An ASF+SDF Specification
a Query Optimizer for a RDB

Karin Zaadnoordijk

May 27, 1994

nts

atabases

ntsof a DBMS e e e e e e e e
IModel o e e e e e e e e e e e e e e
wta Structure e e e e e e e e e e e e
ita Manipulation e e e
wta Integrity e e
IDatabase 0 e e e e e

MANtICS & . v v v e
odules e e e e e e e e e e e e e e e e e e
ructure of the Meta-environment« ¢ o ot i 0o

1ization

ses of Optimization
TOptimization e e e e e e e e e e e
: and Representation of our Specification
TUCLUTE e e e e e e e e e e e e e e e e
spresentation L L Lo L L e e e e s

1 Relations v i e e e e e e e e e e e e e e e
mpatible Relations e
1defined Attributes e e e
ndefined Attributes in Predicates
ndefined Attributes in Projectlists
edRelations o v v i i e e e e e e e e e e e e e e e

Equivalence Transformations

6.1 Example i e e e
6.2 G@Graphical Representation
6.3 ProcessingofSelects L e
6.3.1 Select over Union, Intersection, and Minus
6.3.2 Select over Producto
6.3.3 SelectoverJoin i . e e
6.3.4 Select (cascade) Lo e
6.3.5 Union, Intersection, and Minus over Select
6.4 Processingof Projects e
6.4.1 Project over Union, Intersection, and Difference
6.4.2 ProjectoverJoin e
6.4.3 Project (cascade) e
6.4.4 ProjectoverSelect
Access Strategies
7.1 Physical Data Organization v,
7.2 Rules for Factorisation it e
7.3 Choice of Procedures for Select
7.3.1 Used Procedures i inen..
7.32 Examples e e e e e e e e e e

Extensions / Further work

Conclusions

Al ACCESS . v v e
A2 Check o e e e e e e e e e e e e
A3 Eqgtransforms L e
A4 Factorisation @ i i i i i e e e e e e e e e e e
A5 Operations o v i i e e e e e e e e
A6 ODHMIZET o v v it e e e e e e e e e e e e e e e e e
A7 Relations e e e e

"Figures

ofamoduleeditor 18
ofatermedifor e 19
rated €ITOr MEeSSAZE . . « . ¢ ¢ v v vt e e e e e e e e e e e e e 19
ically correct term (focussed) L 20
rected editingofaterm o oL 20
or of the module Optimizer 20
Query Optimization 22
raph of the Modules 24
ased in Graphical Representation 36
t over union example before and after transformation. 37
t over product example before and after transformation. 39
t over join example before and after transformation. 40
t-cascade example before and after transformation 41
n over select example before and after transformation. 42
:ct over join example before and after transformation. 44
:ct over select example before and after transformation. 46
1, choice of procedures of select operation 54
2, choice of procedures of select operation 55

'S

lumnar) repeating groups
(columnar) repeating groups

Chapter 1

Introduction

1.1 Problem Description
1.2 Outline

Chapter 2 and 3 discuss the essentials of relational databases and the characteristics and usage
of the ASF+SDF Meta-environment respectively. These chapters are included for readers that
are not familiar with those subjects. A description of the general structure of a query optimizer
is given in Chapter 4 by describing the three phases in query optimization. Also included
in this chapter are the module structure of the specification and a description of the chosen
representation of the queries. Chapters 5 through 7 give a more elaborate description of each
of the phases of optimization seperately. Extensions, further work and conclusions can be read
in Chapters 8 and 9. An appendix is included, which contains the complete specification.

1.3 Acknowledgements

Chapter 2

Relational Databases

2.1 Components of a DBMS

DataBase Management Systems (DBMSs) are highly complex, sophisticated pieces of software
which aim at providing reliable management of shared data. It is not possible to generalize
the component structure of a DBMS since this will vary considerably from system to system.
However it is possible to identify a number of key functions which are common to all DBMSs
and these will be discussed below.

At the heart of the DBMS lies the system catalogue or data dictionary, with which virtually
all other components of the system interact. The catalogue contains all meta-data for the
system, that is, a description of all data items (type, length, allowable values, etc), access
permissions and so on.

The query processor is responsible for accepting commands from users to store, retrieve,
and update data in the database. Using the information stored in the catalogue, it interprets
these requests and translates them into physical data access requests which are passed to the
operating system for processing. The efficiency of query processing is the subject of this thesis.

The process of retrieving and updating data by a user is called a transaction. A conventional
DBMS is generally assumed to support many users ”simultaneously” accessing the database
(i-e. many transactions are active at the same time). It is the responsibility of the transaction
manager of the DBMS to ensure that transactions do not interfere with each other and corrupt
the database.

One of the most important aims of database technology was to provide better backup and
recovery facilities than were provided by traditional file processing systems. Nothing is 100%
reliable; systems must be designed to tolerate failures and recover from them correctly and
reliably. It is the role of the recovery manager of the DBMS to minimize the effects of failures
on the database. There are many different causes of failure in a database environment such as
application program errors (e.g. trying to divide by zero), disk head crashes, power failures,
and operator errors. The purpose of the recovery manager is mainly to restore the database
into a state known to be consistent.

2.2 Relational Model

Classification of database management systems is generally based on how data is represented
in the conceptual scheme (i.e. the conceptual data model). There are three main approaches:

1. relational;
2. network;

3. hierarchical.

The most important model is the relational one, and since it is used througout this thesis the
discussion here will concentrate on such systems.

The relational model is a template for how data is presented to the user, how a user performs
operations on data, and how data behave when they are manipulated. The relational model
was formally introduced by Codd in 1970 (See [Fle89)).

The relational model has its roots in mathematical set theory. Furthermore, the relational
model is a step towards simplicity. Simplicity implies that the model can be described using
a few, familiar concepts. It is precisely this combination of simplicity and solid theoretical
foundation that makes the relational model so valuable and long-lasting. The simplicity allows
designers, developers, and users to communicate using terms and concepts understood by all.
The solid theoretical foundation guarantees that results of relational requests are well-defined
and, therefore, predictable.

The relational model consists of three components:

1. data structure — organization of the data, as users perceive them;
2. data manipulation — types of operations users perform on the relational data structure;

3. data integrity — set of rules that govern how relational data values behave when users
perform relational operations.

2.2.1 Data Structure

Relational data are organized by relations. Data is viewed through two-dimensional structures
known as tables or relations. Each table has a fixed number of columns called attributes, and
a variable number of rows called tuples. Each named column is associated with a domain,
where the domain (described in more detail in Section 2.2.3) is a specification of values that
may appear in a column. Table 2.1 depicts a relation containing STUDENT-information. This
relation is represented as having 2 columns (attributes) and 7 rows (tuples).

Relations have six special properties to distinguish them from non-relational (or partially
relational) tables:

1. Entries in attributes are single-valued;
. Entries in attributes are of the same type;

. Each tuple is unique;

2
3
4. The order of attributes (left to right) is insignificant;
5. The order of tuples (top to bottom) in insignificant;
6

. Each attribute has a unique name.

STUDENT

NUMBER | NAME
9012578 J. Murphy
8917788 A. Mahon
8991023 P. Farrell
9010110 P. White
9178912 M. Anderson
8811287 T. Robinson
8966453 M. Brennan

Table 2.1: STUDENT relation

COURSE

NUMBER | COURSE

9012578 database-management, algebra

8917788 database-management, expertsystems, algebra
8991023 algebra, software-engineering

Table 2.2: COURSE relation with (columnar) repeating groups

Property 1: Entries in attributes are single-valued. This property implies that at-
tributes do not contain repeating groups. Often such tables are referred to as ”"normalized”
or as being in "first normal form (1NF)”. It is important to understand the significance and
effects of this property because it is a cornerstone of the relational data structure.

Suppose we have a relation, COURSE, containing information about which students attend
which courses. A student may attend more than one course. This information can be repre-
sented in several ways; however, not all representations are consistent with the single-valued
property for relations.

One way is to require that each student is represented in the relation by one tuple. We can
then define an attribute in which you place all courses of a student. Table 2.2 shows such a
table. Note that multiple courses of a student appear as multiple values in the course attribute.

This approach is not consistent with the single-valued property of a relation, because the
course attribute contains repeating groups, which is undesirable because it complicates data
manipulation logic. Consider, for example, the complex logic of searching for student-names who
attended the database-management course. The access language must offer the user possibilities
to specify a search for a given character string (database-management) occurring anywhere
within an attribute (course), or the DBMS must be able to detect automatically when such a
search is required. Some relational operations (such as union, described later in this chapter)
might not be possible using this table layout.

Another approach is to restrict the course attribute to a single course. In this case, multiple
courses for a student are represented by multiple tuples in a relation. Table 2.3 illustrates this
concept. This approach defines a relation that fulfills the single-valued property.

The basic difference between the first and the second approach is that the first represents
repeating groups across attributes, whereas the second one represents repeating groups across

COURSE

NUMBER | COURSE

9012578 database-management
9012578 algebra

8917788 database-management
8917788 expertsystems
8917788 algebra

8991023 algebra

8991023 software-engineering

Table 2.3: COURSE relation without (columnar) repeating groups

tuples. On initial inspection, Table 2.3 may seem less intuitive. However, the absence of
columnar repeating groups simplifies expression and evaluation of relational operations.

Property 2: Entries in attributes are of the same type. In relational terms, this
property states that all values in a given attribute are taken from one domain. This property
is significant and useful. First it simplifies data access because users can make assumptions
about the type of data contained in a given attribute. Furthermore, this property simplifies
data validation, because all values in any given attribute are of the same domain.

This property, in conjunction with the first property, gives a relation a very stable structure.
It implies that every tuple in a relation has the same ”shape”: every tuple has the same number
of attributes, and each attribute contains a value from the same domain.

Property 3: Each tuple is unique. This property ensures that no two tuples in a rela-
tion are identical; there is at least one attribute (or, set of attributes) which has values that
uniquely identify specific tuples in the relation. As an example, the NUMBER attribute in the
STUDENT relation of Table 2.1 distinguishes one student from another. Such attributes are
called primary keys.

This property guarantees that every tuple in a relation is meaningful. Users can refer to
a particular tuple by specifying the primary key value. The primary key in the relation of
Table 2.3 consists of a set of two attributes (NUMBER and COURSE) because neither, by
itself, identifies a unique tuple.

Property 4: The order of attributes (left to right) is insignificant. This property
ensures that no hidden meaning is implied by the order in which attributes occur. Moreover,
because there is no information implied by a particular sequence of attributes, a user can retrieve
the attributes in any order. An obvious benefit is that the same relation can be shared by many
users and can serve a multitude of access requirements. Also, designers are free to change the
sequence in which attributes are physically stored (perhaps for performance reasons) without
affecting the meaning of data or the formulation of queries by users.

Property 5: The order of tuples (top to bottom) is insignificant. This property is
analogous to property 4, but it applies to tuples instead of attributes. The obvious benefit is
the ability to retrieve tuples of a relation in any sequence. Thus, the same relation can be

shared among users, even when the users wish to view the tuples in different sequences. Fur-
thermore, designers are free to modify the order in which tuples are physically stored {perhaps
for performance reasons) without affecting the meaning or the users’ perceptions of the data.
Whenever a logical sequence of tuples is useful for a particular access requirement, we have to
ensure that the values of one or more attributes can explicitly convey this sequencing.

Property 6: Each attribute has a unique name. Think of this property as an extension of
property 4; that is, because the sequence of attributes is insignificant, attributes are referenced
by name and not by position. In general, a attribute name need not be unique within an entire
DBMS environment or even within a given database. However, typically the attribute name
must be unique within the relation in which it appears.

2.2.2 Data Manipulation

The second component for the relational model is data manipulation, i.e. types of operations
that users can perform on relations. There are two basic types of operations: assignment of
relations to other relations (called relational assignment) and manipulation of relations using
relational operators.

The concept of relational assignment is similar to the concept of assignment statements in
a program: the result of an expression is assigned to a variable. The variable in a relational
assignment is a relation, and the expression involves relations and relational operations. Thus,
we can perform operations on relations and assign the result to another relation.

It is more interesting to look at the (seven) relational manipulation operators themselves.
Before we discuss them, observe that they have two characteristics in common. First, relational
operators are applied to and result in relations (i.e. sets of tuples and attributes). This is known
as set processing, to be distinguished from record-at-a-time (or row-at-a-time) processing. A
formal name for this set-to-set processing characteristic is closure, meaning that relational
operations are closed within the universe of relations. In other words, a relational operation
on one or more relations always produces another relation. Thus, result relations have the six
properties mentioned above as well. Closure implies that relational operators can be applied to
results of ”previous” relational operations. Hence, we can nest series of relational operations.

The second common characteristic is that relational operators are unaffected by how the
data are stored physically. Thus, the seven relational operators express functionality without
concern for (or knowledge of) technical implementation. An obvious benefit is that we can
apply relational operators without concern for storage and access techniques.

The relational operators can be divided into two groups: the traditional set operators union,
intersection, difference, and product (all are somewhat modified to operate on relations rather
than arbitrary sets); and the special relational operators selection, projection, and join.

Traditional Set Operations

The traditional set operations are union, intersection, difference, and product. For all, except
product, the two operand relations must be union-compatible: the tuples in the operand rela-
tions must have the same number and type of attributes. To keep things simple we have chosen
to insist that attributes that need to be unified, intersected, or differentiated must have the
same name.

Union: The union of two (union-compatible) relations A and B is the set of all tuples t
belonging to either A or B (or both).

10

[

SELECT FROM STUDENT WHERE NUMBER > 9000000

NUMBER | NAME
9012578 J. Murphy
9010110 P. White
9178912 M. Anderson

Table 2.4: The SELECTION operation

Intersection: The intersection of two (union-compatible) relations A and B is the set of all
tuples ¢ belonging to both A and B.

Difference: The difference between two (union-compatible) relations A and B (in that order)
is the set of all tuples ¢ belonging to A and not to B.

Product: The (Cartesian) product of two relations A and B is the set of all tuples ¢ such
that ¢ is the concatenation of a tuple a belonging to A and a tuple b belonging to B. The
concatenation of a tuple a = (a;,az,...,a,m) and a tuple b = (bpt1,0m42;- - ,bm+n) — in that
order — is the tuple t = (a1, . -,@Gm,Dm+1y- - - Omtn)-

The operations union, intersection, and difference are associative, (Cartesian) product is not.

Special Relational Operations

Selection: The algebraic selection operator (not to be confused with the SQL SELECT)
yields a ”horizontal” subset of a given relation. This subset of tuples within the given relation
satisfies the specified predicate. The predicate is expressed as a boolean combination of terms,
each term being a simple comparison that results in true or false for a given tuple by inspecting
that tuple in isolation. (If a term involves a comparison between values of two attributes within
the tuple, then those attributes must be defined within the same domain). Table 2.4 shows
an example of the selection operation, the tuples from the STUDENT-relation (Table 2.1) of
which the NUMBER-attribute is greater than 9000000 are selected.

Projection: The projection operator yields a ”vertical” subset of a given relation, the subset
obtained by selecting specified attributes, and then eliminating duplicate tuples within the
attributes selected. Table 2.5 shows an example of the projection operation. In this example
the COURSE-attribute of the COURSE-relation {Table 2.3) is projected.

Join: Two relations may be joined if each of them have an attribute drawn from a common
domain. The resulting relation contains a set of tuples, each of which is formed by the concate-
nation of a tuple from one relation with a tuple from the other relation such that they have the
same value in the common domain. Actually this definition corresponds to only one of many
possible joins — namely the join in which the ”joining condition” is based on equality between
values in the common column. This join is known as equi-join. It is also possible to define,
for example, a ”greater-than” join, a "not-equal” join, and so on — though the equi-join is
used most frequently. The result of the equi-join operation necessarily contains two identical

11

PROJECT COURSE OVER COURSENAME

COURSE
database-management
algebra

expertsysterms
software-engineering

Table 2.5: The PROJECTION operation

JOIN STUDENT AND COURSE OVER NUMBER

STUDENT.NR | STUDENT.NAME | COURSE.NR | COURSE.COURSE
9012578 J. Murphy 9012578 database-management
9012578 J. Murphy 9012578 algebra

8917788 A. Mahon 8917788 database-management
8917788 A. Mahon 8917788 expertsystems
8917788 A. Mahon 8917788 algebra

8991023 P. Farrell 8991023 algebra

8991023 P. Farrell 8991023 software-engineering

Table 2.6: The JOIN operation

columns. Table 2.6 shows an example of the (equi-)join operation. It is of course possible to
eliminate one of those two columns via the project operation; an equi-join with one of the two
identical columns eliminated is called a natural join.

2.2.3 Data Integrity

The third component of the relational model is data integrity. Meaningful data within relations
must comply with certain integrity rules. These integrity rules constrain permissible values
within the attributes of relations. Data may easily contain incorrect, incomplete, or misleading
values without such constraints. There are two general recognized rules for data integrity in
the relational model: the entity integrity rule and the referential integrity rule. Furthermore,
there are miscellaneous integrity rules. For ease of discussion, we classify these miscellaneous
rules into a third general rule, domain integrity.

The entity integrity rule dictates that no component of the primary key (the attribute or
set of attributes which values uniquely identify particular tuples) accepts null values. A null
value implies that the value for a given attribute has not been supplied — it is either unknown
or inappropriate. A primary key always identifies a unique tuple in a relation, thus its value
must be appropriate and should never be unknown.

The referential integrity rule addresses integrity of foreign keys. A foreign key is an attribute
or set of attributes in a relation that serves as a primary key in another relation. For example,
the NUMBER-attribute in the COURSE-relation is a foreign key because its values refer to
values in the NUMBER-attribute of the STUDENT-relation where the values function as a
primary key. The referential integrity rule states that, if a relation has a foreign key, then every

12

value of that foreign key is either null or matches values in the relation for which that foreign
key is a primary key.

We use the term domain integrity to describe the integrity rules for all attributes in a
relation, including primary keys and foreign keys. Formally, a domain is a logical pool of values
from which one or more attributes draw their values. We interpret domain rules to include rules
for data type, length, range-checking, default values, uniqueness, nullability, and so on. Entity
integrity and referential integrity are special cases of domain integrity. Yet, because they are
so important, they are distinguished as separate rules.

2.3 Relational Database

Although the relational model is an intellectual concept, a relational database is an implemen-
tation of that concept using DBMS technology. As the words imply, a "relational database”
inherits two sets of characteristics, one defining its relational aspect and another defining its
database meaning,.

We are now in a position to comprehend the relational aspect. A relational database com-
prises data that appear and behave to the user according to rules of the relational model. Users
perceive the data as a set of relations that obey the six properties of relations, are manipu-
lated via the seven relational operators or their equivalent, and are protected by the relational
integrity rules. Because the relational model is well-defined, this relational aspect should be
consistent across relational products.

The database aspect of relational databases is even more confusing. There is no universal
definition of a relational detabase except that it is a computerized structure for storing data
that the user regards as relations (tuples and attributes). Beyond that concept, every relational
DBMS product relies on its own interpretation of what a database is.

13

Chapter 3

ASF+SDF

The ASF+SDF Meta-environment [K1i93] is an interactive system for manipulating programs,
specifications, or other texts. The formalism used in the Meta-environment is ASF+SDF
[HHKRS9, Heng89]. It is a combination of the Algbraic Specification Formalism (ASF) [BHK87,
Hen88, BHK89] and the Syntax Definition Formalism (SDF) [HHKR89]. ASF is a formalism
that supports modularization and conditional equations. SDF has been developed to support
the definition of lexical and context-free syntax.

The Meta-environment generates both scanners and parsers from ASF+4SDF specifications
as well as term rewriting systems, thus allowing the execution of ASF+SDF specifications.
Moreover, it provides syntax-directed editors for modules in the specification, and generates
language specific syntax directed editors. The system is able to perform several static semantic
checks on the specifications, and supports the testing of specifications. It can be used to specify
arbitrary (programming) languages. This means that both syntex and semantics of a language
can be defined by this system.

3.1 The ASF+4SDF formalism
3.1.1 Syntax

The syntax of a language is defined by the lezical and context-free syntaz, which are sets of
grammar rules. The lexical syntax describes the low level structure of sentences (sequences
of characters) in terms of lexical tokens. A lexical token is a pair consisting of a sort name
and a lezeme. The former is used to distinguish classes of lexical tokens, such as identifiers
and numbers. The latter is the actual text of the token. The lexical syntax also defines which
substrings of the sentence are layout symbols or comments. A typical layout definition is:

module Layout
exports
lexical syntax
"%%4"~[\nl* [\n] -> LAYOUT
[\t\nl] -> LAYOUT
end Layout

A space, tab or newline is a layout symbol, as well as everything between double percent signs
and a new line. If tokens of sort LAYOUT are detected in a text, they are ignored.

14

The context-free syntax describes the concrete and abstract structure of sentences in a language.
The definition of context-free syntax in an SDF definition consists of declarations of context-free
functions. In their simplest form, context-free functions are declared by giving their syntax (a
list consisting of zero or more literal symbols and /or names of sorts) and their result sort.

As an example we will have a closer look at an important feature of the ASF+SDF formalism:
the list functions. Lists have a variable number of arguments. Suppose we would like to have a
function { } for the empty set, { E1 } for a set with one element, { E1, E2 } for a set with
two elements, and so on. The way to define this in ASF+SDF is:

sorts ELEMENT SET
context-free functions
u{n {ELEMENT n’n}* n}u - SET

The asterisk * indicates that the set may contain zero or more ELEMENTS, the comma is used
as a separation between the ELEMENTS. Thus, a set consists of ELEMENTS, separated by commas
and delimited by { and }.

This list notation is simply an abbreviation for the declaration of infinitely many functions
{ ... }, each with a different number of arguments. Likewise, the same (concrete) syntax could
have been obtained without using lists by the following:

sorts ELEMENT ELEMS ELEMENTS SET
context-free functions

"{" ELEMENTS "}" -> SET

~> ELEMENTS
ELEMS => ELEMENTS
ELEMENT -> ELEMS
ELEMENT "," ELEMS -> ELEMS

In order to define equations over list functions, we need list variables:

variables
Elts[123] -> {ELEMENT ","}=*
i -> ELEMENT

Here we defined E1ts1, E1ts2 and E1ts3 to be list variables, ranging over zero or more ELEMENTs
separated by commas. Variable i has been defined as a single ELEMENT.

To complete this example we will give an equation. Equations are described in more detail
in the next section.

equations
[eq1] {Elts1,i,Elts2,i,Elts3} = {Elts1,i,Elts2,Elts3}

Here we have specified in one single equation that elements of sets do not appear more than once.
Any set containing element i at least two times is equal to the set containing one ocurrence
less of i. This equation uses implicit backtracking, whereas in the alternative way of defining
the SET syntax without using lists the backtracking is to be specified explicitly (we assume all
variables have been defined correctly):

context-free functions
remove (SET) -> SET

15

add (ELEMENT , SET) -> SET
\\ Booleans will be examined later
member-of (ELEMENT , ELEMS) -> BOOL

equations

[r1] remove({}) = {}
[r2] remove({element}) = {element}

[r3] member-of (element,elems) = false

remove ({element,elems}) = add(element,remove{elems})

[r4] member-of(element,elems) = true

remove ({element ,elems}) = remove({elems})

[ai] add(element,{}) = {element}

[a2] add(element,{elems}) = {element,elems}

[m1] elementl != element2

member-of (elementl,element2) = false
[m2] member-of(element,element) = true

[m3] elementl != element2

member-of (elementl, element2,elems) = member-of (elementi,elems)

[m4] member-of(element, element,elems) = true

3.1.2 Semantics

ASF+SDF allows the use of rewrite rules, also called equations, to define the semantics. In
the last section we already saw several examples of equations to remove multiple occurrences
of elements in a set. Algebraic specifications become more powerful if conditional equations
are used. We have already seen conditional equations in the specification of the last section.
Equations [r3] and [r4] are examples of equations with positive conditions; equations [m1] and
[m3] are examples of equations with negative conditions. The idea of conditions is that the
consequence (below the bar) only holds if both sides of all conditions (above the bar) can be
proved equal or unequal.

To facilitate the description of equations having an if-then-else like character, ASF+SDF
supports the default-equation construct. Using this construct, the member-of function for the
example using list functions can be defined as follows:

16

KEYWORD FUNCTION

imports defines the names of imported modules

exports defines the names of exported items of this module
hiddens defines the names of hidden items in this module
sorts lists the sorts defined in this module

lexical syntax defines the lexical syntax

context-free syntax | lists the function declarations

priorities lists the priorities between function

variables declaring the variables used in the equation
equations listing the (conditional) equations of the module

Table 3.1: Keywords used in ASF+SDF Modules

{1] member-of(i,[Eltsl,i,Elts2] = true

[default-2] member-of (i, [Eltsi]) = false

The default-equation construct is merely an abbreviation, since it can be rewritten tc
of positive conditional equations.

3.1.3 Modules

A module in the ASF+SDF formalism may contain a number of keywords. They a1
Table 3.1.

The use of the import/export construct makes writing specifications more well-
large specifications can be split up in parts and the reusability of modules increases. A
of an ASF+SDF module is:

module Booleans
imports Layout

exports
sorts BOOL
context-free syntax
true -> BOOL
false -> BOOL
BOOL "|" BOOL -> BOOL {left}
BOOL "&" BOOL -> BOOL {left}
not "(" BOOL ")" ~> BOOL
n(" BOOL ")" -> BOOL {bracket}
variables
Bool [0-97]% -> BOOL
priorities
1" I "o ngn
equations
[Bi] true | Bool = true
[B2] false | Bool = Bool

17

[B3] true & Bool = Bool
[B4] false & Bool = false
[B5] not(false) = true
[B6] not (true) = false

end Booleans

This module imports the Layout module. The Layout module defines layout-symbols (white
space and comment recognition) using the designated sort LAYOUT.

The syntax of the Boolean language is defined by introducing a sort BOOL, which contains
two constants true and false. Furthermore, the standard Boolean functions and (represented
as &), or (represented as |) and not are defined as well as parentheses. The attribute left
declares & and | as left-associative functions and the priorities section of the definition defines
function grouping when no parentheses are present. Variable Bool has been defined of sort
BOOL and is used in the equations part. The equations define equalities on Boolean terms.

3.2 Global Structure of the Meta-environment

The ASF+SDF Meta-environment is a collection of Generic Syntax-directed Editors (GSE’s).
For each module a combination of two GSE editors, one for the ASF-part and one for the SDF-
part, can be invoked. We call such an editor a module editor, and is illustrated by Figure 3.1.

[*] Module Booleans
[] tree text expand he

imports
Layout
-~
exports
sorts BOQL
context-free syntax
true -> BOOL
false -> BOOL
BOOL "|" BOOL ~-> BODL {left}
BOOL "“&" BOOL -> BOOL {left}
not "(" BOOL ")}" -» BOOL
(" BOOL ")" -> BOOL {bracket}
variables
Bool [0-9*]* -> BOOL
priorities
WG e

equations

[B1] true | Bool = true
[B2] false | Bool = Bool
[B3] true & Bool = Bool
[B4] false & Bool = false
[B5] not (false) = true
[B6]} not (true) false

Figure 3.1: Example of a module editor

18

By editing one of the modules the complete specification may be changed. Changing the
syntax part of a module has implications for all term editors (for an example of a term editor
see Figure 3.2) depending on the module and also for all modules that import the current
module. Lazy and incremental program generation techniques take care of automatic updating
of scanner, parser, and rewriting system, if a module is modified.

The syntax and semantics of a module can be checked by invoking a term editor to create
and evaluate terms over the language defined by the module. In a term editor ordinary textual
operations can be performed, like cut and paste. As an illustration Figure 3.2 shows an arbitrary
manually edited boolean expression.

[#] Booleans : /nfs/adam/adab/zaadnoor/systeem/Booleandl]
] tree text expand help

Reduce

true & (false & flase)A

Figure 3.2: Example of a term editor

This term is syntactically checked. If the term is syntactically incorrect, the Meta-environ-
ment will generate an error-message, which will be the case for the boolean expression. The
generated error-message is shown in Figure 3.3.

[®] ASF+SDF Meta—environment
Status: [idle |

Specification Delete Edit-Module Edit-term ELLOLS
Term over Booleans (/nfs/adam/adab/zaadnoor/systeem/Bod
Eexlcal syntax error near

xpected: {true false not (}

Jf:

Figure 3.3: The generated error message

After correction of flase into false, the syntax check is performed again to see if the
term is correct. This time the system generates no error message, but instead, to indicate the
expression’s correctness, a solid line is placed around the complete term. This is also called a
focus on the text (See Figure 3.4).

Besides text editing facilities GSE offers also structure editing facilities, which are strongly
based on the syntax of the programs being edited. This form of editing is also called
em syntax directed editing The previous boolean expression can then be constructed, as illus-
trated by Figure 3.5.

When the focus is positioned at a meta-variable, the expand menu of GSE contains all
possible expansions of the meta-variable. These expansions may, again, contain meta-variables.
As can be seen a meta-variable is written as the (in this case only possible) sort BOOL, surrounded
by ”<” and ”>". Both meta-variables are replaced by the terminal false, chosen from the
expand menu, and the original expression is obtained again.

19

[Booleans : /nfs/adam/adab/zaadnoor/systeem/Booleandl]
tree text expand help

Reduce

[true & (false & false)]

Figure 3.4: A syntactically correct term (focussed)

[#]l Booleans : /nfs/adam/adab/zaadnoor/systeem/Bocleand]
tree text expand help

Reduce | \ e & {<BOOLY| & <BOOLY)

Figure 3.5: Syntax-directed editing of a term

Term editors can be customized by adding buttons, whose activation starts the evaluation
of some specified function. In this way the applications’ user-interface can be customized by
adding, for instance, a type checking or evaluation button to a term editor. As an illustration

Figure 3.6 shows a term editor of the module Optimizer, to which several user defined buttons
are added.

B Optimizer : /nfs/adam/adab/zaadnoor/systeem/Optimizer,trm iacihing

[] tree text expand help
i |

ReadaAttributes EST T,
Check *InfoStudents" == attributes: < studentnr,name, phone >

T r sortedon: < studentnr >

ransiorm indexon: < studentnr,name >,

ReadInfo "LawStudents" == attributes: < studentnr, name,phone >

sortedon: < name >

indexon: < studentnr,name >

Access

relation
Select(LawStudents.name = "Smith*,
Union("InfoStudents" <studentnr, name, phone>,
"LawStudents" < studentnr, name, phone »>))]

Figure 3.6: Term editor of the module Optimizer

20

Chapter 4
Query Optimization

Designing a query optimizer is a difficult and important task that has already received con-
siderable attention ([Kim85, Garda89]). The efficiency of the query optimizer conditions the
performance of the DBMS when performing high-level queries and thus its usability. The first
Relational Database Management Systems (RDBMSs) were not so successful because they had a
bad performance. The development of query optimizing methods have made RDBMSs popular.
This chapter describes the basic types of optimization, followed by a description of the
phases of optimization. At the end of this chapter we show the structure of our specification.

4.1 Basic Types of Optimization

Query processing techniques are usually compared on the basis of the costs of query execution
(execution cost) or on the basis of time used between the submission of a query and the receipt
of the reply (response time).

Response times can be considered essential to an organisation, for example, missed sales or
other similar opportunities due to poor response times are clearly undesirable. However, here
we will only consider the response times of the system to the query.

Ezecution cost optimizers aim to minimize the use of the (total) system resources for a query
and hence reduce its cost. The value of the objective function for the optimization process is
therefore obtained from the sum of expressions representing the consumption of the individual
system resources.

The most critical resources utilized in query evaluation in a centralized database are:

¢ CPU;
e I/O channels.

I/O channel usage contributes to the cost of loading data pages from secondary to primary
storage and it is compounded by the cost of occupying secondary storage for temporary relations
and buffers. Channels, intermediate storage, and buffers may each be a bottleneck in a system.
Bottlenecks occur whenever there is more demand for resources than can be met at a particular
time. CPU costs are often assumed to be low or even negligible in database systems, but they
can be relatively high for complex queries.

Response time optimizers aim at minimizing the response time for a query by minimization
of the time requirements of the query optimization process and the query execution. Heuristic

21

techniques are used to avoid excessive time consumption in the optimization process. The
produced query programs based on these methods are often not optimal, whereas the total
response times still may almost be optimal because heuristic optimization is fast. There exists
no way to know whether the optimal query construction has been achieved, except for very
simple queries.

It is easy to see that there could be a difference between the ’fastest’ and the ’cheapest’
execution strategies in particular cases.

4.2 Phases of Optimization

The problem of query optimization can be decomposed into several subproblems corresponding
to various phases. These problems are not independent since decisions made for one subproblem
may affect those made for another. However, to make this complex problem tractable, they are
generally treated independently in a top-down fashion. In Figure 4.1, we give three phases for
query optimizing; each of these phases solves a well-defined problem.

Relational
Algebra
Query

Check Relation Schemes

Reorganisation of the tree of Algebraic rules for

Operations reorganisation

The set of available procedures

Selection of Procedures Rules for Selection

Descriptions of data
structures

Result

(Execution Plan)

Figure 4.1: Phases of Query Optimization

22

In the first phase the structure of the query is checked. Tests that are performed here are:

e attributes used in the predicates of the selection operations must be element of the operand
relation;

¢ attributes that are projected upon by the project operations must be element of the
operand relation;

e join-attributes that are used for joining must be members of both operand relations.

The second phase consists of finding an optimal (or semi-optimal) ordering of the relational
operations. A rule of thumb used in this optimization phase: ’projections and selections should
be performed early, and joins (and other binary operations) late’. This rule applies even more
to distributed systems because large join sizes are undesirable for transfers between distributed
sites. A detailed description of this phase can be found in Chapter 6.

The third phase consists of selecting the access strategies for the operations. This choice
depends on the set of available procedures for the operations, the availability of indices, and the
sort order of tuples. The output of the third phase is an execution plan, this is an optimized
program of low-level (database) operations corresponding to the input-query. For a detailed
description of the selection of access strategies seeChapter 7.

4.3 Structure and Representation of our Specification

In this section we describe the structure and representation of our specification. We have given
the complete specification in the appendices, here we give a more abstract description of it.

4.3.1 Structure

The description of the structure of our specification is given to show the relation between the
different phases of optimization given in Section 4.2 and the modules in the specification.

Our specification consists of several modules. The import graph representing the import of
modules is given in Figure 4.2 in which M1 — M2 means: M1 is imported by M2 or, equivalently,
M2 imports M1.

The modules Layout, Booleans, Integers, and Strings are standard modules and their func-
tions are obvious (a detailed description of the Layout-module can be found in Section 3.1.1,
the Boolean-module has been discussed in Section 3.1.3).

In the Relations-module we have defined the following:

[A-Za-z] [A-Za-z0-9.]* ~> ATTRIBUTE

"<" {ATTRIBUTE ","}x* ">" -> ATTRIBUTELIST
STRING -> RELNAME
RELNAME ATTRIBUTELIST -> REL

REL ATTRIBUTELIST ATTRIBUTELIST -> EXTREL

This definition tells us that an attribute is a string of letters digits and a point, beginning
with a letter. An ATTRIBUTELIST is a list consisting of attributes separated by commas and
delimited by < and >. A REL (relation) has been defined as something that consists of a
RELNAME (a string) followed by an ATTRIBUTELIST. The last sort defined in the above definition
is a EXTREL (an extended relation). This extended relation is a relation with extra information
concerning the existence of sort orders of tuples and the availability of indices.

23

Check Eqtransforms Access

Layout Booleans Integers Strings

Figure 4.2: Import Graph of the Modules

We also defined a number of functions that operate on attributes and attributelists. These
functions can be used by modules that (directly or indirectly) import the Relation-module.

In the Operations-module the traditional set operations (Union, Intersection, Difference,
and Product) and the special relational operations (Selection, Projection, and Join) are de-
fined. These definitions use the sorts defined in the Relations-module, that is imported by the
Operations-module.

A detailed description of the Check-module, the Eqtransforms-module, and the Access-
module can be found in subsequent chapters.

4.3.2 Representation

In this section we describe how queries are represented in our specification. In the following
example we show how to define relations and how to structure a query:

scheme
"InfoStudents" == attributes: <studentnr,name,phone>
sortedon: <name>
indexon: <studentnr>,
"LawStudents" == attributes: <studentnr,name,phone>
sortedon: <name>
indexon: <studentnr>,
"Members" == attributes: <studentnr,sport>
sortedon: <>
indexon: <studentnr>
query
Select (studentnr > 9000000,
Union("InfoStudents","LawStudents"))

The scheme-part of this example defines extended relations. It consists of a number of relation-
definitions (RELDEF’s). Each relation-definition consists of a relation-name (RELNAME), followed

24

by a double =’ sign, followed by the (extended) relation information. This information consists
of three parts:

1. the string ”attributes:” followed by an ATTRIBUTELIST;
2. the string "sortedon:” followed by an ATTRIBUTELIST;
3. the string ”"indexon:” followed by an ATTRIBUTELIST.

Relation definitions are separated by commas. The sorts RELNAME and ATTRIBUTELIST are
defined in the Relations-module (see Section 4.3.1).

The query-part consists of a single query in which the relations defined in the scheme-part
are used. A query is an expression over set operations (Union, Intersection, Minus, and Product)
and/or relational operations (Select, Project, and Join) as defined in Section 2.2.2. The syntax
definitions used are:

"scheme" SCHEME "query" QUERY -> REPRESENTATION1
"scheme" SCHEME "relation" REL -> REPRESENTATION2
"ReadAttributes” " (" REPRESENTATION1 ")" -> REPRESENTATION2
"ReadInfo" "(" REPRESENTATION2 ")" -> EXTREL
{RELDEF "," }+ -> SCHEME
RELNAME "==" "attributes:" ATTRIBUTELIST
"sortedon:" ATTRIBUTELIST
"indexon:" ATTRIBUTELIST -> RELDEF
RELNAME ~> QUERY
"Union" n(u QUERY n’n QUERY ll)" -> QUERY
"Intersection" "(" QUERY "," QUERY ")" -> QUERY
"Minus" n(u QUERY u,n QUERY n)u -> QUERY
"Product” "(" QUERY "," QUERY ")" -> QUERY
"Select” "(" SELPRED "," QUERY ") => QUERY
"Project" "(" ATTRIBUTELIST "," QUERY ")" -> QUERY
"Join" "(" JOINPRED "," QUERY "," QUERY ")" => QUERY

Before the query can be transformed it is necessary to find the attributes of the relations
that are used by the query. This is done by scanning the query and extending every relation
name with the corresponding attributelist. The ReadAttributes-function accomplishes this.
This function takes as its arguments the scheme-information and the original query. It then
"strips” the query until only relation names remain. As an example of this ”stripping” we show
the function for the union-operation:

[RA1] scheme S relation Rell
scheme S relation Rel2

ReadAttributes(scheme S query Q1),
ReadAttributes(scheme S query (2)

ReadAttributes(scheme S query Union(Q1,Q2)) =
scheme S relation Union(Reli,Rel2)

The equations for the other operations look similar and can be found in the Optimizer-
module (see appendix).

At one point the query consists just of a relation name; this is the moment the corresponding
attributelist must be found. This is done using the following equations:

25

[RA8] Attributelist = Lookup(Relname,S,1)

ReadAttributes(scheme s query Relname) =
scheme S relation Relname Attributelist

[L1] Relname != Relnamel

Lookup(Relname,Relnamel == attributes: Attributelist
sortedon: Sortedon
indexon: Indexon,Int) = <>

[12] Lookup(Relname,
Relname == attributes: Attributelist
sortedon: Sortedon

indexon: Indexon, Reldefs,1) = Attributelist
[r.3] Lookup (Relname,
Relname == attributes: Attributelist
sortedon: Sortedon
indexon: Indexon, Reldefs,2) = Sortedon
[L4] Lookup(Relname,
Relname == attributes: Attributelist
sortedon: Sortedon
indexon: Indexon, Reldefs,3) = Indexon

{15] Relname !'= Relnamel

Lookup(Relname,Relnamel == attributes: Attributelist
sortedon: Sortedon indexon: Indexon, Reldefs,Int) =
Lookup (Relname,Reldefs,Int)

In the equations above attributes of a corresponding relation (name) are found using the
Lookup-function. The Check-module (see Chapter 5) takes care of the situation that the
relation-name does not occur in the scheme. Applying these functions (ReadAttributes and
Lookup) to the example at the beginning of this section gives the following result:

scheme

"Infostudents" ==
attributes: <studentnr,name,phone>
sortedon: <name>
indexon: <studentnr>,

"LawStudents" ==
attributes: <studentnr,name,phone>
sortedon: <name>
indexon: <studentnr>

"Members" ==
attributes: <studentnr,sport>
sortedon: <>

26

in
qt
Re
qt

(t

1 <studentnr>

udentnr > 9000000,
ion("InfoStudents" <studentnr,name,phone>,
"LawStudents" <studentnr,name,phone>))

in this form we can transform it using the Transform-function that is defined
sforms (see Chapter 6). Before we can choose the access strategies for the
ary to find the sort order- and index-information for the relations used by
teadInfo-function accomplishes this. This function is very similar to the
function except that it takes a relation as second parameter (instead of a
; of this function is an extended relation. If we apply this ReadInfo-function
kup-function) to our example we get the following result:

ntnr > 9000000,
("InfoStudents" <studentnr,name,phone> <name> <studentnr>,
"LawStudents" <studentnr,name,phone> <name> <studentnr>))

27

/€

Chapter 5

Check

In Section 4.2 we already mentioned that checking of the structure of a query is the first phase
in optimization. Here we will discuss this checking phase by explaining the specification of the
Check-module, and by giving some (simple) examples.

The ASF+SDF system checks the syntax automatically. So we do not have to check for
things like missing parenthesis. Also some kind of implicit type check is performed by the
system because some type information is embodied in the context-free syntax definitions. An
example of this implicit type checking is the syntax definitions of the (selection and join)
predicates. Because selection predicates (SELPRED) and join predicates (JOINPRED) have been
defined sepf{rately, the systems checks automatically if the used predicates are correct according
to the syntax definitions. Things we still have to check are:

e Undefined Relations. Undefined relations are relations that are used by a query and have
not been defined in the scheme. An example of the use of undefined relations can be
found in Section 5.1.

¢ Union-compatible Relations. This check applies to the union, intersection, and difference
operations. An example can be found in Section 5.2.

o Use of Undefined Attributes. Undefined attributes can appear in selection predicates, join
predicates and projectlists. For these three cases we have to check whether the attributes
are properly defined. Examples can be found in Section 5.3.

Instead of a fancy yet complex error message mechanism, which is beyond the scope of this
paper, we have chosen to present just simple and adequate error messages. The error messages
consist of explanatory text mixed with relevant language clauses, as in:

"Relation" RELNAME ATTRIBUTELIST "and relation" RELNAME ATTRIBUTELIST
"of the union-operation are not union-compatible" -> MSG

When the Check-function finds two relations which are not union-compatible it generates this
error message. Instead of printing RELNAME ATTRIBUTELIST the actual values are substituted.
Examples using this concept can be found in this chapter.

These messages are defined by the type MSG (see module Check in the appendix). We used
a binary operator MSG && MSG -> MSG to combine error messages. An example of the use
of this operator can be found in Section 5.3.1 where multiple undefined attributes occur in a

28

selection predicate. Only errors that occur at the lowest level are returned because if one of
the operands of a relation contains an error, it is very likely that relations at a higher level also
contain errors because these relations are using this operand information.

The main function in the Check-module, the Check-function, takes a relation as its argument
and returns the same relation if no errors can be found during the check-procedure. If an error
did occur this function returns the relation followed by a message (type MSG) explaining the
error(s).

If no errors are found with the Check-function a normalize function is applied to the orig-
inal relation. The relation is normalized to ease further optimization. A description of this
normalizing process can be found in Section 5.4.

We show the Check-function by giving several examples. All these examples use the following
scheme (because we do not need the sortedon and indexon information the corresponding lists
are empty):

scheme
"InfoStudents" == attributes: < studentnr,name,phone >
sortedon: < >
indexon: < >,
"LawStudents" == attributes: < studentnr,name,phone >
sortedon: < >
indexon: < >,
"Members" == attributes: < studentnr,sport >
sortedon: < >
indexon: < >

5.1 TUndefined Relations

First we consider a situation in which a query uses a relation which has not been defined in
the scheme. If this is the case the Lookup-function of the Optimizer-module returns an empty
attributelist. The Chck-function in the Check-module strips the query until a leaf relation,
which consists of a relation name and an attributelist, has been found. If the attributelist is
not empty this function returns the relation with the word good in front of it; otherwise an error
message indicating the missing definition of a relation is returned. The used syntax definitions
and equations are:

context-free syntax

"Chck" H] (n REL u) " -> REL
good RELNAME ATTRIBUTELIST -> REL
MSG -> REL

"Relation" RELNAME "not defined" -> MSG

equations
[3] Attributelist != <>

Chck(Relname Attributelist) = good Relname Attributelist

[4] Chck(Relname <>) =
Relation Relname not defined

29

Example
Suppose we have the following query:

query
Select(studentnr > 9000000,
Union("InfoStudents”, "MathStudents"))

If we apply the ReadAttributes-function we get:

relation
Select(studentnr > 9000000,
Union("InfoStudents" < studentnr,name,phone >,"MathStudents" < >))

Finally, the Check-function will result in:

Relation
"MathStudents"
not defined

5.2 Union-compatible Relations

For the traditional set operations union, intersection, and difference it is necessary that the
operand relations of these functions are union-compatible. As we have already stated in Chapter
2 we insist that besides the number of attributes, the names of the attributes must also be the
same (the order of attributes is irrelevant). If the operand relations are not union-compatible,
the Chck-function will return an error message indicating which operand relations of which
function are not compatible.

Example

Suppose we have the following relation (the ReadAttributes-function has already been ap-
plied):

relation
Intersection("Members" < studentnr,sport >,
Union("InfoStudents" < studentnr,name,phone >,
"LawStudents" < studentnr,name,phone >))

The Check-function will result in:

Relation
"Members"
< studentnr,sport >
and relation
"InfoStudents@LawStudents"
< studentnr,name,phone >
of the intersection-operation are not union-compatible

In this example the "InfoStudents" and the "LawStudents" relation can be unified without
difficulties. The relation name of the result is "InfoStudents@LawStudents" (this concatena-
tion of strings is done using constructor-functions). The operands of the intersection operation,
"Members" and "InfoStudents@LawStudents", are not union-compatible because the relations
have different sets of attributes.

30

5.3 Use of Undefined Attributes

Undefined attributes can appear in three places:

1. in a selection predicate;
2. in a join predicate; or

3. in a projectlist.

5.3.1 Undefined Attributes in Predicates

As stated above undefined attributes could appear in both selection predicates and join pred-
icates. In this section we look at a situation in which multiple errors occur. This can only
happen if several errors occur on the same level. In the following example we have a selection
predicate in which two attributes have not been defined.

Example

Suppose we have the following relation:

relation
Select (InfoStudents.studentnr > LawStudents.student and
LawStudents.nme = "Smith",
Product("InfoStudents" < studentnr,name,phone >,
"LawStudents" < studentnr,name,phone >))

If we apply the Chck-function we get:

The attribute
LawStudents.student
used in selection-predicate is not an attribute of relation
"InfoStudents@LawStudents"
< InfoStudents.studentnr,InfoStudents.name,InfoStudents.phone,
LawStudents.studentnr,LawStudents.name,LawStudents.phone >
&&
The attribute
LawStudents.nme
used in selection-predicate is not an attribute of relation
"InfoStudentsQLawStudents"
< InfoStudents.studentnr,InfoStudents.name,InfoStudents.phone,
LawStudents.studentnr,l.awStudents.name,LawStudents.phone >

Here we see an example of the binary && operator. All different errors are separated by this
double ”&”-sign. In this example the two attributes are undefined because we have made some

typing errors.

31

5.3.2 Undefined Attributes in Projectlists

In the following example we will find an undefined attribute in a projectlist. This attribute is
actually not undefined but this attribute is not unique. To make this attribute unique (and
legal) we have to place its relation name in front of it. The Chck-function does not mention the
attributes name and sport as undefined attributes, because these attributes are unique, they
only appear in one relation, so in this case it is allowed to skip the relation names.

The general rule for the naming of attributes is: if an attributename is unique, mention-
ing a relation name is optional, otherwise a relation name is required. In our specification
"Relname..Attribute” represents an optional relation name. ”"Relname.Attribute” represents a
necessary relation name. We construct these names using constructor functions. As an exam-
ple we give the syntax and equations of the Single-function. This function places the relation
name and a point in front of an attribute:

context-free syntax
"Single" "(" RELNAME "," ATTRIBUTE ")" -> ATTRIBUTE

RELNAME "." ATTRIBUTE "~ => ATTRIBUTE
equations
[S1] str-con(""" Charsi """) . attribute(Chars2) =
attribute(Charsl "." Chars2)

[S2] Single(Relname,Attribute) = Relname . Attribute

The specification for the construction of "Relname..Attribute” is very similar to the above
specification and can be found in the appendix. In the following error message string we find
an attributelist. This list contains all possible attributenames. As we can see the phone, name,
and sport attributes have optional relation names. For the studentnr attribute mentioning
the relation name is necessary.

Example

Suppose we have the following relation:

relation
Select(LawStudents.name = "Smith",
Project(<studentnr,name,sport>,
Product("LawStudents" < studentnr,name,phone >,
"Members" < studentnr,sport >)))

If we apply the Check-function we get:

The attribute
studentnr
of the projectlist is not defined in relation
"LawStudents@Members"
< LawStudents..phone,LawStudents..name,LawStudents.studentnr,
Members.studentnr,Members..sport >

32

5.4 Normalized Relations

If no errors were found during the check phase (the function Chck has returned a relation of the
form good Relname Attributelist a normalize function is applied to the original relation.

First the whole query is processed to build an attributelist with all attributes in their
normalized forms. So for each attribute that appears in the query we determine whether a
relationname is required or not. Using this list of normalized attribute names we process the
query again and for each attribute we check whether the attribute name is in its normalized
form. This means we have to check attributes in leaf relations, selection predicates, projectlists
and join predicates. The equation that performs this check for the project operation is given
below.

[CN7] Projectlistl = CheckAttributes(Projectlist, Attributelist)

CheckName (Project (Projectlist,Rel),Attributelist) =
Project(Projectlistl, CheckName(Rel, Attributelist))

The function CheckName processes the whole relation and for each appearance of attributes
it checks whether the attribute names are in normalized form. In the above equation the
Projectlist contains the attributes to be checked and the Attributelist variable contains
the list of normalized attribute names. Projectlistl will contain the result of function
CheckAttributes which checks and changes the attribute names if they are not in their nor-
malized forms. Finally we give an example in which we see an relation before and after the
normalization.

Example

The relation before the Normalize-function:

relation
Project (< LawStudents.name, LawStudents.studentnr >,
Product("LawStudents" < studentnr, name, phone >,
Select(sport = "Tennis", "Members" < studentnr, sport >)))

The relation after the Normalize-function has been applied:
relation
Project(< name,LawStudents.studentnr >,

Product ("LawStudents" < LawStudents.studentnr, name, phone >,
Select(sport = "Tennis", "Members" < Members.studentnr, name >)))

33

Chapter 6

Equivalence Transformations

In this chapter we describe how we have specified query transformations. We start with giving
an example to illustrate the amount of actual savings that can be obtained by query transfor-
mations. In Section 6.2 we give a graphically representation of the queries.

The rule of thumb used in query transformation is: ’projections and selections should be
performed early, and joins (and other binary operations) late’. In Section 6.3 we give a detailed
description of the transformations in which the selection-operation is involved. In Section 6.4
we describe the equivalence transformations which are based on the projection-operation.

Most examples in this chapter use the following scheme (because we don’t need the sortedon
and indexon information in this phase, the corresponding attributelists are empty):

scheme
"InfoStudents" == attributes: < studentnr,name,phone >

sortedon: < >
indexon: < >,
"LawStudents" == attributes: < studentnr,name,phone >
sortedon: < >
indexon: < >,
"Members" == attributes: < studentnr,sport >
sortedon: < >
indexon: < >

6.1 Example

We will illustrate the degree of actual savings that can be obtained by query transformations
with an example that has been taken from [Graef87].

Consider the relational schema of a database that describes employees offering computer
lectures to departments of a geographically distributed organization:

departments{dname, city, street address)
courses(cnr, chame, abstract)

lectures(dname, cnr, daytime)

Key attributes are given in italics. Assume that a user is interested in:

34

”The names of departments located in New York offering
courses on database management.”

There are 100 departments, 5 of which are located in New York. A physical block contains 5
department records. There are 500 courses, 20 of which are on database management. The
physical block size is 10 records. There are 2000 lectures, 300 are on database management,
100 are held in New York, and 20 (from 3 departments) satisfy both conditions. The physical
block size is 10 records.

Assume that the sorting time is IV *logs N, where N is the file size in blocks, and that there
is a buffer of one block for each relation. All relations are sorted on ascending key values.

There are three example strategies given in [Graef87]. Only the I/O cost is considered here.
For each step the number of (r)ead and (w)rite disk accesses are given.

e Strategy 1
1. Form the Cartesian product of the courses, lectures, and department relations.
(r: 200,000)

2. Retain the dname column of those department records, for which the cnr of courses
and lectures match, the dname of lectures and departments match,
cname = ”database management”, and city = New York (w:1)

Total: approximately 200,000 accesses.
o Strategy 2

Merge courses and lectures (r: 50+200, w: 400)
Sort the results by dname (r4+w: 400 log2400)
Merge the result with departments (r: 400+20, w: 400+400)

Select the combinations with city = ”New York”
and cname = "database management” (r:800)

oW oo

5. Keep only the dname column (w:1)
Total: approximately 6000 accesses.
e Strategy 3

1. Merge courses with lectures (r: 504200)

2. Keep only the dnames of combinations with cname = ”database management”
(w: 2)

3. Sort the dname list generated (r+w: 2)
4. Merge the result with the departments relation (r:2+420)
5. Keep only those with city = "New York” (w: 1)

Total: 277 accesses.

If we compare strategies 1 and 3 we can conclude: ” A reduction by a factor of approximately
700 has been achieved. For larger databases and more complex queries, more sophisticated
techniques may even result in even higher reductions.”

35

6.2 Graphical Representation

A general query can be converted into an equivalent set of relational algebra expressions. The
reciprocal conversion is also possible. Therefore, we have chosen to work with relational algebra
expressions.

A graphical representation of a relational algebra query is useful for manipulation. A re-
lational query can be described by a relational algebra tree/tree of operations. A relational
algebra tree is a tree describing a query. A leaf in this relational algebra tree represents a base
relation, an internal node represents an intermediate relation obtained by applying a relational
operation, and the root represents the result of the query. The data flow is directed from the
leaves to the root. Figure 6.1 shows the used symbols.

©
b

Union Project

Minus

®
\J

Select

®)

Intersection

—
O“
=

=}

Product

Figure 6.1: Symbols used in Graphical Representation

Different queries may be equivalent. Different relational algebra trees may be equivalent
as well. Since relational operations have different complexity, some trees may provide a much
better performance than others. Important factors for optimization are the ordering of relational
operations and the sizes of intermediate relations generated. Relational algebra trees can be
restructured using transformation rules. Figure 6.2 is given as an example; it is a graphical
representation of the example used in Section 4.3.2.

6.3 Processing of Selects

In the following, we use the heuristic that the select-operation reduces the size of the operand
relation and thus should be applied first.

36

RESULT
RESULT

studentnr

InfoStud

LawStud InfoStud LawStudents

Figure 6.2: The select over union example before and after transformation.

We begin the reorganization of the tree of operations by distributing select operations down
the tree, and by combining the consecutive ones and those having the same operands into
one select operation. This is done to reduce the cardinalities (number of tuples) of processed
relations as early as possible and to avoid unnecessary pipelining of tuples between operations.
By performing selections as early as possible we can save orders of magnitude in execution time,
since it tends to make the intermediate results of multistep evaluations small.

6.3.1 Select over Union, Intersection, and Minus

The first set of equivalence transforms we describe apply to queries that contain a select-
operation over an union-, intersection- or minus-operation. The underlying idea of these three
rules is the same, therefore we only present the select-over-union rule here. The rules for select
over minus (set difference) and for select over intersection can be found in the appendix. The
transformation for the select-over-union can be written down in the following way:

Expression: Select(Selpred, Union(Rell,Rel2))
Result : Union(Select(Selpred,Rell),Select(selpred,Rel2)})

By first applying the select-operation to the two operand relations we reduce the cardinality of
the intermediate results. This means that less tuples need to be unified compared to the case
where the select-operation is applied after the union-operation.

Note that distribution into one operand would be enough for the intersection- and the
minus-operation. For those two operations we could replace the second selection by the original
relation. However, it is usually at least as efficient to perform the selection as it is to work with
the original relation, because the former is a smaller set than the latter.

Next, we give an example of this select-over-union rule; see Figure 6.2 for a graphical
representation of this rule.

Example: Select over Union

query

37

Select (studentnr > 9000000,
Union("InfoStudents","LawStudents"))

gives as a result:

Union(
Select (studentnr > 9000000,
"InfoStudents"<studentnr,name,phone>),
Select (studentnr > 9000000,
"LawStudents"<studentnr,name,phone>))

6.3.2 Select over Product
In [U1182] the principle of this transformation rule is described by the following three rules:

1. Select(selpred, Product(Rell,Rel2)) = Product(Select(Selpred,Rell),Rel2)
This rule can be applied if all attributes used in the selection predicate are attributes of
the first operand relation (Rell).

2. Select(Selpred, Product(Rell,Rel2)) =

Product(Select(Selpred1,Rell), Select(Selpred2,Rel2))
This rule can be applied if Selpredl involves only attributes of the first operand relation
(Rell), and Selpred2 involves only attributes of the second operand relation (Rel2).

3. Select(Selpred, Product(Rell,Rel2)) =

Select(Selpred2, Product(Select(Selpred1,Rell),Rel2))
This rule can be applied if Selpredl involves only attributes of the first operand relation
(Rell), but Selpred2 involves attributes of both Rell and Rel2.

We used these rules from [Ull82] to specify the more general rule:

Expression: Select(Selpred, Product(Rell,Rel2))
Result : Select(Selpred3, Product(Select(Selpred1,Rell), Select(Selpred2,Rel2))

where Selpredl involves only attributes of Rell, Selpred?2 involves only attributes of Rel2, and
Selpred3 involves attributes of both Rell and Rel2.

The specification of this equivalence transform is rather complicated, therefore we give a
more elaborated explanation of it. The equation we are going to examine:

[TRANS7] Selpredl = Conjunctive(Selpred),
Selpred2 = Distribute(Selpredi,Rell),
Selpred3 = Distribute(Selpredi,Rel2),
Selpred4 = Collect(Selpredl,Selpred2,Selpred3),
Selpredl != Selpred4

Trans(Select (Selpred,Product(Rell,Rel2))) =
Trans (Select (Selpred4,
Product(Select(Selpred2,Rell),Select(Selpred3,Rel2))))

38

Predicate F (in the specification we used selpred) must be in the conjunctive normalform, in
order to be able to divide it in the tree parts as mentioned above. In the above equation
the first condition (selpredi = Conjunctive(selpred)) assigns the conjunctive normalform
of predicate F (selpred) to the predicate-variable selpredl. The second condition (selpred2
= Distribute(selpredl,rell)) selects those parts of predicate F (which is now in conjunc-
tive normalform) that only use attributes of the first operand of the product-operation (rell).
The third condition does the same for the second operand of the product-operation. The
fourth condition (selpred4 = Collect(selpredl,selpred2,selpred3)) retrieves those sub-
predicates that only involves attributes of both relations. The last condition is added to prevent
an endless loop. By adding selpredl != selpred4 we make sure this equation is applied only
when some parts of the original selection predicate can be moved down the tree (past the
product-operation).

Next, we give an example of this select-over-product rule; see also Figure 6.3 for a graphical
representation of this rule.

Example: Select over Product
query
Select (InfoStudents.studentnr = Members.studentnr and sport = "Tennis",
Product ("InfoStudents","Members"))

gives as a result:

Select(InfoStudents.studentnr = Members.studentnr,
Product("InfoStudents" < studentnr,name,phone >,
Select(sport = "Tennis","Members" < studentnr,sport >)))

RESULT RESULT

InfoStudents.studentnr

Members.studentnr

InfoStudents.studentns
Members.studentnr

and

sport = tennis

InfoStudents Members InfoStudents Members

Figure 6.3: The select over product example before and after transformation.

39

6.3.3 Select over Join

The underlying idea of the select-over-join transformation is very similar to the idea of the select-
over-product transformation. Therefore we will only give an example of this transformation.
See Figure 6.4 for a graphical representation of this rule.

Example: Select over Join

query
Select (InfoStudents.studentnr < 9000000 and sport = "Tennis",

Join(InfoStudents.studentnr = Members.studentnr,
"InfoStudents","Members")))

gives as a result:

Join(InfoStudents.studentnr = Members.studentnr,
Select (InfoStudents.studentnr < 9000000,
"InfoStudents" < studentnr,name,phone >),
Select(sport = "Tennis",
"Members" < studentnr,sport >))

RESULT RESULT

InfoStudents.

P

InfoStudents.
studentnr

Members.studentnr

InfoStudents.

InfoStudents. studentnr SP;';;S
stud;mm‘ <9000000
Members.studentnr
InfoStudents Members InfoStudents Members

Figure 6.4: The select over join example before and after transformation.

6.3.4 Select (cascade)

This rule is used to combine consecutive select-operations into one by combining the predicates.
The select-predicate is defined as a boolean combination of terms, therefore it is sufficient to
take the conjunction of the predicates.

Ezpression: Select(selpred?,Select(selpred,r))

40

Result : Select((selpredl and selpred2),r)

An example to illustrate this rule (see also Figure 6.5 for the graphical representation):

Example: Select (cascade)

query
Select(sport = "tennis",

Select (studentnr > 9000000, "Members"))

gives as a result:

Select((sport = "tennis" and studentnr > 9000000,
Members < studentnr,sport >)

RESULT
RESULT
sport=tennis
sport=tennis
and
studentnr >
900000
studentnr >
9000000
Members

Members

Figure 6.5: The select-cascade example before and after transformation

6.3.5 Union, Intersection, and Minus over Select

The next set of transformations we discuss are transformations in which several selects have
the same operands. In these cases it is possible to combine these selects into one operation.
This combining is done using the following rules:

Ezpression: Union(Select(Selpred1,Rel),Select(Selpred2,Rel))
Result : Select((Selpredl or Selpred2),Rel)

Ezxpression: Intersection(Select(Selpred1,Rel),Select(Selpred2,Rel)
Result : Select((Selpredl and Selpred2,Rel)

Ezxpression: Minus(Select(Selpred1,Rel),Select(Selpred2,Rel))
Result : Select((Selpred1 and not Selpred2),Rel)

The following example shows such a transformation (see also Figure 6.6).

41

Example: Union over Sélect

query

Union(Select(studentnr > 9000000, "InfoStudents"),

Select(name < "Smith","InfoStudents")))

gives as a result:

Select(studentnr > 9000000 or name < "Smith",
"InfoStudents" < studentnr,name,phone >)

RESULT

O
) |5

InfoStudents InfoStudents

RESULT

studentnr >

name < Smith

InfoStudents

Figure 6.6: The union over select example before and after transformation.

6.4 Processing of Projects

In the following we use the heuristic that the project-operation reduces the size of the operand

relation and thus should be applied first.

6.4.1 Project over Union, Intersection, and Difference

The project-over-union rule is very similar to the select-over-union rule (see Section 6.3.5) and

therefore we will not discuss this rule any further.

It is not possible to push the project-operation over the intersection- or difference-operation.
This is not possible because tuples that are the same after a project-operation could have been
different tuples before the project-operation. An example to clarify this:

Example: Project over Intersection

In this example we use the following relations:

scheme
"InfoStudents" == <studentinr,name>,
"LawStudents" == <studentnr,name>

We are going to compare the following two queries:

42

queryl:
Project(<name>,Intersection("InfoStudents","LawStudents"))

query2:
Intersection(Project(<name>,"InfoStudents"),
Project (<name>,"LawStudents"))

Suppose we have the following tuples:

"InfoStudents"
9012578, J. Murphy
8917788, A. Mahon
8991023, P. Farrell

"LawStudents"
9178912, M. Anderson
8917788, A. Mahon
8976523, P. Farrell

If we apply queryl to our tuples the answer would consist of one tuple (A. Mahon) but if we
apply query?2 to the same tuples the answer would consist of two tuples (A. Mahon, P. Farrell).
This happens because we have two tuples in which the first attribute (studentnr) is different,
but the second attribute (name) is the same. Using queryl the two tuples are different when
the intersection-operation has to be applied, but if we use query2 the tuples only consist of the
name-attribute (due to the project-operation) and the two tuples are the same.

6.4.2 Project over Join

This rule is similar to the project-over-union rule. Only one extra operation has to be performed.
The original attributelist has to be split into two attributelists.

Ezpression: Project(Attributelist,Join(Joinpred, Rell,Rel2))
Result : Join(Joinpred, Project(Attributelist!,Rell), Project(Attributelist2,Rel2))

In this result Attributelistl consists of attributes that are element of both the original
attributelist and the attributelist of relation Rell. Attributelist2 consists of attributes that
are element of both the original attributelist and the attributelist of relation Rel2. In our
specification this splitting is done using the MakeSub-function:

context-free syntax
"MakeSub" "(" ATTRIBUTELIST "," REL ")" -> ATTRIBUTELIST

equations
[M1] MakeSub{<>,Rel) = <>

M2] ElemOf (Attribute,Attributelist) = false

MakeSub(<Attribute,Attributes>,Relname Attributelist) =
MakeSub(<Attributes>,Relname Attributelist)

43

[M3] ElemOf (Attribute,Attributelist) = true

MakeSub(<Attribute,Attributes>,Relname Attributelist) =
Add(Attribute, MakeSub(<Attributes>, Relname Attributelist))

This MakeSub-function checks for every attribute in the attributelist (the first parameter)
whether this attribute is also an element of the attributelist of the operand relation (the second
parameter). If attributes meet this requirement, they are added to the resulting attributelist.

The following example is used as an illustration of the project over join rule (see also
Figure 6.7). Notice that both the attributes of the join predicate must be an element of the
projectlist for the transformation to be possible.

Example: Project over Join
query
Project(< InfoStudents.studentnr, sport, Members.studentnr >,

Join(InfoStudents.studentnr = Members.studentnr,
"InfoStudents","Members"))

gives as a result:

Join(InfoStudents.studentnr = Members.studentnr,
Project(<InfoStudents.studentnr>, "InfoStudents"<studentnr,name,phone>),
Project(<Members.studentnr,sport>,"Members"<studentnr,sport>))

RESULT RESULT

InfoSindents,

studentnr
sport.
Members.studentnr

InfoStudents.
studeninr

Members.

studentnr

InfoStudents.
studeatnr

I I

InfoStudents Members InfoStudents Members

g

Figure 6.7: The project over join example before and after transformation.

6.4.3 Project (cascade)

The project-cascade rule combines all consecutive projects into one operation. The transfor-
mation rule is of the form:

Ezpression: Project(attributelistl, Project(attributelist2,r))
Result : Project(attributelisti,r)

44

The condition involved in this transformation rule is that the attributes of attributelistl
must be a subset of the attributes of attributelist2. But if we look at the equation that takes
care of this transformation we can see that this rule has no condition at all. This condition has
been omitted because the Check-module (see Chapter 5) already checks whether the operations
are legal.

Example: Project (cascade)

query
Project(< studentar >,
Project(< studentnr, phone >,"InfoStudents"))

gives as a result:

Project(< studentnr >,
"InfoStudents” < studentnr,name,phone >)
6.4.4 Project over Select

This last transformation rule we discuss is the project-over-select rule. The purpose of this rule
is to reduce the degree (the number of attributes) of the operand relation as soon as possible.
This rule is of the form:

Expression: Project(attributelist1,Select(selpred,rel))
Result : Project(attributelist!,Select(selpred, Project(attributelist2,rel))

Attributelist2 is attributelist1 extended with attributes that appear in the selection predicate
but were not a member of attributelistl. If all attributes used in the selection predicate were
already a member of attributelistl, the last project-operation is not necessary . The result
becomes then:

Result : Select(selpred, Project(attributelist2,rel))

In the next example we show the transformation rule for both cases (see also Figure 6.8 for
the second example).

Example: Project over Select

Example 1:

query
Project(< studentnr, name >,
Select(studentnr > 9000000,"InfoStudents™))
gives as a result:

Select(studentnr > 9000000,
Project(< studentnr, name >, "InfoStudents" < studentnr, name, phone>)

Example 2:

45

query
Project(< ;(studentnr > 9000000, "InfoStudents"))

gives as a result

Project(< nam ;udentnr > 9000000,
Project(< 1e >,"InfoStudents" < studentnr, name, phone >))

RESULT
f name §
studentnor >
9000000

studentnr
name

InfoStudents

Figure 6.8: ir select example before and after transformation.

46

Chapter 7

Access Strategies

The selection of access strategies for operations is a critical phase in query optimization. In this
phase important decisions affecting data transfer are made. Access strategies for the operations
participating in the query are selected by selecting one of the alternative procedures for these
operations.

In this chapter we give a description of how we have specified the access strategies for
the select operation. This description uses the algorithm given in [Jar81]. Before we give
this description we first discuss the physical data organization (Section 7.1). In Section 7.2
we describe a function called factorisation, this is a technique to determine which part of a
(selection) predicate can be evaluated using indices.

In Section 7.3 we discuss the selection of access strategies for the select operation. We
have chosen to restrict our description to the select operation only because this is the most
interesting operation of our set of relational algebra operations. It is an interesting operation
because there are many different possibilities to apply selection predicates on operand relations.
We have not described (or specified) the processing of the other relational algebra operations
to limit the size of the paper.

The algorithm used to determine the access strategies processes the tree of operations twice.
The first pass (up-pass) proceeds from the leaves to the root and for each operation different
possible sort orders of records (which represent tuples) are inferred from different possible sort
orders of input records. During the second pass (down-pass), proceeding from the root down to
the leaves, sort orders and index usage are fixed by selecting procedures, and adding auxiliary
procedures (for sorting and index generation) to the tree.

7.1 Physical Data Organization

The basic problem in physical database representation is how to store a file consisting of records,
where each record has an identical format. A record format consists of a list of field names,
where each field consists of a fixed number of bytes and has a fixed data type. A record contains
(specific) values for each field. The typical operations we desire to perform on a file are:

1. insert a record,
2. delete a record,

3. modify a record, and

47

4. find a record with a particular value in a particular field, or a combination of values in a
combination of fields.

The complexity of organizing a file for storage depends on the combination of these opera-
tions that we intend to perform on the file. If operation 4 (find a record) is permitted we also
need to consider whether desired records are specified by value, by location, or a combination
of both, and whether only one or several different fields may be involved in different lookups.

A file system using disk storage usually divides the disk into equal sized physical blocks.
Each physical block (or just block) has an address, which is an absolute address on the disk.

A file is stored in one or more blocks, where one or more records are stored in each block.
We assume there is a file system that translates file names into the absolute addresses of the
blocks occupied by the file. A block may contain bytes that are not used by any record. Some
of these are really unused. Others are devoted to the block header, a collection of bytes at
the beginning of the block used for special purposes. For example, the header may contain
information about the connection of this block to other blocks used to store the same file, or
information about how the individual bytes of the block represent the file in question.

Records have an address, which is either the absolute address of the first byte of the record
on the disk, or a combination of the address of the block and an offset, the number of bytes in
the block preceding the beginning of the record.

In our specification we allow indices for some particular set of fields, that do not necessarily
form the key of the file in question. This kind of indices are called secondary indices. A
secondary index for field F is a relationship between domain D and a set of records of the file
in question. We can represent a secondary index as a logical file with format:

VALUE (RECORD)*

An instance of VALUE is a value from D (in our specification this is an integer or a string).

An instance of RECORD could be either

1. A pointer to a record with the associated value in field F, or

2. A key value for a record with the desired value in field F.

If option 1 is used, the pointer could point to the subblock containing the record, or it could
point to the block containing the record, in which case a search of the block would be necessary
to find the desired record or records. In either case, the records of the file are consequently
pinned, at least within the block.

With option 2 records of the main file are not pinned by pointers from the secondary index.
However, compared with option 1, option 2 will required several additional block accesses to
perform a lookup of a record given its key value, while option 1 goes directly to that record, or
at least to its block.

7.2 Rules for Factorisation

Factorisation is a technique to find out which part of a (selection) predicate can be evaluated
using indices. By factorisation we convert the function F into the form:

48

F = factor & residue,

where the factor contains the part of the selection predicate that can be evaluated by using
indices and the residue contains the part of the selection predicate that can not be evaluated
by using indices. The rules in this section define the function

fac(F,Q) = (Fl)FZ):

where F is the original predicate, Q is a set of indices, predicate F; contains sub-predicates of
F that only use attributes that are also element of set Q. Predicate F; is the residue.

Rule 1: Fand @ = F and F or § = 0, where @ is the empty predicate.

Rule 2: if F is unary (contains only one f)
then if f € Q,
then fac(F,Q) = (F,0).
else fac(F,Q) = (0,F).

Rule 3: fac({F),Q) = fac(F,Q).

Rule 4: if F = G and H, where fac(G,Q) = (G1,G2) and fac(H,Q) = (H;,Ha),
then fac(F,Q) = (G; and H;, G2 and Hy).

Rule 5: if F = G or H, where fac(G,Q) = (G1,G2) and fac(H,Q) = (H;,Hz),
then fac(F,Q) = (G; | Hi, (G1 or Hy) and (Gz or H;) and (G; or Hy)).

Looking at the above rules we see two unexpected things. The first strangeness is found in
Rule 1 where we see that the and of some sub-predicate F with the empty predicate @ gives as
a result sub-predicate F, while following the normal definitions of the and function we should
expect the empty predicate as a result. But if we look at what the term F and () stands for we
see that applying some sub-predicate F and the empty predicate (this means no condition) to
some relation is the same as applying only sub-predicate F to that relation. The same kind of
explanation can be given for the term F or @ = §. If records have to meet some condition F or
this record has to meet no condition at all is the same as meeting no condition at all.

The second strangeness is found in Rule 5. We see that sub-predicates G; and H;, which
can be evaluated using indices occur in the residue. It may be possible that either subpredicate
G or subpredicate H can be evaluated using indices but not both. Using the or operator this
means that we can not evaluate G or H using indices.

The fac-function has been specified in module Factorisation (see Appendix)

Example

Suppose we have the following scheme and query:

scheme
"SportStudent" == attributes: < studentnr, name, sportl, sport2 >
sortedon: < >
indexon: < studentnrm, name, sportl >
query

49

Select(studentnr > 9000000 and (name > "Smith" and
(sportl = "Tennis" or sport2 = "Tennis")), "SportStudent")

We can rewrite the selection predicate into the form:
F= fl and (f2 and (f3 or f4))

and indices exist on f;, f; and f3. Hence, let Q = { f1, 2, f3 }. Some factorisations:

fac(f3 or f4,{f1,£2,£f3}) =
(£3 or 0,(f3 or f4) and (0 or 0) and (0 or £4)) =
(0,(£3 or £4))

fac((£f3 or f4),{f1,f2,£f3}) =
fac(f3 or f4,{f1,£2,£f3}) =
(0,(£f3 or £4))

fac(f2 and (f3 or f4),{f1,£2,£f3}) =
(f2 and 0,0 and (£3 or f4)) =
(£2,(£f3 or £4))

fac((f2 and (£3 or f£4)),{f1,£f2,£3}) =
fac(f2 and (f3 or f4),{f1,£2,£3}) =
(£2, (£3 or f4))

fac(fi and (£f2 and (£3 or £4)),{f1,£2,£3}) =
(£f1 and £2, 0 and (£f3 or £4)) =
(£f1 and £2, (£3 or £4))

Using the above factorisations, it is easy to see that the result is:
fac(F,Q) = (fl and {2, (f3 or f4)),

If we rewrite this predicate using the original values we can conclude that studentnr > 9000000
and name > "Smith" can be evaluated using indices, while this is not possible for (sportl =
"Tennis" or sport2 = "Tennis").

7.3 Choice of Procedures for Select

A select operation often radically reduces the cardinality of its operand relation. If the blocks on
which the records corresponding to the (few) tuples of the result are located could be determined
using an index, considerable reductions in data transfer can be achieved. If this is not possible,
the complete file corresponding to the operand relation must be read.

First we consider the possible sort orders of stored files. Let Gr (where R refers to the
operand file) be a set of attributes corresponding to the fields of R. If R is a stored file,
Gp contains one attribute if access in sorted order is possible; otherwise Gg is empty. This
information has to be specified in the scheme part that belongs to the query that has to be
optimized (see module Optimizer in the Appendix). If R is an intermediate result, Gg may
contain several attributes according to alternative access strategies for operations which produce

R.

50

Up-pass

For select procedures we know that the order of records in the result will be the same as the
order of the input records. Hence, in the up-pass we write for selects of the tree:

Gr = Gg,

where T refers to the output relation. In our specification we use the following equation to
specify this rule:

[ACCESS4] Extrell = Up(Extrel)

Up(Select(Selpred,Extrel,Sortedon,Indexon)) =
Select(Selpred, Extrell, GetSorted(Extrell),Indexon)

This rule specifies that the Sortedon attributelist after the select operation contains the same
attributes as the Sortedon attributelist of the operand of the select operation. The Sortedon
attributelist of the operand is found using the GetSorted-function (which is a simple lookup
procedure).

We need to pass this information to ”higher” operations to be able to determine the access
strategies. For example, suppose we have a join with one of its arguments an select operation.
If we know that the record of the operands of the join operation (in our case a select operation)
are sorted on certain fields (attributes), we can use this information to choose appropriate
procedures for the join operation. An example of how the sort order information can be used
in the up-pass of the join operation (which has not been specified):

If both operands of the join being examined are leaves of the tree, we use:
Gr = if degree(R) = 1 and (zs € Is or = (zs € Gg))
then Gg
else if degree(S) = 1 and (zg € Ig or - (zr € GRr))
then G
else { zg, zs }.

where:
e zp, zs are the attributes used in the join predicate,

Gpr, Gg are the sortedon attributelists of the operands,

1R, Is are the indexon attributelists of the operands,

degree(R) = 1, tests whether R is unary or not. A relation is unary when it contains only
one attribute.

Down-pass

During the down-pass of the select operation, the attribute(s) of Gt specify the preferred sort
order(s) of records. If the records of the operand file cannot be accessed in one of the required
orders (eg. Gr (NGr = 0), the output of the select procedure have to be sorted by an added
sort procedure. If the required order can be obtained without sorting, we write, for operations
not at a leaf of the tree:

51

Gr=Gr[)Gr

In this way the operations towards the leaves are informed of the required sort order. In our
specification equations [ACCESS5e] and [ACCESS5f] specify this rule.

Normally, if indices exist (this can only be the case if the operand of the select operation is
a leaf relation), only a part of the select operation can be evaluated using an indices. The rest
of the index must be evaluated after records located via indices are moved into main storage.
To find the maximal subsets of the predicate that may be evaluated using indices, the rules for
factorisation must be applied (see Section 7.2).

If an elementary predicate to be evaluated via index is of the form z 6 constant, procedure
H1 will be chosen. If the elementary function is of the form z 6 z; (i = 1,2,...,n and i # j),
procedure H2 will be chosen. Both produce lists of record identifiers (pointers to records or key
values of records) by processing the indices.

Procedures H1 and H2 operate on elementary predicates and the factor to be evaluated
via indices may contain several elementary predicates connected with and and or operators.
To overcome this problem each conjunction is substituted by an intersection (procedure I1),
and each disjunction is substituted by an union (procedure Ul). Both may be implemented by
efficient merge procedures if the record identifiers produced by H1 and H2 are sorted. The whole
factor may be evaluated in this way. Given the resulting list of record identifiers, procedure
REAL fetches the corresponding relations.

To evaluate the residual predicate yielded by factorisation, procedure RAJ is used. This
procedure processes its operand once and applies predicate F on each record to produce the
result. If no indices exist in the operand file or none of them is of use, only one RAJ procedure
is required for evaluation. With the procedures H1, H2, REAL and RAJ access strategies for
all selects can be determined in the down-pass.

In our specification we first check if the operand of the selection predicate is a leaf relation
using condition IsLeave(Eztrel) = true. This check is performed because normally indices only
exist for stored files (and not for intermediate results). If this condition is met, the existence of
indices in the operand file is checked (GetIndez(Extrel) # <>. If this is the case the factorisation
function is applied:

(Selpredl, Selpred2) = Fac(Selpred, Indexon)

where Selpred] contains the part of the selection-predicate that can be evaluated using indices
and Selpred2 contains the part of the selection-predicate that can not be evaluated using indices.

If the factorisation function results in (NULL, Selpred2) where Selpred2 # NULL, this means
that none of the existing indices are of use for the (original) selection predicate Selpred. In this
case procedure RAJ is selected to perform the select operation (equation [ACCESS5b]).

If the factorisation function results in (Selpred1, NULL) where Selpred1 # NULL, this means
that the whole predicate Selpred can be evaluated using indices. Here we choose procedure
REAL to perform the select operation. If Selpredl consists of several elementary predicates,
function RewritePred will find the right procedures to perform the selections.

If both Selpredl and Selpred2 contain parts of the original predicate, we first have to ap-
ply procedure REAL to Selpredl, followed by procedure RAJ to perform the selections that
can not be done using indices. If Selpredl consists of several elementary predicates function
RewritePred will find the right procedures to perform the selections.

It must be noted that factors found to be evaluated via indices do not always lead to reductions

52

in data transfer. If the factor is of the form z < constant, and the identifiers of the records
meeting this criterion are evenly distributed over the blocks of the file, we must in the worst
case read the whole file plus the index. Generally, factors of the form:

F =1 and f, and ... and {, and (F’),

where f1,£2,...,fn are all of the form z = constant and F’ is the residue {(with possible or con-
nectors), will lead to considerable reductions in data transfer when evaluated using indices.

7.3.1 Used Procedures

procedure H1(F,R)

(assumption: F is of the form "z 6 constant” and there ezists an index on field z of file R)
Read the index on z and apply function F for each value. If the criterion is met, write the record
identifiers (RIDs) of the corresponding records as its result.

procedure H2(F,R)
(assumption: F is of the form "z 6 z;” and there exists indices on both fields z; & z; of file R)
Read the indez on z and examine for each value, whether there are values in the other index
(on z;) which meet the criterion. If this is the case, intersect the corresponding sets of RIDs
and return the result.

procedure REAL(RIDs,R)
Fetch the blocks of R which contain records identified in the set of RIDs.

procedure RAJ(F,R)
Process file R in the order it is accessed, apply function F on each record and write the records
that meet the criterion as its the result.

procedure SORT(z,R)
This procedure sorts file R on field z using the methods supported by the operating system.

procedure I11(RIDs1,RIDs2)
Efficient merge procedure for the intersection operation supported by the operating system.

procedure U1(RIDs1,RIDs2)
Efficient merge procedure for the union operation supported by the operating system.

7.3.2 Examples
Examplel

Suppose we have the LawStudents relation with indices on the studentnr and name attributes.
The file in which the LawStudents records are stored is sorted on the studentnr attribute.
Assume that a user is interested in all LawStudents with name is ”Smith” and phone greater
than 123456. We can find these using the following scheme and query:

scheme
"LawStudents" == attributes: < studentnr,name,phone >

53

sortedon: < studentnr >
indexon: < studentnr,name >

query
Select(name = "Smith" and phone > 123456, "LawStudents")

After applying the Check, Transform and ReadInfo functions to this query we get the following
result:

Select(name = "Smith" and phone > 123456,
"LawStudents” < studentnr,name,phone > < studentnr > < studentnr,name >,
< >, <)

In the above temporary result we see two empty attributelists. These two lists serve to store
information about possible sort orders and index usage during the up- and down-pass. If we
apply the Access function we get the following result:

Procedure "RAJ" (phone > 123456 ,
Procedure "REAL" ([Procedure "Hi" (name = "Smith" ,
[Index on < name > of "LawStudents"])] ,
["LawStudents"]))]

We can use the index on the name attribute of the LawStudents relation using procedure
H1. There exists no index on the phone attribute, so we have to apply procedure RAJ to
test the records of the LawStudents file on this subpredicate. See Figure 7.1 for a graphical
representation of this example.

RESULT RESULT

RAJ (phone > 123456)

name = "Smith"

and REAL
phone > 123456 / \
HI (name = "Smith") LawStudents
LawStudents I
Index on
<name> of
LawStudents

Figure 7.1: Example 1, choice of procedures of select operation

Example2

Using the scheme information of example 1 we want to evaluate the following query:

query
Select (name

name

"Smith" or
"Jones" and phone > 123456, "LawStudents")

54

The result of the function Fac will be:

(name = "Smith" or name = "Jones" , name = "Smith" or phone > 123456)

Here we see that subpredicate name = "Smith" appears in the residue of the factorisation
function though an index exists for the name attribute. The reason to do this is to restrict the
number of records as early as possible by selecting records with value ”Smith” or value " Jones”
in the name-field using an index. Then among the those records another selection is made; if
the value in the phone-field is greater than 123456 or the value in the name-field is ”"Smith” the
records are selected. This last selection has to be done without the use of indices. The chosen
procedures are (see Figure 7.2 for a graphical representation of this example):

[Procedure "RAJ" (name = "Smith" or phone > 123456,
Procedure "REAL" ([Procedure "Ui" (

[Procedure "H1" (name = "Smith" ,
[Index on < name > of "LawStudents"])] ,
[Procedure "H1" (name = "Jones" ,

[Index on < name > of "LawStudents"]) 1) 1,
["LawStudents"])) 1]

RESULT RESULT

RAJ (name = “"Smith" or phone > 123456)

name = "Smith T
or
{name = "Jones"
and REAL
phone > 123456) / \
Ul LawStudents
LawStudents / \
H1 (name = "Smith") H1 (name = "Jones")
Index on Index on
<name> of <name> of
LawStudents LawStudents

Figure 7.2: Example 2, choice of procedures of select operation

55

ions /

(

r9

1sions

57

Appendix A

A.1 Access

imports Factorisation(4-4)
exports
sorts EXTREL PLAN
context-free syntax
“Process” “(” EXTREL “)”
« Up” “(” EXTREL “)”
“Down” “(” EXTREL “” ATTRIBUTELIST ¢, ATTRIBUTE

REL ATTRIBUTELIST ATTRIBUTELIST

«© Union” “(” EXTREL “,” EXTREL “,”
ATTRIBUTELIST ¢” ATTRIBUTELIST “)”
“Intersection” “(” EXTREL “,” EXTREL ¢,
ATTRIBUTELIST “” ATTRIBUTELIST ¢)”
“Minus” “(” EXTREL “’” EXTREL “,”
ATTRIBUTELIST “” ATTRIBUTELIST “)”
“Product” “(” EXTREL “,” EXTREL “”
ATTRIBUTELIST “” ATTRIBUTELIST “)”

“Select” “(” SELPRED “” EXTREL “”
ATTRIBUTELIST “” ATTRIBUTELIST ¢)”
“Project” “(* ATTRIBUTELIST “” EXTREL “,”
ATTRIBUTELIST “” ATTRIBUTELIST “)”

“Join” “(” JOINPRED “” EXTREL “” EXTREL “”
ATTRIBUTELIST “” ATTRIBUTELIST “)”

“[” {PLAN “’”}* “]”

RELNAME

“Indez on” ATTRIBUTELIST “of’ RELNAME
“Procedure” STRING

“Procedure” STRING “(” SELPRED “” PLAN “)”
“Procedure” STRING “(” PLAN “” PLAN “)”
“Procedure” STRING “(” ATTRIBUTE “” PLAN «)”

“RewritePred” “(” SELPRED “” EXTREL “)”

58

AN
TREL
AN

TREL

TREL

.TREL

.TREL

{TREL

TREL

(TREL

(TREL

AN
AN
AN
AN
AN
IAN
AN

AN

“GetSorted” “(” EXTREL “)” — ATTRIBUTELIS

“GetInder” “(” EXTREL “)” — ATTRIBUTELIS
“IsLeave” “(” EXTREL “)” — BOOL
variables

Extrel [0-9]* — EXTREL
Sortedon [0-9]%*— ATTRIBUTELIST
Indexon [0-9]%* — ATTRIBUTELIST
equations
main function:

(acci¥suess(Extrel) = Down(Up(Extrel), < >, < >)
Up-pass for leave-relation:

iaccessz) Up(Relname Attributelist Sortedon Indexon) =
Relname Attributelist Sortedon Indexon

Down-pass for leave-relation:

Indexon; # < >

Down(Relname Attributelist Sortedon Indexon, Sortedon;, Indexon;) =
[Indez, on Indexon; of Relname]

[ACCESS3a]

(accesssb) Down(Relname Attributelist Sortedon Indexon, Sortedon;, < >) =

[Relname]

Up-pass for select-operation:

Extrel; = Up(Extrel)

Up(Select(Selpred, Extrel, Sortedon, Indexon)) =
Select(Selpred, Extrely, GetSorted(Extrel), Indexon)

[ACCESS4]

Down-pass for select-operation: no indices exist:

IsLeave(Extrel) = true,
Indexon; = GetIndex(Extrel),
Indexony; = < >

Down(Select(Selpred, Extrel, Sortedon, Indexon), Sortedon;, Indexon;) =
[Procedure “RAJ” (Selpred, Down(Extrel, Sortedon, Indexon))]

[ACCESS5a)

no indices are of use:

IsLeave(Extrel) = true,
Indexons; = GetIndexz(Extrel),
Indexons # < >,
(Selpred, , Selpred,) = Fac(Selpred, Indexons),
Selpred;, = NULL

Down{Select(Selpred, Extrel, Sortedon, Indexon), Sortedon;, Indexon;) =
[Procedure “RAJ”(Selpred, Down(Extrel, Sortedon, Indexon))]

[ACCESSS5b]

59

part of predicate can be evaluated using indices:

IsLeave(Extrel) = true,
Indexony; = GetIndez(Extrel),
Indexony; # < >,
(Selpred,, Selpred,) = Fac(Selpred, Indexon;),
Selpred; # NULL,
Selpred, # NULL
Down(Select(Selpred, Extrel, Sortedon, Indexon), Sortedon,, Indexon;) =
[Procedure “RAJ”(Selpred,, Procedure “REAL”
(RewritePred(Selpred, , Extrel),
Down(Extrel, Sortedon, < >)))]

[ACCESS5d]

whole predicate can be evaluated using indices:

IsLeave{ Extrel) = true,
Indexon,; = GetIndez(Extrel),
Indexons # < >,
(Selpred,, Selpred,) = Fac(Selpred, Indexon,),
Selpred; # NULL,
Selpred, = NULL
Down(Select(Selpred, Extrel, Sortedon, Indexon), Sortedon; , Indexon;) =
[Procedure “REAL”
(RewritePred(Selpred,, Extrel),
Down(Extrel, Sortedon, < >))]

[ACCESS5d]

no indices are of use:

IsLeave(Extrel) = false,
Sortedon, = Intersect{Sortedon, < Attribute, Attributes >),

Sortedons, = < >
[ACCESS5e]

Down(Select(Selpred, Extrel, Sortedon, Indexon),
< Attribute, Attributes > , Indexon;) =
[Procedure “SORT” (Attribute,
[Procedure “RAJ”(Selpred, Down(Extrel, Sortedon, Indexon))])]

no indices are of use:

IsLeave(Extrel) = false,
Sortedony = Intersect(Sortedon, Sortedon;),
Sortedong # < >
Down(Select(Selpred, Extrel, Sortedon, Indexon), Sortedon;, Indexon;) =
[Procedure “RAJ” (Selpred, Down(Extrel, Sortedon;, Indexon))]

[ACCESSS5f]

Up-pass for other operations [ACCESS6] nog uitwerken Down-pass for other operations [AC-
CESS7] nog uitwerken Function RewritePred. Determine which select-procedure we should
choose:

[R1]RewritePred(Attribute Op Str, Extrel) =
[Procedure “H1"(Attribute Op Str, Down(Extrel, < >, < Attribute >))]

60

(R2]RewritePred(Attribute Op Int, Extrel) =
[Procedure “H1”(Attribute Op Int, Down(Extrel, < > , < Attribute >))]

[R3]RewritePred(Attribute; Op Attributey, Extrel) =
[Procedure “HZ(Attribute; Op Attributes, Down(Extrel, < > , < Attribute;, Attribute; >))]

[R4]RewritePred(Selpred, and Selpred,, Extrel) =
[Procedure “I1” (RewritePred(Selpred, , Extrel), RewritePred(Selpred,, Extrel))]

{Rs]Rewrite Pred(Selpred; or Selpred,, Extrel) =
[Procedure “UI” (RewritePred(Selpred; , Extrel), RewritePred(Selpred,, Extrel))]

Function GetSorted: get Sortedon attributelist from an EXTREL

(1] GetSorted(Relname Attributelist Sortedon Indexon) = Sortedon
[G2] GetSorted(Select(Selpred, Extrel, Sortedon, Indexon)) = Sortedon

Function Getlndex: get Indexon attributelist from an EXTREL

[¢1] Getindez(Relname Attributelist Sortedon Indexon) = Indexon
¢2] GetIndez{Extrel) = < > otherwise

IsLeave function for EXTREL

1] IsLeave(Relname Attributelist Sortedon Indexon) = true
2] IsLeave{ Extrel) = false otherwise
A.2 Check
imports Operations(®-%) Relations(A-7)
exports
sorts MSG
context-free syntax
“Check” “(” REL “)” — REL
“Chck;)’ “(77 REL “)” — REL
good RELNAME ATTRIBUTELIST — REL
REL “error(s)” MSG — REL
MSG -+ REL
MSG “&&” MSG — MSG

“Theyattribute” ATTRIBUTE
“of sthe projectlist is not defined in relation”
RELNAME ATTRIBUTELIST — MSG

61

“The,attributes” ATTRIBUTELIST
“of the projectlist ;are ot defined, in relation”
RELNAME ATTRIBUTELIST

“The,attribute” ATTRIBUTE
“used, ;iny selection-predicate is not an,attribute of relation”
RELNAME ATTRIBUTELIST

“Relation” RELNAME “not defined’

“Theattribute” ATTRIBUTE
“ysedin join-predicate is not, anyattribute of srelation”
RELNAME ATTRIBUTELIST

“Relation” RELNAME ATTRIBUTELIST “and,relation”
RELNAME ATTRIBUTELIST

“of.,the union-operation, are not union-compatible”

“Relation” RELNAME ATTRIBUTELIST “and_relation”
RELNAME ATTRIBUTELIST

“of. theintersection-operation,are not union-compatible”

“Relation” RELNAME ATTRIBUTELIST “and_relation”
RELNAME ATTRIBUTELIST
“of jtheminus-operation,are not union-compatible”

“ConcatName” “(” RELNAME “” RELNAME ¢)”
RELNAME “@” RELNAME

“NecName” “(” RELNAME ATTRIBUTELIST “”
RELNAME ATTRIBUTELIST “)”

“NewList” “(” RELNAME ATTRIBUTELIST “,” ATTRIBUTELIST «)”

“OptName” “(" RELNAME “” ATTRIBUTELIST «)”

“Single” “(” RELNAME “” ATTRIBUTE)”
RELNAME “” ATTRIBUTE
“Double” “(” RELNAME “” ATTRIBUTE “)”
RELNAME “.” ATTRIBUTE

“HasName” “(” ATTRIBUTE)"
“HasSingleName” “(” ATTRIBUTE “)”
“HasDoubleName” “(" ATTRIBUTE)

“CheckElemOf “(” ATTRIBUTE “” ATTRIBUTELIST “)”
“CheckList” “(” ATTRIBUTELIST “” ATTRIBUTELIST “)”
“SubList” “(” ATTRIBUTELIST “” ATTRIBUTELIST “)”
“Sub” “(” ATTRIBUTE “” ATTRIBUTELIST “)”

“RName’ “(” ATTRIBUTE “)”
“RemName” “(” ATTRIBUTELIST “)”

“SingleToDouble” “(” ATTRIBUTE “)”

62

— MSG

— MSG
— MSG

— MSG

— MSG

— MSG

— MSG

— RELNAME
— RELNAME

— ATTRIBUTELIST
— ATTRIBUTELIST
— ATTRIBUTELIST

— ATTRIBUTE
— ATTRIBUTE
— ATTRIBUTE
— ATTRIBUTE

— BOOL
— BOOL
— BOOL

— BOOL

— ATTRIBUTELIST
-+ ATTRIBUTELIST
— ATTRIBUTELIST

— ATTRIBUTE
— ATTRIBUTELIST

— ATTRIBUTE

“RDouble” “(” ATTRIBUTE “)”

— ATTRIBUTE

“RemDouble” “(” ATTRIBUTELIST “)” — ATTRIBUTELIS
“RDoubleName” “(” ATTRIBUTE “)” — ATTRIBUTE
“RemDoubleName® “(” ATTRIBUTELIST “)” — ATTRIBUTELIS

“Normalize” “(” REL “)”
“NO’I‘mLiSt” “(17 REL “)”

— REL
— ATTRIBUTELIS

“NewName” “(” ATTRIBUTELIST “,” ATTRIBUTELIST “)” — ATTRIBUTELIS

“CheckName” “(” REL “” ATTRIBUTELIST “)” — REL

“CheckAttribute” “(” ATTRIBUTE “” ATTRIBUTELIST “)” — ATTRIBUTE

“CheckAttributes” “(” ATTRIBUTELIST “” ATTRIBUTELIST “)” — ATTRIBUTELIS

“CheckPred” “(” SELPRED “” ATTRIBUTELIST “)” — SELPRED
variables

Chars [123|— CHARx
Msg [0-9]x — MSG

equations
Check function: if the query/relation is correct the normalized query/relation is returned,
otherwise a message explaining the error is returned.

Chck(Rel) = good Relname Attributelist

(1]

Chck(Rel) = Msg
12 Check(Rel) = Msg

Check(Rel) = Rel error(s) Msg

(8]
{7
18]
(9]
{10]

(11]

Check(Rel) = Normalize(Rel)

Attributelist # < >

[3]

[4}Chck(Relname < >) =
Relation Relname not defined

Chck(Union{Rel;, Rely))

Chck{ Intersection(Rel;, Rely))
Chck(Minus(Rely, Rek))

Chck(Product(Rel;, Rely))
Chck{Select(Selpred, Rel))

Chck(Project(Projectlist, Rel))
Chck(Join(Joinpred, Rel,, Rely))

Chck{Relname Attributelist) = good Relname Attributelist

Union(Chck(Rel;), Chck(Rely))
Intersection(Chck(Rel,), Chck(Relz))

= Minus(Chck(Rel,), Chck(Relz))

Product(Chck(Rely), Chck(Rel,))
Select(Selpred, Chck(Rel))

Project(Projectlist, Chck(Rel))
Join(Joinpred, Chck(Rel,), Chck(Rel))

63

Ch

tersection/Minus: Check if the used relations are Union-compatible.

:mDoubleName(Attributelist;),
:mDoubleName(Attributelist,)) = true,
Relname = ConcatNeme(Relname;, Relname,),
Attributelisty = OptName(Relname;, Attributelist;),
Attributelisty = OptName{Relname,, Attributelist,),
Attributelist; = Add(Attributelists, Attributelisty)

ion(good Relname; Attributelist;, good Relname, Attributelist;) =
1 Relname Attributelists

Equal(RemDoubleName(Attributelist,),
RemDoubleName(Attributelist,)) = false

jood Relname; Attributelist;, good Relnames Attributelists) =
1 Relname; Attributelisty
stion Relname, Attributelisty of the union-operation are not union-compatible

mDoubleName(Attributelist,),
mDoubleName(Attributelists)) = true,
Relname = ConcatNeme(Relname;, Relname,),
Attributelists; = OptName(Relname;, Attributelist,),
Attributelisty = OptName(Relname,, Attributelist,),
Attributelist; = Add(Attributelists, Attributelist,)

action(good Relname; Attributelist;, good Relname, Attributelisty) =
‘elname Attributelists

Equal(RemDoubleName(Attributelist,),
RemDoubleName(Attributelisty)) = false

ition(good Relname, Attributelist;, good Relname; Attributelisty) =
1 Relname; Attributelist;

ation Relname, Attributelists of the intersection-operation are not union-compatii

:mDoubleName(Attributelist),
:mDoubleName(Attributelisty)) = true,
Relname = ConcatName(Relname,, Relname,),
Attributelist; = OptName(Relname,, Attributelist;),
Attributelisty = OptName(Relname,, Attributelists),
Attributelists = Add{ Attributelists, Attributelisty)

wus(good Relname; Attributelist;, good Relname, Attributelist;) =
d Relname Attributelists

Equal(RemDoubleName(Attributelist,),
RemDoubleName(Attributelisty)) = false

good Relname; Attributelist;, good Relnames Attributelisty) =
n Relname; Attributelist,
ation Relname, Attributelisty of the,minus-operation are not union-compatible

64

ame = ConcatName(Relname;, Relname,),
lists = NecName(Relname; Attributelist,, Relnamey Attributelisty)

K good Relname, Attributelist;, good Relname, Attributelist;) =
:2Ilname Attributelists

sheck if the attributes used in the selection-predicate are either attributes of
f the operand relation or attributes of the extended operand relation.

heckElemOf(Attribute, Attributelist) = true

Attribute Op Str, good Relname Attributelist) =
elname Attributelist

CheckElemOf{ Attribute, Attributelist) = false

Attribute Op Str, good Relname Attributelist) =
tribute Attribute
wselection-predicate is not,any, attribute of relation Relname Attributelist

CheckElemOf{ Attribute, Attributelist) = true
ttribute Op Int, good Relname Attributelist) = good Relname Attributelist

CheckElemOf(Attribute, Attributelist) = false

Attribute Op Int, good Relname Attributelist) =
tribute Attribute
wselection-predicate is not ,any attribute of ,relation Relname Attributelist

CheckElem Of(Attribute;, Attributelist) = true,
CheckElemOf(Attributey, Attributelist) = true

Attribute; Op Attribute,, good Relname Attributelist) =
elname Attributelist

CheckElemOf{ Attribute,, Attributelist) = false,
CheckElemOf{ Attributey, Attributelist) = true
Attribute, Op Attributey, good Relname Attributelist) =
ttribute Attribute;
nuselection-predicate,is not,an, attribute of relation Relname Attributelist

CheckElemOf{ Attribute,, Attributelist) = true,
CheckElemOf(Attributey, Attributelist) = false

Attribute; Op Attributes, good Relname Attributelist) =
ttribute Attributes
nuselection-predicate, is not, any attribute, of yrelation Relname Attributelist

65

CheckElemOf(Attribute; , Attributelist) = false,
CheckElemOf Attributey, Attributelist) = false
Select(Attribute; Op Attributes, good Relname Attributelist) =
The, attribute Attribute;
used, in, selection-predicate,is, not an,attribute,of yrelation Relname Attributelist
£964 The attribute Attributey
useding selection-predicate is not an attribute,of srelation Relname Attributelist

[SELS]

Select(Selpred;, good Relname Attributelist) = good Relname Attributelist,
Select(Selpred,, good Relname Attributelist) = good Relname Attributelist

Select(Selpred; and Selpred,, good Relname Attributelist) =
good Relname Attributelist

[SEL9]

Msg = Select(Selpred, , good Relname Attributelist),
Select(Selpred,, good Relname Attributelist) = good Relname Attributelist

[SEL10] Select(Selpred, and Selpred,, good Relname Attributelist) = Msg

Msg = Select(Selpred,, good Relname Attributelist),
Select(Selpred, , good Relname Attributelist) = good Relname Attributelist

Select(Selpred, and Selpred,, good Relname Attributelist) = Msg

[SEL11]

Msg; = Select(Selpred,, good Relname Attributelist),
Msg, = Select(Selpred,, good Relname Attributelist)

Select{Selpred, and Selpred,, good Relname Attributelist) =
Msg, €66 Msg,

[SEL12]

Select(Selpred, , good Relname Attributelist) = good Relname Attributelist,
Select(Selpred,, good Relname Attributelist) = good Relname Attributelist

Select(Selpred; or Selpred,, good Relname Attributelist) =
good Relname Attributelist

[SEL13]

Msg = Select(Selpred, , good Relname Attributelist),
]Select(Selpredz, good Relname Attributelist) = good Relname Attributelist
4

Select(Selpred, or Selpred,, good Relname Attributelist) = Msg

[SEL1

Msg = Select(Selpred,, good Relname Attributelist),
Select(Selpred;, good Relname Attributelist) = good Relname Attributelist

[SEL13] Select(Selpred; or Selpred,, good Relname Attributelist) = Msg
Msg;, = Select(Selpred,, good Relname Attributelist),

SELI6] Msg, = Select{Selpred,, good Relname Attributelist)

SEL16

Select(Selpred; or Selpred,, good Relname Attributelist) =
Msg, &6 Msg,

66

t: check if the attributes that are projected upon are attributes of the at-
operand relation.

sst{ Projectlist, Attributelist) = < >,
Projectlist, = SubList(Projectlist, Attributelist)

Project(Projectlist, good Relname Attributelist) =
good Relname Projectlist,

Projectlist, = CheckList{ Projectlist, Attributelist),
Projectlist, = < Attribute >

=#(Projectlist, good Relname Attributelist) =

ittribute Attribute

uprojectlistyisynot defined jingrelation Relname Attributelist

Projectlist, = CheckList(Projectlist, Attributelist),
Projectlist; = < Attribute,, Attributey, Attributes >

:t{ Projectlist, good Relname Attributelist) =

ittributes Projectlist,

wprojectlist are not,defined, in relation Relname Attributelist

1eck if the left attribute is an attribute of the first relation and the right one
e second relation.

Attributelist3 = NewList(Relname, Attributelist;, Attributelist,
Attributelisty = NewList{ Relname, Attributelisty, Attributelist;
slemOf(Attribute;, Attributelists) = true,
slemOf(Attributey, Attributelisty) = true,
Relname = ConcatName(Relname;, Relnames),
Attributelists = Add(Attributelists, Attributelist,)

.ttribute; = Attributey, good Relname, Attributelist;, good Relname, Attributelisty)
elname Attributelists

Attributelist; = NewList{Relname, Attributelist;, Attribu. sty
Attributelisty = NewList(Relname, Attributelisty, Attributelist;
flemOf(Attribute,, Attributelistz) = false,
JlemOf(Attributes, Attributelisty) = true
\ttribute; = Attribute,, good Relname;, Attributelist;, good Relname, Attributelists)
ttribute Attribute;
nujoin-predicate,is,not any, attribute of srelation Relname; Attributelistz

Attributelisty = NewList{Relname; Attributelist,, Attributelisty
Attributelisty = NewList(Relname, Attributelisty, Attributelist;
SlemOf(Attribute; , Attributelists) = true,
SlemOf(Attributes, Attributelisty) = false

\ttribute; = Attributes, good Relname, Attributelist;, good Relname; Attributelists)
ttribute Attributes
nyjoin-predicate, is,not,anyattribute of, relation Relname, Attributelisty

67

Attributelist; = NewList{ Relname; Attributelist;, Attributelist:
Attributelisty = NewList{ Relname, Attributelist,, Attributelist.

CheckElemOf(Attribute;, Attributelists) = false,

CheckElemOf{ Attributes, Attributelisty) = false

Join(Attribute; = Attributes, good Relname; Attributelist;, good Relname; Attributelists)

The, attribute Attribute;

used, in join-predicate, is not,an attribute of relation Relname; Attributelists

6 Theattribute Attributey

used, in_join-predicate is not an,attribute, of srelation Relname; Attributelist,

[3014]

If an error is found return this error (Get the error at the lowest level)

[ERRnion(Msg, Rel) = Msg
[ErRRD/nion(Rel, Msg) = Msg
(ERRAntersection{ Msg, Rel) = Msg
[ERRdntersection(Rel, Msg) = Msg
[ErRRMinus(Msg, Rel) = Msg
(ERRdYinus(Msg, Rel) = Msg
[ERRFroduct(Msg, Rel) = Msg
{ERR#roduct{ Rel, Msg) = Msg
[ERRHelect(Selpred, Msg) = Msg

[ERRBroject(Attributelist, Msg) = Msg
(ERRUpin(Joinpred, Msg, Rel) = Msg
(ERR1bpin(Joinpred, Rel, Msg) = Msg

NecName/NewList function: these functions check if relationnames belonging to an attribute
are optional or not.

(Nec1])NecName(Relname, Attributelist;, Relname, Attributelisty) =

Add(NewList(Relname; Attributelist;, Attributelisty),
NewList(Relnamey Attributelisty, Attributelist;))

INEwNewList(Relname < > , Attributelist) = < >

HasName(Atiribute) = false,
ElemOf(Attribute, RemName(Attributelist)) = false,
Attribute; = Double(Relname, Attribute)

NewList(Relname < Attribute, Attributes > , Attributelist) =
Add(Attribute,, NewList(Relname < Attributes > , Attributelist))

[NEW2)

HasName(Attribute) = false,
ElemOf(Attribute, RemName(Attributelist)) = true,
Attribute; = Single(Relname, Attribute)

NewList(Relname < Attribute, Attributes > , Attributelist) =
Add(Attribute;, NewList(Relname < Attributes > , Attributelist))

[NEW3]

68

HasDoubleName(Attribute) = true,
ElemOf(RName(Attribute), RemName(Attributelist)) = false

NewList(Relname < Attribute, Attributes > , Attributelist) =
Add(Attribute, NewList(Relname < Attributes > , Attributelist))

[NEW4

HasDoubleName(Attribute) = true,
ElemOf{ RName(Attribute), RemName(Attributelist)) = true,
Attribute; = RDouble(Attribute)

NewList(Relname < Attribute, Attributes > , Attributelist) =
Add(Attribute; , NewList(Relname < Attributes > , Attributelist))

[NEWS5]

HasSingleName(Attribute) = true

NewList{ Relname < Attribute, Attributes > , Attributelist) =
Add(Attribute, NewList(Relname < Attributes > , Attributelist))

[NEWS§]

ol

OptName function: this function places the "Relname..” in front of attributes if attributes has

no relname yet (the relation name is optional).

jopTptName(Relname, < >) = < >

HasName(Attribute) = false,
Attribute; = Double{ Relname, Attribute)

OPT
(orr2] OptName(Relname, < Attribute, Attributes >) =
Add(Attribute;, OptName(Relname, < Attributes >))
HasName(Attribute) = true
[OPT3]

OptName(Relname, < Attribute, Attributes >) =
Add(Attribute, OptName(Relname, < Attributes >))

Single function: this function places ”Relname.” in front of the attribute.

(s1]str-con(“”” Chars; “””) . attribute(Charsy) =
attribute(Chars; “.” Charss)

(s2] Single(Relname, Attribute) = Relname. Attribute

1]

Double function: this function places ”Relname..” in front of the attribute.

p1]str-con(“”” Chars; “””) .. attribute(Chars,) =

attribute(Chars; “ “.” Chars,)

2] Double{ Relname, Attribute) = Relname .. Attribute

HasName function, this function checks if an attribute has a relationname in front of it (either
"Relname..” or "Relname.”).

HasSingleName(Attribute) = true
HasName(Attribute) = true

[HN1

69

HasDoubleName(Attribute) = true
HasName(Attribute) = true

[HN2]

[aNs|HasName(Attribute) = false otherwise
HasSingleName function, this function checks if an attribute has "Relname.” in front of it.

Attribute = attribute(Chars; “.” Chars,),
HasSingleName(attribute(Chars,)) = false,
:]HasSingleNa,me(attribute(Charsy)) = false
H1

HasSingleName(Attribute) = true

a2] HasSingleName(Attribute) = false otherwise
HasDoubleName function, this function checks if an attribute has ”Relname..” in front of it.

Attribute = attribute(Chars; “.” “.” Charsy)
HasDoubleName(Attribute) = true

[H1]

a2] HasDoubleName(Attribute) = false otherwise

ConcatName function: this function concatenates two relation names and places a @-character
between them.

[cNo]str-con(“"” Chars; “””) @ str-con(*”” Chars, “"”) =
str-con(“”” Chars; “@” Chars; “"")

{ocN1]ConcatName(Relname;, Relname;) = Relname; @ Relname,

CheckElemOf function: this function looks if the attribute from the selection predicate is an
attribute from the extended attributelist or from the attributelist in which the optional rela-
tionnames are removed.
ElemOf(Attribute, RemDouble(Attributelist)) = true

CheckElemOf(Attribute, Attributelist) = true

[CEO1]

ElemOf(Attribute, RemDoubleName(Attributelist)) = true
CheckElemOf(Attribute, Attributelist) = true

[CEO2]

[cEoFheckElem Of Attribute, Attributelist) = false otherwise

CheckList function: this function looks which attributes from the first parameter aren’t at-
tributes from the extended attributelist (2nd parameter) or from the second parameter in
which the optional relationnames are removed

[cL1} CheckList(< > , Attributelist) = < >

70

CheckElemOf(Attribute, Attributelist) = true

oL CheckList(< Attribute, Attributes > , Attributelist) =
CheckList(< Attributes > , Attributelist)

(oL3) CheckElemOf(Attribute, Attributelist) = false

CL3

CheckList(< Attribute, Attributes > , Attributelist) =
Add(Attribute, CheckList(< Attributes > , Attributelist))

SubList function: this function selects attributes that are element of the project-li
without (optional) relname).

(sL1] SubList(< > , Attributelist) = < >

HasName(Attribute) = false,
Attributelist; = Sub(Attribute, Attributelist)

SubList(< Attribute, Attributes > , Attributelist) =
Add(Attributelist; , SubList(< Attributes > , Attributelist))

[SL2]

HasName(Attribute) = true,
ElemOf(Attribute, Attributelist) = true

SubList(< Attribute, Attributes > , Attributelist) =
Add(Attribute, SubList(< Attributes > , Attributelist))

[SL3]

HasName(Attribute) = true,
Attribute, = SingleToDouble(Attribute),
ElemOf(Attribute,, Attributelist) = true,
Attributelist;, = Sub(RName(Attribute), Attributelist)

SubList(< Attribute, Attributes > , Attributelist) =
Add(Attributelist;, SubList(< Attributes > , Attributelist))

[SL4]

Sub function.

[s11 Sub(Attribute, < >) = < >

Attribute = RDoubleName(Attribute;)

Sub(Attribute, < Attribute;, Attributes >) =
Add(Attribute;, Sub(Attribute, < Attributes >))

[s2]

Attribute # RDoubleName({ Attribute,)

Sub(Attribute, < Attribute;, Attributes >) =
Sub(Attribute, < Attributes >)

{s3]

RName function: remove all relname information of an attribute.

(gRN1]RName(attribute(Chars; “.” Chars;)) =
RName(attribute(Charsz))

71

[RN2]RName(Attribute) = Attribute otherwise
RemName function: remove all relname information of all attributes in the attributelist.

[RNSiRemName(< >) = < >

[RNS2]RemName(< Attribute, Attributes >) =
Add(RName(Attribute), RemName(< Attributes >))

RDoubleName function: if the attribute is of the form ”Relname..attribute” change it to ”at-
tribute.

[RDN1]RDoubleName(attribute(Chars; “.” “.” Charsy)) =
attribute(Chars,)

[RDNR DoubleName(Attribute) = Attribute otherwise

RemDoubleName function: if there are attributes of the form ”Relname..attribute” in the
attributelist change them to ”attribute”.

{eDNflgmDoubleName(< >) = < >

{rDNS2)RemDoubleName(< Attribute, Attributes >) =
Add(RDoubleName(Attribute), RemDoubleName(< Attributes >))

SingleToDouble function: this function changes an attribute of the form "Relname.attribute”
to "Relname..attribute.

(sTD1)Single ToDouble(attribute(Chars; “.” Charsy)) =
attribute(Chars; “” “.” Chars,)

RDouble function: if the attribute is of the form ”Relname..attribute” change it to ”Rel-
name.attribute.

[RD1]RDouble(attribute(Charsy “.” “.” Charsy)) =
attribute(Chars, “.” Charsy)

[RD2]RDouble(Attribute) = Attribute otherwise

RemDouble function: if there are attributes of the form ”Relname..attribute” in the attributelist
change them to ”Relname.attribute”.

[RDsiRemDouble(< >) = < >

{RDs2] RemDouble(< Attribute, Attributes >) =
Add(RDouble(Attribute), RemDouble(< Attributes >))

72

Normalize function: this function normalizes the query. Only necessary relationnames are put
in front of the attribute. This is done to simplify (further) optimizing.

Attributelist = RemDoubleName(NormList(Rel))
Normalize(Rel) = CheckName(Rel, Attributelist)

[NORM1]

OptName(Relname, Attributelist)

NL1) NormList(Relname Attributelist)

[NL2] NormList(Union(Rel;, Relz)) = NormList(Rel;)
(NL3] NormList(Intersection(Rel;, Relz)) = NormlList(Rel,)
(NLa] NormList(Minus(Rel;, Rely)) = NormList(Rel;)

Attributelist; = NormList(Rel,),
Attributelist; = NormList(Relz),
Attributelisty; = NewName(Attributelist,, Attributelisty),
Attributelisty = NewName(Attributelisty, Attributelist;)

NormList(Product(Rel,, Rely)) = Add(Attributelists, Attributelisty)

[NL5]

NormList(Rel)
NormList(Rel)

NL6] NormList{ Select{ Selpred, Rel))
[NL7] NormList{ Project(Attributelist, Rel))

Attributelist); = NormList(Rel,),
Attributelisty = NormList(Relz),
Attributelist; = NewName(Attributelist,, Attributelists),
Attributelisty = NewName(Attributelists, Attributelist;)

NormList(Join(Joinpred, Rel;, Rely)) = Add(Attributelists, Attributelists)

[NLS]

NewName function

(NN1]JNewName(< > , Attributelist) = < >

ElemOf{ RDoubleName(Attribute), RemDoubleName(Attributelist)) = false

[Nzl NewName(< Attribute, Attributes > , Attributelist) =
Add(Attribute, NewName(< Attributes > , Attributelist))
ElemOf{ RDoubleName(Attribute), RemDoubleName(Attributelist)) = true,
- Attribute, = RDouble(Attribute)
NN3

NewName(< Attribute, Attributes > , Attributelist) =
Add(Attribute;, NewName(< Attributes > , Attributelist))

CheckName function
Attributelist, = OptName{Relname, Attributelist),
Attributelists = CheckAttributes(Attributelists, Attributelist;)

CheckName(Relname Attributelist, Attributelist;) =
Relname Attributelists

[CN1]

73

Ch

ve(Union(Rely, Rely), Attributelist) =
Vame(Rel;, Attributelist), CheckName(Rely, Attributelist))

r1e(Intersection(Rely, Rely), Attributelist) =
‘heckName(Rel;, Attributelist), CheckName(Rely, Attributelist))

1e(Minus(Rel;, Rely), Attributelist) =
Vame(Rel,, Attributelist), CheckName(Rely, Attributelist))

1e(Product(Rel;, Rely), Attributelist) =
:Name(Rel,, Attributelist), CheckName(Relz, Attributelist))

d, = CheckPred(Selpred, Attributelist)

:me(Select(Selpred, Rel), Attributelist) =
Jdpred,, CheckName(Rel, Attributelist))

t, = CheckAttributes(Projectlist, Attributelist)

:me(Project{ Projectlist, Rel), Attributelist) =
Projectlist; , CheckName(Rel, Attributelist))

\ttribute;; = CheckAttribute(Attribute,, Attributelist),
\ttributesy = CheckAttribute(Attributey, Attributelist)

me(Join(Attribute; = Attributes, Rely, Rely), Attributelist) =
:ributeu = Attribute22,
eckName(Rel,, Attributelist), CheckName(Rel,, Attributelist))

1

{ = CheckAttribute(Attribute, Attributelist)

Pred(Attribute Op Str, Attributelist) =
wte; Op Str

1 = CheckAttribute(Attribute, Attributelist)

Pred(Attribute Op Int, Attributelist) =
wite; Op Int

11 = CheckAttribute(Attribute,, Attributelist),
a2 = CheckAttribute(Attributey, Attributelist)

-ed(Attribute; Op Attributey, Attributelist) =
te;; Op Attributess

1(Selpred, and Selpred,, Attributelist) =
Ipred,, Attributelist) and CheckPred(Selpred,, Attributelist)

74

[cps] CheckPred(Selpred,; or Selpred,, Attributelist) =
CheckPred(Selpred,, Attributelist) or CheckPred(Selpred,, Attributelist)

CheckAttribute function

[cAa1]CheckAttribute(Attribute, < Attribute, Attributes >) =
Attribute

Attribute; = RDoubleName(Attribute)

CheckAttribute(Attribute, < Attribute;, Attributes >) =
Attribute,

[CA2]

Attribute; = RDouble(Attribute)

CheckAttribute(Attribute, < Attribute;, Attributes >) =
Attribute;

[CA3]

Attribute; = RName(Attribute)

CheckAttribute(Attribute, < Attribute;, Attributes >) =
Attribute;

[CA4]

[cA4] CheckAttribute(Attribute, < Attribute;, Attributes >) =
CheckAttribute(Attribute, < Attributes >) otherwise

CheckAttributes function

[casiCheckAttributes(< > , Attributelist) = < >

[cAs2) CheckAttributes(< Attribute, Attributes > , Attributelist) =

Add(CheckAttribute(Attribute, Attributelist),
CheckAttributes(< Attributes > , Attributelist))

A.3 Eqtransforms

imports Operations(4-5)

exports
context-free syntax
“Transfo,rm” “(” REL “)” — REL
“Detrans” “(” REL “)” — REL

hiddens
context-free syntax
[14 Trans” “(” REL “)” — REL
“Uses” “(” SELPRED ¢” ATTRIBUTELIST “)” — ATTRIBUTELIST
“NULL” — SELPRED

75

“Conjunctive” “(” SELPRED “)” — SELPRED
“Distribute” “(” SELPRED “,” REL “)” — SELPRED
“Distribute!” “(” SELPRED “,” REL “)” — SELPRED
“Collect” “(” SELPRED “” SELPRED “” SELPRED “)” — SELPRED
“Collect!” “(* SELPRED “” SELPRED “,” SELPRED “)” — SELPRED

“ElemOfSel’ “(” SELPRED “,” SELPRED “)” — BOOL

“GetAtList” “(" REL “)” « — ATTRIBUTELIST
equations
(tF1) Transform(Relname Attributelist) = Trans(Relname Attributelist)
(rF2] Transform(Union(Rel;, Rely)) = Trans(Union(Transform(Rel,), Transform(Rel,)))
(TF3) Transform(Intersection(Rel, Rel)) = Trans(Intersection(Transform(Rel;), Transform(Relz)
(TF4] Transform(Minus(Rel;, Rely)) = Trans(Minus(Transform(Rel;), Transform(Rel,)))
(tFs] Transform(Product(Rel;, Rely)) = Trans(Product(Transform(Rel,), Transform(Rel;)))
itrs] Transform(Select(Selpred, Rel)) = Trans(Select(Selpred, Transform(Rel)))
(TF7] Transform(Project(Projectlist, Rel)) = Trans(Project(Projectlist, Transform(Rel)))

(tFs] Transform(Join(Joinpred, Rely, Rel)) = Trans(Join(Joinpred, Transform(Rel;), Transform(Re.

Project over Select:

Projectlist, = Uses(Selpred, Projectlist),
Projectlist = Projectlist,
Trans(Project(Projectlist, Trans(Select(Selpred, Rel)))) =
Trans(Select(Selpred, Trans(Project(Projectlist;, Rel))))

[TRANS1a]

Projectlist, = Uses(Selpred, Projectlist),
Projectlist # Projectlist,,
Projectlist; # GetAtList(Detrans(Rel))

Trans(Project(Projectlist, Trans(Select(Selpred, Rel)))) =
Trans(Project(Projectlist,
Trans(Select(Selpred, Trans(Project(Projectlist;, Rel))))))

[TRANS1b]

Select (cascade):

[TRANS2] Trans(Select(Selpred,, Trans(Select(Selpred,, Rel)))) =
Trans(Select(Selpred, and Selpred,, Rel))

Project (cascade):

[TRANS3] Trans(Project(Attributelist;, Trans(Project(Attributelistz, Rel)))) =
Trans(Project(Attributelist,, Rel))

Select over Union:

[TRANS4] Trans(Select(Selpred, Trans(Union(Rel;, Relp)))) =
Trans(Union(Trans(Select(Selpred, Rel)), Trans(Select(Selpred, Rel,))))

76

Select over Set Difference (Minus):

[TRANS5] Trans(Select(Selpred, Trans(Minus(Rel,, Rel)))) =
Trans(Minus(Trans(Select(Selpred, Rel)), Trans(Select(Selpred, Rel))))

Select over Intersection:

[TRANS6] Trans(Select(Selpred, Trans(Intersection(Rel;, Relz)))) =
Trans(Intersection(Trans(Select(Selpred, Rel,)), Trans(Select(Selpred, Rel))))

Select over Product:

Selpred; = Conjunctive(Selpred),
Selpred, = Distribute(Selpred, , Rel;),
Selpred; = Distribute(Selpred,, Rely),
Selpred, = Collect(Selpred,, Selpred,, Selpred;),
Selpred, # Selpred,
Trans(Select(Selpred, Trans(Product(Rel;, Rely)))) =

Trans(Select(Selpred,, Trans(Product(Trans(Select(Selpred,, Rel)),
Trans(Select(Selpred;, Rely))))))

[TRANS?]

Select over Join:

Selpred; = Conjunctive(Selpred),

Selpred, = Distribute(Selpred,, Rel,),

Selpred; = Distribute(Selpred,, Rel,),

Selpred, = Collect(Selpred, , Selpred,, Selpred;),
Selpred; # Selpred,

Trans(Select(Selpred, Trans(Join(Joinpred, Rel,, Rel)))) =
Trans(Select(Selpred,,
Trans(Join(Joinpred, Trans(Select(Selpred,, Rel,)),
Trans(Select(Selpred;, Relz))))))

[TRANSS]

Project over Product:

Projectlist, = MakeSub(Projectlist, Detrans(Rel)),
Projectlist, = MakeSub(Projectlist, Detrans(Rely))

Trans(Project(Projectlist, Trans(Product(Rel,, Rek)))) =
Trans(Product{ Trans(Project(Projectlist,, Rel;)),
Trans(Project(Projectlist,, Rel))))

[TRANS9]

Project over Join:

Projectlist; = MakeSub(Projectlist, Detrans(Rel;)),
Projectlist, = MakeSub(Projectlist, Detrans(Rel,)),
ElemOf(Attribute,, Attributelist) = true,
ElemOf(Attributey, Attributelist) = true

[rRANSLO) Trans(Project{ Projectlist, Trans(Join(Attribute; = Attributes, Rel;, Rel)))) =

Trans(Join(Attribute; = Attributes, Trans(Project(Projectlist;, Rel;)),
Trans(Project(Projectlist,, Rely))))

77

Project over Union:

(TrRANS11] Trans(Project(Projectlist, Union(Rel;, Rek))) =
Trans(Union(Trans(Project(Projectlist, Rel;)),
Trans(Project(Projectlist, Rel;))))

Union over Select:

[TRANS12] Trans(Union(Trans(Select(Selpred, , Rel)), Trans(Select(Selpred,, Rel)))) =
Trans(Select(Selpred, or Selpred,, Rel))

Intersection over Select:

TrRANS13] Trans(Intersection(Trans(Select(Selpred,, Rel)), Trans(Select(Selpred,, Rel)))) =
Trans(Select(Selpred; and Selpred,, Rel))

Minus over Select:

tRANS14] Trans(Minus(Trans(Select(Selpred, , Rel)), Trans(Select(Selpred,, Rel)))) =
Trans(Select(Selpred, and Neg(Selpred,), Rel))

(rrANImYs(Union(Rel, Rel)) = Trans(Rel)
[TRANSmYs(Intersection(Rel, Rel)) = Trans(Rel)

ipTFetrans(Trans(Relname Attributelist)) = Relname Attributelist

ipTrPetrans(Trans(Union(Rely, Rely))) = Union{Detrans(Rel,), Detrans(Rels))
iprrdetrans(Trans(Intersection(Rel;, Relz))) Intersection(Detrans(Rel,)}, Detrans(Rely))
(pTFPetrans(Trans(Minus(Rel;, Rely))) Minus(Detrans(Rel,), Detrans(Rel,))
iprrdetrans(Trans(Product(Rel;, Rely))) Product(Detrans(Rel,), Detrans(Rely))
prrdpetrans(Trans(Select(Selpred, Rel))) Select(Selpred, Detrans(Rel))

ipTFrPetrans(Trans(Project(Attributelist, Rel))) Project{ Attributelist, Detrans(Rel))
iprrdPetrans(Trans(Join(Joinpred, Rel;, Rek))) Join(Joinpred, Detrans(Rel,), Detrans(Rely))
[pTFdPetrans(Rel) = Rel otherwise

Uses function. This function checks if all attributes used in the selection-predicate are attributes
from the attributelist (the second parameter). If it finds an attribute that is not an element of
the attributelist, it adds this attribute to the list

ElemOf(Attribute, Attributelist) = false

[U12] Uses(Attribute Op Int, Attributelist) =
Add(Attribute, Attributelist)

o1ty ElemOf(Attribute, Attributelist) = true

U1b

Uses(Attribute Op Int, Attributelist) =
Attributelist

78

[U2a]

[U2b]

[U3a]

[U3b]

ElemOf(Attribute, Attributelist) = false

Uses(Attribute Op Str, Attributelist) =
Add(Attribute, Attributelist)

ElemOf{ Attribute, Attributelist) = true

Uses(Attribute Op Str, Attributelist) =
Attributelist

ElemOf(Attribute, , Attributelist) = true,
ElemOf(Attributey, Attributelist) = true

Uses(Attribute; Op Attributey, Attributelist) =
Attributelist

ElemOf(Attribute,, Attributelist) = true,
ElemOf(Attributey, Attributelist) = false

Uses{ Attribute; Op Attributes, Attributelist) =
Add(Attributes, Attributelist)

ElemOf(Attribute,, Attributelist) = false,
ElemOf{ Attributes, Attributelist) = true

[U3c]

[U3d]

Uses(Attribute; Op Attributes, Attributelist) =
Add(Attribute,, Attributelist)

ElemOf(Attribute,, Attributelist) = false,
ElemOf{ Attribute,, Attributelist) = false

Uses(Attribute; Op Attributes, Attributelist) =
Add(Attribute;, Add(Attributey, Attributelist))

(u4] Uses(Selpred, and Selpred,, Attributelist) =
Uses(Selpred, , Uses(Selpred,, Attributelist))

[us} Uses(Selpred, or Selpred,, Attributelist) =
Uses(Selpred,, Uses(Selpred,, Attributelist))

Conjunctive. This function rewrites a selection predicate into conjunctive normalform

[c1}Conjunctive(Selpred; or Selpred, and Selpred;) =
Conjunctive((Selpred, or Selpred,) and (Selpred, or Selpreds))

[c2] Congunctive(Selpred; and Selpred, or Selpred;) =
Conjunctive((Selpred, or Selpred;) and (Selpred, or Selpreds))

79

Selpred; = Conjunctive(Selpred,),
Selpred; # Selpred,

Conjunctive(Selpred, or Selpred,) =
Conjunctive(Selpred; or Selpred,)

Selpred; = Conjunctive(Selpred,),
Selpred; # Selpred,
Conjunctive(Selpred, or Selpred,) =
Conjunctive(Selpred, or Selpred;)

[c4]

Selpred; = Conjunctive(Selpred,),

Selpred; # Selpred,
Conjunctive(Selpred, and Selpred,) =
Conjunctive(Selpred; and Selpred,)

[cs]

Selpred; = Conjunctive(Selpred,),

Selpred; # Selpred,
Congunctive(Selpred, and Selpred,) =
Conjunctive(Selpred, and Selpred;)

[ce]

{c7] Conjunctive(Selpred) = Selpred . otherwise

Distribute-function. This function takes as arguments a selection-predicate and a relation. This
function selects those subpredicates that only have attributes that belong to the relation.

Rel; = Detrans(Rel)

(Dis1] Distribute(Selpred, and Selpred,, Rel) =
Distribute(Selpred, , Rel,) and Distribute(Selpred,, Rel;)
Rel; = Det R
[Dis2) o1 etrans(Rel) otherwise

Distribute(Selpred, Rel) = Distributel(Selpred, Rel;)

Attributelist = GetAtList(Rel),
ElemOf(Attribute, Attributelist) = true

O Distribute1(Attribute Op Int, Rel) = Attribute Op Iut

Attributelist = GetAtList(Rel),
ElemOf{ Attribute, Attributelist) = false

Distributel{ Attribute Op Int, Rel) = NULL

(D2]

Attributelist = GetAtList(Rel),
ElemOf{ Attribute, Attributelist) = true

03] Distributel(Attribute Op Str, Rel) = Attribute Op Str

80

Attributelist = GetAtList(Rel),
ElemOf{ Attribute, Attributelist) = false

Distributel(Attribute Op Str, Rel) = NULL

Attributelist = GetAtList(Rel),
ElemOf(Attribute;, Attributelist) = true,
ElemOf(Attributes, Attributelist) = true

(o] Distributel(Attribute, Op Attributes, Rel) =
Attribute; Op Attributey
D6] Distributel(Attribute; Op Attributes, Rel) = NULL otherwise
Distributel(Selpred,, Rel) # NULL,
7] Distributel(Selpred,, Rel) # NULL
7

Distributel(Selpred, or Selpred,, Rel) = Selpred, or Selpred,

[p8] Distributel(Selpred, or Selpred,, Rel) = NULL otherwise
N1} NULL and Selpred = Selpred
[N2} Selpred and NULL = Selpred

N3] Trans(Select(NULL, Rel)) = Rel

Collect-function. This function selects those subpredicates that are a part of the first predicate
and not a member of the second or third predicate

[Col1] Collect(Selpred; and Selpred,, Selpred;, Selpred,) =
Collect(Selpred, , Selpreds,, Selpred,) and Collect(Selpred,, Selpreds, Selpred,)

[Co12] Collect(Selpred, , Selpred,, Selpred;) =
Collect1(Selpred,, Selpred,, Selpred;) otherwise

ElemOfSel(Selpred,, Selpred,) = false,
ElemOfSel(Selpred, , Selpred;) = false

! Collect1(Selpred, , Selpred,, Selpreds) = Selpred,

[c

[c2] Collect1(Selpred,, Selpred,, Selpred;) = NULL otherwise

ElemOfSel-function. This function checks if the first predicate is a subpredicate of the second
predicate.

{£1] ElemOfSel(Selpred, Selpred) = true

81

[E2] ElemOfSel(Selpred, Selpred, and Selpred,) =
ElemOfSel(Selpred, Selpred,) | ElemOfSel(Selpred, Selpred,)

[E3] ElemOfSel(Selpred,, Selpred,) = false otl

GetAtList function. This functions finds the attributelist of the relation

{G1] GetAtList(Relname Attributelist) = Attributelist

[G2] GetAtList(Union(Rel;, Rely)) = GetAtList(Rel,)

[G3] GetAtList(Intersection(Rel, Rely)) = GetAtList(Rel,)

[G4] GetAtList(Minus(Rel;, Rely)) = GetAtList(Rel;) .

[cs] GetAtList(Product(Rely, Rely)) = Add(GetAtList(Rel,), GetAtList(Rel,)
[a6] GetAtList(Select(Selpred, Rel)) = GetAtList{Rel)

[67) GetAtList(Project{ Projectlist, Rel)) = Projectlist

(Gs] GetAtList(Join(Joinpred, Rel,, Rel)) = Add(GetAtList(Rel;), GetAtList(Rely)

A.4 Factorisation

imports Operations(-%)
exports
sorts RESULT
context-free syntax

“» SELPRED “” SELPRED ¢)” — RESULT
“Fac” “(” SELPRED “” ATTRIBUTELIST ¢)” — RESULT
“Unary” “(" SELPRED ¢)” — BOOL
“ElemOf “(” SELPRED ¢ ATTRIBUTELIST “)” — BOOL
“NULL” — SELPRED
variables

Faclist [0-9]*— ATTRIBUTELIST

equations

{F1a) Selpred and NULL = Selpred
(F1b]) NULL and Selpred = Selpred

[Fic] Selpred or NULL = NULL
[F1d] NULL or Selpred = NULL

Unary(Selpred) = true,
ElemOf{Selpred, Faclist) = true

F 2] Fec(Selpred, Faclist) = (Selpred, NULL)

[

82

Unary(Selpred) = true,
eob ElemOf(Selpred, Faclist) = false
2
[}Fac(Selpred, Faclist) = (NULL, Selpred)

Fac(Selpred, , Faclist) = (Selpred,, Selpred,,),
Fac(Selpred,, Faclist) = (Selpred,,, Selpred,,)

) Fac(Selpred, and Selpred,, Faclist) —
(Selpred,, and Selpred,,, Selpred,, and Selpred,,)

Fac(Selpred,, Faclist) = (Selpred,,, Selpred,,),
Fac(Selpred,, Faclist) = (Selpred,, , Selpred,,)
Fac(Selpred, or Selpred,, Faclist) =
(Selpred,; or Selpred,,, (Selpred;; or Selpred,,)
and (Selpred,, or Selpred,,) and (Selpred,, or Selpred,,))

[F5]

Function Unary. Check if the predicate (parameter) is unary.

v1] Unary(Attribute Op Int) = true
[v2} Unary(Attribute Op Str) = true
(us] Unary(Attribute; Op Attribute;) = true
[Us] Unary(Selpred) = false otherwise

Function ElemOf. Check if the first parameter (SELPRED) is an element of the second param-
eter (ATTRIBUTELIST). This function works only for unary predicates.

{£1) ElemOf(Attribute Op Int, Faclist) =
ElemOf(Attribute, Faclist)

{E2] ElemOf(Attribute Op Str, Faclist) =
ElemOf(Attribute, Faclist)

(3] ElemOf(Attribute; Op Attributes, Faclist) =
ElemOf(Attribute;, Faclist) & ElemOf(Attribute,, Faclist)

[E4} ElemOf Selpred, Faclist) = false otherwise

A.5 Operations

imports Relations(A7)

exports
sorts SELPRED JOINPRED OP
context-free syntax

83

ATTRIBUTE OP INT — SELPRED

ATTRIBUTE OP STRING — SELPRED
ATTRIBUTE OP ATTRIBUTE — SELPRED

SELPRED “and’ SELPRED — SELPRED {left}
SELPRED “or” SELPRED — SELPRED {left}

“(* SELPRED)" — SELPRED {bracket}
ATTRIBUTE “=" ATTRIBUTE — JOINPRED

“=77 — OP

“<77 — OP

“S” — OP

“>” —_ OP

“Z” —p OP

“#” — OP

[{ Union” “(” REL “,” REL “)” — REL

“Intersection” “(” REL “” REL “)” — REL

“Minus” “(” REL “,,7 REL “)” — REL

“PT‘Od’MCt” “(” REL “,” REL “)” I REL

“Select” “(” SELPRED “” REL “)” — REL

“P,roject” “(” ATTRIBUTELIST “,” REL “)” —> REL
“Join” “(” JOINPRED “” REL “” REL “” — REL

“Neg” “(” SELPRED “)” — SELPRED
priorities
SELPRED “or"SELPRED — SELPRED < SELPRED “and’SELPRED — SELPRED
variables
Selpred [0-9]* — SELPRED
Joinpred [0-9]* — JOINPRED
Projectlist [0-9]*— ATTRIBUTELIST
Op [0-9] — OP
equations

N1] Neg(Attribute = Str) = Attribute # Str
N2} Neg(Attribute < Str) Attribute > Str
N3] Neg(Attribute < Str) = Attribute > Str
N4] Neg(Attribute > Str) = Attribute < Str
[Ns] Neg(Attribute > Str) = Attribute < Str
iNe] Neg(Attribute # Str) = Attribute = Str

N7] Neg(Attribute = Int) = Attribute # Int
N8} Neg(Attribute < Int) = Attribute > Int
N9] Neg(Attribute < Int) = Attribute > Int
[N10] Neg(Attribute > Int) = Attribute < Int
(n11] Neg(Attribute > Int) = Attribute < Int

84

[N12) Neg(Attribute # Int) = Attribute = Int

[N13] Neg(Attribute = Attribute) = Attribute # Attribute
{N14] Neg(Attribute < Attribute) = Attribute > Attribute
[N15} Neg(Attribute < Attribute) = Attribute > Attribute
(N16) Neg(Attribute > Attribute) = Attribute < Attribute
(N17} Neg{ Attribute > Attribute) = Attribute < Attribute
{N18] Neg(Attribute # Attribute) = Attribute = Attribute

[N19] Neg(Selpred, and Selpred,) = Neg(Selpred,) or Neg(Selpred,)
[N20] Neg(Selpred, or Selpred,) = Neg(Selpred;) and Neg(Selpred,)

A.6 Optimizer

imports Check(A?) Eqtransforms(4-3) Access(41)

exports
sorts SCHEME RELDEF QUERY REPRESENTATION1
REPRESENTATION2

context-free syntax
“scheme” SCHEME “query’” QUERY — REPRESENTATION1
“scheme” SCHEME “relation” REL — REPRESENTATION2
“Read Attributes” “(” REPRESENTATION1 “)” — REPRESENTATION2
“ReadInfo” “(” REPRESENTATION2 “)” — EXTREL
{RELDEF “}+ — SCHEME
RELNAME “=" “attributes:” ATTRIBUTELIST
“sortedon:” ATTRIBUTELIST
“indezon:” ATTRIBUTELIST — RELDEF
RELNAME - QUERY
“Union” “(” QUERY “,” QUERY “)” — QUERY
“Intersection” “(" QUERY ¢ QUERY «)” — QUERY
“Minus” “(” QUERY “” QUERY “)” — QUERY
“Product” “(” QUERY “” QUERY “)” — QUERY
“Select” “(” SELPRED “” QUERY “)” — QUERY

“Project” “(” ATTRIBUTELIST “” QUERY “)” — QUERY
“Join” “(” JOINPRED “” QUERY “, QUERY “)” — QUERY

“Lookup” “(” RELNAME ¢” SCHEME “” INT “)” — ATTRIBUTELIST

“Check” “(” REPRESENTATION2 “)” — REPRESENTATION2

MSG — REPRESENTATION2

“Transform” “(” REPRESENTATION2 “)” — REPRESENTATION2
variables

S [0-9]+ — SCHEME
Q [0-9]+— QUERY

85

Re

ILDEF “”}x

. This function searches the attributes for a relation.

relation Rel; = ReadAttributes(scheme S query Q,),
. relation Rel, = ReadAttributes(scheme S query Q,)

1dAttributes(scheme S query Union(Q,, Q,)) =
eme S relation Union(Rel;, Rels)

relation Rel; = ReadAttributes(scheme S query @),
relation Rel, = ReadAttributes(scheme S query Q,)

Lttributes(scheme S query Intersection(Q;, Q,)) =
e 8 relation Intersection(Rel;, Rely)

relation Rel, = ReadAttributes(scheme S query Q,),
relation Rel, = ReadAttributes(scheme S query Q,)

idAttributes(scheme S query Minus(Q,, Q,)) =
eme S relation Minus(Rel;, Rely)

relation Rel; = ReadAttributes(scheme S query Q,),
. relation Rel, = ReadAttributes(scheme S query Q)

dAttributes(scheme S query Product{(Q,, Q,)) =
:me S relation Product(Rel;, Rel)

relation Rel = ReadAttributes(scheme S query Q)

ttributes(scheme S query Select(Selpred, Q)) =
2 S relation Select(Selpred, Rel)

| relation Rel = ReadAttributes(scheme S query Q)

~ibutes(scheme S query Project(Projectlist, Q)) =
3 relation Project{Projectlist, Rel)

_ relation Rel; = ReadAttributes(scheme S query Q,),
» relation Rel, = ReadAttributes(scheme S query Q,)

ttributes(scheme S query Join{Joinpred, Q, Q,)) =
' 8 relation Join{Joinpred, Rel;, Rely)

butelist = Lookup(Relname, S, 1)

ributes(scheme S query Relname) =
5 relation Relname Attributelist

ction searches sortedon- and indexon-information for a relation.

. = ReadInfo(scheme S relation Rel;),
. = ReadInfo(scheme S relation Rely)

(scheme S relation Union(Rel;, Rely)) =
xtrel,, Extrel,, < >, < >)

86

Extrel; = ReadInfo(scheme S relation Rel;),
Extrel; = ReadInfo(scheme S relation Rely)

ReadInfo(scheme S relation Intersection(Rel;, Rely)) =
Intersection(Extrel,, Extrely, < >, < >)

[RI2]

Extrel; = ReadInfo(scheme S relation Rel;),
Extrel, = ReadInfo(scheme S relation Rely)

ReadInfo(scheme S relation Minus(Rel;, Rely)) =
Minus(Extrel, Extrel,, < >, < >)

[RI3]

Extrel; = ReadInfo(scheme S relation Rel;),
Extrel, = ReadInfo(scheme S relation Rely)

ReadInfo(scheme S relation Product(Rel,, Rely)) =
Product{ Extrel;, Extrelr, < >, < >)

[RI14]

Extrel = ReadInfo(scheme S relation Rel)

ReadInfo(scheme S relation Select(Selpred, Rel)) =
Select(Selpred, Extrel, < >, < >)

[RI5]

Extrel = ReadlInfo(scheme S relation Rel)

ReadInfo(scheme S relation Project(Projectlist, Rel)) =
Project(Projectlist, Extrel, < >, < >)

[RI6]

Extrel; = ReadInfo(scheme S relation Rel;),

Extrel, = ReadInfo(scheme S relation Rel,)
ReadInfo(scheme S relation Join(Joinpred, Rely, Reb)) =
Join(Joinpred, Extrel, Extrel,, < >, < >)

[RI7]

Sortedon = Lookup{Relname, S, 2},

Indexon = Lookup(Relname, S, 3)
ReadInfo(scheme S relation Relname Attributelist) =
Relname Attributelist Sortedon Indexon

[RI8]

Lookup function. This function searches for the relationame and returns the wanted information
(attributelist, sortedon, indexon).

Relname # Relname;

fL1]

1
Lookup(Relname, Relname; = attributes: Attributelist

sortedon: Sortedon

indezon: Indexon, Int) =< >

Lookup(Relname, Relname = attributes: Attributelist
sortedon: Sortedon
[L2] indezon: Indexon, Reldefs, 1) = Attributelist

87

Lookup(Relname, Relname = attributes: Attributelist
sortedon: Sortedon
[L3] indexon: Indexon, Reldefs, 2) = Sortedon

Lookup(Relname, Relname = attributes: Attributelist
sortedon: Sortedon
[L4] indexon: Indexon, Reldefs, 3) = Indexon

Relname # Relname;

(Lol Lookup(Relname, Relname, = attributes: Attributelist

sortedon: Sortedon indexon: Indexon, Reldefs, Int) =
Lookup(Relname, Reldefs, Int)

The functions in the Eqtransforms-module does not need the scheme information. The following
equation takes care of this.

Rel; = Detrans(Transform(Rel))

Transform(scheme S relation Rel) =
scheme S relation Rely

[TRANS]

The Check-function in the Check-module only needs rel-information. The following equations
take care of this. If an error was found during the check-procedure only this error is returned and
further processing (equivalence transforms and determining access strategies) is not possible.

Rel; = Check(Rel)

therwi
[CHECKA] Check(scheme S relation Rel) = ovherwise
scheme S relation Rely
Msg = Check(Rel)
[CHECK?2]

Check(scheme S relation Rel) =
scheme S relation Rel error(s) Msg

A.7 Relations

imports Layout(*?) Booleans(*") Integers(*") Strings(*")
exports
sorts ATTRIBUTE ATTRIBUTELIST RELNAME REL
lexical syntax
[A-Za-7[A-Za-20-9.]x — ATTRIBUTE
context-free syntax

“<” {ATTRIBUTE ¢} “>” — ATTRIBUTELIST
STRING — RELNAME
RELNAME ATTRIBUTELIST — REL

“Includes” “(” ATTRIBUTELIST “” ATTRIBUTELIST “)” — BOOL

88

“MakeSub” “(” ATTRIBUTELIST “” REL “)” -+ ATTRIBUTELIST

“ElemOf’ “(” ATTRIBUTE “” ATTRIBUTELIST “)” — BOOL

“Add” “(” ATTRIBUTE “” ATTRIBUTELIST “)” — ATTRIBUTELIST
“Add” “(” ATTRIBUTELIST “” ATTRIBUTELIST ©)” — ATTRIBUTELIST
“Equal’ “(* ATTRIBUTELIST “” ATTRIBUTELIST “)” — BOOL

“ NumberOfElems” “(” ATTRIBUTELIST “)” — INT

“Un” “(» ATTRIBUTELIST “” ATTRIBUTELIST «)” — ATTRIBUTELIST

“Intersect’ “(” ATTRIBUTELIST “,” ATTRIBUTELIST “)” — ATTRIBUTELIST

variables
Relname [0-9)* — RELNAME
Rel [0-9]% — REL
Attribute [0-9]* — ATTRIBUTE
Attributes [0-9}x — {ATTRIBUTE “”}x
Attributelist [0-9]*— ATTRIBUTELIST
Chars [12]* — CHARx*
equations
Includes function:

m] Includes(Attributelist, < >) = true

ElemOf(Attribute, Attributelist) = false
Includes(Attributelist, < Attribute, Attributes >) = false

{12]

ElemOf(Attribute, Attributelist) = true

Includes(Attributelist, < Attribute, Attributes >) =
Includes(Attributelist, < Attributes >)

{13]

MakeSub function:

M1] MakeSub(< >, Rel) = < >

ElemOf(Attribute, Attributelist) = false

MakeSub(< Attribute, Attributes > , Relname Attributelist) =
MakeSub(< Attributes > , Relname Attributelist)

{M2]

ElemOf(Attribute, Attributelist) = true

MakeSub(< Attribute, Attributes > , Relname Attributelist) =
Add(Attribute, MakeSub(< Attributes > , Relname Attributelist))

[M3]

ElemOf function:

[E1] ElemOf(Attribute, < >) = false

Attribute # Attribute,

ElemOf(Attribute, < Attribute;, Attributes >) =
ElemOf(Attribute, < Attributes >)

(E2]

89

Attribute = Attribute;
ElemOf(Attribute, < Attribute;, Attributes >) = true

(E3]

Add function: add an attribute to an attributelist.

ElemOf(Attribute, < Attributes >) = false
Add(Attiribute, < Attributes >) = < Attribute, Attributes >

[A1]

. ElemOf(Attribute, Attributelist) = true
2
A2 Jd(Attribute, Attributelist) — Attributelist

Add function: add one attributelist to another.

[Addifdd(< >, Attributelist) = Attributelist

[Add2)Add(< Attribute, Attributes > , Attributelist) =
Add(< Attributes > , Add(Attribute, Attributelist))

The Equal-function. This boolean-function returns true if the two lists contain the
tributes (sequence of attributes does not have to be the same). The result will be f:
list does not contain the same attributes.

[Eqi] Bqual(< >, < >) = true

Equal(< Attributes;, Attribute, Attributes; > ,
[Eq2] < Attributesy, Attribute, Attributesy >) =

Equal(< Attributes;, Attributesy > , < Attributess, Attributes, >)
[Eq3] Equal(Attributelist,, Attributelist;) = false oth

Function Intersect:

i) Intersect{Attributelist, < >) = < >

ElemOf(Attribute, Attributelist) = true

Intersect(Attributelist, < Attribute, Attributes >) =
Add(Attribute, Intersect(Attributelist, < Attributes >))

{I2]

ElemOf(Attribute, Attributelist) = false

13
] Intersect(Attributelist, < Attribute, Attributes >) =
Intersect(Attributelist, < Attributes >)

Function Un:

v1] Un(Attributelist, < >) = Attributelist

90

10f(Attribute, Attributelist) = true

ibutelist, < Attribute, Attributes >) =
ibutelist, < Attributes >)

mOf Attribute, Attributelist) = false

ibutelist, < Attribute, Attributes >) =
ribute, Un(Attributelist, < Attributes >))

unction:

ms(< >) =0

ms(< Attribute, Attributes >) = 1 + NumberOjf

91

Bibliography

[Bel92]

[BHKS87]

[BHKS9)]
[Fle89]
[Garda8o]
[Graef87]
[Hen88)]

[Hen89]

[HHKRA89]
[Jar81]
[Kim85]

[K1i93]
[Pro93]

[U1182]

D. Bell, and J. Grimson, Distributed Database Systems, Addison-Wesley Publishing
Company, Inc, 1992.

J.A. Bergstra, J. Heering, and P. Klint, ASF — and algebraic specification formal-
ism, Report CS-R8705, Centre for Mathematics and Computer Science, Amsterdam,
1987.

J.A. Bergstra, J. Heering, and P. Klint {eds.), Algebraic Specification, ACM Press
in co-operation with Addison-Wesley, 1989.

Fleming and von Halle, Handbook of Relational Database Design, Addison-Wesley
Publishing Company, Inc, 1989.

G. Gardarin, P. Valduriez, Relational Databases and Knowledge Bases, Addison-
Wesley Publishing Company, Inc, 1989.

G. Graefe, Rule-Based Query Optimization in Eztensible Database Systems, Com-
puter Sciences Technical Report nr. 724, University of Wisconsin — Madison, 1987.

P.R.H. Hendriks, ASF system user’s guide, Report CS-R8823, Centre for Mathe-
matics and Computer Science, Amsterdam, 1988.

P.R.H. Hendriks, Lists and associative functions in algebraic specifications — se-
mantics and implementation, Report CS-R8908, Centre for Mathematics and Com-
puter Science, Amsterdam, 1989.

J. Heering, P.R.H. Hendriks. P. Klint, and J. Rekers, The syntaz definition formal-
ism SDF — reference manual, SIGPLAN Notices, Vol 14, pp: 43-75, 1989.

Kalervo Jarvelin, A query optimizer for a relational database system, Department
of Mathematical Sciences, University of Tampere, Finland, 1981.

W. Kim, D. Reiner, and D. Batory, Query Processing in Database Systems, Springer-
Verlag, Berlin Heidelberg, 1985. '

P. Klint, editor, The ASF+SDF Meta-environment User’s Guide, 1993.

Vakgroep Programmatuur, Syllabus van het college Programmeeromgevingen II,
Centre for Mathematics and Computer Science, Amsterdam, 1993.

J.D. Ullman, Principles of Database Systems, second edition, Computer Science
Press, Inc, 1982,

92

