X
&
X

Reuse of ABN-AMRO PowerBuilder
Applications

Bas Toeter
B.Toeter@Quva.nl

July 2001

Abstract

This masters thesis describes a transformation process from PowerBuilder client/server
applications to Java Three-Tier web applications. The transformation process op-
erates on source code that progresses from PowerBuilder source code to Java source
code in several phases. The rewriting techniques that are used include manual
rewriting, lexical scanning and rewriting using XML and XSLT.

Contents

1 Introduction 3
1.1 ABN-AMRO software management 3
1.2 ABN-AMRO Legacy PowerBuilder 4
1.3 Reusing PowerBuilder Software 4
1.4 Organization L 5
1.5 Acknowledgements Lo 5

2 PowerBuilder 6
2.1 PowerBuilder client/server development 6

2.1.1 4-GL Development Environment 6
2.1.2 Object Orientation 6
2.1.3 Client/Server Architecture. 7
2.1.4 Domain specific features 7
2.2 ABN-AMRO Programming method 8
2.2.1 Technical Development Framework 8
2.3 Components of a ProDeca Application 8
2.3.1 Human Interface Component 8
2.3.2 Task Management Component 9
2.3.3 Problem Domain Component 9
2.3.4 Data Management Component 9
2.3.5 System Interaction Components 9
2.4 PowerBuilder Implementation 0oL 9
2.5 Structure of a PowerBuilder application 10
2.5.1 Objects e 11

3 The Three-Tier model 13
3.1 Intranet based Applications L. 13
3.2 Web architecture 13

3.2.1 Application Servers. 15
3.3 Requirements 15

4 PowerBuilder to Java 16

4.1 Architecture 16
4.1.1 Application Logic. 17
412 Internal State 17
4.1.3 Graphical User Interface 17

4.2 Language Differences o oo, 18
4.2.1 Object Orientation 19
422 4GLwvs. 3GL L s 19
4.2.3 Conversion of Data Types 19
4.24 Compiler and Virtual Machine 19

5 Software Transformations 22

5.1 Transformation requirements 22
5.2 A processfor Conversion 25
5.3 Obtaining Source Code Lo 26
5.4 Transformation Strategy L. 26
5.4.1 Annotation 27

5.4.2 Rewriting XML with XSL 28

5.4.3 Rewriting XML annotated PowerBuilder Export files with XSL 32

6 Sample Transformation 34
6.1 PowerBuilderto Java. 34
6.1.1 Sample Application 34

6.1.2 Export Files oL 35

6.2 A Javaimplementation., 38
6.2.1 PowerBuilder System Classes 40

6.2.2 Adding GUI functionality 40

6.2.3 Generating code with Stylesheets 42

6.3 Summary e 44

7 Conclusions 45
7.1 Results. e 45
711 TsSues . . v o v v i e e e e e e e 45

7.1.2 Achievements 48

7.2 Future Work 48
7.3 Conclusions 48

A Sample Application PB export and Java code 51
A.1 Application object PB Export code 51
A2 Window PBExportcode 51
A.3 mainwindow PBExport code with XML-markup 52
A4 Java Implementation 53
A5 Generated Java 54
A.5.1 Before Post-Procesing L. 54

A.5.2 After Post-Procesing L. 56

B Lexical Scanning Tool 57
B.1 Sourcecode 57

Chapter 1

Introduction

The banking industry has proved to be an early adopter when it comes to automa-
tion. Automation started in the back office where mainframe computer were first
used to keep track of accounts. Later on the automation moved into the front office
(tellers), the streets (ATM) and into the homes of customers (home banking).

The drawback of early adoption of automation is that at some point in time a
certain software package may no longer be useful because it has reached the end
of its lifecycle. All sorts of changes that can be of technological, social or political
nature can be the cause of this.

This thesis reports on research we have conducted into the possibilities for the
reuse of software that was about to reach the end of its technical lifecycle.

1.1 ABN-AMRO software management

In the past the ABN-AMRO has developed several branch applications for the man-
agement of services like travel insurance, currency exchange, etc. These applications
are of a client/server nature in which the client resides on the office workstation and
offers a user interface to a database that runs on a server elsewhere in the bank’s
computer network.

At present the ABN-AMRO is about to deploy a new standard for their office
automation. This new standard involves an approach in which a web browser func-
tions as the client for all office applications and information systems. So instead of
many client applications the office workstation now only supports a web browser.
The web browser provides the user interface for the application while in the back-
end a web server is used as an interface to various databases. The combination of
a browser, a web server and a database in a single application is referred to as the
Three-Tier model.

By reducing the number of different software packages used in the office a cost
reduction can be achieved which is one of the driving factors behind the intranet
based approach. Another factor is the complexity of distributing new branch appli-
cations. This process can become so complex that it can literally be impossible to
distribute an application among all the office workstations within the maintenance
time frame.

A centralized approach that complies with the Three-Tier model solves both these

problems. However it also means that all client/server software that currently does
not provide a web browser interface will have to be replaced.

1.2 ABN-AMRO Legacy PowerBuilder

The legacy client-server applications that this thesis describes were created using
the PowerBuilder! client/server development environment from PowerSoft?.

PowerBuilder allows the programmer to define objects which can inherit the meth-
ods and properties of other objects. ABN-AMRO has used this feature to create a
proprietary service layer. The service layer consists of a set of objects from which
a developer can create child objects that inherit the generic properties of an office
application. These generic properties consist of features like the look and feel of the
user interface, the database connection and support for error handling.

1.3 Reusing PowerBuilder Software

The object of the research we conducted is to determine how the PowerBuilder
applications can be reused as a web application accessible through a web browser.
ABN-AMRO prefers usage of a common language such as C/C++ or Java over less
commonly used programming languages. We choose to use Java since it is broadly
supported on web platforms.

Figure 1.1 shows the transformation process that is described in this thesis.

' '
' '

' '

' '

' I

; ! . . XML-annotated Java 1
PowerBuilder ' o | PowerBuilder | lexical X i !
e P F———P» PowerBuilder Sources !
Application a(porti Export Sources| scanning Export Sources XSL :

i i

' I

' I

w I w U I
' '

' '

restructure H restructure restructure H

I '

'

Figure 1.1: Transformation Strategy

The left side of the figure displays the PowerBuilder applications as they are be-
fore the transformation begins. In this form the applications are restructured to
eliminate constructs and features that are difficult to transform to a Java web im-
plementation.

The next step is to export source code from the PowerBuilder applications. These
export files are annotated using XML-tags. Restructuring is applied to the anno-
tated export sources to apply transformations from the PowerBuilder to the Java
Syntax. Using an XSL-transformation these XML-annotated files are used to gen-
erate Java source code.

We have focused our efforts on transforming the object structure from PowerBuilder

Lhttp://www.sybase.com
2PowerSoft has merged with Sybase in February 1995

to Java. We have not analyzed the PowerScript® code in the PowerBuilder applica-
tions.

1.4 Organization

The rest of this thesis is structured as follows:

Chapter 2 describes the details of PowerBuilder applications and the development
method used by the ABN-AMRO.

Chapter 3 introduces Three-Tier inter/intra-net application technology.

Chapter 4 compares the PowerBuilder client/server paradigm to the Three-Tier
Java web-application paradigm. A number of issues are listed that relate the trans-
formation to architectural and language differences.

Chapter 5 elaborates on the approach sketched in Figure 1.1.

In Chapter 6 we present a sample transformation that follows the approach de-
scribed in Chapter 5.

Finally we conclude this thesis in Chapter 7 which contains conclusions.

1.5 Acknowledgements

I thank my parents, sister, brother and brother in-law for their support in the past
years and especially in recent times while I worked on this thesis. At the Centrum
voor Wiskunde and Informatica I specifically would like to thank my supervisor
Paul Klint, roommate and friend Jurgen Vinju, and Hayco de Jong. I would also
like to thank Jan Boef and Joke Homan from the ABN AMRO for their support
and for providing me with information and feedback. Further more I would like
to thank Chris Verhoef of the Vrije Universiteit, Alan Berg of the Universiteit van
Amsterdam and Remco van de Woestijne for their help and support.

3PowerScript is introduced in Chapter 2

Chapter 2

PowerBuilder

This chapter explains what PowerBuilder is and how the ABN AMRO has developed
applications with it.

2.1 PowerBuilder client/server development

2.1.1 4-GL Development Environment

PowerBuilder provides an Object Oriented development environment for the de-
velopment of client/server database applications. The programming environment
consists of a graphical user interface in which most tasks can be completed us-
ing just the mouse. Many of the complex tasks that have to be performed by a
client/server application are taken care of by PowerBuilder. This means that the
programmer does not have to worry about establishing a connection to a database
and retrieving certain records, these kind of low-level tasks are added to the appli-
cation by PowerBuilder. The abstraction of low-level programming tasks is what
makes PowerBuilder a Fourth-Generation Language, or rather a Fourth-Generation
Programming Environment.

2.1.2 Object Orientation

Developing applications with PowerBuilder comes down to defining objects and
their relations. The objects have properties, functions, procedures' and events.
Objects can be either visible or invisible. Examples of visible objects are windows,
menus, buttons and images. Examples of invisible objects are data storage objects,
transaction objects and error objects.

Graphical Development

To create a user interface with PowerBuilder the programmer draws a window and
adds GUI objects to it. A GUI object is a visible object that interacts with the end
user. An example of such an object is a button. Like all GUI objects the button
object has several properties such as: a label denoting the text on the button and
a color property denoting the color of the button. Interaction can be added to the
button by binding actions to events that relate to it. A button supports events like
"clicked’ and ’double-clicked’. When the programmer adds an object to a window
she subsequently has to fill in the properties and define actions to go along with the
events. Because PowerBuilder declares the events and properties of the buttons,

!Functions and procedures are also referred to as methods in other Object Oriented Languages.

defining the properties and event code is a matter of filling in the blanks. The event
code is written in a proprietary programming language called PowerScript [4].

Source code

The objects that the developer creates are stored in library files. A single application
can consist of several libraries each containing one or more objects. The library files
are in a binary file format. PowerBuilder features an export function that enables
individual objects to be exported from the library files into plain text files. These
files are quite readable and contain the object definitions.

Event Driven Programming Model

Virtually all the processing that is performed by a PowerBuilder application is trig-
gered by an event that is generated by the user. There are however two exceptions.
One exception is the timer event. This is triggered after a set amount of time has
passed. The other exception is the application idle feature. This feature allows the
developer to specify what code should be executed when the application has been
idle for a certain amount of time. This is mostly used for activating application
level security measures such as: expiring the user session, blanking the application
window, or starting a password-protected screensaver.

2.1.3 Client/Server Architecture

PowerBuilder client/server applications differ from the traditional model of client/-
server applications. A PowerBuilder application contains all the application logic
while in traditional client/server applications the application runs on the server and
the client functions mostly as a plain interface to the user. Invariably the server-side
of the PowerBuilder applications under scrutiny in this thesis is a database. Al-
though application logic may reside in the database in the form of stored procedures,
its main purpose is to store data.

2.1.4 Domain specific features

PowerBuilder has many high-level features that are specific to the development of
client/server database applications. These features make it easy to implement the
user interface and the database connectivity.

Probably the most eminent of these high-level features is the datawindow. The
datawindow automates the user/database interface. Its main role is to display data
and allow the user to modify it. The datawindow object has two primary com-
ponents: a data access component and a display formatting component. It uses a
data source to access information. The data source can be a relational database
such as Sybase, Oracle or DB/2. The datawindow offers a common front-end to
these databases and deals with differences between then. Databases are not the
only possible data source; it is also possible to use a text file as a data source.

The formatting of the data depends on the presentation style that is used. Build in
presentation styles include: Freeform, Tabular, Graph and Cross tab. The datawin-
dow provides a mechanism for formatting data that is retrieved from the database,
or while it is being entered by the user.

2.2 ABN-AMRO Programming method

The ABN-AMRO uses their own set of methods and techniques, united in the
ProDeca? specification, that aid the developer when building applications. The
methodological part consists of the IAD-method® and falls outside the scope of this
thesis. The technical part of ProDeca is introduced in the following paragraphs.

2.2.1 Technical Development Framework

The technical part of ProDeca is based on the products PowerBuilder and the Pow-
erTOOL object class library. ProDeca can be applied to develop applications for
two separate target platforms at the ABN AMRO.

The ProDeca application structure is based upon the PowerTOOL application struc-
ture with the addition of Problem Domain Components. Problem Domain Compo-
nents will be explained in paragraph 2.3.3. PowerTOOL offers several templates
consisting of objects that are cut out for development in the ABN AMRO infras-
tructure. Using these templates new objects can be created that offer application
functionality to access the DB2 databases and to provide an integrated use of Prob-
lem Domain Components.

The ProDeca Service Layer is the combination of PowerTOOL features and ser-
vice layer functionality. The service layer adds the following features:

e Support for ABN-AMRO GUI standards.

e Support for Problem Domain components.

2.3 Components of a ProDeca Application

An application that is being developed according to the ProDeca methods and
techniques is decomposed into a default set of components:

e Human Interface Component (HIC)
e Task Management Component (TMC)
e Problem Domain Component (PDC)

e Data Management Component (DMC)

System Interaction Component (SIC)

Implementations of these components are called objects. What follows is a descrip-
tion of each of the components.

2.3.1 Human Interface Component

All the interaction with the user takes place in the Human Interface Component.
The interaction is shaped into ’'interaction objects’. These objects usually define
one or more windows. The user is able to activate one or more application end
functions through the Human Interface Object. An application end function is
defined as a function that is performed solely by the application without the need

2Dutch: Professionele Decentrale Applicatieontwikkeling - Professional Decentralized Applica-
tion Development.
3Iterative Application Development.

for intervention by the user. During the execution of an application end function
the control is passed to the application. An hourglass is displayed to indicate that
the system is performing an operation that does not support input from the user.

2.3.2 Task Management Component

The Task Management Component(TMC) should implement all the application end
functions that are supported by the application. The execution of tasks is delegated
to the Problem Domain Component?, the Data Management Component® and the
System Interaction Component®. The PowerBuilder applications that fall within
the scope of this thesis were based on a version of the service layer that does not
support the TMC as a separate component. Due to this limitation, that is caused
by the PowerTOOL architecture, the TMC has been integrated into the Human
Interface Component.

2.3.3 Problem Domain Component

The Problem Domain Component contains all the 'Business Objects’. The imple-
mentation of the Problem Domain Objects(PDO) in the service layer defines the
behavior of data in the application. The limitation is that one PDO can only define
the behavior of one collection of data. The service layer does not support commu-
nication between PDOs. A service layer PDO can define the behavior of only one
row of data at a time.

2.3.4 Data Management Component

The Data Management Component(DMC) takes care of the persistent storage of
object data. This concerns storing as well as retrieval of object data to and from
the Problem Domain Component. Outside of the DMC there is no object with
knowledge of how this task is performed.

2.3.5 System Interaction Components

All interaction with other systems, such as: peripherals, remote computers, print-
ers, etc. is handled by the System Interaction Component(SIC). By isolating the
interaction with other systems in the SIC it is easier to adapt to changes in the
interfaces of the external systems.

2.4 PowerBuilder Implementation

Some of the components described above have been implemented in PowerBuilder
and form a basis from which developers can create applications. This basis is the
ProDeca Service layer as mentioned in Section 1.2. It contains the Human Inter-
face Component, Task Management Component, Problem Domain Component and
System Interaction Component. Due to the event driven nature of PowerBuilder
applications the TMC has been integrated into the HIC.

During the initial implementation of the ProDeca components an attempt was made
to create a separate PowerBuilder object for each of the components. This resulted

4Introduced in Section 2.3.3
5Introduced in Section 2.3.4
6Introduced in Section 2.3.5

PowerBuilder Application
Workstation

Human | nteface Component/

Task Management Component < I:I

Problem Domain Component

Data M anagement Component
“T H LI]
S

Service | nterface Component

! Database

v

Figure 2.1: PowerBuilder Architecture

[T

in the HIC and TMC being implemented in a PowerBuilder Window Object. The
PDC and SIC have each been implemented in Non Visual PowerBuilder Objects.
Figure 2.1 shows the individual components of a PowerBuilder application with
their interfaces to other systems.

2.5 Structure of a PowerBuilder application

A PowerBuilder application is a collection of windows that perform related activi-
ties, such as order entry, accounting, etc. The application object is the entry point
into the windows that perform these activities. It is stored in a PowerBuilder library
just like any window-, menu- or function-objects that may be part of the applica-
tion. Figure 2.2 displays a PowerBuilder library that defines the components of an
application.

Application object Function
Window Menu
Window

Figure 2.2: PowerBuilder library

The application object defines application-level behavior, and information about
the application such as which libraries contain the objects that are used in the
application, which text fonts are used by default, and what processing should occur
when an application is started or terminated. When a user runs the application
the PowerScript that has been written for the open event initiates the activity in

10

the application. A common practice is to use the open event to open a database
connection and display the first application window.

2.5.1 Objects

During runtime execution, before an object can be referenced, it needs to be instan-
tiated. The open(window) function instantiates the window that is being opened
and any controls, graphical user objects or menus attached to that window.

Certain objects are defined and instantiated automatically at runtime. These are:

e SQLCA - SQL Communications Area.

SQLSA - SQL Dynamic Staging Area.

SQLDA - SQL Dynamic Description Area

Message object

Error object

System Object Classes

PowerBuilder maintains a set of system object classes from which user-defined
classes are derived. The system object classes add functionality of a high level to
PowerBuilder applications. Support for this functionality is built into the Power-
Builder Virtual Machine(PVM). A sample of such a feature is a datawindow. A
datawindow is capable of running a database query and displaying the result set
on the screen. The actual SQL query is generated by the PVM. It has knowledge
of the database system and is able to generate queries for updating, retrieving and
deleting data. So a lot of the functionality that makes PowerBuilder a fourth gen-
eration development platform is built into the virtual machine. Details of how they
are implemented are hidden from the developer.

User objects and classes

A developer can create his own PowerBuilder classes and objects. By defining a
new class it is possible to group a number of system objects into a single class. User
objects are instantiations of user classes or system objects classes. Figure 2.3 dis-
plays the hierarchy of classes and objects that make up a PowerBuilder application.

Inheritance

PowerBuilder features single inheritance for a limited set of objects. Single inher-
itance implies that an object can only inherit properties from one parent object.
However, the parent object may inherit properties from yet another parent object.
Inheritance can be used with three PowerBuilder objects: windows, menus, and
user objects.

Overloading

PowerBuilder offers the capability to create overloaded functions. An overloaded
function is one that has several implementations under the same name. It is a
concept that is very closely related to polymorphism. But instead of having func-
tions in different objects with the same name, there are several implementations in
the same object with the same name. At runtime, PowerBuilder figures out which

11

Application object
User object User object User object
System System
Object class | | Objectdlass | | YS&rclas
System
Object class

Figure 2.3: PowerBuilder class/object hierarchy

one to call by the number and type of parameters. Each implementation has to
have a different set of parameters. They can have the same number of parameters
but different types. They cannot, however, have the same parameters and types
and a different return value. A return value alone is not enough to distinguish the
function. See [4], chapter 22.

Reflection

Reflection, also called introspection, makes it possible to discover the fields, meth-
ods, and constructors of loaded classes at runtime. Besides this it is also possible
to dynamically manipulate the fields, methods and constructors of a loaded class.
Many Object-Oriented Programming Languages provide reflective features. How-
ever, PowerBuilder has no support for reflection.

12

Chapter 3

The Three-Tier model

As mentioned in the introduction the ABN-AMRO aims at reducing the variety of
client applications that run in the office. They plan to remedy this diversity by
deploying the web browser as the user interface to all information systems. The
web browser has become a very common application that is found on almost every
office workstation.

3.1 Intranet based Applications

Using a browser to view web content means that somewhere else in the network
there must exist a web server for the browser to connect to. In a confined office
environment this implies an intranet. An intranet implements Internet technologies
and standards on a local network that is not connected to the Internet. Figure 3.1
displays a possible intranet configuration with support for shared storage, e-mail,
shared printing and a web-server that interfaces with a database.

Client ‘
I I I I I I I I A rea I/)=\\I

|
Server — ﬂE”:l
Area = @ = =
2 8 &
0] Database]
[T

Figure 3.1: Intranet

3.2 Web architecture

The basic architecture behind the World Wide Web is the combination of a web
browser, a communications network and a web server. The web server is idle until
a client (web browser) requests an object from the server. The server inspects the
type of the requested object, and if appropriate, sends it back to the client. All

13

communication is initiated by the client; the web server is stateless but keeps a log
of clients and the objects they have requested.

Three-Tier model

To allow the web server to communicate with a database an application server is
used as an interface between both systems. The combination of a web browser
with a web server/application server and a database server is called a Three-Tier
architecture. Figure 3.2 displays a model of the Three-Tier architecture.

Client-Tier Middle-Tier Database-Tier
Web Browser Web Server Database
Pr;?enl GUI- Client-requesty | pacs cfient requests {0 SQL-quedes, | Execute queries
webpage. P
Application Server, IDBC i
f UL Process Sy Send result sets to
Process client- ocol Breecd cati
dide prot Send web service requests Application
- " GUI- b Server
application GUI-webpage Eﬁ;:: to Connect to database! Result Sets
logic. ’
ogic Pass web
pages to Web Server
Application Server

Figure 3.2: Three-Tier terminology

Next we introduce some terminology to discuss the Three-Tier model.

Middle-tier processing

This is the execution of application logic on the middle-tier. Middle-tier processing
always results as a response to a client-request. The client request is directed
at the middle-tier web server that passes it on to the application server. The
processing may include communication with the database in which case a record
set with information retrieved from the database could be processed. The middle-
tier performs this processing and generates a GUI web page that is sent back to the
client through the web server.

GUI web page

This is an information unit that can be visualized in the browser on the client-tier.
It includes layout expressed in HTML and application logic expressed in a scripting
language such as JavaScript[9]. Another common use for scripting languages in web
pages is to create advanced graphical features that are not supported by HTML
alone.

Client-tier processing

This is processing that is performed by the client tier. The processing is two-fold.
It involves rendering of the layout-part of the GUI web page and the processing of
the application-logic-part of the GUI web page.

Client-request

This is a request for processing by the middle-tier from the client-tier. The request
complies with the HTTP protocol [8]. It contains the network address of the middle-
tier web server and the name of the application server object that should service the
request. It also contains variable name and value pairs that the browser specifies.
These data pairs contain data that was entered into the web page by the user.

14

Database-request

This is a request from the application server to the database. The request is usually
stated as an SQL-query!.

Database-processing

This is the execution of queries that are received as database-requests. The result
of a query is a record-set that is sent back to the application server.

3.2.1 Application Servers

A wide range of application servers exists. A typical application server can host
several applications and has features that make it possible to develop advanced web
applications. These features involve the integration of different backend database
systems, transaction management, session management, load balancing and secu-
rity.

One type of application server allows the developer to add server side scripts to the
HTML-code. Examples of this technology are Active Server Pages®?2, ColdFusion®?
and PHP3“. Database queries and result set formatting rules are specified in script
elements that are embedded in the HTML-code. The application server processes
these elements and replaces them with HTML-code. A high level of integration
between layout and application is realized this way.

Another type of application server holds executable application objects that pro-
duce HTML-code. When a client requests an application page the related object is
executed by the application server. The object generates an HTML-page, which is
passed back to the browser via the web server.

Yet another type of application server functions merely as a gateway to stored
procedures in the database. These database procedures produce HTML-code that
is passed back to the browser through the application server and the web server.

The type of application server suitable for this project is one that supports Java as
the programming language. We leave the choice of application server outside the
scope of this thesis in order to focus on the transformation from PowerBuilder to
Java.

3.3 Requirements

The ABN AMRO has two application language related requirements that are to be
met by a Three-Tier system that is to replace their PowerBuilder applications. The
first requirement, which was mentioned in the introduction, is that the language
used for the applications is a mainstream language such as C/C++ or Java. The
second requirement is that in the HTML-pages that are part of the user interface
no dynamic components such as Java Applets® are used. Applets are considered
insecure and therefore are not allowed in branch applications.

IStructured Query Language.

2Microsoft, http://msdn.microsoft.com/
3Macromedia, http://www.macromedia.com/
40pen source, http://www.php.net/

5A Java Applet is an embedded Java application.

15

Chapter 4

PowerBuilder to Java

There is more than one possible strategy to reuse the existing PowerBuilder Appli-
cations in a Java web application environment. A strategy for reuse may involve
manual rewriting, automatic rewriting or a combination of both. A good strategy
for ABN AMRO is one that leads to an acceptable solution at minimal cost.

This chapter explains some basic ideas behind transformations and focuses on the
differences between PowerBuilder client/server applications and Three-Tier Java
web applications. These differences lead to issues that have to be dealt with when
transforming from PowerBuilder to Java and from the client/server paradigm to
the Three-Tier paradigm. The issues identified in this chapter are discussed again
in chapter 7 and are numbered to allow easy referencing.

The differences between PowerBuilder and Java Web Applications have been di-
vided into two categories:

e architectural based differences

¢ and language based differences.

The next two sections describe these differences in detail.

4.1 Architecture

PowerBuilder Applications are of a client /server architecture. In this case the server
is a database that contains data and the client is an application that contains
presentation and application logic. In the web model these functions are separated
and divided among the Three-Tiers of the architectural model. On the third tier,
the database level, there are no changes because the same database is used in
the web application as is used by the PowerBuilder application. However in the
other tiers there are changes that have a major impact on the way the application
functions. In the web model the application is implemented in application objects
that reside in the application server on the middle tier. The client is responsible for
the presentation of the user interface. Bear in mind that the presentation is stored
in the middle-tier and is executed on the client tier after it has been downloaded
into the web browser. The following paragraphs deal with architectural differences
on a level of application logic, internal state and graphical user interface.

16

4.1.1 Application Logic

The application logic defines the data processing that goes on inside the application.
It deals with data entered by the user and data retrieved from the database. In the
web model this processing takes place on the client-tier and on the middle-tier. We
are not interested in data processing inside the database since the database is consid-
ered to be a constant factor in the transformation from PowerBuilder client/server
to Java web applications. In a PowerBuilder application all the application logic
is built into the client. This needs to be taken into account when transforming a
PowerBuilder application into a web application.

The difficulty here lies in the distance between the GUI and the application logic
in the web model. The GUI is presented in the client-tier while the application is
active in the middle-tier. This may lead to an overhead in communication between
the client and the middle-tier. For instance; the user may have to enter several
fields in a form that triggers an event after each form field changes. These events
are passed back to the middle-tier for event handling. The result would be that
the entire form is submitted to the server, processed, and reloaded into the browser
many times before the user has completed the form. This is not only a nuisance to
the user, but also leads to an unscaleable application. A solution could be to handle
events in the browser whenever possible. A scripting language for executing scripts
on the client side, such as JavaScript, can be used for this purpose. The difficult
task remains of recognizing what parts of the application logic should be built into
the client, and what parts should be implemented on the middle-tier.

Issue 1: The application logic is split across the client-tier and middle-tier

4.1.2 Internal State

A PowerBuilder application has an internal state that controls the processing that
takes place. The internal state of an application consists of all object states and
holds variables such as the name of the person currently using the application, or
the exchange rate of a foreign currency. The internal state of the PowerBuilder
application remains intact during the entire user-session.

Server side web applications are most often stateless. In practice this means that
a server side application object is executed upon a request from the client, during
execution it generates HTML and then terminates. By terminating it loses its inter-
nal state. The application server usually offers a means of storing state-information
that is related to a specific user session.

‘ Issue 2: Persistently storing and restoring the application state

4.1.3 Graphical User Interface

PowerBuilder offers a variety of user interface objects that can easily be deployed in
an application. In the web-application model HTML defines the user interface. Of-
ten the HTML-code is enriched with JavaScript to create a more advanced interface.

Most of the PowerBuilder user interface objects can be rendered in HTML in a
straightforward fashion. For instance the equivalent of a PowerBuilder command
button in HTML is the form submit button. In Section 6.2.2 we present a Java im-
plementation of a commandbutton that produces HTML output to enable a browser
to render a button.

17

For other objects, such as datawindows, more work needs to be done to render
them in HTML. One possibility is to use Java Applets to have full control over the
rendering possibilities of the object. We did not look into Applets because in the
requirements (see Section 3.3) it is stated that Applets are not to be used.

|Issue 3: From a PowerBuilder based GUI to a web based GUI

4.2 Language Differences

Differences between the PowerBuilder language and the Java language have to be
dealt with when transforming from one to the other.

Language A Language B
Native o Native
construct construct
Simulated Simulated
Construct "] Construct
No
construct

Figure 4.1: Feature mapping from one language to another

Figure 4.1, taken from [3], shows the possible mappings for features of one language
to another. The figure shows the relationship between native and simulated con-
structs. In this context a construct is a programming language construct that has
a specific function. E.g. when a language offers a function to sort lists we say that
there is a native construct to sort lists in that specific language. When we translate
from that language to another language that does not have a native construct to
sort lists we need to simulate that functionality. Hence the term simulated con-
struct. In the worst case we have to deal with a native or simulated construct in
language A that has no equivalent translation in language B. This is expressed in
the figure by the mappings into the "no construct” category.

The language differences between PowerBuilder and Java have been categorized
as follows:

¢ Differences in Object Orientation
¢ Differences between 4GL and 3GL
¢ Differences between data types

e Differences between compiler and virtual machine

The following sections describe these differences in detail.

18

4.2.1 Object Orientation

Although we are dealing with a transformation from one Object Oriented language
to another there still are some major differences between them that make a trans-
formation difficult. This section lists these problems.

Inheritance

PowerBuilder, like most Object Oriented languages, offers the possibility to extend
a method from a parent class. When a method is created in a sub-class, that is also
defined in the parent class, the programmer has to choose between using method-
extending or method-overriding. When a method is called that is the extension of
a parent method the parent-class method is first executed and then the sub-class
method. This is a feature that is not supported by Java.

Issue 4: Extending inheritance is not supported in Java

Explicit Calling

In PowerBuilder it is possible to explicitly call a method from an ancestor class
even when it has been overridden in a sub-class. This is achieved by prefixing the
method name with the name of the class it should be called from. Java does not
offer this functionality.

Issue 5: Explicit calling not supported in Java

4.2.2 4GL vs. 3GL

As mentioned earlier PowerBuilder offers a broad selection of high level function-
ality that specializes in database access and the representation of data in the user
interface. All PowerBuilder applications depend heavily on these high level func-
tions. Java lacks built in support for almost all of these functions. This means that
many of the native PowerBuilder functions have to be implemented in Java.

‘Issue 6: No native support for 4GL PowerBuilder functions in Java

4.2.3 Conversion of Data Types

Another language related issue is the conversion of data types. The author of [2]
states that the conversion of PowerBuilder data types to Java is fairly easy. How-
ever he also states that the conversion of real and decimal values can be tricky if
precision is an issue. He suggests researching and testing these data types in both
languages to make sure the right result is obtained.

The authors of [3] state that even for simple datatype conversions a sophisticated
data type analysis is mandatory. We conclude that the author of [2] made a good
suggestion about the testing of data types in both languages.

‘ Issue 7: Mapping problems between PowerBuilder and Java data types ‘

4.2.4 Compiler and Virtual Machine

In PowerBuilder as well as in Java environments source code is compiled into a
format that can be interpreted by a virtual machine. The PowerBuilder virtual

19

machine can be compiled into the application to create a standalone application.
Java uses a separate virtual machine.

Lazy vs. eager evaluation

While Java uses a lazy approach for the evaluation of expressions PowerBuilder
employs an eager evaluation scheme. Whether this is a difference on the level of
the virtual machine or of the compiler is of no interest since a transformation is
performed at the source code level.

Lazy evaluation is a means of speeding up execution time by partially evaluating
an expression without violating the laws of logic. Consider the following example:

01 public class LazyEvaluation {

02

03 public static void main(String[] args) {

04

05 System.out.print ("Evaluating: Bool_1 OR Bool_2 \n");

06 System.out.println("EvaluatesTo: " + (Bool_1() [l Bool_2()) + "\n");
07

08 System.out.print ("Evaluating: Bool_1 AND Bool_2 \n");

09 System.out.println("EvaluatesTo: " + (Bool_1() &% Bool_2()) + "\n");
10 ¥

11

12 private static boolean Bool_1() {

13 System.out.println("Evaluating: Bool_1");

14 return true;

15 }

16

17 private static boolean Bool_2() {

18 System.out.println("Evaluating: Bool_2");

19 return true;

20 ¥

21 %}

This piece of Java code generates the following output:

Evaluating: Bool_1 OR Bool_2
Evaluating: Bool_1
EvaluatesTo: true

Evaluating: Bool_1 AND Bool_2
Evaluating: Bool_1
Evaluating: Bool_2
EvaluatesTo: true

This sample shows that when evaluating Bool_1 OR Bool_2 the right part of the
expression is not evaluated if the left part is true. This becomes an issue when one
of the operands is a function that has a side effect. In Java the function may not
be called and subsequently the desired side effect may not occur.

Issue 8: Lazy vs. eager evaluation

Object Binding

When an object is referenced the virtual machine looks up that object in the repos-
itory of available objects. In PowerBuilder this is done by searching the library file
path until the first occurrence of the object is found. This means that an object
may exist more than once in a given set of libraries that make up an application.
The ABN-AMRO has used this property of PowerBuilder for the distribution of
bug fixes, this is documented in [1]. They do this by including a dummy library
at the beginning of the search path. When it has been determined that one of the
objects in another library contains a bug, that object is repaired and inserted into
the dummy library. When the object is referenced the repaired version is found first
and is used by the application.

20

Issue 9 Duplicate and unreached objects

21

Chapter 5

Software Transformations

In Chapter 4 we stated that we are dealing with both an architectural transfor-
mation and a language transformation. The goal is to make it possible to use the
existing PowerBuilder application functionality in a web-application. In this chapter
we suggest an approach for the transformation process.

5.1 Transformation requirements

In [3] Terekhov and Verhoef present a list of requirements that they think are nec-
essary for realistic development of source-to-source converters. Their list contains:

o Inventory of native and simulated constructs

e Conversion strategy for each construct mapping
e Functional equivalence

o Test set migration

o Maximal automation

e Conversion Time

¢ Maintainability of the converted system

o Efficiency of the converted system

e Size of the converted system

In the following sections we elaborate on each of these requirements.

Inventory of native and simulated constructs

This relates to Figure 4.1 that displays the mapping possibilities of native and sim-
ulated constructs in the transformation. It is necessary to gain insight into the
PowerBuilder constructs that have no native support in Java.

Constructs that can be simulated in Java have to be identified so we can imple-
ment such a simulation and a transformation to apply it.

Optionally we can also research simulated constructs in the PowerBuilder code
that have native support in Java. We suggest this is optional because although
applying native constructs where possible improves the readability of the source
code, a transformation of one simulated construct to another simulated construct
will still work.

22

Conversion strategy for each construct mapping

Based on the inventory of the construct mappings that are relevant in the transfor-
mation a rewriting strategy can be devised in order to make the mappings work.
Mappings into the 'unsupported’ category should be avoided by removing the con-
structs to which they apply from the PowerBuilder applications. Mappings from
native to simulated should be expressed in the rewriting that is to take place on
the annotated export files. The optional rewriting of simulated constructs to native
constructs can take place on the resulting Java.

Functional equivalence

With functional equivalence the authors of [3] mean that the transformed system
should be functionally equivalent to the original system. So a bug in the original
system should lead to a bug in the transformed system. It is their experience that a
customer seeking a transformation will often request that the transformation modi-
fies the original in such a way that unsafe code and faults are removed. They suggest
specifying how to deal with a 'requirements creep’ in the requirements specification
of the transformation.

As explained in Section 4.2.4 the PowerBuilder applications may contain duplicate
objects. As a requirement of our transformation we should state that no duplicate
objects may exist in the PowerBuilder applications. They should be removed before
the transformation takes place. Since the duplicate objects all reside in a specific
library this is not so hard to do. The benefit for the conversion process is the re-
duction of the amount of code that has to be transformed.

Another aspect of functional equivalence is the prevalence of application level bugs
during the transformation. We suggest to take a step back when a bug is discovered
and fix it in the PowerBuilder Integrated Development Environment (PB-IDE). Us-
ing the PB-IDE for this purpose is preferred because it is known how to perform
maintenance and development tasks in that environment, and existing testing pro-
cedures can be used to evaluate bug-fixed-versions of the PowerBuilder applications.

The same should be done for unsafe code. For example; it may be the case that
PowerBuilder has no array boundary checking. In unsafe code an off-by-one error
could access an out of bounds array element. At runtime this may remain unde-
tected. However, when transforming this unsafe code to Java without taking the
different approach to boundary checking into account, side-effects could occur. The
compiler may issue a warning, or the application may display unexpected behavior.

We suggest to deal with unsafe code issues in the PB-IDE. We note that code
that is considered unsafe in Java, may be considered safe in PowerBuilder. This is
due to differences in the implementation of the PowerBuilder runtime environment
and the Java Virtual Machine. Instead of using the term unsafe code it can also be
said that certain constructs map onto the 'no construct’ category of Java.

Test set migration

“It should be stated whether the test sets belonging to the original system
also have to be converted. During such automated efforts, also errors in
the tests are exposed. It should be clearly stated what is the policy towards
modification of the test sets.”([3] page 5.)

23

The test sets should show that the application is capable of performing the func-
tions it is built for. For each change to the PowerBuilder application it should be
determined whether or not the test sets have to be updated so they remain valid.
Test sets should be transformed with the applications to enable testing of the trans-
formed applications. The transformation of the test sets is outside the scope of this
thesis. We leave this to future work because it is something that should be done
after the transformation of the PowerBuilder applications has been achieved.

Maximal automation

Limiting the amount of human intervention that is necessary for the transformation
also limits the amount of human errors that can be made. However since a lot of the
4-GL functions in PowerBuilder are not supported in Java there is a considerable
amount of work to be done to re-implement these. Since we do not have access to
source code of the PowerBuilder implementation of these 4-GL functions this is to
be performed by hand. It only needs to be done once for the entire collection of
PowerBuilder applications that are transformed.

Conversion Time

It is stated that conversion time can be an issue if the converter is needed many
times instead of just once. Since we are doing a one time transformation this is
not such an issue. As long as the transformation can be done in less time than a
manual re-implementation we are on the safe side.

Maintainability of the converted system

The converted system should be maintainable. One way of maintaining the con-
verted system is by applying the maintenance to the PowerBuilder application and
performing a transformation after each round of maintenance. This would only work
if the conversion is fully automated, and does not take too much time. It would
limit the use of native Java constructs that are not available in PowerBuilder, and
also not supported in the transformation. Preferably the maintenance is performed
on the converted system itself especially since the ABN AMRO wants to get rid of
PowerBuilder as a whole.

A common observation[3] is that when the maintenance engineers of the original
system are to maintain the converted system they would benefit from similarities
between the two. In our transformation this is mostly limited to the maintenance
of the PowerScript, since the programmer is used to the graphical development en-
vironment, and has little need for knowledge about the exported source code. A
suggestion is to implement a Java interpreter for PowerScript. On the one hand
this means that there would be no need to transform the PowerScript in the Power-
Builder applications. The PowerBuilder developer is familiar with the PowerScript
code and could thus benefit from this. On the other hand, for engineers with no
prior experience with PowerScript this approach would not improve maintainabil-
ity but would decrease it instead. Besides, interpreting PowerScript defeats the
purpose of the ABN AMRO to use standard languages such as C/C++ and Java.

Efficiency of the converted system

The converted system should be acceptable in both compilation and execution time.
Because in our Three-Tier model most of the processing is done in the middle-tier
there is a need for a powerful server platform. Using an application server adds a
single point of failure to the system, clustering the middle-tier over several servers

24

can reduce the risk of failure and improve performance. Most application servers
provide possibilities for clustering.

Reduced performance of the transformed system should be dealt with by clustering
and up scaling the application server. There should be no more degradation in
efficiency than can be relieved by the application server cluster.

Size of the converted system

The converted system is most probably going to expand in size due to the differ-
ences between 4-GL languages and 3-GL languages. The extra code for the support
of the 4-GL functionality will be shared among the different applications that are
transformed from PowerBuilder. Another source of shared code is the Service Layer,
described in Section 1.2.

The shared code should be regarded as two separate libraries, one with Service
Layer functions and one with support for 4-GL functions, that are used by the
transformed applications. Maintenance of the applications should also be separated
from maintenance of the libraries. The extra code does not amount to the amount
of code that is generated for each transformed application and does not influence
the size of the converted system.

5.2 A process for Conversion

According to [3] any sensible language conversion begins with extensive restruc-
turing of the source language programs. The authors of [3] state that because
transformed source code has to be well-formed, the original source code has to be
well formed as well. Figure 5.1 depicts the transformation process.

Restructuring Restructuring
Original Target
Progam | 1 program

Syntax swap

Figure 5.1: Process for language conversions

The restructuring of the original program should remove as many hard to translate
language constructs as possible. Another purpose is to remove dead code from the
original. Dead code is source code that is never executed but that is present in an
application. In ABN-AMRO PowerBuilder applications this specifically applies to
duplicate objects that are part of the bug-fixing scheme described in Section 4.2.4.

25

5.3 Obtaining Source Code

As explained in Section 2.1.2 the PowerBuilder Integrated Development Environ-
ment (PB-IDE) offers a graphical interface for the development of applications.
Application code is stored in objects, and these objects may be exported into a text
format. If these export files contain a true representation of the PowerBuilder object
they originate from then we can use them to analyze the PowerBuilder objects.

1601 Library - E: i (=3
=l

et

Habn

I—aptw::ample
L@ zample. pbl
tﬂ sample 2132001 140209 (2204]
H mairwindow 22-3-2001 16:23:52 [5211) :
[dev
Dtmp

Figure 5.2: PowerBuilder Library Tool

Figure 5.2 displays a screenshot of the PB-IDE library tool. The library under
scrutiny here is called sample.pbl. It contains an application object named sample
and a window object called mainwindow. Both these objects may be exported to a
text file. Appendix A shows the exported texts.

We ran a simple test to check if there is object code that is not exported when
we use the built in export function. This was done by exporting the mainwindow
object from the above sample library, then deleting it from the library file using the
delete function in the library browser. After this we were unable to run the sample
application. The PB-IDE generated an error message stating that the mainwindow
object, referenced in the application object, could not be found. After importing
the mainwindow export file back into the sample library, with the import function,
this problem was solved and the application functioned like before.

From this we conclude that the export files contain a complete representation of
the PowerBuilder objects inside the PB-IDE.

5.4 Transformation Strategy

In this section we describe the transformation strategy that we used for the trans-
formation of PowerBuilder objects into Java objects. The PowerBuilder export
files contain all the information that is necessary to define an application. This
information can be divided into three categories:

e Comments
¢ Information about objects
e PowerScript

Comments contain information such as the version of PowerBuilder and the name
of the object that the export file belongs to. Information about objects consists
of object definitions, member variables and the relation between the objects, etc.
PowerScript is mostly defined by the developer to implement event handling code,
functions and procedures.

26

5.4.1 Annotation

When transforming to Java we want to be able to treat each category in a different
way. We therefore split the information in the export files into logical blocks using
tag-based markup. A logical block of export file code is defined as a series of lines
that serve a common purpose such as defining an object or an event. The idea is
to enforce a hierarchical structure on the export files so that we are able to select
a logical subset of an export file and research the transformation of it to Java. In
this way an incremental approach to the transformation can be realized.

XML-markup

The Extensible Markup Language (XML) [5] is a restricted form of SGML, the Stan-
dard Generalized Markup Language [7]. It provides a method for putting structured
data in a text file. In this case we will use it to explicitly add structure to a text file.
XML uses begin and end tags to create elements. These elements may contain text
as well as other elements. The following sample is an XML definition of a library
containing two books:

01 <?xml version="1.0"

02 <library type="Scientific Books">

03 <book isbn="0-201-10194-7">

04 <title>Compilers</title>

05 <subtitle>Principles, Techniques and Tools</subtitle>
06 <shelf number="1"/>

o7 <author>

08 <name>Alfred V. Aho</name>

09 </author>

10 <author>

11 <name>Ravi Sethi</name>

12 </author>

13 <author>

14 <name>Jeffrey D. Ullman</name>
15 </author>

16 </book>

17 <book isbn="0-201-11954-4">

18 <title>Discrete and combinatoral mathematics</title>
19 <subtitle>An applied introduction</subtitle>

20 <shelf number="2"/>

21 <author>

22 <name>Ralph P. Grimaldi</name>

23 </author>

24 </book>

25 </library>

An XML document starts with the XML declaration in line 1. It should contain
only one root element, in the sample this is the library element. All begin tags
must have matching end tags except for the empty element. The empty element is
a self-closing tag, an example can be found in line 6 of the above sample. The begin
tag of an element can contain attribute pairs (name=value) as is shown in line 3
where the book tag contains an isbn attribute.

A schema for an XML-document can be defined in the form of a document type
definition(DTD). The document type definition defines a grammar for a family of
XML-documents. Using a DTD is optional, for many of the XML-documents that
are in use there is no DTD specified. An XML processor can validate an XML-
document to see if it complies with the schema if it has been specified which DTD
it uses.

The reason we choose XML as the format for the annotation is the availability

of the XSL language. This language is described in the next section. We will use it
for the rewriting of XML-annotated export files.

27

5.4.2 Rewriting XML with XSL

XML is a language for structuring data. The eXtensible Stylesheet Language (XSL)
[6] is a language for processing XML-documents. The World Wide Web Consor-
tium! divides the language into three parts:

e XSL Transformations (XSLT): a language for transforming XML documents;

e The XML Path Language (XPath): an expression language used by XSLT to
access or refer to parts of an XML document;

e An XML vocabulary for specifying formatting semantics (XSL Formatting
Objects).

We have used only the XSLT part of the extensible style sheet language, the other
two parts are outside the scope of this thesis.

XSLT

XSL transformations address some common needs in XML:

e Enabling display: The XSL transformation language enables display of XML
by transforming XML into a language that is suitable for display, such as
HTML.

e Schema translations: The transformation process is independent of any par-
ticular output grammar and can be used to transform XML data from one
schema to another.

A transformation expressed in XSLT describes rules for transforming a source tree
into a result tree. The transformation is achieved by associating patterns with
templates. A pattern is matched against elements in the source tree. A template
is instantiated to create part of the result tree. The result tree is separate from
the source tree. The structure of the result tree can be completely different from
the structure of the source tree. In constructing the result tree, elements from the
source tree can be filtered and reordered, and arbitrary structure can be added.

XSL templates are defined using a set of XML elements. Listed below are the
elements from this set that we have used:

e xsl:value-of
e xsl:for-each
e xsl:template
e xsl:apply-templates

e xsl:copy

xsl:value-of

The xsl:value-of element is used to insert the text of a node from the source
XML document into the target document.

Syntax:

Lhttp:/ /www.w3c.org/

28

<xsl:value-of select="pattern'>
</xsl:value-of>

The select attribute contains a string expression that is to be matched against
the current context. The current context is defined as the path to the node in the
source tree that is the basis for this XSL element. Appending the pattern to the
current context results in the path to the node from which text is to be inserted.

xsl:for-each

The xs1:for-each element is used to apply a template repeatedly to a set of nodes.

Syntaz:

<xsl:for-each
order-by="sort-criteria-list"
select="expression'">

</xsl:for-each>

The required select attribute contains a string expression that is evaluated on
the current context to determine the set of nodes to iterate over. The order-by
attribute is optional and can be used to force iteration over the nodes in a certain
order. When XSL-elements are processed that are inside an xs1:for-each element
their context is set to the node that was matched by the select parameter of the
xsl:for-each element.

xsl:template

Defines an output-template for nodes of a particular type and context.

Syntax:

<xsl:template
match="pattern">
</xsl:template>

The match attribute sets the context for which the template should be executed.
This attribute can be used to change the context of the source document, and
provides a convenient way to navigate down into the document tree.

xsl:apply-templates
Directs the XSL processor to find the appropriate template to apply based on the

type and context of each selected node.

Syntax:

<xsl:apply-templates
order-by="sort-criteria-list"
select="expression">

</xsl:apply-templates>

The select attribute defines the context for which the template should be executed.
A list of sort criteria may be assigned to the order-by attribute.

29

xsl:copy

Copies the current node from the source to the output.

Syntaz:

<xsl:copy>
</xs1:copy>

The xs1: copy element creates a node in the output with the same name, namespace,
and type as the current node. Attributes and children are not copied automatically.
This element makes it possible to perform identity transformations.

Using XSL two modes of rewriting are possible: template driven rewriting and
data driven rewriting. The following sections give an example of these rewriting
techniques.

Template driven rewriting

In the template-driven model the XSL template defines the form of the result doc-
ument. Elements from the XML document that is being formatted can be included
using tags that belong to the XSL namespace. A sample of a template driven XSL
style sheet that rewrites the XML sample from Section 5.4.1 is given below:

01 <?xml version=’1.0°7>

02 <xsl:stylesheet xmlns:xsl="http://www.w3.org/TR/WD-xs1">
03 <xsl:template match="/">

04

05 <html>

06 <head>

07 <title><xsl:value-of select="/library/@type"/></title>
08 </head>

09 <body>

11 <hi>Library of <xsl:value-of select="/library/@type"/> </hi>

12 <p>

13 <table border="1">

14 <tr>

15 <td>title</td>

16 <td>author(s)</td>

17 <td>shelf #</td>

18 </tr>

19 <xsl:for-each select="/library/book">

20 <tr>

21 <td><xsl:value-of select="title"/></td>

22 <td><xsl:value-of select="author/name"/></td>
23 <td><xsl:value-of select="shelf/@number"/></td>
24 </tr>

25 </xsl:for-each>
26 </table>

27 </p>

28 </body>

29 </html>

30

31 </xsl:template>
32 </xsl:stylesheet>

This sample XSL style sheet rewrites the library sample XML to an HTML page
that displays a table containing the title, the name of the first author and the shelf
number for each book element. The XSL-style sheets contains two types of XSL
tags: value-of and for-each. The value-of tag is used to select the contents
of a single element of the XML document specified in the select attribute of the
value-of tag. Attribute values are specified using the @ sign. The for-each tag is
used to iterate over each 1ibrary/book element of the XML-document.

Figure 5.3 shows the output of the template driven XSL-style sheet when it is

30

applied to the XML with the Microsoft Internet Explorer. We use the Internet
Explorer because it is capable of processing the XML-document according to the
XSL-style sheet and displaying the result.

/2§ Scientific Books - Microsoft Intern

=10l x|
|| File Edt Wiew Favorites Tools Help n

Library of Scientific Books

title |author(s) |shelf # ‘
[Cotnpilers |Alfred V. Ahe |1 |

Discrete and combinatoral mathematics Ralph P. Grimaldi |2 |

j

Figure 5.3: Template Driven XSL sample

Data driven rewriting

Data driven stylesheets allow an XML-tree to be traversed recursively. Consider
the following example:

01 <7xml version=’1.0°7>
02 <xsl:stylesheet xmlns:xsl="http://www.w3.org/TR/WD-xs1">

04 <xsl:template match="/">
05 <xsl:apply-templates/>
06 </xsl:template>

07

08 <xsl:template match="/library">

09 <html>

10 <head>

11 <title><xsl:value-of select="Q@type'"/></title>
12 </head>

13 <body>

14 <hi>Library of <xsl:value-of select="/library/@type"/> </h1>

15 <p>

16 <table border="1">

17 <tr>

18 <td>title</td>

19 <td>shelf #</td>

20 <td>author(s)</td>

21 </tr>

22 <xsl:apply-templates/>

23 </table>

24 </p>

25 </body>
26 </html>
27 </xsl:template>

28

29 <xsl:template match="book">

30 <tr>

31 <xsl:apply-templates/>

32 </tr>

33 </xsl:template>

34

35 <xsl:template match="title">
36 <td>

37 <xsl:value-of select="."/>
38 </td>

39 </xsl:template>

40

41 <xsl:template match="author[0]">
42 <td>

43 <xsl:value-of select="."/>
44 </td>

45 </xsl:template>

46

47 <xsl:template match="shelf">
48 <td>

31

49 <xsl:value-of select="@number"/>
50 </td>

51 </xsl:template>

52 </xsl:stylesheet>

As opposed to the template driven style sheet this style sheet contains multiple
template tags. The template tag in line 4 matches the root of the XML document.
The contents of the element is an XSL-directive that tells the XSL processor to eval-
uate all the template elements that match at this level, the root level, of the XML
tree. The only element that matches at the root level is the 1ibrary element which
is matched in line 8. Instead of selecting the title, author, and shelf/@number
we added an apply-templates tag. At this level of the tree the book elements
are matched. They are processed by placing <tr> and </tr> tags around another
apply-templates tag. Notice also that in line 41 we match author [0] so only the
first occurrence of an author element is matched.

Figure 5.4 shows the output of the XML-sample using the data driven XSL style
sheet.

/2 scientific Books - Microsoft Interne = [=1 B
il File Edit ‘Yiew Favorites Tools I}
|
Library of Scientific Books
|title m |author(s)
|Cormpilers ?lmﬂed V.oAho |
Discrete and combinatoral mathematics 2 Ralph P Grimaldi%
j

Figure 5.4: Data Driven XSL sample

5.4.3 Rewriting XML annotated PowerBuilder Export files
with XSL

The transformation strategy we used while researching the transformation of Power-
Builder objects to Java involves the rewriting of XML annotated Export files using
XSL. The following diagram visualizes how we are going to use this method.

I h
I i

i I

I i

H I

I . i

PowerBuilder ' o | PowerBuilder | lexical o Xphgvbe?gt?ltst:j g S(‘)J:T\r/ :es H
. . > . g Ll 1
Application exporti Export Sources| scanning Export Sources XSL :
i i

I i

| I

i i

i I

restructure i restructure restructure 1
I I

1

Figure 5.5: Transformation Strategy

The software that we are transforming is in one of the four states of figure 5.5:
¢ PowerBuilder Application

e Export Sources

32

e XML-annotated Export Sources

e Java Sources

We describe each of these stages:

PowerBuilder Application

These are the initial applications that are to be transformed. They are restructured
using the PowerBuilder development environment. During the restructuring prob-
lematic constructs are replaced by alternative constructs that can be translated.
This should be done without altering the functional aspects of the application.

Export Sources

The export sources are obtained by exporting objects from the PowerBuilder appli-
cation to text files.

XML-annotated Export Sources

The Export Sources are annotated using XML-tags. At first we did this by hand.
Inserting XML tags is a boring and error prone job that can be performed by a
lexical scanning tool. We have implemented such a tool and have described it in
Appendix B.

Rewriting is performed on the XML-annotated export sources using XSL. The
rewriting process takes an XML document and rewrites it to another XML doc-
ument. Section 6.2.3 contains a sample of rewriting at this level that deals with
part of issue 7, the mapping problems between PowerBuilder and Java data types
that was discussed in 4.

Java Sources

XSL-stylesheets are used to transform the XML-annotated export files to Java. This
can be done in an incremental fashion. For instance, in an early transformation one
may want to transform only the object structure of the PowerBuilder application.
Using the stylesheets this is fairly easy as is shown in Section 6.2.3.

On the resulting Java sources rewriting may applied as well. We suggest using

existing code beautifiers for Java, if available, for this purpose. This is outside the
scope of this thesis.

33

Chapter 6

Sample Transformation

In this chapter we present the transformation of a sample PowerBuilder application
to Java using the method described in the previous chapter. The application con-
tains some very basic PowerBuilder features and serves to provide a sample Java
implementation and a sample of the transformation process.

6.1 PowerBuilder to Java

Our approach is to examine the format of the PowerBuilder export files. We use
the Extensible Mark-up Language [5] to mark parts of the code we can identify as a
block having certain functionality. We then manually implement a Java application
that has the same object structure as the PowerBuilder application. Finally we
present an XSL-style sheet that automates the rewriting of the annotated export
file to Java.

6.1.1 Sample Application

The sample application consists of a window object named mainwindow that has
two member objects: a commandbutton cb_1 and a single line edit sle_1.

=10j x| =10f]

Button was clicked

button I biatton |

Figure 6.1: Two states of the Sample application
Figure 6.1 displays screen shots of two states that the application can be in. On

the left the initial application state is shown, on the right its state after the button
has been clicked.

34

In the PowerBuilder development environment this application consists of two ob-
jects: an application object and a window object. The approach is to export the
objects and to use the export files for further analyses. Appendices A.1 and A.2
show the export code of the two objects.

6.1.2 Export Files

Since there is no specification of the PowerBuilder export file format we basically
do not know what to expect inside the export files. The export files are generated
by PowerBuilder, so we expect them to be of some structure that is constant for all
export files. The export files however do contain source code that is not machine
generated. Event handling code for instance. This code is written in PowerScript
by the developer and can be found in the export files verbatim. This is also the
case for any other blocks of PowerScript that have been hand written by the de-
veloper. The idea is to research the structure of the export files and the structure
of the object definitions and then try to translate this to an equal and valid object
structure in Java. The translation of the pieces of PowerScript are left out of the
transformation at this time.

What follows is the step by step processing of the export file to add the XML
markup. We begin with the first line of the export file:

01 $PBExportHeader$mainwindow.srw

This appears to be a header that PowerBuilder uses to keep track of the contents
of export files. The header contains the name of the object and its type. The name
of the object defined in this export file is mainwindow, its type is srw, this probably
means that the file contains a window definition. Because we assume that the first
line is a header we place it into a container named PBExportHeader. This results
in:

01 <7xzml version="1.0"7>

02

03 <PBExportFile>
04 <PBExportFileHeader>$PBExportHeader$mainwindow.srw</PBExportFileHeader>

The first line of our XML-document contains a tag from the XML-namespace de-
noting the version of this XML-document. We create a root element that is called
PBExportFile.

The header is followed by a forward block that lists the types that are defined
in this file:

02 forward

03 global type mainwindow from Window

04 end type

05 type cb_1 from commandbutton within mainwindow
06 end type

07 type sle_1 from singlelineedit within mainwindow
08 end type

09 end forward

For each type it is stated what its parent type is. For example; mainwindow inherits
from Window and cb_1 inherits from commandbutton. The type cb_1 is a member
type of the mainwindow which is expressed using the within keyword. We capture
all this information by marking up these lines as follows:

05 <forwardDeclarations>

06 <typeDeclaration access="global" identifier="mainwindow" from="Window" within=""/>

07 <typeDeclaration access="" identifier="cb_1" from="commandbutton" within="mainwindow"/>
08 <typeDeclaration access="" identifier="sle_1" from="singlelineedit" within="mainwindow"/>

09 </forwardDeclarations>

35

Note the fact that we completely replaced the forward keyword with the XML-tag
<forwardDeclaration>. We continue with the next part of the export file:

11 global type mainwindow from Window
12 int X=1075

13 int Y=485

14 int Width=723

15 int Height=497

16 boolean TitleBar=true

17 string Title="Sample"

18 boolean ControlMenu=true
19 boolean MinBox=true

20 boolean MaxBox=true

21 boolean Resizable=true
22 cb_1 cb_1

23 sle_1 sle_1

24 end type

In this part of the export file we find the declaration of the mainwindow type that
inherits from Window. This part of the declaration contains the initialization of
member variables and member objects. On line 17 we find the title that we gave
the window when we created it in PowerBuilder. On lines 22 and 23 we find the
objects that are members of this window. We apply XML-markup and arrive at
the following;:

10 <typeDefinition access="global" identifier="mainwindow" from="Window" within="">
11 <memberDeclarations>

12 <variable type="int" identifier="X">1075</variable>

13 <variable type="int" identifier="Y">485</variable>

14 <variable type="int" identifier="Width">723</variable>

15 <variable type="int" identifier="Height'">497</variable>

16 <variable type="boolean" identifier="TitleBar'">true</variable>
17 <variable type="string" identifier="Title">"Sample"</variable>
18 <variable type="boolean" identifier="ControlMenu">true</variable>
19 <variable type="boolean" identifier="MinBox">true</variable>

20 <variable type="boolean" identifier="MaxBox">true</variable>

21 <variable type="boolean" identifier="Resizable">true</variable>
22 <object type="cb_1" identifier="cb_1"/>

23 <object type="sle_1" identifier="sle_1"/>

24 </memberDeclarations>

25 </typeDefinition>

The member variables that are found inside this type are all defined in the par-
ent type Windows. We know this from the PowerBuilder help files which contain a
section that lists all methods, properties and functions for all PowerBuilder system
classes.

The next part of the source code is a line that contains the instantiation of a
global object named mainwindow that is of type mainwindow.

25 global mainwindow mainwindow

We add XML-markup and arrive at the following:

26 <globalObjectInstantiation type="mainwindow" identifier="mainwindow"/>

The next piece of the export file makes things a little more interesting:

27 on mainwindow.create

28 this.cb_l=create cb_1

29 this.sle_l=create sle_1

30 this.Control[]={ this.cb_1, this.sle_1}
31 end on

Inside the on block there are some PowerScript statements that are to be executed
when the mainwindow is created. Line 28 instantiates the cb_1 object which is
referenced using this.cb_1. That makes us believe that we are dealing with the
constructor of the mainwindow object. Line 30 adds a control array that contains
references to the member objects cb_1 and sle_1. We add XML-markup:

36

27 <onDeclaration typeldentifier="mainwindow" event='"create">

28 this.cb_1=create cb_1
29 this.sle_1l=create sle_1
30 this.Control[]={ this.cb_1,this.sle_1}

31 </onDeclaration>

We have left the handling code for this on-event unchanged and stored it in an
onDeclaration element. In this case the event handling code is generated Power-
Script. The export file continues:

33 on mainwindow.destroy
34 destroy(this.cb_1)

35 destroy(this.sle_1)
36 end on

38 type cb_1 from commandbutton within mainwindow
39 int X=42

40 int Y=221

41 int Width=284

42 int Height=105

43 int TabOrder=20

44 string Text="button"

45 int TextSize=-10

46 int Weight=400

47 string FaceName="Arial"

48 FontFamily FontFamily=Swiss!
49 FontPitch FontPitch=Variable!
50 end type

What we see in the above code fragment is the definition of another on event,
namely the destructor of the mainwindow object. Lines 38 through 50 contain the
declaration of the member object cb_1. We added XML-markup to this fragment
and arrive at the following:

32 <onDeclaration typeldentifier="mainwindow" event="destroy">

33 destroy(this.cb_1)

34 destroy(this.sle_1)

35 </onDeclaration>

36 <typeDefinition access="" identifier="cb_1" from="commandbutton" within="mainwindow">
37 <memberDeclarations>

38 <variable type="int" identifier="X">42</variable>

39 <variable type="int" identifier="Y">221</variable>

40 <variable type="int" identifier="Width">284</variable>

41 <variable type="int" identifier="Height">105</variable>

42 <variable type="int" identifier="TabOrder">20</variable>

43 <variable type="string" identifier="Text">"button"</variable>

44 <variable type="int" identifier="TextSize">-10</variable>

45 <variable type="int" identifier="Weight'">400</variable>

46 <variable type="string" identifier="FaceName">"Arial"</variable>

47 <variable type="FontFamily" identifier="FontFamily">Swiss!</variable>
48 <variable type="FontPitch" identifier="FontPitch">Variable!</variable>
49 </memberDeclarations>

50 </typeDefinition>

In the next piece of the export file we find something new:

52 event clicked;sle_1.text="Button was clicked"
53 end event

These lines contain the definition of an event. Since we defined this event in Power-
Builder ourselves we know it belongs to the previously defined commandbutton
cb_1. So the position of the event definition in the export file tells us to which
object it belongs. We add this knowledge to the XML-markup as follows:

51 <event typeldentifier="cb_1" action="clicked">

52 sle_1.text="Button was clicked"
53 </event>

The type of the object the event belongs to is stored in the parameter typeIdentifier.
The actual event-handling code is the content of the event element. The rest of
the export file contains the definition of the singlelineedit object. Appendix A.3
shows the full text of the annotated export file.

37

6.2 A Java implementation

The next thing we are going to do is try to implement the mainwindow object in
Java. In this process we use the XML-tags as a guideline. The tags give us infor-
mation about the export code they enclose.

We start at the top of the annotated file:

01 <?xml version="1.0"7>

02

03 <PBExportFile>

04 <PBExportFileHeader>$PBExportHeader$mainwindow.srw</PBExportFileHeader>

We add the PBExportFileHeader as a comment to the Java source so we can always
recognize it as the Java implementation of the mainwindow object. So the first lines
of our Java Source looks like this:

01 /*

02 This is the java implementation of
03 the PowerBuilder window object:

05 $PBExportHeader$mainwindow.srw

07 =/

In Java there is no need to include a forward block with object declarations, so we
skip that part of the annotated file and continue with the
globalTypeDefinition:

10 <typeDefinition access="global" identifier="mainwindow" from="Window" within="">
11 <memberDeclarations>

12 <variable type="int" identifier="X">1075</variable>

13 <variable type="int" identifier="Y">485</variable>

14 <variable type="int" identifier="Width">723</variable>

15 <variable type="int" identifier="Height'">497</variable>

16 <variable type="boolean" identifier="TitleBar'">true</variable>
17 <variable type="string" identifier="Title">"Sample"</variable>
18 <variable type="boolean" identifier="ControlMenu'">true</variable>
19 <variable type="boolean" identifier="MinBox">true</variable>

20 <variable type="boolean" identifier="MaxBox">true</variable>

21 <variable type="boolean" identifier="Resizable">true</variable>
22 <object type="cb_1" identifier="cb_1"/>

23 <object type="sle_1" identifier="sle_1"/>

24 </memberDeclarations>

25 </typeDefinition>

We are now going to implement this typeDefinition as a public class definition
in Java:

09 public class Mainwindow extends Window {

11 cb_1 cb_1 = new cb_1Q);
12 sle_1 sle_1= new sle_1();

14 Mainwindow() {
15 X = 1075;

16 Y = 485;

17 Width = 723;

18 Height = 497;

19 TitleBar = true;

20 Title = "Sample";
21 ControlMenu = true;
22 MinBox = true;

23 MaxBox = true;

24 Resizable = true;

We know from the annotated source that the Mainwindow object is a child of the
Window type. We express this in Java using the extends keyword. Notice also
that the member variables are initialized inside the constructor function of the
Mainwindow class while the member objects are instantiated inside the class defini-
tion. We continue with the next part of the annotated export file:

38

26 <globalObjectInstantiation type="mainwindow" identifier="mainwindow"/>

This line contains the instantiation of a global object mainwindow. For now we skip
it and continue with the rest of the annotated export file.

27 <on typeldentifier="mainwindow" event="create">

28 this.cb_l=create cb_1

29 this.sle_l=create sle_1

30 this.Control[]={ this.cb_1,this.sle_1}
31 </on>

The on block belongs to the mainwindow type and contains code that is to be ex-
ecuted when the mainwindow object is created. It contains member object instan-
tiations for all the member objects of the mainwindow type and assigns a control
array that contains a reference to each of this types member objects. There is no
need to implement the member object instantiations in the Java implementation
because we already instantiated the member objects in lines 11 and 12.

We do implement the control array in Java. At this time we do not know its pur-
pose, especially since we don not recognize it from the PowerBuilder development
environment. Our java implementation of it looks like this:

025 Control = new GuiObject[] {this.cb_1 , this.sle_1};

The next part of the annotated export file contains another on block. This one
belongs to the destroy event of the mainwindow object. We assume PowerBuilder
uses it to destroy the member objects cb_1 and sle_1. There is no need to trans-
form these destructor functions to Java because the Java virtual machine will handle
that for us.

The next element in the annotated export file is a typeDeclaration. This is
translated to Java in the same way the globalTypeDefinition was translated
and results in the following Java code:

38 class cb_1 extends commandbutton{

39 public cb_10) {

40 X=42;

41 Y=221;

42 Width=284;

43 Height=105;

44 TabOrder=20;

45 Text="Button";

46 TextSize=-10;

47 Weight=400;

48 FaceName="Arial";

49 //FontFamily=Swiss!;

50 //FontPitch=Variable!;

We have commented out the code in lines 49 and 50. These contain enumerated
PowerBuilder types fontFamily and FaceName that are not native to Java. Since
they only deal with layout and are not vital for the application we ignore them for
now. The next element we have to transform is an event:

51 <event type="cb_1" action="clicked">

52 sle_1.text="Button was clicked"
53 </event>

For the time being we implement an eventHandler method inside the mainwindow
class to deal with events. Our event handler takes a string argument event that is
used to pass events to the event handler. Since events are bound to objects we use
dot notation to express the relation between objects and events. In our notation
the event in the annotated source code above would be cb_1.clicked. This is the
Java code for the event handler:

39

28 public void eventHandler(String event){
30 System.out.println("eventHandler ("+event+")");

32 if (event.compareTo("cb_1.clicked")==0) {
33 sle_1.text="The ’go’ button was clicked";

Line 33 contains the event handle code for the event cb_1.clicked. In this specific
case the line of PowerScript happens to be legal Java code that performs the same
function. So in this case we don’t have to convert the PowerScript to Java but
simply copy it verbatim.

The rest of the annotated file contains the declaration of the single line edit. This
is transformed to Java in a similar manner as the commandbutton.

6.2.1 PowerBuilder System Classes

The mainwindow, cb_1 and sle_1 objects inherit from Window, commandbutton and
singlelineedit respectively. However, these parent objects are not native to Java
and should be re-implemented in order to enable the application objects to inherit
their properties and methods. We implement only those features that are used in
the sample application.

An example of a basic implementation of the Window class:

01 public class Window {

02 int X,Y,Width,Height;

03 boolean TitleBar,ControlMenu,MinBox,MaxBox,Resizable;
04 String Title ="";

05 }

6.2.2 Adding GUI functionality

If we want to render the user interface in a web browser, then we need to generate
HTML at some point. We are going to add functionality to the Java implementation
of the PowerBuilder system classes for this purpose. The following shows the Java
implementation of the commandbutton class:

01 public class commandbutton extends GuiObject{
02 int X;

03 int Y;

04 int Width;

05 int Height;

06 int TabOrder;

o7 int TextSize;

08 int Weight;

09 String Text;

10 String FacelName;

11 //FontFamily FontFamily=Swiss!
12 //FontPitch FontPitch=Variable!

13

14 public String toHTML() {

15 return("<div style=\"position:absolute;" +

16 "left:" + X +

17 ";top:" + Y +

18 ";height:" + Height +

19 ";width:" + Width +

20 "\">\n" + "<input type=\"submit\" name=\"" +
21 getClass().getName O +"\" value=\"" + Text + "\">" +
22 "</div>\n")

23 }

24 }

We added a method toHTML () that returns a string containing an HTML represen-
tation of the commandbutton.

40

We also added the toHTML() method to the Window class, the Java implementa-
tion of the PowerBuilder system type Window. When calling the toHTML () method
for a Window object one would want to get the HTML for the entire window, in-
cluding its member objects, in return. This is where we can use the Control array
that we found in the PowerBuilder export code we dealt with in Section 6.1.2. The
toHTML () method of the Window object could make a call to the toHTML () method
of each of the members of the control array. In order for this to work the control
array must hold objects of a class that support the toHTML () method. We therefore
created a parent class GuiObject that implements this method:

01 public class GuiObject {
02 public String toHTML(O) {
03 return("");

04 ¥

All classes that actually implement a toHTML() method should now extend the
GuiObject class. This allows us to call this method for all the objects in an array
of Guiobject objects very easily, as can be seen in line 17 of the toHTML () method
of the window class:

01 public class Window {

03 int X,Y,Width,Height;

04 boolean TitleBar,ControlMenu,MinBox,MaxBox,Resizable;
05 String Title;

06 GuiObject[] Control;

07

08 public String toHTML() {

09 String HTMLheader = new String();

10 String HTMLfooter = new String();

11 String memberObjectHTML = new String();

12

13 HTMLheader = "<html>\n<head>\n<title>"+Title+"</title>\n</head><body>\n<form>\n";
14 HTMLfooter = "</body>/n</form>\n</html>";

15

16 for (int index=0 ; index < Control.length; index++)
17 memberObjectHTML += Control[index].toHTML();

18

19 return(HTMLheader + memberObjectHTML + HTMLfooter);
20 }

21 }

We have added an array of GuiObjects to the window class. This array is instanti-
ated with two objects of the type GuiObject. The constructor of the mainwindow
class should assign the member objects cb_1 and sle_1 to the array. The above
code sample shows how the control array is used to include HTML representations
of all the member objects in the HTML representation of the window.

Figure 6.2 shows the output of the Java implementation of the sample applica-
tion. The Following Java program was used to retrieve the HTML from the Java
implementation of the window:

01 public class Run {
02 Public static void main(String[] args){

04 Mainwindow window = new Mainwindow();
05 window.eventHandler("cb_1.clicked");
06 System.out.println(window.toHTML());
07 }
08 }

In line 4 we instantiate an object identified by window of the class Mainwindow.
This is the instantiation that we skipped in Section 6.2.

41

sample - Microsoft I - O] x|

button was clicked

Button

Figure 6.2: Browser with generated HTML from Java implementation

6.2.3 Generating code with Stylesheets

In Section 5.4.2 it was shown how XSL can be used to rewrite an XML document.
What we will do is create an XSL-stylesheet that generates the Java implementation
of Section 6.2.

XML to Java

01 <7xml version=’1.0°7>

02 <xsl:stylesheet xmlns:xsl="http://www.w3.org/TR/WD-xs1l" language="VBScript">
03 <xsl:template match="/">

04 <html><pre>

06 /*
07 This is the java implementation of
08 the PowerBuilder window object:

10 <xsl:value-of select="/PBExportFile/PBExportFileHeader"/>
12 %/

14 public class <xsl:value-of select="/PBExportFile/typeDefinition/@identifier"/>
extends <xsl:value-of select="/PBExportFile/typeDefinition/@from"/> {

15

16 <xsl:for-each select="/PBExportFile/typeDefinition[@access=’global’]/
memberDeclarations/object">

17 <xsl:value-of select="@type"/> <xsl:value-of select="Qidentifier"/> = new

<xsl:value-of select="Qtype"/>();
18 </xsl:for-each>

19

20 <xsl:value-of select="/PBExportFile/typeDefinition/@identifier"/>(){

21 <xsl:for-each select="/PBExportFile/typeDefinition[Qaccess=’global’]/
memberDeclarations/variable">

22 <xsl:value-of select="Qtype"/> <xsl:value-of select="Qidentifier"/> =
<xsl:value—of select="."/>;

23 </xsl:for-each>

24

25 Control = new GuiObject[] {<xsl:for-each select="/PBExportFile/

typeDefinition[@access=’global’]/memberDeclarations/object"> <xsl:value-of
select="Q@identifier"/><xsl:if test="context() [not(end())]">, </xsl:if>
</xsl:for-each>};

26

27}

28 }

32 <xsl:for-each select="/PBExportFile/typeDefinition[@access=’’]">
33 class <xsl:value-of select="Q@identifier"/> extends <xsl:value-of
select="@from"/>{

34

35 <xsl:value-of select="Qidentifier"/>() {

36 <xsl:for-each select="memberDeclarations/variable">

37 <xsl:value-of select="Qtype"/> <xsl:value-of select="Qidentifier"/> =
<xsl:value-of select="."/>;

42

38 </xsl:for-each>
39 }

40 ¥

41 </xsl:for-each>

42 </pre></html>

43 </xsl:template>

44 </xsl:stylesheet>

This template-driven XSL-stylesheet rewrites the XML-annotated PowerBuilder ex-
port files to Java. We enclose the generated Java in HTML-tags as can be seen in
lines 4 and 42. We used the Microsoft! Internet Explorer version 5 to apply the
stylesheet to the XML document. The <pre> tags instruct the browser to render the
content as text with no markup. Due to some limitations of the implementation of
XSL in Internet Explorer we had to slightly tweak the generated Java by removing
some linefeeds. Appendix A.5.1 shows the generated Java with the extra linefeeds
The version with the linefeeds removed can be found in Appendix A.5.2. The in-
terested reader is invited to compare that with the manual Java implementation in
Appendix A.4. In future releases of the XSL processor that is used in Microsoft
products like the Internet Explorer there will be more support for the control of
white space.

XML to XML

What we have shown here is how to rewrite the annotated export files to Java. The
following sample employs XSL rewriting that generated XML from XML. With this
sample we solve a small problem in the generated Java of the previous sample. In
the PowerBuilder export files the string data type is denoted as string. In Java this
is equivalent to the String object. We will use an XSL-translation to capitalize the
string keyword in the annotated export files. We consider this difference in case
to be part of issue 7, mapping problems between PowerBuilder and Java data types.

We will be using the XSL identity transformation to perform a transformation that
leaves the XML-document intact. This transformation effectively creates a copy of
the input XML-document without altering it. We will add a matching rule that
matches the string keyword in variable declarations and definitions and replaces
it with String.

01 <xsl:stylesheet xmlns:xsl="http://www.w3.org/TR/WD-xs1">

02 <xsl:template match="/">

03 <xsl:apply-templates select="*"/>
04 </xsl:template>

06 <xsl:template match="x|@*|text()|cdata() |comment() |pi()">

07 <xsl:copy>

08 <xsl:apply-templates select="*|@x|text() |cdata() |comment () |pi()"/></xsl:copy>
09 </xsl:template>

11 <xsl:template match="variable/@typel[.=’string’]1">
12 <xsl:copy>String</xsl:copy>

13 </xsl:template>

14 </xsl:stylesheet>

In line 3 this data driven template applies the template matches it contains on
all the elements of the XML document. The template match in line 6 matches
any XML element and uses xsl:copy to reproduce it. Any nested templates are
copied using the apply-templates statement in line 8. Line 11 matches variable
elements that have a string parameter. The keyword String is copied into its
place.

!Tools from other vendors are available, see http://www.w3.org/Style/XSL

43

Pre-Processing

XML-namespace elements as well as XML-tags start with a ”<” symbol and end
with a ”>” symbol. In order to generate well-formed XML these symbols have to be
escaped before the XML-tags are added to the export files. Another preprocessing
measure that we took is to remove the PowerBuilder line-continuation character ”&”.
When a single line of PowerScript is to be split up in multiple lines they should be
separated by the line-continuation character. We removed these characters along
with the following new-line character. This simplifies the lexical scanning tool that
is described in Appendix B.

6.3 Summary

What we have shown is how to transform the object structure of a PowerBuilder
application to Java. With this approach we can take a set of PowerBuilder objects
and transform them to Java. The resulting Java objects have the same inheritance
structure as the PowerBuilder objects.

We transformed objects and member objects without the member functions and
procedures. We also have not transformed the PowerScript that holds most, if not
all, of the application logic.

In [12] an approach is described for system renovation that is related to our work.
The authors of [12] introduce an Annotated Term Format (ATF). They show how
to use the ATF to represent parse trees. [12] Also states minimal properties for a
query algebra to inspect and modify the ATF parse trees. Instead of an ATF we
have used XML. XSL is what we have used to query the XML-annotated export
files. [12] states:

“Often combinations of extracted information yield important new in-
formation, therefore it is natural to have the possibility of combining
queries. This implies the existence of basic queries as well as operations
to combine them, in other words an algebra of queries.”

XSL offers no proper support for combining queries other than nesting two or more
xsl:for-each statements. Another drawback to using XML and XSL for trans-
forming PowerScript to Java is the irregular nature of the PowerScript in the Power-
Builder applications. Due to this we need something more advanced than lexical
scanning to annotate, or parse, the PowerScript.

We suggest that for the transformation of PowerScript to Java a different rewriting
technique should be used. A possible candidate for this is the ASF-SDF Meta Envi-
ronment? [13][14] which features a powerful parser generator and extensive rewriting
possibilities.

2 Available at http://www.cwi.nl/projects/MetaEnv/

44

Chapter 7

Conclusions

In this thesis we have described a strategy for the reuse of PowerBuilder applications.
We presented a transformation strategy that transforms PowerBuilder objects to
Java objects in three steps as is shown in Figure 7.1.

XML-annotated Java
PowerBuilder P Sources

q \
Export Sources| scanning Export Sources XSL

PowerBuilder ' o | PowerBuilder | lexical
Application export

restructure restructure restructure

Figure 7.1: Transformation Strategy

What we have contributed to answer the question how PowerBuilder applications
can be reused as Java web applications is a transformation strategy that solves
some of the issues related to the problem. Some of the issues that are related to the
transformation can be dealt with at some stage of the transformation. Any con-
struct that is too difficult to transform automatically has to be dealt with before
the transformation takes place.

In this chapter we state the results of our research, what future work there is
left and our conclusions.

7.1 Results

In this section we state the results of our research. We do this in two parts. The
first part deals with the issues that are described in Chapter 4. The second part
states the achievements of our transformation strategy.

7.1.1 Issues

In Chapter 4 we listed 9 issues that are related to the transformation from Power-
Builder client/server applications to Java web applications. We list these issues
here and discuss how our transformation strategy can help to solve them.

e Issue 1, The application logic is split across the client-tier and middle-tier

45

o Issue 2, Persistently storing and restoring the application state

e Issue 3, From a PowerBuilder based GUI to a web based GUI

e Issue 4, Extending inheritance not supported in Java

e Issue 5, Explicit calling not supported in Java

¢ Issue 6, No native support for 4GL PowerBuilder functions in Java

o Issue 7, Mapping problems between PowerBuilder and Java data types
e Issue 8, Lazy vs. eager evaluation

e Issue 9, Duplicate and unreached objects

Issue 1, The application logic is split across the client-tier and middle-tier

This is one of the differences between PowerBuilder applications and Java web
applications that is caused by the difference in architecture. We have described
this in Section 4.1.1. In Section 6.2.2 we described how to implement the HTML
GUI in the Java web application objects. The application logic for the client-tier
should be added to the HTML that is sent to the client. For each GUI object that
needs client-tier application logic JavaScript can be added to the toHTML () method.

Our transformation strategy does not specify how to decide what processing can
take place on the client and what processing should take place in the middle-tier.
Theoretically all the processing may take place on the middle tier. As explained
in section 4.1.1 performance will improve if some of the processing is moved to the
clients tier.

Issue 2, Persistently storing and restoring the application state

Application servers usually offer a mechanism for storing and restoring application
state information that is related to a specific user session. In practice this means
that there is a set of variables for each client whose values are restored when the
client requests a service.

The suggested transformation strategy does not deal with this issue. How this
should be implemented depends on the type of application server that is to be used.
A possible solution is to leave the Java web application running throughout the user
session, and use the application server as an interface between the browser and the
Java, web application.

Issue 3, From a PowerBuilder based GUI to a web based GUI

In Section 6.2.2 we described how to implement the HTML GUI in the Java Web
application objects. We suggest implementing a toHTML () method for each visible
object that is capable of generating HTML to display the object. The drawback to
this method is that the layout is hardcode into the application.

Another approach would be to replace the toHTML () function with a toXML() func-
tion that generates an XML definition of the object. A separate XSL-style sheet can
then be used to generate the HTML that is now generated by the toHTML () method.
The benefit of this is that the layout is separated from the application logic. This
makes the layout easier to maintain because a requirement change in the layout can
be handled by adapting the XSL-style sheet. In the current solution the toHTML ()

46

would have to be changed which will have a bigger impact on the application than
a change in the XSL-style sheet. A change to the application code would require
extensive testing of the application. Obviously separation of application code and
layout is preferred here.

Issue 4, Extending inheritance not supported in Java

Extending inheritance is a PowerBuilder feature that can be turned on and off with
a checkbox in the function/procedure design interface of the PB-IDE. When this
feature is used PowerBuilder simply inserts a statement into the PowerScript that
calls the function or procedure in the parent object. This can be done in Java in
the same way that is done by PowerBuilder using a call to the method in the parent
object using super() .MethodName(). This issue will automatically be resolved
when a transformation for the PowerScript is available.

Issue 5, Explicit calling not supported in Java

Besides calling methods in the parent object PowerBuilder allows calling a method
in e.g. a parent of a parent. In Java this is possible using a construction with a
call to the parent of the parent using super () .super () .Method. The difference in
PowerBuilder is that the class name of the ancestor type may be used to reference
its methods.

This can dealt with at two places in the transformation process. One possibility
is to replace explicit method calling while restructuring the original PowerBuilder
applications. The calls can be replaced by calls to super () . super (). The other pos-
sibility is to replace the explicit method calls where they occur in the PowerScript.
Translating the PowerScript to Java is left outside of the scope of this thesis.

Issue 6, No native support for 4GL PowerBuilder functions in Java

A lot of the typical 4-GL functions that are used in PowerBuilder applications have
to be implemented in Java. This can only be done manually because the source code
of their PowerBuilder implementations is not available. This is a general drawback
when transforming to a less rich language.

Issue 7, Mapping problems between PowerBuilder and Java data types

Not all of the PowerBuilder data types can be mapped onto Java data types in
a straightforward manner. Some PowerBuilder data types may have to be imple-
mented in Java just like the 4-GL functions in issue 6.

Issue 8, Lazy vs. eager evaluation

One way of dealing with this issue is to make sure that the expressions in the
PowerBuilder application are safe for lazy as well as for eager evaluation. This
can be done manually during the restructuring of the PowerBuilder applications.
Another way of dealing with it is during the transformation of the PowerScript to
Java. We left the transformation of the PowerScript code to Java outside the scope
of this thesis.

Issue 9, Duplicate and unreached objects

In our transformation strategy duplicate and/or unreached objects are removed
from the application using the PowerBuilder Integrated Development Environment.

47

The benefit of removing these objects in the first stage of the transformation is that
existing testing procedures can be used. This way we can be sure that we are trans-
forming an application that implements the functionality it is meant to implement,
provided that this can be ascertained using the existing testing procedures.

7.1.2 Achievements

Using a relatively simple lexical scanner proved to be a quick and effective way to
add markup to the export files. An other approach is to specify a grammar for the
export files and use a grammar based tool to generate Java code. Due to the regu-
lar nature of the generated PowerBuilder export files a lexical scanner was sufficient.

In chapter 6 we demonstrated that by following the strategy that is described in
chapter 5 a simple PowerBuilder application can be transformed to a Java appli-
cation. The limitation of what we have achieved is that we do not transform the
PowerScript code that contains most of the business logic of the PowerBuilder appli-
cations. However, we were able to transform the object structure of a PowerBuilder
application to a valid object structure in Java.

Our solution for implementing a user interface in the Java objects using a toHTML ()
of a toXML () method is solution to issue 3.

7.2 Future Work

The solution to issues 5, 7 and 8 is uncertain because they rely on a transformation
of PowerScript to Java. Research into that transformation is necessary to decide
on its feasibility. There are about 90.000 lines of PowerScript in the ABN-AMRO
applications, transforming that to Java manually is probably more work than a
manual re-implementation of the applications.

The manual restructuring of the PowerBuilder applications involves a lot of over-
head caused by necessary testing. Future research could be conducted to determine
if this restructuring can be done automatically, and how much restructuring there
is to be done.

7.3 Conclusions

We conclude that the transformation method using a lexical scanner, XML and
XSL provides a fast way of transforming the object structure from PowerBuilder
to Java. However, without the business logic that is captured in the PowerScript
these object structures are useless for the ABN-AMRO. Automated transformation
of the PowerScript is a requirement for the success of our transformation strategy.
Besides that, the amount of manual restructuring of the PowerBuilder applications
is yet unknown. We expect that these two aspects will require to much manual
work to be able to effectively use our strategy.

48

Bibliography

[1]
[2]

[3]

[4]

[6]

[8]

[10]

[11]

Gebruikershandleiding ProDeca ABN AMRO, September 1997

Robert Breidecker Converting PowerBuilder to Java. PowerBuilder Developers
Journal, November 2000, http://www.PowerBuilderJournal.com

A.A. Terekhov and C. Verhoef The Realities of Language Conversions IEEE
Software November/December 2000

Bill Hatfield Developing PowerBuilder 5 Applications, Fourth Edition. Macmil-
lan Computer Publishing, 1996

Extensible Markup Language (XML) 1.0 (Second Edition)
http://www.w3.org/TR/2000/REC-xml-20001006 ~ Copyright 06-10-2000,
World Wide Web Consortium, (Massachusetts Institute of Technology,
Institut National de Recherche en Informatique et en Automatique, Keio Uni-
versity). All Rights Reserved. http://www.w3.org/Consortium/Legal /" W3C
Recommendation, 6 October 2000

XSL Transformations (XSLT) Version 1.0
http://www.w3.org/TR/1999/REC-xslt-19991116 Copyright 16-11-1999,
World Wide Web Consortium, (Massachusetts Institute of Technology,
Institut National de Recherche en Informatique et en Automatique, Keio
University). All Rights Reserved. http://www.w3.org/Consortium/Legal/”
W3C Recommendation, 16 November 1999

Standard Generalized Markup Language (SGML) ISO (International Organi-
zation for Standardization) 8879:1986(E). Information processing - Text and
Office Systems - Standard Generalized Markup Language (SGML). First edi-
tion - 1986-10-15. [Geneval: International Organization for Standardization,
1986

RFC 2616 - Hypertext Transfer Protocol — HTTP/1.1. R. Fielding, J. Gettys,
J. Mogul, H. Frystyk, L. Masinter, P. Leach, T. Berners-Lee. June 1999. Status:
DRAFT STANDARD

Client-Side JavaScript Guide, version 1.3 Netscape Communications Corpora-
tion, 501 East Middlefield Road, Mountain View, CA 94043

Programming Perl 3rd edition Larry Wall, Tom Christiansen & Jon Orwant,
July 2000, O’Reilly & Associates, Inc.

Levaraging XML in Automatic Conversion of Your Client/Server Applications
to Internet Victor Rasputnis and Anatole Tartakovsky, XML-Journal Volume
2 Issue 3, April 2001 page 30, http://www.sys-con.com/xml/

49

[12]

[13]

[14]

Core Technologies for System Renovation M. van den brand, P. Klint, C. Ver-
hoef, Proceedings of the XXIII-rd Seminar on Current Trends in Theory and
Practice of Informatics, SOFSEM 1996

A meta-environment for generating programming environments, P. Klint, ACM
Transactions on Software Engineering and Methodology, pages 176-201, 1993

The ASF+SDF Meta-Environment: a Component-Based Language Develop-
ment Environment, M.G.J. van den Brand and J. Heering and H. de Jong and
M. de Jonge and T. Kuipers and P. Klint and L. Moonen and P. Oliver and
J. Scheerder and J. Vinju and E. Visser and J. Visser, Proceeding of Compiler
Construction 2001 (CC 2001), Springer-Verlag, 2001

50

Appendix A

Sample Application PB
export and Java code

A.1 Application object PB Export code

sample.sra

01 $PBExportHeader$sample.sra

02 forward

03 global transaction sqlca

04 global dynamicdescriptionarea sqlda
05 global dynamicstagingarea sqlsa

06 global error error

07 global message message

08 end forward

09

10 global type sample from application
11 end type

12 global sample sample

13

14 on sample.create

15 appname = "sample"

16 message = create message

17 sqlca = create transaction

18 sqlda = create dynamicdescriptionarea
19 sqlsa = create dynamicstagingarea

20 error = create error

21 end on

23 on sample.destroy
24 destroy(sqlca)
25 destroy(sqlda)
26 destroy(sqlsa)
27 destroy(error)
28 destroy(message)
29 end on

31 event open;open(mainwindow)
32 end event

A.2 Window PBExport code

mainwindow.sra

01 $PBExportHeader$mainwindow.srw

02 forward

03 global type mainwindow from Window

04 end type

05 type cb_1 from commandbutton within mainwindow
06 end type

07 type sle_1 from singlelineedit within mainwindow
08 end type

09 end forward

51

11 global type mainwindow from Window
12 int X=1075

13 int Y=485

14 int Width=723

15 int Height=497

16 boolean TitleBar=true

17 string Title="Sample"

18 boolean ControlMenu=true

19 boolean MinBox=true

20 boolean MaxBox=true

21 boolean Resizable=true

22 cb_1 cb_1

23 sle_1 sle_1

24 end type

25 global mainwindow mainwindow

27 on mainwindow.create

28 this.cb_l=create cb_1

29 this.sle_l=create sle_1

30 this.Control[]l={ this.cb_1,&
31 this.sle_1}

32 end on

34 on mainwindow.destroy
35 destroy(this.cb_1)

36 destroy(this.sle_1)
37 end on

39 type cb_1 from commandbutton within mainwindow
40 int X=42

41 int Y=221

42 int Width=284

43 int Height=105

44 int TabOrder=20

45 string Text="button"

46 int TextSize=-10

47 int Weight=400

48 string FaceName="Arial"

49 FontFamily FontFamily=Swiss!
50 FontPitch FontPitch=Variable!
51 end type

53 event clicked;sle_1.text="Button was clicked"
54 end event

56 type sle_l1 from singlelineedit within mainwindow
57 int X=42

58 int Y=65

59 int Width=558

60 int Height=93

61 int TabOrder=10

62 boolean AutoHScroll=false

63 long BackColor=16777215

64 int TextSize=-10

65 int Weight=400

66 string FaceName="Arial"

67 FontFamily FontFamily=Swiss!
68 FontPitch FontPitch=Variable!
69 end type

A.3 mainwindow PBExport code with XML-markup

01 <?xml version="1.0"7>

03 <PBExportFile>
04 <PBExportFileHeader>$PBExportHeader$mainwindow.srw</PBExportFileHeader>
05 <forwardDeclarations>

06 <typeDeclaration access="global" identifier="mainwindow" from="Window" within=""/>
o7 <typeDeclaration access="" identifier="cb_1" from="commandbutton" within="mainwindow"/>
08 <typeDeclaration access="" identifier="sle_1" from="singlelineedit" within="mainwindow"/>

09 </forwardDeclarations>
10 <typeDefinition access="global" identifier="mainwindow" from="Window" within="">

11 <memberDeclarations>

12 <variable type="int" identifier="X">1075</variable>
13 <variable type="int" identifier="Y">485</variable>
14 <variable type="int" identifier="Width">723</variable>

52

69
70

<variable type="int" identifier="Height">497</variable>
<variable type="boolean" identifier="TitleBar">true</variable>
<variable type="string" identifier="Title">"Sample"</variable>
<variable type="boolean" identifier="ControlMenu'">true</variable>
<variable type="boolean" identifier="MinBox">true</variable>
<variable type="boolean" identifier="MaxBox">true</variable>
<variable type="boolean" identifier="Resizable">true</variable>
<object type="cb_1" identifier="cb_1"/>
<object type="sle_1" identifier="sle_1"/>
</memberDeclarations>
</typeDefinition>
<globalObjectInstantiation type="mainwindow" identifier="mainwindow"/>
<on typeldentifier="mainwindow" event="create">
this.cb_1=create cb_1
this.sle_l=create sle_1
this.Control[]={ this.cb_1,this.sle_1}
</on>
<on typeldentifier="mainwindow" event="destroy">
destroy(this.cb_1)
destroy(this.sle_1)
</on>
<typeDefinition access="" identifier="cb_1" from="commandbutton" within="mainwindow">
<memberDeclarations>
<variable type="int" identifier="X">42</variable>
<variable type="int" identifier="Y">221</variable>
<variable type="int" identifier="Width">284</variable>
<variable type="int" identifier="Height">105</variable>
<variable type="int" identifier="TabOrder'">20</variable>
<variable type="string" identifier="Text">"button"</variable>
<variable type="int" identifier="TextSize'">-10</variable>
<variable type="int" identifier="Weight'">400</variable>
<variable type="string" identifier="FaceName">"Arial"</variable>
<variable type="FontFamily" identifier="FontFamily">Swiss!</variable>
<variable type="FontPitch" identifier="FontPitch">Variable!</variable>
</memberDeclarations>
</typeDefinition>
<event type="cb_1" action="clicked">
sle_1.text="Button was clicked"
</event>
<typeDefinition access="" identifier="sle_1" from="singlelineedit" within="mainwindow">
<memberDeclarations>
<variable type="int" identifier="X">42</variable>
<variable type="int" identifier="Y">65</variable>
<variable type="int" identifier="Width">558</variable>
<variable type="int" identifier="Height'">93</variable>
<variable type="int" identifier="TabOrder">10</variable>
<variable type="boolean" identifier="AutoHScroll">false</variable>
<variable type="long" identifier="BackColor">16777215</variable>
<variable type="int" identifier="TextSize">-10</variable>
<variable type="int" identifier="Weight'">400</variable>
<variable type="string" identifier="FaceName">"Arial"</variable>
<variable type="FontFamily" identifier="FontFamily">Swiss!</variable>
<variable type="FontPitch" identifier="FontPitch">Variable!</variable>
</memberDeclarations>
</typeDefinition>
</PBExportFile>

A.4 Java Implementation

01
02
03

/*
This is the java implementation of
the PowerBuilder window object:
$PBExportHeader$mainwindow.srw

*/

public class Mainwindow extends Window {

cb_1 cb_1 = new cb_1();
sle_1 sle_1= new sle_1();

Mainwindow() {

X = 1075;
Y = 485;
Width = 723;
Height = 497;

TitleBar = true;

53

20 Title = "Sample";

21 ControlMenu = true;

22 MinBox = true;

23 MaxBox = true;

24 Resizable = true;

025 Control = new PBObject[] {this.cb_1 , this.sle_1};
26 1}

27

28 public void eventHandler(String event){
30 System.out.println("eventHandler ("+event+")");

32 if (event.compareTo("cb_1.clicked")==0) {
33 sle_1.text="The ’go’ button was clicked";
34 T

3%}

36 }

38 class cb_1 extends commandbutton{
39 public cb_10) {

40 X=42;

41 Y=221;

42 Width=284;

43 Height=105;

44 TabOrder=20;

45 Text="Button";

46 TextSize=-10;

47 Weight=400;

48 FaceName="Arial";

49 //FontFamily=Swiss!;
50 //FontPitch=Variable!;
51 }

52 }

54 class sle_l extends singlelineedit {
55 public sle_1() {

56 X=42;

57 Y=65;

58 Width=558;

59 Height=93;

60 TabOrder=10;

61 AutoHScroll=false;
62 BackColor=16777215;
63 TextSize=-10;

64 Weight=400;

65 FaceName="Arial";

66 //FontFamily=Swiss!;
67 //FontPitch=Variable!;
68 ¥

69 }

A.5 Generated Java

A.5.1 Before Post-Procesing

001 /*

002 This is the java implementation of
003 the PowerBuilder window object:

004

005 $PBExportHeader$mainwindow.srw

006

007 */

008

009 public class mainwindow extends Window {
010

011 cb_1
012 cb_1 = new cb_1();
013 sle_1

014 sle_1 = new sle_1();
015 mainwindow(){

016 int

017 X = 1075;
018 int

019 Y = 485;

020 int

021 Width = 723;
022 int

54

Height = 497;
boolean
TitleBar = true;
string
Title = "Sample";
boolean
ControlMenu = true;
boolean
MinBox = true;
boolean
MaxBox = true;
boolean
Resizable = true;

Control = new PBObject[] {cb_1, sle_1};

class cb_1 extends commandbutton{

cb_10 {
int
X = 42;
int
Y = 221;
int
Width = 284;
int
Height = 105;
int
TabOrder = 20;
string
Text = "button";
int
TextSize = -10;
int
Weight = 400;
string
FaceName = "Arial";
FontFamily
FontFamily = Swiss!;
FontPitch
FontPitch = Variable!;

¥
}

class sle_1 extends singlelineedit{

sle_10) {
int
X = 42;
int
Y = 65;
int
Width = 558;
int
Height = 93;
int
TabOrder = 10;
boolean
AutoHScroll = false;
long
BackColor = 16777215;
int
TextSize = -10;
int
Weight = 400;
string
FaceName = "Arial";
FontFamily
FontFamily = Swiss!;
FontPitch
FontPitch = Variable!;

55

103 ¥
104 }

A.5.2 After Post-Procesing

01 /x

02 This is the java implementation of
03 the PowerBuilder window object:

04

05 $PBExportHeader$mainwindow.srw

07 */
09 public class mainwindow extends Window {
11 cb_1 cb_1 = new cb_1Q);

12 sle_1 sle_1 = new sle_1();
13 mainwindow(){

14 int X = 1075;

15 int Y = 485;

16 int Width = 723;

17 int Height = 497;

18 boolean TitleBar = true;

19 string Title = "Sample";

20 boolean ControlMenu = true;
21 boolean MinBox = true;

22 boolean MaxBox = true;

23 boolean Resizable = true;
24

25

26 Control = new PBObject[] {cb_1, sle_1};
27

28 }

29 }

30

31

32

33

34 class cb_1 extends commandbutton{

36 cb_10 {

37 int X = 42;

38 int Y = 221;

39 int Width = 284;

40 int Height = 105;

41 int TabOrder = 20;

42 string Text = "button";

43 int TextSize = -10;

44 int Weight = 400;

45 string FaceName = "Arial";

46 FontFamily FontFamily = Swiss!;
a7 FontPitch FontPitch = Variable!;
48 }

49 }

50

51 class sle_1 extends singlelineedit{

53 sle_10) {

54 int X = 42;

55 int Y = 65;

56 int Width = 558;

57 int Height = 93;

58 int TabOrder = 10;

59 boolean AutoHScroll = false;

60 long BackColor = 16777215;

61 int TextSize = -10;

62 int Weight = 400;

63 string FaceName = "Arial";

64 FontFamily FontFamily = Swiss!;
65 FontPitch FontPitch = Variable!;
66 }

Appendix B

Lexical Scanning Tool

For adding XML-tags to PowerBuilder export files we implemented a lexical scan-
ning tool. This tool was written in the Practical Extraction and Reporting Lan-
guage, Perl[10]. It scans the export file and inserts XML-tags in the same way we
inserted them manually in Section 6.1.2.

The source code of the scanner is given in the following section. The scanner
maintains a scan state variable named $scanState. This way it can keep track of
what it should be scanning for in the current state. For instance after matching
the beginning of a type definition in line 145 the $scanState variable is set to
"typeDefinition". With this scan state the scanner will only match an end type
construct in line 64 or in an event, variable or object construct in lines 94-108.
The matching of export file constructs is done using regular expressions. See [10]
for details about regular expressions in Perl.

When unexpected input is encountered a warning is printed out in line 238. This
way we get a warning message when a line is scanned that is not recognized by
the scanner. During the creation of the lexical scanner this was a handy feature.
We built the scanner around a specific export file. When we tried scanning other
export files the warning message would indicate that the scanner did not recognize
a construct in the export file. We then added code to the scanner so it could process
the newly found construct. This process was repeated until the scanner was able
to process all the export files that are part of one PowerBuilder application, with
the exception of datawindows. Datawindows are specified in an entirely different
format that requires a separate lexical scanner. In [11] it is shown how datawindows
can be transformed to HTML using XML, XSL and JavaScript.

The drawback of using a lexical scanner written in Perl is that the script is hard to
maintain. This is due to the fact that it is easier to write a regular expression in
Perl than it is to read and understand it at a later time.

B.1 Source code

001 # Applies XML annotation to PoweBuilder export files
002 # Date: 13-04-2001

003 # Author: Bas Toeter

004
005 #

006 # pb2xml.pl <filepattern>

007 #

008

009 if (((scalar QARGV < 1) | (scalar @ARGV > 3))){
010 print "USAGE: # pb2xml.pl <filepattern> \n";

57

011 }

012

013 $pattern = $ARGV[0];

014 open(FL,"dir /b $pattern ["); # get file that match the pattern
015 while (<FL>){

016 chopQ);

017 $source = $_;

018 $source =" /.*\.(...)/; # get the extension

019 $exportType=$1; # store the extension

020 $target = "$source.xml";

021

022 open(PB,"<$source") or die "can’t open input file $source";
023 open(0UT,">$target") or die "can’t open output file $target"; ;

024

025 $scanState="root"; # initialize scan state variable
026 $iCount=0; # counts number of indents

027 $iString=""; # indentation string

028

029 &Iprint("<?xml version=\"1.0\"?>\n");

030 &Iprint ("<?xml:stylesheet type=\"text/xsl\" href=\"$exportType.xsl\" ?>\n");
031 &Iprint("<PBExportFile>\n");

032 &Indent(+2);

034 while(<PB>){
035 chop();
036 if ¢ (/"\sx8/) |1 (/°\/\//)) {

037 #just skip empty lines and lines with comments

038 }

039 elsif (/("\$PBExportHeader\$.*\.(...))/){

040 &Iprint ("<PBExportFileHeader>$1</PBExportFileHeader>\n");
041 }

042 elsif (/("\$PBExportComments\$.*)/) {

043 Iprint ("<PBExportComments>CDATA[$1]</PBExportComments>\n") ;
044 }

045 elsif (/"end subroutine/) {

046 &Iprint ("</powerScript>\n");

047 &Indent (-2);

048 &Iprint ("</subroutineDefinition>\n");

049 $scanState="root";

050 }

051 elsif (/"end function/) {

052 &Iprint ("</powerScript>\n");

053 &Indent (-2);

054 &Iprint ("</functionDefinition>\n");

055 $scanState="root";

056 }

057 elsif ((/"end on/) && ($scanState eq "onEvent")) {

058 &Indent (-2);

059 &Iprint("</onDeclaration>\n") ;

060 $scanState="root";

061 }

062 elsif ((/end type/) &% ($scanState eq "typeDefinition")) {
063 &Indent (-2);

064 &Iprint ("</memberDeclarations>\n") ;

065 &Indent (-2);

066 &Iprint ("</typeDefinition>\n");

067 $scanState="root";

068 }

069 # onDeclaration

070 elsif ($scanState eq "onDeclaration") {

071 if (/~end on/) A

072 &Indent (-2);

073 &Iprint ("</onDeclaration>\n") ;

074 $scanState="root";

075 ¥

076 }

077 # forwardDeclarations

078 elsif ($scanState eq "forwardDeclarations") {

079 if (/"end forward/) {

080 &Indent (-2);

081 &Iprint ("</forwardDeclarations>\n") ;

082 $scanState="root";

083 ¥

084 elsif ((/"end type/) && ($scanState eq "forwardDeclarations")) {
085 # ignore ’end type’

086 ¥

087 elsif (/" (global)*\s*type\s*([" 1*)\s*from\s*([" I*)\s*(within)*\s*(.*)/) {
088 &Iprint ("<typeDeclaration access=\"$1\" identifier=\"$2\" from=\"$3\" within=\"$5\"\/> \n");
089 ¥

090 }

58

091 # typeDefinition

092 elsif ($scanState eq "typeDefinition") {

093 if (/"event ([™ I1*) \(C (.*) \)/) {

094 %Iprint ("<eventDeclaration identifier=\"$1\">\n");

095 &Iprint (" <parameters>$2</parameters>\n");

096 &Iprint ("</eventDeclaration>\n");

097 ¥

098 elsif (/"event (.*) (.*)/){

099 &Iprint ("<eventDeclaration identifier=\"$1\">\n");

100 &Iprint (" <parameters>$2</parameters>\n");

101 &Iprint ("</eventDeclaration>\n");

102 ¥

103 elsif (/(.*) (.*)=(.*)/) {

104 &Iprint ("<variable type=\"$1\" identifier=\"$2\">$3</variable>\n");
105 }

106 elsif (/(.x) (.*%)/) {

107 &Iprint ("<object type=\"$1\" identifier=\"$2\"/>\n");

108 ¥

109 }

110 #

111 elsif (/"on (["\.]l*)\.create/) {

112 &Iprint("<onDeclaration ownerIdentifier=\"$typeLastDefined\" event=\"create\">\n");
113 &Indent (+2) ;

114 &Iprint("//PowerScript\n");

115 $scanState="onDeclaration";

116 }

117 elsif (/"on (["\.]*)\.destroy/) {

118 &Iprint("<onDeclaration ownedByType=\"$typeLastDefined\" event=\"destroy\">\n");
119 &Indent (+2);

120 &Iprint("//PowerScript\n");

121 $scanState="onDeclaration";

122 }

123

124 elsif (/"event (.*)\;/) {

125 &Iprint ("<eventHandlingCode type=\"$typeLastDefined\" action=\"$1\">\n");
126 &Indent (+2) ;

127 &Iprint("//PowerScript event handling code for $typeLastDefined.$1 \n");
128 $scanState="event";

129 }

130 elsif (/"type prototypes/) {

131 &Iprint ("<typePrototypes>\n");

132 &Indent (2);

133 $scanState="typePrototypes";

134 }

135 elsif (/~forward$/) {

136 &Iprint("<forwardDeclarations>\n") ;

137 $scanState="forwardDeclarations";

138 &Indent (+2);

139 }

140 elsif (/" (global)*\s*type\s*([~ 1*)\s*from\s*([~ I1*)\s*(within)*\s*x(.*)/) {
141 $scanState="typeDefinition";

142 $typeLastDefined=$2;

143 &Iprint("<typeDefinition access=\"$1\" identifier=\"$2\" from=\"$3\" within=\"$5\"\> \n");
144 &Indent (+2);

145 &Iprint ("<memberDeclarations>\n");

146 &Indent (+2);

147 }

148 elsif(/"global ([~ 1%) ([~ 1*)/) {

149 &Iprint("<globalObjectInstantiation type=\"$1\" identifier=\"$2\"\/>\n");
150 }

151 elsif (/"type variables/) {

152 &Iprint("<typeVariables>\n");

153 &Indent (+2);

154 $scanState="typeVariables";

155 }

156 # typeVariables

157 elsif ($scanState eq "typeVariables") {

158 if(/"end variables/) {

159 &Indent (-2);

160 &Iprint ("</typeVariables>\n");

161

162 $scanState="root";

163 ¥

164 elsif (/"PROTECTED:/) {

165 $accessQualifier="protected";

166 ¥

167 elsif (/(["\sl*)\s*(["\sl*) = ([1%)/) {

168 &Iprint ("<variable access=\"$accessQualifier\" type=\"$1\" identifier=\"$2\">$3</variable>\n");
169 ¥

170 elsif (/(["\sI*)\s*(["\s]l*)/){

59

&Iprint ("<variable access=\"$accessQualifier\" type=\"$1\" identifier=\"$2\"></variable>\n");
}
}
elsif (/"forward prototypes/) {
$scanState="forwardPrototypes";
&Iprint ("<forwardPrototypes>\n");
&Indent (2);
}

forwardPrototypes

}

}

elsif ($scanState eq "forwardPrototypes") {

if (/"end prototypes/) {
&Indent (-2);
&Iprint ("</forwardPrototypes>\n") ;
$scanState="root"

}

elsif (/([" J*) subroutine ([I*) \((.®)\)\;*/) {
&Iprint ("<subroutineDeclaration access=\"$1\" identifier=\"$3\">\n");
&Iprint (" <arguments>$4</arguments>\n");
&Iprint ("</subroutineDeclaration>\n");

}

elsif (/([" I%) function ([~ I*) (L™ J*) \((.*x)\)\;*/) {
&Iprint ("<functionDeclaration access=\"$1\" identifier=\"$3\" type=\"$2\">\n");
&Iprint (" <arguments>$4</arguments>\n");
&Iprint ("</functionDeclaration>\n");

}

}
elsif((/"end prototypes/) && ($scanState eq "typePrototypes")){
&Indent(-2);
&Iprint("</typePrototypes>\n");
}
elsif ((/"end event/) && ($scanState eq "event")) {
&Indent(-2);
&Iprint("</eventHandlingCode>\n") ;
$scanState="root";
}
elsif (($scanState eq "functionDefinition") ||
($scanState eq "subroutineDefinition") ||
($scanState eq "event") ||
($scanState eq "onEvent")){
#%Iprint ("$_\n");
}

elsif (/([" 1*) subroutine ([~ I*) \((.¥)\)\;*/) {
$scanState="subroutineDefinition";
&Iprint ("<subroutineDefinition access=\"$1\" identifier=\"$3\">\n");
&Iprint(" <arguments>$4</arguments>\n");
&Iprint(" <powerScript>\n");
&Iprint (" //handling Code $3($4) \n");
&Indent (+2);

}

elsif (/([" 1%) function ([~ 1*) ([1*) \((.*)\)\;*/) {
$scanState="functionDefinition";
&Iprint ("<functionDefinition access=\"$1\" identifier=\"$3\" type=\"$2\">\n");
&Iprint(" <arguments>$4</arguments>\n");
&Iprint(" <powerScript>\n");
&Iprint (" //handling Code $3($4) \n");
&Indent (+2);

elsif (/~on ([~ I¥)\;/) {
&Iprint("<onDeclaration ownerIdentifier=\"$typeLastDefined\" event=\"$1\">\n");
&Indent (+2) ;
$scanState="onEvent";
}
else {
print "UNPROCESSED in $source: $_\n";
}

&Indent (-2);

&Iprint ("</PBExportFile>");
close(PB);

close (QUT) ;

print "Wrote file: $target \n";

sub Indent {

my $change = shift;
my $index;

$iString="";
$iCount += $change;
for ($index=0;$index<$iCount;$index++){

60

251 $iString .=" ";
252 }

253 }

254 sub Iprint {

255 my $text = shift;

256 print OUT "$iString$text";

257 }

61

