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Chapter 1

Introduction

Numerous companies today struggle with the problems caused by legacy code.
Their operational systems usually consist of millions of code-lines in some pro-
gramming language now considered defunct. Little to no knowledge of the
semantics of these languages and insufficient documentation about the internal
functioning of the system as a whole create an unhealthy foundation for future
development.

The analysis and renovation of such systems has grown into an important
field of research, both due to the complexity of such a task and the obvious
commercial interest for applicable methods. The SEN1 research group at the
Centre for Mathematics and Computer Science had participated in several re-
lated projects involving renovation of legacy systems. To further exploit the
tools and knowledge of SEN1 for commercial use, Paul Klint decided it was
a good moment to start a spin-off company. Thus the Software Improvement
Group (SIG) was born, a software engineering company with the intention to
further develop and apply the technologies of SEN1 for commercial use.

The first technology to be deployed for commercial use is a documentation
generation system named DocGen. By analysing the code of the programs that
make up a COBOL-system, DocGen provides the user with a detailed review
of interesting parts and their location. Furthermore it provides a visual repre-
sentation of the interactions and dependencies between the separate programs.
The information provided by DocGen allows quick reviewing of the functions of
separate components within a system. Anomalies like programs with duplicate
or redundant functionality can easily be located. Even if manual documenta-
tion is required, DocGen provides a foundation for a structured approach of
such documentation.

In order to create useful feedback on a legacy system, DocGen needs to
examine the code. Although DocGen consists of much more than the reading
phase, all other components rely on this phase to provide them with correct
information. The reading of code is currently done by a lexical analysis, which
was implemented in Perl at the time the work on this thesis was initiated. On
basis of several heuristics a decision is made if the code containg what DocGen
is looking for, after which it is extracted for further use.

9



6 CHAPTER 1. INTRODUCTION

An alternative for this approach is the use of island grammars for information
extraction. Instead of a full syntax definition, these grammars only contain
explicit definitions of syntax parts we're interested in. The questions we are
trying to answer are:

e How to write island grammars for COBOL using SDF?

As a side effect of our research in island grammars, we used SDF and its
parser generator SGLR in unorthodox ways. This has resulted in several
observations on the behaviour of SGLR.

e How can DocGen integrate with and benefit from island grammars?



Chapter 2

An Overview of Doc(zen

In this chapter we give a global overview of the DocGen documentation genera-
tion system. The main point of focus will be the extraction phase, as we intend
to alter it.

2.1 Global Overview

DocGen is a constantly evolving system, but we can represent it as a model of
four subsystems that is not likely to change anytime soon.

e The Code Side (front-end)

The front-end performs the actual extraction from the legacy source. This
includes pre-processing the acquired data to a suitable format for the next
part. The original version of this phase consisted of a variety of Perl-
scripts.

e The Data Side (repository)

The repository is where the output of the front-end resides for further use.
It mainly consists of a MySQL relational database. This is not true for
all front-end data however, as some of it still resides in a custom format.

e The User Side (back-end)

The back-end provides the user with a clear interface to the generated
documentation. The interface is provided in HTML, which is generated
by queries on the repository database.

e The Integration Side (regulator)

A Makefile [12] functions as the overall framework regulating the trans-
formation from legacy to documentation. In practice this means feeding
the appropriate sources to the front-end, instruct the repository to build
the database and the back-end to put it all on display.
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Figure 2.1: the components of DocGen

2.2 Perl extractor

Most of the tools that make up the front-end phase of DocGen were originally
written in Perl [18]. Perl as a programming language is hard to characterize,
but with some help of its creator, we’ll make an attempt anyway.

Perl is an interpreted script language. It started out as a data reduction
language; a language for navigating among various files in an arbitrary fashion,
scanning large amounts of text efficiently, invoking commands to obtain dynamic
data and printing easily formatted reports based on the information gleaned.
After its initial release, its number of features has kept increasing. For many
tasks Perl seems to provide the right primitives and sufficient efficiency.

Since the extraction of information from COBOL-sources is done using lex-
ical analysis, Perl was an obvious candidate for the job. The most important
Perl-feature for this purpose is probably its eflicient and flexible implementation
of string matching by use of regular expressions.

2.2.1 Regular Expressions in Perl

A regular set as used in formal language theory [13] is defined as being a reg-
ular set if it can be generated from the elements of the alphabet using union,
concatenation, and the Kleene star operation. Groups of such sets can easily be
written down using regular expressions.

Since Perl generally processes files with a little bit more content than just
strings over the standard alphabet, its alphabet also contains layout characters
(tabs, newlines, etc) and usually some superset of the ASCII table.

The union, concatenation, and Kleene star operations are a bit too general
for practical use, thus Perl provides us with some additional operators for gen-
eralizing the notion of often-used sequences. They do not extend the expressive
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domain of the original operators, thus keeping the overall duration of a match
within polynomial time (N*M, with N the length of our regular expression, M
the length of the term to match).

However, it is also possible to do something called backreferencing [18, 5]
in Perl. Backreferences are just what they imply to be; references to a partial
match done in the current expression. This is impossible to express in con-
ventional regular expressions, thus when used they make regular expressions in
Perl quite non-regular. In fact, it can be proven that the problem of matching
expressions with backreferences is NP-complete [2].

2.3 Perl shortcomings

The extraction phase implemented in Perl is loosely based on insights from [10]
and does an admirable job of scanning COBOL for information. However, it is
not an ideal solution in all cases.

In [15], the advantages and disadvantages of lexical analysis are discussed.
Speed and minimal knowledge of the syntax are tempting reasons for this ap-
proach, but both advantages are subject to the precision of information extrac-
tion; in order to improve precision we need more matching-criteria, which result
in more overhead and knowledge of the syntax.

DocGen uses several heuristics to decide whether the results of its lexical
analysis really are what they appear to be. These heuristics of course contain
syntactical information about COBOL. As DocGen has to go through greater
lengths to ensure a precise result, the line between lexical and syntactical anal-
ysis blurs to a point where second thoughts about using Perl arise.

As a result of the attempts to perform complex syntactical analysis from
within Perl, the source code of DocGen itself can suffer from the fact that
Perl is not designed with large projects in mind. For instance, it does not
provide a type-mechanism and support for modularization seems more like an
afterthought. To quote Perl’s creator Larry Wall, "Perl is the duct tape of the
Internet’. As with real duct tape though, it provides a quick solution where
alternatives are better suited for long-term use.
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Chapter 3

The ASF4+SDF
Meta-Environment

The ASF+SDF Metla-Environment is an interactive development environment
for the automatic generation of interactive systems for manipulating programs,
specifications, or other texts written in a formal language ([14]). Developed as
a replacement of its monolithic predecessor (now referred to as the old Meta-
Environment), it consists of a set of standalone tools which can be accessed
through a unified graphical interface (figure 3.1). In the remainder of this thesis
we will simply refer to it as the Meta-Environment.

We will use the Syntax Definition Formalism (SDF) to define our island
grammars. Although the formalism used in the old Meta-Environment is also
called SDF, when we talk about SDF we refer to the formalism as used in the
current Meta-Environment (also known as SDF2).

There are a number of advantages in using SDF over alternative parser
generators. SDF is supported by Scannerless Generalized LR Parsing [16].
SDF allows for concise and natural definition of a syntax. SDF also promotes
modularization of a syntax definition, which facilitates reuse.

SDF is complemented by the Algebraic Specification Formalism (ASF). ASF
allows us to specify rewrite rules over the SDF specification. The ASF-compiler
only recognizes a subset of the constructors available in the current SDF del-
inition. Since we will use the ASF-compiler to rewrite our parse-trees to the
desired form, SDF specifications will be restricted to this subset.

We will now look at a short example of both SDF and ASF: Suppose we have
a language with a normal alphabet and brackets. It accepts any sequence of the
alphabet as a string and all strings within a properly enclosing set of brackets.
For this we can write

lexical syntax

[a-z] -> Char
context-free syntax
Charx => String

"(" String ")" -> String

This specification will parse terms like

11
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Figure 3.1: The Meta-Environment in action

abcdefgh
((abcdefgh))

but not
abc (defgh)

Although a String may be put between as many pairs of brackets as we like,
they don’t really represent anything meaningful in our current language. We
might as well remove them, a nice job for ASF. We add

variables
"stringvar" -> String

to the SDF-specification. We can now use ’stringvar’ as a variable in our ASF-
specification, which looks like this:

equations
[1] (stringvar) = stringvar

Both sides of the equivalence-operator are of the same sort. Every time a
construction of the lefthand-side is encountered, it will be rewritten to the
righthand-side. This will effectively eliminate all enclosing brackets, regardless
of the level of nesting. Note how the ASF specification already knows what our
language looks like from the SDF specification. We only need to add variables
to generalize rules.

There is a lot more to both ASF and SDF than this simple example. Without
pretending to be a manual for the Meta-Environment (try [14] instead), we
provide the reader with explanations of some relevant details along the way.



Chapter 4

Island grammar design

4.1 What is an Island Grammar?

An island grammar [15] consists of:

o detailed productions for the language constructs we are specifically inter-
ested in (islands);

e liberal productions catching all remaining constructs (water);

¢ a minimal set of general definitions covering the overall structure of a
program (framework).

Simply put, we have a full grammar of parts we’re interested in, the islands.
These are surrounded by constructs we're not interested in, the water. A simple
island grammar could look like this:

context-free syntax
Token* -> Source
Island -> Token
Water -> Token
context-free pricrities
Island -> Token >
Water -> Token

Note that Token is just a sort name, it does not imply a tokenizing process
as done by some scanners. The priority states that when in doubt, we prefer to
recognize a Token as an Island instead of Water.

The opposite approach, an explicit definition of the parts we’re not interested
in, is known as a lake grammar. This sort of grammar would of course be
inappropriate for use in DocGen; since we're not interested in the water-part,
it’d be contradictory to take a close look at it. Rewriting the islands would also
be messy, since they will all be caught in liberal constructs.

By using an island grammar, we hope to gain some of the power of parsing

with a full grammar combined with the minimal knowledge inherent to lexi-
cal analysis. A parse with a full grammar provides us with access to detailed

13
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Global study of [ specification of I test specifications

target language islands and water

design of framework

Figure 4.1: An approach for island grammar design

information about the parsed structures. There should be no ambiguities dur-
ing parsing, which guarantees correctness of extraction beyond what a typical
lexical analysis can offer. On the other hand, lexical analysis allows us to get
started with collecting information on a basis of minimal knowledge; we only
require knowledge about what we’re looking for, not about all of its surround-
ing context. DocGen currently adds syntactic knowledge to a lexical analysis
mechanism. We will try to work the other way around and include the ability
of working on basis of minimal knowledge to a syntactic parsing mechanism.

4.2 Reuse of an existing grammar

The modular design of most grammars in SDF and the concept of an island
grammar suggest we can reuse definitions. Although there are some COBOL-
grammars available in SDF, their design makes it harder to reuse them than to
rewrite the definitions. This is also a result of the fact that some constructs from
a full COBOL-grammar don’t qualify for reuse at all. Consider for instance an
[F-statement: We're interested in the skeleton of the statement itself, but not
necessarily in the statements nested within. Reuse of such a statement from a
full grammar would enforce full knowledge of the nested part. This would of
course ruin the idea of minimal knowledge about the syntax.

Existing full grammars do provide a good starting point for their island-
counterparts. The Browsable VS COBOL II grammar [7, 8] and the definitions
in the COBOL-books by Ebbinkhuijsen [3, 4] cover nearly all variations to be
expected in the islands.

4.3 A design approach for island grammars

4.3.1 Overview

The design of an island grammar for COBOL turned out to be quite a trial-
and-error experience. This is reflected in the design approach we will roughly
follow (figure 4.1):

o Global study of the target language
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Contrary to when designing a full grammar, we're not interested in every
syntactic detail of the target language. Our study will be done with a
desire of minimal syntax knowledge in mind. We will concentrate on
special symbols for things like comments, nestings, line-separation and
divisions, but no full tokenization of the language will be done. During
this phase we also examine the overall structure of the language; what
syntax can be expected where.

¢ Specification of islands and water

We specily what we think our islands and water should look like. Our first
specification of water will probably not include much detail, most likely it
will be a very liberal constructor with maybe some exceptions for special
symbols. We should already have a clear idea about what our islands look
like, being the constructs of our main interest.

e Test of specifications

Using a number variations of target language sources, we test parse be-
haviour with our current specifications. This phase will interact with the
previous phase until our specifications behave as desired.

o Design of a framework

Our separate island grammars need a unified framework, both for im-
proved clarity and to generalize the specification of future extensions.
The modularization of this framework will be done on basis of specifi-
cation similarities between islands. This approach may seem in conflict
with {ollowing the overall structure of the target language. However, the
two approaches will turn out to be very related. In fact, when in doubt
about categorizing a specification, the overall structure of the target lan-
guage can help us decide.

4.3.2 Application to COBOL

This section gives a global overview of how we intend to apply the approach for
designing a COBOL island grammar.

Global study of the target language

Apart from weird comment-conventions, the global syntax of COBOL seems
pretty straightforward:

e There are two different comment-conventions

The first and last few columns of a typical COBOL-sourceline are comment-
blocks. Which number of columns contain comments varies between COBOL
dialects, but the first 6 and last 8 columns of a 80 column wide line seems
to be the standard (figure 4.2). If the first column after the first comment-
block contains a ’/* or ’*’ symbol, the whole sourceline is a comment.

As the comment-columns are defined in a way that makes syntactic anal-
ysis very awkward, we simply strip all comments during preprocessing by
means of lexical analysis. When we speak about the beginning of a line in
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code—-1line

1 6 /\73 30

7 72

\n

comment-columns

Figure 4.2: comment columns in a typical COBOL-sourceline

IF A|IF B |IF C STATEMENT END-IF| END-IF| END—-IF

Figure 4.3: an IF-statement nested in an IF-Statement nested in an IF-
statement

the remainder of this thesis, we refer to a line without comment-columns
unless explicitly stated otherwise.

e The '’ symbol (period) serves as a sentence-terminator.

Typical COBOL-sentences look like this:
STATEMENT .

o Strings are nested within single or double quotes.

Strings can also span more than one line using the -’ symbol (line-continuation
symbol):

STATEMENT "this statement has a string over two lines as
- "an argument” .

e COBOL programs are divided in Divisions, Sections and Paragraphs.

Certain code is restricted to certain divisions. For example, most of the
program’s functionality is situated in the Procedure Division. The divi-
sions are identified by headers.

o There are no special symbols for statement-nesting.

Instead, statements that allow nesting of statements use keywords and/or
sentence-termination as enclosures, or the fact that the enclosing state-
ment accepts only one nested statement (figure 4.3).
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Specification of water and islands

The islands we're interested in consist of simple statements with no water as
part of their definition, statements which allow for nestings that might contain
water and headers for some of the divisions. Our definition of water will {ollow
the expected design approach, initially it will only contain an exception for the
period-symbol. The SDF-specification will be explained in detail starting from
section 5.1.

Test of specifications

The SIG already has a number of COBOL-sources in various dialects for eval-
uation. Testing specifications was done by parsing these sources and tracking
down problems. The parser can only tell us whether the complete parse fails
or containg ambiguities. If our water-definition accepts more than we like, the
parse will simply succeed. This behaviour poses a problem in that we can only
spot failures to recognize an island if we already know what the outcome of a
parse should look like. This is not an easy task with large COBOL-sources, but
luckily we already have a robust extractor in Perl at our disposal. By writing
some simple rewrite-rules in ASF to extract our islands from the parse-tree, we
can compare the outcome of our tests with the outcome of the Perl-extractor.

Once we spot a problematic island-definition, we can look up the exact
statement-definition in the documentation (e.g. [3, 4], or dialect-specific docu-
mentation) and create more critical test-cases to test with our parser.

Design of a framework

As mentioned in chapter 3, SDF allows for modularization. We classify our
islands in modules. Some of the connecting modules will describe the overall
structure of the COBOL-language from our study in section 4.3.2. A more
thorough discussion of this framework will be presented in section 6.
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Chapter 5

Island grammar
specification

5.1 A definition of water

5.1.1 Specification

For our definition of water, the words we are not interested in, we use

lexical syntax
“[\ \t\n\.]+ -> Drop
lexical restrictions

Drop -/- “[\ \t\n\.]

This means that we accept one or more of the characters that are not a layout-
symbol (whitespace, tab and newline) or a period (the sentence-terminator).
We suspect that our water-definition might become a bit more complex than
this, thus we name our sort Drop instead of the more ambitious Water for the
time being.

The restriction demands that a Drop is only accepted as such if all adjacent
symbols of the allowed set are part of the sort. This enforces a longest match
while parsing.

5.1.2 Discussion
Layout

A sort called LAYOUT is used in every SDF-definition. If not specifically stated
otherwise, it can occur between every symbol that is part of a construct. Since
our grammar is used for parsing itself, it would be impossible to give it a readable
format without declaring this sort in a sensible way. We define our layout as

lexical syntax
[\ \t\n] -> LAYOUT

To prevent ambiguity between LAYOUT and Drop, we exclude the symbols
that make up the sort LAYOUT from the set of symbols that make up Drop.

19
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Longest match restriction
For the definition of Drop, we could also write

lexical syntax

“[\ \t\n\.] -> Drop

This means that a Drop no longer consists of continuous blocks of characters,
but of a single character. We did not choose this option, as it can seriously affect
parse performance; the amount of water far exceeds the number of islands during
a typical parse. If every character of this water is a Drop on itself, our parse
tree will become huge.

SGLR behaviour on longest match restriction

The reason we reject the period as part of Drop is because we suspect it may
intervene with correct recognition of complex islands. Now suppose we only
work with islands that contain no water as part of their definition, would there
still be need to reject the period as part of the Drop-definition? Unfortunately
the answer is yes. To see this, consider the term

STATEMENT.

Notice how there is no layout between the statement and the period. Now
suppose the statement is an island. The parser will ignore our preference for
recognizing the statement and create an ambiguity of the correct parse and
one that accepts the whole block as one Drop. Apparently the greedy lexical
constructor does not pay sufficient attention to priorities!.

5.2 A simple island grammar

5.2.1 Specification

Now that we have a definition of water, all we need is a definition of our islands
and define priorities over them. We start with the relatively simple COPY-
statement. That is, relatively simple due to our limited interest: we only care
for the first argument. Our island looks like

COPY text-name
or in SDF

context-free syntax
"COPY" Id -> Copy

The syntax of text-name is very dependent on the COBOL-dialect being
parsed. For now we use the following (quite common) definition in SDF

lexical syntax

[A-Z] [A-Za-2z0-9\-\_1* -> Id
lexical restrictions

Id -/- [A-Za-z0-9\-\_]

1...which obviously is a bug. The latest Meta-Environment, release allows us to enforce this
by means of an avoid-property.
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We accept anything that starts with a capital and contains zero or more char-
acters from the second constructor.

There still is the unresolved issue of the period. Since the period termi-
nates sentences in COBOL, and COBOL-sources pretty much exist of adjacent
sentences, we can write

context-free syntax

Copy -> Island
Island -> Token
Drop -> Token
Tokenx "." -> Sentence

Sentence* -> Program
context-free pricrities
Island -> Token >

Drop -> Token

Symbols followed by a period are recognized as a Sentence. We prefer recog-
nizing the symbols as Islands, but accept Drops too. At the moment, our only
island is Copy. A list of Sentences makes up a Program.

Already we have a framework for recognizing islands that do not contain
water as part of their definition. It is easy to see that any such island can be
included in the parse by including it as an Island. Consider for example the
CALL-statement. We assume we already have a definition for this statement,
including it would be a trivial matter of also defining it as an Island:

context-free syntax
"CALL" Id -> Call
Call -> Island

5.2.2 Discussion
SGLR behaviour on list-element priorities

Looking back at our framework for simple islands, why didn’t we define our
water-token as

context-free syntax
Drop* -> Token

with a priority

context-free pricrities
Island -> Token >
Drop* -> Token

instead? Note the list-constructor, which groups all adjacent Drops together
to one big water-Token. Later on this sort of definition will become even more
tempting, but it will not work! As far as I can tell, this is due to the internal
priorities of the list-constructor completely ignoring any priorities specified at a
higher level. For instance,

A B C COPY D.
COPY E F G COPY H.
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Figure 5.1: Unexpected parse of Copy/Drop* mixture

will parse as (figure 5.1)

Drop Drop Drop Drop Drop .
Copy Drop Drop Drop Drop .

The Copy in the first sentence was completely ignored in favour of construct-
ing one big Drop-list, in the second sentence the first Copy is recognized but the
next Copy is again completely lost once the list-constructor starts eating away.
No ambiguities are generated during such a parse either. Whether this is good
behaviour or not, it is definitely most un-intuitive. Due to this behaviour, we
cannot safely use a list as member of a list if we are to disambiguate it from
other members by means of priorities.

Injective priorities

The priorities in our framework may not seem correct at first. However, SDF
provides us with so-called injective priorities. This means that

context-free priorities
Island -> Token >
Drop -> Token

has the same result as priorizing the entire chain up to Island before the chain
up to Drop. So we automatically gain

"COPY" Id -> Token >
“[\ \t\n]* -> Token

If it wasn’t for this feature, adding another island would be an error-prone
task of specifying priorities on several sorts down the chains. Instead, we have
a clean and intuitive mechanism to generalize this.

Properties on sorts

Another way to specify the division between islands and water in SDF is to use
properties:
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context-free syntax
Island -> Token{prefer}
Drop -> Token{avoid}

The parser will prefer constructs with the prefer-property above other ambigu-
ous constructs. On the other hand, constructs with the avoid-property will
only be used when no other constructs are eligible. The application of these
properties are delayed by the parser until all paths are constructed. This de-
layed application is exactly why we use explicit priorities instead. When the
parser encounters paths that are ordered by explicit priorities, the priorities will
be applied as soon as possible. This will eliminate any infeasible paths in an
early stage. Reducing the amount of paths to be evaluated in an early stage is
beneficial for parsing performance.

5.3 Islands with nested water

5.3.1 Specification

So far we only looked at islands that contain no water as part of their definition.
When we consider a construct with nested water, things change somewhat. The
EVALUATE-statement for example can contain other statements as a nesting,
which will lead to nested water due to our liberal grammar definition.

The nestings of EVALUATE can be closed by means of the ' END-EVALUATE’
keyword or by the sentence-terminator, the period. If the period ends an EVAL-
UATE, the 'END-EVALUATE’ keyword becomes optional. If EVALUATE itself
is part of a nesting, the '"END-EVALUATE’ keyword is mandatory. Since the
period is part of the syntax of the EVALUATE-statement, we partially define
the statement on the level of Sentence. Note that we will conveniently ignore
the fact that a period may close multiple nested open statements. For example

EVALUATE EVALUATE CALL XYZ .

will not be recognized by our island-definition.

We also take some precautions to prevent the water {rom intervening with
our boundaries by means of the reject-property. The discussion of this section
will give a more thorough explanation of the problems we may encounter if we
don’t do this.

context-free syntax
Token -> EvalNesting

"EVALUATE" EvalNesting* "END-EVALUATE" -> Evaluate

"EVALUATE" EvalNesting* "." -> Sentence
Evaluate "." -> Sentence
"EVALUATE" -> EvalNesting{reject}
"END-EVALUATE" -> EvalNesting{reject}

An example parse with this specification can be found in figure 5.2. The
reject-property states that we do not accept the boundary-keywords, '"EVAL-
UATE’ and "END-EVALUATE’, as EvalNestings. Since a Drop only occurs
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EvalNesting*

\

—

| \
EVALUATE EVALUATE WATERSTAT WATERID END-EVALUATE

Figure 5.2: An example parse tree of an EVALUATE-statement

as an EvalNesting, they will not be accepted as such. We also introduced a
new sort EvalNesting, which allows us to specifically state differences with the
Token-sort.

Although internal priorities will already prefer these Sentence-definitions in
favour of the earlier definition, it is probably a good idea to explicitly state this
in the context-free priorities.

5.3.2 Discussion
The importance of the reject-property

The reject-property might seem like overkill, so let’s define Evaluate a bit less
restrictive:

context-free syntax

"EVALUATE" Token* "END-EVALUATE" -> Evaluate
"EVALUATE" Tokenx "." -> Sentence
Evaluate "." -> Sentence

We removed the rejections and hope our priorities sort things out. We also
assume that the Token-sort is specific enough to define the nesting.

And this is where we suddenly introduce a quite unexpected ambiguity.
Consider the parse of

EVALUATE EVALUATE END-EVALUATE EVALUATE END-EVALUATE END-EVALUATE .

This will parse quite happily, but not as you might expect (see figure 5.3):
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Evaluate

% ) (Evaluate)

EVALUATE EVALUATE END-EVALUATE EVALUATE END-EVALUATE END-EVALUATE .

Figure 5.3: unexpected parse of nested evaluates

EVALUATE(1) EVALUATE(2) Drop EVALUATE(3) END-EVALUATE(3)
END-EVALUATE(2) (.)1

What is going on? Apparently an internal priority decided to go for the
shortest way home and replaced the closing of the second Evaluate for a Drop.
We still end up with a parse of three Evaluates, but the structure is completely
wrong! Maybe we can define the structure of Evaluate in some unambigu-
ous way. [t is also tempting to specify a priority ordering over the different
Evaluate-constructs. Neither of these solutions seems appropriate, our defi-
nitions of Evaluate are already unambiguous if the Drop-construct wasn’t so
liberal. All we want to do is tell the parser not to accept 'END-EVALUATE’,
nor 'TEVALUATE’ for that matter, as a Drop. Luckily, SDF provides us with a
powerful reject-mechanism:

context-free syntax
"EVALUATE" -> Drop{reject}
"END-EVALUATE" -> Drop{reject}

This way, neither boundary-strings of the construct are accepted as sort
Drop.

Rejection at different sort-levels

In the previous section we rejected the boundary keywords from the sort Drop
to prevent ambiguities. However, we loose some of our flexibility during parsing
here; for all we know, those keywords may appear in some context completely
unrelated to the current construct. Although highly unlikely in the case of the
Evaluate-statement, in general we cannot assume all keywords to be rejected
only occur in a context relevant to their statement. To regain some of our
flexibility, we define

context-free syntax
Token -> EvalNesting
"EVALUATE" -> EvalNesting{reject}
"END-EVALUATE" -> EvalNesting{reject}

All occurrences of "Token® in the Evaluate-constructs should be replaced
by ’EvalNesting® now. Note the use of 'EvalNesting’ instead of a more generic
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'Nesting’. Both approaches have something to say for them. In the case of a
generic Nesting-sort, we loose flexibility for parsing weird anomalies of rejected
keywords of other constructs within a construct. If on the other hand we only
reject keywords within the context of their own construct, we take the risk of
non-rejected keywords messing up the construct. For example

EVALUATE PERFORM END-EVALUATE END-PERFORM END-EVALUATE

will not parse if we reject 'END-EVALUATE’ as a Nesting. It will however
parse if we reject it as an EvalNesting, because PerformNesting will still happily
accept it as a Drop. In theory, the PerformNesting could contain an essential
part of some alternative Evaluate-construct. However, neither rejection-method
would be able to parse this successfully, as a Nesting-reject would trip over
the rejection of ' PERFORM’ and 'END-PERFORM’ and an EvalNesting-reject
would cause an ambiguity (which we probably never get to see, again due to
internal priorities).

Alternative nesting-definitions

The last detail we will discuss here is the case of a statement that allows for
only one nesting. Suppose the EVALUATE-statement allows only one statement
within its enclosures, should we still specify the nesting as EvalNesting*, or a
single EvalNesting instead?

The problem with the latter specification is the fact that our single nested
statement might be an irrelevant statement (water), that could nest an island:

EVALUATE WATER EVALUATE END-EVALUATE END-WATER END-EVALUATE.

Obviously we will not catch the nested EVALUATE-statement if we simply
allow an EvaluateNesting to consist of a list of Drops. An alternative definition
of EvalNesting

Drop* Token Drop* -> EvalNesting

will not behave as we hope for. This probably has to do again with the greedy
listconstructor as described in section 5.2.2.

5.4 Water revisited

5.4.1 Specification

With the introduction of islands containing nested water, Drop does not suffice
as our only water-construct anymore. Consider for instance

EVALUATE WATER ’a period looks like: .’ END-EVALUATE.

Periods can occur within strings, which can occur as part of the nested water.
Currently this would result in a failure to correctly recognize the island. For
this specification we assume that strings in the COBOL-sources to be parsed
are enclosed within single quotes, although in practice double quotes are just
as common. As an extension to nested water, we add a lexical construct for a
DotCatcher sort.
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lexical syntax
"\ TNV \n]x\ " -> DotCatcher

The DotCatcher accepts everything but a single quote or newline enclosed in
single quotes. Adding support for double quotes is a simple matter of duplicating
the specification and replace the single quote with a double quote.

As we noted in section 4.3.2, strings in COBOL may also span multiple
lines by use of the -’ line-continuation symbol. We add the following lexical
specification for support by our island grammar:

lexical syntax

"™~ [N \n]*\n\-[\ I*\’~[\’\n]*\’" -> DotCatcher

This construct accepts a string spread over two lines by the line-continuation
symbol. Note that the first line does not contain a closing quote-mark, but
the second line does contain an opening quote-mark after the line-continuation
hyphen.

DotCatcher is an alternative to Drop, we make sure the sorts don’t conflict
by changing Drop to

lexical restrictions
Drop -/- ~[\ \t\n\.\’]
lexical syntax

“I\ \t\n\.\’]+ -> Drop

Drop cannot contain single quotes anymore, whereas DotCatcher requires them.
We introduce the new Water sort, which includes both water sorts.

context-free syntax
Drop -> Water
DotCatcher -> Water

Furthermore, we replace the occurrence of Drop by Water:

context-free syntax
Island -> Token

Water -> Token
context-free priorities
Island -> Token >
Water -> Token

5.4.2 Discussion
DotCatcher motivation

Before water could occur as part of an island-nesting, irrelevant strings contain-
ing periods would simply be divided in several Sentences. For example

WATER ’period: . and again: .’.

would parse as
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"WATER ’period:" "." -> Sentence
"and again: ." "." -> Sentence
oo m => Sentence

The same behaviour would clearly ruin the parsing of this irrelevant state-
ment when nested in an Evaluate. Note that this problem is inherent to our
design approach; it would probably not occur if we completely tokenize the
language.

The existence of DotCatcher may have a more convincing motivation as
well; we may be able to parse nestings in a more elegant way, but DotCatcher
also affects correctness of island recognition by catching would-be islands within
strings. As an example, consider:

"COPY A"

Without DotCatcher, this string would contain a valid COPY-island. A
problem that is not uncommon in lexical analysis either.

Line-continuation pitfalls

Our DotCatcher sort is not suflicient for all cases: line-continuation is not nec-
essarily restricted to only two subsequent lines. The use of line-continuation
in COBOL, especially for more than two subsequent lines, is not advisable [4],
as there are better alternatives. However, if we want our island grammar to
be as flexible as possible, the specification of DotCatcher deserves some more
attention.

We would probably like to write something like this:

lexical syntax
"IN \n] x\ " => DotCatcher
"\n\-[\ 1%\~ [\n\’]*" -> LineContinuation

context-free syntax
"\?~[\n\’]*" LineContinuation* "\n\-[\ 1#\’~[\n\’]*\’" -> DotCatcher

We now have a definition for several subsequent line-continuations, but the
behaviour of our layout conflicts with the newlines in the context-free syntax
(remember, LAYOUT can occur between sorts). There are ways around this
in SDF, but these are too low-level to be discussed here. Already we deal with
more lexical specifics than we wish for in a grammar-definition.

5.5 Divisions, sections and paragraphs

5.5.1 Specification

A typical COBOL-program is divided into four divisions: Identification, Envi-
ronment, Data and Procedure Division. These are easily identified by simple
headers. The header of the Procedure Division for example is

PROCEDURE DIVISION .
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or
PROCEDURE DIVISION USING <data-name>+ .

The Procedure Division can contain paragraphs and sections, both of which
are also identified by a header. For a section this is

<section-name> SECTION .
and for a paragraph
<paragraph-name> .
Both the paragraph-name and section-name are user-defined names (with

the exception of some reserved keywords). These keywords usually occur in
divisions other than the Procedure Division. In SDF we write

context-free syntax

"PROCEDURE" "DIVISION" "." -> ProcedureDivisionHeader
"PROCEDURE" "DIVISION'™ "USING" Id+ "." -> ProcedureDivisionHeader
Id -> Paragraphld

Id -> SectionId

Sectionld "SECTION" ".™ -> SectionHeader
ParagraphId "." -> ParagraphHeader

We assume the Id sort equals a data-name in the ProcedureDivisionHeader.
Since we did not specify an explicit nesting-ordering over the headers (e.g. a
SectionHeader occurs within a Procedure Division), we do not simply reuse the
Id-sort for paragraphs and sections. We can easily prevent reserved keywords
from being accepted as Sectionld or Paragraphld with the reject-property:

context-free syntax
"EXIT" -> SectionId{reject}
"DECLARATIVES" -> ParagraphId{reject}

The headers can now easily be added as islands on the Sentence-level and
separated from water.

5.5.2 Discussion
Nesting of headers

We mentioned an explicit nesting-ordering over the headers in section 5.5.1.
This ordering becomes apparent when looking at the complete structure of a
Procedure Division. Without going into detail, it turns out that (user-defined)
sections and paragraphs only occur within the Procedure Division. Paragraphs
can be located within the division on their own, but if there are sections in the
division, the paragraphs will be nested within the sections (figure 5.4).
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Procedure

Division Sections

Paragraphs

Figure 5.4: Nesting of headers in Procedure Division

source comment
FIRST SECTICN. section FIRST begins
FIRSTPAR. paragraph FIRSTPAR begins

paragraph FIRSTPAR ends (1)
section FIRST ends (1)
SECOND SECTION. section SECCND begins (Z)

Figure 5.5: An example of header-nesting. Notice how (1) is derived from (2)
instead of directly from the source.

Specification motivation

Our ParagraphHeader is very ambiguous if we do not explicitly reject all invalid
single-keyword sentences. We already stated that most reserved sections only
occur outside the Procedure Division. Why don’t we use this knowledge to parse
the source for more detailed information about these structures? Currently our
grammar has no idea what a complete Section-block looks like, it just spots
possible headers.

It turns out that a more detailed specification would result in little gain of
information at the expense of performance and minimal syntax knowledge. For
instance, if the Procedure Division is the last division of the source then we
already know the boundaries of this division (from header to end). A similar
situation exists for the sections and paragraphs; If a section starts, the current
section and paragraph (if any) are ended. If a new paragraph starts, the current
paragraph (if any) is ended. Figure 5.5 demonstrates this concept.

So all information about beginnings and endings of the divisions is already in
ordering of the headers. This makes a more detailed specification not only very
hard to implement and inefficient to for parsing, it also seems a rather useless
exercise. We're better off collecting this information while post-processing the
parse-tree.
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Framework design

In this chapter we discuss the creation of a framework for our islands. First we
will look at some general issues with modularization of SDF-specifications. We
apply our findings to the design of a framework for simple islands (islands that
contain no water) and expand this design for use with islands that can contain
water and division-headers.

6.1 SDF modules

A typical SDF-module does not merely consist of the specifications we’ve seen
so far. Our specifications are preceded by a module-name header

module Main

which simply states the name of the module, Main in this case.
The module-header is optionally followed by the imports-header:

imports A B

This means exactly what it says, import the modules A and B.
Now it is time for our specifications, which are preceded by either

exports
sorts <sortnames>

or
hiddens

Every specification preceded by the hiddens-header will remain hidden for
all other modules, even if they explicitly import the module with hiddens. All
other specifications are preceded by the exports-header. The names of all sorts
declared in the exports-section should be added to the sorts-list. Suppose for
example that our Main module defines sorts D and E. Our Main module will
look like this (see figure 6.1):

module Main
imports A B

31
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module Main
imports A B

AN

»* B

module A module B
exports exports
sorts A-Sort sorts B-sort

Figure 6.1: SDF import-graph, arrows point at imported modules

medule ScurceZTarget
imports Sourcelanguage
TargetLanguage

N

module SourcelLanguage module TargetLanguage

Figure 6.2: import-graph for grammar rewriting

exports
sorts D-sort E-sort

context-free syntax
A-sort -> D-sort
B-sort A-sort B-sort -> E-sort

We assume here that B-sort and A-sort are exported in either module A or B.
If both modules A and B contain constructs for the same sort, Main will import
the union of those constructs.

Import-export behaviour is not as self-evident as one might expect, we ex-
ploited a feature’ that exists due to the current absence of type-checking in the
MetaEnvironment. It is true that upon evaluation, module B has no knowledge
of exports from module A. However upon evaluation of the Main module, ex-
ported information from modules A and B are not only available to the Main
module but also to each other. In general, upon evaluation of a top module,
all lower modules that are connected in the import-graph (regardless of graph-
direction) have knowledge about each other and the top module.

6.1.1 Grammar rewriting

When rewriting a grammar, we use the import-structure as presented in figure
6.2. The top-module source2target contains the ASF transformation rules, com-
bined with variable declarations, transformation function signatures and maybe
some helper constructs.

The ASF rules will be discussed in more detail in section 7.2, but we already
note the use of a function for rewriting
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CIG-Program

N

CIG-Drop CIG-Island Layout CIG-Id CIG-Wave

— N\

CIG-Sentence CIG-SectionHeader CIG-ParagraphHeader CIG-DivisionHeader

CIG-Substructure

AN

CIG-If CIG-Perform CIG-Evaluate CIG-DotCatcher

Figure 6.3: import-graph for an SDF island grammar framework

f(source) -> target
instead of extending the target-language with the source-constructs:
source -> target

The former method enforces a complete rewrite of the source grammar to
target grammar, which have no knowledge of each other. In the latter case, we
would ’contaminate’ the source grammar with constructs of the target grammar.
Thus we can end up with a partial rewrite that contains constructs from both
gramimars.

6.1.2 Name conventions to prevent sort-conflicts

To keep our grammars as reusable as possible, we change the sort-names to
something less general; Our grammar will likely not be the only one to use a sort-
name like Program. We simply add the "CIG-’ prefix (Cobol Island Grammar)
to all our sorts for this purpose.

6.2 A framework

A possible SDF framework for our islands is presented in figure 6.3. Name
conventions may difler somewhat {rom previous chapters, since the import-graph
is directly derived from an experimental grammar. The complete source is
presented in appendix B. We will walk through the modules in bottom-up
left-to-right fashion:

o CIG-If, CIG-Perform, CIG-Evaluate.

These are the complex islands of the framework, which more or less all
behave like Evaluate in section 5.3.

¢ CIG-DotCatcher.

The DotCatcher sort is only used in this framework for catching strings
within complex islands.
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e CIG-Substructure.

A more appropriate name would probably be 'CIG-Nesting’. This module
contains the definition for every sort that can be nested within a complex
island.

CIG-Sentence.

Every statement terminated with a period is considered a sentence. In
our case these are the complex islands. Don’t be fooled by the import
of CIG-Substructure; The actual statements are defined in the island-
modules (CIG-If, etc) but are imported through CIG-Substructure to pre-
vent import-cycles.

CIG-SectionHeader, CIG-ParagraphHeader, CIG-DivisionHeader.

These module contain the definitions of the division-headers. They're
not really statements and behave different enough to not include in CIG-
Sentence.

CIG-Island

This module contains all islands to be separated from water on a sentence-
level. In this case the headers and CIG-Islands.

Layout, CIG-Id, CIG-Drop

Sorts used by multiple modules. Our only motivation for importing them
at top-level is the resulting clean graph.

CIG-Wave

A CIG-Wave is actually a Sentence that consists completely of Water
terminated by a period. Due to the nature of the islands in this framework
we only care about islands that define a Sentence, as opposed to the simple
islands in section 5.2. Therefore we define a water-sort at the same level.

CIG-Program

At the top level the CIG-Waves (the water at Program-level) and CIG-
Islands are separated and some modules for use by multiple lower modules
are imported.

The framework represented here tries to mimic the extraction-functionality

of one Perl-extractor. As such, it does not contain modules for simple islands
(which were handled by a different Perl-extractor). However, depending on our
interests it is easy to add support for simple islands to this framework:

e CIG-Substructure level

We can add our simple islands at CIG-Substructure level to catch occur-
rences within nestings of complex islands.

e CIG-Island level

We can add our simple islands at CIG-Island level to catch single-statement
sentences containing our simple islands. Note that in this case we cannot
simply specify a partial section of a statement anymore, as the island has
to match completely until the terminating period.
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o CIG-Wayve level

We can add our simple islands at CIG-Wave level to catch simple islands
in sentences that otherwise consist of water.

Of course we are not restricted to the framework or its extension for simple
islands as described above. Its main function is to show a possible approach
and the flexibility and transparency in design with SDF-modularization.



36

CHAPTER 6. FRAMEWORK DESIGN



Chapter 7

Integration with DocGen

Of course the island grammar is not capable of accomplishing much on itsell
within DocGen. In this chapter we discuss the necessary steps to integrate our
island grammar in DocGen. For this we need to pre-process the source files,
rewrite the island grammar to the desired output and post-process the output
to mimic the Perl-results as close as possible. The sources of the integration
components that were actually used are shown in appendix A.

7.1 Pre-processing COBOL

There are some things we rather don’t attempt in SDF, simply because it is
either not possible or much easier to do before the actual parse. We name a few
encountered cases for pre-processing:

e Text-format conversion

Some files may be in a file-format other than the UNIX-style ASCII files
we expect (see also section 8.2.1). It is a trivial but necessary step to make
sure they are converted to the expected format prior to parsing.

¢ Strip comments

COBOL has comment-conventions that do not mix well with syntactic
analysis, as we mentioned in section 4.3.2. A simple Perl-script strips
comments from our source-files before the parse.

¢ Connect line-continuations

We struggled to get a decent line-continuation specification in section 5.4.
As the line-continuation symbol has a unique meaning in its column, usu-
ally the first column after the preceding comment-column, it seems like a
good idea to connect the multiple-line strings before the parse.

All these pre-processes are easily done in Perl, due to their lexical nature.
Also, contrary to the actual extraction phase, they’re simple, independent tasks
that allow for a short and clear implementation.

37
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7.2 ASF rewrite equations

The actual rewriting of the parse tree to a DocGen-compatible format is done
in ASF. The grammar of the target-language is attached to the grammar of the
source language by means of the rewrite-module, as explained in section 6.1.1.

7.2.1 Target language

The target-format of the complex islands from our framework in section 6.2
consist of a keyword, linenumber and sometimes an argument. They’re preceded
by the ’@’-symbol and separated by newlines. For instance if we assume the
EVALUATE-statement from figure 5.2 to span five lines (one for each keyword,
starting at line 1), it would result in the lines

QEVALUATE 1
Q@EVALUATE 2
@END-EVALUATE 4
QEND-EVALUATE 5

We will call the target-grammar CPF, Conditional Perform Format.

7.2.2 Rewrite module

The rewrite module CIG2CPF, as shown in appendix B, contains the functions
to be used and the actual ASF-rules on the functions. Without pretending to
be an ASF-manual, we will briefly examine a rule for the EVALUATE-example
in the previous section.

Assuming the function
g(EVALUATE EVALUATE WATERSTAT WATERID END-EVALUATE .)
is reached, the rule

h-evaluate(cig-evaluatenestings) = cpf-evaluatenestings

g(EVALUATE cig-evaluatenestings .) =
QEVALUATE 42 cpf-evaluatenestings @END-EVALUATE 42

is applied. This rule has the variables

cig-evaluatenestings
cpf-evaluatenestings

and contains the functions

g(CIG-Line) = CPF-Lime
h-evaluate(CIG-EvaluateNestings) = CPF-EvaluateNestings

The equation above the bar is a condition. If it holds true, the equation below
the bar also holds true. The condition results in

h-evaluate(EVALUATE WATERSTAT WATERID END-EVALUATE) =
QEVALUATE 42 QEND-EVALUATE 42
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Thus we end up with

h-evaluate (EVALUATE WATERSTAT WATERID END-EVALUATE) =
QEVALUATE 42 QEND-EVALUATE 42

g(EVALUATE EVALUATE WATERSTAT WATERID END-EVALUATE .) =
Q@EVALUATE 42 QEVALUATE 42 QEND-EVALUATE 42 QEND-EVALUATE 42

We make a few general observations:

e No line-numbers are retrieved

All line-numbers in our rewriter are currently 42. This is because we
actually have no satisfying way of retrieving line-numbers in our island
grammar based rewriter yet (also see chapter 8).

e No newlines exist in the CPF-grammar

Newlines are simply layout, just like in the CIG-grammar. There are
several reasons why newlines are not easily used as something other than
LAYOUT (sections 5.4.2, 7.2.3).

e Only real productions can be rewritten in ASF

Although ASF provides us with an abstraction that allows us to manipu-
late the parse tree on a level that seemingly hides the actual tree-structure
for us, it can only rewrite real productions that are made during parsing.
For example, we cannot easily rewrite

FIRST SECTION.
SECOND SECTION.

to

@SECTION 42 FIRST
@END-SECTION 42 FIRST

as the production for an actual section-block does not exist (section 5.5.2).

7.2.3 The rewrite-framework

The complete framework of the CIG2CPF rewriter is presented in figure 7.1.
We make two important observations in the graph:

o Drop is imported above CIG2CPF

This is currently an essential step: If the equations from CIG2CPF have
actual knowledge of the definition of Drop, the parsing of the equations
themselves cannot be trusted. What happens is that keywords or vari-
ables can be substituted within the equations by the sort Drop without
warning. Otherwise accepted equations will be mutilated or will be parsed
for seemingly endless periods of time. Something might be wrong with the
priorities within equations or our island grammar is just too unorthodox
for it to ever parse correct or within reasonable time. Currently the only
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|CPFScchun| |CPF—Pcr[uzm| CPFIf -|CPF—Evaluatc| |C1G—r' | |C1C | |mc d |-|ClG—Scntcnsc|

“Then | | CPF-Loop [ | CPF-Parageaph

Figure 7.1: SDF import-graph for complete island-rewriter

solution seems to be to hide the definition of Drop from the equations
before they are parsed, which can be achieved by importing it above the
module with the equations.

o Only one layout can be used

When several definitions of a sort exist, the union of definitions will be
used. This results in the inability to use different LAYOUT-sorts for target
and source languages. This prevents us from excluding the newline from
the LAYOUT of the CPF-grammar, something which we might want to
do because of the newline-separation of lines in the CPF-grammar.

7.3 Post-processing

We apply several small post-processes to our rewrite to mimic the output of the
Perl-extractor:

e Newline-separation of the CPF-lines.
Our rewrite to CPF-grammar did not include a separation of CPF-lines
by newlines. We can do this with a small Perl-script by separating on '@’.
e Closing of division-blocks.

We argued in section 5.5.2 that we can easily close sections and paragraphs
by means of a post-process. We did so again by use of a Perl-script, which
uses an easy algorithm to close open divisions once a new division-header
is detected.

Although not actually done after the rewriting, we also mention the ASF-rule
f(cig-line* cig-procdivheader cig-line*2) = f(cig-line*2)

which effectively removes all lines before the Procedure Division header from
further evaluation.

7.4 Automation of complete rewrite

In order to glue all components of the island-extractor together, we used the
GNU Make utility [12]. The resulting Makefile propagates the source through
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the pre-processes, island grammar parse, rewrite and post-processes. It allows
us to easily change components or study in-between results. As Makefiles can
invoke each other and DocGen invokes the separate Perl-extractor components
from within its own Makefile, replacing them with island-extractors is an easy
task.
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Chapter 8

Comparison with original
extractor

8.1 Speed

We expect an extractor based on lexical analysis to outperform one based on
a syntactic parse. A relatively slow syntactic parse does not matter much for
batch-extraction if its speed is still acceptable for sourcefiles of realistic size.
The same cannot be said if extraction has to be performed real-time.

8.1.1 ASFIX and Aterms

The native parse tree format for SGLR is ASFIX2 [17]. The trees consist of
annotated terms or Aterms [1]. ASF only rewrites trees of the older ASFIX
format, therefore we need to convert the ASFIX2 trees to ASFIX.

SGLR does not use a tokenizing phase, instead it treats every symbol as
a token on itself. This tends to result in very large parse trees. To prevent
extreme filesizes, the ASFIX2 trees use term sharing.

If we want to know where terms in the parse tree originated from in the source
file, we can turn on position information in SGLR. The originating positions
will then be included as annotations in each term. However, as each term
will have unique position information, sharing is no longer an option. DocGen
uses position information for dynamic links between extraction-results and the
original source.

8.1.2 Measurements

To get an idea of the performance of our island extractor, we timed several
testcases on a 500mhz AMD-KT7 machine (figures 8.1, 8.2, 8.3). Most testcases
were generated by concatenating a single COBOL-source serveral times, to make
sure no source-anomalies would affect the overal result. Also note that the x-axis
of figure 8.1 used a charactercount instead of SGLR’s tokencount to determine
the amount of tokens, hence the mismatch with the other two graphs. As we
are only interested in differences within the graph itself and the points in the
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graph were indeed acquired by concatenating the same file, this shouldn’t affect
results much.

The file from the first points in figures 8.2, 8.1 and fourth point in figure 8.3
consists of 154300 tokens (235946 characters). This file contains 5628 (newline-
seperated) lines of COBOL.

Rewrites of the parse tree using the compiled ASF-equations and pre- and
post-processes are not included in the measurements. In practice these happen
nearly instantaneous.

If we parse sources with default settings, ASFIX2 output with no position
information, results are surprisingly favourable for the island grammar. Perl
is obviously faster, but the island grammar responded fast enough to even be
considered for realtime extraction.

Unfortunately, we’re not done yet. The ASFIX2 parse tree needs to be
rewritten to the CPF output-format. As the compiled ASF-rewriter only works
on ASFIX trees, we need to transform the ASFIX2 tree to ASFIX first. In figure
8.2 we see that this transformation is very inefficient. The conversion uses an
algorithm that seems to work in O(n?) time, and takes too long for the larger
filesizes in the relevant domain. We suspect this conversion can be done a lot
faster. !

If we want to seriously consider using the island extractor with DocGen,
we need to know the positions of the islands in the original source. SGLR
provides an on-off toggle for position information, which either annotates all or
none of the terms with their original position. The inability to maintain term
sharing with position information has dramatic effects on performance (figure
8.3). Notice the hook at the end of the otherwise linear graph, an indication of
what is causing the problem. At the position of the hook, The size of the parse
tree exceeded free real memory at this point, approximately 200mb. This forced
the system to turn to virtual memory, which ruins performance even more. The
sheer size of the resulting parse trees makes them very awkward to handle.

We aren’t interested in position information on all of the terms. Only in-
formation on the islands will do. Without explanation we mention that the
relatively small amount of island-terms and their hierarchical position in the
parse tree suggest a large amount of the sharing can be maintained if only
terms of the island sort would be annotated.

8.2 Extraction results

8.2.1 Robustness

We want the extraction-phase to be as robust as possible. While failure to scan
a file is acceptable as long as it happens during in-house development (and gives
us some indication of the problem causing it), it is important that this does not
occur with a DocGen system installed at a customer.

1...and so did the MetaEnvironment developers. The algorithm supposedly has been heavily
optimised.
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The Perl-extractor has the edge here, due to the forgiving nature of its
lexical analysis. Sections that do not match with the expected pattern are
simply skipped. If the heuristics do not decide on certain doubtful cases (an
‘ambiguity’), the regular expression will do so anyway. As a result, most non-
robust behaviour will probably be caused by obvious bugs in the Perl-extractor
itself. No such bugs showed up during testing.

The island-extractor can suffer from two problems that are inherent to syntax
parsing: parse failure and ambiguities. In the case of a parse failure, our parser
could not match the source with our grammar. This is almost always due to a
failure of our water-definition to catch all irrelevant constructs; in contrast to
the lexical analysis the syntax parse will have to accept all of the language, not
just the patterns we're interested in. The island grammar presented in chapter
5 suffers from at least two occasions that give rise to parse failures:

o The existence of carriage-returns in some source files.

This is not really a serious problem, but it does demonstrate the robust-
ness of the Perl-extractor. The Perl-extractor may miss out on multi-line
patterns, apart from that it is business as usual. The island-extractor
however fails on the first carriage-return it encounters. Whether this is
sound behaviour (one could argue that Drop should accept carriage-return
in its current form) does not really matter: carriage-return conversion is
obviously something we want to do before further source analysis.

e Unexpected comment-entries in the Identification Division.

It turns out that the Identification Division in COBOL can contain comment-
style syntax. For example, the Identification Division part

AUTHOR. [comment-entry].
may look like
AUTHOR. D?AGNOSTI.

Suddenly we have an apostrophe (°) on an awkward position. The Dot-
Catcher will try to match it with a closing apostrophe, which may result
in a parse failure. If we would add this construct to our Water-definition,
we're probably diverting too much from the concept of minimal syntax
knowledge; different dialects of COBOL may intervene with our water-
definition at unexpected places. The last thing we’d want to do is adapt
the water instead of the islands to the dialect.

Parse failures are generally not hard to track down. Typically SGLR will point
at the exact location where things went wrong.

Provided our water-land separation is adequate, ambiguities only occur dur-
ing a parse of an island. No ambiguous parsings occurred during tests with the
current island grammar. However, a lot of ambiguities occurred during testing,
especially while experimenting with the [F-statement. An ambiguity can easily
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sneak undetected in the final grammar, as it may only occur in rare untested
forms of a construct. What’s worse, we get no feedback whatsoever on the
whereabouts of the ambiguity; the native parse tree format of SGLR (ASFIX2)
accepts ambiguities. Currently we can browse this parse tree or try to isolate
the ambiguity by partitioning the source file. Both methods are awkward to say
the least, tools to ease the task are currently in development [9].

8.2.2 Correctness

The island-extractor has an edge in correctness, albeit a questionable one. The
island grammar only recognizes patterns that exactly match the specification of
an island. As a result, the extracted information is as correct as we specified.
In contrast, the Perl-extractor uses heuristics that, while they have some syn-
tactic knowledge, are far more greedy to accept patterns that not completely
match what we are looking for. This is especially true for lexical analysis of the
statements that can contain nested water in the island grammar.

As an example, consider the term
IF IF ELSE ELSE END-IF .

In this term, a nested IF-construct is terminated by the ELSE-keyword of
the outer IF-construct. Our current island for the IF-statement expects all
constructs to be terminated by END-IF or a period instead (appendix B). As a
result, this sentence is considered to be water and will not show up on the output
of the island-extractor. The Perl-extractor of DocGen did not understand these
constructs at first either. Contrary to our island-extractor, it did come up with
a resulting output:

QIF 1

@IF 3
Q@ELSE &
Q@ELSE 7
QEND-IF 10

One IF-statement remains unclosed, which may confuse the Perl-extractor
later on. However, it does give us an indication that something is wrong here 2.

The behaviour of the island-extractor output may be desirable for a system
installed at a client, since it only shows correct information. However, if the
problem is to be cured it first has to be detected. The parser would have to be
extended to report 'doubtful’ areas. SGLR already can do this, but not in a way
that is practical enough to hunt for would-be islands. Another option is to use a
lightweight lexical analysis to double-check the occurences of island-keywords in
the source with the extraction results. Of course this would result in a trade-off
between being lightweight and reporting irrelevant keyword occurences.

2the CPF-grammar from the island-extractor actually provides an excellent tool to test
the Perl-output on this sort of anomalies!
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8.3 Adaptability

With adaptability we refer to the effort it takes to make changes to the extractor
to account for dialect-specific needs.

8.3.1 System design

A good modularization of tasks in the extraction phase eases the implementation
of changes; we do not need to guess where a change is to be implemented and
it will be less appealing to reimplement certain functionality instead of reusing
it.

The island-extractor almost enforces the obvious separation between actual
extraction and refining extracted results to the desired results. For example: at
one point DocGen examines what device is assigned to a certain variable. Each
time something is written to this variable, DocGen reports it to be written to the
device belonging to the variable. In the Perl-extractor this mapping of variable
onto device is done during extraction. This contributes to the non-uniform way
islands are handled in the Perl-extractor. In the island-extractor we could do
this in the ASF-section at earliest.

The system design of the Perl-extractor has obviously been affected by short-
comings of the language (section 2.3). The current Java-driven extraction phase
has a much better modularization.

8.3.2 Syntactic adaptions

We're usually after a syntactic construct when trying to match a pattern in
DocGen. We have shown that the island grammar does little to reduce the
expressive power of SDF for syntactic constructs, the islands in this case. This
is a far cry from the attempts to express a syntactic construct with the use of
heuristic driven regular expressions in Perl. For example, the extractor for the
OPEN-statement as shown in appendix B.3 took about half an hour, including
testing, to create. If an alternative version of the pattern exists, we do not need
to modify the existing pattern match. Instead we simply add another island.
We do not need to take special precautions to save specific extracted information
during pattern matching either; all information we need is retained in the parse
tree.

The expressiveness of SDF comes at a cost, as we can easily break the is-
land extractor if we do not check our specifications for ambiguities. Especially
different varieties of a complex island are sensitive to this.

8.3.3 Lexical adaptions

COBOL-syntax depends even more on strange lexical constructs than we have
shown so far. For instance, the EXIT SECTION (section 5.5.1) is actually
recognized by its column position. If we cannot write a sensible construct in
SDF for such a case, pre-processing might grow to a point where the question
may arise il we really want to do a syntactic parse at all. None of the pre-
processes we mentioned to get our island-extractor up and running are of such
complexity to question the sanity of a syntactic parse.
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ASF does not yet provide a complete solution for rewriting the island gram-
mar to CPF-format (section 7.2.2). Its inability to properly handle layout and
access annotated information from the parse tree force us to resort to additional
post-processing with more suitable tools. Most notable is the problem of line-
numbers; even when we disregard the impractical trees that are obtained with
position information annotations, the simple line-count loop that suffices in Perl
is a clear advantage over browsing the parse tree for the right information.
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Chapter 9

Conclusion

9.0.4 Island grammar specification in SDF

We succeeded in specifying an island grammar for COBOL in SDF. A com-
bination of injective priorities and the reject-property directs SGLR to parse
sources as we intend them to be parsed. The separation between water and is-
lands mostly occurs on a level that is unobtrusive to island specification, which
can still be done in a natural way.

The design was troubled by unexpected behaviour of SGLR. Some specifica-
tion decisions were aflected by strange parse results or slow performance. This
behaviour is probably the result of both our unorthodox application of SGLR
and its still immature status during our design attempts. The latest version may
allow for even less obtrusive separation of land and water. In an ideal situation
we probably just want to write

context-free syntax
Island -> Token{prefer}
Water =-> Token{avoid}
Token* -> Source

and not worry about priorities and rejects.

The minimal knowledge approach of our island grammar can result in prob-
lems we do not expect in a typical full grammar. We encountered such a prob-
lem with periods within strings, as the grammar had no global knowledge of the
string-type (section 5.4). In general the ability to specily a grammar for SGLR
without first tokenizing the complete source is a big advantage.

9.0.5 Island grammar application in DocGen
Integration

We built a complete extractor that mimics the output of the original Perl-
extractors using a rewriter in ASF and some small pre- and post-processes in
Perl. A Makefile propagates the rewrite of source-file to extraction-output. In-
tegration with DocGen is a trivial task of replacing the call to the Perl-extractor
to a call to the island-extractor.
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Island extractor benefits

o Clear and natural specification

The island-extractor has a clear process-separation. Additional islands
can easily be added to its framework using a natural SDF-specification.

e Correctness

Provided our target-language grammar is correct, the island-extractor can
not output wrong constructs. This is much harder to guarantee with the
Perl-extractor.

Especially the first benefit is what made us consider island grammars in the
first place and still has much appeal to it.

Island extractor weaknesses

e Extraction speed

Parse speed seems promising if we disregard the inefficient ASFIX2 to
ASFIX conversion. However, turning on position information results in
unacceptable performance and parse-tree sizes.

e Robustness

Unexpected ambiguities and parse errors can break a parse at any time.
Our island grammar is much more forgiving than a full grammar, but we
can not gain robustness equal to that of the Perl-extractor.

e Hard to use for testing purposes

The same reason that makes the island-extractor beneficial for correctness
of output makes it hard to use for testing purposes. There is no mechanism
to test for suspect constructs that may qualily as islands, they will simply
be seen as water every time they are encountered. The Perl-extractor’s
word-by-word analysis can easily report suspect constructs. We found
such a construct in section 8.2.2.

o ASF-specific weaknesses

ASF provides a clean, fast and simple way of rewriting a grammar. It
does however not completely fulfill its promise; As the same layout-sort is
used for source- and target-grammars and the ASF-equations, it is usually
impossible to rewrite with layout-specific symbols. If we store position
information in the annotated terms of the parse tree, ASF has no means
of accessing this information. An alternative post-process would be needed
to match the islands with their position information.

In its current incarnation, the island extractor is not yet a viable alternative
to DocGen’s Perl-counterpart. Especially the position-information bottleneck
is too severe to disregard.
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9.1 Future work

9.1.1 SGLR
Many problems with the island extractor can be addressed at the level of SGLR:

¢ Sort-specific position information.

If we can toggle position information on for just our island sorts, it may
be possible to share enough other terms in the parse tree to prevent it
from growing to unacceptable size.

e Runtime water removal.

The position information problem is indirectly caused by the fact that we
retain information about the water-sorts in the parse tree. If these could
be eliminated from the parse tree once their existence has been confirmed
(as opposed to removal after the parse is done), the resulting tree can be
much more manageable.

e Report of specific doubtful patterns.

In its current incarnation, SGLR. can show us difficult areas during a parse
by means of a counter that tells the amount of tokens parsed. Detection
of dubious constructs can be improved if specific troublesome parse-areas
involving the island-sort are reported runtime.

9.2 ASF

Our wishlist for ASF is obvious: a solution for the use of layout-specific symbols
in constructs and the ability to access annotations. The latest version of ASF
allows the use of traversals, it may be interesting to see if the island extractor
can benefit from these.

9.3 Alternatives

We tried to add the robustness of a lexical analysis to a syntactic parse. The
resulting extractor allows natural specification of the desired patterns with far
better robustness than a parse with a full grammar. We can try to combine the
strong points of lexical analysis and syntactic parsing in other ways:

In [10] a specification language for a lexical analyser is described that pro-
vides a simplified way of writing down regular expressions. The result is a
more natural way of writing down otherwise bewildering patterns. Adding the
ability of natural construct specification to a lexical analysis may indeed be an
interesting alternative to our approach.

A seemingly ideal approach to combine the best of both worlds would be to
localize a suspicious section with a lexical analysis and lift this section to parse
it. This approach is used in [6]; a scanner marks starting points of sections that
qualify for a parse.
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An obvious problem would be to determine the dimensions of the suspect
section from within the lexical analysis. Instead of determining the dimen-
sions of the suspect section by means of lexical analysis, we can use an island
parser|[11]; a bi-directional parser that can start anywhere within the source.
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Appendix A

Sources of DocGen
integration components

A.1 Pre-processing

A.1.1 strip comments (stripper.pl)

foreach $line (<STDIN>) {
$line=" s/~.{6,6}(.{0,66}).%\n/$1\n/;
$line=" s/ " [\/*]1.%//;
print $line;

¥

A.2 Post-processing

A.2.1 add newline-seperators (tidy.pl)

foreach $line (<STDIN>) {
$line=" s/\n//g;
$line=" s/0/\n@/g;
print $line;

}
# close last line
print "\n";

A.2.2 close divisions (close.pl)

sub close_paragraph {
if ($paragraph) {
$paragraph =~ s/\QPARA/\QEND-PARA/;
print $paragraph;
$paragraph = "";
}
}
sub close_section {
if ($section) {
$section =" s/\QSECTION/\QEND-SECTION/;

o7
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print $section;
$section = "";
}
}
# skip first line, blank due to ’bug’ in tidy.pl
$1line= <STDIN>;
foreach $line (<STDIN>) {
if ($line =" /\@SECTION/) {
close_paragraph;
close_section;
$section = $line;
} else {
if ($line=~ /\@PARA/) {
close_paragraph;
$paragraph = $line;
1
}
print $line;
1
close_paragraph;
close_section;

A.3 Makefile for parsing sources with both parsers

STRIPPER = /home/ernst/perl/stripper.pl
GRAMMAR = /home/ernst/projects/stage/hypos/condperf/Isle.tbl
REWRITER = /home/ernst/projects/stage/hypos/condperf/cdir/Main

TIDY = /home/ernst/perl/tidy.pl

CLOSE = /home/ernst/perl/close.pl
LEGACY := /opt/legacy/hypos-RA/src
TARGETS := $(wildcard $(LEGACY)/*.cbl) \

$(wildcard $(LEGACY)/*.CBL) \
$(wildcard $(LEGACY)/*.cpy) \
$(wildcard $(LEGACY)/*.CPY)

GRAMMAR2 = /home/ernst/projects/stage/hypos/keyword/Isle.tbl
RELCREATOR = /home/ernst/projects/stage/hypos/keyword/cdir/Main
TIDYREL = /home/ernst/projects/stage/hypos/keyword/tidyrel.pl

#.PRECIOUS: Y%.function
%.cpf: %.asfix
$ (REWRITER) < $< | asource | perl $(TIDY) | perl $(CLOSE) > $@

%.rel: % .asfix2
$(RELCREATOR) < $< | asource | perl $(TIDYREL) $* > $@

Y .asfix2: %.function
sglr -p $(GRAMMAR2) -v1 -i $< -o $@

%.asfix: % .function
sglr -p $(GRAMMAR) -vP2 -i $< -o $@
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%.function: J.stripped
echo "f( ‘cat $< ¢ )" > %@

%.stripped: $(LEGACY)/Y
perl $(STRIPPER) < $< > $@

hypos: $(patsubst %,%.cpf,$(notdir $(TARGETS))) \
$(patsubst %,%.rel,$(notdir $(TARGETS)))

clean:
rm *.cpf
rm ¥.rel
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Appendix B

ASF+SDF specifications

B.1 SDF-specification of CIG2CPF framework

definition
module CIG-DivisionHeader
exports
sorts CIG-ProcDivHeader CIG-DivisionHeader

context-free syntax
"PROCEDURE" "DIVISION" "." -> CIG-ProcDivHeader
"PROCEDURE" "DIVISION'" "USING" Data-name+ "." => CIG-ProcDivHeader
ProcDivHeader -> CIG-DivisionHeader
CIG-Id -> Data-name
module CIG-DotCatcher
exports

sorts CIG-DotCatcher

lexical syntax

[\ \p]x "\?" => CIG-DotCatcher
"\ [N \n]#% "\n" "=" [\ % "[\n] “[\’\n]#* "\’" -> CIG-DotCatcher
e =T\ w\p& r\re => CIG-DotCatcher
a\we ~[\i\p]& \n" "= [\ Jx “[\n] “[\"\nl#* "\"" -> CIG-DotCatcher

module CIG-Drop
exports
sorts CIG-Drop

lexical restrictions

CIG-Drop -/- ~[\ \t\n\.\’\"]
lexical syntax

“[\ \t\n\.\’\"]+ -> CIG-Drop

module CIG-Evaluate
exports
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sorts CIG-Evaluate CIG-SubEvaluate CIG-EvaluateNesting
CIG-EvaluateWhen CIG-EvaluateNestings

context-free syntax
"EVALUATE" CIG-EvaluateNestings "END-EVALUATE" -> CIG-SubEvaluate
"EVALUATE" CIG-EvaluateNestings "." => CIG-Evaluate

"EVALUATE" -> CIG-Substructure2 {reject}
"END-EVALUATE" -> CIG-Substructure2 {reject}

"WHEN" =-> CIG-EvaluateWhen
CIG-SubEvaluate "." -> CIG-Evaluate
CIG-EvaluateNesting* -> CIG-EvaluateNestings

CIG-EvaluateWhen -> CIG-EvaluateNesting
CIG-Substructure -> CIG-EvaluateNesting

context-free priorities
EvaluateWhen -> CIG-EvaluateNesting >
CIG-Substructure -> CIG-EvaluateNesting

module CIG-Id
exports
sorts CIG-DataName CIG-Id

lexical restrictions

CIG-Id -/- [A-Za-z0-9\-\_]
lexical syntax
[A-Za-z0-9\-\_1+ -> CIG-Id

module CIG-If
exports
sorts
CIG-If CIG-Sublf CIG-IfNesting CIG-IfNestings

context-free syntax
"IF" CIG-IfNestings "ELSE" CIG-IfNestings "END-IF" -> CIG-SubIf

"IF" CIG-IfNestings "END-IF" -> CIG-SubIf
"IF" CIG-IfNestings "ELSE" CIG-IfNestings "." -> CIG-If
"IF" CIG-IfNestings "." -> CIG-If
CIG-SubIf "." => CIG-If

CIG-Substructure -> CIG-IfNesting
CIG-IfNesting* -> CIG-IfNestings

"IF" -> CIG-Substructure2 {reject}
"ELSE" -> CIG-Substructure2 {reject}

"END-IF" -> CIG-Substructure2 {reject}

module CIG-Island
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imports CIG-Sentence CIG-SectionHeader CIG-ParagraphHeader
CIG-DivisionHeader

exports
sorts CIG-Island

context-free syntax
CIG-ProcDivHeader -> CIG-Island
CIG-Sentence -> CIG-Island
CIG-SectionHeader -> CIG-Island
CIG-ParagraphHeader -> CIG-Island

module CIG-Line
imports CIG-ParagraphHeader CIG-SectionHeader CIG-Sentence
exports

sorts CIG-Line

context-free syntax

CIG-ParagraphHeader -> CIG-Line
CIG-SectionHeader -> CIG-Line
CIG-Sentence => CIG-Line

module CIG-ParagraphHeader
exports

sorts CIG-ParagraphHeader CIG-Paragraphld

context-free syntax

CIG-ParagraphId "." -> CIG-ParagraphHeader
"CONTINUE" -> CIG-Paragraphld {reject}
"DECLARATIVES" -> CIG-ParagraphId {reject}

"END-DECLARATIVES"-> CIG-ParagraphId {reject}
"DATE-COMPILED"  -> CIG-Paragraphld {reject}

"GOBACK" -> CIG-Paragraphld {reject}
"SPECIAL-NAMES" -> CIG-ParagraphId {reject}
"FILE-CONTROL" -> CIG-Paragraphld {reject}
"DATE-WRITTEN" -> CIG-Paragraphld {reject}
"END-EXEC" -> CIG-ParagraphId {reject}
"EXIT" -> CIG-ParagraphId {reject}

"'SOURCE-COMPUTER" -> CIG-Paragraphld {reject}
"OBJECT-COMPUTER" -> CIG-Paragraphld {reject}

"REMARKS" -> CIG-ParagraphId {reject}
"AUTHOR" -> CIG-Paragraphld {reject}
"PROGRAM-ID" -> CIG-Paragraphld {reject}

CIG-Id -> CIG-Paragraphld

module CIG-Perform

exports
sorts CIG-Perform CIG-SubPerform CIG-PerformNesting
CIG-PerformNestings CIG-PerformLoopWord

context-free syntax
"PERFORM" CIG-Id "THRU" CIG-Id => CIG-SubPerform
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"PERFORM" CIG-PerformLoopWord
CIG-PerformNestings "END-PERFORM" -> CIG-SubPerform

"PERFORM" CIG-Id => CIG-SubPerform

"PERFORM" CIG-PerformLoopWord CIG-PerformNestings "." -> CIG-Perform
CIG-SubPerform "." => CIG-Perform
"VARYING" -> CIG-PerformLoopWord

"UNTIL" -> CIG-PerformLoopWord

CIG-Drop "TIMES" -> CIG-PerformLoopWord
CIG-Substructure -> CIG-PerformNesting

"END-PERFORM" -> CIG-Substructure2 {reject}
"PERFORM" -> CIG-Substructure2 {reject}

CIG-PerformNesting* -> CIG-PerformNestings

module CIG-Program
imports

CIG-Island Layout CIG-Id CIG-Wave
exports

sorts CIG-Program CIG-Line

context-free syntax
CIG-Island -> CIG-Line
CIG-Wave ~> CIG-Line

CIG-Line* -> CIG-Program

context-free priorities
CIG-Island -> CIG-Line >
CIG-Wave -> CIG-Line

module CIG-SectionHeader
exports
sorts CIG-SectionHeader CIG-SectionId

context-free syntax
CIG-SectionId "SECTION" "." => CIG-SectionHeader

"WORKING-STORAGE" -> CIG-SectionId {reject}
"CONFIGURATION" -> CIG-SectionId {reject}

"INPUT-QUTPUT" -> CIG-SectionId {reject}
"FILE" -> CIG-SectionId {reject}
"LINKAGE" -> CIG-SectionId {reject}
"EXIT" -> CIG-SectionId {reject}

CIG-Id -> CIG-SectionId

module CIG-Sentence
imports CIG-Substructure
exports

sorts CIG-Sentence
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context-free syntax

CIG-If =-> CIG-Sentence
CIG-Perform =-> CIG-Sentence
CIG-Evaluate -> CIG-Sentence

module CIG-Substructure
imports CIG-If CIG-Perform CIG-Evaluate CIG-DotCatcher
exports

sorts CIG-Substructure CIG-Substructurel CIG-Substructure2

context-free syntax

CIG-SubEvaluate -> CIG-Substructurel
CIG-SubIf => CIG-Substructurel
CIG-SubPerform =-> CIG-Substructurel

CIG-Drop -> CIG-Substructure2
CIG-DotCatcher -> CIG-Substructure2

CIG-Substructurel -> CIG-Substructure
CIG-Substructure2 -> CIG-Substructure

context-free priorities
CIG-Substructurel -> CIG-Substructure >
CIG-Substructure2 -> CIG-Substructure

module CIG-Wave
exports sorts CIG-Wave CIG-Fluid

context-free syntax
CIG-Fluid* "." -> CIG-Wave

CIG-DotCatcher -> CIG-Fluid
CIG-Drop -> CIG-Fluid

module CIG2CPF
imports CIG-Program CPF-File
exports
sorts CPF-IfNestings CPF-IfNesting CPF-Line
CPF-File CPF-LoopNestings CPF-EvaluateNestings

context-free syntax

vfr w("  CIG-Program ")" -> CPF-File

gt (" CIG-Line ")" -> CPF-Line

"h-if" "(" CIG-IfNestings ")" -> CPF-IfNestings
"h-perform" "(" CIG-PerformNestings ")" -> CPF-LoopNestings
"h-evaluate" "(" CIG-EvaluateNestings ")" -> CPF-EvaluateNestings
it (" CIG-Substructure ")" -> CPF-Line

CIG-Id -> CPF-Id

"@PARA" CPF-LineNumber CPF-Id => CPF-Line

"@SECTION" CPF-LineNumber CPF-Id -> CPF-Line
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hiddens
variables

"cig-dotcatcher" [1-9]*
"cig-drop" [1-9]*
"cig-sectionheader" [1-9]*
"cig-paragraphheader"[1-9]*
"cig-procdivheader" [1-9] *
"cig-sentencex" [1-9]*
"cpf-section"[1-9]#
"cig-program" [1-9]
"cig-linex"[1-9]*
"cig-sentence"[1-9]*
"cpf-file" [1-9]*
"cig-substructure"[1-9]
"cig-substructureone"
"cig-substructuretwo"
"cig-ifnesting*"[1-9]#
"cig-performnestings" [1-9]*
"cig-performnesting" [1-9]*
"cig-performmesting*"[1-9]*
"cpf-loopnestings" [1-9] %
"cpf-loopnesting" [1-9]
"cpf-loopnesting*"[1-9]*
"cpf-loop" [1-9] %
"cig-evaluatenestings"[1-9]*
"cig-evaluatenesting*"[1-9]*
"cig-evaluatenesting"[1-9]*
"cpf-evaluatenestings"[1-9]#
"cpf-evaluatenesting*"[1-9]*
"cpf-evaluatenesting"[1-9]*
"cpf-line" [1-9]*
"cpf-linex"[1-9]*
"cig-ifnestings"[1-9]«*
"cig-subif"[1-9]*
"cig-subperform" [1-9]*
"cig-subevaluate"[1-9]*
"cpf-if"[1-9]*
"cpf-ifnestings"[1-9]#
"cpf-ifnesting" [1-9]#
"cpf-ifnesting" [1-9]*
"cig-wave" [1-9]*
"cig-id"[1-9]#
"cpf-paragraphnestings"
"cpf-paragraphnesting*"
"cpf-paragraphnesting"
"cig-performloopword"

module CPF-Evaluate
exports
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CIG-DotCatcher
CIG-Drop
CIG-SectionHeader
CIG-ParagraphHeader
CIG-ProcDivHeader
CIG-Sentence*
CPF-Section
CIG-Program
CIG-Line%
CIG-Sentence
CPF-File
CIG-Substructure
CIG-Substructurel
CIG-Substructure2
CIG-IfNesting#
CIG-PerformNestings
CIG-PerformNesting
CIG-PerformNesting#
CPF-LoopNestings
CPF-LoopNesting
CPF-LoopNesting*
CPF-Loop
CIG-EvaluateNestings
CIG-EvaluateNesting*
CIG-EvaluateNesting
CPF-EvaluateNestings
CPF-EvaluateNesting*
CPF-EvaluateNesting
CPF-Line

CPF-Line%
CIG-IfNestings
CIG-SubIf
CIG-SubPerform
CIG-SubEvaluate
CPF-If
CPF-IfNestings
CPF-IfNesting
CPF-IfNesting*
CIG-Wave

CIG-Id
CPF-ParagraphNestings
CPF-ParagraphNesting#
CPF-ParagraphNesting
CIG-PerformLoopWord

sorts CPF-Evaluate CPF-EvaluateNesting CPF-EvaluateNestings

context-free syntax
"QEVALUATE" CPF-LineNumber
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CPF-EvaluateNestings
"QEND-EVALUATE" CPF-LineNumber -> CPF-Evaluate

"QWHEN" CPF-LineNumber -> CPF-EvaluateNesting
CPF-Line -> CPF-EvaluateNesting

CPF-EvaluateNesting* -> CPF-EvaluateNestings

module CPF-File
imports CPF-Line CPF-LineNumber CPF-Id
exports

sorts CPF-File

context-free syntax
CPF-Line* -> CPF-File

module CPF-Id
exports
sorts CPF-Id
lexical syntax
[a-zA-Z0-9\_\-]1+ -> CPF-Id

module CPF-If
exports
sorts CPF-If CPF-IfNesting CPF-IfNestings

context-free syntax

"@IF" CPF-LineNumber
CPF-IfNestings

"QEND-IF" CPF-LineNumber -> CPF-If
"QIF" CPF-LineNumber
CPF-IfNestings

"QELSE" CPF-LineNumber
CPF-IfNestings

"QEND-IF" CPF-LineNumber -> CPF-If

CPF-Line -> CPF-IfNesting
CPF-IfNesting* -> CPF-IfNestings

module CPF-Line

imports CPF-Evaluate CPF-If CPF-Perform CPF-Section
CPF-Paragraph CPF-Loop CPF-Thru

exports
sorts CPF-Line

context-free syntax

CPF-Evaluate =-> CPF-Line
CPF-Perform -> CPF-Line
CPF-If -> CPF-Line
CPF-Section -> CPF-Line
CPF-Paragraph -> CPF-Line
CPF-Loop -> CPF-Line
CPF-Thru -> CPF-Line
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module CPF-LineNumber
exports
sorts CPF-LineNumber

lexical syntax
[1-9]1[0-9]1* -> CPF-LineNumber

module CPF-Loop
exports
sorts CPF-Loop CPF-LoopNesting CPF-LoopNestings

context-free syntax

"QLOOP" CPF-LineNumber
CPF-LoopNestings

"@END-LOOP" CPF-LineNumber -> CPF-Loop

CPF-Line -> CPF-LoopNesting
CPF-LoopNesting* -> CPF-LoopNestings

module CPF-Paragraph

exports
sorts CPF-Paragraph CPF-ParagraphNesting CPF-Paragraphld
CPF-ParagraphNestings

context-free syntax

"@PARA" CPF-LineNumber CPF-ParagraphId
CPF-ParagraphNestings

"QEND-PARA" CPF-LineNumber CPF-Paragraphld -> CPF-Paragraph

CPF-Line -> CPF-ParagraphNesting
CPF-Section -> CPF-ParagraphNesting {reject}

CPF-ParagraphNesting* -> CPF-ParagraphNestings
CPF-Id -> CPF-Paragraphld

module CPF-Perform

exports

sorts CPF-Perform CPF-Performirg

context-free syntax
"@PERFORM" CPF-LineNumber CPF-Performirg -> CPF-Perform

CPF-Id -> CPF-PerformArg

module CPF-Section

exports
sorts CPF-Section CPF-SectionNesting CPF-Sectionld
CPF-SectionNestings

context-free syntax
"@SECTION" CPF-LineNumber CPF-SectionId
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CPF-SectionNestings
"@END-SECTION" CPF-LineNumber CPF-SectionId -> CPF-Section

CPF-Line -> CPF-SectionNesting
CPF-Id -> CPF-Sectionld

CPF-SectionNesting* -> CPF-SectionNestings

module CPF-Thru
exports
sorts CPF-Thru CPF-Thrulrg

context-free syntax
"QTHRU" CPF-LineNumber CPF-ThrulArg CPF-Thrulirg -> CPF-Thru

CPF-Id -> CPF-ThruArg

module Layout
exports
restrictions
<LAYOUT?-CF> =/~ [\ \n\t]

lexical syntax
0\ \n\t] -> LAYOUT

module Main
imports
CIG2CPF CIG-Drop

B.2 ASF-equations of CIG2CPF module

equations

[£43]

f(cig-line* cig-procdivheader cig-linex2) = f(cig-line*2)
[£0]

10 =

[£1]
f(cig-linex) = cpf-linex

f(cig-sentence cig-line*) = g(cig-sentence) cpf-linex

[£2]
f(cig-wave cig-line*) = f{cig-linex)

[£3]
f(cig-line*) = cpf-line#

f(cig-id . cig-line*) = QPARA 42 cig-id cpf-linex

[£4]
f(cig-line*) = cpf-linex
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f(cig-id SECTION . cig-linex) = QSECTION 42 cig-id cpf-linex

[g1]
h-if (cig-ifnestings) = cpf-ifnestings

g(IF cig-ifnestings .) = QIF 42 cpf-ifnestings QEND-IF 42

[g2]
h-if (cig-ifnestingsl) = cpf-ifnestingsi,
h-if(cig-ifnestings2) = cpf-ifnestings?2

g(IF cig-ifnestingsl ELSE cig-ifnestings2 .) =
OIF 42 cpf-ifnestingsl QELSE 42 cpf-ifnestings2 QEND-IF 42

[g3]
i(cig-subif) = cpf-if

glcig-subif .) = cpf-if

[g4]
h-perform(cig-performnestings) = cpf-loopnestings

g (PERFORM cig-performloopword cig-performnestings .) =
QLOOP 42 cpf-loopnestings QEND-LOOP 42

[gb]
i(cig-subperform) = cpf-line

g(cig-subperform .) = cpf-line

[g6]

h-evaluate(cig-evaluatenestings) = cpf-evaluatenestings

g(EVALUATE cig-evaluatenestings .) =
QEVALUATE 42 cpf-evaluatenestings G@END-EVALUATE 42

[g7]

i(cig-subevaluate) = cpf-line

g(cig-subevaluate .) = cpf-line

[h-if1]
h-if (cig-ifnesting*1) = cpf-ifnesting*1,
h-if(cig-ifnesting*2) = cpf-ifnesting*2

h-if (cig-ifnesting*l cig-substructureone cig-ifnesting*2) =
cpf-ifnesting*1l i(cig-substructureone) cpf-ifnesting#2

[h-performi]
h-perform(cig-performnesting*1) = cpf-loopnesting#1,
h-perform(cig-performnesting*2) = cpf-loopnesting*2
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h-perform(cig-performnesting*l cig-substructureone cig-performnesting#2) =
cpf-loopnesting*l i(cig-substructureone) cpf-loopnesting#2

[h-evaluatel]
h-evaluate{cig-evaluatenesting*1l) = cpf-evaluatenesting*1l,
h-evaluate(cig-evaluatenesting*2) = cpf-evaluatenesting#2

h-evaluate(cig-evaluatenesting*l cig-substructureone cig-evaluatenesting*2) =
cpf-evaluatenesting*l i{cig-substructureone) cpf-evaluatenesting#2

[i1]

h-if(cig-ifnestings) = cpf-ifnestings

i(IF cig-ifnestings END-IF) = QIF 42 cpf-ifnestings QEND-IF 42

[i2]
h-if(cig-ifnestingsl) = cpf-ifnestingsi,
h-if(cig-ifnestings2) = cpf-ifnestings2

i(IF cig-ifnestingsl ELSE cig-ifnestings2 END-IF) =
OIF 42 cpf-ifnestingsl QELSE 42 cpf-ifnestings2 QEND-IF 42

[i3]
h-perform(cig-performnestings) = cpf-loopnestings

i(PERFORM cig-performloopword cig-performmestings END-PERFORM) =
QOLOOP 42 cpf-loopnestings QEND-LOOP 42

[135]
i(PERFORM cig-id) = GPERFORM 42 cig-id

[136]
i(PERFORM cig-id THRU cig-id2) = QTHRU 42 cig-id cig-id2

[i4]
h-evaluate(cig-evaluatenestings) = cpf-evaluatenestings

i(EVALUATE cig-evaluatenestings END-EVALUATE) =
OEVALUATE 42 cpf-evaluatenestings GEND-EVALUATE 42

[i5]
h-evaluate(cig-evaluatenesting*) = cpf-evaluatenesting#

h-evaluate (WHEN cig-evaluatenesting*) = @WHEN 42 cpf-evaluatenesting#

[h-if42]
h-if (cig-ifnesting*l cig-substructuretwo cig-ifnesting#2) =
h-if (cig-ifnesting*l cig-ifnesting#2)

[h-performd2]
h-perform(cig-performnesting*l cig-substructuretwo cig-performmesting*2) =
h-perform(cig-performnesting*l cig-performnesting+2)
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[h-evaluate42]
h-evaluate(cig-evaluatenesting*l cig-substructuretwo cig-evaluatenesting+2) =
h-evaluate(cig-evaluatenesting*l cig-evaluatenesting#*2)

[h-1£0]

h-if ()=
[h-perform0]
h-perform()=
[h-evaluatel]
h-evaluate()=

B.3 CIG-Open island

module CIG-Open

exports
sorts CIG-Open CIG-OpenArg CIG-OpenArgs CIG-Output
CIG-Input CIG-Extend CIG-I0 CIG-InputTail CIG-OutputTail

context-free syntax

CIG-Id -> CIG-filename

"OPEN" CIG-OpenArgs -> CIG-Open
CIG-Input -> CIG-OpenArg
CIG-Output  -> CIG-OpenArg
CIG-ID -> CIG-OpenArg
CIG-Extend -> CIG-OpenArg
CIG-DpenArg* -> CIG-OpenArgs

"OUTPUT" CIG-filename CIG-OutputTail -> CIG-Output
"INPUT" CIG-filename CIG-InputTail -> CIG-Input

=> CIG-InputTail

"REVERSED" -> CIG-InputTail

"NO" "REWIND" -> CIG-InputTail

"WITH" "NO" “REWIND" -> CIG-InputTail
CIG-InputTail -> CIG-OutputTail
"REVERSED" -> CIG-OutputTail {reject}

"I-0" CIG-filename+ =-> CIG-I0
"EXTEND" CIG-filename+ -> CIG-Extend

"OPEN" -> CIG-filename {reject}
"QUTPUT" -> CIG-filename {reject}
"REVERSED" -> CIG-filename {reject}
"EXTEND" -> CIG-filename {reject}
"REWIND" -> CIG-filename {reject}
"I-0" -> CIG-filename {reject}



