation Tcl, typechecking is defined to start in an empty type-environment. In
equations Tc2 and Tc3, constraint (2) is checked. If a variable occurs twice, type-
checking fails, and false is returned. Otherwise, all variables are added to the type-
environment. The actual verification of the uniqueness of identifiers in a TENV is
done in rule Tc13, where list-matching is used to check if some element occurs
twice. In equations Tc11 and Tc12 the semantics of add-to-tenv are expressed, in
a recursive way. In equations Tc4 - Tc6, composite expressions are checked, and in
equations Tc7 - Tc9 basic expressions are handled (integer constants and
identifiers).

2.7 An evaluator for expressions

This chapter will be completed by a brief description of an expression-evaluator
(see Figure 9). Given a typechecked expression, the evaluate-function will
determine the (integer) value of that expression.

We will use a similar scheme for evaluation, as the scheme we presented for type-
checking, in the previous section. This time, declarations are put in a value-
environment, that is passed as an argument to the evaluate-function. When an
identifier is evaluated, its value is searched for in the value-environment.

The sort VENV, as introduced in this specification denotes a value-environment,
which consists of an ordered list of identifier-value pairs (sort PAIR), between
brackets. In module Exp-ev, a function add-to-venv is introduced for adding
elements of declaration-lists to a value-environment. The actual evaluate-
function is here ev "[" EXP "]" -> INT. This function uses the auxiliary
function "[" EXP "]" in VENV -> INT for evaluating expressions in a
particular value-environment. Observe, that a strong similarity exists between this
evaluate-function, and the typecheck-function of the previous paragraph.
Conditional equation Ev1 defines that an expression should only be evaluated, if
both typechecking constraints are met. In equation Ev2, identifiers of a let-
declaration are added to the environment, and the expression contained in the
1et-construct, is evaluated in this environment. In order to implement the scope-
rules, as discussed before, the following strategy is adopted : declaration-lists of
let-constructs are always added to the left side, in the value-environment.
When a value of an identifier is needed, the list is scanned from left to right. As a
result, the first value we find for an identifier, is the correct one. This scanning of
value-environments is expressed in equations Ev4 and Ev5. Equation Ev3 says,
that the value of an integer-subexpression does not depend on its value-
environment. Finally, equations Ev6 - Ev8 map the additions, subtractions and
multiplications of expressions on their corresponding integer-functions.

The Equation Debugger 4

module Exp-ev
exports
sorts PAIR VENV
context-free syntax

ev "[" EXp "]" - INT
w (u PATR* n) w - VENV
add-to-venv (" { DECL "," }* ", " VENV ")"
- VENV
ID ":" INT -> PAIR
[EXP "]" in VENV - INT
variables

E[1-2]%* -> EXP
Int[0-9]* -> INT
Id[0-9]* -> ID
Decls[0-9]1~* -> { DECL "," }*
Pairs[0-9]% -> PAIR*
Venv[0-9]%* -> VENV

imports Exp-tc

equations

true

[Evl] tcl[E]

ev[E] =[E] in ()
[Ev2] [let Decls in E] in Venv =
) [E] in add-to~venv{ Decls , Venv)
[Ev3] [Int] in Venv = Int
[Ev4d] [Id] in (Id:Int Pairs) = Int
[Ev5] Id0 != Idl

[Id0] in (Idl:Int Pairs) = [Id0] in (Pairs)
[Ev6] [Bl + E2] in Venv =
add [E1] in Venv [E2] in Venv
[Ev7] [E1l = BE2] in Venv =
sub [E1] in Venv [E2] in Venv
[Ev8] [E1 * E2] in Venv =
mul [E1] in Venv [E2] in Venv
[Ev9] add-to-venv(, Venv) = Venv
[Ev10] add-to-venv(Id=Int,Decls , (Pairs)) =
add-to-venv(Decls , {(Id:Int Pairs))

Figure 9. An evaluator for expressions.

3. The ASF + SDF system

3.1 Overview

In this chapter, we will describe the ASF + SDF system. This is a system that
implements the formalism ASF + SDF, as described in the previous chapter. The
ASF + SDF system is being developed in connection with the ESPRIT projects GIPE
(Generation of Interactive Programming Environments), and GIPE II. The ASF +
SDF system is based on CENTAUR [Centaur], a generic set of tools for building
- environment generators. From this set of tools, the Virtual Tree Processor (VIP) is
used for manipulating abstract syntax trees, and abstract syntax trees are pretty-

The Equation Debugger ~ 15

printed using a system for pretty-printing nested objects, called Figue. The
implementation language of the ASF + SDF system is LeLisp [LeLisp87].
In order to develop specifications, the user is provided with the following
functionality : -
Creation of a new specification.
Addition of a module to a specification.
Modification/deletion of a module.
Reading/saving a specification from/to file(s).
Testing the semantics of a specification.
The most significant features of the ASF + SDF system are :
e Fully incremental processing of changes made in a specification.
¢ The use of the same syntax-directed editor for editing terms and modules,
thus providing the user with a uniform interface.

3.2 The ASF + SDF meta-system

Figure 10 shows the window of the ASF + SDF meta-system, which is the top-level
of the user-interface of the ASF + SDF system. This window has four menus
attached to it. The window itself is used for displaying error-messages. The
functionality provided by the menus is described below.

ASF+SDF Meta-environment 3. .
Specification Delete Edit-Module Edit-Term

Figure 10. The window of the ASF + SDF meta-system.

The Specification menu contains the items add, clear, save and quit. Add
allows the user to create a new module, or read an existing module with its
imported modules from file. The other three items enable the user to re-initialize
the system, save all modules, and leave the system, respectively.

The other three menus, Delete, Edit-Module, and Edit~Term always contain the
same items, they contain one item for every module in the current specification.
The name of each item is the name the corresponding module, and the items are
ordered alphabetically in their menus.

Selection of an item of the Delete menu deletes the corresponding module. If an
item of the Edit-Module menu is selected, a module-editor for the corresponding
module is started. In Section 3.5, the subject of module-editors will be illustrated
with an example. The Edit-Term menu provides items, that will start term-
editors for the associated modules. A term-editor enables the user to edit sentences
over the concrete syntax of the selected module. Furthermore, the semantics of the
module can be tested by rewriting the term, that is derived from the edited
-sentence. In Section 3.4, term-editors will be described, and in Chapter 4 the
rewriting of terms will be studied in detail.

The Equation Debugger 16

3.3 The Generic Syntax-directed Editor GSE

The generic syntax-directed editor GSE combines text- and structure-editing.
Various instances of GSE are used in the ASF + SDF system. Every instance of GSE
is parameterized with an SDF language-definition. This SDF-definition is used for
constructing abstract syntax trees, which are needed for structure editing purposes.
The following instances of GSE are used in the ASF + SDF system:

e Term-editors are GSE-instances, used for editing terms over the syntax of a
particular module. In Section 3.4, term-editors are described.

* Module-editors actually consist of two GSE-instances. The first is used for
editing the syntax part of a module. The second instance enables the user to
edit the equations part of a module. In Section 3.5, module-editors are
described.

Before the main features of GSE are discussed, we will give a short description of
structure-editing. Structure-editing is always performed on the abstract-syntax tree
representation of the text, that is edited. Two important concepts of structure-
editing are:

e Placeholders for subterms (holes).

e The focus. This is a part of the text, that is directly related to a subtree of the
abstract syntax tree. The focus indicates the subtree, that is currently under
consideration.

A structure-editing action can replace a placeholder of sort S, on which the focus is
positioned, by a syntactically correct term of sort s. If the focus is positioned on a
list-element, a structure-editing action can insert a new placeholder for a list-
element immediately before or after the focus. Structural movements enable the
" user to move the focus, by navigating in the tree. Structure-editing in GSE-
instances will be addressed in more detail shortly.

At this point, we will consider how text- and structure-editing are combined in
GSE. Text-editing in a GSE-instance can only take place inside the focus. Moving
the focus is accomplished by either clicking the mouse somewhere in the text, or
by structural movements, such as go-up-in-tree, and go-to-next-child. When such
attempts of moving the focus are made, the text inside it is always parsed. If
parsing succeeds, the focus is moved as intended. Otherwise, an error-message is
presented to the user in a separate window, and the new focus is determined as
follows:

- If the focus-move was initiated by a mouse-click at some character in the
text, the new focus will be positioned on the smallest subtree, that includes
both the old focus, as well as the character pointed at.

- When a structural move go-up-in-tree is attempted, and a parsing-error
occurs, the focus is moved as indicated.

- Otherwise (a parsing-error occurred, and one of the other structural
movements was attempted), the focus is left unchanged.

As a result of the strategy above, the text outside the focus is always syntactically
correct. '
‘Next, we will return to the subject of structure-editing in GSE. In the ASF + SDF
system, placeholders are called meta-variables. Meta-variables are represented as

The Equation Debugger 7

strings of the form <S>, where S is a sort in the specification parameterizing the
GSE-instance. A meta-variable <S> may be included anywhere in the text, where a
parse of sort S is expected. If the focus is positioned on a meta-variable, the
following actions are possible :
e Text is typed. In this case, the meta-variable will disappear, to be replaced by
the text just entered.
e Items in one of the menus of GSE allow one to replace the meta-variable,
according to any of the grammar rules of the proper sort.

Having described the manner in which GSE combines text- and structure-editing,
we now turn to the user-interface of GSE. This consists of the following parts:

e A scrollable window, containing the text. The focus is indicated by lines

surrounding it. A cursor indicates the place, where new text will appear.

¢ A menubar, containing the options 00, tree, text, expand, and help.

e An optional column of buttons, on the left side of the window.
As an example of a GSE-instance, in Figure 11 we present a term-editor showing a
term in module Expressions (Chapter 2).

Term. in module Expressions
0 tree text expand help

reduce let

a succ succ 8,

c = 8,
b = succ pred pred 8,
cc = 8
in
(a +

b * [let a = succ succ succ succ 8 in, a| +

const{succ succ 9}

Figure 11. Example of a GSE-instance : a term-editor.

Below, we will summarize the functionality, that is provided by the menubar of a
GSE-instance.

e When the O button is pressed, the editor is left. If the text has been changed,
the user is asked whether the text should be saved to file.

e The tree menu provides items for structural movements in the abstract
syntax tree, and for insertion of meta-variables in lists. Before performing
these operations, the focus will be parsed. If parsing fails, only the zoom out

~action can be performed. In that case; all other actions leave the focus
unchanged. '
The items zoom in, zoom out,next child, and previous child move
the focus to the first child, to the parent, to the next child (the next subtree at
the same level as the focus), and to the previous child, respectively. If such a
focus move is not possible, the focus will remain unaltered.

The Equation Debugger ')

If the focus is a list-element, the items insert hole after and insert
hole before will insert a meta-variable in the list after the focus, and
before the focus, respectively. If necessary, a separator will also be inserted. If
the focus itself is not a list-element, but an ancestor of the focus is, the same
actions as mentioned above will be performed, for the first ancestor of the
focus that is a list-element.

¢ In the text menu, two items, cut and paste, for textual manipulations can

be found.
If a piece of text is selected, by dragging the mouse, cut removes it.
Otherwise, the text of the focus is removed. The paste item pastes the most
recent selection in the GSE-window, or in another X-window after the
current position of the cursor.

e When the focus is positioned on a meta-variable, the expand-menu
contains an item for every possible expansion. These expansions are the
context-free syntax rules, and lexical output sorts, that may be substituted for
that variable. Choosing an expansion, which is a context-free function, will
result in replacing the meta-variable by the sequence of terminals and non-
terminals on the left-hand-side of that context-free function. The other
possibility is, that a choice is made for an expansion, which is the output-
sort of a lexical function. Then, the meta-variable will disappear, and the
user may enter a lexeme by typing it.

If the focus is not positioned on a meta-variable, the expand-menu will
only contain the message: Non expandable sort : S, with s the sort of
the focus' subterm.

e The help menu contains the items undo, cursor to error, and show
cursor. The first of these items tries to undo the last action of the user.
cursor to error moves the cursor to the place, where a parsing-error
occurred. Finally, show cursor scrolls the window until the cursor is
visible in the middle of the screen.

In case of ambiguities that occur when a string is parsed, a separate disambiguator-
window will pop up. This window will contain one item for every possible parse
of the text. Another item shows the area, where the ambiguity was found. The
user is asked to choose one of the alternatives. When the choice is made, the
disambiguator-window will disappear, and parsing continues.

3.4 Term-Editors

As mentioned earlier, a term-editor is started by selecting an item of the Edit-
Term menu of the meta-system. Term-editors are instances of GSE, parameterized
with the syntax, defined by the selected module. By default, a term-editor contains
one button, labeled reduce. Pressing this button results in rewriting the abstract
syntax tree corresponding to the text in the editor, to its normal form. When the
normal form is reached, it will be displayed in the window (console), from where
the command was given to start the ASF + SDF system.

Other buttons can be added to a term-editor, by defining their semantics in the
- configuration-file of the ASF + SDF system. Two modules are associated with each
button. The first module defines the term-editor, in which the button will appear.

The Equation Debugger \ 19

The syntax and semantics of the second module are used when the button is
pressed. We will not explain the use of this configuration file in this report, see
however [Hen91].

In Figure 12 below, a term-editor over module Expressions is displayed. Two
buttons, tc and ev are added. When the tc button is pressed, the current term in
the editor, E, is passed to the typecheck function. The resulting term, tc[E] is
rewritten, using the syntax and semantics of module Exp-tc. Likewise, pressing
the ev button evaluates the current term, using module Exp-ev.

Term in module Expressions j
] tree text expand help

reduce let

tc a = succ succ 4,
ev c =8, ‘
b = succ pred pred 8,
cc = B
in

|(a +
b * let a= succ succ succ succ B in a #
const(succ succ 8)}

Figure 12. Term-editor with buttons tc and ev.

3.5 Module-Editors

A module-editor consists of the combination of two GSE-instances. The first
instance, which is an editor for the syntax part of a module, is parameterized by an
SDF-definition of SDF itself. The second GSE-instance is used for editing the
equations part of a module. Here, the instance is parameterized with a language
definition, that was derived from the users definition by extending it with the
basic syntax for conditional equations. Below, Figure 13 shows a module-editor for
module Exp-ev, that was presented in Section 2.7.

The Equation Debugger

Module Exp-~ev

O tree text expand

FT
%% Exp-ev
£33

imports Exp-tc
exports

sorts PAIR VENY
context-free syntax

ev “[" EXP "1 -
n(u PAIR* u}u =>
add—to—venu "(" { DECL u,u }* u,u VENY u)n _>
ID ":" INT -5

“[" EXP "1" in VENV

equations
[Ev1] =

ev[E]J=[E] in OO

[Ev3] [const(Int)] in ¥env = Int
[Evd4] [Id] in (Id : Int Pairs) = Int

[Ev2] [let Decls in E] in Venv = [E] in add-to-venv(Decls

Evb] Idg '= Idl

[Id®] in (Idl:Int Pairs) = [IdB] in (Pairs)

[EvB] |
[Ev7] [E1 - E2] in Venv

Figure 13. Module-editor for module Exp-ev.

3.6 The internal structure of the ASF + SDF system

Modularity is a key issue of the ASF + SDF system. In the ASF + SDF system,
modularity is implemented through a selection mechanism. Components, like
parsers, scanners, and term-rewriters are generated in a lazy and incremental way
for the entire specification. According to the selection mechanism, first a module
is indicated to be the current module. Then, as a result, only the parts of the
component involved, corresponding to the current module, are selected for use. A

full description of this selection-mechanism can be found in [Hen91].
The ASF + SDF system contains the following major components:

¢ The Syntax Manager (SM)

The Syntax Manager maintains all information, regarding the syntax of
specifications. It uses MPG, a lazy, incremental and modular parser
generator, to generate parsers capable of handling arbitrary context-free
grammars (based on Tomita's algorithm). Another component of SM is
MSG, the lazy, incremental, and modular scanner generator, which can

manage ambiguous regular expressions.

E1 + E2] in venv = add [EL1] in ¥env [EZ2] in ¥Yenv
sub [E1] in Venv [E2] in Venv

b

gger a

ntax manager provides operations for the addition or deletion of a
sclaration, lexical function definition, context-free function definition,
e declaration, priority declaration, import, or equation. Furthermore,
ule can be selected as the current module. This results in selecting
»arts of the scanner and parser, that accept the grammar defined in the
:ed module (including the visible grammar of imported modules).
, the grammar of the current module can be used to parse a given

uation Manager (EQM)

juation Manager is the component of the ASF + SDF system that
s the semantic aspects of specifications. It interprets equations as
»-rules. Details are discussed in Chapter 4. As in the case of SM, EQM
ncremental, and modular tool, using a global set of equations, and a
n mechanism.

nctionality provided by EQM consists of the addition or deletion of an
n, given a particular module. Again, a module can be selected as the
 module. As a result, all equations, which can be used in the context
module, will be selected. Lastly, the set of selected equations can be
) rewrite a given term.

odule Manager (MM)

odule Manager maintains the import structure of a specification. To
\d, it offers operations for the addition and deletion of modules.
or task of MM, is to provide an interface to the components SM and
Therefore, it also offers operations for adding and deleting syntactic
its, for parsing a string, and for rewriting of a term. The latter two
ons are propagated, to the appropriate components, SM and EQM,
ively.

-ovides operations for the addition or deletion of a module to/from a
cation. Furthermore, a sort declaration, lexical function definition,
t-free function definition, priority declaration, variable declaration,
, or an equation can be added or deleted to/from a module. A
e can be selected as the current module. Finally, the grammar rules
2 equations of the current module can be used to parse a given string,
rewrite a given term, respectively.

mneric Syntax-directed Editor (GSE)

1s been described in the previous chapters. Changes made in the text
»dule-editor are propagated to MM and SM. Pressing a reduce button
rm-editor will result in offering the created term to MM, and then to

rovides operations for the creation of a new GSE-instance, given a
ge definition in SDF. Edit-operations can be performed, both textual
ructural. Changes in the text are propagated to the appropriate
nents. Finally, the execution of functions, that are associated with
3, is supported.

The Equation Debugger 2

e The Equation Debugger (EDB)

The Equation Debugger is the subject of this report. It is a new component of
the ASF + SDF system, with the following tasks:

(1) Providing the user with a means to debug specifications.

(2) Tracing, i.e., visualizing the rewriting process.
To this end, information regarding the rewriting of a term, has to be
exchanged with EQM. Furthermore, some instances of GSE will be used for
purposes of pretty-printing (unparsing), and editing breakpoints. This topic,
the interface of EDB with the other components in the system, will be
described in Chapter 5. In this chapter, the user-interface and functionality
of EDB will be presented as well.

In Figure 14, the major components of the ASF + SDF system are shown. Arrows
indicate paths of communication.

Figure 14. Global architecture of the ASF + SDF system.

4. Term rewriting in the ASF + SDF system

As mentioned earlier, EQM rewrites terms by interpreting equations as rewrite-
rules. The interpretation of equations as a term rewriting system is obtained, by
applying equations from left to right only. An equation and a term maich, if a
binding, i.e., a mapping from variables to terms exists, such that replacing the
variables by their value results in the given term. After matching an equation
with a term, the (possibly empty) list of conditions of that equation is checked.

A condition is an equality, or an inequality of terms of the same sort. Only if all
conditions succeed, possibly by binding more variables, an equation is applicable.
We will describe the testing of conditions in more detail shortly.

A rewrite-rule may only be applied to a term, if it is applicable, in that case all
variables in the right-hand-side can be replaced by their corresponding value. We
“call the substitution of the bindings for the variables in the right-hand-side of an
equation instantiation. The original term, for which some applicable equation was

The Equation Debugger 3

found, is called the redex. We call the application of an equation a rewrite-step. A .
rewrite-step consists of replacing the redex associated with some applicable
equation, by the result of applying that equation, i.e., the instantiated right-hand-
side. If the redex is a subterm of a larger term, its context remains unaltered.

In the ASF + SDF system, the rewriting of a term is usually initiated by pressing
the reduce button in a term-editor. (Other buttons in term-editors can also start
the rewriting of a term. An example can be found in Section 3.4, where the tc and
ev buttons start the rewriting of a term.)

Pressing the reduce button causes the module of the term-editor to be selected as
EQM's current module. As a result, the rewrite-rules corresponding to that
module will be selected from EQM's global set of rewrite-rules. Then, the term in
the editor will be rewritten according to this subset of rewrite-rules. Below, the
algorithm used by EQM for rewriting terms is described, in an informal way.

(@) A subterm is chosen for matching, in a leftmost-innermost fashion. This
reduction-strategy will be commented upon shortly. '

(b) Given the subterm, that was chosen in (a), the set of selected equations is
searched. This search continues until
(1) An equation is found with a left-hand-side that matches this subterm.

In this case, we continue at (c).

or

(2) All equations have been searched, given this subterm. If more
subterms can be tried, we continue at (a), with the next subterm. If all
(sub)terms have been tried, and no match could be found, the term is
in normal form, and rewriting ends.

No assumptions should be made regarding the order, in which equations

are tried for matching. A common misunderstanding is, that the equations

are considered in the same order as in the specification. This is not
necessarily the case.

() At this point, we have a match of a subterm and an equation, resulting in a
set of bindings, for the variables occurring in the left-hand-side of that
equation. :

If the equation has no conditions, the subterm is rewritten, by replacing it by

the instantiated right-hand-side of the equation. After this rewrite-step we

return to (a).

If the equation does not have conditions, there are two cases:

(1) All conditions succeed. (Possibly extending the set of bindings.) In this
case, the term is rewritten, and we return to (a) to select the next
subterm.

(2) One of the conditions fails. Here, we return to (b), and continue the
search for a match through the remaining equations, using the same
subterm. Note: this situation is slightly more complicated if list-sorts
are considered. We will now look at this in some detail.

In Chapter 2, list-sorts were described. Although list-sorts make the job of writing
specifications much easier, they introduce some complications in the matching of
“terms with equations. To see this, we consider an equation with two consecutive
list-variables, X and Y, of sort s* in its left-hand-side. When a match of XY with the

The Equation Debugger p.:!

list ab is considered (a and b are both constants of sort s), the following
alternatives are allowed:

(@ x= (empty) ;Y=ab
b) x=a ;¥Y=b
() x=ab ;Y= (empty)

If we choose alternative (a), and a condition, associated with the equation, fails
(possibly after many rewrite-steps), alternatives (b) and (c) still have to be
considered. Clearly, a mechanism for backtracking is necessary here. For a detailed
description of this mechanism, the reader is referred to [Wal91].

Next, the testing of conditions will be considered. In the case of conditions that do
not contain 'mnew' variables (variables, not occurring in the left-hand-side of the
equation), first both sides of the condition will be normalized. If the condition is
an equality, it will succeed if and only if the resulting terms are equal. Otherwise, it
succeeds if and only if the resulting normal forms are different.

Only one side of an equation is allowed to contain new variables in the current
implementation of EQM. For such equations, the following strategy is adopted.
First, the side, that does not contain new variables, is normalized. Then, the other
side is matched against this normalized term, thereby defining bindings for the
new variables. A requirement here, is that the side containing new variables is in
normal form. Otherwise, the condition will always fail. For a complete description
of the reduction strategy of EQM, the reader is referred to [Wal91].

Since the evaluation of conditions involves the normalization of its two sides,
more than one (partially rewritten) term may exist during rewriting. The
following situation is illustrated in Figure 15, below.

e A term is offered to EQM for rewriting. We call this first term the original
term.

e When a subterm of the original term (indicated by shading) is considered, a
match is found with conditional equation EQ.

e The left-hand-side of the condition of EQ is instantiated, resulting in term
#2. Now, term #2 has to be normalized first, before work on the original
term may continue.

e Currently, the subterm of term #2, that is indicated by shading, is considered
for matching.

From this example we can see, that many, partially rewritten, terms may exist at
each moment during rewriting.

The situation, that was sketched in the previous example, shows that every
rewrite-step occurs at a definite level. Intuitively, this level denotes the current
number of (nested) conditions. In the Equation Debugger, this notion of levels is
used to skip the evaluation of conditions. This way, only rewrite-steps at the
current level are regarded.

The Equation Debugger 5

try to match this subterm now

A
[
I
I

term #2

instantiate left-hand-side of condition

A=A
A=A

| match with left-hand-side of EQ

original term

Figure 15. Multiple terms, a result of using conditional equations.

Next, the differences between innermost and outermost strategies for term-
rewriting will be summarized. In the current implementation of EQM, a leftmost-
innermost reduction-strategy is used. When an innermost strategy is adopted, first
all subterms of a term are normalized, before the term itself is considered. In a
leftmost-innermost strategy, the subterms of a given term are normalized in a
strict order, i.e., from left to right. In the case of an outermost reduction strategy,
first a match is searched for the complete term. If no match could be found there,
the immediate subterms are considered, and so on.
The main advantage of an innermost reduction strategy occurs when a term is
matched against the left-hand-side of an equation. In this case, all variables will be
bound to terms, that are in normal form. This knowledge can be used, in order to
prevent unnecessary matching. To see this, consider the case where a rewrite-step
has just been performed. Now, the next subterm that is selected for matching will
be (a subterm of) the result of the previous rewrite-step, due to the leftmost-
innermost strategy. Because of the fact, that all variables are bound to terms in
normal form, no (subterms of) bindings of the previous rewrite-step have to be
considered for matching.
An important advantage of outermost strategies is, that no redundant work is
done, in the case of non-strict functions, such as in the example below (see Figure
16). A non-strict function is a function, that does not always need all the values of
'its arguments. The if-then-else function below, is only strict in its first
argument, i.e., the condition. Of course, this condition needs to be normalized first

The Equation Debugger %

in both reduction strategies, otherwise neither If1 nor I£2 is applicable. If the
leftmost-outermost reduction-strategy is used, If1 or I£2 will be applied, before
normalizing Seriesl or Series2. An innermost strategy would do redundant
rewrite-steps, by first normalizing both Seriesl and Series2, before applying one
of the equations below.

[If1l] if true then Seriesl else Series2 = Seriesl
[If2] if false then Seriesl else Series2 = Series2

Figure 16. Example of a non-strict function.

5. The functionality of the Equation Debugger

5.1 Introduction

The functionality of the Equation Debugger is described in this chapter. At the
same time, the user-interface of EDB is presented. In Section 5.2, an overview is
given of EDB's main objectives, and global design issues. Section 5.3 continues
with the presentation of EDB's user-interface. In Section 5.4, the interface between
the Equation Debugger, and the Equation Manager will be studied in detail.
Finally, in Section 5.5, the evaluation of a term will be traced, using EDB.

5.2 Objectives and Design Issues
The main objectives of the Equation Debugger are twofold:

(1) The user should be provided with a powerful means for debugging the
equations part of ASF + SDF specifications.

(2) Tracing, i.e., visualization of the rewrite-process should be supported. In the
current situation, one only gets to see the original term, and its normal
form. Often, more information is needed, in order to find bugs in a
specification.

In order to meet the first objective, a variable execution step-size is needed. A
second requirement is a flexible way of dealing with conditions. The user should
be able to choose either to trace conditions step-by-step, or to skip conditions. In the
latter case, all intermediate steps are skipped, and the final result of the condition,
success or failure, is presented at once. Of course, information should be available
about the conditions, that are currently being evaluated, during rewriting. Finally,
some way of specifying breakpoints in the context of term-rewriting is necessary, to
meet the first objective.

The second objective of EDB necessitates a way of displaying partially rewritten
terms. Preferably these terms should be pretty-printed. Lastly, the current redex
should be indicated in some way.

_ At this point, we will discuss the design issues of the Equation Debugger:

* Debugging is done interactively.

The Equation Debugger Z

¢ The rewrite-process can only be observed, not influenced.

The first of these design issues says, that debugging is done during the rewriting of
a term. At specific points, rewriting is suspended, and the user is given the
opportunity of inspecting the term, setting breakpoints, and so on. We want to
emphasize here the difference between interactive debuggers, as opposed to so-
called post-mortem debuggers. As mentioned, interactive debugging takes place
during execution (here: rewriting). Post-mortem debugging is a two-phase process.
The first phase consists of gathering information during program execution. The
second phase is the actual debugging, it consists of tracing the execution step-by-
step, based on the information gathered in the first phase.

Next, we will discuss the second design-issue, i.e., the restriction of EDB to an
observer of the rewriting process. The main reason for this restriction is, that a
more powerful debugger is not feasible at present. It is not difficult to imagine a
debugger, that allows the user to edit partially rewritten terms, or to change the
reduction-strategy. However, a completely different interface with EQM would be
necessary in that case. A simple master-slave interface, as we will describe in
Section 5.4, where EQM passes information over to EDB, would no longer be
sufficient. Instead, a much more complicated interface would be required, with
information flowing in two directions between EQM and EDB. Unfortunately,
such a bi-directional interface necessitates a new implementation of EQM.

5.3 The user-interface of EDB

ASF+SDF Equation Debugger

0O Edit-Pattern Delete-Pattern

Step

Go

L]

Skip

Stack

Result

EDB v3.8, 26 Feb. 1891

STEPS:B/LEVEL:8

Figure 17. The main window of EDB.

The Equation Debugger 2

In this section, the user-interface of the Equation Debugger is presented. In Figure
17, above, the main window of EDB is shown, which consists of the following
three parts:
e A scrollable output-window, used for displaying information about the
rewriting process.
A column of buttons for the most often used commands.
e A row of menus, providing items for manipulating breakpoints, changing
the current settings, and terminating the debug-session.

In Figure 17, we see that after start-up of EDB, the message STEPS: 0/LEVEL: 0 is
displayed. This message indicates, that no rewrite-steps have been done yet, and
that the current condition-level is 0. Generally, the message STEP :n/LEVEL:] is
printed every time, that EDB hands over control to the user. Here, 7 is the number
of rewrite-steps done so far, and | denotes the current level.

The amournt of other information, that is displayed in EDB's main window
depends on the current settings. For example, the user may choose whether or not
to show the equations, that are applied. The settings of EDB will be commented
upon shortly.

The partially rewritten term is not displayed in EDB's main window, because
printing all these terms would result in too much text presented to the user.
Instead, an instance of GSE is used for pretty-printing partially rewritten terms. In
this GSE-instance, the focus is positioned on the current redex. In Figure 18, below,
EDB's window for pretty-printing is presented.

EDB pretty
O tree text expand help

e
[
let
a = succ succ 8,
c =0,
b = succ pred pred 8,
cc = @ :

in
{ a+ b * let
a = succ succ succ succ @
in
a + const
(

succ succ 8

))

Figure 18. EDB's window for pretty-printing.
The communication between EDB and the user is roughly as follows:

. (a) EDB gets a command from the user.
(b) The command is executed.

‘gger V.2

did not involve any rewriting, we return to (a). Otherwise,
ation about the rewriting process is displayed in both windows
ed above. As mentioned before, the amount of information displayed
Is on the current settings.

1al form is reached, the user is informed about this fact, and the total
r of rewrite-steps is displayed. Otherwise, the STEP:n/LEVEL:I
e is displayed, and we return to (a).

we will sketch the functionality provided by the buttons of the main
JB.

this button is selected, the rewriting process will continue until
a rewrite-step is performed, or a change in the current level occurs.
ode of operation of EDB is called step-mode. Steps done in step-mode
smallest possible steps of EDB.

ited with the go-button is the editable field labeled '#' below it. When
-button is pressed, and the #-field is empty, the rewriting process
1es until either normal form is reached, or a breakpoint is
tered. This mode of operation of EDB is called go-mode.

case that a positive integer n is entered in the #-field, the extra stop-
on applies, that no more than n rewrite-steps should be performed.
r words, control is returned to the user after at most n rewrite-steps.
-field contains a string that is not a positive integer, pressing the go-
results in the message 'go: number of steps not correct.’
lisplayed. In that case, control is returned to the user immediately.

itions are currently being evaluated, pressing the skip-button will
te the rewriting process, until the condition-level is one less than the
- level. If meanwhile a breakpoint is encountered, control is returned
user. However, in that case the skip-action can be resumed, by
g the go-button.

.kip-button is selected when no condition is under evaluation, the
re 'skip: current level is 0.'is displayed, and control is
d to the user immediately.

litions are under evaluation, EDB's current stack of conditions is
red in the main window upon selection of the stack-button. As
ied in Chapter 4, the use of conditional equations causes the co-
ce of multiple terms. For each of these terms, the tag of the matching
n is displayed, followed by the current evaluation-status of the
ons of the matching equation.

case that the stack-button is pressed, and no conditions are being
ted, the message 'stack: condition stack is empty.'is
ed.

The Equation Debugger 20

result

Due to an optimization in the Equation Manager (which will be discussed in
Section 5.4), the result of a rewrite-step generally is not available
immediately after applying the equation. Instead, other rewrite-steps may
take place in the meantime.

By pressing the result-button these 'intermediate’ rewrite-steps are
skipped, i.e., rewriting continues until the result of the last rewrite-step
becomes available. If a breakpoint is encountered meanwhile, control is
returned to the user. As in the case of the skip-button, the result-action
can be resumed after the breakpoint, by pressing the go-button.

Selection of the result-button at the start of the rewriting, when no
rewrite-steps have been done yet, results in the message 'result: no
steps done yet.'. After this, control is returned to the user.

Before we will describe the functionality of the menus of the main window of
EDB, we will examine the use of breakpoints. EDB provides three kinds of
breakpoints:

@

2

(3)

Break-patterns are terms, which are matched with the current redex,
whenever rewriting is done in go-mode. When such a match succeeds,
rewriting is interrupted, and the message '*n* break atp =t'is displayed.
Here, n is the number of rewrite-steps done so far, p is the name of the
pattern that matched with the redex, and t is the (first line of the) actual text
of the pattern. After presenting this message, information about the current
rewrite-step is displayed, and control is given to the user.

Display-patterns are actually a variant of break-patterns. If a match with a
display-pattern succeeds, while rewriting in go-mode, information about the
current rewrite-step is displayed, but rewriting continues. In the case of
display-patterns, the slightly different message *n* display point atp
= t' is presented to the user (n,p, and t as above). The main purpose of
display-points is to inform the user about the current situation of the
rewriting.

Finally, the tag of an equation can be specified as a breakpoint. When
rewriting is performed in go-mode, and an equation is being applied, with a
tag that was designated as a breakpoint, rewriting is suspended. In this case,
the message '*n* break at x'is displayed, where n is the number of
rewrite-steps done so far, and x is the tag on which the breakpoint was set.
After this message, information about the rewriting is printed, and control
is given to the user.

The menubar of the EDB-window contains the button I, and the menus Edit-
Pattern, Delete-Pattern, Add-Break, Delete-Break, and Settings. Now, we
will describe the functionality provided by these options.

When the [button is pressed, the Equation Debugger is left, and the
rewriting process is terminated. '

The Edit-Pattern menu contains items for the creation and modification
of break- and display-patterns.

The Equation Debugger 31

When the New item is selected, a dialog pops up, asking the user to enter the
filename of the pattern (see Figure 19). If the Cancel button of this dialog is
pressed, the command is terminated. After selection of the OK button, a file
is searched with the filename entered by the user.

Enter filename of pattern

patd |
[OK | [CANCEL

Figure 19. Dialog asking for filename of pattern.

If a file with the appropriate filename can be found, its contents are pasted
in a pattern-editor. We will discuss pattern-editors shortly. Otherwise, the
user is confronted with a new dialog, asking whether a new pattern should
be created (see Figure 20). Again, selection of the Cancel button terminates
the command. Pressing the OK button of the dialog below results in starting
an empty pattern-editor.

Pattern patl could not be found - create new 7

| 0K | [CANCEL

Figure 20. Dialog asking if a new pattern should be created.

Figure 21 below shows a pattern-editor. Pattern-editors are GSE-instances,
that are used for editing break- and display-points. These GSE-instances are
parameterized by the language of the term-editor that supplied the original
term, extended with all hidden syntax.

:

pattern: patl
O tree text expand help

l

Figure 21. A pattern-editor.

The Equation Debugger 2

When the editing of the pattern is finished, the O button of the pattern-
editor should be clicked. If the pattern that was entered, is syntactically
correct, this will result in presenting the dialog of Figure 22 to the user, with
the following alternatives:

(1) set Break : The pattern in the editor is designated as a
break-pattern, and the editor is left.

(2) set Display : The pattern in the editor is designated as a
display-pattern, and the editor is left.

(3) Trash : All editing done by the user is discarded,
and the editor is left.

(4) cancel : The user may continue editing (the dialog
disappears).

If the text in the pattern-editor is not a syntactically correct term, only the
options Trash and Cancel will be present in the dialog.

Action for pattern patl 7

Set Break| [Set Display| [Trash| [Cancel

Figure 22. Dialog for entering patterns.

The other items of the Edit-Pattern menu correspond to the patterns, that
were entered previously. For every pattern that was entered, an item will be
included, containing the name, and the first line of text of that pattern. The
type of the pattern (break or display) is expressed by an icon in the item:

For a previously entered break-pattern with name p and (first line of) text ¢,
the following item is included:

@ﬂl@ pit

For a display-point-pattern with name g and (first line of) text s, the
following item is included:

D s

After selection of one of these items, a pattern-editor will be started with the
text of the corresponding pattern.

e The Delete-Break menu provides items for the deletion of breakpoints on
tags of equations. After selecting the first item in this menu, 211, a dialog
asks the user to confirm the deletion of all breakpoints on tags. Here, a
similar dialog as in Figure 23 is used.

The other items of the Delete-Break menu are labeled with the tags, that
were previously entered. Here, the same kind of item is used for previously

The Equation Debugger B

entered patterns, as in the Edit-Pattern menu. Selecting one of these
items removes the corresponding breakpoint.

 Finally, the Settings menu allows the user to control the amount of
information, that is shown to the user. Associated with each item in this
menu is a 'check-box'. This check-box indicates whether or not the
corresponding setting is selected, by way of the icons [T] and [J]. Below, the
items of the Settings menu are listed.

-Print Bindings
Display the bindings, that are used when an equation is applied.
-Print Equations
Display the applied equations.
-Print Results
Display the results of rewrite-steps, i.e., the instantiated right-hand-
sides of the equations.
- Instantiate Conditions
Determines the format of printing conditions. When selected,
conditions are displayed after instantiation. Otherwise, conditions are
shown uninstantiated, together with the current bindings.
- Show Tags
Determines whether or not tags of applied equations should be
printed, when rewriting is done in go-mode.
~-Pretty-print 1lv.0 only
Determines when the current term is pretty-printed in EDB's window
for pretty-printing. When selected, the window is only updated when
the current level is 0. Otherwise, terms at all levels are pretty-printed.
-Stop at breaks
Determines whether or not break- and display-patterns, and
breakpoints at tags are effective.

5.4 The interface between EDB and EQM

In this section, the communication between the Equation Debugger, and the
Equation Manager is defined. Through the interface, that will be described shortly,
EQM informs EDB of the current status of the rewrite-process. This interface
consists of 10 interface-functions in EDB, called by EQM at significant points during
the term-rewriting process. (Such as, the start of the rewriting of a term.) A short
overview is given, of the actions taken by EDB, when one of these interface-

functions is called by EQM.

Whenever a term is going to be rewritten, and debugging is required, a new
instance of EDB is initiated. Each instance of EDB has its own window, and
maintains its own set of values. The most important of these values are:

e The stack of terms, containing a copy of the (partially rewritten) terms, that

are currently being evaluated.
e The stack of conditions. This stack contains information about conditions of

the equations, that matched with the terms on the stack of terms.
e The current level.

The Equation Debugger K"

The number of rewrite-steps done, so far.
Various flags for the current settings.

We will now list the 10 interface-functions EQM uses, to pass status-information
to EDB. For each of these functions, a description is given of:

when the function is called.
the arguments of the function.
actions taken by EDB as a result.

reduce~start (EQMsel, term)

This function is called once, when a term is offered to EQM to be rewritten.
reduce-start has two arguments. EQMsel indicates the current selection
of equations. The selection-mechanism, that is used in the ASF + SDF
system, was sketched briefly in Section 3.6. The other argument, term, is the
original term, that is going to be rewritten.

As a result of this function call, a new instance of EDB is created, and a
window is created for that new instance. Furthermore, term is pretty-
printed in a separate window, and EDB is initialized. The user can change
the default settings, or commence the rewrite process.

reduce-end (EQMsel, term, result)

reduce-end is called once, when rewriting is finished, and normal form is
reached.

The first two arguments of reduce~end are the same as for reduce-start.
The third argument, result, is the final result of the rewriting, i.e., the
normal form.

In response to a call to reduce-end, EDB pretty-prints result, and displays
the total number of rewrite-steps executed.

match (EQMsel, term, eq, bindings)

eval-cond-start (EQMsel, cond, eq, bindings)

The function match is called, whenever a match is found, given a term and
an equation. :

The first argument, EQMsel, is the current selection of EQM. The arguments
term and eq are the subterm and equation involved in the match,
respectively. Finally, bindings is a list of (variable,value)-pairs, that
contains the bindings found during matching.

The only action taken by EDB, is that a marker is pushed on the condition-
stack, indicating that a new equation is considered.

eval-cond-start is called by EQM, before evaluating a condition.

Again, EQMsel is the current EQM-selection. eq is the equation, to which
condition cond belongs. The last argument, bindings, consists of the
bindings found so far, during matching and in previous conditions.

EDB pushes the condition on the condition-stack, and the current level is
incremented by one. Depending on the settings, the condition is displayed
in EDB's window. If the current settings indicate that conditions should be
traced step-by-step, the user may alter the settings, enter breakpoints, or give
other commands. Otherwise, rewriting continues without intervention by
the user.

The Equation Debugger 3

eval-cond-end (EQMsel, cond, eq, bindings)

- This function is called after the evaluation of a condition.

- The arguments EQMsel, cond, and eq are the same, as for eval-cond-
start. If the condition succeeded, bindings contains the possibly extended
list of bindings (new variables may have been introduced). In case of failure
of the condition, bindings gets the special value nil.

- The condition-stack is updated, and the current level is decremented by one.
Depending on the current settings, the condition and bindings are displayed.
Also, the user may alter the settings, enter breakpoints, or give other
commands. If the current debug-mode was go-mode, and this condition was
skipped, EDB returns to step-mode.

cond-side-start (side, bindings)
- This function is called, whenever a side of a condition is going to be
normalized.
- The first argument, side, is a term representing the current condition-side.
The other argument, bindings, is the list of bindings, established so far.
- A copy of side is instantiated, and pushed on EDB's stack of terms.

cond-side~end (side)
- cond-side-end is called, when a condition-side has been normalized.

- The only argument, side, is the current condition-side.
- EDB's term-stack is popped.

apply-eg-start (EQMsel, term, eq, bindings)

- The function apply-eq-start is called, after a match was found, and all
conditions succeeded.

- EQMsel is the current selection of EQM. The arguments term and eq are the
term and equation involved in the match. The last argument is a list
containing all bindings to be used for instantiating the right-hand-side of
the equation.

- The number of rewrite-steps performed is increased by one. All information
regarding conditions of eq, is popped from the condition-stack. The subtree,
corresponding to term on EDB's stack of terms is replaced by the
instantiated right-hand-side of eq. If the current debug-mode is step-mode,
the user is allowed to alter settings, set breakpoints, and give other
commands. If EDB operates in go-mode, a test is performed whether a
breakpoint is encountered. If so, the user is given control.

apply-eg-end (EQMsel, term, eq, result)
- This function is called after the application of an equation.
- The first three arguments are the same as those of apply-eq-start. The
last argument, result, is the result of the rewrite-step.
- Depending on the current settings, the result of the rewrite-step is displayed.

noapply~eq (EQMsel, term, eq)
- If, after a match, some condition failed, noapply-eq is called.

- The three arguments of noapply-eq denote the current selection of EQM,
and the term and equation under consideration, respectively.

The Equation Debugger 36

- All information regarding conditions of eq, is popped from the condition-
stack.

In some cases, the Equation Debugger requests services from the Equation
Manager:

e A function instantiate (term, bindings) is called, when EDB needs to
instantiate the right-hand-side of an equation, given a list of bindings. The
reason for this, is that EDB constructs its own private copy of the (partially
rewritten) term(s) of EQM.

e A function match (EQMsel, term, pattern) is called, when EDB needs
to test, if a given subterm term matches with breakpoint pattern.

The function pretty (term) is called for pretty-printing terms.
By raising the exception abort, EDB can give a signal to EQM, that the
rewriting process should be terminated.

In the current implementation of EQM, an important optimization is included.
After each rewrite-step, a recursive call to EQM's rewrite function puts the
subterm, that forms the result of that rewrite-step, in its normal form. Only after
normalization of this result, the rewriting of the complete term continues. As a
result of this optimization, calls to apply-eq-start, and the corresponding
apply-eg-end, do not have to occur consecutively, since other rewrite-steps may
have taken place in the time between these two function calls.

Unfortunately, this seriously affects the implementation of EDB. The problem is
that the complete term usually is not available, and at some point a subterm may
not have a parent, although formally it should have one.

The solution for this problem, used in the present implementation, is that EDB
constructs its own copy of all terms that are to be rewritten. Hence, EQM is used
merely for indicating which redexes are to be replaced by which results. We are
aware that this solution is inefficient, and thus not very satisfactory. However, no
alternative could be devised so far. In fact, we feel that providing the complete
status of the rewrite-process, including all partially rewritten terms, and conditions
under evaluation, should be part of the functionality of a future implementation

of EQM.
5.5 An example: tracing the evaluation of a term

In this section, a small example will be presented, in which the Equation Debugger
is used to trace the rewriting of a term. In our example here, the term presented
earlier in Figure 2, will be evaluated using the ev function of module Exp-ev (see
Figure 9). Figure 23 below shows this term in EDB's window for pretty-printing,
when EDB is started.

Next, we will describe the actions of the user, and the corresponding output in the
main window of EDB, which is presented below, in Figure 29 and Figure 30.

gaer X

EDB pretty &
0 tree text expand help
oV
L
et
a = 8,
b = succ 8
in
let
a = succ succ 8,
¢ = succ succ succ B
in
(a*c-b* const
(
succ succ 8
))
sl

. The original term in EDB's window for pretty-printing.

he start-up message STEPS:0/LEVEL: 0, the user issued a step

nd. As a result, rewriting started, and control was returned to the

2cause a change in condition-level occurred.

e, that this change in condition-level was caused by starting the

ion of the condition of equation Evl of module Exp-ev (Figure 9):
tel E] = true

ev[E] =[E] in ()
sly, the current settings determine that conditions were displayed in
iated form, since the variable E in the equation is replaced by the
te expression in the output.
isplaying the message STEPS:0/LEVEL:1, control was returned to
T.
moment, the user was not interested in the individual rewrite-steps
condition. Therefore, the skip command was executed. Rewriting
ted until the condition was fully evaluated. We see in the output,
e condition mentioned above, succeeded. After presenting the
e STEPS:34/LEVEL: 0, control was returned to the user. This means,
> evaluation of the condition required 34 rewrite-steps.
wo breakpoints were entered. A break-pattern with name patl, and
b <INT> <INT> was defined first, followed by a break on equation
fter this, the user indicated that tags of applied equations should
-ed during rewriting in go-mode, and then the go command was

he tags printed in the output we see, that many equations were
| until a breakpoint was encountered at the 660 rewrite-step. After

The Equation Debugger 3

signalling this break, the current equation and bindings were displayed,
followed by the message STEPS: 66/LEVEL: 0.

Figure 24 shows the term, that was displayed in EDB's window for pretty-
printing at that moment.

EDB pretty |
O tree text expand help

sub succ succ succ succ succ succ @ mul succ 8

const

(

succ succ B

: succ succ succ 8
+ succ succ 8

1 succ @
: 8

TTe 0

Figure 24. Partially rewritten term at rewrite-step #66.

- Another go command was executed hereafter. Observe, that more equations
were applied, until a breakpoint was encountered at the 74t rewrite-step.
Here, a match with pattern patl (sub <INT> <INT>) was detected, when
equation Int7 was applied:

[Int7] sub Int0 succ Intl = sub pred Int0 Intl
Again, the current equation and bindings were printed, this time followed

by STEPS: 74/LEVEL: 0. Figure 25 shows the contents of EDB's pretty-print
window at that time, with the focus positioned on the redex.

EDB pretty
O tree text expand help

LSUb SUCC SUCC succ sucC suUcc succ B succ succ @I

Figure 25. Partially rewritten term at rewrite-step #74.

- We see, that the same break-pattern, pat1, matched twice again with a
redex. The first time at the 76th rewrite-step, when equation Int7 was
applied again (Figure 26 shows the term at that time).

igger »

EDB pretty
tree text expand help

ub succ succ succ succ succ B succe q

ure 26. Partially rewritten term at rewrite-step #76.

-ond time, pat1 matched with the left-hand-side of equation Int6, at
! rewrite-step.

[Int6] sub Int 0 = Int
27 below shows the term at that time.

EDB pretty
tree text expand help

ub succ succ succ succ 8 8|

-ure 27. Partially rewritten term at rewrite-step #78.

78 rewrite-steps, the term was normalized. The normal form is
ed in EDB's pretty-print window in Figure 28.

EDB pretty
tree text expand help

ucc succ succ succ 8|

Figure 28. Normal form of the original term.

The Equation Debugger 4

ASF+SDF Equation Debugger
OO0 Edit-Pattern Delete-Pattern Add-Break Delete-Break Settings

Step

EDB v3.8, 26 Feb. 1991
Go

[::::] STEPS:8/LEVEL:8

[w)

- ‘“*tc [let a = 8, b = succ B in let a = succ succ 8,
Skip succ succ succ 8 ina * ¢ - b * const (succ succ 8)]

Stack lue’’ for equation [Ev1l] 777

STEPS:B/LEVEL:1
Result ‘“tc [let a = @, b = succ B in let a = succ succ 8,

0

succ succ succ 8 in a * ¢ - b * const (succ succ 8)]
ue’’ for equation [Ev1l] SUCCEEDED.
STEPS:34/LEVEL:8

Break at patl = sub <INT> <INT> added.

Break at Ev3 added.

Evil

Ev2

Evid

Evi@

Evg

Ev2

Evi@

Ev18

EvS

Ev?

Ev8

EvE

Evd

Ev4

Intlg

Intl8d

Inti@

Int8

Int4

Int4

Int3

Int4

Int4

Int3

Int4

Int4

Int3d

Ev8

Evd

EvS

Evd

56% break at Ev3

EQUATION:

[Ev3]
[const (Int)] in ¥Yenv =
Int

Figure 29. First part of the output in EDB's main window.

The Equation Debugger 4

ASF+SDF Equation Debugger

D Edii-Patisrn Delste-Patfern Add-Break Delete-Break Settings

Step BIMDINGS:

Yeny =

Go
{ ¢ : succ succ succ B8 a : succ succ B b : succ B a

B)
[i

Skip succ succ B

Stack STEPS:B6/LEVEL:8B

Intl8
Result Int 18

Int8
Int4
Int3
Int4
Int3
x74* hreak at patl = sub <INT> <INT>
EQUATION:)
[Int?7]
sub Int@ succ Intl =
sub pred Int@ Intl
BINDINGS:
Intl =
succ 9
Intd =
suce suUcc suctc succ suct succ @
STEPS:74/LEVEL:8
Int2
76 break at patl = sub <INT> <INT>
EQUATION:
[Int7]
sub IntB succ Intl =
sub pred Int@ Intl
BIMNDINGS:
Intl =
a
Intg =
succ succ succ succ succ 9
STEPS:76/LEVEL:8
Int2
*78% break at patl = sub <INT> <INT>
EQUATION:
[Int6]
sub Int B =
Int
BINDINGS:
Int =
gucc succ succ succ 8
STEPS:78/LEVEL:8

End of reduction, total number of rewrite-steps : 78.

Figure 30. Second part of the output in EDB's main window.

The Equation Debugger 2

6. Debugging term rewriting systems compared
with debugging conventional programs

A comparison between debugging techniques for term rewriting systems, and for
conventional programs will be given in this chapter. Below, we will present this
comparison, using a list of desired features of debuggers for high-level
programming languages as a guide-line. Such a list of desired features can for
example be found in [Fer83]. For each of the features discussed below, the
following three cases are considered:

(1) A debugger for an imperative language as, for example, Pascal.

(2) A debugger for Prolog (we will use C-Prolog's debugger for the example).

(3) A debugger for a term rewriting system.

The choice of the smallest execution step-size
In debuggers for imperative languages, the smallest step-size may vary from
expressions to statements, together with the entry and exit of subprograms (.e.,
procedures and functions).
In C-Prolog's debugger, the so-called Procedure Box model is used to express the
control flow. In this model, a procedure consists of all clauses of a predicate. A
procedure box has four ports. The Call port represents the initial invocation of
the procedure. The second port, Exit, represents a successful return from the
procedure. The Fail port expresses failure of the initial goal. Lastly, the BackTo
port is entered, when a subsequent goal has failed, and backtracking results in
trying another clause of the procedure. A full description of this model can be
found in [Prolog86]. The smallest step-size consists of a transition between
ports. ‘ '
In a term rewriting system, a single rewrite-step could be selected as the
smallest step. However, since rewrite-rules may have conditions, it becomes
necessary to define the begin and end of the evaluation of a condition to be a
step of the debugger as well. Otherwise, the user would become confused, not
knowing which term is currently being rewritten.
As a matter of fact, an even smaller step would be acquired, by defining every
match of a given term and equation to be a step, and/or every begin and end of
the evaluation of a condition-side. However, some experiments during the
implementation of EDB revealed, that defining these two events to be a step
would not add much relevant information. Instead, many unwanted steps
would be added. The reason for not defining every match to be a step of the
debugger, is that on entering and leaving conditions, the equation involved in
the match is already mentioned. The reason for not defining every begin and
end of the evaluation of a condition-side to be a step, is that nearly always one
side of a condition is in normal form.

A level notion in debuggers
Debuggers for imperative languages associate a concept of level with the
nesting of subprogram-calls. Consequently, levels can be traced step-by-step, or

skipped completely.
In the C-Prolog debugger, a level notion is connected to the entering and

leaving of procedures. Backtracking complicates this notion, since procedure

The Equation Debugger <]

boxes can not only be entered and left, but also re-entered. Again, the user can
choose either to step through procedures, or to skip procedures entirely.

The level concept in term rewriting systems was described earlier. It is based on
the nesting of the evaluation of conditions.

Breakpoints
Debuggers for imperative languages allow the user to set breakpoints on a
statement, or on a line of source code. When program execution reaches the
compiled code corresponding to that statement, or line of source-code, the user
is given control.

The C-Prolog debugger allows the user to set breakpoints (called spy points) on
predicates.

In debuggers for term rewriting systems, breakpoints can be set on both patterns
occurring in the term, or on rewrite-rules. Presently, EDB supports patterns,
that are matched against the current redex. However, one could also envisage
patterns to be matched with results of rewrite-steps, or with the (complete)
terms itself.

Because of the fact that patterns can be as general as a single meta-variable, or as
specific as any syntactically correct term, the use of patterns as breakpoints
seems much more powerful than the breakpoints used in programming

languages.

Inspection of variables and source-level expressions
One of the most often used features of a debugger for an imperative language,
is the inspection of the current value of a variable. Generally, the value of
more complex source-level expressions can often be inspected too.
In the case of C-Prolog's debugger, Prolog's database can be inspected during
debugging. More complex expressions can be inspected during debugging by
trying the appropriate goals.
When in debuggers for term rewriting systems a program is evaluated, the
term being rewritten contains both the partially rewritten program text, and the
variables together with their current values as subterms.
This means that the inspection of variables is just a special case of the
inspection of subterms of the complete term. For displaying more complex
source-level expressions, no such analogy exists.

Modification of the values of variables, and modification of the program

In the case of debuggers for imperative languages, these are two different issues.
Modifying the value of a variable corresponds to putting a new value in the
memory-location of that variable. Modifying the program itself during
execution is something quite different. A new piece of source-code will have to
be compiled, and the resulting code should be substituted for the corresponding
old piece of code.

If we consider the C-Prolog debugger, the prolog-database may be changed
during debugging. This can of course lead to unexpected behaviour, when
backtracking re-enters a procedure-box, to which predicates have been added, or
from which predicates have been deleted.

In debuggers for term rewriting systems, modifying variables and modifying
the program both correspond to changing the current term. For reasons

The Equation Debugger 4

mentioned earlier, modification of the current term is currently not
implemented in EDB. By changing the language-definition that is used during
rewriting, execution behaviour could also be influenced.

7. Concluding remarks

A specification written in the formalism ASF + SDF simultaneously defines the
syntax and the semantics of a language. The semantics of a language are expressed
in a set of conditional equations. In the ASF + SDF system, the set of equations in a
specification is regarded as a term rewriting system.

In this report, we have presented the Equation Debugger, a highly interactive
debugger for the ASF + SDF system. The most significant feature of EDB is a
flexible mechanism for specifying breakpoints, based on patterns to be matched
against the current redex. These patterns may vary from being very general to
being very specific. In this way, the user may trace the rewriting process with an
execution step of variable size.

At any time that the user has control, the amount of information about the
rewriting process that is displayed, may be adjusted. Furthermore, the tracing of
the evaluation of conditions can either be done step-by-step, or it can be skipped.
By using a separate window for displaying pretty-printed terms, the user is
provided with the current status of the rewriting process.

The Equation Debugger has been implemented as part of the ASF + SDF system.
Given the status of EDB as described in this report, one can already see a number of
potentially interesting future extensions:

e Currently, EDB is restricted to being an observer of the rewriting process. In
fact, adding functionality for changing terms during rewriting would
require little work. However, a more complicated interface with the
Equation Manager, and therefore a new implementation of EQM would be
required. In this new situation, EDB would have to direct the rewriting that
is performed by EQM. :

e Since uniqueness of tags is not demanded in the ASF + SDF formalism,
breakpoints should be set by interactively pointing at equations, rather than
by entering tags.

e EDB is an interactive tool for debugging sets of equations. In the context of
the generation of programming environments for specific languages, it
would be interesting to provide generic mechanisms for creating language-
specific debuggers. Further research could investigate if steps of such
language-specific debuggers can be expressed in terms of steps of EDB.

Acknowledgements

I would like to thank Pum Walters and Paul Klint for many helpful comments on
previous versions of this report, Wilco Koorn for explaining the use of the
graphical toolkit and GSE, and Casper Dik for providing the interface with EQM.

The Equation Deb

References

[BHKS89]

[Centaur]

[Hen91]
[HHKR89]
[Fer83]
[K1i90]
[Koo91]

[LeLisp87]
[Prolog86]

[Wal91]

a, J.Heering, and P.Klint (eds.), Algebraic Specification,
; Frontier Series, The ACM Press in co-operation with
‘esley (1989).

AUR Documentation, The GIPE Consortium, Sophia-

endriks, Implementation of Modular Algebraic
ons, dissertation, Programming Research Group,
of Amsterdam (1991), to appear.

P.R.H. Hendriks, P.Klint, and J.Rekers, "The syntax
formalism SDF - reference manual”, SIGPLAN notices,
, pp- 43-75 (November 1989).

"High level language debugging with a compiler”,
s of the ACM SIGSOFT/SIGPLAN Software Engineering
. on High-Level Debugging, pp.123-129 (1983).

A meta-environment for generating programming
nts", Report CS-9064, Centre for Mathematics and
Science, Amsterdam, 1990.

orn, "GSE: A geheric text and structure editor”,
ng Research Group, University of Amsterdam (1991), to

'ersion 15.21, le manuel de référence, INRIA,
irt, 1987.

ser's Manual Version 1.4d.edai, Edited by F.Pereira, SRI
al, Menlo Park, California, 1986.

ts, On Equal terms, dissertation, Chapter 1: "An Equation
Programming Research Group, University of
1 (1991), to appear.

