Software Engineering,
eXtreme Programming
and

a WAP-browser

Afstudeerscriptie Informatica

Faculteit der Natuurwetenschappen, Wiskunde en Informatica (FNWI)
Universiteit van Amsterdam

Afstudeerrichting: Programmatuur

Afstudeerdocent: prof.dr. P. Klint

Datum: Januari 2002

Wouter van der Kamp

-\ cgtchy.nat



Abstract

XP, or eXtreme Programming, is a methodology for teams developing
software in the face of vague and rapidly changing requirements. 1 did
research into this subject by using it while developing a WAP-browser;
the results are presented in this paper.

The features of XP include pair programming, working with iterations and
continuous integration.

Pair programming means that all programming is done with two programmers
working on one computer. Programmers who work in pairs are less likely
to make mistakes.

The lifecycle of every XP project is divided into iteratiomns. With every
iteration the architectural design is adjusted along the needs of the
iteration; this is very different from the common software engineering
practice to make the whole architectural design at the beginning of the
project.

Continuous integration means that every task is integrated after its
completion. The integration is immediately followed by the running of a
program that tests every bit of code in the program. By doing this the
programmers make sure that the integration did not break any working
functionalities.

The apprenticeship consisted of four complete iterations. Due to
practical reasons, some of the practices of XP could not be tested. I
decided to extend my research by studying some software engineering
literature.

At the end of the apprenticeship I was able to make some comparisons
between XP and the literature, give some suggestions about improving XP
and conclude that XP has some practices that are valuable in certain
circumstances.



Table of Contents

Abstract . i e e e e 2
Table of Contents . ... o i i i it i e et e 3
Introductiom ...t i i i et e e 5
D 5
L 5

L 5
L= v o 1y 5
o v = v o 5
0] oy = o v = 6
1. eXtreme Programming ...........iiiiiiin ittt 7
The Practices of XP ... .. i i i i i e 7
Planning .. ... .. e e e 7
Small Releases ...ttt ittt i e e e e 8
Simple Design ...t e i e 8
BT v T o - 8
Refactoring ..ot e e e e 8
Pair Programming ............ ... ittt i 9
Collective OWNErShip ... ittt ittt et it 9
Continuous Integration ....... ...ttt 9
Coding Standards ......... ..ttt 9

2. Mobilizer, Introduction ........c. i iiiiiiiiinieeereeneeeenenanenns 10
3. Mobilizer, Functional Specification.............. ... ... ... 11
Interface ..t e e e e 11
Developer MOde vttt it e e e 12
4, Mobilizer, Chronological Story ....vvvivritiiiiine i nnnsessnnnas 14
Starting Up ...t e 14
Day 1 - T e 14
Iteration 1: WML ParSer ...t iiiin ittt i tiiinnn ettt 14
Functional Specification (days 8, 9) ........ ..., 14
Technical Specification (day 10) ..., 15
Tasks (day 10) ettt ittt et e e et 16
Implementation (day 11 - 19) ... ...ttt ittt e, 16
Iteration 2: <AO> tag vt v vttt ittt it e e 17
Functional Specification (day 20, 21) ... ..iiuiiiiiiiiiininnennn 17
Technical Specification (day 22 - 25) ... .iiiriiiiiiiinnenneenn 18
Tasks (day 25) .t iv ittt ittt i e e e 19
Implementation (day 26) ... ...ttt ettt 19
Iteration 3: rendering text ...... ...t i 19
Functional Specification (day 27) .. ... iueiinitininnnnennennn 19
Technical Specification (day 27, 28) .....c.iuiiirtiienneennennn 19
Taks (daY 28) ettt ettt ettt e 20
Implementation (day 29 - 46) ...... ...ttt 20
The Code RevView ..... ..ttt ittty 21
Day 47 = B i e 21
Iteration 4: rendering non-texXt ... ..t iiiiiinn it 21
Functional Specification (day 60) .. ..vviuiiinienririutenneennonns 21
Technical Specification (day 60, 61) ... utiiriiiiiriutenniennenns 22
Tasks(day 61) ..ot i i i e 22
Implementation(days 62 - 75) . iuuiiuttiteeiteeietniuerieoeneesnas 22
Refactoring(days 76 - 85) ... ...ttt 22

5. Mobilizer, Results .. ...ttt ittt ittt tteeteneinaneasenas 23
Evaluation ... e e e e e e 24
6. Team StruUCTUTre ... . it i i i ittt ettt 25



s o < = v o= S 25

AP i e e e e e e e i i e i e 26
XP vs. Literature ....... ...ttt 27
0 o 1 = 27
A P =T o 28
P R = o= v o= 28
Pure Waterfall ........ .. i i i ey 28

S = =1 o 28
Waterfall with Subprojects ........ ... i, 28
Evolutionary Prototyping ......c.uiiiiiiini ittty 29
Staged Delavery ..ttt i e i i e e 29
Design-to-Schedule ....... ... ... ittty 30
Evolutionary Delivery .......uuiiiii i iiinn ittt innneenneenns 30

AP e e 30
XP vs. Literature .......cciiiiiiiiiinin ittt 31
e o -1 s 31
8. System Integration ..... ... 33
Literature .. i i e e e e e e 33
Phased vs. Incremental ......... .. ittt iiiiiiinnennnnnnenns 33
Top-Down Integration ........ ..ttt iiiiininieeennnnnas 33
Bottom-Up Integration .......... ... ... i, 33
Sandwich Integration .........iiiiiin ittty 34
Risk-Oriented Integration ..........cuuiiiniiiiiiiinn e 34
Feature-Oriented Integration ............ ..., 34

AP e 34
XP vs. Literature ....... ... i i 34
Mobilizer ..... ... e 34

LS B O3+ Kot R = i o o 36
10, GlosSSary ... ittt e 37
11, References ... it i i e i i e e 38



Introduction

In this chapter I introduce the company Catchy and the technologies that
were used during the apprenticeship. Also my motives and goals for this
project can be found here.

XP

XP is a methodology for teams developing software in the face of vague
and rapidly changing requirements. XP is an abbreviation for 'eXtreme
Programming'. 'Extreme' refers to the fact that with XP some software
developing practices are put to extremes, for example:

* Code reviews of all code
¢ Testing of the whole program with every integration
e TJterations as short as possible

XP is discussed in more detail in chapter 1. More on eXtreme Programming
can be found on http://www.ExtremeProgramming.org/.

WAP

WAP is the abbreviation of 'Wireless Application Protocol'. It's a
specification that can be used to develop wireless applications. The
specification defines, amongst others, WML, the 'Wireless Markup
Language'. WML is, like HTML, a language that is used to mark-up text
and also makes user-interaction possible. All the WAP specifications can
be found on http://www.wapforum.org/.

WML

WML is the language in which WAP-pages are written. It is designed to
display content on a wireless device, so it takes into account that the
display is probably small, there are limited user input facilities,
small memory, etc. One WML file contains one or more cards, the deck.
The WAP-browser usually displays one card at a time. At the time the
project started version 1.2 of WML had just been released by the
wapforum. So the team decided to make the WAP-browser conform to WML
1.2. Its DTD (Document Type Definition) can be found at
http://www.wapforum.org/DTD/wml12.dtd.

Catchy

Catchy is a company that develops applications that use the mobile
internet. The company was established in the year 2000, after some ideas
for products were developed. The WAP-browser was one of these ideas; the
program was going to be called 'Mobilizer'. Founder and president of
Catchy is Ruben Brave. More info on http://www.catchy.net/.

Motivation

The job of building a WAP-browser for Catchy was something that came on
my path, and thereupon I decided to make this job an apprenticeship. So
the motivation for this apprenticeship is mainly a practical one. I took
this job because it's satisfying for me to be able to build something
for the future; it has the advantage of less (time-) pressure, and makes
you feel like a pioneer.



Objective

The objective of this apprenticeship was to research into XP by using it
while developing a WAP-browser. I will try to determine the usability of
XP in the software-developing world, and share our experiences with the
world.



1. eXtreme Programming

In this chapter the ideas from the book 'Extreme Programming' by Kent
Beck ([XP]) are described briefly.

XP is a methodology for teams developing software in the face of vague
and rapidly changing requirements. XP is an abbreviation for 'eXtreme
Programming'. It tries to be a solution for many problems that arise
during software development. A few examples of such problems:

¢ The product is not finished in time
* The product does not work properly, and consequently is not used
* The product does not do what it was intended to do

* When the product is finished, it's no longer interesting from a
business side of view

The theory behind XP states that these problems are the result of a lack
of the following four values:

1. Communication

2. Simplicity

3. Feedback

4. Courage

A1l practices of XP are based on using these values.

The Practices of XP

Planning

[XP] describes a game that must be played at the beginning of every
iteration, it is played by business and development people. The
objective of the game is to come up with a good planning for the
iteration. First the business people write a text that states what the
final product must be able to do. Then they decide what the most
important bit of software in the product is, this bit is built in the
first iteration. The business people must write functional tests that
must work after the iteration; the development people estimate how long
the iteration will take. It's also estimated how much iterations the
whole product will take. When the game is over, the business and
development people have decided exactly what will be done in the coming
iteration and what the deadline of it is.

Within the iteration the work is divided into tasks. Programmers must
successively estimate the amount of time the task is going to take,
implement the task and verify that the task does what it was supposed to
do.

After the iteration the development and business people come together
again; the business people can now see what has been build. When the
iteration took longer than planned, it's clear that the whole project
will take more time than planned. Notice that the business people know
this after just one iteration. It could also happen that the business
people are not completely satisfied by something that was build, because
of some misunderstanding. The advantage of working with iterations is
that these kind of things are noticed relatively early.

A new iteration is started, so the planning game starts again. It is
decided what the most important bit of software left to build is, etc.



After a few iterations, the planned deadlines will get more and more
realistic.

Working with iterations and discussing the product with business people
within iterations results in more communication and feedback in
comparison with other planning strategies. Communication and feedback
are two of the four values of XP.

(More about planning in chapter 7.)

Small Releases

Every release must be as small as possible. This means that the software
must have only the most important features. It is also important that
the release cycle is as short as possible, yet it may not contain
features that don't work completely.

Feedback and simplicity (two of the four values) are used in this
practice. A small release keeps things simple, short release cycles
result in more and faster feedback.

Simple Design

The general thing you here about design is 'Implement for today, design
for tomorrow'. But the problem with this motto is that the future is
often uncertain. Therefore [XP] states that it is better to have a
design that is as simple as possible, instead of a design that reckons
with things that will never see the light of day.

According to [XP], the right design is the one that

* Runs all the test (that are written beforehand)

* Has no duplicate logic

e States every intention important to the programmers
e Has the fewest possible classes and methods

The design is done just before the implementation starts, and is only
done for the coming iteration. 0f course it could happen that in an
iteration the architecture of a previous iteration must be altered. This
problem is partly solved by the fact that an XP team will quickly get
experience in changing 'old' code, because an XP team does a lot a
refactoring (see 'Refactoring' in this chapter).

Testing

In XP, the whole program is tested on a regular basis, viz. every time
code is added to the program. Automated tests run through the whole
program and are making sure that every bit of code still works. This
means that with every bit of code that is added to the program, a test
for it must also be written. These tests are saved and executed as long
as that bit of code is present in the program. The programmers should
always keep all the tests running, this way the programmer that has
added code and finds a test that doesn't run knows that this is caused
by his code.

(More about testing in chapter 8.)

Refactoring

Programmers must restructure the system, when the system can be simpler
or more flexible. By working this way the programmers try to make adding
features in the future as simple as possible. Maintainability is very
important in software engineering and esspecially XP, as working with a
design that only covers the current iteration provides the possibility
that a lot of code needs to be changed at some time.



Refactoring brings a risk, it is possible that by refactoring some code,
some functionality that is depending on that code 'suddenly' does not
work anymore. XP solves this problem by using automated tests; the
errors are discovered early and can quickly be repaired.

Pair Programming

A1l code is written with two programmers programming at the same
terminal. One is sitting behind the keyboard, and the other one is
watching and thinking ahead. So now a code review of all code takes
place. Pairing is dynamic, so when two people pair in the morning, they
might pair with other people in the afternoon. Programmers decide
themselves with whom they pair.

(More about pair programming in chapter 6.)

Collective Ownership

Every member of the team can change every bit of code in the program, as
long as they make sure that all tests keep running. By this XP tries to
avoid the situation that the progress of the work slows down when some
member of the team is not present, and by that his code in not
accessible.

Continuous Integration

[XP] suggests that one machine must be dedicated to integration. When a
task is finished, the programmers integrate their code into the system
and run all the tests. When a test fails it is obvious that it is caused
by their code, as it is forbidden to leave the integration-computer
without all tests running.

(More about integration in chapter 8.)

Coding Standards

Programmers must code with the same coding conventions. This is
important because the code is often refactored, the architecture is
often changed and the programmers often work on different parts of the
code and also with different partners. Without coding conventions the
code would become a undecipherable.



2. Mobilizer, Introduction

In this chapter I describe Catchy’s motivation for building a WAP-
browser, tt’s motivation to use XP and other thoughts that Catchy had
Jjust before it started the Mobilizer project.

Catchy was established in the year 2000 as a company that builds
applications that use the mobile internet. As WAP was the only mobile
platform that was operative at the time, this meant that Catchy was
going to build WAP-pages. WAP-pages are the equivalent of Web-pages and
aren’t written in HTML ([HTML]) but in WML, the Wireless Markup
Language; WAP-pages can be viewed with WAP-browsers, the equivalent of
Web-browsers. These WAP-browsers were and are developed for telephones,
palms but also for desktop computers. This is handy, as developing a
WAP-page with a mobile telephone can become very expensive. The state of
the desktop WAP-browsers at that time was very poorly; every browser had
some malfunction.

This all meant that Catchy had a problem: it didn't have a proper tool
for building WAP-pages. So it decided to develop one on its own. Maybe
it could sell it to developers when it was finished or, better yet,
maybe it could port the browser to a phone, and make some money that
way. The WAP-browser was going to be called 'Mobilizer'.

Catchy wanted to develop a WAP-browser that looked like a Web-browser,
so the audience could easily be introduced to WAP, as it probably would
already be familiar with Web-browsers. The WML language has many
similarities with HTML; it, for instance, also uses anchors to link one
WAP-page to another and enables the writer to use italic, bold and
underlined fonts. A difference with HTML is that WML can only display
one type of picture, viz. WBMP (Wirless Bitmap) pictures; WBMP pictures
only have two colours. This is because the WAP-pages will (usually) be
displayed on wireless devices, so the display would normally only have
two colours. Another difference with HTML is that the WML specification
doesn't allow tables to be located in other tables, which is allowed in
HTML. This is also something that shows that the WML specification
reckons with the fact that small devices must be able to display WAP-
pages.

Catchy realized that this was going to be a big project, the WAP-browser
would consist of a WML-parser, a WML renderer, a module to connect to a
WAP-server, etcetera. As the developers had not much experience in a
project of that size, and making a technical specification of a complete
WAP-browser was thus thought to be a big problem, Catchy decided to use
XP. With using XP, it thought, there is no need for writing a complete
technical specification, as it is only necessary to write a technical
specification for the coming iteratiom.

Sadly, just before the project started the team downsized from the
initial planned four to just two programmers. It was clear that this
would have negative consequences on my research, but I decided to carry
on.

10



3. Mobilizer, Functional Specification

In this chapter I describe the WAP-browser we had in mind at the
beginning of the project. This text is the starting point of the
Planning Game. Normally business people would write this text.

Interface
The WAP-browser must have a user-interface as depicted in figure 3-1.

File Bookmarks Help

P ey Winc oy .
Open Fila Relnad| Stop I Hl:lmei |ht't|:u:.f.fwmnr.catu:hy.netfwap.fmdex.wml _1J

Qpen Locatian

Save

Developer Maode
Freferences

Print

Close
Exit

Add Bookmark
Edit Bookmarks
Export Bookmarks ta...

Catchy.net

About Mohilizer
Ahout Catchy

Figure 3-1, user-interface of the WAP-browser

The buttons that are covered by the menu are the 'Back' and 'Forward'
buttons. The user can type an URL in the location bar that is located at
the upper right of the window. When the 'Return' button is pressed the
WAP site is displayed in the big sub-window, the content window. Located
under the content window is an info window that displays error messages
and status info. Pressing the various buttons or choosing the various
menu items will have the following consequences:

Menu item / button Consequences

New Window A new window is opened so that the user can
visit more than one WAP-site at a time

Open File A pop-up window lets the user choose a local WML

file, this file is successively shown in the
content window

Open Location A pop-up window lets the user type an URL. The
program receives the WML file and displays the
content in the content window

Save Let's the user safe the current WML file to a
local disk

Developer Mode Gives the program the functionalities needed to
develop WAP-pages, see below for details

Preferences Let's the user choose his/her preferences

11



Print Prints the current WAP-page

Close Closes the current window, only available when
the program has more than one window

Exit Closes all windows and exits the program

Add Bookmark Adds the current WAP-page to the bookmark list

Edit Bookmarks Lets the user edit the bookmark list

Export Bookmarks Lets the user export the bookmarks to a ftp

to... location

About Mobilizer Displays information on the Mobilizer program

About Catchy Displays information on the company Catchy

Back The previous WAP-page is shown

Forward Let's the user go forward in the history list,

only available when the current page has been
reached by means of the back button

Reload Reloads the current page

Stop Stops the current download action, only
available when the program is busy with
downloading files

Home Goes to the home location (that can be set in
the preferences)

Developer Mode

When the user chooses developer mode the program changes, as figure 3-2
shows.

Catchy's Mobilizer

File Edit Bookmarks Help

Back Farward | Show Stop | Home | hitp dhwww catchy. netwaplindex wmi v
irpdes wirmd < Turnl vetsion="1.0"7>
® calcawmils <IDOCTYPE wernl FUBLIC "<MARF ORUMIDTD Whil 1.140
catehy wib mp <wamls
<l main —=

<eard id="main" nthe="catchy ret ">

<p=

<img ste="catchplogo-T1 10 whmp" alt="catchy logo "=
welcame o the wapsite of catche net,

mobale wmtermat solubons prosiden <tz

<bif=

<3 href="Hret ">catchy nat<ia=<br’>

<a href="gantact vaml">cont act <fa=<br>

<a href="rews wml">news<iz=<bri:

<a href="hitp sy catchy nethsaphisashopdindas wml ">m-
<ip>

<heand>

going to developer mode

Figure 3-2, developer mode

There are now two new windows: The left-most window which shows all open
files, and a window which shows the WML code of the file that is
currently in edit mode. Notice that the 'Reload' button is now the

12



'Show' button. Pressing this buttons will cause the program to render
the WML code in the right-most window.

13



4. Mobilizer, Chronological Story

In this chapter the whole story of the development of the WAP-browser
during the apprenticeship is presented in chronological order. Every
iteration is split up in four parts: functional specification, technical
spectification, tasks and implementation. At the beginning of every
tteration the XP team decides what s going to be build in the coming
tteration. The 'functional specification’' part tells what this ts and
how this was dectded. The 'technical specification' part describes the
design, the 'tasks' part tells in which parts the work was split up and
the 'implementation' part tells the things that happened during the
tmplementation.

Starting Up

Day 1 - 7

In this period a couple of things had to be done. First of all, the team
had to become familiar with some tools. We set up a CVS server to make
integration possible, a Microsoft Visual Studio project was made and we
started using javadoc, a tool that makes HTML documentation from c++
source code. We have set up a homepage for the WAP-browser on the
intranet of Catchy, so that we were able to let colleagues know what we
were up to. On this homepage we published the first version of the
coding conventions. We also wrote a functional specification of the
final product we had in mind. This text can be found in chapter 3 of
this document.

There was some discussion about whether we should make our own WML
parser or that we should use a parser generator like flex/bison. So we
tried a bit of WML parsing with flex/bison and discovered that it was
very difficult to make a BNF for a mark-up language like WML. So we
decided to write our own parser.

Iteration 1: WML parser

Functional Specification (days 8, 9)

When we had to decide what we wanted to build in the first iteration we
could think of a couple of options: a WML parser, a WML renderer or a
HTTP module. Because a WML renderer could not be tested without a WML
parser and a HTTP module would not be very useful without the WML
renderer, we decided to start with a WML parser.

The functional specification of the first iteration was very simple. It
consisted of figure 4-1 and a description of the program. In the left
text box the user could type text and when the 'parse' button is
pressed, the text is parsed and when no parse errors are found the parse
tree is displayed in the right window, otherwise an error text is
displayed.

14



Wml Parser !E E

_F‘arw

Figure 4-1, the user interface from the functional specification of the
first iteration

Technical Specification (day 10)

The technical specification is more difficult. The parsing starts with
an object that is an instance of a class called CharStream. This class
makes it possible to walk through the WML source; it has methods like
getNextChar (). The XMLTokenizer uses this object. This class tokenises
the WML source. XMLTokenizer is used by XMLParser, which builds a parse-
tree from the tokens. This parse-tree consists of XMLElement,
XMLAttributes and XMLBody objects. Finally WMLParser checks the parse-
tree with the DTD of WML, in other words it checks whether all tags are
in the right place and have the correct attributes.

WhdLParser

Y

¥MLParser ' > ¥MLE lement ' > ¥hLAMributes

* _L" XMLBody

AMLT ok enizer

'

CharStraam

Figure 4-2, design of first iteration

15



The parse-tree is best explained by means of an example. The following
piece of XML code would result in the parse-tree in figure 4-3.

<exanple attributel="true' attribute2="false' >
bla bl a
<exanpl e2/ >

</ exanpl e>

JMLElement ALt b utes il Adtnibutes

taghame aftributeName aftributeName
example aftributel attribute2

attributes attribwbe'yalue: attrib ube'value

true false

bady mExt: mest

EMLBady EhiLBady / AMLE| e meent

AmCharl ata =mIE lement tagh ame
"bla bla" example2
naxt naxt attributes

=2 | body:

Figure 4-3, a parse tree example

Tasks (day 10)
The list of tasks looked like this:

Task Estimated Real
duration in |duration in
days days

Implementing class String 1 1

Implementing class CharStream 1 1

Implementing class XMLTokenizer 1 1

Implementing class XMLAttributes 1 0.33

Implementing class XMLBody 1 0.33

Implementing class XMLElement 1 0.33

Implementing class XMLParser 1 1

Implementing class WMLParser 3 4

Implementation (day 11 - 19)

The implementation of the WML parser went according to plan. The
deliverable can be seen in figure 4-4. Notice that the output is
indented to make it readable for humans. Also notice that the attributes
that have a default value, like the 'optional' attribute in the 'do' tag
(line 6 in the source), are put in the parse tree with their default
values while these attributes were not present in the source. This was
not in the specification, but was programmed as 'extra'. A second
example of an 'extra' was somewhat more work. The template attribute in
WML is used to code events and actions that are the same for all cards.
To make things easier we decided to put the template code in the parse-
tree for all cards. This is shown in the last two lines of output in

16



figure 4-4. Here the code of the template (lines 5-9 in the source) can
be found in the parse-tree as part of the first card.

parser x|

<?Eml verszion="1.0"7: :J
< IDOCTYPE wml PUBLIC "—rsWAPFORUM~~DTD WHL 1.Z2.--EH"
"http:-~~www. wapforum. org-DTD-wmll2 dtd":
cwml»
<template:
<do type = "123":
{prevs
<do»
¢ template:
¢ocard id="first":»
<pr
text text &gt damp;
text
LI [CDATA[ &gt <tagrbanp; 1] >
<br.
{anchor >
{go href="=zomnevherse"~:link
{sanchor»
LSpr
¢soard:
<syml»

tag: wml :J
tag: template
tag: do. attributes: optional=fal=e type=123
tag: prev
tag: card, attributes: newcontext=false ordered=true id=first
tag: p. attributes: align=left
" text text & text
"fgt < tagréanp; "
tag: br
tag: anchor
tag: go, attributes: =zendreferer=fal=se method=get href=zomnewhere
"link "
tag: do, attribute=: optional=fal=e type=123
tag:. prev

Figure 4-4, deliverable of iteration 1

Iteration 2: <do> tag

Functional Specification (day 20, 21)

We decided that the next thing to build was a renderer. At first we
thought that the whole renderer should be build in one iteration, but
after trying some things it became clear that it was a lot more work
than we thought. So we split the renderer into a few iteratioms.

The first iteration consisted of a few things. I made one of them in the
specification period to see whether it was possible. It was the idea of
a program with a child window as in figure 4-5. The program centralizes
its child window when the child window or the main window is resized.
This child window will be used to display the WML content in the coming
iterations.

17



WML Renderer !l:[ E

File
Dper...
Cluit
F
-
Delete =] QK Back

J

line 12 xmil error: the '=card="tag must be closed before
"=fon event='

Figure 4-5, from the functional specification of the second iteration
Another thing that was going to be built in this iteration was the
displaying of the <do> tags. [WML] says about the do element:

The do element provides a general mechanism for the user
to act upon the current card, i.e., a card-level user
interface element. The representation of the do element is
user agent dependent and the author must only assume that
the element is mapped to a unique user interface widget
that the user can activate. For example, the widget
mapping may be to a graphically rendered button, a soft or
function key, a voice-activated command sequence, or any
other interface that has a simple "activate" operation
with no inter-operation persistent state. When the user
activates a do element, the associated task is executed.

Gerald Stap, R&D manager of Catchy at the time, suggested to display the
do elements as the drop-down select box in the lower left corner of
figure 4-5. The idea is that all the do elements of the current card are
displayed in the select box and that the user can choose from the list
and then can activate one of them with the button under the select box.
And the last thing for this iteration was the integration of the parser
in this program. Parse errors (if present) were going to be displayed in
the text box at the bottom of the window (see figure 4-5).

Technical Specification (day 22 - 25)

During the making of the technical specification we had to decide
whether the WAP-browser was going to be multi platform, because we were
going to connect platform independent code (the WML parser) to platform
dependent code (the dropdown menu, parser error box). We decided to make

18



the WAP-browser multi platform, starting with a Windows and a Linux
version. This meant that a platform dependent class had to be made which
controlled the drop down box, which could have different implementations
for different platforms.

Tasks (day 25)
The list of tasks looked like this:

Task Estimated Real
duration in |duration in
days days

Implementing resizable window 2 2

Implementing file loading code 0.5 0.25

Integrating WML parser 0.5 0.25

Connecting WML parser to the parser error 0.5 0.25

box

Connecting WML parser to the dropdown menu |0.5 0.25

of <do> elements

Implementation (day 26)

This iteration consisted of very basic implementation (file loading,
displaying text in windows, ...). This kind of implementing is
relatively easy to plan; we were able to finish this iteration within
the deadline.

Iteration 3: rendering text

Functional Specification (day 27)

In this iteration we wanted to let the WAP-browser display text. All
other things present in the WML-page should be ignored. When the text is
too big to fit in the window, a scrollbar should appear, this could be a
vertical scrollbar (when there are too many lines to fit on the screen)
or a horizontal one (when a word or a line that may not be broken into
multiple lines does not fit on one line).

Technical Specification (day 27, 28)

The specification of this iteration was mainly done in the specification
period of the second iteration. The main problem is to keep the program
platform independent. The specification was based on the idea depicted
in figure 4-6.

19



Windows (95)
Interface
- drawText ()
\
WMLWindow WindowDrawing Unix
Interface Interface
- drawWindow() - drawText () - drawText()
B - scroll() » »
- getUpdateList()
Interface
= platform dependent | - drawText()

Figure 4-6, platform independent rendering

The box on the left is the code that detects that the window has to be
drawn. It then calls the drawWindow member of the WMLWindow class. When
text must be drawn in the window it calls the platform dependent
drawText member of the correct interface. These interface classes are
all derived from the abstract WindowDrawingInterface class.

When a scrollbar must be shown or positioned or when a do element has to
be placed in the select box, WMLWindow places these instructions in a
so-called update list. The platform dependent code can access this list
by calling the getUpdatelist member of the WMLWindow class.

Taks (day 28)

Task Estimated Real
duration in |duration in
days days

Make WMLWindow, WindowDrawingInterface, 1 1

WindowsInterface, GNOMEInterface

Normal text displaying 1 2

Enable text of different sizes 3 5

Enable different alignments 3 10

Implementation (day 29 - 46)

This iteration was finished two weeks after its deadline. The tricky
thing about rendering text is that it is very easy to display left
aligned normal text, but things get very difficult when you throw in
right aligning and fonts with different heights. The trouble with right-
or centre- aligning is that you don't know the x-position of the first
word on a line when you don't know the total length of the words on that
line. The trouble with fonts of different heights is that you don't know

20



the y-position of the first word on a line when you don't know the
maximum height of the words on that line, in other words: when the
second word on a line is bigger than the first, the first word has to be
displayed lower.

Another problem that came on our path was the rendering of the following
bit of WML code:

<wnml >

<car d>

<p>

<b>bol d</ b> <i>italic</i>
</ p>

</ card>

</ wn >

Should this code be rendered as 'bold italic' or as 'bolditalic'? The
problem here is that the XML specification ([XML]) is not clear on
whether the space, which is located in a place in the code where
character data is allowed, should be treated as character data or as
whitespace. The same holds of course for the other whitespace characters
in WML (carriage returns, line feeds and tabs). A short investigation
among the popular WAP-browsers at the time showed the following:

With space Without space
WinWAP 3.0 YoSpace
M3Gate Nokia 7210

Nokia Emulator
UP.browser
Sony CMD-Z5

So we decided to go with the flow and not display the space. In web-
browsers the space is usually displayed (IE5, Netscape).

The Code Review

Day 47 - 59

Unfortunately we were unable to test 'pair programming' during the
apprenticeship. One of the benefits of pair programming is the fact that
a code review of all code takes place. We decided to also do code
reviews of all code, but not during the programming. After the 3™
iteration we took some time to study each other's code and suggested
some possible improvements.

The improvements were mainly in the following areas:

* Documentation - the lack of good comments which explain the code

e Unclear code - functions that are too long and therefore not easy
to understand

* Memory leaks - memory that is allocated, and never freed

Iteration 4: rendering non-text

Functional Specification (day 60)
Naturally, the next iteration was going to render non-text:

e Anchors - the <a> elements must be rendered, these are the
equivalents of the <a> tags in HTML. The text between the <a> and

21



</a> tag must be underlined and coloured blue. The mouse pointer
must change to a hand when it hovers over the anchor.

* Input elements - the input elements must be rendered, and the user
must be able to put text into it.

e Select elements - the select elements must be rendered, and the
user must be able to select one of the options

e Tables - tables must be rendered, which means that all the content
of the table is displayed in cells, all cells in the same row must
have the same height, all cells in the same column must have the
same width

* Pictures - the WBMP pictures as specified in [WML] must be
rendered

Technical Specification (day 60, 61)

I will only cover anchors here because the others are straightforward or
are not in the scope of this document.

When the program is (re)drawing the screen it puts all coordinates of
the anchors in a list, the so-called AnchorList. With every mouse move
the program checks whether the mouse is located on one of the anchors,
if this is the case it changes the mouse pointer into a hand.

camhﬁ%nnm

Figure 4-7 hand mouse pointer hovers over a link.

Tasks(day 61)

Task Estimated Real
duration in |[duration in
days days

Anchors 2 2

* Render differently
e Put in Anchorlist

* Change mouse pointer to hand when
necessary

Input elements 2 3
Select elements 2 1
Tables 2 4
Pictures 2 4

Implementation(days 62 - 75)

The implementation was all pretty straightforward, except for the
implementation of tables. During the making of the technical
specification we overlooked the fact that tables could also contain
pictures and input and select elements, which was really difficult to
implement, so after running a few days behind schedule we decided not to
implement the rendering of input and select in tables.

Refactoring(days 76 - 85)

This iteration was further delayed by some refactoring that we thought
was necessary. We noticed that a few classes were present in the code
that were all lists and were all very similar, so we spent some days
refactoring the code which made the code smaller and a (little) bit
faster.

22



5. Mobilizer, Results

This chapter describes the results we achieved after 85 days of
developing.

After 85 days of developing the windows version of Mobilizer looked as
figure 5-1 shows.

_loix

File

Gonna make a move that knocks
YU over

Wiatch this tum this one's gonna put wou away
But I'm doing rmy very hest dancing
Eveny time wvou're jooking the other way
| could move out to the left for a while
| could shide to the righit for a while

I cowlcl getup and back

hack

| -I | Ok | Back

Figure 5-1

The Mobilizer in figure 5-1 is rendering the following code:

<?xm version="1.0"?>

<! DOCTYPE wn PUBLIC '-//WAPFORUM / DTD WM. 1. 1//EN
"http://ww. wapforum org/DTD/ wr _1. 1. xml ' >

<wnml >

<card id="style' >

<p align='left' node='wap' >

<bi g>Gonna make a nobve that knocks you over</bi g><br/>
<smal | >Watch this turn this one's gonna put you away</snal | ><br/ >
<u>But |'m doing ny very best danci ng</u><br/>

<i >Every time you're |ooking the other way</i><br/>

<b>l could nmove out to the left for a while</b><br/>

<b>l could <i>slide to <u>the</u> right for</i> a whil e</b><br/>
<i >l coul d <b>get up</b> and back</i ><br/>

<br/><a href="main. wn ' >back</a>

</ p>

</ card>

</ wn >

The growth of the system is depicted in figure 5-2.

23



System Growth

w
o

N
a1

Modules
BN
(63} o [6)] o
1 1 1 1

o‘ LIS L L I O A

- © «€G ©O© «=H O «H O «=H O «d © «d © «=H O
- =G N N MO OO I T O 1O © O N~ N~ o©

Day

Figure 5-2

The plot shows how the amount of modules changed during the project; in
this case one module is one platform independent class. The four
iterations are all more-or-less recognizable. Further conclusions from
this figure are left to the imagination of the reader.

To determine the productivity of the team I used a method called
'packfiring'. Productivity is usually measured in Function Points per
person-month. The counting of Function Points is a difficult task and is
best performed by a professional. Backfiring, as described in [BCLFP],
is much easier. [BCLFP] provides, for a number of languages, the amount
of source code statements per function point. For C++ this number is
about 53; this is the mean value, it could be anywhere between 30 and
125.

After 85 days the Mobilizer project consisted of 2186 source code
statements (determined by counting the number of semi-colons).
Backfiring tells us that this is about 41 function points (between 17
and 71). 119 person-days had been invested in the project; this is 6.0
person-months. The productivity, thus, was about 6.8 function points per
person-month (between 2.8 and 11.8). The U.S average is 5 function
points per person-month (source: [ACSR]).

Evaluation

The initial plan consisted of four people working on this project.
Sadly, only two people ended up being assigned to it, and only one full-
time. This, of course, had some consequences on my research. 'Pair
Programming' could not be tested, and there is little I can say about
the XP practices 'Collective Ownership' and 'Continuous Integration'. To
further discuss XP I decided to combine the data of the development with
some articles I found in the literature. They get discussed in the
following three chapters, which each focus on a software engineering
theme.

24



6. Team Structure

To further talk about the results of this research I have chosen three
software engineering themes that are discussed in the following three
chapters. First I talk about the views given in a well-knoun book about
the subject. Then an overview ts given of the practices within XP
concerning the software engineering theme and they are compared with the
literature. After that I discuss the experiences we had during the
project with the particular subject. In this chapter we focus on team
structure.

Literature

A well-known example in the literature about team-organisation was
proposed by Harlan Mills in 1971 and his views were included in probably
the most famous software engineering book: 'The Mythical Man-Month'
([MMM]), which was published in 1975.

The problem with managing programming-teams is the dilemma between a
small team and a large team. Often a small team lacks productivity, and
a large team will always have communication problems. These
communication problems are due to the fact that more programmers means
more communication, and more communication means less actual
programming, and therefore 10 programmers will never be 5 times faster
than 2 programmers doing the same job. But things get worse, because
more communication means also more miscommunication, which is disastrous
for software engineering. An example of miscommunication that often
takes place is when the code of one programmer has to be 'glued' to the
code of another programmer. The interface that serves as an agreement
between the two programmers has to be totally clear for both, because a
slight misunderstanding can be the cause of hours of debugging, as these
errors are very hard to find.

Summarizing: a small team is in most cases not capable of making the
dead-line, and a large team can't work effectively, and by that is more
expensive than a small team.

Mills's proposal tries to solve this dilemma between small and large
teams by taking a team of 10 people and deliberately reducing the need
to communicate by letting the team members specialize in a part of the
job. The communication patterns in the team are depicted in figure 6-1.

copilot programming toolsmith tester language
clerk lawyer
surgeon
administrator editor
= secretary - secretary

Figure 6-1, communication patterns in a 'surgeon' team

25



Table 6-2 shows what the tasks of each team-member are.

Team-member Tasks

Surgeon (Or chief programmer) Defines functional and
performance specifications, designs the program,
codes it, tests it, writes the documentation.

Co-pilot Gives advice concerning the design, researches
alternatives for the design, represents the team in
meetings with other teams, and is the backup for the
surgeon

Administrator Handles money, people, space, machines and is the

contact to the administrative machinery of the
organisation

Administrator's

Assistant to the administrator, also: project

Secretary correspondence, non-product files

Editor Takes the documentation of the surgeon and criticizes
it, reworks it, provides it with references and
bibliography, does version control and oversees the
mechanics of production

Editor's Assistant to the editor

secretary

Programming Maintaining all the technical records of the team in

clerk a programming-product library

Tool smith Constructing, maintaining and upgrading of special
tools needed by the team

Tester Devises tests from the functional specification and

test data for debugging

Language lawyer

Does small studies on good coding technique

Table 6-2

So all the 'real' work is done by the surgeon and his co-pilot, the
other team-members help them by taking as much work out of their hands
as possible. The surgeon and the co-pilot work together in some extend:
the surgeon does all the implementation and the design is done together,
with the surgeon having the last word. With this approach two problems
are solved: there is no chance of miscommunication between two
programmers, and no time is lost on compromising on who implements what.
The problem of how to organise a team that consists of let's say 100
programmers is not yet solved, however. A large part of 'The Mythical
Man-Month' addresses this problem. I will not describe it here, because
XP is designed for small or medium sized teams, and therefore a
comparison with XP could not be made.

XP

XP uses pair programming, which means that all code is written by two
people sitting behind one terminal. They, however, have different roles.
One has the keyboard and is thinking about the code he/she is writing

and the other one is thinking about the 'big picture', for example:

'is

this code going to work?' or 'can we simplify this code?'

A pair of programmers commits to a so-called task. This task comes from
a pile of tasks that the programmers can choose from. When the task is

finished the programmers can choose to work with someone else on a new

task.

26



A programming team has, besides normal programmers, also two special
members: a tester and a tracker. Often they will also be normal
programmers beside their special functions.

The main function of the tester is to run all tests regularly and
communicate the results to the rest of the team. The tester may also
have the responsibility of helping the customers write tests, as they
generally won't have programming skills.

The tracker gives feedback to the team about their estimates.

XP vs. Literature

Mills's 'surgeon team' almost guarantees conceptual integrity, because
one programmer writes all code. But this programmer must have some
exceptional capabilities, as he must provide work for 9 people while
developing the program.

The XP-approach must be the exact opposite of the 'surgeon team'.
Instead of every team-member specializing in something, no one
specializes and every team-member is equal, which minimizes the risk of
a project depending on a few people. A disadvantage of the XP-approach
is the fact that programmers tend to dislike pair programming, which
became apparent when XP was first suggested to the programming team.
When one must choose between the 'surgeon team' and XP, I would only
suggest the 'surgeon team' in cases where one has the disposal of one
exceptional programmer and conceptual integrity has very high priority.
In other cases, XP must be a better choice.

Mobilizer

Sadly I could not test pair programming in this project because of
conflicting schedules within the team. But we did manage to have a code
review of all code.

We found working with tasks to be comforting. It gives a feeling of how
much progress the iteration is making, and also gives a feeling of
direction while programming.

The tracker of our team discovered that our estimates were too low in
the first two iterations and too high in the last two. A possible
explanation can be found in the next chapter.

27



7. Lifecycle

In chapter 6 we focussed our attention on team organisation ('how to
divide the work among people') because we know we cannot let a software
engineering project be done by one person (in theory the most effective
team). We also know that the project won't be finished in one day, so in
this chapter we look at how the work should be divided among the time-
line: the lifecycle.

Literature

In his book 'Rapid Development' ([RD]) Steve McConnell describes several
lifecycle models. I will discuss seven of them here, those that I found
most important and relevant.

Pure Waterfall

Sof t war e
Concept <-> Requirenents
Anal ysis <-> Architectura
Design <-> Detail ed
Desi gn <-> Codi ng and
Debuggi ng <-> System

Figure 7-1. Pure Waterfall. Testing
Figure 7-1 shows how the 'Pure Waterfall' model works.
There are 6 stages in this model, the project starts with the software
concept stage and ends with the system testing stage. To advance from
one stage to the next the team holds a review, so it can determine
whether the project is ready or not.
The main disadvantage of this model is the troubles that arise when the
requirements appear to be incomplete whilst the project is for instance
amidst the coding and debugging stage. It is allowed to go back a stage,
but it being a waterfall makes this very hard: changing requirements
changes the design and can make already programmed modules become
obsolete or they must be redone. So these troubles waste time and money,
and this is a big problem because the incompleteness of requirements is
very common in software engineering.

Sashim?

In the pure waterfall model all stages are disjoint, thus making it
possible to hand the project to a completely separate team between any
two stages. If personnel continuity is sufficiently present one can
allow the stages of the pure waterfall to be overlapping, this makes the
transitions from stage to stage more efficient. This is the sashimi
model ('sashimi' refers to the Japanese style of slicing fish, with the
slices overlapping each other). A disadvantage of this model is the fact
that parallel activities in the different stages can lead to more
miscommunication.

Waterfall with Subprojects

When the system that must be built consists of a number of mostly
independent subsystems this model can be efficient. Figure 7-2 shows the
concept of this model.

After the architectural design stage is done several subprojects are
started and each of those can proceed on its own pace. After all
subprojects are done all of the code has to be integrated into one
program, and that program must be tested as a whole.

28



Sof t war e

Concept
?
Requi r ement s —> Detailed
Anal ysi s | Desi gn <-> Codi ng and
1 Debuggi ng <-> Subsystem <—
Architectural <> Detailed Testing |
Desi gn | Desi gn <-> Codi ng and |
| Debuggi ng <-> Subsystem <——> System
L> Detailed Test i ng | Test i ng

Desi gn <-> Codi ng and |
Debuggi ng <-> Subsystem <—
Testing
Figure 7-2. Waterfall with subprojects

The advantage of this model is that some of the programmers can already
start with one of the subprojects while others are still busy with the
architectural design, which generally is a stage in which only a few
people are involved. So this model can be more effective than the pure
waterfall model.

The main problem with this approach is the risk of unforeseen
interdependencies; subprojects could start prematurely.

Evolutionary Prototyping

The last three lifecycle models are all iterative, which means that
there is a loop in the lifecycle. The loop of the evolutionary
prototyping model is displayed in figure 7-3.

Initial —> Design and inplenment ——> Refine prototype ——> Conpl ete and
Concept initial prototype | until acceptable | rel ease
L | pr ot ot ype

Figure 7-3. Evolutionary Prototyping

From the initial concept of the program a prototype is build with most
attention paid to the visual aspects. Then based on the feedback from
the customer the prototype is developed further. This process continues
until the customer is fully satisfied.

This model is useful when the requirements are rapidly changing or there
is little understanding of the application area. Disadvantages are the
fact that it is hard to give an estimate on how long the project will
take, and this method has increased risk for bad ('spaghetti') code.

Staged Delivery

The staged delivery model works a lot like evolutionary prototyping,
there are however two major differences. As figure 7-4 suggests, with
the staged delivery model one goes through some steps of the waterfall
in the iteration. After each iteration the program is delivered to the
customer who, contrary to the evolutionary prototyping model, can start
to use it. His feedback is also welcome.

The main advantage is that one can give valuable functionality to the
customer in an early stage of the lifecycle. Disadvantages include the
difficulty of carefully technical planning; imagine the possibility of
planning a component for iteration 4 only to find that a component for
iteration 2 can't work without it.

29



Sof t war e
Concept

!
Requi renent s
Anal ysi s

3
Architectura
Desi gn <——> Detail ed
| Desi gn <—> Codi ng and
Debuggi ng <—> Syst em
| Testing <—> Delivery -
L |

Figure 7-4. Staged Delivery.

Design-to-Schedule

The design-to-schedule model is almost the same as the staged delivery
model, the only difference is that all the iterations have priorities,
and the iterations are done in order of priority: highest priority
first, lowest priority last. Advantage: big chance there is a good
product when the dead line comes. Disadvantage: possibility of wasting
time on architecting features that will never be implemented.

Sof t war e
Concept

g
Prelimnary
Requi r ement s

Anal ysi s
¢
Desi gn of Del i ver
Architecture <——> Devel op a > Fi nal Version
and System | version <—> Deliver the
Cor e | version <—> Elicit
| Cust oner
| Feedback <—> | ncorporate
| Cust oner
| Feedback 4
L |

Figure 7-5. Evolutionary Delivery.

Evolutionary Delivery

The evolutionary delivery model (figure 7-5) looks a lot like the
evolutionary prototyping and staged delivery models. The difference with
evolutionary prototyping is that with evolutionary prototyping the
initial emphasis is on the visual aspects of the system, with
evolutionary delivery this isn't necessarily so. Staged delivery pays
less attention to customer feedback than evolutionary delivery.

XP

Exploration -> Iterations to -> Productionizing -> Mintenance -> Death
first rel ease

Figure 7-6. Lifecycle stages of an ideal XP project.

The stages of the lifecycle of an ideal XP project, described in chapter
21 of [XP], are depicted in figure 7-6.

The first stage is the exploration stage, in this stage the programmers
explore the possibilities for the system architecture, so that the team
has an idea how the architecture should be when the developing starts.
The planning and committing to the planning is very important in XP, so

30



in the exploration stage the programmers also practice in giving good
estimations on their programming speed.

The next stage is called 'iterations to first release'. In this stage
all the functionalities of the first release are build in iterations.
The first iteration will put the architecture in place. Next iterations
will each build the most important (business-wise) functionalities left
to build.

The iterations have two sub-stages: the 'planning' stage and the
'developing' stage. In the planning stage the business people and
development people decide what is going to be build by means of writing
stories. They also estimate how much time those stories will take to
develop and how much time the whole iteration will take.

In the developing stage the stories are translated into tasks. The
programmers subsequently write, accept, estimate and implement the
tasks. Implementing a task consists of writing test cases for it,
writing the code and verifying that the test cases work. When all the
tasks are done the team verifies that all stories are implemented.

When all the stories of the first release are implemented the project
can go to the 'productionizing' stage, which means that the product is
about to be shipped to the customer(s). In this stage the product is
tested more thoroughly and also some performance tuning is done.

After the first release the project goes into the 'maintenance' stage.
Besides developing new functionalities the team must now also react on
feedback of customers, this can be removing bugs or working on the help
desk. Productivity will therefore be lower than before going into
production. In this stage the team also works in iterations.

XP vs. Literature

The lifecycle of an XP project is a lot like the last four lifecycle
models discussed in the 'Literature' section. The main difference is
that with XP for every iteration an architectural and a detailed design
are made for that iteration. Hereby an XP project deliberately takes the
risk of having to heavily alter the architecture of already written code
because a new feature can't work with that architecture. The question,
of course, is how big this risk is. It could well be, and XP is betting
on this, that the risk is not much bigger with XP than it is with the
conventional lifecycle models, as it is practically impossible to make a
flawless architectural design before a line of code has been written.
The advantage of XP is that when the architecture must be changed amidst
a project, an XP team can more easily handle this situation. Team-
members are not fixed to one thing, but they are used to do different
things with different people because they work with tasks and pair
programming. And they are used to changing code, as they are used to
refactoring.

So I conclude that the more difficult it is to make the architectural
design without mistakes the better it is to use the XP lifecycle model.

Mobilizer

In the planning stage of the iterations we wrote a document with all the
stories that we called the 'functional specification'. Gerald Stap, R&D
manager of Catchy, played the part of customer. By making the
specification this way we were able to be very specific on what was

31



going to be build, much more specific than when we had to make the
specification for the whole program.

When one wants to make a decision on whether the XP lifecycle model is a
good one, one first has to decide on how one decides that a lifecycle
model is a good one. I think that the main function of a lifecycle model
is to keep the project manageable, in other words, to provide the
'outside world' with sufficient information on how the project is
developing. The most important information for managers is the date on
which the project will be finished. Let's take a look at the schedule of
the Mobilizer and by how much they were missed:

Iteration Estimated |Real Exceeding Reason
duration duration |planned date
in days in days |in %
Iteration 1 10 9 -10%
Iteration 2 4 3 -25Y%
Iteration 3 8 18 +125% Underrated problem
Iteration 4 10 24 +1407% Refactoring

From this table one can see that the estimates were too pessimistic in
the first two iterations and (far) too optimistic in the last two. This
could be due to the fact that the first two iterations were smaller, but
is probably also because the last two were more complicated, as the code
of the latter iterations must communicate with the code of the earlier
iterations.
[ACSR] states that the average exceeding of the planned date is between
257 and 50%. It further notices that the risk of missing schedules
increases when the project:

e Is relatively big

e Is relatively new in concept

* Has inexperienced management and staff

* Doesn't use planning and estimating tools

Which was all more or less the case with the Mobilizer project.
Interesting is also that [ACSR] states that projects are more likely to
miss their schedules at a later stadium of their development, which also
happened with the Mobilizer.

One may come to the conclusion that the XP lifecycle model was not the
best choice for this project, as two of the four iterations missed their
deadlines by far more than the average given by [ACSR]. But when I
speculate a little on how the schedule slips would be when we wouldn't
have used XP, a different picture appears.

Let's say we would have made the architectural design for all four
iterations at once and successively would have implemented the four
iterations. The schedule slip would then have been more than the average
of the four percentages above, because

1. The architecture would have been much more difficult, so it would
have taken more days than the sum of the days spent on the four
separate specificationms.

2. The estimation of the fourth iteration was based on the experience
of missing the dead line of the third iteration; the estimation of
the four-iterations-at-once project wouldn't have had this
experience.

32



8. System Integration

This chapter focuses on system integration, which 2s the combining of
separate software components into a single system.

Literature
In 'Code Complete' ([CC]), McConnell describes a number of integration
strategies.

Phased vs. Incremental
The integration can be done phased or incremental. A project that uses
the phased integration follows these steps:

1. Design, code, test and debug each routine

2. Combine the routines into one system

3. Test and debug the whole system

Step 2 will inevitably introduce problems; this can for instance be
caused by an interaction between two routines. The problem with this
integration strategy is that these problems will come in large numbers
and that the location of the problems could be in any of the routines.
This makes testing and debugging an enormous effort, and that's why
phased integration is only suitable for very small projects.
A project that uses incremental integration follows these steps:

1. Develop a small part of the system

2. Design, code, test and debug a routine

3. Integrate the new routine, test the whole system, and go to step

2.

This approach has many advantages over the phased integration. When new
problems surface during the integration, the new routine is obviously at
fault, so these problems are easy to locate. With this approach each
routine is tested more, as routines that are integrated at the beginning
of the project get tested with each consecutive integration.

There are several kinds of incremental integration strategies. They
differ in the order in which the routines are integrated.

Top-Douwn Integration

In top-down integration the routines in the top of the hierarchy are
integrated first. (These are the routines that are not called by other
routines.) Stubs are written for the function-calls that are made from
these routines. Then real routine replace the empty ones, and stubs are
written for function-calls in these routines, etcetera. Finally the
routines that don't call any other routines are written and integrated.
The main advantage of this approach is that design problems are
discovered relatively early; a disadvantage is that low-level problems
could 'bubble up' and lead to high-level changes and by that reduce the
benefit of earlier integration work.

Bottom-Up Integration

Bottom-up integration works exactly the other way around: First the low
level routines are implemented and than the routines that call those
routines, etcetera.

The advantages and disadvantages are also the other way around: a
disadvantage is that design errors are discovered relatively late, and
an advantage is that low-level problems are discovered relatively early.

33



Sandwich Integration

To avoid the disadvantages of the top-down and bottom-up strategies one
could choose the sandwich integration: First the top level is
implemented, then the lowest level routines are integrated and finally
the middle level(s) are integrated.

Risk-0Oriented Integration

In risk oriented integration one identifies the level of risk associated
with each routine. The more challenging the routine is to implement and
integrate the higher the risk. The routines with the highest risks are
integrated first, this way one tries to avoid that big mistakes are
discovered late in the project.

Feature-Oriented Integration

With feature-oriented integration the routines are first integrated to
become features, which are subsequently integrated to become the
program. An advantage of feature-oriented integration is that with each
feature that is integrated there is evidence that the project is moving
steadily forward, which is good for morale.

XP

XP works with 'continuous integration', which means that after every
task the work is integrated. The tasks are done in almost arbitrary
order: there is a pile of tasks that must be done in the current
iteration, and the programmers can choose a task from that pile. The
iterations are done in order of business importance: the functionalities
that are most important are developed first.

To ensure that the program still functions completely after integration,
the programmers write test cases for all the routines. All the tests of
the program are executed after each integration.

XP vs. Literature

Continuous integration seems to be a combination of the risk-oriented
and feature-oriented integration strategies mentioned in [CC]. A
difference is that all the strategies mentioned in [CC] have the
programmers integrate a routine at a time, while XP integrates tasks.

Mobilizer

It is the opinion of the team-members that integrating the code
continuously is a very good practice. One can think of non-integrated
code as a risk. You don't know if it compiles, works or whether it ever
will be integrated. A good example of this is when we decided to port
the code to Linux. The WML-parser already consisted of quite a lot of
lines code and when we compiled it with a Linux compiler we discovered
that some of the files didn't compile. We had to make quite an effort to
make the code compileable under both platforms. This shows that one
cannot assume that code that is not frequently compiled and tested (on
all platforms) will work as expected.

When some bit of code works, it doesn't mean that it will keep working.
This is why XP also uses continuous testing. We decided to give each
class a static method called 'test' that tests all the code of that
class. Figure 8-1 and 8-2 show how this works. To make sure that every
line of code is tested we used a tool that showed the coverage of the

34



code, in other words, how many times each line of code was executed
during the execution of the program.

35



9. Conclusion

In this paper I've described XP, described the development of the WAP-
browser, and discussed three software engineering themes and their
relation to XP and the Mobilizer project. In this chapter I will draw
the conclusions of this apprenticeship.

When I compare [XP] with other software engineering books like [RD] and
[CC] I notice that [XP] is in comparison very small and written in a
much more light-weighted tone. The other books are much more
comprehensive and use more arguments with their statements. One could
assume that the intended audience of [XP] are managers and not
programmers. 0f course it is the decision of managers and not of
programmers to use XP, but if XP wants to be taken seriously in the
software development world, shouldn't it be described less sounding like
a commercial?

But let us take a look at the things we learned about XP.

The team structure is very important in XP. Everybody is equal and
nobody specializes in anything. The 'surgeon' team, as described in
chapter 6, is exactly the opposite, here we have one programmer who does
all the programming, and all other members are specialized in something
to make the work of the 'surgeon' as easy as possible. This method is
depending very heavily on him/her, when there is no 'super' programmer
available the XP method is a good alternative.

When avoiding schedule slips has high priority, working with iterations
is a good choice. As chapter 7 describes, the schedule slip of the first
four iterations of the Mobilizer project would have been bigger when no
iterations had been used. To further avoid schedule slips, the team
should reckon with the fact that refactoring will sometimes have to take
place, when determining the deadline of the coming iteration.

We have also seen that with XP the team does not have to make an
architectural design of the whole program at the beginning of the
project. When the project is too big, difficult or uncertain to make a
complete architectural design for, the XP method is a good option.
Continuous integration in combination with continuous testing is a good
method in keeping the risk of unmanageable code low (chapter 8). To make
sure that every bit of code is tested one should determine the coverage
of the code. This makes continuous testing even more powerful.

When the XP practices are compared with the practices in the literature
(especially [RD] and [CC]) one can see that the XP practices are hardly
new, but the combination of them is new. During the project we did not
find any flaws in the XP practices.

Concluding, XP has some practices that are valuable in certain
circumstances. We did not find any flaws in the XP practices.

36



10. Glossary

CVS - concurrent versions system, a 'source control' tool designed
to keep track of source changes made by groups of developers
working on the same files, allowing them to stay in sync with each
other

Coding conventions - a collection of agreements on how to write
code, like how to write comments, how to indent, etc.

Code review - the process of letting someone other than the person
who wrote the code have a look at the code and suggest or make
improvements

Coverage - the coverage of a piece of code - how many times each
line has been executed during the execution of the program

DTD - Document Type Definition, of every XML language the DTD
tells what ftags are allowed where and which attributes they
must/may have

Iteration - a one- to four- week period in which a specific
functionality is added to the program

Release - the program that is released to an audience

Requirements - a text that is written about a program before it is
developed, it states what the program must look like and what it
must do

Story - a text in which a single feature of the program is
specified

Tag - elements in XML, tags start with '<' and end with '>', for
example: <tag attribute='value'>

Task - an assignment for a programmer, this could be implementing
a story, rearrange a bit of code, etc.

37



[ACSR]
[BCLFP]
[cc]

[HTML]

[RD]
[MMM]
[WML]

[XML]

[XP]

11. References

"Assessments & Control of Software Risks", C. Jones,
Yourdon Press, 1994

"Backfiring: Converting Lines of Code to Function Points",
C. Jones, IEFE Computer 28, 11 (November 1995).

"Code Complete: A Practical Handbook of Software
Construction", S. McConnell, Microsoft Press, 1993.

"HTML 4.01 Specification, W3C Recommendation 24

December 1999", D. Raggett et al, December 24, 1999.

URL: http://www.w3.org/TR/REC-html140/

"Rapid Development: Taming Wild Software Schedules",

S. McConnell, Microsoft Press, 1996.

"The Mythical Man-Month: Essays on Software Engineering",
F. P. Brooks, Addison-Wessley, 1975, 1995.

"Wireless Markup Language Specification", WAP Forum,
04-November-1999.

"Extendible Markup Language (XML), W3C Recommendation
10-Febrary-1998, REC-xml-19980210", T. Bray et al,
February 10, 1998. URL: http://www.w3.org/TR/REC-xml
"eXtreme Programming, Embrace Change", K. Beck,
Addison-Wessley, 1999

38



