
Logical Expressions: Analyzing, Generalizing, Rewriting

embedding a scientific implementation in a commercial environment

Alexander van den Bergh
1999

Preface

The Plan
December 1998 I finished my last tests and was only a master thesis away from gradu-

ating. After four and a half years at the University of Amsterdam I thought it was time to
take a look in the corporate world. Since I had no idea where to apply for a scientific
internship I asked Paul Klint whether he had any options. After a few searches and some
rejections I ended up at TriLoc Software Engineering.

TriLoc had a close relationship with the university and needed someone to experiment
with the technology they were buying from them. It turned out the technology was
mostly ASF+SDF with which I was already acquainted.

We formulated a project in which it was my task to see whether the ASF+SDF rewrit-
ing capabilities could be useful for TriLoc and if it would be possible to embed them in
their software renovation processes.

The university agreed with the plan and although nobody (including myself) thought
the project would be completed in the given time, we started the implementation.

The Outcome
The environment at TriLoc turned out to be quite good. They provided me with some

nice equipment, a Sun workstation (Sparc 5) for the Meta-Environment, an IBM PC
(266 Pentium II) for C development and porting issues and of course I had my own
Apple Powerbook and G3 desktop to make the platform family complete.

I must have gained at least ten pounds during the internship thanks to the very tasty
(and cheap) lunches and the numerous birthday pies I ate. I had the freedom to visit the
university and the library whenever I considered it useful.

After a little more than four months the practical side of the project was completed. We
even went further than the actual plans. As I write this, the ASF+SDF technology is
ported to Windows NT and practically ready to be used within the TriLoc system. A
very comprehensive COBOL logical expression rewriter is implemented and tested on
COBOL code from ‘real life’ systems.

Acknowledgments
One of the main reasons that the project succeeded in such a

small period of time is the tremendous feedback I received
from both the University of Amsterdam, the National Re-
search Institute for Mathematics and Computer Science (CWI)
and TriLoc.

At all sides people were willing to cooperate with the project.
Without their feedback it would definitely have turned into a
time-consuming frustrating project. I would like to thank a
few of them by name.

First of all, I would like to thank Mark van den Brand and
Gert Veltink for their support on all domains. Gert especially
helped me get started and trace the hard to find bugs in the
ATerm library sources while Mark clarified numerous issues
regarding the whole Meta-Environment and everything that
comes with it. Furthermore a lot of credits go to Jeroen Scheerder for providing support
on the parser, Tobias Kuipers for reacting on my phone calls and emails, Pieter Olivier
for his help with the ATerm-library and Pieter Bloemendaal for his cooperation from
TriLoc’s side.

The Meta-Environment support team: Jeroen,
Tobias and Mark; their ears still red from the

many phonecalls I made to them.

Paul Klint gave me general directions, without him, Ger Bakker, Gert-Jan Tretmans
and other people from the TriLoc management team this project never would have ex-
isted in the first place. Lia Bos and Lucienne Evers provided me with information on
Logic Mining and Jacob Brunekreef supported me on the ASF+SDF development and
this thesis.

Although all these people helped me a great deal and I have got enough talent of my
own, none of this would have even come close to success if it wasn’t for the uncondi-
tional support of my parents. So last but definitely not least I would like to thank them,
George and Mientje, for supporting me.

When reading this thesis you might find the layout to be a little different from what is
expected from a master thesis.

I have tried to make this thesis both pleasing for the mind as for the eye. I hope you
enjoy reading it.

Yours truly,

 Alex

Disce ut semper victurus, vive ut cras moriturus.

Photography by Remko Schnorr

Logical Expressions:
Analyzing, Generalizing, Rewriting

embedding a scientific implementation
in a commercial environment

Alexander van den Bergh

Afstudeer docent
prof. dr Paul Klint

Begeleiders
dr Mark van den Brand

dr Gert Veltink

April - September 1999

5

1. Introduction
This chapter serves as a general introduction to
the remainder of this thesis. We will try to put
the following parts into context by describing the
need for this research.

The Software Crisis

During the past decade software renovation has
become an important field in computer science.
Due to large problems like Y2K and the new Eu-
ropean currency, the Euro, billions of dollars have
been and will be invested in projects to analyze and
renovate existing systems.

Legacy Systems
The development of larger software systems started decades ago, their source code

grew over the years and because of that they have become an unmanageable chaos of
code from a mixture of different dialects of programming languages. These systems are
referred to as legacy systems. Legacy systems, and their complexity, have presented us
with the undesirable situation of extremely hard to manage software systems which has
resulted in a new Software Crisis*.

Currently software has become the backbone of most companies. Since almost every-
thing is computerized, it has become an important source to describe the processes within
a corporation. Unfortunately there is very little knowledge about these software sys-
tems, which have become legacy systems over time, therefore the adjustment of them
can be a time consuming and painful process for software analysts. Special task forces of
analysts are full-time operational to maintain these systems. To help these analysts with
their analysis and renovation, specific software renovation systems have been developed.
Some platforms for software renovation factories are TXL [CHP91], COSMOS [Em98]
and REFINE [RA92].

The lack of knowledge about the legacy systems does not only cause large technical
problems (such as the Y2K problem) but it also enlarges the time-to-market. In a fast
moving market, companies need to be able to react quickly to changes, with unmanage-
able legacy systems it takes too much time, it is too expensive and it involves taking too
many risks. Competitiveness means flexibility and speed when it comes to new services
and products.

1.1

Although one could argue that the scenario presented in
this cartoon is a little pessimistic. There still is a lot of
uncertainty about what is going to happen when the

Year 2000 Bug is going to ‘hit our planet’.

* The situation referred to as the software crisis started when people experienced that correct software could
not be engineered like bridges and buildings, first designing it on paper and then creating it without any errors.

Logical Expressions: Analyzing, Generalizing, Rewriting

6

What to do?
So why not invest a little money and start building a new, clean, modular, and easy to

understand system? This might seem an option from a nonprofessional point of view,
but when looking closer at the state of affairs within the software crisis we see that this is
not realistic.

First of all these systems are big, not to say huge. It will cost more then just ‘a little’
money, it will require enormous amounts of money, time and manpower. It means that
the investment in the current system, which could easily have reached billions of dollars,
is practically thrown away. Some companies (like banks) might be able to finance at least
the first part of the project, however the time and manpower will often not be available.

A second thing that is overlooked by the ‘start again from scratch’ option is the fact
that virtually all company knowledge is hidden within the source code of the old system.
This means that the new system must support all features of the old one, including the
ones that were hidden. Unfortunately there often is no other source of information,
such as reliable documentation, describing the behavior of the old system, which makes
a re-implementation impossible.

The only option seems to be to keep the current sources and to retrieve as much infor-
mation from them as possible.

Logic Mining
The Logic Mining technique is initiated, developed and proclaimed by TriLoc Software

Engineering. This company proposes a new revolutionary approach on software reno-
vation. Their strategy is build around the idea of extracting (mining) informa-
tion (logic) from legacy systems. The approach focuses on the business logic
rather than the technical ground of the system. It sees the legacy system as an
important asset with reusable value for the future instead of a millstone around
one’s neck.

This in-depth analysis done by Logic Mining can be helpful in various situ-
ations such as isolating components that perform certain tasks (for mainte-
nance), code slicing techniques, identifying business processes, and modelling

or documenting the system.

Term rewriting
Analysis and transformation of existing code form the core functionality of software

renovation systems. When using formal methods, like term rewriting, for these tasks, we
work with a firm mathematical basis for the system. To describe a language in an impera-
tive programming language like C we need to write a parser for it. Directly writing a
parser for a certain language can quickly become a large project and therefore hard to
debug. In a formalism like SDF we define a grammar without having to worry about
parsing techniques and algorithms.

The usage of compiler construction techniques such as scanning, parsing, typechecking
and analysis can be useful in the field of re-engineering as described in [BKV96-b]. Sys-
tems that support specification formalisms nevertheless are not widely available. And
even if we have a formalism at our disposal we face serious technology transfer problems
when we try to sell term rewriting to the industry [BKV98].

7

The Project

TriLoc, however, has taken the challenge to investigate whether state of the art
scientific technology can be adapted to be useful within the Logic Mining pro-
cess. In close cooperation with the University of Amsterdam and the National
Research Institute for Mathematics and Computer Science (CWI) a project was
initiated to accomplish this.

The project contains four subprojects:
1. Describing a rewriter in the algebraic specification formalism ASF+SDF that can

be used to normalize COBOL logical expressions.
2. Defining other rewriters and grammars including a language independent logical

format on which various normalization techniques can be applied.
3. Porting the rewriting component (that supports execution of ASF+SDF rewrit-

ing systems) of the ASF+SDF Meta-Environment to Windows NT.
4. Embedding its functionality in the Logic Mining system.

We will describe the process in two parts which can be read independently:
1. The analysis, normalization, generalization and rewriting of (COBOL) logical

expressions.
2. Porting parts of the ASF+SDF Meta-Environment to a non-Unix environment

and embedding these parts in an external commercial software renovation sys-
tem.

A key feature of this project is the communication between science and practice:
• the cooperation between TriLoc on one side and the Uni-

versity and the CWI on the other, the port of a Unix-sys-
tem to Windows NT,

• the embedding of a scientific system within a commercial
system and

• the extending of a system made with conventional languages
with a system designed with an algebraic formalism.

Related Work

There have been projects that focussed on rewriting COBOL. We will name a few
here. Control flow normalization, in order to improve maintainability of COBOL/CICS
systems, which also makes use of normalized logical expressions is described in [BSV98].
Normalization of COBOL conditions is also a subject in [SV98]. In [BKV98] a global
description regarding the rewriting of COBOL systems is given. Issues regarding CO-
BOL grammar in SDF, disambiguation, preprocessing and restricting can be found in
[BSV97].

In this thesis we will try to be more thorough. We will introduce a language indepen-
dent format for logical expressions and normalizations on this language independent
format.

In [BKV96] possible software re-engineering applications of the Meta-Environment
technologies are described. A software renovation factory is described in [BSV98]. It
contains a number of assembly lines that perform a number of tasks in a fixed order. Our
project is not quite the same since it integrates a component in a system on a more ob-
ject-oriented way, it can be called at any given time from another process.

1.2

1.3

Part I
A General Model

for Logical Expressions

In the field of software re-engineering higher levels of abstraction
are needed in order to analyze existing systems. Source code must be
analyzed and visualized in a clear and unambiguous way.

This part discusses a language independent format for logical ex-
pressions, the General Logical Format, GLF, that is used in a re-en-
gineering environment. A rewriting system for translating COBOL
logical expressions into this independent format will be presented as
well as various transformations on GLF.

11

2.1

2. Introduction
In this chapter we will explain why we feel that rewrit-

ing of logical expressions is necessary. We will describe
some practical issues as well as some excentric properties
of logical expressions in COBOL [COB].

The Code

An important step in software analysis and renovation is
the analysis of source code. Although documentation of the
code can be of help it is often out of date and not in-sync
with the actual programs. The only way to be certain that
you are indeed analyzing the most up-to-date information
is by analyzing the actual source code.

Conditional and Logical Expressions
Code can be divided into various classes. W e can identify data, assignment statements,

input/output code, subroutines, conditional expressions and many more. All these items
have their own effect on the behavior of the program. In this thesis we will focus on the
logical expressions that are the most important part of conditional expressions.

Conditional expr essions ar e impor tant when analyzing the contr ol flow , which is of
interest when trying to understand the behavior of a program. As soon as there is any
form of interaction with users or data you will find conditional expressions that act
according to the values of logical expressions. An example of a basic conditional expres-
sion:

If <Logical Expression> then
<Statement 1>

else
<Statement 2>

endif

In our case a logical expression consists of one or more relational expressions separated
by logical operators. For instance:

SALDO > 0 AND PINCODE = 3675

is a valid logical expression since it consists of the relational expression SALDO > 0, the
relational expression PINCODE = 3675 and the logical operator AND.

Clear and readable logical expressions are of great importance for software analysts.
Logical expressions can be written in various ways. They can be rewritten to other nota-
tions to be more readable, easier to analyze or easier to classify without losing their
information and their behavior .

Software development should, just like other
large construction work, be done by engineers

A General Model for Logical Expressions

12

The Problem: too Many Different Notations
Although they mostly stick to rather simple propositional logic, many discrepancies

between logical expr essions in various pr ogramming languages exist. In Pascal [W irth71,
SAV91] we can for instance write (A = B) which yields TRUE when the value of A
equals the value of B whereas in C [KR88] (A = B) means that the value of B is assigned
to the variable A. This expression yields the value stored in B (which can be either zero
(regar ded FALSE) or non-zero (TRUE)). The correct C equivalent of the Pascal state-
ment is (A == B).

Some languages allow notations that are intuitively hard to understand. For instance in
COBOL [COB, Ebb90] one can write A = B OR C which can also be written in a clearer
way: (A = B) OR (A = C). A more complex example is A equals B OR C OR NOT D

AND is greater than E OR F which is equivalent to (A = B) OR (A = C) OR (not (A

= D) AND (A > E)) OR (A > F). Analyzing and rewriting all these different notations
is a complex task. For human analysts it is hard to interpret those large COBOL expres-
sions without making mistakes. For computer programmers a system that can rewrite
logical expressions for all these languages can become too large to create, verify and
manage.

The Solution: a Universal Notation
Although the notations dif fer, most logical expr essions ar e based on the same pr oposi-

tional logic. The solution we present is to translate the various notations of logical ex-
pressions of a language (or more languages) into a generalized form. This notation will
be unambiguous, compact, language independent and easy to interpr et by a computer .

We call this notation the Generalized Logical Format, or just GLF. Expressions written
in GLF can then be transformed into normal forms, a more (human-) readable form or
perhaps even back to a (different) programming language.

The Approach: Step by Step
The process we will describe in this thesis is the translation of COBOL logical expres-

sions to GLF from which they can be translated back to a readable representation. The
benefit of translating different languages to GLF first, gives us the ability to use only one
rewriter for the next rewrite operations. This not only saves us a lot of development
work but it also provides us with a very flexible system as shown by Figure 2.1.1.

Language A
to

GLF

Language B
to

GLF

GLF
to

UIGLF

GLF
Toolbox

Language A

Language B

Readable

Figure 2.1.1

Figure 2.2.1 shows that only one part of the system is (input-) language dependent. The
other transfor mations simply work on GLF . Befor e we translate GLF to r eadable ex-
pressions (which we will later call UIGLF) and we can perform additional GLF trans-
formations on them. Those transformations can be adjusted, extended or deleted with-
out having influence on the original input programming languages.

When a system like this has been developed for language ‘A ’ we simply have to make
one rewriter that translates language ‘B’ to GLF and all the existing GLF-operations can
be reused for this language as well. If a translator to GLF for a given language exist the
rewritings on GLF can be regarded language parameterized (or generic).

13

GLF can also be valuable to code analysts since it clarifies the meaning of the logical
expression.

Terminology
We identify thr ee types of rewriters in our pr ocess. When working with COBOL we

will see that disabbreviation is needed. After that, a translation will translate our CO-
BOL to GLF on which we can perform various transformations. All of these rewritings
can be done using an ASF+SDF term rewriting system (TRS).

ASF+SDF

To specify the grammar of our sour ce and tar get languages and to specify the behavior
of our rewriting systems we will use the ASF + SDF formalism. The Algebraic Specifica-
tion Formalism, ASF [BHK89], provides us with the ability to define the abstract syntax
(i.e. type and arity) of functions (rewrite rules) and write conditional equations defining
the semantics of these functions. The Syntax Definition For malism [HKR89], SDF, al-
lows the integrated definition of lexical, context-free and abstract syntax. It contains
enough infor mation to generate parse tables for the specified syntax. T ogether they for m
ASF+SDF specifications.

Why ASF+SDF?
A number of formalisms exist in which it is possible to define programming languages.

Systems like the well known Lex+Y acc duo [LS86, John75] and Refine [Alto92] also
offer parsing and rewriting techniques. ASF+SDF with its Meta-Environment [BKM97]
has the advantage of pr oviding modularity . Modularity is of gr eat impor tance consider -
ing the size and extendibility of our project. Furthermore the LR-parsing done by Re-
fine and Lex+Y acc is less thor ough than SGLR-parsing [V is97-2] done by ASF+SDF
since the former may offer shift-reduce and reduce-reduce conflicts [BSV97].

In part II of this thesis we will give a more detailed description of the ASF+SDF Meta-
Environment, also describing its AsFix to C compiler which we will be needing in the
future. Finally the Meta-Environment is academic rather than commercial which makes
it a free product for universities and research institutes.

2.2

14

A General Model for Logical Expressions

15

COBOL
Logical Expressions

The main focus of our project will be to work on COBOL
logical expressions. This chapter explains why this language
is especially eligible for our purposes.

COBOL

In the late 50’ s computer manufactur ers and users saw the
need for a more universal way to program computers. A group
of experts was brought together to develop a programming
language that be easy to write, read and maintain, ideal for writing business applications
and be compatible with all computers. The language COBOL [Ebb90], which stands for
COmmon Business Oriented Language, was born. It indeed became the most commonly
used programming language for data processing which is often done in business applica-
tions.

Many dif ferent dialects have been developed for COBOL thr ough the years. Now , in
the late 90’ s, many companies ar e dealing with millions of lines of old legacy COBOL
code within their software. Analysis and maintenance of this code is hard since it often
contains code written in outdated dialects, with hardly any up-to-date documentation
and without a clear and consequent style.

COBOL Logical Expressions
COBOL [COB] does not put many restrictions on programmers to write clear code.

Logical expressions can be written in numerous ways which can be quite confusing.
With the English language in the back of their minds the designers of COBOL allowed
the programmer to write a simple relational expression (in which two operands are com-
pared) in many different ways:

A = B
A IS B
A IS EQUAL B
A IS EQUAL TO B

Of course, notations like these can easily be translated to one preferred notation; this
can be done in a preprocessing phase thereby reducing the many alternatives in produc-
tion r ules of the context-fr ee grammar . In the r emainder of this thesis we shall only be
using the ‘mathematical’ notation (A = B) rather than the ‘English’ notation.

Another somewhat special notation can exist because of the fact that COBOL allows
the embedding of the logical operator ‘NOT’ (the negation) within relational expres-
sions.

3.

3.1
Grace Murray Hopper a mathematician and

pioneer in data processing. An expert on
compilers and a key figure in the design of
COBOL. Legendary among both computer

scientists and industrial executives.

A General Model for Logical Expressions

16

This means that all the following expressions have the same meaning:

A <> B
A NOT = B
NOT A = B (this must be read like NOT (A = B))

Note that the first expression is a relational expression, the last is a logical expression
(negated relational expression) and the middle one is a logical expression where the logi-
cal operator is placed within the relational expression.

The biggest pr oblem with COBOL conditions, however , ar e the abbr eviated condi-
tions. This allows programmers to leave consecutive operands and/or operators out of
certain logical expressions. This will be illustrated by a couple of examples.

The abbreviated expression is quite readable, the variable is being compared to a set of
possible values. The operator (=) and the operand (A) are implicitly applied to the rest of
the operands in the expression:

A = B OR C OR D
A = B OR A = C OR A = D

 In the following example the operand propagates through the expression to the rela-
tional expr essions C, D and E. It can, however , not pr opagate straightfor war d because
the third relational expression (> D) has its own operator which propagates to the last
relational expression. When a new operator is encountered we proceed with that one:

A = B OR C OR > D OR E
A = B OR A = C OR A > D OR A > E

When a ‘NOT’ is encountered right before an operand (without an operator) that rela-
tional expression is negated. The ‘NOT’ does not propagate further in the expression.
The brackets in the expression are only added to improve readability:

A = B OR NOT C OR D
A = B OR NOT (A = C) OR A = D

When a ‘NOT’ is encounter ed befor e an operator , the operator as well as the ‘NOT’
propagate through the rest of the expression:

A = B OR NOT > C OR D
A = B OR NOT (A > C) OR NOT (A > D)

Abbreviated expressions do not care about the priorities of logical operators. One can
argue that since conjunction binds stronger than disjunction the ‘<’-operator should not
propagate outside the conjunction (making the following expression equal to A = B OR A

= C AND A < D OR A = E) but that is not the case. The (dis-)abbreviation of logical
expressions is more a textual than a logical process:

A = B OR C AND < D OR E
A = B OR A = C AND A < D OR A < E

Combining some of the pr oper ties of COBOL we have seen so far , the following two
expressions have the same meaning :

A NOT = B OR NOT C AND B = D AND > E OR F
NOT(A = B) OR (A = C) AND (B = D) AND (B > E) OR (B > F)

A COBOL programmer can choose any style in which he or she wants to program.
Styles can also be mixed leading to unreadable expressions.

17

COBOL also allows 88-fields within logical expressions. These fields are actually tests
whether a variable (or field within a record) has a certain predefined value. The system
we present does not pay attention to them, in our case they have been modified to rela-
tional expressions by a preprocessing phase:

Consider the record

 01 TEST-RECORD.
 03 STATUS PIC 9.
 05 END-OF-LINE VALUE ‘1’.
 05 END-OF-PAGE VALUE ‘2’.
 05 END-OF-FILE VALUE ‘3’.

The conditional expression

IF END-OF-LINE THEN

is translated by the preprocessor to (the ‘::’ is a record-field notation: record::field)

IF TEST-RECORD::STATUS == TEST-RECORD::STATUS::END-OF-LINE

Priorities in COBOL
To for ce the priorities within arithmetic operations in COBOL we have designed our

COBOL grammar in SDF in such a way that the parse tree already contains these priori-
ties. Arithmetic operations (on operands) are typed. Operands of an operation can be of
the same type or they have to be of a type of an arithmetic operation with a higher
priority. We will illustrate this by taking a look at the arithmetical expr essions in CO-
BOL. For instance a multiplication can take other multiplications as operands, it can
take an involution as an operand but it can not take an addition as an operand.

CB-PowerOfExpr CB-MulSubExpr* -> CB-MulExpr
CB-UnaryExpr CB-PowerOfSubExpr* -> CB-PowerOfExpr

"*" CB-PowerOfExpr -> CB-MulSubExpr
"/" CB-PowerOfExpr -> CB-MulSubExpr

"^" CB-UnaryExpr -> CB-PowerOfSubExpr

A number or an identifier has the highest priority and a substraction has the lowest
priority.

Rules similar to this should apply for relational and logical operators as well. Unfortu-
nately COBOL’s abbr eviated expr essions cause pr oblems, because the parse tr ees for
these abbreviated expressions can not be evaluated or translated because they do not
contain all the needed information. Consider the COBOL expression A < B AND C when
we would be using our priority forcing types we would create the parse tree shown in
Figure 3.1.1.

Logical AND
Expression

A < B AND C

Logical
Operator

AND

Identifier

A

Identifier

B

Relation
Operator

<

Relational
Expression

A < B

Identifier

?

Identifier

C

Relation
Operator

?

Relational
Expression

? ? C

Figure 3.1.1

The right Relational Expression subtree does not contain all the information for trans-
lation into ‘A < C’. The information we need, the operand (A) and the operator (<), is
higher in the tree up to the level of the ‘Logical AND Expression’.

A General Model for Logical Expressions

18

Clean COBOL

Our first ter m rewriting system translated COBOL dir ectly into GLF. Although it
worked correctly we decided to take another approach since the specification had be-
come too complex to analyze, verify and adjust.

Most other programming languages do not allow abbreviated conditions which makes
the process of translating to GLF less complex. Fortunately all abbreviated conditions
can be disabbreviated to their non-abbr eviated counterpar t. To make the specification
of our rewriter more modular and easier to understand we decided to split the COBOL
to GLF translation process in two phases.

We will first disabbreviate COBOL to Clean COBOL, then we will translate Clean
COBOL to the Generalized Logical Format. Clean COBOL does not allow abbrevi-
ated expressions, negations within relational expressions, redundant (double) ‘NOT’-
operators or “English synonyms” for relational operators. Clean COBOL is 100% pure
COBOL but written down in a similar way modern languages are written down.

Within Clean COBOL we work with simple r elational expr essions consisting of two
arithmetic expressions (consisting of identifiers, constant numbers or mathematical ex-
pressions) with a binary relational operator (such as =, > or =<).

On a higher level we work with Unary Logical Expressions where we can take a rela-
tional expr ession and put an optional ‘NOT’ befor e it (or we can take a Logical Or -
Expression and put brackets around it, with an optional ‘NOT’).

These Unary Logical Expressions are valid Logical And-Expressions which may be
followed by the logical operator ‘AND’ (conjunction) and another Unary Logical Ex-
pression.

Clean COBOL can is a standardized way to write down logical expressions. It can be
regarded a canonical form of COBOL.

Finally, we have Logical Or -Expressions which consist of a Logical And-Expr ession
optionally followed by the logical operator ‘OR’ (disjunction) and another Logical And-
Expression.

A partial parse tree of NOT A > B AND A < C OR A = 0 looks like Figure 3.2.1.

Logical
Operator

OR

Logical OR
Expression

NOT A > B AND A < C OR A = 0

Logical AND
Expression

A = 0

Logical
Operator

AND

UnaryLogic.
Expression

A < C

Logical AND
Expression

NOT A > B AND A < C

Logical
Operator

NOT

Unary Logic.
Expression

NOT A > B

Relational
Expression

A > B

Arithmetic
Expression

A

Arithmetic
Expression

B

Relational
Operator

>

Figure 3.2.1

New priorities in Clean COBOL
The parse tree illustrates the priority rules that apply to logic: first the negation, then

the conjunction and finally the disjunction. Since we do not work with ‘NOT’-opera-
tors within relational expressions we can make our types more simple. This parse tree is
a clear top-down representation of the actual logical expression. Any subtree is a valid
COBOL expression.

3.2

19

The priorities of the (logical) operators in Clean COBOL are forced by the hierarchi-
cal str ucture of the grammar . The sor ts ar e or dered in such a way that they for ce cer tain
language constructs (with a higher priority) to be low in the parse tree, while others exist
on a higher level (lower priority).

Clean COBOL in SDF
Clean COBOL has no explicit definition in SDF . It is mer ely a subset of the nor mal

COBOL grammar. Wher e COBOL allows abbreviated r elational expr essions and ‘NOT’ s
in relational expressions Clean COBOL only focuses on their clean counterparts:

context-free syntax
 CB-RelExprOperator -> CB-OpNot
 "NOT" CB-RelExprOperator -> CB-OpNot

%% Clean COBOL and COBOL
 CB-AddExpr CB-RelExprOperator CB-AddExpr -> CB-RelExpr

%% (normal) COBOL only
 CB-AddExpr CB-OpNot CB-AddExpr -> CB-RelExpr
 CB-OpNot CB-AddExpr -> CB-RelExpr
 CB-AddExpr -> CB-RelExpr

The Logical expr essions have the same grammar . Notice how priorities ar e for ced with
the use of sorts and subsorts:

%% Highest priority, relational expressions and brackets.
 CB-RelExpr -> CB-UnaryLE
 "(" CB-LogOrExpr ")" -> CB-UnaryLE

 "NOT" CB-UnaryLE -> CB-UnaryLE

 "AND" CB-UnaryLE -> CB-AndShort
 CB-AndShort* -> CB-AndShortList
 CB-UnaryLE CB-AndShortList -> CB-LogAndExpr

%% Lowest priority, the disjunction ‘OR’
 "OR" CB-LogAndExpr -> CB-OrShort
 CB-OrShort* -> CB-OrShortList
 CB-LogAndExpr CB-OrShortList -> CB-LogOrExpr

The Cleanup disabbreviater takes and returns COBOL:

%% CleanUp fixes abbreviated relexpressions, removes redundant comma's
%% moves NOT's within relexpr to their UnaryLE's
%% and removes double NOT's
 "CB-CleanUp" "(" CB-LogOrExpr")" -> CB-LogOrExpr

20

A General Model for Logical Expressions

21

Generalized
Logical Format

Logical Expressions in programming languages are
much alike. Therefore it is possible to write them in a lan-
guage independent format. This chapter will introduce
the Generalized Logical Format, GLF, and its more read-
able form UIGLF.

GLF

With GLF we can write logical expr essions in a language independent way that is easy
to describe, parse and rewrite.

The Logic of GLF
When describing the logical operators used in GLF we regard it as a propositional

language L containing the following symbols
• a set of pr opositional variables Var-L, these ar e our r elational expr essions [KN97];
• the unary logical connective: ‘not(F)’, the NOT F;
• the binary logical connective: ‘or(F,G)’, the F OR G;
• and defined by the above the binary logical connective:

and(F,G)
which abbreviates: not(or(not(F),not(G))).

All the for mulas over Var-L, denoted as Form-L, are defined as follows:
• An element of Var-L is a for mula over Var-L
• If F and G ar e for mulas over Var-L then not(F), called negation, and or(F ,G),

called disjunction, ar e for mulas over Var-L.

We can define the well known semantics of these operations with the Boolean set bools
{true, false} and a valuation-function v: Form -> bools which satisfies:

v(not(F)) = false if v(F) = true
v(not(F)) = true if v(F) = false
v(or(F,G)) = false if v(F) = false and v(G) = false
v(or(F,G)) = true if v(F) = true or v(G) = true

Although we will not be evaluating the logical expressions in this thesis we will need to
know their semantics in order to make the right decisions in future rewritings, for in-
stance it is not har d to see that not(not(F)) has the same semantics as F .

4.1

4.

A fragment of in- and output from the first
‘real system’ that was rewritten by the TRS.
The input is COBOL, the output is UIGLF in

CNF without negations.

A General Model for Logical Expressions

22

Tags in GLF
GLF labels certain tokens with a type-tag. This is done to prevent loss of information.

Here are some examples:

i(4) decimal number (integer) 4
h(4) hexadecimal number 4
r(4) real number 4

Tokens can get mor e than one tag because of the use of chain functions within SDF
(type1 is of type2):

vn(BLA) variable name BLA
id(vn(BLA)) identifier , variable name BLA

Since operators in GLF are written in prefix they do not get an extra tag:

add(i(1),i(1)) also known as 1+1
add(mul(i(1),i(1)),i(1)) can be written as 1*1+1

This assures us that every bit of code in GLF is preceded by a tag describing its mean-
ing.

Functions and Priorities in GLF
To keep things compact and simple we have chosen to use functions with a maximal

arity of 2. Because of this and of the prefix notation we do not have to worry about
associativity .

The arithmetical expression ‘1 * 2 * 3’
can be interpreted as ‘(1 * 2) * 3’ or ‘1* (2 * 3)’
whereas mul(mul(i(1),i(2)),i(3))
can only be interpreted as ‘(1 * 2) * 3’.

Priorities are also implicitly added and brackets are obsolete.

The expression ‘(1 + 2) * 3’
can only be written as ‘mul(add(i(1),i(2)),i(3))’

and ‘1 + 2 * 3’
leads to ‘add(i(1),mul(i(2),i(3)))’.

In the COBOL grammar we defined our priorities by means of types. W ith GLF we
cannot do that. Since the prefix notation allows each operator to have operands of any
priority without the use of brackets. W e work with ‘arithmetic expr essions’ only , rather
than with ‘addition expressions’, ‘multiplication expressions’ and ‘power expressions’.

For instance the GLF multiplication can have two arithmetic arguments without any
constraints on the (operation that is in effect on its) arguments. Arithmetic operations
form expressions of the same type and they can all be operands for (other) arithmetic
operators:

“add” “(“ GLF-AriExpr “,” GLF-AriExpr “)” -> GLF-AriExpr
“sub” “(“ GLF-AriExpr “,” GLF-AriExpr “)” -> GLF-AriExpr
“mul” “(“ GLF-AriExpr “,” GLF-AriExpr “)” -> GLF-AriExpr
“div” “(“ GLF-AriExpr “,” GLF-AriExpr “)” -> GLF-AriExpr
“pow” “(“ GLF-AriExpr “,” GLF-AriExpr “)” -> GLF-AriExpr

23

Untyped Infix GLF

Although GLF is easy to interpret from a computer/parser perspective, larger expres-
sions are hard to read for humans. Human analysts who work with GLF need a more
readable for m. To meet those demands we intr oduce the Untyped Infix GLF, or just
UIGLF (since its mainly purpose is to improve readability for users it can be regarded
‘User Interface’-GLF as well).

UIGLF is GLF translated to an infix form, without the type-tags, with extra brackets
to improve readability and with a small set of easy to interpret keywords.

The ‘Untyped’ in UIGLF
Untyped of course means the removal of the tags. Removal of tags also means removal

of some information but in this case we assume the analyst has knowledge of the context
of the code, such as the programming language so, he or she can differentiate between
variables and keywords. On the other hand the removal of information makes the ex-
pression easier to understand.

The ‘Infix’ in UIGLF
We have chosen infix instead of pr efix notation when it comes to r eadability . In natural

as well as mathematical notation this is the way to go:

4 - 2 is written and pronounced in infix (four minus two).

The alert reader will notice that this also means that in some cases brackets have to be
inserted:

mul(4, add(2,3)) can not be written as 4 * 2 + 3
it must be written with brackets around the addition: 4 * (2 + 3).

The ‘User Interface’ in UIGLF
Other readability issues are addressed within UIGLF as well. The priority rules for

instance are written down with brackets to make the analyst aware of them:

4 + 3 * 2
 is written down as 4 + (3 * 2)

and A OR B AND C
is written down as A OR (B AND C)

This featur e can cause undesir ed ef fects. Too many brackets can decr ease r eadability:

(A AND (B AND (C AND D))) OR E

We find that the brackets that separate the binar y ‘and’-operators fr om each other ar e
redundant. So as long as we encounter the same operator (or an operator with the same
priority) we leave out the brackets:

(A AND B AND C AND D) OR E

4.2

24

A General Model for Logical Expressions

UIGLF is developed for r eadability only . It is not designed to work as an analysis
format for computerised detailed analysis but it can be helpful for the understanding of
the meaning of a certain GLF-expression.

We will give an example of the dif ference between GLF and UIGLF by pr oviding their
SDF definitions of arithmetic expressions:

%% "Highest Priority"
%% Notice how GLF does not allow brackets while UIGLF does
GLF-Identifier -> GLF-AriExpr
GLF-Literal -> GLF-AriExpr
GLF-FigLit -> GLF-AriExpr

UI-Identifier -> UI-PrimExpr
UI-Literal -> UI-PrimExpr
UI-FigLit -> UI-PrimExpr
"(" UI-AriExpr ")" -> UI-PrimExpr

"neg" "(" GLF-AriExpr ")" -> GLF-AriExpr

UI-CHR-MINUS UI-UnaryExpr -> UI-UnaryExpr

%% Chain functions:
UI-PrimExpr -> UI-UnaryExpr
UI-UnaryExpr -> UI-AriExpr

"add" "(" GLF-AriExpr "," GLF-AriExpr ")" -> GLF-AriExpr
"sub" "(" GLF-AriExpr "," GLF-AriExpr ")" -> GLF-AriExpr
"mul" "(" GLF-AriExpr "," GLF-AriExpr ")" -> GLF-AriExpr
"div" "(" GLF-AriExpr "," GLF-AriExpr ")" -> GLF-AriExpr
"pow" "(" GLF-AriExpr "," GLF-AriExpr ")" -> GLF-AriExpr

UI-AriExpr UI-CHR-PLUS UI-AriExpr -> UI-AriExpr
UI-AriExpr UI-CHR-MINUS UI-AriExpr -> UI-AriExpr
UI-AriExpr UI-CHR-MUL UI-AriExpr -> UI-AriExpr
UI-AriExpr UI-CHR-DIV UI-AriExpr -> UI-AriExpr
UI-AriExpr UI-CHR-POW UI-AriExpr -> UI-AriExpr

It is har d to come up with an objective measur ement for r eadability . What might appeal
to one analyst could feel cumbersome to the other . One of the benefits of GLF and our
modular approach is the fact that any kind of UIGLF can be connected to the system
when that is preferred.

25

The Rewriters
The preceding chapters describe the “core issues” regarding the

grammar of our various notations/languages. This chapter will fo-
cus on the disabbreviations, translations and transformations be-
tween these notations. We will frequently be showing pieces of the
rewriters in the form of ASF equations; please keep in mind that
these are only small parts of the equations and that they merely
serve as examples.

Cleaning Up COBOL

Before we do anything with COBOL logical expressions we clean them up.

Disabbreviation
The most important issue in the cleaning up of COBOL expressions is removal of

abbreviated expressions. When we traverse a logical expression from left to right we
always take with us the last left (relational expression) operand and the last (relational
expression) operator we encountered. Every time we encounter a relational expression
with a missing operand or operator we fill in the gap.

We addr ess this issue with the functions that take thr ee ar guments: a par t of the expr es-
sion that has to be cleaned, the last left operand we encountered and the last operator we
encounter ed CleanUp(Expr ession_par t, Last_LeftOp, Last_Op). W e br eak up the ex-
pression into smaller pieces to eventually end up with relational expressions that have to
be cleaned. Here are a few equations:

%% A complete relational expression, no cleaning necessary. Proceed with
new arguments
[CUR1a] CleanUpRel(LeftOp Op RightOp , Last_LeftOp , Last_Op)
 = (LeftOp Op RightOp , LeftOp , Op)

%% No Left Operand but already an operator, proceed with the new operator
[CUR2a] CleanUpRel(Op RightOp , Last_LeftOp , Last_Op)
 = (Last_LeftOp Op RightOp , Last_LeftOp , Op)

%% No Left Operand nor operator
[CUR3a] CleanUpRel(RightOp , Last_LeftOp , Last_Op)
 = (Last_LeftOp Last_Op RightOp , Last_LeftOp , Last_Op)

Negations
Negations are handled as well (they are of course placed before the condition):

[CUR3b] CleanUpRel(ROp , Last_LOp , NOT Last_Op)
 = (NOT Last_LOp Last_Op ROp , Last_LOp , NOT Last_Op)

5.

5.1

A General Model for Logical Expressions

26

Another issue is the removal of the negations that where within the condition. Con-
sider the following rule that addresses the case in which

an expression like A < B OR NOT > C
must be converted to A < B OR NOT A > C
(continue with operand ‘A ’ and operator ‘NOT >’):

[CUR2b] CleanUpRel(NOT Op RightOp , Last_LeftOp , Last_Op)
 = (NOT Last_LOp Op RightOp , Last_LeftOp , NOT Op)

The last two r ules r etur n logical expr essions that begin with a NOT . These cases can
produce redundant (double) negations. On a higher level, the Unary expression, this
problem is solved (when we encounter a NOT befor e a Unar y, we pr ocess that Unar y
first, if that generates a second NOT , we leave them both out):

%% Remove multiple NOT’s
[CU3c] CleanUpUnary(Unary1, Left_Op1 , Op1)
 = (NOT Unary2, Left_OP2 , Op2)
 ====================
 CleanUpUnary(NOT Unary1 , Left_Op1 , Op1)
 = (Unary2 , Left_OP2 , Op2)

COBOL to GLF

The COBOL to GLF translator is differ ent fr om the COBOL Cleaner. The latter uses
only one grammar (for both the source and the target language) while the former really
translates one language to another , both specified in two dif ferent grammars in ASF+SDF .

So we are dealing with two grammars and a set of equations that translates terms of one
grammar into their equivalents in the other grammar .

This can be seen when one looks at the modular str ucture of the translator . As a basis
we have modules that are shared by both grammars (i.e. characters and digits), above
that the two grammars are separated but with the same structure and in the middle we
see the translation modules. It is illustrated by Figure 5.2.1.

Figure 5.2.1

Since we ar e working with Clean COBOL the translating pr ocess is pr etty straightfor -
ward. Here you see how a subtraction is translated (translate the left operand, translate
the rest and subtract it):

5.2

27

[AE2] COB2GLF-MulExpr(COB-MulExpr1) = GLF-AriExpr1 ,
 COB2GLF-AddExpr(COB-MulExpr2 COB-AddSubExprList) = GLF-AriExpr2
 ====================
 COB2GLF-AddExpr(COB-MulExpr1 - COB-MulExpr2 COB-AddSubExprList)
 = sub(GLF-AriExpr1 , GLF-AriExpr2)

Note the difference between the COBOL and the GLF sorts. Where COBOL distin-
guishes between several arithmetic expressions (such as Multiply-Expressions and Ad-
dition-Expr essions) GLF only works with one sor t, the Arithmetical-Expr essions. Fur -
thermore the COBOL expression works with two operands, an operator and the rest of
the expression whereas GLF just has an operator on two Arithmetical expressions (con-
taining the rest).

Logical expr essions ar e handled similarly .
At the ground level of the translator several type conversions are needed. These include

the adding of labels or the translation of typical COBOL language constructs in a more
general way . These translations ar e not explicitly mentioned in the above since they ar e
of merely technical use.

The GLF-Toolbox

Now that we have GLF we can manipulate it to make it meet our demands. As long as
we stay within the GLF grammar we can perform all kinds of operations without modi-
fying the other r ewriters. W e have implemented two nor malizers and a few other opera-
tions.

The Conjunctive Normal Form CNF
Normal forms can be beneficial for both humans as well as computers in interpreting

the value of a logical expr ession. W e will describe the transfor ming of GLF expr essions
to their conjunctive normal form, or CNF.

A conjunctive normal form is defined like this:
• it is the conjunction (and’ing together) of clauses;
• each clause is a disjunction (or’ing together) of blocks; and
• each block is either an atomic expression or a negated atomic expression (pre-

ceded by a ‘NOT’).
In our case atomic expressions are relational expressions.
Translating this definition to GLF we have the following components:

• An atomic expression:
in our case this is a relational expression such as ‘eq(A, B)’ (meaning A equals B).

• A negated atomic expression:
this is simply a negated atomic relational expression like ‘not(eq(A,B))’.

• Disjunctions of blocks:
Just apply the disjunction to blocks for instance ‘or(disjunctions_of_blocks ,
disjunctions_of_blocks)’.

• Conjunctions of clauses:
i.e. and(conjunctions_of_clauses, conjunctions_of_clauses).

So if ‘A’, ‘B’ and ‘C’ ar e valid atomics.

and(A,or(A,or(B,not(C)))) = A AND (A OR B OR NOT C) is in CNF
and(A,or(A,not(or(B,C)))) = A AND (A OR NOT (B OR C)) is not in CNF

5.3

A General Model for Logical Expressions

28

When working with the operators ‘AND’, ‘OR’ and ‘NOT’ three rules must be ap-
plied to get an expression in CNF:

moving the negations inwards (De Morgan):
not(A AND B) -> NOT (A) OR NOT (B)
not(A OR B) -> NOT (A) AND NOT (B)

In ASF+SDF it is written like this:

[mn3]
move-negs(not(and(GLF-LogExpr1, GLF-LogExpr2))) =
 or(move-negs(not(GLF-LogExpr1)) , move-negs(not(GLF-LogExpr2)))

[mn4]
move-negs(not(or(GLF-LogExpr1, GLF-LogExpr2))) =
 and(move-negs(not(GLF-LogExpr1)), move-negs(not(GLF-LogExpr2)))

Now that all the negations are moved inwards we need to

distribute the ‘or’ over ‘and’:
or(A, and(B,C)) -> and(or(A,B) , or(A,C))

So the ‘and’ s ar e moved to the outside and the ‘or ’s to the inside.
The core of this is written down like this in ASF+SDF:

[do1] distribute-ors(or(GLF-LogExpr1, and(GLF-LogExpr2,GLF-LogExpr3))) =
and(

distribute-ors(or(GLF-LogExpr1, GLF-LogExpr2)) ,
distribute-ors(or(GLF-LogExpr1, GLF-LogExpr3))

)

When we encounter a disjunction with no direct conjunctions in it (this is because it is
a default-equation, the former equation has got a higher priority and would match first
in such a case) we distribute the disjunctions within the sub-expressions first. When they
are transformed to CNF a conjunction could have been moved outside to one of the
results (in this case the second operand of the conjunction was transfor med to CNF,
GLF-LogExpr4, and contains an conjunction). This means that the whole expression
has to be processed again since this conjunction must be moved outside the whole ex-
pression as well.

[default-do6]
distribute-ors(GLF-LogExpr1) = GLF-LogExpr3, %% convert arguments
distribute-ors(GLF-LogExpr2) = GLF-LogExpr4, %% to CNF
is-and(GLF-LogExpr4) = YES %% this arg has one or more ‘and’s
====================
distribute-ors(or(GLF-LogExpr1, GLF-LogExpr2)) =
distribute-ors(or(GLF-LogExpr3, GLF-LogExpr4))

If we want to transform an expression to CNF we first move the negations inside (since
that operation can generate additional conjunctions) and then distribute the disjunction:

[CNF1] move-negs (GLF-LogExpr1) = GLF-LogExpr2,
 distribute-ors (GLF-LogExpr2) = GLF-LogExpr3
 ====================
 2CNF (GLF-LogExpr1) = GLF-LogExpr3

In practice we found it useful to make a transformation that removes the negations
while transfor ming an expr ession to CNF. When the negations ar e moved to the inside
of the expression, i.e., up to the relational expressions we can make them disappear by
inverting the relational operator:

29

not(A > B) can be written as (A <= B)
not(A = B) can be written as (A <> B)

or in GLF:

not(gt(A,B)) = lte(A,B)
not(eq(A,B)) = neq(A,B)

This means we will remove the negations instead of just moving them:

[CNF1] remove-negs (GLF-LogExpr1) = GLF-LogExpr2,
 distribute-ors (GLF-LogExpr2) = GLF-LogExpr3
 ====================
 2CNF (GLF-LogExpr1) = GLF-LogExpr3

The Disjunctive Normal Form DNF
The Disjunctive Normal Form, or just DNF, is ver y similar to the CNF. The dif fer ence

lies in the use of the logical operators. Where in the CNF we have conjunctions of dis-
junctions, we work with disjuncted conjunctions in the DNF . The transfor mation is
very similar to the CNF transformation, we will not describe it here.

Removal of operators
When testing the system we found it useful to add a few other operations to the GLF

Toolbox. These operations r emove cer tain operators fr om logical expr essions. The GLF
Toolbox can r emove negations (r emove them inwar ds and inver t the r elational opera-
tor), disjunctions and conjunctions.

Disjunctions are removed using the following rule (De Morgan):
or(A,B) = not(and(not(A), not(B)))

Conjunctions can be removed as well (De Morgan):
and(A,B) = not(or(not(A), not(B)))

GLF to UIGLF

The most interesting thing about the GLF to User Interface GLF translator is its bracket-
policy. As described befor e it intr oduces brackets when operators have a higher priority
and when they are necessary to force priorities. Brackets are left out when the same
binar y operator is used a few times successively , since in that case it does not contribute
to the r eadability .

In GLF it is not very hard to see which sub-expressions must be resolved first (may
need brackets). Whenever we encounter any kind of operator with two operands we
know those two operands have a higher priority to be resolved and thus may be paren-
thesized.

Too many par entheses do not impr ove r eadability so we do apply a few extra r ules:
• When an operator of the same priority is encounter ed don’ t use brackets.

((A + B) + C) - D can simply be written without brackets: A + B + C - D
• A negation does not need (extra) brackets

(not(A)) is written as not(A)

5.4

A General Model for Logical Expressions

30

• Within r elational expr essions we do not add extra brackets
((A) > (B)) OR (C) will be written as (A > B) OR C

So when we translate an operator such as the addition we translate the operands with
brackets except when the first operator is an operator with the same priority as the addi-
tion (UIGLF-AriExpr-b-add), such as subtraction or addition itself:

[UI-AE1] UIGLF-AriExpr (add(GLF-AriExpr1,GLF-AriExpr2))
 = UIGLF-AriExpr-b-add(GLF-AriExpr1)
 +
 UIGLF-AriExpr-b-add(GLF-AriExpr2)

The function that places the brackets (UIGLF-AriExpr -b-add) is implemented to con-
tinue (without placing brackets) when it encounters an addition or substraction, and to
continue while placing brackets (UIGLF-AriExpr -b) in all other cases:

%% With addition proceed without brackets
[UI-AEb-add1] UIGLF-AriExpr-b-add (add(GLF-AriExpr1,GLF-AriExpr2))
 = UIGLF-AriExpr (add(GLF-AriExpr1,GLF-AriExpr2))

%% With subtraction proceed without brackets
[UI-AEb-add1] UIGLF-AriExpr-b-add (sub(GLF-AriExpr1,GLF-AriExpr2))
 = UIGLF-AriExpr (sub(GLF-AriExpr1,GLF-AriExpr2))

%% In all other cases just add brackets:
[default] UIGLF-AriExpr-b-add(GLF-AriExpr)
 = UIGLF-AriExpr-b (GLF-AriExpr)

The UIGLF-AriExpr-b function just adds brackets around any expression.
With logical expr ession the same r ules apply except in this case adding brackets means

adding brackets except when a negation is encountered:

%% No, we don’t add brackets here:
[UI-LEb3] UIGLF-LogExpr-b(not(GLF-LogExpr))
 = UIGLF-LogExpr (not(GLF-LogExpr))

%% In all other cases we do add brackets:
[default] UIGLF-LogExpr-b(GLF-LogExpr)
 = (UIGLF-LogExpr (GLF-LogExpr))

Examples

To illustrate the use of the system we pr esent some examples of r ewritings.

A Small expression
We will be working with the following input in COBOL (unr estricted):

A > B OR NOT C AND D

When disabbreviated to Clean COBOL it looks like this:
(notice how the ‘NOT’ does not propagate since it does not preceed an operator)

A > B OR NOT A > C AND A > D

5.5

31

translated to GLF we get:
(notice how the conjunction binds stronger):

or(
 gt(id(vn(A)),id(vn(B))),
 and(
 not(gt(id(vn(A)),id(vn(C)))),
 gt(id(vn(A)),id(vn(D)))
)
)

to UIGLF:

(A > B) or (not(A > C) and (A > D))

to CNF:

((A > B) or not(A > C)) and ((A > B) or (A > D))

to DNF (notice that the expression was already written in DNF):

(A > B) or (not(A > C) and (A > D))

to DNF without negations:

(A > B) or ((A <= C) and (A > D))

A large expression
The expression in (unrestricted) COBOL:

 A > B OR < D AND NOT C AND B = D OR B NOT > E

After a cleanup we get:

A > B OR A < D AND NOT A < C AND B = D OR NOT B > E

It can be translated to the following GLF expression (pretty-printed by hand):

or(
 gt(id(vn(A)) , id(vn(B))),
 or(
 and(
 lt(id(vn(A)) , id(vn(D))),
 and(
 not(lt(id(vn(A)) , id(vn(C)))),
 eq(id(vn(B)) , id(vn(D)))
)
),
 not(gt(id(vn(B)) , id(vn(E))))
)
)

Notice how the disjunction (since it has a lower priority) is first in the GLF expression
and therefore higher in the parse tree.

When translated to UIGLF we see how the expression becomes readable:

 (A > B) or ((A < D) and not(A < C) and (B == D)) or not(B > E)

Notice that only when a new (logical) operator is encountered, brackets are used.

or(gt(...) , or(... , ...))

A > B OR A< D AND NOT A<C AND B = D OR NOT B > E

or(and(... , ...) , not(...))

A< D AND NOT A<C AND B = D OR NOT B > E

gt(id(vn(A)) ,
id(vn(B)))

A > B

not(gt(id(vn(B)),
id(vn(E))))

NOT B > E

and(lt(...) , and(... , ...))

A< D AND NOT A<C AND B = D

lt(id(vn(A)),
 id(vn(D)))

A > D

and(not(lt(id(vn(A), id(vn(C)))),
eq(id(vn(B)) , id(vn(D))))

NOT A < C AND B = D

Partial parse tree of
‘A > B OR < D AND NOT C AND B = D OR B NOT > E’

(after cleanup, before translation to GLF).

32

A General Model for Logical Expressions

We can transfor m it to CNF:

((A > B) or not(B > E) or (A < D)) and
((A > B) or not(B > E) or not(A < C)) and
((A > B) or not(B > E) or (B == D))

and to CNF without the negations (for improved readability):

((A > B) or (B <= E) or (A < D)) and
((A > B) or (B <= E) or (A >= C)) and
((A > B) or (B <= E) or (B == D))

to DNF (we notice that the expression was already in DNF):

(A > B) or
((A < D) and not(A < C) and (B == D)) or
not(B > E)

DNF without negations:

(A > B) or
((A < D) and (A >= C) and (B == D)) or
(B <= E)

33

6.

6.1

6.2

Concluding Remarks
after Part I

Now that we have presented our source (COBOL or Clean COBOL), our target
(GLF or UIGLF) and our rewriters we will summarize the results.

Conclusions

In this part we have discussed the non-intuitive way logical expressions can be written
in COBOL. We have pr esented a r ewriting system that enables us to disabbr eviate those
expr essions to a clean for mat fr om which we can translate them to a general logical for -
mat, GLF. The design of the r ewriting system and the logical for mat is modular so the
system as a whole can easily be extended to different languages.

We have shown that on GLF various translations and transfor mations ar e possible to
improve the readability and analysis of GLF-expressions. This makes control (flow)
analysis within legacy systems an easier task.

The “plugging in” of this system into an existing analysis system is described in part II
of this thesis.

Future work

A lot of opportunities for extending the current rewriting system exist. The most eli-
gible part to extend is the GLF toolbox. One can think of optimizations of logical ex-
pressions or statistics about the size, the amount of operators and whether an expression
can be satisfied if one relational expression (within that expression) can not.

Other languages can be added to the system as well. Simply make a rewriter that trans-
lates Pascal logical expr essions to GLF and the GLF-Toolbox as well as the UIGLF-
translator will work on them.

A larger extension of the system would be the extension of GLF . The GLF described in
this thesis can not handle function calls or other (user -defined) Boolean atomics.

Although lots of opportunities for future work are available we stress that the current
system is enough to do some serious rewriting on COBOL (legacy) systems.

Part II
Embedding A Formal Specification

in a Commercial Environment

The ASF+SDF Meta-Environment is an interactive programming
environment for developing specifications in the algebraic specifica-
tion formalism ASF+SDF. It provides a variety of tools useful for the
development of stand-alone term rewriting systems based on this for-
malism.
The use of formal specifications can enhance the development of soft-
ware especially in the area of software (re-, reverse-) engineering,
but in practice it is used only rarely due to various practical issues.
This part of the master’s thesis describes an industrial application of
the ASF+SDF Meta-Environment especially focusing on porting it
to, and integrating it in, an existing commercial system.
Though various applications of ASF+SDF in commercial environ-
ments are known [BDKM96] there has never been an integration on
this level, where we take the functionality of the Meta-Environment
and totally adjust it to its new surroundings.

37

7.1 The Current Situation

Software renovation systems often consist of many com-
ponents each with different functionality. During the reno-
vation process various compilers or other translators/rewrit-
ers play an important role. In some of these phases a need
for abstraction exists. Formal specifications of (program-
ming) languages are a way to implement translators and re-
writers in an abstract way.

Since the systems that need to be renovated often are of
vital importance to society (such as systems at banks, air-
ports, hospitals, government institutes or even military systems and nuclear plants) the
renovation system must be reliable. A firm theoretical description of the software reno-
vation system can be very beneficial to its reliability. An algebraic formalism like ASF+SDF
supported by the ASF+SDF Meta-Environment [Kli92] is very suitable for these pur-
poses. ASF [BHK89] and SDF [HKR89] together form a powerful way of describing
specifications and term rewriting systems.

The ASF+SDF Meta-Environment
The ASF+SDF Meta-Environment [Kli92] is a programming environment for writing

ASF+SDF specifications. From a modular language definition and equations of a lan-
guage it can parse, rewrite and pretty-print terms (programs) over that language. It con-
sists of a variety of components together forming a programming environment.

With the development of the new ASF+SDF Meta-Environment [BKM97] a number
of features have been added that open opportunities for integrating its rewriting capa-
bilities in other systems. Existing (software renovation-) systems can thereby take ad-
vantage of the ASF+SDF specification formalism in some of their components without
having to modify existing ones.

Still it is not just a matter of ‘plugging in’ a rewriting system into an other system.

Problem
Despite the functional benefits of formal specifications they are far from widely spread

outside the scientific world. There are few complete solutions (like the Meta-Environ-
ment) that provide functionality for formal specifications and they are mostly developed

A bridge, a way to connect two environments
that are separated by water or gaps.

7. Introduction
In this chapter we will briefly describe the two environ-
ments between which we are working. We will give glo-
bal information on the properties of these environments
and issues we must address during the embedding pro-
cess.

Embedding a Formal Specification in a Commercial Environment

38

in scientific environments (like universities) rather than in commercial (like corpora-
tions) environments. Several differences between a scientific and a commercial environ-
ment exist that have led to this unilateral development.

The development of such a system requires a lot of theoretical background and re-
search in order to give it its necessary firm basis. It is a long-term project that can take
years to finish. Companies often do not take the risk to invest their money, time and
personnel into such a time consuming project, especially in the fast IT business. Even
purchasing a system like that, if a complete system is found, is not straightforward. Com-
panies have different requirements and digital infrastructure than most scientific insti-
tutes.

Scientific institutes are willing to take chances and time to develop such a project be-
cause their interest lies in the research as well as the results. They are also willing to share
and exchange knowledge with other institutes rather than trying to keep the competi-
tion ignorant of their projects. The ASF+SDF Meta-Environment is no exception and is
also developed in a scientific environment. It has already been used in some commercial
projects [BDKM96] but it has never truly been embedded in an external system.

Our question, our goal
We are going to describe the process of a low level integration of the ASF+SDF formal-

ism using the functionality of the Meta-Environment in a commercial environment. This
means that the formalism will be a part of a commercial application rather than part of a
process. We will show how it is done, which issues have to be considered and which
choices have to be made. This project can function as a pilot or an example for future
projects.

The main questions of this part of the thesis are:
• Can we embed the ASF+SDF functionality of the Meta-Environment in a com-

mercial environment?
• Which problems do we encounter?
• Which choices have to be made?

Our goal will be to extract only the functionality we need from the Meta-Environ-
ment, to modify it in such a way that we can make a stand-alone component of it and to
embed it in an external system.

Lots of problems need to be investigated and solved in order to make the low level
integration possible. We encounter system design differences, platform differences and
language differences that have to be solved.

Environment Differences

When trying to integrate the Meta-Environment in a commercial environment prob-
lems on different levels arise. Of course we will encounter various technical incompat-
ibilities, but also on a higher level several issues regarding the design of both systems
need to be addressed.

System Differences
We could try to make the whole environment part of the system but it is preferable to

only use the functionality we need and build this into a tool or some kind of component
that can be ‘plugged’ into the existing system. Such a component should be set up in a
way that it is as independent as possible of both the renovation-system and the Meta-
Environment. It should be ‘unpluggable’ at any time without messing up the other sys-

7.2

39

tems. We would like to have as little user-interference as possible so it can
stay a clean ‘black box’ with a clear input and output.

We would also prefer to leave the exact ASF+SDF specification (the term
rewriting system, TRS) as a separate part within our component so its re-
writing capabilities can easily be changed without having to modify all the
other, technical parts, of the system.

The Meta-Environment exists of a large collection of tools that communi-
cate with each other using the Toolbus [BK98]. The tools are independent
executable applications. Since we want to embed their functionality in an
external system they should be translated into libraries. This change in design means we
have to replace the Toolbus with a new tool that explicitly handles the communication
between the other tools.

Platform and Language differences
When we try to embed a ‘scientific system’ like the Meta-Environment in a ‘commer-

cial system’ we run into the differences between scientific and commercial computer
platforms.

The Meta-Environment is developed on the Unix platform (i.e. Sun So-
laris, Linux, Apple Mac OS X, Compaq Tru64 etc) while in commercial cor-
porations the most widely used development computer-platform is Wintel
(Windows on Intel-processor based machines). Fortunately, in the Unix world
it is very common to distribute scientific applications and tools with their
source-code (and makefiles). This makes it more important to Unix-pro-
grammers to program platform independent (at least Unix-platform inde-
pendent) and make relatively ‘easy-to-compile’ distributions of their sources.

Windows NT has got quite a bit of Unix or Unix-like core, so porting the
code seems at least possible.

Still lots of differences arise between the platforms. Like it or not, source
code on a Unix machine compiled with compiler A can have different be-
havior from the same source code compiled with compiler B on a Wintel

machine, if it even compiles. Functionality that is available on the Unix platform might
not be available within Windows NT; some functions have slightly different side effects
while others have different preconditions and so forth.

When we have the ideal situation of a complete system under Wintel we discover a new
challenge: language differences. All the source-code we need from
the Meta-Environment is written in ANSI C [KR88]. C is a very
common programming language that is used in a lot of commercial
environments. However larger systems like the one in which we
like to adopt our rewriting system often are written in more than
one programming language. In our case the core of the external
system is mostly written in Java [Eck98] whereas the graphical user
interface has been made using Visual Basic [SM97].

Our goal will be to filter out any vital platform incompatibilities
and develop an interface/adapter between our component and the existing system, to
overcome the language differences.

Sun’s Solaris is the
development

platform on which
most of the Meta-

Environment is
developed.

Microsoft’s Windows NT is the
development platform used by
TriLoc to develop most of their

tools.

In the Meta-Environment
the components are

connected by the Toolbus.

40

Embedding a Formal Specification in a Commercial Environment

41

An in-depth look at
the Meta-Environment

The Meta-Environment is a complex system consisting of many
different tools that work together. In order to adapt this system to its
new surroundings we have to have detailed knowledge about its tech-
nical background and its design. The following sections discuss the
parts of the system that are important to our project.

ATerms and AsFix
In order to exchange data between its components the Meta-Environment uses Anno-

tated Terms [BJKO99]. Annotated terms, or just ATerms, form a data structure that is
ideal for communication between tools because they are platform and language inde-
pendent and simple to create, compact and extend.

To make ATerms available to other applications a C-library [JO99] has been developed
that provides high performance operations on ATerms as well as input-output and effi-
cient memory management. Input-output is possible in textual or in a more compressed
binary format. A minimal amount of memory is required when working with ATerms
thanks to the technique of maximal sharing: only new terms are created, if a term to be
constructed already exists, that term is reused and only a reference to that term is cre-
ated. Memory management is done by a built-in mark-sweep garbage collector. Although
a lot of redundant terms are produced during the rewriting process, the use of maximal
sharing gives the ATerm library a sometimes spectacularly efficient memory usage, as
described in [BKO99]. This is beneficial since ATerms can also be used as an internal
data-structure for data (such as parse trees) within running applications. In order to
make use of this feature the components have to share the same ‘ATerm environment’,
with the same stack, the same garbage collector and the same memory manager.

To represent ASF+SDF specifications and terms a special incarnation of ATerms is
used, the ASF+SDF Fixed format, or just AsFix. AsFix terms can be regarded as parse
trees of ASF+SDF specifications. They can be managed just like ATerms but are easier to
use when working with ASF+SDF. An extra C-library is available, the support-library,
to give support for creating and manipulating AsFix terms.

We will mostly be working with AsFix but since every AsFix term is a valid ATerm as
well, they can be regarded ATerms.

8.1

To get a clear view on the whole
picture it is necessary to

understand its components.

8. The Components
In this chapter we will give an in depth description of our existing
‘source’ components and the component we are going to build,
the ‘target’.

Embedding a Formal Specification in a Commercial Environment

42

The Compiler
The compiler perhaps is the most important part of the system for our project. It com-

piles the ASF+SDF specification (represented in AsFix) to ANSI C code. Since we want
to do our rewriting without an interactive environment and on a different platform we
prefer to use C code, that can be compiled to a library and used by our external systems,
to represent our TRS rather than the ASF+SDF specification itself. So without the com-
piler, integration to the level we prefer would surely be impossible.

More information on the ASF+SDF to C compiler can be found in [BKV98].

The SGLR-Parser
Another important component in the ASF+SDF Meta-Environment is

the parser. Before we can rewrite our input it needs to be recognized and
identified, that is where a parser comes in. The parser should support all
kinds of grammars that can be specified in the Meta-Environment with
SDF. It needs to be language independent and capable of parsing SDF-
specifications. The parser that is used is the Scannerless Generalized Left-
to-right Rightmost derivation parser, or just SGLR-parser [Vis97]. In many
cases scanners are used to divide the input into lexical tokens (specified by
the lexical syntax, the regular grammar) which are in turn parsed by a parser
who returns a tree according to the context-free syntax. A downside to this
approach is the fact that no knowledge of the parsing context is available to
the scanner meaning that the context of a token can not be used to disambiguate its
meaning.

The ‘S’ in SGLR stands for ‘Scannerless’ this means (among other things) that the lexi-
cal and context-free syntax are both handled by a single context-free analysis phase thereby
providing the ability to take the context of a token into account during the parsing pro-
cess. For further disambiguation reject-rules and context-free restrictions can be used
providing ways to, for instance, force ‘prefer longest match’ and ‘prefer keywords over
tokens’.

The ‘G’ is taken from ‘Generalized’. Generalized-LR parsing [Vis97-2] basically comes
down to the fact that when an ambiguity is found the parser produces all possible parse
trees of the input, resulting in a so-called parse forest. In practice we found the forests
very helpful while disambiguating our grammars, it proved to be a nice debugging facil-
ity.

The ‘L’ stands for left-to-right scanning of input.
And finally the ‘R’ stands for rightmost derivation in reverse. The consequences of

these properties are beyond the scope of this thesis.

Creating a Term Rewriting System using the Meta-Environment
The porting process reaches beyond the need to just compile the code provided by the

compiler on a different platform. Translations are needed as well as choices regarding
design.

To clarify our needs we will now describe how a ‘stand-alone’ rewriting system (that is
operational under Unix) is created with the Meta-Environment. The process is illus-
trated by Figure 8.1.1.

Dr. Eelco Visser.
Expert on sglr-parsing

43

SupportATerm AsFix

Meta
Environment

C
Compiler

TRS
Executable

AsFix2Text
tool

SGLR
parser

C-source
trs

AsFix
trm

AsFix
rw trm

Text
trm

Text
rw trm

Parse table

Figure 8.1.1

• The built-in compiler of the Meta-Environment translates our specification into
ANSI-C.

• The obtained C-source is fed to a C-compiler along with the ATerm and AsFix
libraries as well as an extra support library, which can then be compiled to an
executable application, the TRS executable.

• This term rewriting system executable cannot just rewrite strings of terms; it re-
quires a parsed term in AsFix format as input. In order to obtain a parsed AsFix-
term from our input string we need to parse it and embed the production rules of
the input (gathered from the signature of our ASF+SDF specification) into that
term.

• A textual representation of an input term can be parsed to an AsFix-term by the
SGLR-parser given some parse table in ATerm format.

• This AsFix term can be used as input for our TRS-executable which will produce
a rewritten term.

• This rewritten AsFix-term can be translated to text in various ways with some
kind of AsFix2Text tool (functionality is provided by the AsFix library).

With a design like this we can, e.g., create an ASF+SDF specification for the Booleans,
feed the term ‘true | false’ to SGLR, rewrite it and receive ‘true’ from our AsFix2Text
tool.

A TRS component for Windows NT

Now that we know the sequence of steps to rewrite terms with an independent TRS we
need to make decisions about which parts of the system we need to port, how we will
make them work together and in what way they should communicate with the external
system.

What can we port?
We will leave the Meta-Environment and the Toolbus untouched since these systems

are very complex, still partly under construction, hard to port and therefore beyond the
scope of this project. Besides it is our goal to create a library rather than a set of tools that
we have to embed in an existing system. This means we will still have to create the source
code of our TRS on Unix but we can rewrite terms on another platform. Perhaps when
this project succeeds, and most of the tools and libraries are ported, it will be interesting
to look at possibilities to port larger components like the Toolbus to Windows NT as
well.

8.2

Embedding a Formal Specification in a Commercial Environment

44

Without the Toolbus it is necessary to think about a way the re-
maining tools have to communicate. In our case we need to connect
the TRS to a larger system and the ideal situation is an independent
stand-alone library that can be used in the current system. This means
we have to modify the tools to libraries with functionality indepen-
dent of the Toolbus and other unused components. Another thing
we have to keep in mind is that we want the system to be modular
with at least the TRS as a separate part so we do not have to modify
the whole system when we use a different ASF+SDF specification.

Thanks to the Unix-way of installing software we have the source-
code of every component we need so we can modify it in a way to
make it suitable for our purposes. We prefer to leave all automati-
cally generated code of the TRS untouched, because when we modify that we will have
to do so each time we create a new TRS.

The complete system will look like figure 8.2.1.

Meta
Environment

ASF+SDF2
specification

TRS
component

C-source
(and Parse Table)

External
System

Support

ATerm

AsFix

Figure 8.2.1

The Meta-Environment is still operating under Unix while the rest of the system is
ported to Windows NT. The TRS-component that must be created can be a library, a
stand-alone tool or something in between like a dynamic linked library that can be loaded
and called from the external system.

A more technical thing we have to keep in mind is the use of the ATerm library. A lot of
the components we need, make use of this library and if we want to fully exploit its
maximal sharing capabilities, we must try to make them use the same ‘ATerm-environ-
ment’ (instance of the ATerm library). Initializing and using the library explicitly for
each component would make the system very inefficient.

Interfacing our TRS with the existing system
As mentioned above we have several choices regarding the functionality of our TRS.

We can choose to leave this tool as small as possible thereby requiring the external sys-
tem to translate the in- and output to and from AsFix. We can also choose to integrate
the translations within the TRS and hide the AsFix notation from the external system.

We will discuss three possible interfaces in some detail.

 Interface 1: The Indirect Interface
The indirect interface leaves the external system unaware of the AsFix. A textual repre-

sentation of a term (like ‘true | false’) can be fed to the TRS and it will produce the
rewritten term in a textual representation (like ‘true’) as output (Figure 8.2.2).

TRS"true | false" "true"

Figure 8.2.2

The Toolbus is a software applica-
tion that utilizes a scripting

language based on process algebra
to describe communication between

software tools.

45

With this interface the TRS-component consists of 4 subcomponents: an adapter to
handle communication and flow of control, an SGLR-parser subcomponent, an AsFix-
to-text converter subcomponent and of course a TRS subcomponent (Figure 8.2.3).

Meta
Environment

SDF2
trs

Text
rw trm

Text
trm

Parse table

External
System TRSAdapter

AsFix2Text
converter

SGLR
parser

Figure 8.2.3

A benefit of this implementation is the independence between the component and the
external system. Terms are being rewritten and there is no need for further interaction or
tuning between both systems. A totally different TRS-component can be linked to the
system without any necessary modifications.

Performance, however, can become a problem with this implementation. In the exter-
nal system the input is produced in some way and has probably already been parsed.
Now it needs to be translated back to text which is being parsed again by our compo-
nent, rewritten and converted back to text (AsFix2Text) to be parsed (for the third time)
by the external system.

Interface 2: The Direct Interface.
The direct interface leaves the external system with the task of creating AsFix terms.

This means that the system must have access to the ATerm library (and preferably the
AsFix library as well) and must have some knowledge about the signature of the
ASF+SDF-specification which must be embedded in the (parsed) input term. The TRS
just rewrites these terms and returns them in AsFix format. The ATerms can be trans-
ferred in the compact binary format (Figure 8.2.4).

TRS
component

AsFix
rw trm

AsFix
trm

External
System

ATerm
java

(notion of)
the signature

of the ASF+SDF
specification.

Figure 8.2.4

The parsing is done in the external system which means it can be dedicated and opti-
mized for the given TRS. No additional translations from parsed-terms to text, or vice
versa is needed and with appropriate implementation some time is saved.

Of course there can be no independence between the external system and the TRS since
parsing has to be done according to the signature of the TRS. The external system has to
have knowledge of the production rules of the TRS and the ATerm library. If another
TRS is needed this means that extensive changes are needed within the external system in
order to make communication possible.

Embedding a Formal Specification in a Commercial Environment

46

Interface 3: Total Integration
The third possibility is total integration. The key feature of this implementation is that

the external system has the same ‘ATerm environment’ as the TRS. This is the solution
for real maximal sharing. Providing us with a very memory- and time-efficient solution.
To make this possible we need to have as much ATerm functionality available within our
external system as possible. Unfortunately such functionality is not yet available in Java,
and language differences, especially the memory management differences between Java
and C, make maximal sharing almost impossible. This implementation also puts a lot of
constraints on the external system making it totally dedicated to a specific TRS.

Our choice
In our situation the independence between the components is of vital importance. The

Meta-Environment, the external system and the TRS are all under construction and we
must be able to ‘plug’ and ‘unplug’ a specification at any desired moment. In certain
situations it is even desirable to use different TRS’s from the external system. This leads
us to the first type of interface.

Furthermore the construction of AsFix input terms in the external system is hard to
do, since it also means that the signature of the ASF+SDF specification should be parsed
(or the parse table from the Meta-Environment should be interpreted).

Wrapping up the design

The idea is to write code that uses the functionality of our three subcomponents (SGLR,
the TRS and AsFix2Text) in order to achieve the desired effect. We could also have cho-
sen to use these subcomponents as separate tools (and thereby modifying the existing
code as little as possible) but that would mean we had to initialize and instantiate a new
instance of the ATerm library for each subcomponent. Now we only instantiate the
ATerm library once meaning we have minimal overhead and maximal sharing. The code
is stored in a library called the Meta-Adapter.

The Meta-Adapter can be viewed upon as a kind of sequencer. The components under
Unix are mostly tools (stand-alone applications) that communicate with each other us-
ing the Toolbus. We want to modify these tools in such a way that they become libraries,
independent of the Toolbus. This mostly requires the removal of code (such as main-
functions and Toolbus functionality).

In our approach the Meta-adapter takes over the communication between the subcom-
ponents previously handled by the Toolbus.

An in depth look at the Meta-adapter
The Meta-Adapter is the most interesting part of the Windows NT system when it

comes to understanding the design. We will now give a more detailed description of its
behavior by focussing on some of its source code.

Along with some error handling functions the Meta-Adapter contains an initialization
function in which the parse table is loaded (parsed) and a rewrite function that starts the
actual rewriting process.

Initialize TRS
The initialization function gets the location of the parse table and tries to load it. When

the parse table is parsed successfully it initializes the rewriter.
The parsing of the parse table is the most time-consuming process within the rewriter

so it is very beneficial for the efficiency to parse it only once.

8.3

47

In pseudo-C it looks like this:

/* Pseudo code of Metadap.c: the implementation of the
 * indirect interface.
 * The code is not clean C, it represents only a fraction of the
 * real code but it is more readable leaving out unnecessary
 * details.

 */

void initialize_trs(char * ptable) {
AFinit(...); /* initialize the ATerm library */
read_parsetable(ptable);
init_rewriter(); /* initialize the TRS-subcomponent */

}

The initialization of the ATerm library through our whole component only occurs in
this function. Since initialize_trs is called only once this means that all our ATerm-op-
erations that are initiated by the rewriter, parser or other subcomponents will operate on
the same ATerm environment. This ensures us of maximal sharing within our system to
keep our memory usage as efficient as possible (by the current ATerm library standards).

Rewrite Term
Rewriting terms is the actual goal of our system. Once the initialize function has been

called the rewriter will be executed many times.
In pseudo-C it looks like this:

char *rewrite_term(char *input_term, char *ptable)
{

ATerm at;
char * output_term;
at = SG_Parse(SG_LookupParseTable(ptable), input_term);
at = innermost(at); /* Rewrite */
AFsource(at, output_term); /* AsFix2Text */
return output_term;

}

As seen above the rewrite_term function gets an input term in string format and re-
turns the rewritten term (also in string format).

The subcomponents are not called as separate tools (with a script or something) but a
more low level approach has been taken by directly calling certain functions that exist
within the sources of the components. This is a major deviation from the Toolbus ap-
proach that is normally used within the Meta-Environment. The subcomponents are
linked as static libraries.

Improvements of the Meta-Adapter
For the future it might be interesting to link the TRS-sub-component dynamically

allowing the use of other TRS’s without having to recompile the entire Meta-Adapter.
This would mean that we would have to re-initialize the new rewriter and perhaps close
(de-initialize) the old one. A user can locate TRS-dll’s and their accompanying parse
tables manually or through some repository. We, however, regard this extension as a task
that lies beyond the scope of this thesis and leave it for future work.

Combining the Sources
The Meta-Adapter has external references to functions that exist in the TRS-subcom-

ponent (the generated TRS-code) the latter is linked along with the Meta-Adapter to a
higher component which does the actual linking of the whole component.

This design enables us to rewrite terms in a clean, independent and an efficient way.
The TRS-component can be replaced by any other rewriting mechanism without the

48

Embedding a Formal Specification in a Commercial Environment

external system being modified in any way whatsoever, its functionality is well defined
(when the ASF+SDF specification is known) and clear and it makes use of the efficient
ATerm memory management.

The Compilers

We deal with a system that needs to be ported from Unix to Windows NT. An ANSI C
compiler (like CC or GCC) is used under Unix and we use Microsoft’s Visual C++
compiler under Windows NT.

49

9. Solving Differences
Now that we have defined our current situation and
our desired result, it is time to actually implement it.
We will be discussing many of the global differences
between platforms and languages that have influ-
enced our design strategies or are otherwise worth
mentioning. Of course we will also present ways to
solve the problems.

Platforms differences seem to reach further than
just technical issues, as shown by the ‘Operating

System Sucks-Rules-O-Meter’ which expresses
opinions found on websites on the internet.

Binary IO
When working with binary IO we ran into a problem the compiler did not warn us for.

Within Unix there does not seem to be a real difference between text and binary file IO.
When using Windows it is very important to tell the system you are doing your IO in
binary mode. If you forget to do so, strange things will happen. We, for instance, were
confronted with the fact that the hexadecimal pattern ‘1A’ would simply make the pro-
gram crash as soon as it was encountered during the IO. When this pattern was read
from a file that was open for non-binary reading, it was interpreted as an end-of-file
causing the system to stop reading. Of course this led to a variety of errors that where
hard to trace.

The ATerm library was doing its binary IO correctly when it came to files, but when
stdin and stdout were used as files, the library forgot to actually set them in the binary
mode. Within Unix this does not result in problems so we were the first to interpret this
as an error. Along with the ATerm-library developers we decided to fix this problem
within the binary file-IO function of the ATerm-library with the windows specific
_setmode statement:

#ifdef WIN32
if(_setmode(_fileno(file), O_BINARY) == -1) {

perror(“Warning: Cannot set file to binary mode.”);
}
#endif

By solving this problems within the code of the ATerm-library we make sure all the
code that makes use of the functions is corrected. It makes the library both easier and
safer to use.

Memory Management: Getting the registers.
Of course low-level memory management brings lots of problems when porting code.

We encountered various incompatibilities. We even discovered a bug in a memory initialise
statement during the porting process. A certain part of memory had to be initialized to
zero but only part of it actually was set. The function memset was called which sets a
specified number of bytes to a certain value (in this case zero) unfortunately it was called
to set a number of ATerms to zero without providing it with the size of an ATerm: the
call was memset(start-pointer, 0, nr-of-ATerms) but it should have been memset(start-

9.1

Embedding a Formal Specification in a Commercial Environment

50

pointer, 0, nr-of-ATerms * sizeof(ATerm)). Within Unix this did not result into
crashes because memory seems to be zero by default; within Windows NT however the
bug started to become a problem because memory is explicitly initialized to a different
value and the library started to crash at unpredictable moments.

The garbage collector within the ATerm library uses the mark-sweep tech-
nique [BJKO99]. In the mark-phase the memory must be checked for ATerms
in order to mark them. This includes checking the stack and the registers. In
Unix the sigsetjmp-function places the registers in a data structure which is
(automatically) placed on the stack. The stack can then be checked from top
to bottom. Unfortunately this functionality is not provided under Windows.
We need our own way to check the registers. On the internet we found the
Boehm garbage collector [Boe99], which is available for both Unix and Win-
dows, from which we concluded that the only way to solve our problem was
to use assembler. The assembler code copies the values of the registers into
local variables which are explicitly being fed to the garbage collector. Illus-
trated by the following code (this is not the exact code, it merely serves as an
extra explanation):

__asm { /* Get the registers into local variables
mov r_eax, eax * to check them for ATerms later. */
mov r_ebx, ebx
mov r_ecx, ecx
...

}
reg[0] = (ATerm) r_eax; /* Put the register-values into an array */
reg[1] = (ATerm) r_ebx;
reg[2] = (ATerm) r_ecx;
...
/* First traverse the reg-array
 * to count the nr of ATerms that were in registers
 */
 for(i=0; i<NR_OF_REGISTERS; i++) {
 if (AT_isValidTerm(reg[i]))
 AT_markTerm(reg[i]);
 if (AT_isValidSymbol((Symbol)reg[i]))
 AT_markSymbol((Symbol)reg[i]);
 }

Language Differences

The commercial environment in which we have to adapt our system is written in Java.
To make communication possible between the two systems an interface between C and
Java is needed. This interface is far from trivial since Java and C are different languages;
not just when looking at the object oriented way Java is designed, but also by means of
implementation. Java for instance has a built-in garbage collector that keeps track of
everything within the Java-program that uses memory. Fortunately, with Java
the Java Native Interface or JNI [JNI99] is developed to make communication
with C possible.

The JNI provides a set of C functions that take care of various translations and
memory incompatibilities. It can take a Java class-file with definitions of native
methods (which are the Java-counterparts of C-functions) and generate a C
header-file with the definitions of the C-functions.

Hans J. Boehm.
Creator of the

Boehm garbage
collector.

9.2

51

A Java native method, with its C-counterpart:

 public static native String
DoItInC(String istr, String ptable, String ssym);

 JNIEXPORT jstring JNICALL
Java_DoItInC (JNIEnv *, jclass, jstring, jstring,

jstring);

These definitions must be used as definitions of the actual C-func-
tions. In C several issues regarding Java’s memory management and
different types have to be addressed. For instance strings have to be
decoded before they can be used in C and simply freeing memory of variables declared
in Java is not allowed.

/* Decode a javastring */
*c_string = (*env)->GetStringUTFChars(env, j_string, 0);

/* Release a string so the Java garbage collector can remove it */
(*env)->ReleaseStringUTFChars(env, j_string, c_string);

When these issues have been addressed correctly C-functions can be called from Java,
arguments can be passed to them and return values can be received from them (the JNI
provides even more functionality, but we will not be using that in this project). The JNI
within our system is shown in Figure 9.2.1.

Sglr - Parser

TRS-subcomponent

AsFix2TextM
et

a
-

A
da

pt
er

JN
I

C
-p

ar
t

JN
I

Ja
va

-p
ar

t

E
xt

er
na

l S
ys

te
m

Figure 9.2.1

The external Java system communicates with a Java package which has a C-counterpart
with which it communicates using the JNI. The JNI C-part communicates with the
Meta-adapter which in turn is connected to the subcomponents of our TRS-component.

Error Handling: No Crashes Please.
At various points in the rewriting process in the TRS-component things can go wrong:

unparsable input-terms can cause the system to crash, illegal parse tables, a TRS-sub-
component with a (slightly) different signature than the parse table etc. An error does
not have to be a problem, a crash is.

Our system is embedded in a larger Java system that requires safe and secure error-
handling. We do not want the whole system to crash just because our TRS-component
has encountered an error. Fortunately, the ATerm library provides a way to implement
custom error-functions. With the ATsetErrorHandler-function we can pass our own
error-handler to the ATerm-library. An error message will be passed to this handler with
optional arguments.

void ATsetErrorHandler(void (*handler) (const char *format,va_list args))

When we encounter an error it is important to stop the current processes to prevent
more errors, or even crashes, from occurring. We must return to a safe state in which we
can report an error to the external system. In Java, a try-catch statement can be used to
this. In C we must do it ‘by hand’ with the functions setjmp and longjmp:

The Java Native Interface, talking
C and drinking Coffee.

52

Embedding a Formal Specification in a Commercial Environment

if(setjmp(env) == 0) {
/* do something,
 * if something goes wrong call longjmp(env,-1)
 */

} else {
/* Longjmp has been called: an error has occurred */

}

When we encounter the call to setjmp for the first time it returns zero and we continue
with the code. Within our custom error-handler, that is called every time an error occurs,
we have a call to longjmp and when that is called the stack (pointer) is changed to the
value it had when setjmp was called, i.e. we travel back in time to the setjmp call. This
time however setjmp returns -1 and instead of performing the statements that caused
the error again we proceed with the else-block.

Throwing errors from C to Java is possible (with JNI) but in our case we did not find it
preferable. We wanted to have as little Java-C-communication as possible. We decided
that on an error the TRS-component just returns an empty string and that the Java adapter

can check afterwards whether an error has occurred or not. If
one has occurred it can then explicitly get the error message
and throw an exception if that is desired. This way we only
call C-functionality from Java and not the other way around,
meaning that the external system really is an independent tool
with no links to the external system. In Java the code looks
like this:

public String RewriteTerm (String input_str) throws TrsException {
 String output_str = DoItInC(input_str);
 if (CErrorTest() == 0) {
 return output_str;
 } else {
 throw new TrsException(GetCErrorMsg());
 }
}

The DoItInC method (which is a JNI-call to a C function) always returns a valid string
(even on an error). The CErrorTest method checks whether an error has occurred and if
so, the GetCErrorMsg method gets the error message that can then be thrown as a Java-
exception. This way the external system does not even know the TRS-component is
written in a different language.

53

10.1

10. Concluding Remarks
after Part II

Adding it all up, some things can be said about our and other approaches
on embedding ASF+SDF functionality in commercial environments.
We will also be describing a few practical / technical issues.

Practical Issues

During the porting and testing process we discovered a few incompatibilities that still
need to be addressed.

Sun and Microsoft have different virtual machines
As described earlier the TRS component in Windows throws an exception when an

error is encountered. Strange enough this still resulted in a crash when it was tested.
After reviewing the code and the input, we decided to use a different virtual machine.

In our situation at TriLoc software engineering we are working with an external system
that contains a lot of Java and has an interface which is created with Microsoft’s Visual
Basic. In order to make the communication between the interface and Java as smooth as
possible we used Microsoft’s Java virtual machine. This generated crashes when we were
throwing exceptions. Sun’s virtual machine (for Windows) did not have this problem.
We hope this issue is addressed in future versions of Microsoft’s virtual machine.

Generated C-code and Old Meta-Environment React Differently
At the time of this writing the development of ASF+SDF specifications was still done

using the old Meta-Environment (based on the Centaur system).
We noticed that in some cases, some terms where not rewritten to their normal form

under Windows when under the Meta-Environment they were. This was the fact be-
cause the generated C-code of the ASF+SDF specification (generated by the Meta-Envi-
ronment) is more specific about the use of types than the old Meta-Environment.

The issue can be looked upon as a type casting problem. In the old Meta-Environment
subsorts of sort A are implicitly casted to work on rewrite rules of A. The generated C-
code expects the ASF+SDF programmer to be more specific about his or her type usage.

This is a known problem and will either be solved or correctly documented in the
future by the Meta-Environment development team.

Generated C-code will not compile
In rare cases the generated C-code simply will not compile because of a type incompat-

ibility. Since the developers of the compiler within the Meta-Environment believe it will

After this porting and
embedding process one

should be able to start and
run a TRS under Windows

Embedding a Formal Specification in a Commercial Environment

54

be beneficial for the efficiency, they do as little explicit typecasting as possible. The case
we discovered has been reported to them and we expect this issue to be resolved in the
next distribution of the system.

Not ALL C code is Generated by the Meta Environment
Strictly the Meta-Environment does not generate all of the source code needed to cre-

ate a TRS under Windows. An important file called init.c is not generated by the built-in
compiler but is implicitly defined in the (generated) Makefile. So after the C-code is
generated it is necessary to compile it (under Unix) to get the init.c file.

This is a known fact (but we are not sure it is a bug or a feature). At this time there is no
information available on whether this issue will be addressed or not.

Memory Leak!
When we rewrite a term under Windows we have a memory leak that occurs when the

term is parsed (and the parse table is looked up in the parse table database). This bug is
known both at the Meta-Environment development team as well as TriLoc but it has not
been precisely corrected or localized yet.

Conclusions

Embedding the functionality of a scientific system like the ASF+SDF Meta-Environ-
ment in a commercial environment is possible. To overcome system-, platform- and
language differences various choices have been made. Some parts need to be rewritten,
some parts have to be grouped together to acquire a system which is as safe as possible
without losing the necessary structure.

We have described the integration using a prototype of the Meta-Environment (since it
is still in a development stage), during the process we have given feedback to the devel-
opers which they have used to adjust the system to make future portings and projects
like this much easier.

Future Work

In the future, when there is need for several term rewriting systems to work with an
external system, dynamically linking the TRS subcomponent can be very beneficial. In
the current situation the TRS-subcomponent is fixed to the system at compile time, while
for instance the parse table can be chosen at run time.

Future work might also include the porting of the Toolbus and the Meta-Environment
itself but we suggest to wait with this until the development of the latter has been final-
ized (at least to a certain degree). The TRS-functionality, the ATerm and AsFix libraries
and the SGLR-parser can already be used in cases like this; thereby bridging the gap
between this scientific and other commercial systems.

10.2

10.3

Concluding Remarks

57

11. Concluding Remarks
Returning to the Introduction of this thesis we look at which goals we have achieved.

Conclusion

Returning to the beginning of this thesis we will review what has been done.
1. We have described a COBOL rewriter in the algebraic specification formalism

ASF+SDF that can be used to disabbreviate COBOL logical expressions. This
was the initial assignment for this master thesis.

2. We have also defined a language independent logical format (the GLF) on which
various rewritings are possible. These rewritings include transformation to nor-
mal forms, the removal of logical operators and the important translation to the
readable UIGLF format. This makes the system much more powerful and opens
a world of opportunities for future extensions.

3. We have ported major parts of the ASF+SDF Meta-Environment rewriting sys-
tem (that supports ASF+SDF) to Windows NT. This allows future projects to
make use of ATerms, AsFix, SGLR and the support library under NT. We solved
some problems and gave feed back to the Meta-Environment developers for fu-
ture releases.

4. We have created a stand-alone TRS component that can be linked to the TriLoc
Logic Mining system (or any other system for that matter) whenever that is found
beneficial. External systems need only minor adjustments and can function prop-
erly without the use of the TRS as well.

Because of practical problems that where beyond my reach I have not been able to do
benchmarks on the system as it was implemented at TriLoc. For statistics on the perfor-
mance of the Meta-Environment under Unix please refer to [BKO99]. The rewriting
system has been tested on a ‘real life’ system from a Dutch government agency and it
worked correctly without unacceptable performance problems. The system had several
thousand lines of code containing several hundred conditional expressions that were
rewritten to Clean COBOL, GLF and finally UIGLF in CNF without negations.

It is my personal opinion that the system can be commercially competitive and can be
applied in many other areas where rewriting is done within the Logic Mining system (or
other systems).

Although the technical and theoretical issues that we have described in this thesis are
important we can not forget the practical side. I have had a great time working at TriLoc
and staying in touch with the CWI and the UvA. This shows that commercial and scien-
tific ‘flavors’ can ‘blend’ together in a successful project.

11.1

Logical Expressions: Analyzing, Generalizing, Rewriting

58

59

References

[Alto92] Reasoning Systems, Palo Alto, California. Refine User’s Guide, 1992.
[BDKM96] M.G.J. van den Brand, A. van Deursen, P. Klint, A.S. Klusener and E.A.

van der Meulen. Industrial applications of ASF+SDF. In M. Wirsing and
M. Nivat, editors, Algebraic Methodology and Software Technology
(AMAST ’96), volume 1101 of Lecture Notes in Computer Science,
pages 9-18. Springer-Verlag, 1996.

[Boe99] H. J. Boehm. Boehm Garbage Collector. Code and documentation can
be found at http://reality.sgi.com/boehm_mti/gc.html

[BHK89] J.A. Bergstra, J. Heering and P. Klint, editors. Algebraic Specification.
ACM Press/Addison-Wesley, 1989.

[BJKO99] M.G.J. van den Brand, H.A. de Jong, P. Klint and P.A. Olivier. Efficient
Annotated Terms. Submitted 1999.

[BK98] J.A. Bergstra and P. Klint. The Discrete Time ToolBus -a software
coordination architecture-. Science of Computer Programming, 31(2-
3):205-229, July 1998.

[BKM97] MG.J. van den Brand, T. Kuipers, L. Moonen and P. Olivier. Implemen-
tation of a prototype for the new ASF+SDF Meta-Environment. Pro-
ceedings of the 2nd International Workshop on the Theory and Practice
of Algebraic Specifications. September 1997.

[BKO99] M.G.J. van den Brand, P. Klint and P.A. Olivier. Compilation and
memory management for ASF+SDF. CC ’99.

[BKV96] M.G.J. van den Brand, P. Klint and C. Verhoef. Core Technologies for
System Renovation. In K.G. Jeffrey, J. Král, and M. Bartosek, editors,
SOFSEM ’96: Theory and Practice of Informatics, volume 1175 of
LNCS, pages 235-255. Springer Verslag, 1996.

[BKV96-b] M.G.J. van den Brand, P. Klint and C. Verhoef. Reengineering needs
generic programming language technology. Technical Report P9618,
University of Amsterdam, Programming Research Group, 1996.

[BKV98] M.G.J. van den Brand, P. Klint and C. Verhoef. Term Rewriting for Sale.
Electronic Notes in Theoretical Computer Science 15 (1998). Available
at: http://www.elsevier.nl/locate/entcs/volume15.html

[BSV97] M.G.J. van den Brand, M.P.A. Sellink and C. Verhoef. Obtaining a
COBOL grammar from legacy code for reenigineering purposes. In
M.P.A. Sellink, editor, Proceedings of the 2nd International Workshop
on the Theory and Practice of Algebraic Specifications, electronic
Workshops in Computing. Springer verslag, 1997. Available at http://
adam.wins.uva.nl/~x/cfn/cfn.html

[BSV98] M.G.J. van den Brand, M.P.A. Sellink and C. Verhoef. Control flow
normalization for COBOL/CICS legacy systems. In Proceedings of the
Second Euromicro Conference on Maintenance and Reengineering,
pages 11-19, 1998. Available at http://adam.wins.uva.nl/~x/ref.ref.html

[John75] S.C. Johnson. YACC - Yet Another Compiler-Compiler. Technical
Report Computer Science No. 32, Bell Laboratories, Murray Hill, New
Jersey, 1975.

[CHP91] J.R. Cordy, C.D. Halpern-Hamu, and E. Promislow. TXL: A rapid
prototyping system for programming language dialects. Computer
Languages, 16(1):97-107, 1991.

[COB] Cobol Language reference on the internet at IBM: http://
www.s390.ibm.com/bookmgr-cgi/bookmgr.cmd/BOOKS/IGYLR102/

Logical Expressions: Analyzing, Generalizing, Rewriting

60

CONTENTS
[DKV99] A. van Deursen, P. Klint and C.Verhoef. Research issues in the renova-

tion of legacy systems. In J. P. Finance, editor, Fundamental Approaches
to Software Engineering, LNCS. Springer-Verslag, 1999. Available at
http://adam.wins.uva.nl/~x/etaps/etaps99.html

[Ebb90] W.B.C. Ebbinkhuijsen. COBOL vijfde druk. ISBN 90 14 04560 3.
[Eck98] B Eckel. Thinking in Java. Downloadable from http://

www.bruceeckel.com. More technical descriptions can be found at http:/
/java.sun.com

[Em98] Emendo Software Group, the Netherlands. Emendo Y2K White paper,
1998. Available at http://www.emendo.com.

[HKR89] J. Heering, P.R.H. Hendriks, P. Klint and J.Rekers. The syntax definition
formalism SDF - Reference manual. SIGPLAN Notices, 24(11):43-75,
1989. Also available at http://www.cwi.nl/~gipe/

[JNI99] Code and documentation regarding the Java Native Interface can be
found at http://java.sun.com/products/jdk/1.1/docs/guide/jni/

[JO99] H.A. de Jong and P.A. Olivier. ATerm User Manual. 1999.
[Kli92] P. Klint. A meta-environment for generating programming environ-

ments. ACM Transactions on Software Engineering and Methodology
2(2):176-201,1993.

[KN97] K. Nelte. Formulas of First-Order Logic in Distributive Normal Form.
Department of Mathematics and Applied Methematics University of
Cape Town.

[KR88] B. Kernighan and D.M. Ritchie. The C programming language. ISBN 90-
6233-488-1.

[LS86] M.E. Lesk and E. Schmodt. LEX - A lexical analyzer generator. Bell
Laboratories, unix programmer’s supplementary documents, volume 1
(PS1) edition, 1986.

[RA92] Reasoning Systems, Palo Alto, California. Refine User’s Guide, 1992.
[SAV91] W.A Savitch. Pascal third edition. ISBN 0-8053-7450-7.
[SM97] E. Stroo, editor, Microsoft Corporation. Visual Basic 5.0 Programmer’s

Guide.
[SV98] M.P.A. Sellink and C. Verhoef. An architecture for automated software

maintainance. Technical Report P9807, University of Amsterdam,
Programming Research Group, 1998. Available at: http://
adam.wins.uva.nl/~x/asm/asm.html

[Vis97] E. Visser. Phd thesis Syntax Definition for Language Prototyping. ISBN
90-74795-75-7. Programming Research Group, University of
Amsterdam.

[Vis97-2] E. Visser. Scanerless Generalized-LR Parsing. Report P9707 August
1997. Programming Research Group, University of Amsterdam.

[Wirth71] N. Wirth. The design of a Pascal compiler, Software-Practice and Experi-
ence, 1, 105-133, 1971

Appendices

63

Appendix A

Interesting parts of the SDF2 definitions of GLF and UIGLF:

module GLF-AriExpressions

context-free syntax
GLF-AddExpr -> GLF-AriExpr
GLF-MulExpr -> GLF-AriExpr
GLF-PowerOfExpr -> GLF-AriExpr
GLF-UnaryExpr -> GLF-AriExpr
GLF-PrimExpr -> GLF-AriExpr
GLF-Identifier -> GLF-AriExpr
GLF-Literal -> GLF-AriExpr
GLF-FigLit -> GLF-AriExpr

“add” “(“ GLF-AriExpr “,” GLF-AriExpr “)”-> GLF-AddExpr
“sub” “(“ GLF-AriExpr “,” GLF-AriExpr “)”-> GLF-AddExpr

“mul” “(“ GLF-AriExpr “,” GLF-AriExpr “)”-> GLF-MulExpr
“div” “(“ GLF-AriExpr “,” GLF-AriExpr “)”-> GLF-MulExpr

“pow” “(“ GLF-AriExpr “,” GLF-AriExpr “)”-> GLF-PowerOfExpr

“neg” “(“ GLF-AriExpr “)” -> GLF-UnaryExpr
GLF-PrimExpr -> GLF-UnaryExpr

GLF-Identifier -> GLF-PrimExpr
GLF-Literal -> GLF-PrimExpr
GLF-FigLit -> GLF-PrimExpr

UIGLF-AriExpr UIGLF-CHR-PLUS UIGLF-AriExpr -> UIGLF-AriExpr
UIGLF-AriExpr UIGLF-CHR-MINUS UIGLF-AriExpr -> UIGLF-AriExpr
UIGLF-AriExpr UIGLF-CHR-MUL UIGLF-AriExpr -> UIGLF-AriExpr
UIGLF-AriExpr UIGLF-CHR-DIV UIGLF-AriExpr -> UIGLF-AriExpr
UIGLF-AriExpr UIGLF-CHR-POW UIGLF-AriExpr -> UIGLF-AriExpr

UIGLF-UnaryExpr -> UIGLF-AriExpr

UIGLF-CHR-MINUS UIGLF-UnaryExpr -> UIGLF-UnaryExpr
UIGLF-PrimExpr -> UIGLF-UnaryExpr

UIGLF-Identifier -> UIGLF-PrimExpr
UIGLF-Literal -> UIGLF-PrimExpr
UIGLF-FigLit -> UIGLF-PrimExpr
“(“ UIGLF-AriExpr “)”-> UIGLF-PrimExpr

module GLF-RelExpressions

context-free syntax
GLF-FigLit -> GLF-RelExpr
GLF-AriExpr-> GLF-RelExpr

“lte” “(“ GLF-AriExpr “,” GLF-AriExpr “)”-> GLF-RelExpr
“gte” “(“ GLF-AriExpr “,” GLF-AriExpr “)”-> GLF-RelExpr
“lt” “(“ GLF-AriExpr “,” GLF-AriExpr “)”-> GLF-RelExpr
“gt” “(“ GLF-AriExpr “,” GLF-AriExpr “)”-> GLF-RelExpr
“neq” “(“ GLF-AriExpr “,” GLF-AriExpr “)”-> GLF-RelExpr
“eq” “(“ GLF-AriExpr “,” GLF-AriExpr “)”-> GLF-RelExpr

“(“ UIGLF-RelExpr “)”-> UIGLF-RelExpr
UIGLF-FigLit -> UIGLF-RelExpr
UIGLF-AriExpr -> UIGLF-RelExpr
UIGLF-AriExpr UIGLF-RelExprOperator UIGLF-AriExpr -> UIGLF-RelExpr

Appendices

64

module GLF-Conditions

context-free syntax

GLF-RelExpr-> GLF-LogExpr
“and” “(“ GLF-LogExpr “,” GLF-LogExpr “)”-> GLF-LogExpr
“or” “(“ GLF-LogExpr “,” GLF-LogExpr “)”-> GLF-LogExpr
“not” “(“ GLF-LogExpr “)” -> GLF-LogExpr
GLF-LogExpr -> GLF-Condition

UIGLF-LogExpr -> UIGLF-Condition

UIGLF-RelExpr -> UIGLF-LogExpr

“not” “(“ UIGLF-LogExpr “)” -> UIGLF-LogExpr

UIGLF-LogExpr “and” UIGLF-LogExpr-> UIGLF-LogExpr
UIGLF-LogExpr “or” UIGLF-LogExpr-> UIGLF-LogExpr
“(“ UIGLF-LogExpr “)” -> UIGLF-LogExpr

65

Appendix B

Interesting parts of the GLF Toolbox rewriters:

module RemoveOperators
equations

%% Romeove all Ors
%%
[RO1] RemOr(GLF-RelExpr) = GLF-RelExpr

%% A not around an or: continue
[RO2] RemOr(not(or(GLF-LogExpr1, GLF-LogExpr2))) =
 not(RemOr(or(GLF-LogExpr1, GLF-LogExpr2)))

%% A not around an and: continue
[RO3] RemOr(not(and(GLF-LogExpr1, GLF-LogExpr2))) =
 not(RemOr(and(GLF-LogExpr1, GLF-LogExpr2)))

%% A ‘not’ around another ‘not’: remove both
[RO4] RemOr(not(not(GLF-LogExpr))) = RemOr(GLF-LogExpr)

%% We also remove inner Not’s
[RO5] RemOr(not(GLF-RelExpr)) = RemNot(not(GLF-RelExpr))

[RO6] RemOr(and(GLF-LogExpr1, GLF-LogExpr2)) =
 and(RemOr(GLF-LogExpr1) , RemOr(GLF-LogExpr2))

%% Here he comes: p or q -> not(not(p) and not(q))
%% Notice how the RemOr’s are around the newly introduced ‘nots’ in order to
%% remove possibly added double ‘nots’
[RO7] RemOr(or(GLF-LogExpr1, GLF-LogExpr2)) =
 not(and(RemOr(not(GLF-LogExpr1)) , RemOr(not(GLF-LogExpr2))))

%% Remove all nots
%%
[RN1] RemNot(GLF-RelExpr) = GLF-RelExpr

[RN2] RemNot(not(and(GLF-LogExpr1, GLF-LogExpr2))) =
 or(RemNot(not(GLF-LogExpr1)) , RemNot(not(GLF-LogExpr2)))

[RN3] RemNot(not(or(GLF-LogExpr1, GLF-LogExpr2))) =
 and(RemNot(not(GLF-LogExpr1)), RemNot(not(GLF-LogExpr2)))

[RN4] RemNot(not(not(GLF-LogExpr))) = RemNot(GLF-LogExpr)

[RN5] RemNot(and(GLF-LogExpr1, GLF-LogExpr2)) =
 and(RemNot(GLF-LogExpr1) , RemNot(GLF-LogExpr2))

[RN6] RemNot(or(GLF-LogExpr1, GLF-LogExpr2)) =
 or(RemNot(GLF-LogExpr1) , RemNot(GLF-LogExpr2))

%% Invert operators
[RN7-1] RemNot(not(st(GLF-AriExpr1, GLF-AriExpr2))) =
 gte(GLF-AriExpr1, GLF-AriExpr2)
[RN7-2] RemNot(not(gt(GLF-AriExpr1, GLF-AriExpr2))) =
 lte(GLF-AriExpr1, GLF-AriExpr2)
[RN7-3] RemNot(not(ste(GLF-AriExpr1, GLF-AriExpr2))) =
 gt(GLF-AriExpr1, GLF-AriExpr2)
[RN7-4] RemNot(not(gte(GLF-AriExpr1, GLF-AriExpr2))) =
 lt(GLF-AriExpr1, GLF-AriExpr2)
[RN7-5] RemNot(not(eq(GLF-AriExpr1, GLF-AriExpr2))) =
 neq(GLF-AriExpr1, GLF-AriExpr2)
[RN7-6] RemNot(not(neq(GLF-AriExpr1, GLF-AriExpr2))) =
 eq(GLF-AriExpr1, GLF-AriExpr2)

Appendices

66

%% Remove all Ands
%%
[RA1] RemAnd(GLF-RelExpr) = GLF-RelExpr

%% A not around an or: continue
[RA2] RemAnd(not(or(GLF-LogExpr1, GLF-LogExpr2))) =
 not(RemAnd(or(GLF-LogExpr1, GLF-LogExpr2)))

%% A not around an and: continue
[RA3] RemAnd(not(and(GLF-LogExpr1, GLF-LogExpr2))) =
 not(RemAnd(and(GLF-LogExpr1, GLF-LogExpr2)))

%% A ‘not’ around another ‘not’: remove both
[RA4] RemAnd(not(not(GLF-LogExpr))) = RemAnd(GLF-LogExpr)

%% We also remove inner not’s
[RO5] RemAnd(not(GLF-RelExpr)) = RemNot(not(GLF-RelExpr))

[RA6] RemAnd(or(GLF-LogExpr1, GLF-LogExpr2)) =
 or(RemAnd(GLF-LogExpr1) , RemAnd(GLF-LogExpr2))

%% Here he comes: p and q -> not(not(p) or not(q))
%% Notice how the RemAnd’s are around the newly introduced ‘nots’ in order
%% to remove possibly added doubles
[RA7] RemAnd(and(GLF-LogExpr1, GLF-LogExpr2)) =
 not(or(RemAnd(not(GLF-LogExpr1)) , RemAnd(not(GLF-LogExpr2))))

module NormalForms
equations

[CNF1] move-negs (GLF-LogExpr1) = GLF-LogExpr2,
 distribute-ors (GLF-LogExpr2) = GLF-LogExpr3
 ====================
 2CNF (GLF-LogExpr1) = GLF-LogExpr3

[DNF1] move-negs (GLF-LogExpr1) = GLF-LogExpr2,
 distribute-ands (GLF-LogExpr2) = GLF-LogExpr3
 ====================
 2DNF (GLF-LogExpr1) = GLF-LogExpr3

%% move-negs move negations inwards (no removal)
%%
[mn1] move-negs(GLF-RelExpr) = GLF-RelExpr

[mn2] move-negs(not(GLF-RelExpr)) = not(GLF-RelExpr)

[mn3] move-negs(not(and(GLF-LogExpr1, GLF-LogExpr2))) =
 or(move-negs(not(GLF-LogExpr1)) , move-negs(not(GLF-LogExpr2)))

[mn4] move-negs(not(or(GLF-LogExpr1, GLF-LogExpr2))) =
 and(move-negs(not(GLF-LogExpr1)), move-negs(not(GLF-LogExpr2)))

[mn5] move-negs(not(not(GLF-LogExpr))) = move-negs(GLF-LogExpr)

[mn6] move-negs(and(GLF-LogExpr1, GLF-LogExpr2)) =
 and(move-negs(GLF-LogExpr1) , move-negs(GLF-LogExpr2))

[mn7] move-negs(or(GLF-LogExpr1, GLF-LogExpr2)) =
 or(move-negs(GLF-LogExpr1) , move-negs(GLF-LogExpr2))

%% is-and
%%
[ia1] is-and(and(GLF-LogExpr1, GLF-LogExpr2)) = yes

[default-ia] is-and(GLF-LogExpr) = no

67

%% is-or
%%
[io1] is-or(or(GLF-LogExpr1, GLF-LogExpr2)) = yes

[default-io] is-or(GLF-LogExpr) = no

%% distribute-ors
%%

%% or(p, and(q,r)) = and(or(p,q) , or(p,r))
%%
[do1] distribute-ors(or(GLF-LogExpr1, and(GLF-LogExpr2, GLF-LogExpr3))) =
 and(
 distribute-ors(or(GLF-LogExpr1, GLF-LogExpr2)) ,
 distribute-ors(or(GLF-LogExpr1, GLF-LogExpr3)))

%% or(and(q,r), p) = and(or(p,q) , or(p,r))
%%
[do2] distribute-ors(or(and(GLF-LogExpr2, GLF-LogExpr3), GLF-LogExpr1)) =
 and(
 distribute-ors(or(GLF-LogExpr1, GLF-LogExpr2)) ,
 distribute-ors(or(GLF-LogExpr1, GLF-LogExpr3)))

%% All the other cases can have no ‘ands’ directly within an or
%%
[default-do4] distribute-ors(GLF-LogExpr1) = GLF-LogExpr3,
 is-and(GLF-LogExpr3) = NO,
 distribute-ors(GLF-LogExpr2) = GLF-LogExpr4,
 is-and(GLF-LogExpr4) = NO
 ====================
 distribute-ors(or(GLF-LogExpr1, GLF-LogExpr2)) =
 or(GLF-LogExpr3, GLF-LogExpr4)

[default-do5] distribute-ors(GLF-LogExpr1) = GLF-LogExpr3,
 is-and(GLF-LogExpr3) = YES,
 distribute-ors(GLF-LogExpr2) = GLF-LogExpr4,
 ====================
 distribute-ors(or(GLF-LogExpr1, GLF-LogExpr2)) =
 distribute-ors(or(GLF-LogExpr3, GLF-LogExpr4))

[default-do6] distribute-ors(GLF-LogExpr1) = GLF-LogExpr3,
 distribute-ors(GLF-LogExpr2) = GLF-LogExpr4,
 is-and(GLF-LogExpr4) = YES
 ====================
 distribute-ors(or(GLF-LogExpr1, GLF-LogExpr2)) =
 distribute-ors(or(GLF-LogExpr3, GLF-LogExpr4))

[do8] distribute-ors(and(GLF-LogExpr1, GLF-LogExpr2)) =
 and(
 distribute-ors(GLF-LogExpr1),
 distribute-ors(GLF-LogExpr2))

%% since we have already moved the negations to the RelExprs
%% (with ‘move-negs’) they don’t need to be processed further
%% i.e. a ‘not’ is allways around a ‘GLF-RelExpr’

[do9] distribute-ors(not(GLF-RelExpr)) = not(GLF-RelExpr)

[do10] distribute-ors(GLF-RelExpr) = GLF-RelExpr

%% distribute-ands
%%

%% and(p, or(q,r)) = or(and(p,q) , and(p,r))
%%
[da1] distribute-ands(and(GLF-LogExpr1, or(GLF-LogExpr2,GLF-LogExpr3))) =

Appendices

68

 or(
 distribute-ands(and(GLF-LogExpr1, GLF-LogExpr2)) ,
 distribute-ands(and(GLF-LogExpr1, GLF-LogExpr3)))

%% and(or(q,r), p) = or(and(p,q) , and(p,r))
%%
[da2] distribute-ands(and(or(GLF-LogExpr2, GLF-LogExpr3),GLF-LogExpr1)) =
 or(
 distribute-ands(and(GLF-LogExpr1, GLF-LogExpr2)) ,
 distribute-ands(and(GLF-LogExpr1, GLF-LogExpr3)))

%% All the other cases can have no ‘ors’ within an ‘and’
%%
[default-da4] distribute-ands(GLF-LogExpr1) = GLF-LogExpr3,
 is-or(GLF-LogExpr3) = NO,
 distribute-ands(GLF-LogExpr2) = GLF-LogExpr4,
 is-or(GLF-LogExpr4) = NO
 ====================
 distribute-ands(and(GLF-LogExpr1, GLF-LogExpr2)) =
 and(GLF-LogExpr3, GLF-LogExpr4)

[default-da5] distribute-ands(GLF-LogExpr1) = GLF-LogExpr3,
 is-or(GLF-LogExpr3) = YES,
 distribute-ands(GLF-LogExpr2) = GLF-LogExpr4,
 ====================
 distribute-ands(and(GLF-LogExpr1, GLF-LogExpr2)) =
 distribute-ands(and(GLF-LogExpr3, GLF-LogExpr4))

[default-da6] distribute-ands(GLF-LogExpr1) = GLF-LogExpr3,
 distribute-ands(GLF-LogExpr2) = GLF-LogExpr4,
 is-or(GLF-LogExpr4) = YES
 ====================
 distribute-ands(and(GLF-LogExpr1, GLF-LogExpr2)) =
 distribute-ands(and(GLF-LogExpr3, GLF-LogExpr4))

[da8] distribute-ands(or(GLF-LogExpr1, GLF-LogExpr2)) =
 or(
 distribute-ands(GLF-LogExpr1),
 distribute-ands(GLF-LogExpr2))

%% since we have already moved the negations to the RelExprs
%% (with ‘move-negs’) they don’t need to be processed further
%% i.e. a ‘not’ is allways around a ‘GLF-RelExpr’

[da9] distribute-ands(not(GLF-RelExpr)) = not(GLF-RelExpr)

[da10] distribute-ands(GLF-RelExpr) = GLF-RelExpr

69

Appendix C

Interesting parts of the GLF to UIGLF translator:

module GLF-AriExpressions
equations

%% UIGLF-AriExpr
%%
[UIGLF-AE1] UIGLF-AriExpr (add(GLF-AriExpr1,GLF-AriExpr2)) =
 UIGLF-AriExpr-b-add(GLF-AriExpr1) +
 UIGLF-AriExpr-b-add(GLF-AriExpr2)

[UIGLF-AE2] UIGLF-AriExpr (sub(GLF-AriExpr1,GLF-AriExpr2)) =
 UIGLF-AriExpr-b-sub(GLF-AriExpr1) -
 UIGLF-AriExpr-b-sub(GLF-AriExpr2)

[UIGLF-AE3] UIGLF-AriExpr (mul(GLF-AriExpr1,GLF-AriExpr2)) =
 UIGLF-AriExpr-b-mul(GLF-AriExpr1) *
 UIGLF-AriExpr-b-mul(GLF-AriExpr2)

[UIGLF-AE4] UIGLF-AriExpr (div(GLF-AriExpr1,GLF-AriExpr2)) =
 UIGLF-AriExpr-b-div(GLF-AriExpr1) /
 UIGLF-AriExpr-b-div(GLF-AriExpr2)

[UIGLF-AE5] UIGLF-AriExpr (pow(GLF-AriExpr1,GLF-AriExpr2)) =
 UIGLF-AriExpr-b(GLF-AriExpr1) ^
 UIGLF-AriExpr-b(GLF-AriExpr2)

[UIGLF-AE6] UIGLF-UnaryExpr(GLF-AriExpr) = UIGLF-UnaryExpr
 ====================
 UIGLF-AriExpr (GLF-AriExpr) = UIGLF-UnaryExpr

%% UIGLF-AriExpr-b
%%
%% no brackets around UnaryExpr
[UIGLF-AEb1] UIGLF-UnaryExpr(GLF-AriExpr) = UIGLF-UnaryExpr
 ===================
 UIGLF-AriExpr-b (GLF-AriExpr) = UIGLF-UnaryExpr

[default-UIGLF-AEb] UIGLF-AriExpr-b(GLF-AriExpr) =
 (UIGLF-AriExpr(GLF-AriExpr))

%% UIGLF-AriExpr-b-add Brackets, except for addexpr
%%
[UIGLF-AEb-add1] UIGLF-AriExpr-b-add (add(GLF-AriExpr1,GLF-AriExpr2)) =
 UIGLF-AriExpr(add(GLF-AriExpr1,GLF-AriExpr2))

[UIGLF-AEb-add1] UIGLF-AriExpr-b-add (sub(GLF-AriExpr1,GLF-AriExpr2)) =
 UIGLF-AriExpr(sub(GLF-AriExpr1,GLF-AriExpr2))

[default-UIGLF-AEb-add] UIGLF-AriExpr-b-add(GLF-AriExpr) =
 UIGLF-AriExpr-b(GLF-AriExpr)

%% UIGLF-AriExpr-b-mul Brackets, except for mulexpr
%%
[UIGLF-AEb-add1] UIGLF-AriExpr-b-mul (mul(GLF-AriExpr1,GLF-AriExpr2)) =
 UIGLF-AriExpr(mul(GLF-AriExpr1,GLF-AriExpr2))

[UIGLF-AEb-add1] UIGLF-AriExpr-b-mul (div(GLF-AriExpr1,GLF-AriExpr2)) =
 UIGLF-AriExpr(div(GLF-AriExpr1,GLF-AriExpr2))

Appendices

70

[default-UIGLF-AEb-add] UIGLF-AriExpr-b-mul(GLF-AriExpr) =
 UIGLF-AriExpr-b(GLF-AriExpr)

%% PrimExpr
%%
[UIGLF-PE1] UIGLF-PrimExpr (GLF-Identifier) =
 UIGLF-Identifier (GLF-Identifier)

[UIGLF-PE2] UIGLF-PrimExpr (GLF-Literal) = UIGLF-Literal(GLF-Literal)

[UIGLF-PE3] UIGLF-PrimExpr (GLF-FigLit) = UIGLF-FigLit (GLF-FigLit)

%% UnaryExpr
%%
[UIGLF-UE1] UIGLF-UnaryExpr (GLF-AriExpr) =
 UIGLF-PrimExpr (GLF-AriExpr)

[UIGLF-UE3] UIGLF-UnaryExpr (neg(GLF-AriExpr)) =
 - UIGLF-UnaryExpr (GLF-AriExpr)

module GLF-RelExpressions
equations

%% By Alex van den Bergh july 1999

%% RelExpr
%%
[UIGLF-RE1] UIGLF-RelExpr (GLF-AriExpr) = UIGLF-AriExpr-b (GLF-AriExpr)

[UIGLF-RE2] UIGLF-RelExpr (lte(GLF-AriExpr1,GLF-AriExpr2)) =
 UIGLF-AriExpr-b(GLF-AriExpr1) <=
 UIGLF-AriExpr-b(GLF-AriExpr2)

[UIGLF-RE3] UIGLF-RelExpr (gte(GLF-AriExpr1,GLF-AriExpr2)) =
 UIGLF-AriExpr-b(GLF-AriExpr1) >=
 UIGLF-AriExpr-b(GLF-AriExpr2)

[UIGLF-RE4] UIGLF-RelExpr (lt(GLF-AriExpr1,GLF-AriExpr2)) =
 UIGLF-AriExpr-b(GLF-AriExpr1) <
 UIGLF-AriExpr-b(GLF-AriExpr2)

[UIGLF-RE5] UIGLF-RelExpr (gt(GLF-AriExpr1,GLF-AriExpr2)) =
 UIGLF-AriExpr-b(GLF-AriExpr1) >
 UIGLF-AriExpr-b(GLF-AriExpr2)

[UIGLF-RE6] UIGLF-RelExpr (neq(GLF-AriExpr1,GLF-AriExpr2)) =
 UIGLF-AriExpr-b(GLF-AriExpr1) <>
 UIGLF-AriExpr-b(GLF-AriExpr2)

[UIGLF-RE7] UIGLF-RelExpr (eq(GLF-AriExpr1,GLF-AriExpr2)) =
 UIGLF-AriExpr-b(GLF-AriExpr1) ==
 UIGLF-AriExpr-b(GLF-AriExpr2)

%% RelExpr-b Brackets only when relExpr (with relational operator)
%% so no brackets around identifiers, literals etc.

[UIGLF-RE-b1] UIGLF-RelExpr-b (GLF-AriExpr) =
 UIGLF-AriExpr-b (GLF-AriExpr)

[UIGLF-RE-default] UIGLF-RelExpr-b (GLF-RelExpr) =
 (UIGLF-RelExpr(GLF-RelExpr))

71

module GLF-Conditions
equations

%% LogExpr
%%
[UIGLF-LE1] UIGLF-LogExpr-b-or (GLF-LogExpr1) = UIGLF-LogExpr1,
 UIGLF-LogExpr-b-or (GLF-LogExpr2) = UIGLF-LogExpr2
 ====================
 UIGLF-LogExpr (or(GLF-LogExpr1,GLF-LogExpr2))
 = UIGLF-LogExpr1 or UIGLF-LogExpr2

[UIGLF-LE2] UIGLF-LogExpr-b-and (GLF-LogExpr1) = UIGLF-LogExpr1,
 UIGLF-LogExpr-b-and (GLF-LogExpr2) = UIGLF-LogExpr2
 ====================
 UIGLF-LogExpr (and(GLF-LogExpr1,GLF-LogExpr2))
 = UIGLF-LogExpr1 and UIGLF-LogExpr2

[UIGLF-LE2] UIGLF-LogExpr (GLF-LogExpr) = UIGLF-LogExpr
 ====================
 UIGLF-LogExpr (not(GLF-LogExpr)) = not(UIGLF-LogExpr)

[UIGLF-LE2] UIGLF-RelExpr (GLF-RelExpr) = UIGLF-LogExpr
 ====================
 UIGLF-LogExpr (GLF-RelExpr) = UIGLF-LogExpr

%% LogExpr-b = Expr with Brackets
%% except for not because that already has brackets

[UIGLF-LEb1] UIGLF-LogExpr-b(not(GLF-LogExpr)) =
 UIGLF-LogExpr(not(GLF-LogExpr))

[default-UIGLF-LEb] UIGLF-LogExpr-b(GLF-LogExpr) =
 (UIGLF-LogExpr(GLF-LogExpr))

%% LogExpr-b-or = Expr with Brackets except for or
%%
[UIGLF-LEb-or1] UIGLF-LogExpr(or(GLF-LogExpr1,GLF-LogExpr2)) = UIGLF-LogExpr
 ====================
 UIGLF-LogExpr-b-or (or(GLF-LogExpr1,GLF-LogExpr2)) =
 UIGLF-LogExpr

[default-UIGLF-LEb-or] UIGLF-LogExpr-b (GLF-LogExpr) = UIGLF-LogExpr
 ====================
 UIGLF-LogExpr-b-or (GLF-LogExpr) = UIGLF-LogExpr

%% LogExpr-b-and = Expr with Brackets except for and
%%
[UIGLF-LEb-and1] UIGLF-LogExpr(and(GLF-LogExpr1,GLF-LogExpr2))=UIGLF-LogExpr
 ====================
 UIGLF-LogExpr-b-and (and(GLF-LogExpr1,GLF-LogExpr2)) =
 UIGLF-LogExpr

[default-UIGLF-LEb-and] UIGLF-LogExpr-b (GLF-LogExpr) = UIGLF-LogExpr
 ====================
 UIGLF-LogExpr-b-and (GLF-LogExpr) = UIGLF-LogExpr

%% Condition
%%
[UIGLF-LOE1] UIGLF-LogExpr (GLF-LogExpr) = UIGLF-LogExpr
 ====================
 GLF2UIGLF-Condition (GLF-LogExpr) = UIGLF-LogExpr

Appendices

72

Appendix D

The Java par t of the Meta-adapter, to illustrate how the TRS is connected to other sys-
tems and to show how it can be used.

File TRS.java
package COM.triloc.javatrs;

/** Class TRS.
 */
public class TRS
{

public static final String JAVATRS_DLL= “c:\\javatrs”;
public static final String COBOL_PARSE_TABLE= “c:\\batch.tbl”;
public static final String TEST_FUNCTION= “CB2UIGLF-Condition”;
public static final int TEST_ID= 0;
public static final String TEST_CONDITION= “RECORD::FIELD = ‘STRING’”;

s t a t i c
{

System.loadLibrary(JAVATRS_DLL);
}

/** Native methods
 * actually implemented in C
 */
private static native String_rewriteTerm(String p_istr, String p_ptable);
private static native void_loadParseTable(String p_ptable);
private static native int_ e r r o r T e s t () ;
private static native String_getErrorMsg();

/** Default constructor.
 */
public TRS()
{
}

/** Load a Parse Table
 */
public void loadParseTable(String p_ptable)

throws TRSException, FileNotFoundException, IOException
{

File l_file = new File(p_ptable);
FileReader l_filereader = new FileReader(l_file);
l _ f i l e r e a d e r . c l o s e () ;

_loadParseTable(p_ptable);

/* Check whether an error has occured (in native code)
 * while loading the parse table
 */
if(_errorTest() != 0)
{

/* If an error has occured get the message
 * and throw it in an exception
 */
throw new TRSException(_getErrorMsg());

}
}

73

/** Rewrite method with paramters.
 */
public String rewriteTerm(String p_func, int p_id, String p_cond,

String p_ptable, TRSOption p_option)
throws TRSException

{
// get input string
// write it in the right format for the rewriter
String l_istr = buildInputString(p_func, p_id, p_cond, p_option);

// get output string
String l_ostr = _rewriteTerm(l_istr, p_ptable);

// compress output string
// (remove redundant spaces, returns etc. introduced by the TRS
l_ostr = _compressString(l_ostr);

if(_errorTest() == 0)
{

// no error has occured
return l_ostr;

}

throw new TRSException(_getErrorMsg());
}

/** Method that builds the input string for the TRS from the
 * function name the id and the condition.
 */
public static String buildInputString(String p_func, int p_id,

String p_cond,TRSOption p_option)
{

return p_func + “ (“ + p_id + “ { “ + p_cond + “ } , “ +
 p_option.getTextRepr() + “) “;

}

/** Method that compresses the string parameter.
 */
private String _compressString(String p_str)
{

StringBuffer l_result = new StringBuffer();

for(int l_i = 0, l_len = p_str.length(); l_i < l_len; l_i++)
{

char l_c = p_str.charAt(l_i);

boolean l_space = false;

while(l_i < l_len &&
 (l_c == ‘ ‘ || l_c == ‘\r’ || l_c == ‘\n’ || l_c == ‘\t’))

{
l _ i + + ;
l_c = p_str.charAt(l_i);
l_space = true;

}

if(l_space == true) l_result.append(‘ ‘);

l _ r e s u l t . a p p e n d (l _ c) ;
}

return l_result.toString().trim();
}

}

Appendices

74

