Pretty

for an easy touch of beauty

["case® "BuEE[1]™ "oEv;
B GRS S S WL P

["heginn;

=>4 ["01ledase” Vyan Yopenfils (butf)r;
: Treplybuff Ti= gkt wowy,

. "and™ "iv):
"':f," "’N ch::"

~2Z11 YT [MreplybuffT vg=r wig
"andl']

notopen'® v wyq,

case butff{l) of
‘o! : begin
filedeso := openfile (huff);
replypuff := "okt
end
=7 1 replybuff .=

'notopent :
and

K.J. Vos

january 1990

Pretty

for an easy touch of beauty

K.J. Vos

Programming Research Group, University of Amsterdam
P.O. Box 41882, 1009 DB Amsterdam, The Netherlands

Pretty is developed for the GIPE-project (Generation of Interactive Programming Environments). The
aim of this project is to create a language-independent generator of programming environments. When
specifications of the properties of a language are given to this generator, it can create a programming
environment especially for this language. Pretty is used for specifying how the language structures must
be printed on the screen. Pretty is based on the box-language of PPML, a prettyprint-language also
developed in the GIPE-project. In this thesis we will look at prettyprinting in general, the prettyprint-
language PPML, the arguments for designing yet another prettyprinting language, and the new language
Pretty itself. We will give example specifications for the prettyprinting of PICO, a small toy language,
and for the prettyprinting of Pascal. We will also discuss the box-interpreter, which translates terms
written in the box-language Pretty into real text.

Table of contents

Introduction

1. Prettyprinting

1.1 Common prettyprinting

1.2 Box-languages

1.3 Prettyprinting in the generator

14 PPML
1.4.1 Rules in PPML
1.4.2 A prettyprinter for PICO in PPML
1.4.3 Evaluation of PPML

2. Pretty, a new box-language.
2.1 A definition of Pretty
2.1.1 The syntax of Pretty
2.1.2 Combining operators and arguments
2.1.3 Priorities
2.1.4 Rules
2.1.5 Elision
2.2 PICO in Pretty
2.2.1 A simple Pretty-specification for PICO
2.2.2 An extension of the simple specification
2.3 Pascal in Pretty
2.4 Evaluation of Pretty

3. The Box-interpreter
3.1 A specification of the box-interpreter in ASF + SDF
3.1.1 Frames
3.1.2 The place in-function
3.1.3 The left margin
3.2 Testresults
3.3 Limitations and future work

Acknowledgements
References

Appendix A: PICO specified in SDF

Appendix B: PICO-prettyprinter specified in PPML
Appendix C: PICO-prettyprinter specified in Pretty
Appendix D: Pascal specified in SDF

Appendix E: Pascal-prettyprinter specified in Pretty
Appendix F: Box-interpreter specified in ASF + SDF
Appendix G: Box-interpreter specified in ASF
Appendix H: Test results

12
12
13
15

18
18
21
23
23
25
27
27
29
30
33

34
36
37
39
41

42
43

45
47
49
53

78
101

Introduction

GIPE (Generation of Interactive Programming Environments) is a research-project of the European
research program ESPRIT, in which the CWI (Centre for Mathematics and Computer Science) and the
University of Amsterdam participate. The goal of the project is to find a way to create solely on basis of
a definition of a language a programming environment for this language. A programming environment
is a set of programs that supports the user when he wants to write programs in a specific language. It
consists of an editor, a parser, an typechecker, a compiler, a debugger and a prettyprinter for this
language. Using a programming environment has great advantages. All parts of it are specialised for
one language so this extra knowledge can be used to help the user better. For example, the editor can be
completely syntax-directed, which means that it tells the user continually what language structures he
can use at the point he's working on. He can only choose from those language structures, so he can not
choose wrongly. This will guarantee that his program will stay syntactically correct all the time.

It is very costly to build a programming environment, let alone for every programming language a
specific one. This raises the question whether it is possible to identify the similarities and differences
between various language-specific programming environments. Then one will need to design and
implement the language-independent aspects only once. This leads to a generator of programming
environments which is parameterised by a definition of the desired language. Consequently, not only a
generator must be created, but also new formalisms in which a specificator of a programming
environment for a specific language can define the properties of this language.

The aim of the GIPE project is to develop such a generator of interactive programming environments.
Interactive means that the environment gives direct responses, so for example a user can stop a
command while it is running. It also means that all parts of the environment are integrated to form one
environment with which the user can create, manipulate and compile structured objects. He doesn't
have to be aware which part of the environment he is using during his actions. It is obvious that an
interactive environment requires a good user-interface.

This thesis describes the development of a prettyprinting formalism and a supporting prettyprinter for
the GIPE generator. Prettyprinting is placing the text that is hidden in an internal representation on the
screen, and if possible, in a readable way. The internal representations used in most programming
environments are tree structures. The parser creates an abstract syntax tree for the text the user created
and all other parts of the environment will refer to this tree and manipulate it or create a new tree. The
prettyprinter must put those trees back into readable text for the user.

In this way a prettyprinter can also be used to transform a text the user made into a text that is more
beautiful and more readable. The user can type in his text rather carelessly, no indentation, no worry if
the form of the text resembles the structure of the program. The parser will create a tree for this text and
then the prettyprint program will work on it and put in the necessary layout and indentation to make the
program readable.

A generator has no knowledge of properties of particular languages, so it also does not know how to
prettyprint a text in a specific language. The prettyprinter of the generator can only deal with some
language-independent aspects, like determining when a word must be placed on the next line. Most of
these things have to do with the fact that in the end the prettyprinted text must be placed on a screen with
limited dimensions. So this prettyprinter will deal with the low-level, but sometimes difficult and time-
consuming, calculations to put every string of the text on the right place.

A specificator of a language will have to specify how he wants each language structure to be printed on

the screen globally. This is usually done by giving for every language structure a format written in a
box-language. A box-language is a very important concept for language-independent prettyprinting, It is

-3-

a small language that describes atomic boxes, usually only strings, and operators on boxes. An operator
can indicate for example that the boxes must be placed next to each other or, a very difficult one, that
the boxes must be placed under each other with the "="- signs forming one column. Here we abstract
from the contents of the boxes, whether it are atomic boxes or composite boxes, we are only concerned
with the position of boxes to each other.

The box-language is an intermediate language. On one side the specificator can define the global
indentation for every language structure by giving a box-term for each one. Now one box-term can be
created for a whole text by recursively matching the language structures in the text to these rules and
thus creating one great composite box-term. On the other side the language-independent part of the
prettyprinter, in fact the box-interpreter, can take this box-term and determine the real position on the
screen of the subboxes according to the operators used in the box-term. When all strings in the
subboxes have their new position, the complete prettyprinted text is formed.

We will encounter the following existing formalisms:

- SDF (Syntax Definition Formalism) for defining concrete and abstract syntax;

- PPML (Pretty Print Meta-Language) for defining prettyprinting rules;

- ASF (Algebraic Specification Formalism) for defining the semantics of languages;
- ASF + SDF : the amalgamation of ASF and SDF.

PPML is a prettyprint language that not only consists of a box-language for describing the formats, but
also offers ways to describe pattern-matching, simple functions and control structures. However in this
thesis we did not want to design a whole new language for prettyprinting, we only wanted to specify a
box-language in SDF, because ASF+SDF already offers ways to do pattern-matching and to make very
complex functions and control structures. So we did not use PPML plain, but we only specified the
box-language of PPML in SDF. We also made some changes to improve the readability and to make
use of the complex functions that can be described in ASF+SDF.

We can now summarize the goals of this project as follows

- Create a prettyprinting formalism on top of ASF + SDF that profits from all features that are already
available in that formalism

- Give a formal description of the semantics of the new prettyprint formalism

- Apply the prettyprint formalisms in some case studies.

In chapter one we will explain more about prettyprinting, how it is usually done by a one-language
prettyprinter and how the generator uses a box-language to handle prettyprinting. In this chapter we will
also give a short description of PPML and show some parts of a prettyprint-specification in PPML for
the small language PICO. Chapter two will contain a full description of the new box-language Pretty
and two example prettyprint-specifications, one also for the small language PICO and one for the more
serious language Pascal. At the end of this chapter an evaluation of Pretty is given. In chapter three we
will show how the box-interpreter works by explaining the global set-up of the specification of the box-
interpreter. Finally we will evaluate the results so far and indicate what still must be done.

Chapter One: Prettyprinting

In this chapter we will first explain what prettyprinting is about and how it usually is done. Then we
will say something about box-languages, languages in which the global layout of a language structure
can be described, and next we will see how a box-language can be used in a generator to separate the
language-specific and language-independent prettyprinting. Finally, we will discuss PPML, the
language on which the new box-language is based.

1.1 common prettyprinting

First, we will explain how a common prettyprinter works. Let's see how a prettyprinter for the
language Pascal works. Usually, a parser for Pascal comes first. It looks at the strings of the program
that must be prettyprinted, one by one, and examines which language structure (i.e. if-then-else,
assignment) the string belongs to. So the parser knows all the language structures of Pascal, formally
said the syntax of Pascal. When the parser has found the language structures that are used to construct
the text, it creates a tree that shows the text and the language structures in it. Here is an example.

If the syntax of Pascal tells us that
- every sequence of characters is an identifier (1d)
- an identifier is also an expression (Expr)
- an assignment-statement looks like Id := Expr
- an if-staternent looks like if Expr then Stat else Stat
then for the text

if a then b:=c else b:=d
the following tree is created

if~statement

AN N

This is called an abstract syntax tree, it shows the text together with its structure according to the syntax.
Now the prettyprinter receives this tree as input. Because it prettyprints only Pascal programs, it has
simply coded somewhere how to prettyprint each language structure of Pascal. For this simple piece of
text the prettyprinter must have rules encoded for three language structures:

e

For an if-statement there might be this rule:

print if literally, print a blank, print the Expr according to a rule for Expr's, print a
blank, print then literally, print a blank, print the first statement according to a rule for
statements, print a blank, print e1se literally, print a blank and print the second statement
according to a rule for statements.

The rule for an assignment might be:

print the Id according to a rule for Id's, print a blank, print := literally, print a blank and
print the Expr according to a rule for Expr's.

If the rule for Id's say to print Id's as they are, then this is the result:
if a then b := c else b := d

Here the prettyprinter has only one rule for every language structure. Often it is useful to have another
rule for a Janguage structure that will be used in a special situation. For example,what must be done
when a long if-statement must be printed on a small page? We would like the prettyprinter to cut the
long statement on the right places. The prettyprinter needs an alternative second rule for if-statements.

For example this one:

if the if-statement does not fit completely on one line, then print the if-statement like this:
print i £ literally, print a blank, print the Expr according to a rule for Expr's, print a
newline, print then literally, print a blank, print the first statement according to a rule for
statements, print a newline, print else literally and print the second statement.

Now a long if-statement will be printed like this

if listempty
then number :

]

elements

else number := big

Notice that the condition in the second rule ("if it does not fit on one line") is a difficult one. It can not
be tested easily beforehand. To avoid much extra work it is best to check the condition of the second
rule while prettyprinting according to the first rule. The first rule must now change, because every time
a part of the if-statement is printed the prettyprinter must check if it did not reach the end of the line yet,
though there is still text to be printed. If the last part of the if-statement is printed without reaching the
end of the line, the first rule turned out to be the right rule to use and the if-statement is prettyprinted. If
however the end was reached, the prettyprinter must start all over again now following the second rule.
Unfortunately, in this case, one line will be prettyprinted two times.

The first rules will now look something like this

print if literally, if end of line start again with rule 2, print a blank, if end of line goto rule 2,
print the Expr according to a rule for Expr's, if end of line goto rule 2, etc.

This is awkward, but at least the whole if-statement is never prettyprinted two times. Most simple
prettyprinters have only one rule for the language structures to avoid these complex rules.

Prettyprinting without any exceptional situations is straightforward, but when the prettyprinter has to
deal with the limited dimensions of the screen and with different rules for different situations,
prettyprinting turns out to be rather complicated. One important task of the prettyprinter is to decide
which rule must be used without doing too much extra work.

1.2 Box-languages

In the previous section we saw that the prettyprint rules were encoded in the prettyprinter. There we
described them in long English sentences. It is also possible to describe them formally. Two major
advantages are that the meaning is unambiguous and that the rules are easier to read.

Often a box-language is used for this purpose. A box-language describes atomic boxes and different
operators for combining boxes. Usually an atomic box is a string. Atomic boxes can be combined with
an operator to get composite boxes which can be combined again. Each operator stands for a particular
way of positioning the boxes relative to each other. In this way it is possible to describe the layout of a
language structure in a box-language.

Now we will explain four operators or separators that are common in box-languages. These operators
and their arguments allow us to describe all prettyprinting rules that a normal, not too sophisticated,
prettyprinter uses. We will give examples of them using the syntax of PPML. The box-language of
PPML has exactly these four operators.

- The <h> separator, h of horizontal, places the subboxes after each other. It has one argument,
the number of blanks between the subboxes. Normally the words in a text are separated by
one blank, so the default is one. When the separator does not have an number in it, the
default will be used.

example

[<h 4> "we" "are" "placed" "horizontally"]

leads to the text

we are placed horizontally

- The <v> separator, v of vertical, places each subbox on a new line. The first argument says
how many blanks must be indented when a subbox is placed on a new line. So all but the
first box have an indentation before them. The second argument does not specify how many
newlines, but how many open lines, must be placed between subboxes. So the default is 0.

example

[<v 5,1> "we" "are" "placed" "vertically"™}

leads to the text
we
are
placed

vertically

- The <hv> separator, horizontal and vertical, acts just like a typewriter, it places the subboxes
next to each other, in the way <h> does, until the line is full, then it inserts a newline and
puts the rest of the subboxes on the next line. <hv> needs three arguments, the first is the
number of blanks between subboxes, see separator <h>, the second and third operator have

the same purpose as the first and second argument of the <v> separator, they are needed in
case the subboxes do not fit on one line.

example

[<hv 1, 2, 0> "we" "are" "placed" "hor" "and" "vert"]

leads to this text on a wide page

we are placed hor and vert

and to this text on a small page
we are placed hor

and vert

- The <hov> separator, horizontal or vertical, tries to place the subboxes on one line, like the
<h> separator, but if it finds out they do not fit on one line, it will place all subboxes
vertically like the <v> operator. <hov> needs the same three arguments as <hv>, namely
number of blanks, indent on new line and number of open lines.

example

[<hov 1, 5, 0> "we" "are" "placed” "hor" "or" "vert"]

leads to this text on a wide page

we are placed hor or vert

and to this text on a small page
we
are
placed
hor
or

vert

Let's go back to the previous section where we described two complicated rules for the short and the
long if-statement in English sentences. Both rules can be described in one simple box-term in PPML:

[<hov 1,0,0> [<h 1> "if" *Expr]
[<h 1> "then" *Statementl]

[<h 1> TMelse"™ *Statement2]]

*Expr is arecursive box-call, it will be replaced by a box according to the format for expression.
*Statement1l and *Statement2 are also recursive box-calls. The square brackets mark the limits of
each non-atomic box. For example here we see that the operator <hov> has three subboxes. Try to
understand that this box-term in PPML has the same meaning as the two rules for the if-statement in the
previous section.

By introducing the box-language two aspects of prettyprinting, that were mixed up in the long English
rules, are now separated, describing the possible formats of a language structure and determining in an
economic way which format must be chosen. A box-term shows only the possible formats. A box-
interpreter, that will form a real page of text out of a box-term, will have fast algorithms for each
operator in the box-term. This separation is very useful when developing of a prettyprinter for the
generator as we will show in the next section.

1.3 Prettyprinting in the generator.

In the one-language prettyprinter we described in section 1.1 the rules for the prettyprinting of each
language structure are encoded in the prettyprinter. However, the generator has no knowledge about
any particular language, so it also has no specific prettyprint-rules encoded in it. Because there are so
many different languages, it is not even possible to formulate useful standard prettyprinting, that the
generator could work with. So the generator can only create a prettyprinter for a language, if it receives

the prettyprint-rules for it.

In order to write a specification of the prettyprinting rules, we need a language in which we can describe
the format of each language structure. For this purpose we often use a box-language as described in the
previous section. A box-language is very suitable, because the specificator of the prettyprint-rules has to
define only the global layout for every language structure. He does not have to be concerned with
details like what to do when the line is too long or keeping track of the real position each string is
getting.

When we give these prettyprint-rules to the generator it can create a environment with a prettyprinter.
After the parser has created a syntax tree for the text that must be prettyprinted, the prettyprinter will

translate this tree into one box-term. It will recursively apply to every language structure in the tree one
suitable prettyprint-rule and thus build a box-term that shows the global layout for the whole text.

Now this box-term still has to be translated into a new piece of text. A box-interpreter inside the
generator will take care of this. It translates the box-term into real text. It not only has to deal with the
global layout of the text described by the box-term, but also with the real dimensions of the screen. The
box-interpreter will have fast algorithms for the operators of the box-language and it can prettyprint
strings, the atomic boxes of the box-language. It also handles exceptional situations. When the text
can't be printed on the screen according to the global layout, the box-interpreter must print the text
slightly different. For example, when a sentence is too long the box-interpreter will put the last part of
the sentence on the next line. Notice that the only language the box-interpreter has to understand is the
box-language.

Now we see that the box-language is an intermediate language, it separates the language-specific and
language-independent aspects of prettyprinting. The specificator of an environment specifies the
language-specific part and the language-independent part is implemented in the box-interpreter. The
prettyprinter in the generated environment only has to translate the text into a box-term. This is
straightforward. The most complicated and time-consuming part of prettyprinting is done by the general
box-interpreter.

Let us give an example in simplified Pascal of the whole path.

the text: repeat a:=b until true ;

the input for the parser: the syntax in SDF

lexical syntax

a -> Id {a, b and true are identifiers}
b -> Id
true -> Id

context-free syntax
Id -> Expr {an identifier is also an expression}
Id :=vExpr —> Statement

repeat Statement until Expr ~> Statement

the input for the prettyprinter: prettyprint rules in a box-language

for every language structure, thus for every left-hand side of the rules above, there has to be a
rule that says how to prettyprint that structure.

Iid : string(Id) {printidentifiers as they are}
Id := Expr : [<h 1> *1d ":=" *Expr]
repeat Statement

until Expr; : [<v 0,0> "repeat”
*Statement
[<h 1> "until™ *Expr ";"]

-10-

In the generated programming environment the parser parses the text using the language
definition in SDF and creates this abstract syntax tree for it.

repeat-statement

T

1= true

"\

a b

The prettyprinter receives this tree and recursively matches every structure of it with the
prettyprint rules formulated in the box-language, trying to make one box-term for the whole
text. In this case this would be

[<v 0,0> "repeat"
[<h 1> string(a) ":=" string(b)]

[<h 1> "until™ string(true) ";"}]

Then the prettyprinter handles this box-term over to the box-interpreter, that will translate the
box-term into text and print it on the screen.

repeat
a:=>bo

until true;

If the page width is 7, the last line is too long, so the prettyprinter would print the box-term
differently using his own way to deal with exceptional situations. One possibility could be:

repeat
a :=b
until

true;

A good box-interpreter handles exceptional cases as much the same as normal cases to assure that the
new text does not look completely unexpected. Here the conversion of box-term into text was rather

simple, but when the box-language offers more complicated operators the task of the box-interpreter

becomes also more difficult and time-consuming,.

It is important throughout the next chapters to know which steps there are and when they are taken. We
will summarize the steps in a picture also showing where which language is used.

-11-

parser prettyprinter boxinterpreter
text tree * boxterm ﬁ newtext

specification specification of specification in
of syntax in prettyprintrules ASF (+ SDF) or
SDF in Pretty implementation of
boxinterpreter
1.4 PPML

We have already explained the operators and the arguments of the box-language of PPML in section
1.2. In this section we will first give some idea of what a prettyprint-specification in PPML looks like,
then we will explain some features of PPML by showing some rules from the prettyprint-specification
for the toy-language PICO. Finally we will give an evaluation of PPML.

1.4.1 Rules in PPML

The box-language which we already have explained is only a part of the prettyprint language PPML. It
is also possible to describe patterns for each language structure, simple auxiliary functions and control
structures. A prettyprint-specification in PPML is a sequence of rules, that look like this

<pattern> -> <format>;

A pattern expresses an abstract syntax tree that may contain variables. A format is usually written in the
box-language. Here is an example of a rule.

assign(*var, *exp) => [<h 1> ‘*var ":=" *exp];

*var and *exp are variables. The pattern matches a binary syntax with the assign operator on top.
Remember that a parser first creates an abstract syntax tree of the text, that must be prettyprinted. Then
the prettyprinter will try to match this tree to a pattern of one of the rules. It will continue to match
subtrees, that are instantiated to the variables, with the patterns until all subtrees are matched. Then the
final box-term for the tree is formed. The prettyprinter will, for example, match the following tree with
the rule above. :

assign

N\

a b

After recursive calls to rules for identifiers the final box-expression will be

[<h 1> "a" := "pbv].

-12 -

Now follows an example of a complete prettyprint-specification. Note that it is also possible to define
constants and default arguments.

prettyprinter of FILLINNAME is
constant
tab = 3;
default
<h 1>; <v 0, 0>; <hv 1, 0, 0>; <hov 1, 0, 0>;
rules
assign (*var, *exp) =-> {<h> *var ";=v *exp];
ifthenelse (*exp, *seriesl,
*series2) ~> [<hov> [<hv> "if" *expr]
[<hv> "then" *seriesl]
[<hv> "else" *series2]
"£it s

end prettyprinter

We already explained the meaning of the separators and their arguments in section 1.2. However one
thing is still not clear. What does the <h> separator do with the rest of its subboxes when the line is
full? Does it give an error message of does it place the rest of the subboxes on the next line just like the
<hv> separator? If the latter is true, then what is the difference between the <h> and the <hv> operator?
Maybe we can do away with the <h> separator and use the <hv> operator instead. We didn't t find an
answer in the documentation, but of course we could have tested this with the current PPML-
implementation. Unfortunately, we didn't have time to do so. So just for safety reasons we will use the
<hv> separator whenever we think a sentence may become too long.

Now we will describe a larger example, a complete prettyprint specification for a small language.
Maybe then we can say more about the expressiveness of the box-language of PPML. and about the
readability of specifications in PPML..

1.4.2 A prettyprinter for PICO in PPML

PICO is a small Pascal-like toy language. A program starts with the keyword "begin", followed by a
declaration section, where only variables of type natural number or string can be declared. Then follows
the statement-section, in which only the assignment-statement, the if-statement and the while-statement
can be used. The expressions used in these statements may be an identifier, an addition or subtraction of
natural numbers or a concatenation of strings. A PICO-program concludes with the keyword "end". In
appendix A a specification of PICO in SDF is given. Itis a simple SDF-specification, that will help to
understand the syntax of PICO better.

Appendix B is a specification of prettyprint-rules for PECO in PPML. We will not discuss the whole

specification. We will only explain the rules where a yet unknown feature of PPML is used. This will
lead to a better understanding of the specification and of PPML.

-13-

Three unknown features are local separators, list patterns and elision (a mechanism to see a structure
with different levels of detail). We will now give an example of each feature.

The second rule in the specification is

pico_program(*decls, *series) ->
[<¥v> "begin™
< tab,0> [<v 0,1> *decls
*geries]

"end"] ;

This rule shows the use of local separators. <v tab, 0> is a local separator, it specifies how its left and
right neighbour subbox should be combined and overrules the global separator <v> at the beginning of
the box. The rule says that a PICO-program must look like this.

begin
*decls
*series

end

We also see here that if another value than the default-value for one argument must be used, the default-
values for all other arguments of that operator must be repeated. Also note that the use of constants like
tab make it easier to remember where each argument stands for.

The third rule specifies how the declaration section, which consists of the keyword declare followed
by a list of declarations, must be prettyprinted.

decls(*decl, **decls) ->
[<v tab,0> "declare"™

[<hv> *decl (<h 0> "," **decls) “;"1];

The pattern of this rule is a list pattern. decls (*decl, **decls) matches a tree with on top the
decls-operator and with at least one son. The first son, i.e. the first decl, is instantiated with *decl
and the rest of the sons with **decls. The parentheses in the format of the rule indicate that the pattern
must be repeated for the rest of the list, if the list has more than one element. A comma must be placed
before each element of the list and immediately after the previous element. So the list of decls is printed
with a comma inserted between each two elements, thus like this

declare

decl, decl, ..., decl;

The last feature we will discuss is elision, also called outlining. This allows to print an overview of the
program in which, for example, only the procedure headings of the procedures are shown instead of the
complete text. This is done by controlling the depth of recursive calls during the pattem-matching. If not

-14 -

not all variables in a box-term are substituted by a subbox, but if they are simply replaced by 3 dots,
some details will not be seen any more. The depth of a recursive call is also called the holophraste level.
Automatically for each deeper recursive call the holophraste level is decreased by one.

example
opl (*x, op2(*y)) -~> [<h> *x *y};

if b is the current holophraste value, *x will be prettyprinted with a holophraste value h - 1 and
*y with holophraste value h - 2. So the pattern of the rule determines what holophraste level the
subtrees will have.

The user can make an outline of his program by specifying

program(*x) -> *x | 10;

k3 ! 0 - n‘_.n,.

The abstract syntax tree of the complete program will now be prettyprinted with holophraste level 10
and a subtree with holophraste level O will be printed as . . . literally.

It is also possible to specify what details the user does want to see. The rule for the plus-expression in
the PICO-specification says, for example, that if a part of a plus-expression is printed, then the
complete plus-expression must be shown, because the holophraste values of the recursive calls stay the
same as the holophraste valuein the beginning.

plus(*exprl, *expr2) -> [<hv> *exprl !+1 + *expr2 !+1]
1.4.3 Evaluation of PPML

Here we will focus on two properties of prettyprint languages, expressiveness and ease of use.

What does expressiveness mean? In a more expressive language the user can specify more complex
actions, he has more possibilities, or he can describe the same actions as in less expressive languages,
but in an easier way. In an ideal prettyprint language the specificator can express all his wishes for all
languages.

We think the possibilities offered in PPML are enough to describe a normal, not too sophisticated
prettyprinter. PPML offers simple patterns, list patterns and even conditional patterns based on the
result value of a simple function. For differentiating between alternative layouts there are four structures
that can be used, context-dependent rules, if-statements, repeat-statements and simple functions in the
format of a rule. The box-language offers enough possibilities for describing the prettyprint formats of a
normal prettyprinter. Also when we wrote a specification for PICO, we did not really clash with any
restraints on these matters. We only came across one layout format we would like to be able to specify.

It is not possible to specify that a short if-statement must be printed like this

if a then b else ¢

-15-

and a long if-statement like this
if listpointer = nil then
writeln("nothing left™)

else

writeln("still something left™)

This is because of the tabs in the long if-statement. The following format seems right, but isn't.
[<hov 1,tab, 0>
[<hov>
[<hov 1,tab, 0> [<hv> "if™ *Expr "then"]
*Statl]
"else"]

*Stat2]

According to this rule, this if-statement is also possible.
if listpointer = nil then nil else

bufferpointer

In the box-language of PPML complicated things, like alignment and columns can not be specified. Is it
not possible to put more separators in the box-language that can handle these things? Maybe it is, but
we must take something else into account.

Depending on its use, the response time of the PPML-prettyprinter is very important. For instance,
when only the tree-representation of a program is maintained during editing and the prettyprinter is used
for recreating the textual representation of the program. This means that every time the user makes a
change, it is translated in a change in the tree and the whole tree must be prettyprinted again to show the
changed text. So even for a small change the whole text must be prettyprinted. In this case the
prettyprinter must of course give quick responses. This constraint on response-time can have influence
on the box-language of PPML. Complex operators in the box-language will require a complicated and
thus most likely a slower box-interpreter. As we already mentioned most of the work during
prettyprinting is done by the box-interpreter, so a fast prettyprinter needs a fast box-interpreter. Maybe
it is not possible to find a fast interpretation for the complex operators. Then the box-language must be
kept simple.

Let's look at another aspect of prettyprint langnages, readability. It is a nice property of a prettyprint-
language, when the specifications written in this language are easy to read and to write. Probably the
language will then be easier to learn and errors will be less likely to occur. One way to improve the
readability of prettyprint specifications is to give the operators and arguments in the box-language clear
names or symbols, so it is obvious what they mean. Having many operators and arguments can be
confusing, but when they have clear names, this does not have to be so.

We find subjectively specifications in PPML not very easy to read and to write. It takes some time
before the user of PPML really knows what action belongs to each operator name and before he can
read the operators quickly. The arguments are just plain numbers, so he will have to look first at what
position the number is placed, before he knows what the argument stands for. It is rather clumsy that

-16-

the default-values of all other arguments must be repeated, when one argument of a separator is
changed. A format of a language structure with both indentation and exdentation, like in a long if-
statement (use <hv> instead of <hov> in the rule above), has got a lot of separators and brackets. Using
local separators will reduce the number of brackets, but not the number of separators.

In summary, we can say that in PPML the specificator can express all the things he wants for a normal
prettyprinter. Only the readability of the prettyprint-specification can still be improved.

-17-

Chapter Two: Pretty, a new box-language

In this chapter we will introduce Pretty, a box-language. We will first explain the syntax of Pretty, then
we will give a prettyprint-specification for PICO in Pretty and say something about the prettyprint-
specification for Pascal. Finally we will evaluate Pretty.

2.1 A definition of Pretty

2.1.1 the syntax of Pretty

Contrarily to the prettyprint-language PPML, which has besides a box-language also some other
features, Pretty is only a box-language. For specifying the other features we will use ASF+SDF.

This is an example of a format written in Pretty and in PPML.

["case" *Exp; [<v> [<hv> "case" *Exp]
-> *Caselist ; <v tab, 0> *Caselist
” end"] "end"]

In Pretty all operators are written in infix notation, so an operator says how the two boxes on each side
of it will be combined together. There are three operators. The nothing operator places the boxes next to
each other, just like the <hv> operator in PPML. It is called like this because nothing will be placed
between the boxes. The /-operator acts just like the <hov> operator, only now this infix operator is
associative, this means that a sequence of boxes combined with /, can be seen as if all these boxes were
combined with one /-operator. So the following formats have the same meaning.

["if" *Expr / [<hov> [<hv> "if" *Expr]
"then" *Statl / [<hv> "then” *Statl]
"else" *Stat2] [<hv> "else" *Stat2]]

The ;-operator acts just like the <v> operator in PPML.

We have chosen to use the operators in this form, because we think it will improve the readability of the
formats. The symbols for the operators are short and clear. Because we use the infix notation, there is
always an operator between each two subboxes and the reader of the specification can see quickly how
subboxes are combined with each other. Furthermore, he can now simply think of / as of a possible cut
in the sentence and of ; as a newline. It is easier to think in these terms than to think for example about
the complicated action of the hov operator.

We introduced four new arguments. Now we can give an absolute tab, so the next box will start on the
column number of the value of the absolute tab. We also have three new arguments to change the values
of the left margin and the right margin.

An argument is written like a symbol, that indicates which argument is meant, followed by a value for
that argument. The arguments have no strict ordering. The specificator just gives a list of arguments, in
any ordering he likes, containing only the arguments for which he does not want to use the default
value. This argument list will be placed logically with the boxes. This is different in the box-language of
PPML., where most operators are placed with the separators.

-18-

The new box-language now looks very simple. A string is an atomic box. Compound boxes can have
the following forms, a list of arguments followed by a box or two boxes combined with nothing, ; «
/.To reduce the number of brackets we specified priorities on the operators. Except for the symbols t
are used for the arguments, these three sentences describe the whole language!

Here is the SDF-definition for the language. The arguments are now called changes, because it is bett
to see them as temporarily changing the default-values of the prettyprinter, when the box, that follow:
the changes, must be printed.
module Box-syntax
import Strings
export
sorts SYMBOL CHANGE CHANGELIST BOX

lexical syntax

[\t\n\zr] -> LAYOUT
nL> -> SYMBOL
e -> SYMBOL
nosw -> SYMBOL
= -> SYMBOL
"< -> SYMBOL
S>> ~-> SYMBOL
MR SR -> SYMBOL
"dlr -> SYMBOL
g+ -> SYMBOL

context~-free syntax

STRING =-> BOX

SYMBOL.INT ~-> CHANGE

SYMBOL ~> CHANGE

{CHANGE ", "}+ => CHANGELIST

"(" CHANGELIST ") " ~> CHANGELIST ({bracket}
CHANGELIST BOX -> BOX

BOX BOX -> BOX {right}
BOX "/" BOX -> BOX {right}
BOX ";" BOX -> BOX {right}
"[" BOX "]*” ~-> BOX

(" BOX m)" -> BOX {bracket}
defaults -> CHANGELIST
layoutchar -> STRING

-19-

priorities

CHANGELIST BOX -> BOX >
BOX BOX =-> BOX >
BOX "/" BOX -> BOX >
BOX ";" BOX -> BOX
equations
[1] defaults = <=> 1, P 1, ->4, ->>8, |<- 1,

->>| 60, |[<-+ 30,]d| 100, d+ 1

[2] layoutchar = " *

The extension {right } means that the operators are right-associative. When brackets must be placed in
a box-term, where all boxes are combined by the same operator (op), the box-term would look like this.

Boxl op (Box2 op (Box3 op)))

The extension {bracket} means that the brackets in this function are not really needed in the syntax,
they will only keep parts of the language together.

As we see in the second and third rule of the context free syntax an argument can be a symbol or a
symbol followed by an integer. When there is no integer behind the symbol, the value for this symbol
in the defaults-equation will be used, just like in PPML. The layoutchar specifies what string must be
pleced on the open space between the boxes. Usually, a blank is placed between two boxes, but now it
is also possible to place for example dots on open spaces. Normally the equations for the defaults and
the layoutchar will be placed in the prettyprint-specification.

All arguments are now placed before a box, even the ones that are associated with operators in PPML.

So if the specificator wants a tab before a box or two blanks instead of one blank, he must write this
down in the changelist of the box. Let's see what changes can be given in a changelist.

-20-

<-> Int width Int blanks between the end of the previous box and the start of

the following box.

| Int height Int newlines between the end of the previous box and the start
of the following box.

~-> Int relative tab Int blanks between the end of the previous box and the start of
the following box.

~->> Int absolute tab the following box must start at column Int. The open space
before it must be filled with blanks.

I<-+ Int relative left margin the left margin for the following box must be set to the old left
margin + Int

l<<- Int absolute left margin the left margin for the following box must be set to Int

->>| Int absolute right margin the right margin for the following box must be set to Int

Idl Int absolute depth the depth, the holophraste level, of the following box must be
set to Int
d+ Int relative depth the depth of the following box must be set to the old depth + Int

The four new symbols are ->>, |<-+, |<<-, ->>|. With these operators the right and left margin
can be changed and together with the absolute tab it is now possible to make columns.

2.1.1 combining operators and arguments

Here we want to draw attention to four properties of Pretty with respect to combining operators and
arguments.

When a relative tab is used in combination with the operator /, the tab will only be printed when the
boxes do not fit on one line and are thus placed above each other. This is logical, as shown in this

example
["if" *Expr "then /
-> *Statl /
"else /

-> *Stat2]

Now in a small if-statement the tabs will not be printed:

if a then b else ¢

-21-

but in a long if-statement they will appear:
if listpointer = nil then
writeln("nothing left")

else

writeln("still something left™)

Here follow two other small aspects we have to keep in mind. Because the arguments are now placed
before a box, the operators must retrieve their arguments from the box next to the operator.

example
When the box-interpreter must prettyprint the box-term "next™ "tov, containing two boxes
combined by the nothing-operator, it will see that the box-term "to"™ has no list of arguments,

so it will look in the defaults-equation for the default number of blanks between two boxes.
When it prettyprints " further” <-> 5 "apart", it will set the number or blanks to 5.

We can also see from the definition of Pretty, that it is possible to combine all arguments with all
operators. Some combinations are very common, like the nothing operator and <->, we saw in the
example above, and the operator ; and |, but combinations that were not possible in PPML can now
also be made, like this one

"funny" "but" |2 "possible"

The box-interpreter has to be able to do something sensible with all box-terms. This term might be
printed like

funny but
possible

In chapter three we will explain the working of the box-interpreter in detail.

Finally, we want to draw attention to two situations that cause us trouble in Pretty. We could not
implement the arguments of the <hv>-operator in Pretty the same way as in PPML, because in PPML
the arguments are associated with the separator and in Pretty they are associated with the boxes.

The <hv>-operator has three arguments in PPML. It is simple to write down the first argument of <hv>
in Pretty, the one that says how many layout characters must be placed between the boxes. We just
write <-> Int between every two boxes. However the second argument of <hv>, the tab, is not so
easily implemented in Pretty. The tab must only be placed before the box that is placed first on a new
line. But we can not know beforehand which box this will be, so in Pretty we can't place the tab before
the right box. We must find another way to get the same effect. We now group the boxes with normal
brackets and place |<~+tab before this composite box. This means that the left margin of this
composite box will become one tab greater, but the box will still start on the column of the old left

-22.

margin. In the end the text will look the same as if a tab was placed on the new line. So when this is
written in PPML

[<hv 1, tab, 0> *Exprl "+" *Expr2]

this is the format in Pretty

[I<-+ tab (*Exprl "+" *Expr2)]

However we did not find a solution for the other situation. The third argument of <hv> says how many
open lines there must be placed before the first box that does not fit on the line. In Pretty it is not
possible to write this down. Again, it is not possible to determine before which box the newlines must
be placed.

We don't think it will be a real drawback of Pretty. The trick with the tab-options doesn't look very
nice, but it is possible to describe the tab-option and it will not be used very often. The newline-option
can't be described in Pretty, but we think it will hardly ever be needed in a prettyprint-specification.

2.1.2 priorities

In Pretty we specified priorities on the operators, so the specificator does not have to place brackets
around every combination of boxes with an operator. The boxes will now be grouped according to the
priorities. Putting a changelist before a box has a higher priority than using the nothing operator
between two boxes. The nothing operator has a higher priority than the / operator, which on its turn

has a higher priority than the ; operator. The three operators are right-associative. These priorities are
just as expected. Here is an example.

According to the priorities, the prettyprinter would see this example

["if" *Exprl "then" ;
-> *Expr2 ;
"else" / *Expr3]

like this

[("if" (*Exprl™then")) ;
((=> *Expr2) ;
("else" / *Expr3)) 1
Now the brackets are placed just as was intended with the if-format.

2.1.3 rules

When a specificator writes a prettyprint specification in Pretty, he must not only use Pretty but also ASF
+ SDF. What does a specification look like? How must one write down the prettyprint rules?

-23-

We can write the prettyprint rules down as equations in the equation-section of a ASF + SDF module.
In the context-free syntax of the module we will declare the main function, that will translate the
language structures of the language into a box-term. In the example below, this function has the name
*. In the equations the specificator will describe how the function exactly works. He will have to
describe what box-term the *-function will return for every language structure. The form of the
equations is very much the same as the form of the rules in PPML. The equations are written in the
simple syntax of ASF, a tag, a term constructed from the functions and the variables defined earlier, a
"=" sign and another term constructed from those functions and variables. An equation can also have
conditions. The equation will then only be used for a particular input when the conditions are satisfied.

Here is a part of an example module

module Language-prettyspec
import Language-syntax, Box-syntax
export

context-free syntax

k" STAREXPR -> BOX {the main function}
PROGRAM -> STAREXPR {every language structure
STATEMENT ~> STAREXPR is of type
. STAREXPR}
variables
Exp -> EXPR
equations

[11] * if Exp then Seriesl
else Series2 fi = ["if" *Exp ;
"then" *Seriesl ;
"else" *Series? ;
TELIT O]

[12] * while Exp do Series do

]
——

"while" *Exp

~

"do" *Series ;

“od“]

We have given some idea of what a prettyprint-specification in Pretty plus ASF+SDF looks like. More
information on ASF+SDF can be found in the references [1], [2].

-24 -

2.1.4 elision

In section 1.4.3 we saw that in PPML elision is handled during the translation of the text into a box-
term. When the text is matched with the left-hand sides of the prettyprint-rules, the pattern-matcher
refers to the information about the holophraste level of each subtree. Only when a subtree has a
holophraste level of 0, it will match the subtree with this rule

x 10 -> mm

Instead of a whole box-term for this subtree, only this small box, a string of three dots, is returned. So
when elision is used to create an outline of the text, the text is translated into a box-term that is smaller
than the box-term for the whole text. This smaller box-term is then translated into a new text by the box-
interpreter.

In Pretty it is not possible to handle elision during the translation of the text into a box-term, because the
pattern-matching will be done in the standard way for all equations written in ASF + SDF. We don't
have access to the information about the level of each subtree. Therefore, when an outline has to be
made of the text, we will translate the text into a box-term, that holds information about the holophraste
level of each language structure, and the box-interpreter will create an outline of this box-term during
the translation of the box-term into the new text.

How do we put information about the holophraste levels into the box-term? Well, we simply group all
boxes that must have the same holophraste level together by placing square brackets around them.,
When the box-interpreter recursively translates all subboxes into strings, it simply decrements the
holophraste level of each subbox surrounded by square brackets.

In PPML one would write these two rules in the prettyprint-specification to get an outline of the text
onto a depth of 10.

program(*x) -> *x 110

x 10 - L

In Pretty the specificator can set the value of the symbol Id| (absolute depth) to the holophraste level he
wants for the whole tree. This is how he specifies the information of the first PPML-rule above. The
second rule, which says what should be printed when a box has holophraste level 0, can be specified
by associating a string with depthstring, a predefined constant. Here are two equations that hold the
same information for the elision as the two PPML-rules above.

[1] defaults = <->1, 11, ->4, ->> 40, |<<= 1, ->>| 80,
I<-+ 5, |d} 10, d+ 1
[2] depthstring = "..."

Now the box-interpreter can handle elision in a simple way. It will set the holophraste level for the
whole box-term to the defanlt-value of Idl in the defaults-equation. Then it will recursively translate the
subboxes into real text. Every time it comes across a box surrounded by square brackets, it checks if the
holophraste level of this box is zero. If so, it returns the depthstring as the real text for this box. If the
level is greater than zero, it will go on translating the subboxes, but with a holophraste level that is set
one lower.

-25.

The final text will be the same as the text the PPML-prettyprinter will create. Notice however, that the
PPML-prettyprinter does less work, when it creates an outline, because is immediately translates the
text into a small box-term, whereas in Pretty first the box-term for the whole text is constructed and
only later an outline of this box-term is make.

Let us now look at what the specificator must do to assure that every subbox gets the correct
holophraste level. Because usually every format begins and ends with a square bracket, most of the time
the specificator does not have to be aware of the holophraste levels, but just places square brackets
around each format. However, there is one situation where the brackets must be placed differently. If a
list is printed, each element must have the same holophraste level. In this case once a list is printed all its
elements are printed and not just a few of them. Usually one would like this to happen. If the
specificator always puts brackets at the begin and end of a format, this will not work correctly.

Here are two rules in Pretty

*begin Series end

I
-y

"begin® ;

-> *Series ;

" end"]
*3Stat ; Stats = [*Stat ";" ;
*Stats]

When Series is defined as a list of Statements, the following box-term can be created:
["begin® ;
=> [[statl] ";" ; [[Stat2] ";" ; [...1]1] ;

" end"]

Here we see that each next element in the statement list will be printed with a holophraste level
that is one smaller than the holophraste level of the box before it. Now when the whole list has
a low holophraste level the last elements in the list will be left out. One way to solve this is to
change the two rules into

*begin Series end

it
~—

"begin® ;
-> [*Series] ;

"end"]

*Stat ; Stats = *Stat ";" ;

*Stats

We moved the brackets in the second rule up one level to the first rule. Now the box-term will

-26-

look like this

["begin“ ;
-> [[Statl] ";" [Stat2] ";" 1
"end"]

Here all elements of the list have the same holophraste level.

2.2 PICO in Pretty

We will now show what a real prettyprint-specification in ASF+SDF plus Pretty looks like by
presenting a prettyprint-specification for PICO. The equations will express the same rules we descri
for PICO in PPML.. Next we will give an extension of these rules. These extra rules will make it
possible to do some alignment. We will also say something about alignment in Pascal. Finally, we v
give a comparison of the specification for PICO in PPML and the one in Pretty.

2.2.1- simple Pretty-specification of PICO

In the specification below the context-free syntax and the variable-section are abbreviated. Appendix
contains the complete text for the extended module. More information about ASF + SDF can be four
in the references.

module Pico~box
import Pico-syntax, Box-syntax
export

context—-free syntax

"k" STAREXPR -> BOX {the main function}

PROGRAM ~> STAREXPR {every language structure

DECLS , -~> STAREXPR of PICOisa

starexpression }

ID-LIST "A" INT -> STAREXPR {language structures

. with an argument}
variables

Exp Expl Exp2 -> EXP

Stat -> STATEMENT

-27-

equations

[1] defaults = <=-> 1,]
->>| 80,

[2] layoutchar

[3] depthstring

*

[4]

[3]
(el

[7]

[8]

[}

[10]
[11]
[12]

[13]

[14]
[15]
[16]
[17]
[18]
[19]

begin Decls Series end

declare ;

declare Id-list ;

Id : Type, Id-list

Id : Type
Stat; Stats
Id := Exp

if Exp then Seriesl

else Series2 fi

while Exp do Series do

Expl + Exp2
Expl - Exp2
Expl || Exp2)
id(Chars)

nat (Chars)

string{Chars)

-28 -

1, =>4, =->> 40, |<<~ 1,
I<-+ 5, [d] 100, d+ 1

= wom

= w, .=

= ["begin™ ;
=> *Decls ; |2,
~> [*Series] ;
"end"]

= ["declare" "]

= ["declare" ;

Py

[I o S o |

-> [*Id-list] ";"]

~e

*Id <->0 ":" *Type ", "
*Id-list

*Id <=>0 ":" *Type

*Stat <->0 ";" ;
*Stats

{for the empty Stats-list}
*Id <->0 ":=" d+ *Exp]

"if" *Exp "then ;

-> *Seriesl ;

"else" ;

-> *Series2 ;

"fiv]

"while™ *Exp "do" ;

=> *Series ;

"od"]

d+ *Expl "+" d+ *Exp2]
d+ *Expl "-" d+ *Exp2]
d+ *Expl "[|"d+ *Exp2 }
string(Chars)]
string(Chars)]

string(Chars)]

Here we see that the SDF-syntax definition of PICO and that of the box-language Pretty are imported.
In the context-free syntax part all language structures of PICO are defined to be of the same type
STAREXPR. We also defined the * - function, the main prettyprint function, it will translate all
STAREXPR's, so all language structures, in a box-term. The rules in the equation section describe how
this function does its job.

The defaults-equation has two functions. The start values for the prettyprinter are declared, l<<- and -
>>| determine the page width and Id! determines the normal depth to which a tree must be printed, and
also the default-arguments for the operators are declared, <->, I, ->, ->>, I<-+ and d+.

The layoutchar specifies what string the hv and hov operators must place between the separate boxes.
Usually a blank is placed between each two boxes, but it is also possible to specify for example that two
dots must be placed in between, by writing down layoutchar = "..".

In equation number [11], [14], [15] and [16] we used the d+ change, because we would like an
expression to be printed completely, once a part of it has been printed.

In rules [17] to [19] a special feature of ASF+SDF is used. If all the characters of a specific identifier
must be collected in order to create a string of them, the predefined sort CHAR and the following
functions can be used.

id "(" CHAR ")" -> D

string " (" CHAR ") " -> STRING

These functions are automatically created for each lexical function that groups characters into a new
type. The term id(Chars) matches now with all identifiers and the characters in the identifier are
automatically placed in the list Chars. Now by the term string(Chars) this list of characters is converted
to a normal string. See the references for more details.

2.2.2 an extension of the simple specification

We would like to align the identifier-list in PICO. Instead of this text

number: natural,
amountoffish: natural,

big: natural

we would like the prettyprinter to produce this text

number : natural,
amountoffish : natural,

big : natural

In order to do this we must declare two auxiliary functions in the context-free syntax. One that
computes the length of an identifier, another that computes the maximum length of the identifiers in an
Id-list. When the *-function must now translate the language structures ID-LIST and ID-TYPE, it must
have an extra argument, namely the length of the longest identifier plus 1. This is exactly the column
number where the colon will be placed. So the two STAREXPR's for ID-LIST and ID-TYPE must be

-29.

expanded. Finally the rules [6], [7] and[8] must be changed, because they must pass or use the
argument. Here are the changes.

context~free syntax

length " ("™ IDCHARS ")" ~> INT

maxlength of ID-LIST -> INT
ID-LIST "~" INT ~> STAREXPR
ID~-TYPE "~" INT —> STAREXPR
variables
Maxl Spaces => INT
equations
[6] * declare Id-list ; = ["declare” ;

-> [*Id~list *
(maxlength of Id-list + 1)1 ";"]
[7] * (Id : Type, Id-list

il

A Maxl) *Id ->> Maxl ":" *Type "," ;

*¥(Id-list ~ Maxl)

[8] *(Id . Type ” Maxl) *Td ->> Maxl ":" *Type

Here we see that when the Id-list is going to be printed, the maximum length of the Id's plus 1is
computed and passed on. By using the absolute tab we make sure that the colon is placed on the value
of the absolute tab and all places between an identifier and a colon are filled with blanks.

Appendix C contains the complete extended specification for PICO.

2.3 Pascal in Pretty

We wanted to write a specification for a serious programming language to find out if a specificator
could specify all he needed in Pretty. So we made a prettyprint-specification for Pascal in Pretty. This is
placed in appendix E. The Pascal-specification looks a lot like the PICO-specification, so we won't go
over it in details. We will only mention the things we especially noticed.

Just as in PICO all language structures must be defined to be of type STAREXPR and for every
language structure a variable must be defined of the same type as this language structure. Because
Pascal has a lot more langunage structures than PICO, this is rather awkward. Now two pages are filled
with these definitions. Maybe in the future these functions and variables can be derived directly from the
syntax definition in SDF of a language.

In the Pascal-specification we did something special. We defined a new change, the

_ change. In the equations we wrote down that this change is equal to the change <~>0. In this way we
defined an abbreviation for the rather long and disturbing change <~>0. The change <->0 is used very
often in Pascal, because usually symbols like , and ; and brackets start right after the last box. We think
that the abbreviation for this change makes the rules easier to read and to write, but every specificator
can decide for himself if he wants to use such abbreviations or not. Of course it is not possible to define
areal new change in a specification, because the box-interpreter wouldn't know how to handle it.

-30-

In Pascal there are a lot of places where alignment can be used. Here we will show a difficult case of
alignment, namely the alignment of the variable declarations in Pascal as we specified it in appendix E,
Look at this text.
var
Number, Intl, Int2, Length,Value, Idnum, Buffnum, Height, Width,
Depth, Wheelnumber, Carnumber : integer;
Name : arrayl[l..Namelength] of char;

Character, Charl : char;

‘We would like to change this text into the far more readable text

var
Number, Intl, Int2, Length, Value,

Idnum, Buffnum, Height, Width,

Depth, Wheelnumber, Carnumber : integer;
Name : array[l..Namelength] of char;
Character, Charl : char;

In the Pascal-specification we do this by carefully determining where the : must be placed. We also set
the right margin for the list of integer variables just before the column of the :. Now the nothing
operator will automatically place the integers on three lines between the left margin and the changed
right margin.

How do we determine the right place for the colon ? First we calculate the length of the longest list of
identifiers in the whole variable section. Then we calculate the length of the longest type name. If the
addition of both lengths is smaller than the page width, both longest parts will fit on one line, so the
colon can be placed right after the longest identifierlist. If the addition is greater than the page width and
the longest type name is not very long, the type name will be placed at the end of the line and the colon
will be placed right before this type name. Now the identifier-lists will be spread over more lines. If the
longest type name is very long the colon will be placed in the middle of the line and both the
identifierlists and the type names will be spread over more than one line.

Hopefully, the following equations for the variable declarations will explain the actions for the
alignment better.

[9'1] *(var Var-Decls;) = ["wvar" [*(Var-Decls
~ maxids of Var-Decls
» maxtype of Var-Decls)] ";"]

[10'1] *(Varl-Decl; Var-Decls “MaxIds “MaxT) =
*(Varl-Decl ~ MaxIds *~ MaxT) ";" ;
* (Var-Decls ~ MaxIds "~ MaxT)

[11'1] MaxIds + MaxT < Line

*(Ids : Type * MaxIds * MaxT) = [*(Ids) ->>MaxIds ":" * (Type)]

-31-

[11'2] MaxIds + MaxT > Line, MaxT <= 40,
Tab = Line - MaxT - 3

[(->>] Tab *(Ids) ->>Tab ":" *(Type)]

[{11'3] MaxIds + MaxT > Line, MaxT > 40,
Halfline3 = Halfline + 3
*¥(Ids : Type * MaxIds "~ MaxT) =
[->>] Halfline *(Ids) ->> Halfline "=" |<<~ Halfline3 * (Type) 1

Unfortunately, we see here that this mixture of computing things and specifying the global layout for a
language structure makes the equations less easier to read. The formats in the box-language are still not
very difficult, but the arguments in the starexpressions and the calculations in the conditions of the
equations make the equations less clear. We would rather like to have a special operator for alignment,
so we can say for example "align this list on the ":" character”. However it is very difficult to solve
alignment in general.

When writing the specification for Pascal we came across a slight problem. We can not specify, that we
don't want a new line to start with a comma. If the comma doesn't fit on the previous line, we would
rather have the string before the comma also on the next line. The text

var
Number, Length, Value, Idnum, Intl

, Int2, Wheelnumber : integer;

is clearly not right. We rather want the text:

var
Number, Length, Value, Idnum,

Intl, Int2, Wheelnumber : integer;

One solution to this problem is to simply implement in the box-interpreter that it never must place
punctuation marks at the beginning of a new line. Another solution is to add a new operator to the box-
language that would allow the specificator to say "the last string of this box must be on the same line as
the first string in the next box, or easily said, no newline between these boxes. Neither PPML nor
Pretty can handle this situation.

We would have liked to test the prettyprint-specification for Pascal and prettyprint real Pascal programs
with it. Then we could see if our prettyprint-specification is correct and whether there are things we
wanted to specify, but we could not express in Pretty. If the new version of the generator would have
been finished, we would just put in the syntax definition of Pascal, the prettyprint-specification for
Pascal and the specification in ASF + SDF of the box-interpreter and we would have a programming
environment for Pascal with a prettyprinter. Unfortunately, the new version is not finished yet.

So far we can only say that we were able to specify all we wanted in Pretty to describe a reasonable
prettyprinter for Pascal.

-32.

2.4 Evaluation of Pretty

Just as with the evaluation of PPML, we will focus on the readability of the specifications written in
Pretty and on the expressiveness of Pretty .

It is not very difficult to leamn to read or to write Pretty. All operators and arguments are written down
by logical small symbols. Because all operators are written in infix notation, the same layout as the rule
itself describes can now be placed on the subboxes. So at first sight, the reader can see by the
indentation in the rule, what the rule means. This really improves the readability.

Pretty is based on PPML.. Except for the new arguments that were introduced, Pretty offers more or less
the same expressiveness. PPML and Pretty differ only slightly. In PPML the <hov>-operator can not be
combined with the tab well. In Pretty it is not possible to give the newline argument to the <hv>
operator.

However by introducing new arguments for alignment and by relating Pretty to

ASF + SDF we really improved the expressiveness. Alignment is very important in prettyprinting.
Because the specificator can specify all the auxiliary functions he needs in ASF + SDF, he can make the
alignment as sophisticated as he wants. But alas, it is still a lot of work to specify sophisticated
alignment and the equations get less readable.

One consequence of the fact that more complex actions can be described in Pretty is that the prettyprinter
must do a lot more work. The part of the prettyprinter that translates a text into a box-term will have
more to do. It has to deal with more conditions in equations and more calculations. The box-terms will
not be more difficult, because one can only use four new arguments, so the box-interpreter will do the
same amount of work. It isn't a problem that prettyprinting will take more time now, because in the
dutch generator the text will not be prettyprinted very often. The real text, the user is working on, is
saved, so the editor will deal with the changes, the user makes, in the text itself. The tree-representation
of the text will also be altered, but the tree has not to be prettyprinted. Remember that in the french
generator the real text is not saved and the changed tree-representation of the text must be prettyprinted
every time before the changed text can be printed. In the dutch generator the text will only be
prettyprinted when the user says so. This means that prettyprinting will not slow down the editing
actions of the user very much. Of course the prettyprinter for Pretty must have a reasonable response
time, but now the response-time isn't critical any more.

We must realise that we can't compare the response-times of both prettyprinters yet. The prettyprinter
for PPML is finished and it works, but we could not test Pretty plus ASF + SDF yet, so we don't really
know if the box-interpreter is correct and how long it takes before a text is prettyprinted. The only thing
we can say here is that the response-time of the Pretty-prettyprinter will have a less greater impact on the
overall performance of the programming environment than the PPML-prettyprinter.

In summary we can say that prettyprint-specifications in Pretty are well readable, only when auxiliary
functions and conditions are used the equations get less readable. Besides the layout formats that can be
expressed in PPML, it is also possible to specify alignment in Pretty. It is still possible to put more
operators and arguments in Pretty. This will make the box-interpreter more complicated and time-
consuming, but the response-time of the prettyprinter will not easily put constraints on the speed at
which the user can work with the programming environment.

-33-

Chapter Three : The Box-interpreter

The box-interpreter takes care of the second, language-independent, step of the preftyprinting process:
the translation of a box-term into real text. First, we will discuss the specification of the box-interpreter
we wrote in ASF + SDF. We will look at some of the algorithms and datastructures defined in this
specification. In the next section we will show some test results. Because the new system that would
support ASF + SDF was not yet ready, when we wanted to test our specification, we had to translate
our specification in one that uses only ASF. We used this specification in some tests. The last test
shows the prettyprinting of a small part of a Pascal-program.

3.1 A specification of the box-interpreter in ASF + SDF

The complete specification can be found in Appendix F. It is very long, so here we will only look at the
main issues.

3.1.1 Frames

When we specified an implementation of the box-interpreter, we introduced one important new
datastructure, the frame. In this section we will say something about the general outline of the
specification and about the function of frames.

The specification consists of 8 modules with the following names, Integers, Booleans, Chars, Strings,
Boxsyntax, Changelists, Frames and BoxtoString. The most important module is BoxtoString.

This module contains the main function

makestring of BOX -> STRING

However, this function doesn't do very much. It only initializes the first frame. A frame is a list of
information that says how the box must be printed. It contains the following values, the startpoint of the
frame (the x- and y- coordinate), the left margin, the right margin and the depth. So the frame holds the
information about the sizes of the space in which the box-term must be printed and the depth of the
recursive calls for this box-term. When the first frame is initialized, the startpoint will be set to column
1, line 1 and the other values will be set to the values of the symbols I<<-, ->>| and Idl in the defaults-
equation. After this is done, most of the real work is done by the function

place BOX in FRAME —~> STRING_END

A string_end is a tupel of a string and an endpoint. The function place in now works as follows. The
frame gives the measurements of the space the box must be printed in. The function place in places
the box in this space according to the operators in the box-term, but also accounting for the limitations
of the space. When this is done, it returns a string for the whole box-term, possible with newlines in it,
and the endpoint of the string. The endpoint can be the new startpoint for a next box.

The picture below shows a frame. At first the frame is open, because we don't know the endpoint of a
frame, until the box-term has been printed.

-34.-

page

(x,¥) Rm

Every subbox in a box-term is recursively given to the place in-function, so this function can
translate this subbox into a string and determine the endpoint of the string in its frame. The endpoint
will be the startpoint of the frame for the next subbox. Finally, all strings for the subboxes can be
combined to form the string for the whole box-term. Here is an example that shows the frames in an if-
statement with their begin- and end-points. Also the spaces between the words are frames, because the
operators and the arguments on the subboxes are translated in literal strings between the subboxes and
these are also placed in frames. When a nothing-operator or a tab is used, blanks will be placed between
the subboxes. When the ;-operator is used, no new frame is needed, the strings that are the outcome of
the subboxes will then just be combined by a newline.

Lm page Rm
Lm Rm
if true || then
a = b
else
c = d

-35.

3.1.1 The place in-function

Now we will explain what the place in-function does with each different kind of box. Because this
function does most of the prettyprint-actions on the boxes, this will give a clear general description of
how the box-interpreter is defined. We will skip the details. More detailed information can be found in
the description of the functions preceding the specification or in the specification itself, both in appendix
F.

Remember that the place in-function gets a box and a frame as input. It will translate the box into a
string and it will then return this string and the endpoint of this string in the frame. Usually it has to
make some recursive calls to the same place in-function for the subboxes, before it can return the
string and the endpoint of the string for the whole box.

If the place in-function gets a box surrounded by square brackets and a frame as input, it checks if
the depth in the frame is zero. If not, it will lower the depth in the frame by one and go on with the box
without the brackets. If the depth was zero, it will not translate the box any more, but instead it will go
on with the depthstring. This is how we deal with elision. The place in-function also does something
else when it gets a box surrounded by square brackets, it checks if the box consists of two boxes
combined by an operator. If this is true, it sets in the frame the left margin equal to the x-startpoint. In
this way the left margin of all the subboxes in this box is set to the beginning of this composite box.
Now a piece of a sentence that does not fit on one line will begin on the correct x-position, when it is
placed on a next line. We will talk about this in more detail in the next section where some more
information is given about the left margin.

If the place in-function gets a string and a frame as input, it will try to place the string from the
startpoint of the frame at one line. If it doesn't fit on this line, it will try to place the whole string on the
next line, which has probably more open space. Only when this doesn't fit either, it will cut the string,
It will place one part starting from the startpoint of the frame and the other part on the next line. In this
way strings will only be cut when it is really necessary.

The place in-function handles a box preceded by a changelist in the following way. First the
changelist will be applied to the frame. This is possible, because every change can be expressed by
changing some values of tiie frame. For example, when ->Int is in the changelist, we add Int to the x-
position of the startpoint of the frame. When all changes are handled in this way, the place in-
function will go on with the box and the new frame.

If the place in-function gets a box which consists of two subboxes combined by a nothing-operator,
it will first determine how many blanks must be placed between the subboxes by looking at the <~>Int
-change in the changelist of the second subbox, if it has one, or else in the defaults-equation. It will
create a string of the right number of blanks and then it will recursively translate the first subbox, this
string of blanks and the second subbox. The resulting strings will be combined together and the
endpoint of the string computed for the second subbox will be the endpoint of string for the complete
box. Two boxes combined by the ;-operator are dealt with in the same way.

Placing two boxes combined by the /-operator right is the most complicated task. Because the ->Int
and | Int changes will only be applied when the boxes are placed above each other, we will start by
removing them from the second box. Then we will try to place the boxes on one line. We recursively
place the subboxes on the line, but we continually check if the end of the line is not yet reached. If we
succeed to place the subboxes without reaching the end of the line, the boxes are placed right. If not, we
only then find out that boxes must be placed vertically. We now place the original boxes, with the
->Int and |Int changes, under each other. Notice that we prettyprint no more than one line extra to
find out if the boxes should be placed above each other or not.

-36-

Now we have described the global action of the prettyprinter.

3.1.2 The left margin

When a specificator writes down a box-term, he expects the subboxes to be placed relative to the
beginning of this box-term. All indentations are relative to this beginpoint. Because the box-interpretes
often places the subboxes relative to the left margin for this box, we must make sure that for many
boxes the left margin is set to the beginning of the box. The following strategy is used. When the
place in-function encounters a box, which consists of two boxes combined by an operator and
which is surrounded by square brackets, it sets the left margin of its frame to the x-start position of thi
frame, so the left margin will be set to the beginning of the frame. Then it makes a recursive call on the
box without brackets and this new frame. This will guarantee that boxes that are combined with the ;-
operator will be placed exactly above each other and that long lines will be folded in a nice way. The
following two examples will show this.

This is a legal box-term
["const™ [["tab] "=" ["4v];

["bigtab"] o 1Y ["8"] ,.
["smlltab"] oy 1 [“2 1]]]

The large subbox containing the declarations consists of subboxes combined by the ;-operator and is
surrounded by square brackets, so the left margin for this box will be set to x-start position of this box
Therefore this box will not be printed like this

const tab = 4 const tab = 4
bigtab = 8 but like this bigtab = 8
smalltab = 2 smalltab = 2

This is just as one would expect, s0 in this example the left margin is handled correctly.

When you look at the prettyprint-specification for Pascal you 'l see that the following box-term can be
created for an if-statement surrounded by begin and end.

["begin " ;

__> [{ "if“ [["all] = [["b"]]] "then“,

=> [["e"] [["veryverylongidentifiex"]] ";"1,

"9158",

_> [["c"] [["d“]] ",."]]];

"end"]

If the left margin will stay at the start position of this box, the long identifier will be folded in an
unexpected way. The text will be printed like this on a small page.

-37-

begin
if a := b then
¢ := verylongide
ntifier ;
else
c :=d;

end

By setting the left margin to the current x-position each moment the place in-function translates two

boxes combined by an operator and surrounded by square brackets, in this case also when the if-
statement is translated, we will get the right text. :

begin
if a := b then
¢ := verylongide
ntifier ;

else
end

Maybe one would rather see the two parts of the long identifier printed straight under each other. It is
very simple to change the definition so that this would happen. The place in-function would then
simply change the left margin whenever it translates a box surrounded by square brackets, whether the
box consist of two boxes combined by an operator or not. However there are some situations where
this is not very wise. Until the implementation is properly tested, we will stick to our strategy. If the
specificator really wants the parts of split strings printed straight above each other, he can put the ->0
before strings that might be split. For example he can write the box-term for the identifiers as shown
below. This would solve the problem with the if-statement.

[2671] * (Id) = [->0 string(Id)]

Another situation where the position of the left margin is very important is in box-terms containing lists
of elements. In section 2.1.4, when we discussed the handling of elision in Pretty, we saw that we had
to handle lists and list-elements in a special way to make sure that every list-element got the same
holophraste level. However, there are two possible formats that assure this. They only differ in the way
the left margins will be placed when the boxes are printed. We will show here both formats and explain
why the first format is better. '

In section 2.1.4 we specified the label-list in Pascal like this.

[3'1] *(label Label-list) ["label™ [*(Label-list)]]

[4'1] *(Unsigned-int, Label~-list)

*(Unsigned-int) ", " *(Label-list)

-38-

If we only look at the definition of Pretty we gave so far, it would also be possible to solve the elision-
problem by writing a list and its elements in the following way

[3'1] *(label Label-list) = ["label" *(Label~list)]

[4"1] *(Unsigned-int, Label~list) = [*(Unsigned-int) ", "
d+ *(Label-list)]

Here we compensate for the fact that every element in the list will have a lower holophraste level than
the previous element by placing the change d+ before the recursive call for the Label-list. A box-term for
areal piece of Pascal-text can now look like this

["label"™ [["™12"]"," d+[["16"]"," d+[["1030405"]"," d+[["23958"]1]111]

Here every sublist of the Label-list is a box consisting of boxes combined by the nothing-operator and
surrounded by brackets. Therefore for every sublist the left margin will be set on the start position of
the sublist. This means that on a small page the box-term will be printed like this.

label 12 , 16 , 103040
5, 23

95

8

However you would expect this text to be printed

label 12 , 16 ,
1030405 , 23958

Here we don't have to cut 100405 in two because it fits completely on the next line. This text would be
the result if the label-list was specified in the first way, because then the sublists would not be
surrounded by square brackets. Now it is obvious why the first way of specifying the handling of
elision in lists is preferred above the second way.

3.2 Test results

We wanted to test if the equations in the specification of the box-interpreter were correct. Do the
equations really specify the translation of a box-term into a string that shows the right format? Did we
make sensible choices for the handling of exceptional situations? We would also like to investigate, if
the specification for the prettyprinting of Pascal would lead to the prettyprinter we had in mind when we
wrote the specification. Did we use the right operators and symbols in this specification?

Unfortunately, the generator couldn't handle equations at the time we wanted to test these things and it
would take a while before the new version would be ready. If it were finished, we would just have to
feed it the syntax definition of Pascal (appendix D), the specification of the prettyprinting of Pascal
(appendix E) and the specification of the box-interpreter (appendix F). Then a programming

-39-

environment for Pascal with a prettyprinter would be generated and we could create and prettyprint all
Pascal-texts we liked. This would allow for some serious tests.

Alas, as we said before, the new version was not ready when we wanted to test our prettyprint-
specification for Pascal and our specification of the box-interpreter. However there existed a program
that supported ASF. Maybe we could translate the specifications written in ASF + SDF into
specifications written in ASF only. ASF is a predecessor of ASF + SDF. ASF is very suitable for
describing equations, but syntax can only be described in an awkward way. Unfortunately, we soon
found out that the syntax of Pascal is too sophisticated and too big to describe in ASF in a reasonable
way, so we couldn't describe the prettyprint-specification for Pascal in ASF.

However, because the syntax of Pretty is very small, we were able to change this syntax so that it could
be described in ASF. After this was done, it was rather easy to translate the specification of the box-
interpreter into ASF. We only had to change the syntax used in the equations and add a few auxiliary
functions. The way the algorithms were expressed stayed the same, the same conditions, almost the
same equations. The complete specification can be found in appendix G.

We will now say something about the test results in appendix H. Here we first give test input and -
output used for some simple functions and for the translation of some small box-terms. When a box-
term is translated, the result is a text, which consists of strings combined by $-signs. These signs stand
for newlines in the text. All b's in the text stand for blanks, except of course when they occur in a
word. The test output shows that simple box-terms are translated correctly.

The next test is done on a larger box-term. The box-term for a case-statement in Pascal is translated. We
will now show this case-statement written in SDF-syntax. To keep the box-term simple, we left out
some square brackets that don't have a real function here.
["case" "bufﬂlli' "Of";
_>4 [l"o'" —>>1 1 ||:" ["begin" ;

->4 ["filedesc" ":=" "openfile(buff)" ";" ;
"replybuff" ":=" "'ok™ ";"1;
"end" ;"3
mrt e ->>11 " ["replybuff” ":=" "'notopen™ ";"]] ;

"end"]

In appendix H we show the same box-term, but this time written in ASF-syntax. This box-term is very
complicated and unreadable. It contains 92 pairs of parentheses! Now it is obvious why we didn't do
more tests on large box-terms. When we prettyprinted this large box-term, we first choose a page width
of 60. In the next test we set the page width to 30. Some lines had to be folded now. For each test we
first show the original test output and then we replace the b's by blanks and we remove the comma’s to
improve the readability of the output.

We have now described all the testing we have done. When the new version of the generator is finished

the specification must be submitted to some more tests. Then we can also test the prettyprint
specification of Pascal. Here we only tested one case statement.

-40-

3.3 Limitations and future work

What problems and limitations have we found so far in respect to the use of Pretty? Here we will give a
List of all things that must still be improved or designed.

- every prettyprint-specification starts with two long lists of declarations. All language structures have
to be declared of type STAREXPR and in the variable section for every language structure a variable
must be declared. It is very awkward that one has to write down this trivial information. It would be
better if this information would be derived automatically from the syntax definition of the language,
where all language structures are introduced.

- Pretty still has some limitations. We would like to have an operator that forces the last and first string
of two consecutive boxes to be on the same line (see section 2.3). We could also use more operators
or symbols to make it easier to describe alignment, although we don't know yet what these operators
or symbols should look like. Maybe when we use Pretty for real prettyprinting we will find out that
some more operators or symbols are needed.

- It is not possible yet to prettyprint the comments that are placed in a text. The parser simply leaves the
comments out of the parse tree, so the prettyprinter does not know where which comments must be
placed. This could be solved by placing the comments also in the parse tree or by giving an extra
datastructure to the prettyprinter, that holds information about the comments.

- The prettyprinter is not able yet to handle priorities on the language structures. It does not know when
extra brackets have to be placed when a priority clash occurs. Only the parser has information about
the priorities. It uses these priority-rules to parse the text and leaves all brackets used for grouping out
of the parse tree. The prettyprinter can not determine where brackets were left out and where it must
put them back into the prettyprinted text. This problem could also be solved by giving more
information to the prettyprinter.

What are we going to do with the specification of the box-interpreter? Well, first it must still be
integrated in the generator, so that programming environments with a prettyprinter can be generated. We
can use the specification as it is. We simply let the equation manager in the generator do all the work. It
can translate a box-term into a string using the equations in the specification. If it turns out that in this
way prettyprinting takes too much time, we can also write a Lisp-program with the same functionality
as the specification. Because all algorithms and datastructures are well specified, it will be easy to write
such a Lisp-program. Most parts of the generator are already written in Lisp, the editor, the parser, the
equation manager, so this Lisp program will simply be another part of the generator.

Creating a Lisp program for the specification is not the only way we can improve the response time of
the prettyprinter. We can also turn the prettyprinter into an incremental one. This technique is also often
used in the other parts of the generator. For the prettyprinter this would mean that it must be possible to
prettyprint a part of a program without prettyprinting the whole program. So the prettyprinter must be
able to prettyprint pieces of a program independently of each other. This would save a lot of work,
because then it would also be possible to prettyprint a program while it is created. Continually only the
parts that change will be prettyprinted. In this way the prettyprint work will be spread out in time over
the creation of the whole program. Because every time only a small part is prettyprinted, the user
doesn't really have to wait for it and the text will be continually in prettyprinted form on the screen.

It is not clear yet, if we can create an incremental prettyprinter out of this specification. We expect that
the straightforward implementation based on frames offers some possibilities for incrementality.

-41 -

But first things first, we will first try to let the specification run on the new version
when it is finished. If we still have time to do so, we will place the new test results
the other test results. If not, the new tests will be presented in a next article about P

Acknowledgements

I would like to thank the whole dutch GIPE-team, Hans van Dijk, Casper Dik, Jan
Hendriks, Paul Klint, Wilco Koorn, Emma van der Meulen, Jan Rekers and Pum V
pleasant and instructive cooperation. I have enjoyed very much being a part of the ¢
especially thank Paul Klint, my supervisor, and Pum Walters for their comments a

-42 -

References

(1]

[21

31

[4]

[5]

(6]

{7]

[8]

[9]

"PPML Reference Manual & Compiler Implementation”, P. Borras, Fourth Annual Report Esprit
Project GIPE, 1989.

"The Box, a layout abstraction for User Interface Toolkits", J. Coutaz, Carnegie-Melon
University, Report CMU-CS-84, Pittsburg, Pa 15213, 1984.

"The Synthesizer Generator Reference Manual, second edition", Thomas Reps & Tim Teitelbaum,
Department of Computer Science, Cornell University.

"ASF - An algebraic specification formalism", J.A. Bergstra, J. Heering and P. Klint, chapter 1 in
Algebraic Specification, ACM Press in cooperation with Addison-Wesley, 1989.

"The syntax definition formalism SDF -reference manual-", J. Heering, P.R.H. Hendriks, P. Klint
and J. Rekers, Report CS-R8926, Centre for Mathematics and Computer Science, Amsterdam,
1989.

"PICO Revisited", J.Heering and P. Klint, chapter 9 in Algebraic Specification, ACM Press in co-
operation with Addison-Wesley, 1989.

"Principles of lazy and incremental programming generation”, Report CS-R8749, Centre for
Mathematics and Computer Science, Amsterdam, 1987.

"Berkeley Pascal User's Manual - version 3.1, April 1986", W.N. Joy, S.L. Graham, Ch.B.
Haley, M.K. McKusick and P.B. Kessler, 4.3 Berkeley Software Distribution, Computer
Systems Research Group, University of California, Berkeley, 1986.

"Algebraic specification of a compiler for a language with pointers”, E.A. van der Meulen, Report
CS-R38848, Centre for Mathematics and Computer Science, Amsterdam, 1988

-43 -

Appendix A : PICO in SDF

module PICO-syntax
import Naturals Strings
export
sorts ID TYPE PROGRAM DECLS ID-TYPE S [ENT EXP
lexical syntax
[a-z] [a~z0-9]*
context—-free syntax
begin DECLS SERIES end
declare {ID-TYPE ","}* ";*®
ID ":" TYPE
{STATEMENT ";"}*

natural

string

ID ":=" EXP T
if EXP then SERIES else SERIES fi T
while EXP do SERIES od T
EXP "+" EXP t}
EXp "-" EXP Tt}
EXp "||" BEXP t}
ID

NATURAL

STRING

(" EXp)") wcket }

Appendix B : PICO in PPM

prettyprinter of PICO is

constant
tab = 4

~5

default
<h 1>; <v 0,0>; <hv 1,

rules
*x 10

pico_program(*decls, *seri

decls (*decl, **decls)

decl (*id, *type)
integer

string

series ()

series (*stat, **stats)
assign(*id, *exp)

ifthenelse (*exp, *seriesl,

while(*exp, *series)

var (*id)

integer constant (*int)

,0,0>;

> [<v> "begin"
<v tab, 0> [<v 0,1> *decls
*series]
"end"];

> [<v tab, 0> "declare"
[<hv> *decl
(<h 0> ", " **decls) ";"11:;
> [<h> *id <h 0> ":" *typel;

> "integer";

> "string";

\'4
~

> [<v> *stat (<h 0> ";" **gtats)];
> [<h> *id <h 0> ":=" *exp 1+1];

> [<v> [<hv> "if" *exp "then"]
<v tab, 0> *series
"else"
<v tab, 0> *series2
"Eiv]

> [<v> [<hv> "while" *exp "do"]
<v tab, 0> *series
"od"] ;

> *id;

> *int;

string constant (*string)
rlus exp(*expl, *exp2)
conc_exp (*expl, *exp2)
id-atom(*x)

integer const-atom(*x)
string const-atom(*x)
meta-~atom(*x)
comment-atom(*x)
comment s (**x)

end prettyprinter

*string;

[<hv> *expl!+ 1 "+
[<hv> *expl!+ 1 7|
uclcidpp(*x);
numberpp (*x) ;
uclcidpp(*x);
metapp (*x) ;

[<h> "!" uclecidpp (*

[<v> (**x)1];

~e

Appendix C : PICO in Pretty

The functionality of the prettyprinter, that is specified here, will not b
prettyprinter specified in PPML in the appendix B, because here we a
identifierlist. See section 2.2.1 for a specification in Pretty that has t

witten in PPML.

module Pico-box

import Pico~syntax, Box-syntax,

export

context~-free syntax
"x" STAREXPR
PROGRAM
DECLS
D-LIST "»"
ID-TYPE "~¥"
SERIES
STATEMENT
EXP
{ID-TYPE , }+
[a—zA-Z20-9]
IDCHAR¥*
maxlength of ID-LIST

INT
INT

maxl" (" ID-LIST "," INT ")"

variables
defaults
Stat
Spaces, Maxl
Series, Seriesl, Series2
Exp, Expl, Exp2
Decls
Idchar
Series
Idchars
Id-List
Something
id

Type
equations

[1] defaults

[2]

layoutchar

[31

*begin Decls Series end

Integers

~> BRACKBOX

-> STAREXPR

~> STAREXPR
~> STAREXPR
—-> STAREXPR
~> STAREXPR
-> STAREXPR
~> STAREXPR
-> ID-LIST
-> IDCHAR
—-> IDCHARS
-> INT

~> INT

—-> CHANGELIST
=> STATEMENT
=> INT

=> SERIES

-> EXP

-> DECLS

-> IDCHAR
~> SERIES

=> IDCHARS
-> ID-LIST
~> STAREXPR
~-> ID

-> TYPE

<=>1, |1, -=> 4, i,
|d]100, d+l

"onw

["begin™;
-> *Decls;
-> [*Series]
"end"]

-47 -

it of the
lignment of the
ality as the one

80,

[4]

[3]

[6]

[71
[81]
91
[10]

[11]

[12]

[13]
[14]
[15]
[16]
[17]
[18]

[19]
[20]

[21]
[22]

[23]

[24]

i

*declare ; ["declare®™ ";™]
*declare Id-List; = ["declare";
~> [*Id-List *
maxlength of Id-List]

i

*Id:Type, Id-List ~ Maxl *Id ->> Maxl ":" *Type ",";

*#Id-List * Maxl

*Id:Type “ Maxl = *Id ~->> Maxl ":" *Type ";"
*Stat; Stats = *Stat <->0 ";";
*Stats
* =
*Id := Exp = [*Id <->0 ":=" d+*Exp]

*if Exp then Seriesl
else Series2 fi = ["if" *Exp "then";
-> [*Seriesl]:;
"else";
-> [*Series2];
"fi"]

*while Exp do Series od = ["while" *Exp "do";
-> [*Series];
” od"]

*Expl + Exp2 =
*Expl - Exp2
*Expl || Exp2

d+ *Expl "+" d+ *Exp2]
d+ *Expl "-" d+ *Exp2]
d+ *Expl "||" d+ *Exp2]

I
[B e B e B T R |

*id(Chars) terminal (Chars)]
*nat-con (Chars) = terminal (Chars)]
*string (Chars) = terminal (Chars)]

length (Idchar Idchars) length (Idchars) + 1
length() =0

maxlength of Id-List maxl (Id-List, 0)

length (Id) > Max

maxl (Id~-List, length(Id))

maxl (Id:Type;Id-List, Max)
length (Id) < Max

maxl (Id:Type;Id-List, Max) = maxl(Id-List, Max)

maxl(, Max) = Max

end Pico-box

-48 -

Wl
r

Pascal in SDF

wtax

‘har Id StringElem
.-ng Base UnsignedInt SignedInt
IReal Number OctalConst

ProgHeading Block Decl LabelDecl

:1 TypeDecl VarDecl ProcDecl FuncDecl LabelList
ling FuncHeading Pars Par

Pe SimpleType FileType NonfileType

pe Field FieldList VariantPart Variant
AifiedVar Statement Assignment

Elem Expr SetElem ActualPar

ax
=> LAYOUT
* omyw ~> LAYOUT
=> StarComChar
*)1 -> StarComChar
rComChar* "%w4 mwyn => LAYOUT
e" ~[\n] * "\n" -> LAYOUT
[a=zA=-Z0~-9]* => Id
~> Base
=> Base
-> StringElem
=> StringElem
ngElemt "7 => CharString
ngElemt+ "#" -> CharString
bB] -> OctalConst
-> UnsignediInt
Int ~-> SignedInt
signedInt ~> SignedInt
Int "." UnsignedInt -> UnsignedReal
Int "." UnsignedInt [eE] SignedInt ~> UnsignedReal
Int [eE] SignedInt ~-> UnsignedReal
Int => Number
Real => Number
st ~> Number

-49 -

context-free syntax
ProgHeading Decl* Block "."
Decl*
program Id "(" {Id ","}4+ ™)™ n,«w
begin {Statement %;"}+ end

label {UnsignedInt ®,"}+

const {ConstDecl ";%"}+ »;w
Id "=" Const

CharString

Id

Number

"+" Number

T-" Number

type {TypeDecl ";"}+ nu;w
Id "=" Type

SimpleType

wAn 14

FileType

StructType

packed StructType

id

w(" {Id Y, "}+ ")
Const ".." Const
file of NonfileType
SimpleType

wan 1d

StructType

packed StructType

array "[" {SimpleType ","}+ "]" of Type

set of SimpleType

record FieldList end

{Field ";"}+ VariantPart
{Id ", "1+ ":" Type

$ empty %

case Id of {Variant ";"}+

case Id ":" Id of {Variant ";"}+

% empty %

{Const ","}+ ®:" "(W pialdList ") "

% empty %

var {VarDecl ";"}4 ©®;°¢

{Id ","}+ ":™ Type

ProcDecl

procedure Id Pars ";"
ProcHeading Decl* Block *;"
ProcHeading forward *;"

ProcHeading external Id ";"

-50-

->
->
->

->

~>
->
~->
->
->
->
->

->
->

-

->
->

Program
Program
ProgHeading
Block

Decl

Decl
ConstDecl
Const
Const
Const
Const

Const

Decl
TypeDecl
Type
Type
Type
Type
Type

SimpleType
SimpleType
SimpleType
FileType
NonfileType
NonfileType
NonfileType
NonfileType

StructType
StructType
StructType
FieldList
Field
Field
VariantPart
VariantPart
VariantPart
Variant

Variant

Decl
VarDecl

Decl
ProcHeading
ProcDecl
ProcDecl
ProcDecl

ProcHeading external ";*
FuncDecl

function Id Pars ":" Type ";™
FuncHeading Decl* Block ";"
FuncHeading forward ";"
FuncHeading external Id *;"
FuncHeading external ";*
(" {Par ";"}+ ")}"

$ empty %

{Id ®*,"}+ ":" Id

var {Id ",%"}+ ™:% Id
procedure Id Pars

function Id Pars ™:" Id

Id
Qualifiedvar
Id "[" {Expr
QualifiedvVar
Id ".* 1Id
QualifiedVar
Idg "
QualifiedVar

“'n}+ n]n
n[n {Expr llllv}+ n]n

".T o Id

wAT

Var ":=" Expr

Assignment

begin {Statement ";"}+ end

if Expr then Statement

if Expr then Statement else Statement
while Expr do Statement

repeat {Statement ";"}+ until Expr
for Assignment to Expr do Statement
for Assignment downto Expr do Statement
case Expr of {CaselistElem ";"}+ end
with {var *,"}+ do Statement

id '

Id "{(" {ActualPar ", "}+ ")*¥
UnsignedInt Statement

goto UnsignedInt

$ empty %

{Const T,"}+ ":" Statement

% empty %

Number

nil

CharString

Var

Id " (® {ActualPar ","}+ ") "
not Expr

"~" Expr

"+7 Expr

-51-

->
-
-
->
->
->

ProcDecl

Decl
FuncHeading
FuncDecl
FuncDecl
FuncDecl

FuncDecl

Pars
Pars
Par
Par
Par

Par

Var

Var

Qualifiedvar
QualifiedVar
QualifiedvVar
QualifiedVar
Qualifiedvar
Qualifiedvar

Assignment
Statement
Statement
Statement
Statement
Statement
Statement
Statement
Statement
Statement
Statement
Statement
Statement
Statement
Statement

Statement

CaseListElem

CaselistElem

Expr
Expr
Expr
Expr
Expr
Expr
Expr
Expr

=" Expr -> ExXpr

"{" {SetElem ", T}¥x m]n ~> Expr

Expr "+" Expr => Expr {left}

Expr "-" Expr -> Expr {left}

Expr "|" Expr -> Expr {left}

Expr or Expr => Expr {left}

Expr "*" Expr) -> Expr {left}

Expr "&" Expr -> Expr {left}

Expr "/" Expr -> Expr {left}

Expr div Expr -> Expr {left}

Expr mod Expr => Expr {left}

Expr and Expr -> Expr {left}

Expr "=" Expr ~> Expr {non-assoc}

Expr ">" Expr -> Expr {non-assoc}

Expr "<" Expr -> Expr {non-assoc}

Expr "<>" Expr ~> Expr {non-assoc}

Expr "<=" Expr ~> Expr {non-assoc}

Expr ">=% Expr -> Bxpr {non-assoc}

Expr in Expr ~> Expr {non-assoc}

"(" Expr ")" -> Expr {bracket}

Expr -> SetElem

Expr ".." Expr => SetElem

Expr ~> ActualPar

Expr ":" Expr -> ActualPar

Expr ":" Expr ":" Expr -> ActualPar

Expr Base => ActualPar

Expr ":" Expr Base -> ActualPar
priorities

{ not Expr ~-> Expr, "~" Expr -> Expr,
"+" Expr -> Expr, "~" Expr -> Expr }

>
{left:
Expr "*" Expr -> Expr,.Expr "&" Expr -> Expr, Expr "/" Expr ~> Expr,
Expr div Expr -> Expr, Expr mod Expr =~> Expr,
Expr and Expr -> Expr }
>
{left:
Expr "+" Expr -> Expr, Expr "-" Expr -> Expr, Expr "|" Expr -> Expr,
Expr or Expr -> Expr }
>
{non-assoc:
Expr "=" Expr -> Expr, Expr ">" Expr -> Expr, Expr "<" Expr ~> Expr,
Expr "<=" Expr -> Expr, Expr ">=" Exor -> Expr;
Expr "<>" Expr -> Expr, Expr in Expr -> Expr }
priorities

if Expr then Statement else Statement ~> Statement

if Expr then Statement -> Statement

-52.

m¢

Pascal in Pretty

etty

yntax, Pascal-syntax

CLS, TYPE~DECLS, VAR~DECLS, F

e syntax
DECL ";"}+
ECL ";"}+
CL ";"}+
A &

PR)

DING

T

CL

CL "~%" INT

L "~" INT

mAaw INT AT INT

L

ST

ECL

L

L "A" INT ®~" INT
DING

DING

5T

{PE
{PE-LIST

LYPE
fPE

5T
?ART

LIST

J)~VAR

-53.-

JECLS
iICLS
LS

STAT-LIST
ASSIGNMENT
CASE~STAT-LIST
CASE-LIST-ELEM
EXPR

EXPR-LIST
SET-ELEM
SET-ELEM-LIST
ACTUAL-PAR
ACTUAL-PAR-LIST

variables

Prog-heading
Decl-list
Block
Label-list
Unsigned-int
Const~Decls
Id, Idl, Id2
Id-list
Const
Const~list

MaxC, MaxId, MaxIds, MaxT, Line, Halfline, Halfline3

Type-Decls

Type

Var

Var-Decls
Var-list
Varl-Decl

Ids, Id-list
Proc-heading
Func~-heading
Pars

Par-list
Char-string
Number

Sign

Struct~type
Simple-type
Simple-type-~list
Nonfile-type
Field

Fields
Field-list
Variant
Variant-part
Variant~list
Expr, Exprl, Expr2, Expr3
Expr~list
Qual-var
Statement, Statl, Stat2
Stat-list

-54-

->
->
->
->
->
->

->
->
->

->
->
->
->
->
->
->

S=>

->
->

->
->
->
->
->

STAREXPR
STAREXPR
STAREXPR
STAREXPR
STAREXPR
STAREXPR
STAREXPR
STAREXPR
STAREXPR
STAREXPR
SYMBOL

PROG-HEADING
DECL-LIST
BLOCK
LABEL-LIST
UNSIGNED~INT
CONST~DECLS
ID

ID-LIST
CONST
CONST-LIST

TYPE~DECLS
TYPE

VAR
VAR-DECLS
VAR-LIST
VAR1-DECL
ID-LIST
PROC-HEADING
FUNC-HEADING
PARS
PAR-LIST
CHAR~STRING
NUMBER

SIGN
STRUCT~TYPE
SIMPLE-~TYPE

SIMPLE~TYPE-LIST

NONFILE-TYPE
FIELD
FIELDS
FIELD-LIST
VARIANT
VARIANT-PART
VARIANT-LIST
EXPR
EXPR-LIST
QUALIFIED~VAR
STATEMENT
STAT-LIST

~> INT

Assignment
Case~-stat-list
Cage~list-elem
Actual-par
Actual~-par-list
Set-elem

Set-elem-list

->
-
->
->
->
->
->

ASSIGNMENT
CASE~-STAT-LIST
CASE-LIST-ELEM
ACTUAL~PAR
ACTUAL-PAR-LIST
SET~ELEM
SET-ELEM~LIST
BASE

[*(Decl-1list)]; |2

* (Block)

".ﬂ]

["program® *(Id)_ "("_ [*(Ids)]_ ™):" 1

["label®™ [* (Label~list)]]

* (Unsigned-int) "," *(Label-list)

[Yconst® [*(Const-Decls

~ maxconst of Const=-Decls)]

(Id) ->>MaxC "=" * (Const);

* {Const=Decls * MaxC)

["type"

["var"™

[[*(Ids)]

[* (Type-Decls
~ maxid of Type-Decls)] *;*%

(Id) ->>MaxId "=" *(Type);
* (Type~-Decls ~ MaxId)

= *(Varl

[* (Var-Decls

~ maxids of Var-Decls

~ maxtype of Var-Decls)] ;

-Decl # MaxIds ~ MaxT) ";"

* (Var~Decls * MaxIds ~ MaxT)

~>>MaxIds ":" *(Type) 1

Base
equations
[0] = <=>0

[1'1] *(Prog-heading Decl-list Block .) = [*(Prog-heading); |2
[2*1] *{(program Id(Ids)):; =
[3'1] *(label Label-~list) =
{4'1] *(Unsigned~int, Label-list) =
[5'1}] *{const Const-Decls;) =
[6'1] *(Id = Const; Const~Decls *~ MaxC) = *
[7*1] *(type Type-Decls;) =
[8'1] *(Id = Type:; Type-Decls * MaxId) = *
[9'1] *(var Var-Decls;) =
[10'1] *(Varl-Decl; Var-Decls “MaxIds “MaxT)
[11'1] MaxIds + MaxT < Line

*(Ids : Type ”~ MaxIds ~ MaxT) =
[11'2] MaxIds + MaxT > Line, MaxT <= 40,

Tab = Line - MaxT - 3

*(Ids : Type * MaxIds ~ MaxT) =

[=>{Tab [*{Ids)] =->>Tab ":" *(Type)]

-55.

i

~

L

+ MaxT > Line, MaxT > 40,
13 = Halfline + 3

. Type ~ MaxIds *~ MaxT) = [=>|Halfline * (Ids) =->> Halfline "=v
|<- Halfline3 * (Type,

‘heading Decl-list Block;) = [* (Proc-heading) ;
[* (Decl-1list)]:; |2
*(Block) ";" 1}

‘heading forward;) [*(Proc-heading) "forward:;"]

heading external Id;)

[*(Proc-heading), "external™ *(Id) ";"]

heading external;) [*{Proc-heading) "external;"™]}

heading Decl~list Block;) = [* (Func-heading) ;
[* (Decl-list)1; 12

*(Block) ";%" 1}

heading forward;) = [*(Func-heading) "forward;"]

heading external Id;) = [*(Func-heading) "external;' *(Id)_":" 1
heading external;) = [*(Func-heading) "external;"]

dure Id Pars;) = ["procedure™ *(Id) [*(Pars)] ":"]

ion Id Pars : Type;) = ["function®™ *(Id)_[*(Pars)] ":" * (Type)_0":;"
list)) =1 "(“__[*(Parlisi".)]_")" !

par-list) = [*(Par)_";" [*(Par-list)] 1]

st ¢ Id) = [[*(Id-1list)] ™:" *(Id)]

string) . = [string{Charstring)]

= [string(Id)]

) = [string(Number)]
Jumber) = string(Sign)__ string(Number)’
» Const-list) = *(Const)_","™ *{Const-list)

= [""_(1d)]
1 Struct-type) = ["packed" *(Struct-type)]
ist)) = ["("_{*(Id-list)]_")"]
. .Const) = [*{Const)_".."_*(Const)]

-56-

[34'1] *(Simple-type, Simple-type-list) = * (Simple-type)_ "," *(Simple-type-list)
[35'1] *(file of Nonfile-type) = ["file of" *(Nonfile~type)]

[36'1] *(arrayl[Simple~type-list] of Type) = ["array["_[* (Simple-type~list)]_"] of"
*(Type) 1

[37F1] *(set of Simple-type) ["set of" *(Simple-type)]
[38%1] *(record Field~-list end) = ["record",

~> [*(Fieldlist)],

"end"]}

]

[39*'1] *(Fields Variant-part) [[*(Fields)] *(Variant-part)]

[40'1] *(Field Fields)

[}

*(Field) *(Fields)

[41'1] *(case Id of Variant-~list) = ["case" *(Id) "of";
=> [*(Variant-list)] }

[42'1] *(case Idl : Id2 of Variant-list)

it

{ "case™ *(Idl) ":"™ *(Id2) "of";
=> [*(Variant-list)]]

{43'1] *(Variant; Variant-list) *(Variant)_ ";" ;

* (Variant-list)

[44'1] *(Const-list : (Field-list))

I
—

[*(Const-1ist)] ™:" "("_[*(Field-list)]_")"]

[45'1] * (Var, Var-list) = *(Var)_"," *(Var-list)

[46'1] * (Id[Expr-list]) = [*(Id)_"I["_ [*(Expr-list)]_"]"]
[47'1] *{Qual-var[Expr-list]) = [*(Qual-var)_ "[" [*(Expr-list)]_"]"]
[48'1] *(Idl.Id2) = [*(Id1)_"." _*(1d2)]

[49'1] *(Qual-var”") = [*{Qual-var)_ "+"]

[50'1] *(Expr, Expr-list) * (Expr)_"," *(Expr-list)

[51'1] *(begin Stat~list end)

["begin™;
-> [*(Stat-list)]:;

Tend™]

[52'1] *(if Expr then Stat) ["if"™ * (Expr) "then",

=> *(Stat)]

[53'1] *(if Expr then Statl else Stat2) = ["if"™ *(Expr) "then",
=> *(Statl),
"else®,
> *{Stat2) 1]

-57-

[5471]

[55%1]

[56'1]

[57'1]

[58'1]

[5971]

[60'1]

[61'1]

[62'1]

[6371]

{64'1]

[6571]

[66'1]

[67'1]

[68%1]

[69'1]

[7071]

[7171}

[72'1]

[73*1]

{741}

*(while Expr do Statement)

* (repeat Stat-list until Expr) =

["while"

* (Expr) %do";

-> *(Statement)]

["repeat"™;
=> [*(Stat-1list)];

"until™

* (Expr)]

* (for Assignment to Expr do Statement) = ["for™ * (Assignment) "to" * (Expr)

* (for Assignment downto Expr do Statement) =

* (case Expr of Case-stat-list end)

*{with Var-list do Statement)

* (Id (Actual-par-list)) =
* (Unsigned-int Statement) =
* (goto Unsigned—~int) =

* (Statement, Stat-list) =

* (Var := Expr) =

*(Case-list—elem; Case-stat-list)

* (Const-list : Statement)

*{nil) =

* (not Expr) =

* (~ Expr) =

*([Set-elem-list]) =

*(I1) =

* (Exprl + Expr2) =

*(Exprl - Expxr2) =

* (Exprl | Expr2) =

["for"™

=> *(Statement)]

* (Assignment) "downto® * (Expr)

=-> *(Statement)]

= ["case" *(Expr) "of";
=> [*(Case~stat-list)}];
"end"]

["with" [

*(Var-list)] "do™;

~> * (Statement)]

[*(Id)_"("_[*(Actual-par-list)]_")"]

[*(Unsigned~int) * (Statement)]

["goto"™ *(Unsigned-int) 1}

* (Statement) ;
* (Stat~1list)

[*(Var) ":=" *(Expr)]

= * (Case—-list—-elem) ;
* (Case~stat-list)

[[*(Const-list)] ":" *(Statement)]

["nil™]

["not™ *(Expx)]

["~" *(Expr)]

["["_[*(Set-elem~list)]_"]"]

["7 1

[*(Exprl)

[*{(Exprl)

[*(Expzrl)

-58-

"+7 ¥ (Expr2)]

w-" % (Expr2) }

" *(Expr2)]

'ldoﬂ H

Ildol".

[75'1] * (Exprl or Expr2) = [*(Exprl)v"or" * (Expr2) 1

[76'1] *(Exprl * Expr2) = [*(Exprl) "*x" *(Expr2)]
[77'1] *(Exprl & Expr2) = [*(Exprl) "&" *(Expr2)]
[78*1] * (Exprl / Expr2) = [*(Exprl) "/" *(Expr2)]}
[79%1] *(Exprl div Expr2) = [*(Exprl) "div" *(Expr2)]
[80'1] * (Exprl mod Expr2) = [*(Exprl) "mod" * (Expr2)]
[81'1] * (Exprl and Expr2) = [*(Exprl) "and" * (Expr2)]
[82%1] *(Exprl = Expr2) = [*(Exprl) "=" *(Expr2)]
[83'1] *(Exprl > Expr2) = [*(Exprl) ">" *(Expr2)]
[84'1] * (Exprl < Expr2) = [*(Bxprl) "<" *(Expr2)]
[85%1] *(Exprl <> Expr2) = [*(Exprl) "<>" *(Expr2)]
[8671] * (Exprl <= Expr2) = [*(Exprl) "<=" *(Expr2) |
[87'1] * (Exprl >= Expr2) = [*(Exprl) ">=" *(Expr2) |}
[88'1] *(Exprl in Expr2) = [*{Exprl) ™in" * (Expr2)]
[89'1]1 * ((Exprl)) = ["("_*(Bxprl)_")" 1

[90'1] *(Exprl..Expr2) = [*(Exprl)_".."_ *(Expr2)]

[91*1] * (Set-elem, Set-elem-list) *(Set~elem) "," *(Set-elem-list)

[93%1] * (BExprl : Expr2) = [*(Exprl) ":" *(Expr2) ":" *(Expr) 1
[94'1] * (Exprl : Expr2 : Expr3) = [*(Exprl) ":" *{(Expr2) ":" *(Expr3)]
[95'1] * (Exprl Base) = [*(Exprl) *(Base)]

[96'1] *(Exprl ":® Expr2 Base) [*(Exprl) ":" *(Expr2) *(Base)]
[97'1] * (Actual-par, Actual-par-list) = *(Actual-par) "," *(Actual-par-list)

end

-59-

Appendix F : Box-interpreter in SDF

First we will give some comments on this specification. For every module we will give a brief
description of its contents and we will also explain the important or difficult functions in it.

The moduales

Characs
Characs stands for a list of characters. This is specified in the lexical syntax

~[a]* -> CHARACS

It says that a list of zero or more characters from the character-class, that consists of all characters except
the newline, is of sort CHARACS. Besides this function, two other functions are defined in this
module, one that computes the length of a list of characters and one that can split such a list at a
particular point. Some variables are of type CHAR or CHAR+. CHAR is a predefined sort used for the
connection between the context-free level and the lexical level. For every lexical sort there is always a
funcion created for this connection. So also for the lexical sort CHARACS the ASF + SDF
implementation creates automatically a function for this purpose. This function looks like this

characs "(" CHAR+ ")" -> CHARACS

In the equations for the functions length and splithelp we use this functions to split every element of
type CHARACS in a list of separate characters of type CHAR+.

Strings

Here we defined that a string looks like a list of characters surrounded by double quotes. Strings can be
combined by the operators - (place the strings next to each other) and $ (place a newline between these
strings). By giving the following priority declarations and equations, we make sure that in the end a text
consists of a list of strings separated by newlines, just as one normally represents a text.

Boxsyntax
This is exactly the module we showed in section 2.1.
Changelists
Here the functions are specified for manipulating the changelists. Some functions to determine if a
symbol is in a changelist and if so, what value this symbol has and for removing a symbol. There are
also some special functions. The function
sep of SYMBOL before BOX -> STRING-BOX
returns the literal string that must be placed before a box, because of the operator that is applied to this

box and the maybe slightly changed box. If the box is combined with another box with the nothing
operator, the function-call "sep <-> before box" will be done, because a string of blanks will be placed

-60 -

between the box and the number of blanks depends on whether there is a <-> Int change in the
changelist of the box or not. The function will first determine if there is a <-> Int change in the
changelist of the box. If so, it will return a string of Int layoutcharacters and also the box without the <-
> Int change in the changelist. If <-> Int is not in the changelist, it will refer to the <-> in the defaults-
equation and it will return a string of the default number of layoutcharacters and the unchanged box.
The function

mmoptionals from BOX > BOX

removes the -> and | changes from the changelist of this box. This is necessary when boxes that are
combined with the / -operator must be printed. First ,we will try to print the boxes on one line without
these changes. Only when we have found out that the boxes must be placed below each other the
changes must be applied.

Frames

Here we define some functions to retrieve values from a frame and to change the values in a frame.
There are also some auxiliary functions. The function

from POINT to POINT -> STRING

is very useful when the endpoint of one box as well as the startpoint of the next box are known and
those points are not the same. For example, when a box has an absolute tab in its changelist, the
startpoint of this box will be changed and will not longer be the same as the endpoint of the previous
box. This function will now deliver the string of blanks and newlines that must be placed between those
two points to connect them. The function

apply CHANGELIST to FRAME ->FRAME

will only be used to construct the first frame according to the defaults-equation. The leftmargin, the
rightmargin and the depth in this frame will take the values of their symbols in the defaults-equation.
Ofcourse we will have to check that the leftmargin is smaller than the rightmargin. The startpoint of the
frame will be set to (leftmargin, 1), the beginning of the first line. The function

modify CHANGELIST to FRAME ->FRAME

applies the changes in the changelist to the frame. All changes placed before a box can be expressed by
changing the values of the frame for this box. The definition of the function modify consists of a lot of
equations, because it has to deal with nine different changes and because it has to make sure some
constraints will still be true when the changes are applied: the leftrargin must be smaller than or equal
to the rightmargin; the x-position must be between the left- and the rightmargin; the depth may not be
negative, etc.. When a change can 't be applied because of the constraints, the frame will not be
changed by it or it will be changed in an expected manner.

BoxtoString

See section 3.1 for a description of this module.

-61-

The specification

specification BoxToString

module Chars
import Integers
export
sorts CHARACS TWOCHARACS
lexical syntax
[\t\n\r] -> LAYOUT
~{\n}* ~> CHARACS

context-free syntax

"(" CHARACS)" -> CHARACS ({bracket}
length of CHARACS -> INT

CHARACS "&" CHARACS ~> TWOCHARACS

split CHARACS at INT -> TWOCHARACS

splithelp " (" CHARACS ","™ CHARACS ")"™ at INT ~-> TWOCHARACS

variables
Char ~> CHAR
Chars, Charsl, Chars2 . ~> CHAR+t+
Characs Characsl Characs2 -> CHARACS
equations

[1+1] length of characs{(Char Chars) length of Chars + 1
[1'2] length of characs() = 0

[2'1] Int < 0 = true

split Characs at Int = & Characs
[2*2] Int >= = true
split Characs at Int = splithelp (, Characs) at Int

[3'11 Int > 0 = true

splithelp (characs(Charsl), characs(Char Chars2)) at Int =
split (characs(Charsl Char), characs(Chars2)) at Int - 1

[3*2] Int <= 0 = true

splithelp (Charsl, Chars2) at Int = <Charsl & Chars2
{313} Int > 0 = true

splithelp (Chars,) at Int = Chars &

-62-

module Strings

import

Chars Booleans

export

sorts STRING TWOSTRINGS
lexical syntax
"\"" CHARACS "\"" -> STRING

context~free syntax

STRING ":" STRING => STRING
STRING "$" STRING ~> STRING
"(" STRING ") " ~> STRING {bracket}
length of STRING => INT
STRING "&" STRING => TWOSTRINGS
split STRING at INT => TWOSTRINGS
newline in STRING => BOOL
newline ~> STRING
string of INT newlines -> STRING
layoutstring ~> STRING
string of INT layoutchars -> STRING
priorities

STRING ":" STRING -> STRING >
STRING "$" STRING -> STRING

variables
Chars Chars [121] -> CHARS
Int -> INTEGER
equations
f1v1] string (\" Charsl \") : string(\" Chars2 \") = string(\"™ Charsl Chars2 \")
[1*2] Stringl : (String2 $ String3) = Stringl : String2 § String3
[1*3] (Stringl § String2) : String3 = Stringl $§ String2 : String3
[271] length of string(\"™ Chars \") = length of Chars
[272] length of Stringl $ String2 = length of Stringl + length of String2
{371} split Chars at Int = Charsl & Chars2
split string(\" Chars \") at Int =
string(\" Charsl \") & string(\"™ Chars2 \"
[3'2}] split Stringl $ String2 at Int = split Stringl : String2 at Int
[4711 newline in string(\" Chars \") = false
(472] newline in Stringl § String2 = true
[5'1] newline = string of 1 newlines

-63-

[6'1]

[6*2]

[7'1]

[7'2]

string of Int new

Int <= 0 = true

string of Int new

string of Int la

Int <= 0 = true

string of Int la

module Box-syntax

import Strings

export

sorts SYMBOL CHANGE CHANG
lexical syntax
[\t\n\r]

LS]

"l"

"_,>l’l

LSS]

“l<<_"
n_>>[n
NI<_+H

w Idl w
"d+"

context-free syntax
STRING
SYMBOL INT
SYMBOL
{CHANGE ","}+

" (" CHANGELIST ™)"
CHANGELIST BOX
BOX BOX

BOX "/" BOX

BOX ";" BOX

"[" BOX "™

"(" BOX ")"
defaults
depthstring

priorities
CHANGELIST BOX =-> BOX

BOX " " BOX -> BOX
BOX BOX -> BOX

BOX "/" BOX -> BOX
BOX ";" BOX -> BOX

->
->
->
->
=>
->
->
->
->
->

""S string of Int -~ 1 new

na

layoutstring :
string of Int - 1 layoutc

nu

LAYOUT
SYMBOL
SYMBOL
SYMBOL
SYMBOL
SYMBOL
SYMBOL
SYMBOL
SYMBOL
SYMBOL

BOX

CHANGE
CHANGE
CHANGELIST
CHANGELIST {bracket}
BOX

BOX {right}
BOX {right}
BOX {right}
BCX

BOX {bracket}
CHANGELIST
STRING

equations

%% Here only example~values for defaults, layoutstring and depthstring are
%% specified. These equations should be placed in each prettyprint specification
%% of a language, maybe with different values. '

[1¥1] defaults = <=>1, | 1, =>4, =->> 8, |- 1,
~>>| 30, <+ 4, |d{ 100, 4+ 1

[2'1] layoutstring = wn

[3'1] depthstring = ", .."

module Changelists
import Box-syntax
vexport
sorts CSTARLIST

context-free syntax

eq "(" SYMBOL "," SYMBOL ")" -> BOOL
{CHANGE ", "}* -> CSTARLIST
* (" CSTARLIST ™)" -> CSTARLIST {bracket}
changelist of BOX -> CSTARLIST
SYMBOL in CHANGE -> BOOL
SYMBOL in CSTARLIST -> BOOL
value SYMBOL in CSTARLIST ~> INT
remove SYMBOL from CSTARLIST ~> CSTARLIST
remove SYMBOL from c-list of BOX -> BOX
changetab in BOX -> TAB
makesep SYMBOL with INT -> STRING
sep of SYMBOL before BOX => STRING~BOX
STRING & BOX -> STRING-BOX
rmoptionals from Box -> BOX

variables
Symbol {12} ;> SYMBOL
Change ~> CHANGE
Changelist Newc-list C-1list2 ~> CHANGELIST
Int Int{[12] => INT
String ~> STRING
Box Box[12] -> BOX

equations

[1+1] eqg(<->, <->) = true

(1'21 eq(l, = true

f1'3] eq(->, ->) = true

[1*4] eq(=>>, =>>) = true

[1*5] eq(|<<-, [<<=) = true

[1'61 eq(~>>1, ->>{) = true

[1%7] eq(l<=+, [<=+) = true

[1'8] eqg(idi, idh = true

[19] eq(dt, d+) = true

-65-

[1710] Symboll != Symbol2

eq(Symboll, Symbol2) = false

[271} Symboll in Symbol2 Int

il

eq(Symboll, Symbol2)

[2v21 Symboll in Symbol2 eq(Symboll, Symbol2)

[3'1] Symbol in Change = true

Symbol in Change, Changelist = true

[3'2] Symbol in Change = false

Symbol in Change, Changelist Symbol in Changelist
[3'31 Symbol in = false

[4%1] eq(Symboll, Symbol2) = true

value Symboll in Symbol2 Int, Changelist = Int

[4%2] eq(Symboll, Symbol2) = true

value Symboll in Symbol2, Changelist = wvalue Symboll in defaults

[473] Symbol in Change = false

value Symbol in Change, Changelist = value Symbol in Changelist

[4v4] value Symbol in = 0

[5'1] changelist of String =

[5'2] changelist of Changelist Box
[573] changelist of Boxl Box2
[5'4] changelist of Boxl/ Box2
[5%5] changelist of Boxl; Box2
[5'6] changelist of [Box] =

Changelist

changelist of Boxl

changelist of Boxl

changelist of Boxl

[671] Symbol in Change = true

remove Symbol from Change, Changelist = Changelist

[6'2] Symbol in Change = false

remove Symbol from Change, Changelist Change, remove Symbol from Changelist
{6°31 remove Symbol from =
{711 remove Symbol from c~list of String = String

[7'2] remove Symbol from c-list of Changelist Box =
(remove Symbol from Changelist) Box

- 66 -

[73]

[714]

[7'5]

[7'6]

[8'1]

(812}

[813]

[8r4]
[8'5]
[8'6]
[8'7}
[8+8]
[9'11]

[s'2]

[9'3}]

fio'1]

remove Symbol from c-list

remove Symbol from c~list

remove Symbol from c~list

remove Symbol from c~list

=> in Changelist = false

changetab in Changelist Box

=> in Changelist = true,
<-=> in Changelist = true,
value -> in Changelist =
value <-> in Changelist =

remove —> from Changelist =

of Boxl:;

of [Box] ==

of Boxl Box2 o

(remove Symbol from c-list of Boxl) Box2

of Boxl, Box2 =

(remove Symbol from c-list of Boxl)/ Box2

Box2 =
(remove Symbol from c-list of Boxl); Box2

[Box]}

= Changelist Box

Int2,
Intl,

Newc-list

changetab in Changelist Box
-> in Changelist = true,
<=> in Changelist = false,
value ~-> in Changelist =
value <-> in defaults =

remove -> from Changelist =

= => Int2 ~ Intl/Newc-list Box

Int2,
Intl,

Newc—-list

changetab in Changelist Box

changetab in String
[Box]

in Boxl Box2

changetab in
changetab
changetab in Boxl/ Box2
changetab in Boxl; Box2

makesep <~=> with Int
makesep | with Int

eq(Symbol, <~>) =

false, eq(Symbol,

= <> Int2 - Intl/Newc-list Box

= String

= [Box]

= Boxl Box2
= Boxl/ Box2
= Boxl; Box2

= string of Int layoutchars

string of Int newlines

[) = false

makesep Symbol with Int

Symbol in (changelist of Box) =

sep of Symbol before Box =

makesep Symbol with (value Symbol in changelist of Box) &

remove Symbol from Box

-67-

[10%2] Symbol in (changelist of Box) = false

sep of Symbol before Box =
makesep Symbol with (value Symbol in defaults

{11*1] rmoptionals from String String
[Box]

[11'3] oxr(-> in Change, | in Change) = true

]

[11'2] rmoptionals from [Box]

rmoptionals from Change Box = Box

[11*4] oxr(-> in Change, | in Change) false

(]

rmoptionals from Change Box

Change Box

[11'5] <zremove ~> from Change,Changelist = C-1list2,
remove | from C~list2 = Newc-list

rmoptionals from Change,Changelist Box = Newc-list Box

{11'6] =rmoptionals from Boxl Box2 rmoptionals from Boxl Box2

[11'7] rmoptionals from Boxl / Box2

Boxl / rmoptionals from Bo:
[11'8] rmoptionals from Boxl ; Box2 = Boxl ; Box2

module Frame

import Changelists

export

sorts FRAME

context-free syntax
"(" INT *," INT ™))" ~> POINT
POINT"," INT"," INT"," INT => FRAME
start of FRAME => POINT
xpoint of FRAME => INT
ypoint of FRAME , -> INT
leftm of FRAME -> INT
rightm of FRAME -> INT
depth of FRAME -> INT
newstart POINT in FRAME => FRAME
newleftm INT in FRAME -> FRAME
newrightm INT in FRAME -> FRAME
newdepth INT in FRAME ~> FRAME
from POINT to POINT -> STRING
makeframe outof CHANGELIST ~> FRAME
apply CHANGELIST to FRAME -> FRAME
modify CHANGELIST in FRAME -> FRAME
same-line POINT and FRAME -> BOOL

variables
X X2 Y Y2 Im Im2 Rm Rm2 D D2 Width
Tabline Spaces Lines Indent Tab Int ~> INT
Point Point2 => POINT

-68 -

Frame
Symbol
Change
Changelist

equations

[1'1]
{211}
[3'1]
[471]
{511
[6'1]
[7'1}]
{811}
[9'1]
[10+11

{1171}

[11'2]

[12'1]
[13'1]
[13'2]
[13*3]
[1374]
[13%'5]

[13'6]

[13'7]

[13+8]

[13%9]

start of Point, Lm, Rm, D
xpoint of (X,Y), Lm, Rm, D
ypoint of (X,Y), Lm, Rm, D
leftm of Point, Lm, Rm, D
rightm of Point, Lm, Rm, D
depth of Point, Lm, Rm, D

newstart Point2 in Point, Lm, Rm, D

newleftm Lm2 in Point, ILm, Rm, D

=> FRAME
=-> SYMBOL
~> CHANGE
=> CHANGELIST

= Point

X
Y
= Im

[

Rm
D

f

Point2, Im, Rm, D
Point, Im2, Rm, D

]

newrightm Rm2 in Point, Lm, Rm, D = Point, Lm, Rm2, D

newdepth D2 in Point, Lm, Rm, D

Y1l = Y2,
X2 > X1 = true,
X = X2 - X1

from (X1,Y1l) to (X2,Y2)

Y =Y2 - Y1, ¥ > 0 = true

from (X1,Y1l) to (X2,Y2)

makeframe outof Changelist

= Point, Lm, Rm, D2

string of X layoutchars

string of Y newlines:
from (value |<~ in defaults,¥2) to (X2,Y2)

= apply Changelist to (1,1), 1, 80, 1

apply Change, Changelist to Frame = apply Changelist to (apply Change to Frame)

apply <->Spaces to Frame
apply |Lines to Frame
apply ->Tab to Frame
apply ->>Tab to Frame
apply |<-+Int to Frame

apply [<-Lm2 to (X,Y), Im, Rm, D

Im2 > Rm = true

apply |<-Lm2 to Point2, Lm, Rm, D

Rm2 >= Lm = true,

Rm2 >= X true

apply ~>|Rm2 to (X,Y), Im, Rm, D

= Frame
= Frame
= Frame
= Frame

= Frame

= (Lm2,¥Y), Lm2, Rm, D

Point, Lm, Rm, D

= (X,Y), Im, Rm2, D

-69 -

[13'10]

[13'11]

[13'12]

[13713]

[13%14]

[147'1]

[141'2]

[1473]

[1474]

[14'5]

[14°6]

[14'7]

[14'8]

Rm2 >= Lm = true,
Rm2 < X = true
cply ~>INa2 to (6T, Im Sm > = GaD), T, R, D
Rm2 < Im = true
apply ->|Rm2 to Point, Lm, Rm, D = Point, ILm, Rm, D
D2 >= 0 = true
0Py 14102 to Point, Im, Rm, b = Poiat, Im, K, D2
D2 < 0 = true
Py 14102 to Foans - Frane
apply d+D2 to Frame = Frame
modify Change, Changelist in Frame =

modify Changelist in (modify Change in Frame)
modify Symbol in Frame =

modify Symbol (value Symbol in defaults) in Fra

X + Int <= Rm = true,

Int >= 0 = true

modify <->Int in (;:;), ILm, Rm, D = (X + Int, Y), Im, Rm, D
Int >= 0 = true

modify ;—>Int in (X,Y¥), Im, Rm, D = (X + Int, ¥), Lm, Rm, D

X + Int = Width, Width > Rm = true

modify

<=>Int in (X,Y), Lm, Bm, D {Im + (Width - Rm) - 1,Y + 1), Lm, Rm, D

Int >= 0 = true,
X 4+ Int = Tabline,

Tablin

e <= Rm = true

modify ~>Int in (X,Y), Lm, Rm, D = (Tabline,Y), Tabline, Rm, D

modify ->Int in Frame = Frame

X + Int > Rm = true

modify ->Int in (X,Y), Im, Rm, D = (X,Y), Im, Rm, D

-70 -

[14'9] Im + Int -~ 1 >= X
Im + Int - 1 <= Rm

true,

true

[l

modify ~>>Int in (X,Y), Im, Rm, D = {Im + Int - 1,Y), Int, Rm, D

[14*10] Lm + Int - 1 € X = true

modify ->>Int in (X,Y¥), Lm, Rm, D = (X,Y), Lm, Rm, D
[14'11] Lm + Int - 1 >= X = true,
Im + Int -~ 1 > Rm = true

modify ~>>Int in (X,Y), ILm, Rm, D

ft

(X,¥), Lm, Rm, D

{14*12] Int > 0 = true

modify |Int in (X,Y¥), Im, Rm, D = (Lm, Y + Int), Lm, Rm, D

[14'13] Int <= 0 = true

modify |Int in Frame Frame
[14714] Int >= (value |<- in defaults) = true,
Int <= Rm = true,
X >= Int = true

modify |<-Int in (X,¥Y), Im, Rm, D = (X,Y), Int, Rm, D

[14715] Int >= (value |<- in defaults) = true,
Int <= Rm = true,
X < Int = true

modify |<-Int in (X,Y), Im, Rm, D = (Int,Y), Int, Rm, D

[14716] Int < (value |<~ in defaults) = true

modify |[<~Int in Frame = Frame

[14'17] Int >= value |<- in defaults = true,
Int > Rm = true

modify |<-Int in (X,Y), Im, Rm, D = (X,Y), Im, Rm, D

[14%18] Int <= value ->| in defaults = true,
Int >= Im = true,
X <= Int = true

modify ~>|Int in (X,Y¥), Im, Rm, D = (X,Y), Im, Int, D

-71-

[14'19] Int <= value ->| in defaults = true,
Int >= Lm = true,
X > Int = true

modify ->|Int in (X,Y), Lm, Rm, D = (X,¥}, Lm, Rm, D

[14'20] Int <= value ->| in defaults = true,
Int < Im = true

modify ->|Int in (X,Y), Im, Rm, D

(X,Y), Im, Rm, D

[14'21] Int > value ~>| in defaults = true

modify ~>|Int in Frame Frame

[14'22] Int >= 0 = true

modify [d|Int in Point, Im, Rm, D = Point, Im, Rm, Int

[14'23] Int < 0 = true

modify {d|Int in Frame = Frame
[14'24] D + Int >= 0 = true
modify d+Int in Point, Im, Rm, D = Point, Lm, Rm, D + Int

[14'25] D + Int < 0 = true

modify d+Int in Point, Im, Rm, D Point, Lm, Rm, 0
[15'1] same-line (X1,Y1) and (X2,Y2), Im, Rm, D = or(eqg(¥l, Y¥2),
and(eq{Y¥l, Y2 + 1), eq(Xl, Im)))

module BoxtoString
import Frame
export
sorts
STRING_END RESULT

context-£free syntax

makestring of BOX => STRING
STRING ending at POINT - STRING_END
place BOX in FRAME -> STRING_END
string of STRING___END => STRING
BOOL & STRING & POINT ~> RESULT
fitshor BOX in FRAME -> RESULT
vertical BOX -> BOX
is—-duobox BOX -> BOOL
variables
Int NewD Length Nextline X[1-4] Y[1-4] D ~> INT

Atthisline Atnextline String String[l-6] Sep Newline -> STRING

-72-

Frame Newframe ’ ~> FRAME

Point Point [1-6] -> POINT

Box Box [123] Nbox [12] Newbox [12] => BOX

Change ~> CHANGE

Changelist, C=list, C~list2, Newc-list ~> CHANGELIST
equations

(1711

[2*1]

{3+11

[3'2]

[3+3]

[374]

[3'5]

makeframe outof defaults = Frame

makestring of Box = from (1,1) to start of Frame:

string of place Box in Frame

string of String ending at Point = String

depth of Frame = 1

place [Box] in Frame = place depthstring in Frame

depth of Frame > 1 = true,
is-duocbox Box = false,
NewD = depth of Frame - 1,

newdepth NewD in Frame = Newframe

place [Box] in Frame = place Box in Newframe

depth of Frame > 1 = true,
is-duobox Box = true,
NewD = depth of Frame - 1,
Int = xpoint of Frame,

newdepth NewD in newleftm Int in Frame = Newframe

place [Box] in Frame = place Box in Newframe

newline in String = false,
Length = length of String,
Length =< rightm of Frame - xpoint of Frame = true

place String in Frame = String ending at (xpoint of Frame + Length,
ypoint of Frame)

newline in String = false,

Length = length of String,

Length = rightm of Frame - xpoint of Frame + 1,

Newline = from (rightm of Frame, ypoint of Frame) to
(leftm of Frame, ypoint of Frame + 1)

place String in Frame = (String: Newline) ending at
(leftm of Frame , ypoint of Frame + 1)

-73-

[3'6] newline in String = false,
Length = length of String,
Nextline = ypoint of Frame + 1,

Length > rightm of Frame - xpoint of Frame + 1
Length =< rightm of Frame ~ leftm of Frame + 1

true,

true

place String in Frame =
(from start of Frame to (leftm of Frame, Nextline): Str
ending at (leftm of Frame + Length, Nextline

[3'7] newline in String = false,
length of String > rightm of Frame - leftm of Frame + 1 = true,
split String at rightm of Frame - xpoint of Frame + 1 = Atthisline & Atnextli
Newline = from (rightm of Frame, ypoint of Frame) to
(leftm of Frame, ypoint of Frame + 1),
place Atnextline in newstart (leftm of Frame, ypoint of Frame + 1) in Frame =

String2 ending at Point2

place String in Frame =
(Atthisline: Newline: String2) ending at Point2

[3'8] place Stringl in Frame = String3 & (X3,Y3),
X3 = leftm of Frame = false,
from (rightm of Frame, ¥3) to (leftm of Frame, Y3 + 1) = Newline,
place String2 in newstart (leftm of Frame,Y3 + 1) in Frame = String4 & Point4

place Stringl § String2 in Frame = String3 : Newline : String4 & point4

[3'9] place Stringl in ¥Frame = String3 & (X3,Y3),
X3 = leftm of Frame = true,

L
place String2 in newstart (X3,Y3) in Frame = String4 & Point4
place Stringl § String2 in Frame = String3 : String4 & point4
[3'10] modify C-list in Frame = Newframe,
from start of Frame to start of Newframe = Stringl,
place Box in Newframe = String2 ending at Point2
place C~list Box in Frame = (Stringl: String2) ending at Point2

[3'11] changetab in Box2 = Nbox2,
sep <-> before Nbox2 = Sep & Newbox2,
place Boxl in Frame = Stringl ending at Pointl,
place Sep in newstart Pointl in Frame = String2 ending at Point2,
place Newbox2 in newstart Point2 in Frame = String3 ending at Point3

place Boxl Box2 in Frame = (Stringl: String2: String3) ending at Poi

-74 -

[3'12] -sep’l before Box2 = Sep & Newbox2,
place Boxl in Frame = Stringl ending at Pointl,
place Sep in newstart Pointl in Frame = String2 ending at Point2,
place Newbox2 in newstart Point2 in Frame = String3 ending at Point3

place Boxl; Box2 in Frame = (Stringl: String2: String3) ending at Poir

[3'13] rmoptionals from Box2 = Newbon,
fitshor Boxl Box2 in Frame = true & String & Point

place Boxl / Box2 in Frame = String & Point

[3*14] rmoptionals from Box2 = Newbox2,
fitshor Boxl Box2 in Frame = false & String & Point

place Boxl / Box2 in Frame = place vertical (Boxl / Box2) in Frame

[4'1] depth of Frame <= 1 = true

fitshor {Box] in Frame = fitshor depthstring in Frame

[4'2] depth of Frame > 1 = true,
is-duobox Box = false,
NewD = depth of Frame - 1,

newdepth NewD in Frame = Newframe

fitshor [Box] in Frame = fitshor Box in Newframe

[4'3] depth of Frame > 1 = true,
is-ducbox Box = true,
NewD = depth of Frame ~- 1,
Int = xpoint of Frame,

newdepth NewD in newleftm Int in Frame = Newframe

fitshor [Box] in Frame : = fitshor Box in Newframe

[474] newline in String = true

fitshor String in Frame = false & "" & (0,0)

[4%5] newline in String = false,
Length = length of String,
Length > rightm of Frame - xpoint of Frame + 1 = true

fitshor String in Frame = false & "" & (0,0)

[4'6] newline in String = false,
Length = length of String,
Length <= rightm of Frame - xpoint of Frame = true

fitshor String in Frame = true & String & (xpoint of Frame + Length,

ypoint of Frame)

-75-

[4'7] newline in String = false,
length of String = rightm of Frame - xpoint of Frame + nat ([1]),
Newline = from (rightm of Frame, ypoint of Frame) to

(leftm of Frame, ypoint of Frame + 1)

fitshor String in Frame = true & String : Newline &

(lLeftm of Frame, ypoint of Frame + 1)

[4'8] modify C-list in Frame = Newframe,

same-line start of Newframe and Frame = false

fitshor C-list Box in Frame = false & "" & (0,0)

[4'9] modify C-list in Frame = Newframe,
same~line start of Newframe and Frame = true,
fitshor Box in Newframe = false & "" & (0,0)

fitshor C-list Box in Frame = false & ™" & (0,0)

[4'10] modify C-list in Frame = Newframe,
same-line start of Newframe and Frame = true,
fitshor Box in Newframe = true & String2 & Point2,

from start of Frame to start of Newframe = Stringl

fitshor C-list Box in Frame = true & Stringl : String2 & Point2

{4711} fitshor Boxl in Frame = false & "" & (0,0)

fitshor Boxl Box2 in Frame = false & "™ & (0,0)

[4'12] fitshor Boxl in Frame = true & Stringl & Pointl,
changetab in Box2 = Nbox2,
sep <-> before Nbox2 = Sep & Newbox2,
fitshor Sep in newstart Pointl in Frame = false & "" & (0,0)

fitshor Boxl Box2 in Frame = false & "" & (0,0)

[4'13] fitshor Boxl in Frame = true & Stringl & Pointl,
changetab in Box2 = Nbox2,
sep <-> before Nbox2 = Sep & Newbox2,
fitshor Sep in newstart Pointl in Frame = true & String2 & Point2,

fitshor Newbox in newstart Point2 in Frame = false & "" & (0,0)

fitshor Boxl Box2 in Frame = false & "" & (0,0)

[4'14] fitshor Boxl in Frame = true & Stringl & Pointl,
changetab in Box2 = Nbox2,
sep <-> before Nbox2 = Sep & Newbox2,
fitshor Sep in newstart Pointl in Frame = true & String2 & Point2,

fitshor Newbox in newstart Point2 in Frame = true & String3 & Point3

fitshor Boxl Box2 in Frame = true & Stringl : String2 : String3 & Point3

-76 -

[4715]

[4'16]

[5'1]
{5'2)
{5131
[514]
(53731
[5'6]

[6°1]
[6'2]
[6°3]
[674]
[6'5]
[676]

rmoptionals from Boxl,

fitshor Boxl/Box2 in 1

fitshor Boxl ; Box2 ii

vertical String
vertical [Box]
vertical C~list Box
vertical Boxl/ Box2
vertical Boxl Box2

vertical Boxl; Box2

is-duobox String
is~duobox [Box]
is~duobox C=-list Box
is-duobox Boxl/ Box2
is~duobox Boxl Box2

is~duobox Boxl; Box2

fitshor Boxl Newbox2 in Framu

false & "" & (0,0)

String

{Box]

C-list Box

Boxl; vertical Box2
Box1 Box2

Boxl; Box2

false
false
false
true
true

true

Appendix G : Box-interpreter in ASF

module Booleans

begin

exports

begin

sorts BOOL

functions

true

false :

or
and
not

end

BOOL # BOOL
BOOL # BOOL
: BOOL

.

variables
Bool

:—> BOOL

equations

[Booll]
[Bool2]

[Bool3]
[Bool4d]

[Bool5]
[Boolé6]

or {true, Bool)
ox (false,Bool)

and (true, Bool)
and (false,Bool)

not (true)
not (false)

end Booleans

module Naturals

begin

exports

begin

sorts

DIGIT, NAT

functions

0

W oW N R

end

imports Booleans

nat : DIGIT+

+ : NaT
~ & NaT
*: NAT
1t : NaT
le : NAT
gt : NAT
ge : NAT

#

Hs oz mE ok e

#

NAT
NAT
NAT
NAT
NAT
NAT
NAT

eq : NAT # NAT

variables
di, d2, p, pi, D2, D'

v, ¥, ¥v2, Y, Y1, Y2, Y!

X1, X2
n, nl, n2, N, N1, N2

equations

[n1) nat ([0, Y])

[n3] nat([0]) + N

[n4] W + nat([0])

[n5] mnat([1]) + nat({1])

[n6] mnat([1l]) + nat([2])

[n7] mat([1]) + nat([3])

[n8] mnat ({1]) + nat([4])

[n9] nat({1]) + mnat([5])
[n10] mnat([1]) + nat{[6])
[n11l]l mnat([1]) + nat({7])
[n12] nat([1l]) + nat{{[8])
[n13] nat({1]) + nat([9])
[n14] nat([2]) + nat([1])
[n15] nat([2]) + nat([2])
[n16] mnat([2]) + nat([3])
[nl7] mnat([2]) + nat([4])
[n18] nat([2]) + nat([5])
[n1%9] nat([2]) + nat({[61)
[n20] nat([2]) + nat([7])
[n21] nat([2]) + nat([8]1)
[n22] nat([2]) + nat([9])
[n23] nat({3]) + nat([1])
[n24]1 nat{{3]) + nat([2])
[n25] nat({3]) + nat([3])
[n261 nat([3]) + nat([4])
[n27] mnat([{3]) + nat({5])
[n28] nat([{3]) + nat([6])
[n29] nat([3]) + nat([7])
[n30] mnat([3]) + nat([8])
[n31] mnat([3]) + nat([9])
[n32] nat([4]) + nat ([1])
[n33] nat({4]) + nat{[2])
[n34] nat([4]) + nat([3])

-> NAT
-> NAT {assoc}
-> NAT {assoc}
~> NAT {assoc}
=> BOOL
-> BOOL
=> BOOL
-> BOOL
-> BOOL

: => DIGIT
: => DIGIT+
: => DIGIT*
: => NAT

= nat (Y)

=N

=N

= nat ([2}])

= nat ([31)

= nat ({4])

= nat ([5])

= nat ([6])

= nat ([7])

= nat ({8])

= nat ([9])

= nat ({1, 0])
= nat ([3])

= nat ([4])

= nat ([5])

= nat ([6])

= nat ([7])

= nat ({8])

= nat ([9])

= nat ([1, 0])
= nat ({1, 11)
= nat ([4])

= nat ([5])

= nat ([6])

= nat ([7]

= nat ([8])

= nat ([9])

= nat ([1, 0])
= nat ({1, 1}])
= nat([1, 2}])
= nat ([5])

= nat ([6])

= nat ([7])

-79-

[n35]
[n36]
[n37]
fn38)
[n39]
[n40]
[n41]
[n42]
[n43]
[n44]
[n45]
[nd61}
[n47]
[n48]
[n49]
[n501]
[n511]
{n52]
[n53]
[n54]
[n55]
[n56]
[n57]
[n58]
[n59]
[n601
[n61]
[n62]
{n63]
[n64]
[n651
[n66]
[n67]}
[n68]
[n69])
[n70]
[n71]
[n72]
[n73]
[n74]
[n75]
[n76]
[n77]
[n781]
[n79]
{n801
[n81]}
[n82]
[n83]
[n84]
[n85]

nat ({4])
nat ([4])
nat ({4])
nat ({4])
nat ([4])
nat ([4]1)
nat ({5])
nat ([5])
nat ({5])
nat ({5])
nat ([51)
nat ([51)
nat ({5])
nat ([51)
nat ([5])
nat ([6])
nat ({6])
nat ([6]1)
nat ([6])
nat ([6])
nat ([6])
nat ([6])
nat ([6])
nat ([6])
nat ([7]1)
nat ([71)
nat ([71)
nat ([71)
nat ([7])
nat ([7]1)
nat ([71)
nat ([7])
nat ([71)
nat ([8])
nat ([8])
nat ([8])
nat ([8]1)
nat {([8])
nat ([81)
nat ([871)
nat ([8])
nat-([8])
nat ([9])
nat ([91)
nat ([91)
nat ({9])
nat ([9])
nat ({9])
nat ([91)
nat ({9])
nat ([9])

+ 4+ 4+ +
I S S S ST S SRR R

I T T T T T S S S e O A
+ o+ 4+ o+ o+ o+ o+ o+

nat ([4]
nat ([5]
nat ([6]
nat ([7]
nat ([8]
nat ([9]
nat ([1]
nat ([2]
nat ([3])
nat ([4])
nat ([5])
nat ([6])
nat ([7])
nat ([8])
nat ([9])
nat ([11)
nat ([2])
nat ([31)
nat ([4])
nat ([5])
nat ([6])
nat ({71)
nat ([8])
nat ([9])
nat ({1])
nat ([2])
nat ([31)
nat ([4])
nat ([51)
nat ([61)
nat ([7])

nat ([8])
nat ([9])
nat ([1])
nat ([2})
nat ({3])
nat ({4])
nat ([5])
nat ([6])
nat ({71)
nat([8])
nat ([9])
nat ([1])
nat ([2])
nat ([3])
nat ([4])
nat ({51)
nat ([6])
nat ([7])
nat ([8])
nat ([9])

nat ([81)

nat {[9])

= nat ({1, 0])
nat ([1, 11)
nat ([1, 2])
= nat ({1, 3])
nat ({6])

nat ([71)

nat ([8])

nat ([9])

= nat ([1, 01)
= nat ([1, 11)
= nat ([1, 2])
= nat ([1, 3])
= nat ([1, 4])
= nat ([7])

= nat ([8])

= nat([9])

= nat ([1, 0})
= nat ([1, 11)
= nat ([1, 2]}
= nat ([1, 31)
= nat ({1, 41)
= nat ({1, 5])
= nat ([8])

= nat ([9])

= nat ([1, 0])
= nat ([1, 1])
= nat ([1, 2])
= nat ([1, 31)
= nat ([1, 4]1)
= nat([1, 5])
= nat ([1, 6})
= nat ([9])

= nat ({1, 01)
= nat ({1, 11)
= nat ({1, 21)
= nat ({1, 31)
nat ([1, 4])
nat ({1, 51)
nat ([1, 6])
nat ([1, 71)
nat ({1, 01)
nat ([1, 1])
nat ([1, 2])
nat ({1, 31)
nat ([1, 4])
nat ([1, 51)
nat ([1, 6])
nat ([1, 7])
nat ([1, 8])

"

]

w

n

[n86]1 nat([D1]) + nat([{D2]) = nat([D']),
nat ([0, X1]) + nat ([0, X2]) = nat(¥Y")

nat ([X1, D1]) + nat([X2, D2]) = nat ([Y', D'])

{n87] nat([D1l]) + nat([{D2}]) = nat([l, D']),
nat ([0, X1}]) + nat ([0, X2]) + nat{[1l]) = nat(Y¥")

nat ([X1, D1]) 4 nat{[X2, D2]) = nat ({¥', D'])
fk3] N - N = nat ([0])
[k4] N - nat([0}) =N

[k14] nat([2]) = nat([1l]) = nat ([1}])
[k23] nat([3]) = nat([1]) = nat ([2])
[k24] nat([3]) - nat([2]) = nat ({1])
[k32] nat([4]) -~ nat([1}]) = nat({3])
{k33] mnat([4]) - nat([2]) = nat ({21)
[k34] nat([4]) = nat([3]) = nat ([1])
[k41] nat([5]) - nat({1]) = nat ([4])
[k42] nat([5]) - nat([2]) = nat ([3])
[k43] nat([5]) - nat(I[3]) = nat ([2])
[k44] nat([5]) - nat([4]) = nat ([1])
[k50] nat([6]) - nat([1]) = nat ({5])
{k51] mnat([6]) - nat([2]) = nat ({4])
[k52] mnat([6]) = nat([3]) = nat ([3])
[k53] mnat([6]) - nat([4]) = nat ([2])
[k54] mat([6]) - nat([5]) = nat ([1])
{k59]1 nat([7]) ~ nat([1]) = nat ([6])
[k601 mnat([7]) - mat([2]) = nat ({5])
[k61] mnat([7]1) - nat ({3]) = nat ([4])
[k62] mat([7]) - nat([4]) = nat ([3])
[k63] mnat([71) - nat([5]) = nat ([2])
[k64] nat([7]) - nat([6]) = nat ([1])
[k68] mnat([8]) = nat([1l]) =.nat ([7])
[k69] nat({[{8]) - nat([2])‘ = nat ([6])
[k70] nat([8)) - nat([3]) = nat ([5])
[k71] nat([8]) - nat([4]) = nat ([4])
[k72] nat([8]) ~ nat([5]) = nat ([3])
[k73] mnat([8]) - nat([6]) = nat ([2])
[k74] nat([8]) - nat({7]) = nat([1])
[k77] nat([%]) = nat([1]) = nat ([8])
[k78] nat([9]) - nat([2]) = nat ([71])
[k79] nat([9]) = nat([3]) = nat ([6])
[k80] mnat([9]) - nat([4]) = nat ([5])
[k81] nat([9]) = nat([5]) = nat ([4])
[k82] nat({%]) - nat([61) = nat ({3])
[k83] mat([9]) -~ nat([7]) = nat ([2])
{k84] nat([%]) - nat([8]) = nat ([1])
[k88] nat({1l, 0]) - nat([1]) = nat ([9])
[k89] nat([1, 01) - nat([2]) = nat ({81)
[k90] nat([1l, 0]1) - nat([3]) = nat ([7])
[k91] mnat([1l, 0]) - nat([4]) = nat ([6])

-81-

[k92]
[k93]
[k941]
[k951
[k96]
[k971

[k86]

[k87]

[k88]

[n88]
[n89]
[n90]
[n91]
[n92]
[n93]
[n%4]
[n95]
[n96]
n97]
[n981]
[n99]
[n100]
[n101]
[n102]
[n103]
[n104]
[n105}
[n106]
[n107]
[n108]
[n109]
[n110]
[n111]
[n112]
[n113]
[n114]
[nl115]

nat ([1,
nat ([1,
nat ({1,
nat ([1,
nat ([1,
nat([1,

01)
o1
on
01}
on

D1l]) - nat([D2])

nat ([5])
nat ([6])
nat ([7])
nat ([8])
nat ([9])

= nat ([5])
= nat ([4])
= nat ([31)
= nat ([2])
= nat{{1])
= (nat([1,

gt (nat ([X1, D1]), nat([X2, D2])) = true,
ge (nat ([D1]), mat([D2])) = true,
nat ([D1]) =~ nat([D2}])

nat ({D*]),
nat ([0, X11) =- nat ([0, X21)

= nat(¥")

nat ([X1, D1]) - nat([X2, D2])

gt (nat ([X1, D1}), nat([X2, D2]))
1t (nat ([DP1]), nat([D21))
nat ({1, D1]) = nat([D2])

L]

nat ([Y?',

true,
true,
nat ([D']),

(nat ([0, X1}) =~ nat([1])) - nat ([0, X2]) =

0]) - nat([D21)) A

D'1}

nat (Y*)

nat ([X1, D1]) - nat([X2, D2})

le(N1l, N2) = true
Nl - N2

nat ([0]) * N

N * nat ({0])

nat ([1]1) * N

N * nat ([1])

nat ([2]) * nat([2])
nat ([2]) * nat([3])
nat ({2]) * nat([4])
nat ([{2]) * nat([5])
nat ({2]) * nat([6])
nat([2]) * nat([71])
nat ([2]) * nat([8])
nat ([2]) * nat([9])
nat ([3]) * nat([2])
nat{[3]) * nat([3])
nat ([3]) * nat([4])
nat ([3]) * nat([5])
nat {[3]) * nat([6])
nat ({3]) * nat([7])
nat ([3]) * nat([8])
nat ([3]) * nat([9])
nat {[4]) * nat([2])
nat ([4]) * nat([3])
nat ([4]) * nat([4])
nat ([4]) * nat([5])
nat ([4]) * nat ([6])
nat ([4]) * nat([7])
nat ([4]) * nat([8])
nat ({4]) * nat([9])

nat ([Y',

= nat ({0])

= nat ([0])
= nat ([0])
=N

= N

= nat ([4])
= nat ([6])
= nat ({8])
= nat ([1,

= nat([1,

= nat ([1,

= nat ([1,

= nat ([1,

= nat ({6])
= nat ([9])
= nat ([1,

= nat([1,

= nat ([1,

= nat ([2,

= nat([2,

= nat([2,

= nat ([81)
= nat ([1,

= nat ([1,

= nat([2,

= nat([2,

= nat ([2,

= nat ({3,

= nat ({3,

- 82 -

D'])

on
2])
4])
61)
81)

2])
51)
8]
in
41)
71)

21)
61)
o1
4])
81)
21
61)

[n1161 nat([5]) * nat({2]) = nat ([1, 0])

[n117] nat([5]) * nat([3]) = nat ([1, 5])
[n118] nat([5]) * nat([4]) = nat ([2, 0])
[n119] nat([5]) * nat([5}]) = nat ([2, 5])
[n120] nat([5]) * nat([6]) = nat ({3, 01)
[n121] nat([5]) * nat([7]) = nat ([3, 5])
[n1227 mnat([5]) * nat([8]) = nat([4, 0])
[n123] nat({5]) * nat([9]) = nat ([4, 5])
[n124] nat([61) * nat([2]) = nat ([1, 21)
[n125] nat([6]) * nat([3]) = nat ({1, 8])
[n126] nat([6]) * nat([4]) = nat ([2, 4])
[n127] nat([6]) * nat([5]) = nat ([3, 01)
[n128] nat({6]) * nat([6}]) = nat ([3, 6])
[n1291 nat([6]) * nat([7]) = nat ([4, 2])
[n130] nat([6]) * nat([8]) = nat ([4, 8])
[n131]1 nat([6]) * nat([9]) = nat ([5, 4])
[n132] nat({7]) * nat([2]) = nat ([1, 4])
[n133] nat([7]) * nat([3]) = nat ([2, 1])
[n134] nat([7]) * nat([4]) = nat ({2, 8])
[n135] nat([71) * nat([5]) = nat ([3, 5})
[n136] nat([7]) * nat([6]) = nat ([4, 2])
[n137) nat([7]) * nat([7]) = nat ([4, 91)
[n138] nat([7]) * nat([8]) = nat ({5, 6])
[n139] nat([7]) * nat([9]) = nat ([6, 3])
[n140] nat([8]) * nat([2]) = nat ([1, 6])
[n141] nat([8]) * nat({3]) = nat ([2, 4])
[n142] nat([8]) * nat([{4]) = nat ([3, 21)
[n1431 nat({8]) * mat([5]) = nat ({4, 01)
[n144]1 nat([8]) * nat([6]) = nat ([4, 8])
[n145]1 nat([8]) * nat([7]) = nat ([5, 6])‘
[n146] nat([8]) * nat([8]) = nat ([6, 4])
[n147] nat([8]) * nat([9]) = nat ({7, 2])
[n148] mnat({9]) * nat([2]) = nat ([1, 8])
[n1491 nat([9]) * nat([3]) = nat ([2, 7])
[n150] rat([9]) * nat ([4]) = nat ([3, 6])
[n151] nat([9]) * nat([5]) = nat ([4, 51)
[n152] nat([9]) * nat([6]) = nat ([5, 4])
[n153] mnat ({9]) * nat({7])} = nat {([6, 3])
[n154] nat([9]) * nat([8]) = nat ({7, 2])
[n155] mnat([9]) * nat([9]) = nat([8, 1])

[nl56] nat(Y) * nat ([D2]) = nat(Y")

nat ([¥, D1]) * nat ([D2}]) = nat ([¥*, 0]) + (nat([D1]) * nat([D2]))

[n157] nat(Y1l) * nat(Y¥2) = nat(Y")

nat (Y1) * nat ({Y2, D]) = nat ([Y', 0]) + (nat(Yl) * nat{[D}))
[o1] 1t (nat ([0]), mat([1])) = true
[02] lt(nat ([0]), nat([2])) = true
[03] lt(nat ([0]), nat([3])) = true
[o4] lt (nat ([0]), nat ([41)) = true

-83-

[o5] lt(nat (10]), nat([51)) = true

[o6] 1t (nat ([01), nat ([6])) = true
[07] 1t (nat ([01), nat([71)) = true
[08] lt(nat ([0]), nat([8])) = true
[09] 1t (nat ([01), nat([9])) = true
[010] 1t (nat ([11), nat([2]1)) = true
[o11] 1t (nat({11), nat([3])) = true
[012] 1t (nat ([11), nat([4])) = true
[013] 1t (nat ([1]1), nat([5])) = true
[014] 1t (nat ([1]), nat([6]1)) = true
[015] 1t (nat ([11), nat ([7])) = true
[016] 1lt(nat([1]), nat([8])) = true
[0171] 1t (nat ({1]), nat(i%])) = true
[018] 1t (nat ([2]), nat([3])) = true
[019] lt (nat ([2]), nat([4])) = true
[020] 1t (nat ([2]1), nat([5])) = true
{021} 1t (nat ([2]), nat([6])) = true
[022] 1t (nat ({2]), nat([7])) = true
[023] It (nat ([2}), nat([8])) = true
[024] 1t (nat ([2]), nat([9])) = true
[025] 1t (nat ([31), nat([41)) = true
[026] 1t (nat ({3]), nat([5])) = true
[027] 1t (nat ([31), nat([6])) = true
[028] 1t (nat ([3]), nat([71)) = true
[029] lt(nat ([3]), nat([8])) = true
[030] 1t (nat ([31), nat([91)) = true
[031} lt(nat ([4]), nat([5])) = true
[032] 1t (nat ([4]), nat([6])) = true
[033] 1t (nat ([4]), nat([7])})) = true
[034] 1t (nat ([4]1), nat([8])) = true
[035] lt{nat ([41), nat({91)) = true
[o361] lt (nat ([51), nat([6])) = true
[037] 1t (nat (I51), nat({7])) = true
[038] 1t (nat ([5]1), nat([8])) = true
[039] 1t (nat ([51), nat([9]1)) = true
[040] 1t (nat ([61), nat([71)) = true
[o041] 1t (nat ({61), nat([81)) = true
[042] 1t (nat ([6]1), nat([%1)) = true
[043] lt(nat ([7]1), nat([8]1)) = true
{044] lt(nat ([71), nat([9])) = true
[o45] 1t (nat ([81), nat([91)) = true
[046] mnat(y) != nat([0])
1t (nat ([d1l]), nat([y, d21)) = true
[c47] mnat(y) = nat([0]),
lt (nat ([d1]), nat([d2])) = true
1t (nat([y, d11), nat([d2])) = true

-84 -

[048])

[049]

[050]

[050]

[0501]

[051]

[o511]

[052]

[053]

[054]

[055]

{o56]

[o57]

nat (yl) = nat (y2),

1t (nat ([d1]), nat ([d2])) = true

1t (nat ({yl, d1]), nat([y2, d2])) = true

nat (yl) != nat(y2),

1t (nat (y1), nat (y2)) = true

1t (nat ([y1l, d1]), nat ([y2, d2])) = true
eq(nl, n2) = true

1t (nl, n2) = false
lt(n2, nl) = true

lt (nl1, n2) = false
le(n, n) = true
lt(nl, n2) = true

le(nl, n2) = true
1£(n2, nl) = true

le(nl, n2) = false

gt (nl, n2) = 1t (n2, nl)
ge(nl, n2) = le(n2, nl)
nat ([d1]) = nat ([d2])

eq(nat ([dl]), nat([d2])) = true

nat (y1) = nat([0]),

nat ({d1]) = nat([d2])

eq(nat ([yl, d1]), nat([d2])) = true

nat (y2) = nat([0]),

nat ([d1]) = nat ([d2])

eqg(nat ([dl]), nat([y2, d21)) = true
eq(nat (y1), nat(y2)) = true,

nat ([dl]) = nat([d2])

eq(nat ({yl, d1)), nat([y2, d2]}) = true

-85-

[0541

[055]

[056]

[055]

[0561]

[057]

[0571]

nat ([dl]) != nat([d2])

eq(nat ([d1l]), nat ([d2]))

nat (yl) = nat ([0]),
nat([dl]) != nat([d2])

eq(nat ([yl, dil), nat([d2]))

nat (y2) = nat([0}]),
nat ([dl]l) != nat ([d2])

eq(nat ([dl]), nat([y2, d21))

nat (yl) != nat ([0])

eg{nat ([yl, dl1), nat{[{d2]))

nat (y2) != nat([0])

eq(nat ([d1}), nat({y2, d21))

nat ({d1]) != nat([d2])

eq(nat ([yl, d1]), nat(ly2, d2]))

nat ({d1]) = nat([d2]),

eg(nat(yl), nat(y2)) = false

eq(nat ({yl, d11), nat([y2, d42]))

end Naturals

module Chars

begin
exports
begin
sorts CHAR
functions
a: ~> CHAR
b: ~> CHAR
o -> CHAR
d: -> CHAR
e: ~> CHAR
£: ~> CHAR
g: -> CHAR
h: -> CHAR
i: ~> CHAR
3 ~> CHAR
k: ~> CHAR
1: ~-> CHAR

-86 -

false

false

false

false

false

false

false

-> CHAR

-> CHAR

~> CHAR

~> CHAR

-> CHAR

-> CHAR

~> CHAR

~> CHAR

~> CHAR

=> CHAR

~> CHAR

-> CHAR

-> CHAR

-> CHAR
:rs
ARS
3

: CHAR* -> CHARS

-> CHARS

shar ~> CHARS
ar : -> CHARS

: ‘CHARS ~> NAT

: CHARS # NAT -> CHARS # CHARS

: CHARS # CHARS ~> CHARS
rals, Chars
> : CHARS # CHARS # NAT -> CHARS # CHARS

: ~> CHAR

H => CHAR+

: -> CHAR¥*
Charsl, Chars2 : ~> CHARS

H -> NAT
itchar ’ = ch([b]l)

= ch([])

achar = ch([pl)
th(ch([1)) = nat ([01)
th(ch([Char, Y])) = length{(ch({¥])) + nat([1])
t {Chars, Int) = <ch([]), Chars>

when 1t (Int, nat ([{0])) = true

-87-

[C5'2] split(Chars, Int)

splithelp(ch([]), Chars, Int)

when ge(Int, nat([0]1)}) = true
[C6'1] splithelp(Charsl, Chars2, Int) = <Charsl, Chars2>
when le(Int, nat([0])) = true

[C6'2] splithelp(ch([Y¥}]), ch([Char,Z]), Int) =

. splithelp(ch ([Y,Char]), ch([Z]), 1Int - nat([1
[C6'3] splithelp(Chars, ch([]), Int) = <Chars, ch({[])>

when gt (Int, nat([0])) = true
[C7*1] append(ch([Y]), ch([Z])) = ch([Y,2])

end Characters

module Strings

begin
exports
begin
sorts STRING
functions
~_ : CHARS ~> STRING
- : STRING # STRING -> STRING
5 : STRING # STRING -> STRING
length : STRING => NAT
split : STRING # NAT -> STRING # STRING
withnewline : STRING -> BOOL
layoutstr : -> STRING
layoutstring : NAT ~> STRING
newline : -> STRING
newlinestring : NAT ~> STRING
end
imports Characters
variables
Chars, Charsl, Chars2 : ~> CHARS
Stringl, String2, String3 : => STRING
Int ¢ —> NAT
equations
[81'1] ~Charsl = ~Chars2 = ~append (Charsl, Chars2)
[S1'2] Stringl - (String2 § String3) = (Stringl - String2) $ String3
[S17'3] (Stringl $ String2) - String3 = Stringl § (String2 - String3)
[S2*'1] 1length(~Chars) = length (Chaxs)
[S2'2} length(Stringl $ String2) = length(Stringl) + length(String2)
[S3'1] split(~Chars, Int) = <~Charsl, ~Chars2>
when split (Chars, Int) =
<Charsl, Chars2>
[83*2] split(Stringl $§ String2, Int) = split (Stringl - String2, Int)
[S4'1] withnewline (~Chars) = false
[S472] withnewline (Stringl § String2) = true
[S5'1] newline = newlinestring(nat ([1]))
[S6'1] newlinestring(Int) = ~pull when le(Int, nat([0])) = true
[S6'2] newlinestring(Int) = ~null $ newlinestring(Int - nat([1]))
when gt (Int, nat([0])) = true
[87*1] layoutstr = ~layoutchar
[S8'1] layoutstring(Int) = ~null when le(Int, nat([0])) = true

-88-

[S8'2] layoutstring(Int) = layoutstr - layoutstring(Int - nat ([1]))
when gt (Int, nat([0])) = true
end Strings
module Box-syntax
begin
exports
begin
sorts SYMBOL, OPER, CHANGE, CHANGELIST, BOX
functions
width : ~-> SYMBOL
height B ~> SYMBOL
reltab H ~> SYMBOL
abstab : -> SYMBOL
leftm : ~> SYMBOL
rightm : -> SYMBOL
relleftm : ~> SYMBOL
absdepth : ~> SYMBOL
reldepth H ~> SYMBOL
pl : -> OPER
as : => OPER
st : => OPER
b STRING -> BOX
c : SYMBOL # NAT -> CHANGE
c SYMBOL ~> CHANGE
1 : CHANGE ~> CHANGELIST
/ : CHANGE # CHANGELIST -~> CHANGELIST
b : CHANGELIST # BOX ~> BOX
b : BOX # OPER # BOX -> BOX
brack : BOX -> BOX
defaults : => CHANGELIST
end

imports Strings

equations

[BS1l] .defaults = c(width, nat([1]1))/(c(height, nat([11))/ (c(xreltab,nat ([4]))
/(c(abétab, nat ([8]1))/(c(leftm, nat([1]))/{(c{rightm, nat([3, 01))
/(c(absdepth, nat ([1, 0, 0]1))/1{c(reldepth, nat([1]1))})))))))

end Box-syntax

module Changelists

begin
exports
begin
functions
eq : SYMBOL # SYMBOL => BOOL
is-in-change : SYMBOL # CHANGE -~> BOOL
is-in=list : SYMBOL # CHANGELIST -> BOOL
changelist : BOX ~> CHANGELIST
value : SYMBOL # CHANGELIST -> NAT
rmfrombox : SYMBOL # BOX ~-> BOX
rmfromlist : SYMBOL # CHANGELIST => CHANGELIST

-89 -

changetab : BOX

makesep : SYMBOL # NAT
sepbefor : SYMBOL # BOX
rmoptionals : BOX

end

imports Box-syntax
variables
Symbol, Symboll,
String

Symbol2

Change, Changel, Change2
Changelist, Newc-list, C-list2
Int, Intl, Int2

Box, Boxl, Box2

equations
[C11*1] eqg{width, width)
[C11'2] eg(height, height)
[C11'3] eg(reltab, reltab)
[C11'4] eqg(abstab, abstab)
[C11'5] eqg{leftm, leftm)
[C1l1'6] eg(rightm, rightm)
[C11'7] eg(absdepth, absdepth)
[C11'8] eg(reldepth, reldepth)
[C11'9] eqg(width, height)
[C11'10] eg(width, reltab)
[C11'11] eq(width, abstab)
[C11'12] eq(width, leftm)
[C11'13] eqg{width, rightm)
[C11'14] eg(width, absdepth)
[C11'15] eg(width, xeldepth)
[C11'16] -eg(height, width)
[C11'17] eq(height, reltab)
[C11'18] eg(height, abstab)
[C11'19] eg(height, leftm)
[C11'20] eqg(height, rightm)
[C11'21] eg(height, absdepth)
[C11¥22] eg(height, reldepth)
[C11'23] eqg{reltab, width)
[C11'24] eqg(reltab, height)
[Cl1'25] eg(reltab, abstab)
[C11'26] eg(reltab, leftm)
[C11'27] eqg(reltab, rightm)
[C11'28] eqg(reltab, absdepth)
[C11'29] eg{reltab, reldepth)
[C11'30]1 eq(abstab, width)
[C11'31] eq(abstab, height)
[C11'32] eg(abstab, reltab)
[C11'33] eqg(abstab, leftm)
[C1l1'34] eg(abstab, rightm)
[C11'35] eq(abstab, absdepth)
[C11'36] eqg(abstab, reldepth)
[C11'37] eqg(leftm, width)

-> BOX
=> STRING
=> STRING
=> BOX

: —> SYMBO
¢ => STRIN
: —> CHANG
: => CHANG
: => NAT
: => BOX

= true

= true

= true

= true

= true

= true

= true

= true

= false
= false
= false
= false
= false
= false
= false
= false
= false
= false
= false
= false
= false
= false
= false
= false
= false
= false
= false
= false
= false
= false
= false
= false
= false
= false
= false
= false

= false

[C11'38]
[C11*39]
{C1l1'40]
[Cl1'41]
[C11'42]
[C11'43]
[C11'44]
[C11'45]
[Cl1'46]}]
[C11'47]
[C11+48]
[C11'49]
[C11'50]
[C11'51]
[C11+52]
[C11'53]
[C11'54]
[C11'55]
[C11'56]
[C11'57]
[C11+58]
[Cl1'59]
[C11'60]
[C11'61]
[Cl1'62]
[C11'63]
[Cl1l'64]
[Cl2*1]

[Cl2'2]

[C13'1]

[C13'2]

[C1373]
[C14'1]

[C14'2]

[C1l4'3]

[C1l474]

[C1475]

[Cl4'6]

[C14'7]

[C15%1]

[C15'2]

[C15'3]

[C1574]
[C15'5]

eq(leftm, height) = false

eqg(leftm, reltab) = false

eq(leftm, abstab) = false

eq(leftm, rightm) = false

eg(leftm, absdepth) = false

eq(leftm, reldepth) = false

eq(rightm, width) = false

eg{rightm, height) ‘= false

eq({rightm, reltab) = false

eq(rightm, abstab) = false

eq({rightm, leftm) = false

eq(rightm, absdepth) = false

eq(rightm, reldepth) = false

eq{absdepth, width) = false

eq(absdepth, height) = false

eq(absdepth, reltab) = false

eq(absdepth, abstab) = false

eq(absdepth, leftm) = false

eq{absdepth, rightm) = false

eq{absdepth, reldepth) = false

eg(reldepth, width) = false

eqg(reldepth, height) = false

eqg(reldepth, reltab) = false

eq{reldepth, abstab) = false

eq(reldepth, leftm) = false

eq(reldepth, rightm) = false

eq(reldepth, absdepth) = false

is-in-change (Symboll, c(Symbol2, Int)) = eq(Symboll, Symbol2)

is-in-change (Symboll, c(Symbol2)) = eq(Symboll, Symbol2)

is-in-list (Symbol, Change/Changelist) = true
when is-in-change (Symbol, Change) = true

is~in-list (Symbol, Change/Changelist) = is-in-list (Symbol, Changelist)
when is-in-change (Symbol, Change) = false

is-in-list (Symbol, 1(Change)) = is-in-change(Symbol, Change)

value (Symboll, c(Symbol2, Int)/Changelist) = Int
when eq(Symboll, Symbol2) = true

value (Symboll, c(SymbolZ)/Changelist) = value (Symboll, defaults)
when eq(Symboll, Symbol2) = true

value(Symboll, Change/Changelist) = value (Symboll, Changelist)
when is-in-change (Symboll,Change) = false

value (Symboll, 1l({c(Symbol2, Int))) = Int
when eq(Symboll, Symbol2) = true

value (Symboll, 1({c(Symbol2, Int))}) = nat ([0])
when eq(Symboll, Symbol2) = false

value (Symboll, 1(c(Symbol2)})) = value (Symboll, defaults)
when eqg(Symboll, Symbol2) = true

value (Symboll, 1 (c(Symbol2))) = nat ([0])

changelist (b(String))

when eq(Symboll, Symbol2) = false
= l{(c(width, nat([1]1)))

changelist (b (Changelist, Box)) = Changelist

changelist (b{(Box1,pl,Box2)) = changelist (Box1l)
changelist (b (Boxl,as,Box2)) = changelist (Boxl)
changelist(b(Boxl(st,Box2)) = changelist (Boxl)

-91-

[C15'6]
[C1671]

[CL672]

[Cl6'3]

[C16'4]

[C16'5]

[C16'6}

[C16'7}

[C16'8]

[C17'1]
[C17'2]

[C17'3]

[C17%4]

[C17'5]

[C17'6]

[C17'7]

[C17'8]
[C18'1]

[C18'2}]

[C18'3]

[Ci8'4]
[{C18'5]
{C187'6]

changelist (brack (Box)) =

rmfromlist (Symbol,

rmfromlist (Symbol,

rmfromlist (Symbol,

rmfromlist (Symbol,

rmfromlist (Symbol,

rmfromlist (Symbol,

rmfromlist (Symbol,

rmfromlist (Symbol,

rmfrombox (Symbol,
rmfrombox (Symbol,

rmfrombox (Symbol,

rmfrombox (Symbol,

rmfrombox (Symbol,

rmfrombox (Symbol,

rmfrombox (Symbol,

rmfrombox (Symbol,

changetab (b (Changelist, Box))

changetab (b (Changelist, Box)) =

changetab (b (Changelist, Box))

changetab (b (String)) =
changetab (brack (Box)) =
changetab (b (Box1l,pl,Box2)) =

changelist (Box)
Changel/ {Change2/Changelist})
when is-in-change (Symbol, Changel) = true
Changel/ (Change2/Changelist)) =
Changel/rmfromlist (Symbol, Change2/Changelist)
when is-in-change (Symbol, Change) =
Changel/l1(Change2)) = 1(Change2)
when is~in-change (Symbol, Changel) = true,

= Change2/Changelist

false

is-in-change (Symbol, Change2) = false
Changel/1 (Change2)) = 1 (Changel)
when is-in-change (Symbol, Change2) = true,
is-in-change (Symbol, Changel) = false
Changel/l (Change2)) = Changel/l (Change2)
when is-in-change (Symbol, Changel) = false,
is—-in-change (Symbol, Change2) = false
Changel/l (Change2)) = 1 (Change2)
when is-in-change (Symbol, Changel) = true,
is-in-change (Symbol, Change2) = true
1{(Change)) = 1 (Change)

when is-in-change (Symbol, Change) = false
1(Change)) = 1l(c(width, nat ([1])))

when is-in-change (Symbol, Change) = true
b (String)) = b(String)
b (1l (Change), Box)) = Box

when is-in-change (Symbol, Change) = true
b (1l (Change), Box)) = b(l(Change), Box)

when is-in-change (Symbol, Change) = false

b (Change/Changelist, Box)) =
b (rmfromlist (Symbol, Change/Changelist), Box)
b{Boxl,pl,Box2)) =
b (rmfrombox (Symbol, Boxl),pl,Box2)}
b (Box1, as,Box2)) =
b (rmfrombox (Symbol, Boxl),as,Box2)
b(Boxl, st,Box2)) =
b (zmfrombox (Symbol, Boxl),st,Box2)
= brack (Box)
= b{Changelist, Box)
when is-in-list (reltab, Changelist) = false
b(c(reltab, Int2 - Intl)/Newc-list, Box)

when is-in-list (reltab, Changelist) = true,

brack (Box))

is=-in-list (width, Changelist) = true,
value (reltab, Changelist) = Int2,
value (width, Changelist) = Intl,
rmfromlist (reltab, Changelist) = Newc-list
= b{c(reltab, Int2 - Intl)/Newc-list, Box)
when is-in-list(reltab, Changelist) = true,
ig~in-list (width, Changelist) = false,
value (reltab, Changelist) = Int2,
value(width, defaults) = Intl,
rmfromlist (reltab, Changelist) =
b (String)
brack (Box)
b (Boxl,pl,Box2)

Newc~-list

-92-

[C18'7] changetab (b(Boxl,as,Box2)) = b(Boxl,as,Box2)
{C18'8] changetab (b (Boxl,st,Box2}) = b (Boxl, st,Box2)
{C19'1] makesep(width, Int) = layoutstring(Int)
[C19'2] makesep(height, Int) = newlinestring(Int)
[C19'3] makesep(Symbol, Int) = ~null
when eq{Symbol, width) = false,
eq(Symbol, height) = false
[C110'1] sepbefore (Symbol, Box) =
<makesep (Symbol, value(Symbol, changelist (Box))),
rmfrombox (Symbol, Box)
when is-in-list (Symbol, changelist (Box)) = true
[{C110'2] sepbefore (Symbol, Box) =
<makesep (Symbol, value(Symbol, defaults)), Box
when is-in-list(Symbol, changelist(Box)) = false
[C111'1] «rmoptionals(b(String)) = b (String)
[C111'2} rmoptionals (brack (Box)) = brack (Box)
[C111'3] rmoptionals (b(l(Change), Box)) = Box
when or(is-in-change (reltab, Change),
is-in-change (height, Change)) = true
[C111'4] rmoptionals (b(l(Change), Box)) = b(l(Change), Box)
when or (is-in-change (reltab, Change),
is~in~-change (height, Change)) = false
[C111'5] rmoptionals(b(Change/Changelist, Box)) = b(Newc-list, Box)
when rmfromlist (reltab, Change/Changelist) = C~list2,
rmfromlist (height, C-list2) = Newc-list
[C111'6] zxrmoptionals (b (Boxl,pl,Box2)) = b (rmoptionals(Boxl),pl,Box2)
[C111'7] «rmoptionals (b (Boxl,as,Box2)) = b (Boxl,as, rmoptionals (Box2))
{C111'8] rmoptionals (b (Boxl,st,Box2)) = b (Boxl,st,Box2)
end Changelists
module Frame
begin
exports
begin
sorts POINT, FRAME
functions
P : NAT # NAT -> POINT
£ : POINT # NAT # NAT # NAT -> FRAME
start : FRAME . -> POINT
xpoint’ : FRAME -> NAT
ypoint : FRAME -> NAT
leftm : FRAME => NAT
rightm : FRAME -=> NAT
depth : FRAME -> NAT
newstart : POINT # FRAME => FRAME
newleftm : NAT # FRAME —> FRAME
newrightm : NAT # FRAME ~> FRAME
newdepth : NAT # FRAME -> FRAME
fromto : POINT # POINT —-> STRING
makeframe : CHANGELIST —> FRAME

-93-

apply : CHANGELIST # FRAME ~> FRAME
apply : CHANGE # FRAME -> FRAME
modify : CHANGELIST # FRAME => FRAME
modify : CHANGE # FRAME -> FRAME
same-line : POINT # FRAME ~> BOOL
end
imports Changelists
varia.b’les
X, X1, X2, Y, Y1, Y2, Im, Im2, Rm, Rm2, D, D2,
Width, Tabline, Spaces, Lines, Indent, Tab, Int : => NAT
Point, Point2 : ~> POINT
Frame : => FRAME
Change : => CHANGE
Changelist : —=> CHANGELIST
Symbol : ~> SYMBOL
equations
[F1'1] start(f(Point, Lm, Rm, D)) = Point
[F271] xpoint{f(p(X,Y), Im, Rm, D)) = X
[F3'1ll] ypoint(£(p(X,Y), Lm, Rm, D)) =Y
[F4'1] leftm(f(Point, Lm, Rm, D)) = Lm
[F5'1] rightm(f(Point, Lm, Rm, D)) = Rm
[F6'1l] depth(f{(Point, Lm, Rm, D)) =D
[F7'1] newstart (Point2, f(Point, Im, Rm, D)) = f£(Point2, Lm, Rm, D)
[F8'1] newleftm(Im2, £(Point, Im, Rm, D)) = £(Point, Lm2, Rm, D)
[F9'1] newrightm(Rm2, £(Point, Im, Rm, D)) = f£(Point, Im, Rm2, D)
[F10'1] newdepth(D2, f(Point, Im, Rm, D)) = f(Point, Im, Rm, D2)
[F11'1] fromto(p(X1,Y1l), p(X2,Y2)) = layoutstring(X2 - X1)
when eq(Yl, ¥2) = true,
ge({X2, X1) = true
[F11°2] fromto(p(X1l,Yl), p(X2,Y2)) = (newlinestring(¥2 - Y1) =~
fromto (p{value (leftm, defaults),¥2),
p({X2, Y2)))
when gt (Y2, Y1) = true
[F12'1] makeframe (Changelist) = apply (Changelist,
£(p(nat ([1]) ,nat([1]))}, nat([1]),
nat ([8,0]), nat([1]1)))
[F13'1] apply(Change/Changelist, Frame) = apply (Changelist,
apply (Change, Frame))
[F13'2] apply(l(Change), Frame) = apply (Change, Frame)
[F14'1] apply(c(width, Int), Frame) = Frame
[F14'2] apply{(c(height, Int), Frame) = Frame
{F14'3] apply(c(reltab, Int), Frame) = Frame
[F14'4] apply(c(abstab, Int), Frame) = Frame
[F14'5] apply(c{(relleftm, Int), Frame) = Frame
[F14'6] apply(c(leftm, Im2), £(p(X,Y), Im, Rm, D}) = £(p(Lm2,Y), Im2, Rm, D)
when le(Im2, Rm) = true
[Fi14'7] apply(c(leftm, Im2), £(Point, Lm, Rm, D)) = f{Point, ILm, Rm, D)
when gt (Im2, Rm) = true
[F14*'8] apply(c(rightm, Rm2), f(Point, Im, Rm, D)) = f(Point, Lm, Rm2, D)
when ge (Rm2, Lm) = true

-94-

[F14'9] apply(c(rightm, Rm2), f(Point, Lm, Rm, D))} = f£(Point, Lm, Rm, D)

when 1t (Rm2, Lm) = true
[F14'10] apply (c(absdepth, D2), f£(Point, Im, Rm, D)) = £(Point, Lm, Rm, D2)

when ge(D2, nat([0])) = true

[F14'11] apply(c(absdepth, D2), Frame) = Frame when 1t (D2, nat ({01)) = true
[F14'12] apply(c(reldepth, D2), Frame) = Frame
[F15'1] modify{(Change/Changelist, Frame} = modify (Changelist,
modify (Change, Frame))

[F15'2] modify(l (Change), Frame) = modify (Change, Frame)
[F16'1] modify(c(Symbol), Frame) =

modify (c (Symbol,value (Symbol, defaults)),

Frame)

[F16'2] modify(c(width, Int), £(p(X,Y), Lm, Rm, D)) = £(p(X + Int,Y), Im, Rm, D}
when ge(Int, nat([0])) = true,
le(X + Int, Rm) = true
[F16'3] modify{(c(width, Int), Frame) = Frame when 1t (Int, nat([0])) = true
[F16'4] modify{c(width, Int), £(p(X,Y), Lm, Rm, D)) =
£(p(Im + (Width - Rm) - nat({1]), Y + nat([1])}), Lm, Rm,]
when X + Int = Width,
gt (Width, Rm) = true
[F16'5] modify(c(reltab, Int), £(p(X,Y), Lm, Rm, D)) = f£(p(Tabline,Y), Tabline, Rm, D
when gt (Int, nat([0])) = true,
X + Int = Tabline,
le(Tabline, Rm) = true
[F16'6] modify(c(reltab, Int), Frame) = Frame
* when le(Int, nat([0])) = true
[F16'7] modify({c(reltab, Int), £(p(X,Y), Im, Rm, D)) = f(p(X,Y), Lm, Rm, D)
when ge{X + Int, Rm) = true
[F1678] modify(c(abstab, Int), £(p(X,Y), Im, Rm, D)) =
f(p(Im + Int - nat({1]),Y), Int, Rm, D)
when ge(ILm + Int - nat([1l]), X) = true,
le(Lm + Int -~ nmat([1]), Rm) = true
[Flé'Q] modify (c (abstab, Int), £(p(X,Y¥), Im, Rm, D)) = £(p(X,¥Y), Lm, Rm, D)
when 1t (Im + Int - nat({1]), X) = true
[F16'10] modify(c(abstab, Int), f£(p(X,Y), Im, Rm, D)) = £(p(X,¥), Lm, Rm, D)
when ge(Im + Int - nat([1]), X) = true,
gt (Im + Int ~ nat([1]), Rm) = true
[F16'11] modify(c(height, Int), £(p(X,Y), Im, Rm, D)) = £(p(Ilm,Y¥ + Int), Lm, Rm, D)
when gt (Int, nat([0])) = true
[F16'12] modify{c(height, Int), Frame) = Frame
when le{Int, nat([0])) = true v
[F16'13] modify(c(leftm, Int), £{(p(X,Y), ILm, Rm, D)) = £(p(X,Y), Int, Rm, D)
when ge (Int, value(leftm, defaults)) = true,
le(Int, Rm) = true, ge(X, Int) = true
[F16'14] modify(c(leftm, Int), £(p(X,Y), Lm, Rm, D)) = £(p(Int,Y), Int, Rm, D)
when ge (Int, value(leftm, defaults)) = true,
le(Int, Rm) = true, 1lt(X, Int) = true
[F16'15] modify(c(leftm, Int), Frame) = Frame
when 1t (Int, value(leftm, defaults)) = true
[F16'16] modify(c(leftm, Int), £(p(X,Y), Lm, Rm, D)) = £(p(X,¥), Lm, Rm, D)
when ge(Int, value(leftm, defaults)) = true,
gt (Int, Rm) = true

-95-

[F16'17]

[F16'18]

[F16'19]

[F16'20]

[F16'21)
[F16'22]

[F16%23]

[F16'24]

[F16'25]

[F17%1]

end Frame

modify (c (rightm,

Int), £(p(X,Y), Lm, Rm, D)) = £(p(X,Y), Lm, Int, D)

when le(Int, value (rightm, defaults)) = true,
ge{Int, Lm) = true, le(X, Int) = true

modify (¢ (rightm, Int), £f(p(X,Y), Lm, Rm, D)) = f(p(Im, ¥ + nat([1])), Lm, R

modify (¢ (rightm,

modify (¢ (rightm,

modify (c(relleftm,
modi fy (c (absdepth,

modify (¢ (absdepth,

modify (c (reldepth,

modify (c (reldepth,

Int), Frame)

Int),
Int),

Int),

Int),

Int),

when le(Int, value (rightm, defaults)) = true,
ge(Int, Im) = true, gt (X, Int) = true

Int), f£(p(X,Y), Im, Rm, D))} = f{p{X,¥), Lm, Rm, D)

when le(Int, value(rightm, defaults)) = true,
1t (Int, Lm) = true

= Frame
when gt (Int, value (rightm, defaults)) = true
f(p(X,Y}), Lm, Rm, D}) = £(p(X,Y), X + Int, Rm, D)
£f(Point, Im, Rm, D)) = £(Point, Lm, Rm, Int)
when ge (Int, nat ([0])) = true
Frame) = Frame
when 1t (Int, nat([0])) = true
f(Point, Lm, Rm, D)) = f(Point, Lm, Rm, D + Int)
when ge(D + Int, nat([0])) = true
£(Point, Lm, Rm, D)) f(Point, Im, Rm, nat ([0]))
when 1t (D + Int, nat([0])) = true

same~-line (p(X1,Y1), £(p(X2,Y2), Lm, Bm, D)) = or(eq(Yl, Y2),

module BoxtoString

and(eq(Y1l, Y2 + nat([1])),
eq(X1l, Lm)))

begin
exports
begin
sorts STRING-END, RESULT
functions
makestring : BOX -> STRING
t : STRING # POINT ~> STRING=-END
work : BOX # FRAME => STRING~END
string :+ STRING-END => STRING
r : BOOL # STRING # POINT -> RESULT
fitshor : BOX # FRAME => RESULT
vertical : BOX -> BOX
is-duobox : BOX => BOOLEAN
end
imports Frame
variables
Int, NewD, Length, Nextline, X1, Y1, X2, Y2, X3, Y3, X4,
Y4, D :=> NAT
Atthisline, Atnextline, String, Stringl, String2,
String3, String4, String5, String6, Sep, Newline :=> STRING
Frame, Newframe :=> FRAME
Point, Pointl, Point2, Point3, Point4, Point5, Pointé :=> POINT
Box, Boxl, Box2, Box3, Nboxl, Nbox2, Newboxl, Newbox2 :=> BOX
Change :=> CHANGE
Changelist, C-list, C~list2, Newc-list $=>

CHANGELIST

-96-

equations

[B1'1]

[B2'1}

[B3'1]

[B3'2]}

[B3'3]

[B3'4]

[B3'5]

[B3*'6]

[B3'7]

makestring (Box) = fromto(p(nat ([1]),nat([1])),
start (Frame)) -
string (work (Box, Frame))
when makeframe (defaults) = Frame
string(t (String, Point)) = String

work (brack (Box), Frame) = work (b (~depthchar), Frame)
when eq(depth (Frame), nat([{1l])) = true
work (brack (Box), Frame) = work (Box, Newframe)
when gt (depth (Frame), nat({1])) = true,
is-duobox (Box) = true,
NewD = depth(Frame) - nat([1]) ,
newdepth (NewD, newleftm(xpoint (Frame), Frame)) = Newframe
work (brack (Box), Frame) = work (Box, Newframe)
when gt (depth (Frame),nat([1])) = true,
is~-duobox (Box) = false,
NewD = depth(Frame) - nat ([1]),
newdepth (NewD, Frame) = Newframe
work (b (String), Frame) =
t (String, p (xpoint (Frame) +Length, ypoint (Frame)))
when withnewline (String) = false,
Length = length(String),
le(Length, rightm(Frame)-xpoint (Frame)) = true
work (b (String), Frame) =
t (String - fromto(p(rightm(Frame), ypoint (Frame)),
p(leftm(Frame) ,ypoint (Frame)4+nat ([1]1))),
p(leftm(Frame), ypoint (Frame)-+nat([1]1)))
when withnewline (String) = false,
Length = length(String),
eq(Length, rightm(Frame)- xpoint (Frame) + nat({1])) = true
work (b (String), Frame) =
t (fromto (start (Frame) ,p(leftm(Frame), Nextline))-String,
p(leftm(Frame) + Length, Nextline))
when withnewline (String) = false,
Length = length(String),
Nextline = ypoint (Frame) + nat([1]),
gt (Length, rightm(Frame) =~ xpoint (Frame) + nat([1])) = true,
le(Length, rightm(Frame) - leftm(Frame) + nat(({1])) = true
work (b (String), Frame) = t (Atthisline - Newline - String2, Point2)
when withnewline (String) = false,
gt (length (String),
rightm(Frame) - leftm(Frame) + nat([1])) = true,
split (String, rightm(Frame) = xpoint (Frame) + nat([1])) =
<atthisline, Atnextline>,
fromto (p (rightm(Frame) ,ypoint (Frame)),
p(leftm(Frame), ypoint (Frame)+nat([1]))) = Newline,
work (b (Atnextline), newstart (p(leftm(Frame),
ypoint (Frame)+nat ([1]1)),
Frame)) = t(String2, Point2)

-97-

[B3'8)

[B3'9]

[{B3'10]

[B3711]

[B3*'12]

[B3'13]

[B3'14]

[B4'1]

[B4'2]

[B4'3]

[B4'4]

[B4'5]

work (b(Stringl $ String2), Frame) = t(String3 ~ Newline - String4, Point4)
when work(b(Stringl), Frame) = t(String3, p(X3, ¥3)),
eq (X3, leftm(Frame)) = false,
fromto (p (rightm(Frame) ,¥Y3),
p(leftm(Frame),¥Y3 + nat([1]))) = Newline,
work (b (String2), newstart(p(leftm(?ramé),
¥3 + nat({1])), Frame)) =
t (String4, Point4)
work (b(Stringl $ String2), Frame) = t(String3 - String4, Point4)
when work (b(Stringl), Frame) = t(String3, p(X3,Y3)),
eq (X3, leftm(Frame)) = true,
work (b(String2), newstart (p(X3, ¥3), Frame)) =
t (String4, Point4)
work (b (C~1list, Box), Frame) = t(Stringl -~ String2, Point2)
when modify(C-list, Frame) = Newframe,
fromto (start (Frame), start (Newframe)) = Stringl,
work (Box, Newframe) = t (String2,Point2)
work (b (Boxl,pl,Box2), Frame) = t(Stringl - String2 - String3, Point3)
when work (Boxl, Frame) = t(Stringl, Pointl),
changetab (Box2) = Nbox2,
sepbefore (width, Nbox2) = <Sep, Newbox2>,
work (b(Sep), newstart (Pointl, Frame)) = t(String2, Point2),
work (Newbox2, newstart (Point2, Frame)) = t (String3, Point3)
work (b (Boxl, st,Box2), Frame) = t(Stringl - String2 ~ String3, Point3)
when work (Boxl, Frame) = t(Stringl, Pointl),
sepbefore (height, Box2) = <Sep, Newbox2>,
work (b(Sep), newstart (Pointl, Frame)) =t (String2, Point2),
work (Newbox2, newstart (Point2, Frame)) = t (String3, Point3)
work (b (Boxl, as,Box2), Frame) = £ (String, Point)
when rmoptionals (Box2) = Newbox2,
fitshor (b (Boxl,pl,Newbox2), Frame) =r(true, String, Point)
work (b{Boxl,as,Box2), Frame) = work(vertical (b (Boxl,as,Box2)), Frame)
when rmoptionals (Box2) = Newbox2,

fitshor (b (Boxl,pl,Newbox2), Frame) = r(false, String, Point)

fitshor (brack (Box), Frame) = fitshor(b(~depthchar), Frame)
when le(depth(Frame), nat([1])) = true
fitshor (brack (Box), Frame) = fitshor (Box, newdepth(D, Frame))’

when D = depth(Frame) - nat([1]),
gt (D, nat ({0])) = true
fitshor (b(String), Frame) = r{false, ~null, p(nat([0]),nat([01)))
when withnewline (String) = true
fitshor (b(String), Frame) = r(false, ~null, p(nat([0]),nat([01)))
when withnewline (String) = false,
Length = length(String),
gt (Length, rightm(Frame) - xpoint (Frame) + nat([1])) = true
fitshor (b(String), Frame) = r(true, String, p(kpoint (Frame) + Length,
ypoint (Frame)))
when withnewline (String) = false,
Length = length(String),
le(Length, rightm(Frame) ~ xpoint (Frame)) = true

-98 .-

[B4'6] fitshor(b(String), Frame) = r(true, String - Newline,
p({leftm(Frame),

ypoint (Frame)} + nat([1])))
when withnewline (String) = false,

Length = length(String),)
eq(lLength, rightm(Frame) - xpoint (Frame)+ nat ([1]})) = true,
Newline = fromto (p(rightm(Frame), ypoint (Frame)),
p{(leftm(Frame), ypoint (Frame) + nat ({1]1)))
[(B4'7] fitshor(b(C-list, Box), Frame) = r(false, ~null, p(nat([0]),nat([0])})
when modify(C~list, Frame) = Newframe,
same~line (start (Newframe), Frame) = false
[B4'8] fitshor(b(C~list, Box), Frame) = r{false, ~null, p(nat ([0]) ,nat ({01)))
when modify(C-~list, Frame) = Newframe,
same-line (start (Newframe), Frame) = true,
fitshor (Box, Newframe) =
r(false, ~null, p(nat({0]),nat([0])))
[B4'9] fitshor(b(C~list, Box), Frame) = r(true, Stringl - String2, Point2)
when modify(C-list, Frame) = Newframe,
same-line (start (Newframe), Frame) = true,
fitshor (Box, Newframe) = r(true, String2, Point2),
fromto (start (Frame), start (Newframe)) = Stringl
[B4'10] fitshor(b(Boxl,pl,Box2), Frame) = r{(false, ~null, p(nat([0]),nat([0])))
when fitshor(Boxl, Frame) = r(false, ~null, p{nat ({0]1),nat ([0])))
[B4'11] fitshor(b(Boxl,pl,Box2), Frame) = r(false, ~null, p(nat([0]),nat([0])))
when fitshor (Boxl, Frame) = r(true, Stringl, Pointl),
changetab (Box2) = Nbox2,
sepbefore (width, Nbox2) = <Sep, Newbox2>,
fitshor (b(Sep), newstart (Pointl, Frame)) =
r(false, ~null, p(nat([0]),nat([0])))
[(B4'12] fitshor(b(Boxl;pl,Boxz), Frame) = r(false, ~null, p(nat ([0]),nat ([0])))
when fitshor(Boxl, Frame) = r(true, Stringl, Pointl),
changetab (Box2) = Nbox2,
sepbefore (width, Nbox2) = <Sep, Newbox2>,
fitshor (b(Sep) , newstart (Pointl, Frame)) =
r(true, String2, Point2),
fitshor (Newbox2, newstart (Point2, Frame)) =
r(false, ~null, p(nat([0]),nat([0]1)))
[B4'13] fitshor (b(Boxl,pl,Box2), Frame) =
xr(true, Stringl - String2 - String3, Point3)
when fitshor(Boxl, Frame) = r(true, Stringl, Pointl),
changetab (Box2) = Nbox2,
sepbefore (width, Nbox2) = <Sep, Newbox2>,
fitshor (b(Sep), newstart (Pointl, Frame)) =
r(true, String2, Point2),
fitshor (Newbox2, newstart (Point2, Frame)) =

r(true, String3, Point3)

[B4714] fitshor(b(Boxl,as,Bon), Frame) = fitshor(b(Boxl,pl,Newbon), Frame)
when rmoptionals (b (Boxl,as,Box2)) = b (Boxl,as,Newbox2)

[B4'15] fitshor(b(Boxl,st,Box2), Frame) = r{(false, =~null, p(nat([0]),nat([0])))

[B5'1] wertical(b(String)) = b(String)

[B5'2] wvertical (brack (Box)) = brack (Box)

[B5'3] wertical (b(Changelist, Box))

b (Changelist, Box)

[B5'4]
[B5'5]
[B5'6]

[B6'1]
[B6'2]
[B6'3]
[B6'4]
[B6'5]
[B6'6]

vertical (b (Boxl,pl,Box2})
vertical (b(Boxl,as,Box2))
vertical (b (Boxl, st,Box2))

is~duobox (b (String))
is~-duobox (brack (Box))

is~duobox (b (Changelist, Box))

is~duobox (b (Boxl,pl,Box2))
is=-duobox (b (Boxl, as,Box2))
is~duobox (b {(Boxl, st,Box2))

end BoxtoString

b (Box1,pl,Box2)
b (Boxl,3t,vertical (Box2))
b (Boxl, st,Box2)

false
false
false
true
true
true

-100-

Appendix H : Testresults

First we will explain the syntax of Pretty in ASF. This syntax will be used in the tests. For every type
used in Pretty an example in SDF-syntax and in ASF-syntax is given. To keep the examples short we
will use variables like Int, Box1, Box2. Because in ASF signs like ' and : can not be declared as being
of type character, we will use not ofthen used characters like q and x int their place.

SDF ASF
character-list apple ch([a,p,p,1l,e])
string "pear" ~ ch([p,e,a,r])
change <-> 5 c(width, nat([5]))
changelist | Intl, ->> Int2 c (height, Intl) /
l(c(abstab, Int2))
Box with brackets [Box 1} brack (Box)
C-list Box -> Int Box b{(l(c(reltab, Int)), Box)
Box1 nothing Box2 Boxl Box2 b(Boxl, pl, Box2) {plus}
Box1 ; Box2 Boxl ; Box2 b(Boxl, st, Box2) ({straight]}
Box /Box2 Boxl / Box2 b(Boxl, as, Box2){don't ask me}
First test

Here we test the strings module, so we can see if the strings are really combined in the right way. We
also try some small tests on the main module to see if the operators in the box-language are
implemented correctly. The page width is set to 30. In test [4] of the module BoxtoString we can also
see that the nothing operator will not cut a word in two, when it can place it on the next line. Two
characters of the word "possible" would still fit on the current line, but in stead the whole word is

placed on the next line.

Input

module Strings
begin

terms’

[1] ~ch([a,b]l) - ~ch(l[c,d])

[2] ~ch([h]) - (~null $§ ~null) - ~ch([i])

[3] length(~ch([a, b, c]))

[4] newlinestring(nat ([3]))

- 101 -

[5]

layoutstring(nat ({3]))

end Strings

module BoxtoString
begin

terms

[1]

[2]

31

[3]

[4]

[3]

(6]

[7]

makestring(b(~ch([h})))
makestring (b(b(~ch([h])}),st,b(l(c(reltab, nat([4]))),b(~ch([i]))})))

makestring (b (b (1l (c(width, nat ([5]))), b{(~ch([s,t,e,pl))),st,
b(c(height, nat([2]))/l(c(reltab, nat([1,81))),
b(~ch(la,s,i,d,e])}))))

makestrinq(b(b(~ch([h,o,w])),pl,b(b(~ch([i,s])),pl,
b(b(~ch({([trhle]))lpllb(~Ch([wlel a,t,h,e,r1))))))

makestring(b(b(~ch([n,o])),pl,b(b(~ch([c,l,i,p,p,i,n,gl)):Plr
b(b(~ch([w,i,t,h,i,n])),pl,b(b(~ch([w,0,x,d,8])),pl,
b(b(~ch([i,£])),pl,b(~ch([p,0,8,s8,i,b,1,e1))))))))

makestring(b(b(~ch([h,o,w])),as,b(b(~ch([i,s])),as,
b(b(~Ch([t,h,e])),asfb("Ch([W,e,a,t,h,e,r]))))))

makestring (b (b(~ch([n,0])),as,b(b(~ch([c,1,i,p,p,i,n,g])),as,
b(b(~ch([w,i,t,h,i,n])),as,b(b(~ch([w,0,1r,d,s])),as,
b(b(~ch([i,f])),as,b(~ch([p,o,s,8,i,b,1,e]))))))))

makestring(b(~ch([p,r,e,t,t,y,p,r,i,n,t,i,n,g,i,s,a,v,e,r,y,v,e,r,y,
l,0,n,g,w,0,r,d]}))

end BoxtoString

Output
module Strings
begin
{11l ~ ch([a, b]) - ~ ch([c, d])

~ ch([a, b, ¢, d4])

R

[2] ch([h]) - (~ null § ~ null) - ~ ch([i])

~ ch([h]) $ ~ ch([i])

-102 -

th(~ ch([a, b, cl))

t([3])

inestring(nat([3]))

ch([]) $ (~ ch([]) § (~ ch([]) $ ~ ch([])))

utstring(nat([{3]))

ch([b, b, b])

tring

string(b(~ ch([h])))

ch([h])

string(b(b{(~ ch([h])),
st,
b(l(c(reltab, nat([4]))), b(~ ch([i])))))

ch([h]) $ ~ ch([b, b, b, b, i])

string(b(b(l(c{(width, nat([5]1))), b(~ ch(ls, t, e, pl))),
st,
b(é(height, nat ([2]1)) / l(c(reltab, nat ([1l, 8]1))),
b(~ ch([a, s, il d, el}))))

ch([b, b, b, b, b, 8, t, e, p]) $ ~ ch([]) $
ch([b, b, b, b, b, b, b, b, b, b, b, b,
b, b, b, b, b, b, a, 8, i, d;, e])

string(b(b(~ ch([h, o, wl)}),

pl,
b(b(~ ch([i, s81)).,

pl,
b(b(~ ch({t, h, el)),
pl,
b(~ ch([w, e, a, t, h, e, r]))))))

ch({h, o, w, b, i, s, b, t, h, e, b, w, e, a, t, h, e, r])

-103 -

[4] makestring(b(b(~ ch([n, 0])),

pl,
b(b(~ ch(lc, 1, i, p, Pr i, n, gl)),
pl,
b(b(~ ch([w, i, t, h, i, nl)),
pll
b(b(~ ch([w, o, r, d, s1)),
pl,
b(b(~ ch([i, £1)),
pll

b{(~ ch(lp, o, 8, 8, i, b, 1, e1))))))))

= ~ ¢ch({n, o, b, ¢, 1, i, p, P, i, n, g,
b, w i, £, h, i, n, b, w, o, r, 4, s, b, i, £, b]) $
~ ch([p, o, 8, 8, i, b, 1, el)

[3] makestring(b(b(~ ch([h, o, wl)),
as,
b(b(~ ch([i, s8])),
as,
b(b(~ ch([t, h, e])),
as,
b(~ ch([w, e, a, t, h, e, r])}))))

= ~ ch([h, o, w, b, i, 8, b, £, h, e, b, w, e, &, t, h, e, r])

[61 makestring(b(b(~ ch{[n, ol)),

as,
b(b(~ ch([c, 1, i, p, P, i, n, gl)),
as,
b(b(~ ch([w, i, t, h, i, nl)),
as,
b(b(~ ch([w, o, r, d, s1)),
as,
b(b(~ ch([i, £1)),
as,

b(~ ch(lp, o, 8, 8, i, b, 1, el))))))))

= ~ ch([n, o]) $
~ ch([e, 1, i, p, P, i, n, gl) $
~ ch([w, 1, t, h, i, nl) $
~ ch([w, o, r, 4, s81) §
~ ch([i, £]) $
~ ch([p, ©, 8, 8, i, b, 1, el)

[71 makestring(b(~ ch(lp, r, e, ¢, t, ¥, P, z, i, n, t, i, n, g, i,
s, a, v, e, r, ¥, Vv, € x, ¥, 1, o, n, g, w,
o, r, d1)))

= ~ ch([p, ©, e, t, £, ¥, P, ©, i, n, t, i, n, g, i, s, 3,
v, e, ¥, ¥, v, €, r, ¥, 1, o, n, g, wl) $
~ ch([o, xr, d])
end BoxtoString

-104 -

Second test-

Here we try one larger test on a case-statement of Pascal. For the first part of the test the pagewidth is
set to 60. This is done by changing the value of the right margin in the defaults-equation in module box-
syntax. We will show you the input, the output and a readable form of the output of this test. Then we
test the same input, but now with a pagewidth of 30. The output and the readable form of the output of
this test are shown.

Input

module BoxtoString
begin

terms
[2] makestring(

b(b(b(~ch([c,a,s,el)),pl,b(b(~ch([b,u,£f,£,h,e,k])),pl,b(~ch([o,£]1)))),st,
b(b(l(c(reltab, nat([4]))), brack(b(b(b(~ch([q,0,ql)),pl,
b(b(l(c(abstab, nat([1,1]))), b(~ch([x]))),pl,
brack(b(b(~ch{[b,e,qg,i,n}l)),st,
b(b(l(c(reltab, nat([4]))), brack(b(b(b(~ch([£f,i,1l,e,d,e,s,c])),pl,
b(b(~ch([x,y1)),pPl,b(b(~ch([o,p,e/,n,f,i,1,e,9,b,u,£,£,h])),pl,
b(~ch([z])})}))).,st,
b(b(~ch([r,e,p,1,y,b,u,£,£]1)),pl,b(b(~ch([x,¥])),pP1,
b(b(~ch([g,0,k,ql)),pl,b(~ch([2])))))))),st,
b(b(~ch([e,n,d])),pl,b(~ch([z1)))))))),st,
b(b(~ch([g,xr,q])),pl,b(b(~ch([v])),pl,b(b(~ch([q,c,ql)),Pl,
b(b(l(c(abstab,nat({1,1]))), b(~ch([x]))),pl,
brack(b(b{(~ch([r,e,p,1,y,b,u, £, £1)),pl,
b(b(~ch([x,y1)),p1,
b(b(~ch([g,n,0,t,b,0,p,e,n,91)),pL,
b(~ch([z]))})})))1))))),st,
b(~ch{([e,n,dl)})))})
end BoxtoString

Output

module BoxtoString
begin

[2] makestring(b(b(b{(~ ch(lc, a, s, e])),etc....
= ~ ch([c, a, s, e, b, b, u, £ £, h, e, k, b, o, £]) $

~ ch{([b, b, b, b, q, o, g, b, b, b, b, b, b, b, %x, b, b, e, g, i, n]) §
~ ch([b, £,
i, 1, e, d, e, 8, ¢, b, x, v, b, o, p, e, n, £, i, 1, e, g, b,
u, £, £, h, b, z]) $
~ ch([b, =z,
e, pr 1, ¥y, b, u, £ £, b, x, ¥y, b, @, o, k, q, b, z]) $
~ ch{([b, b, b, b, b, b, b, b, b, b, b, b, b, b, b, b, e, n, 4, b, z]) $§
~ ch([b, b, b, b, g, ¥, q, b, v, b, q, ¢, g, b, x, b, r, e, p, 1, y, b,
ua, £ £, b, x, ¥, b, q, n, o, t, b, o, p, ¢, n, q, b, z1) $

~ ch([e, n, d])

-105 -

end BoxtoString

CPU time: 74.8

We now change the outpurt slightly to make it more readable.

=~ch(lc, a,s,e, ,b,u,f,f hek ,o0,f])$
~ch(,,,,9%0q$.,,,,,,,% ,begin) $
~c¢h([, ,,,,,,,,.,,.5,,.,.,,,,,.5Ei,Ledes,c, %Y ,o0,p,e,nfile g,

bu, f,f,h, ,z]}$
~ch(l, ..., s une Ly, by ff Xy, ,hokq, ,2D$
~ch([, ,,,,,,,,,,,,,,,6nd ,2] $
~ch(,,,.qrq ,v, ,q¢4q ,X ,e,pLy,buff ,xy ,qn0t ,0,pe,nq, ,z)$
~ ch([e, n, d])

=~ ch([case buff{1] of]) $
~ch(‘o : begin]) $
~ch(filedesc := openfile(buff) ;1) $
~ch(replybuff ;= ok’ ;) $
~ch({ end ;) $
~ch('r','c : replybuff ;= 'not open’;]) $
~ ch(fend])

Qutput

module BoxtoString
begin

[2] makestring(b(b(b{(~ ch([c,a,s,el)),....etc.

= ~ ch([c,a,s,e,b,b,u,£f,f,h,e, k,b,0,£f]) §
~ ch([blblblblqlolqlblblblblblblblxlblblelgliln]) $
~ ch([b,£,i,1,e,d,e,s,c,b]) $
~ ch([b,x,y,b,o,p,e,n,f,i,l]) $
~ ¢h([b,e,q,b,u,£,£,h,b,z]) &
~ ch([b,r,e,p,l,y,b,u,f,f,b]) $
~ ¢h([b,x,y,b,q,0,k,q,b,z1) $
~ ch([b,b,b,b,b,b,b,b,b,b,b,b,b,b,b,b,e,n,d,b,z]) $
~ ch([b,b,b,b,q,r,q,b,v,b,q,¢c,q,b,x,b,r,e,p,1,y,b,u,£,£,b,x,vy,b]) $
~ ch([b,b,b,b,b,b,b,b,b,b,b,b,b,b,b,b,q,n,o,t,b,o,p,e,n,q,b,z]) $
~ ch([e,n,d])

end BoxtoString

CPU time: 93.3167

- 106 -

y to make it mor¢

1,8.eD),....etc.

-107

