

The Trinidad Platform
“Master Thesis”

Amsterdam, August 15 2006.

Ing. J. Jong

Universiteit van Amsterdam

Capgemini Nederland B.V.

Amsterdam, August 15 2006.

Author

Ing. J.J. Jong

0555177

Institute

One Year Master Course Software Engineering

Universiteit van Amsterdam,
Hogeschool van Amsterdam
en de Vrije Universiteit

Thesis Supervisor: drs. H. Dekkers

Company

Capgemini Nederland B.V.

Utrecht

Internship Supervisor: S. Hoogendoorn

Availability

Public domain

J. Jong – Master Thesis Page 2 of 51

Preface
Before u lays the master thesis that covers the internship on the Trinidad Platform, carried out for
Capgemini Nederland B.V. This internship is a conclusion to the Master Software Engineering taught at
the University of Amsterdam (UVA).

Even though writing this thesis is an individual task, guidance and support do influence the final result. I
would like to thank Capgemini for making this internship possible. In particular I would like to thank my
internship supervisor, dhr. S. Hoogendoorn, for his guidance and support during the project. My thanks
also goes out to all the members of Capgemini that participated in the interviews and sessions described in
this work.

I would also like to thank the teachers of the University of Amsterdam, in particular my thesis supervisor,
dhr. H. Dekkers, for his feedback and the time and effort taken in order to help me make this thesis to
what it is now.

Jermaine Jong
Amsterdam, august 2006.

J. Jong – Master Thesis Page 3 of 51

Contents

Summary ..6
1 Project relevance ... 7

1.1 The Trinidad Platform..7

1.2 Internship ... 9

1.3 Project approach.. 9

1.4 Project risks .. 9

1.5 Knowledge .. 10

1.6 Deliverables.. 10

2 Trinidad Reference Architecture ..11
2.1 Research questions and goals .. 11

2.2 Approach ... 11

2.3 Prework ...12

2.4 Goal, stakeholders and criteria..12

2.5 Documenting the reference architecture ...13

2.6 Identifying important components..16

2.7 Evaluation ... 17

3 The open source model..20
3.1 Approach .. 20

3.2 What is open source ..21

3.3 Capgemini’s vision on open source ... 22

3.4 Research question and goals ... 23

3.5 Open Source Licenses... 24

3.6 Developers motives .. 25

3.7 Safeguarding the quality of code .. 27

3.8 Implementing an open source Strategy ... 28

4 Successful open source projects ..29

J. Jong – Master Thesis Page 4 of 51

4.1 Hibernate.. 29

4.2 Spring Framework ...31

5 Success factors ..34
5.1 Literature.. 35

5.2 Hypothesis .. 36

5.3 Succes factors of Hibernate and Spring ... 36

5.4 (Open)Darwin .. 37

5.5 NDoc ... 39

5.6 Evaluation ...41

6 Trinidad open source advice..43
6.1 License and Business Model .. 43

6.2 Developers .. 44

6.3 Safeguard the quality .. 44

6.4 Community... 45

6.5 Version control ... 45

6.6 Change management... 46

6.7 Release management... 46

6.8 Success factors.. 47

Bibliography ...48
Appendix A: Trinidad Reference Architecture...50
Appendix B: Trinidad Open Source Strategy ... 51

J. Jong – Master Thesis Page 5 of 51

Summary
To stay ahead of the competition, Capgemini is standardizing the way software is developed which
manifests itself in the realization of the Trinidad Platform. The Trinidad Platform is a fairly new method
making its way through and being accepted by the organization. The Trinidad Platform executes on the
vision that projects need to be empowered and highly standardized in order to achieve high productivity
and high quality at the same time. The Trinidad Platform consists of a number of integrated core elements
which are: an Agile methodology, the Trinidad Reference Architecture, Model Driven Development and a
Community.

The Trinidad Reference Architecture needs to be documented. This document will serve as a reference for
the Trinidad Reference Architecture and the Havana Framework. Just like the Trinidad Platform the
document will be a dynamic one which will be updated and changed during the development of the
platform. The intended audience for the document will exist of developers and architects wanting to get
more insight in the technical details of the Trinidad Reference architecture.

Before documenting research has been done about the stakeholders, the criteria and the goal of the
document. In order to give a structured reflection of the Trinidad Reference Architecture a clear way of
documentation has been researched. The main sources of information during this process have been
developers with experience of the Trinidad Platform. The information was gathered during architectural
sessions which are more elaborately described in this document. During these sessions the most important
components of the reference architecture were selected.

As an evaluation to the research the architectural overview of the Trinidad Reference Architecture has
been assessed by members of the target audience. To get “objective” opinions people were chosen that
were not directly involved with the research. The assessment was carried out with the use of a
questionnaire. The process resulted in the architectural overview of the Trinidad Reference Architecture
which can be found in Appendix A.

The Trinidad Platform will be developed and released to customers according to an open source model.
This means that customers can use the platform for their own software development projects and at the
same time contribute to further development and improvement of the platform. In order to successfully
manage this process within a company like Capgemini a clear design is needed.

Research has been done in order to issue grounded advice about an open source model and version- and
configuration management. The meanings of open source and general open source characteristics have
been studied. In order to find out what makes an open source project successful, two successful open
source projects have been studied. The way they managed the open source characteristics and their
success factors have been analyzed. This research resulted in the formulation of the following hypothesis:

“If an open source project manages all the characteristics in a way that is appropriate for that specific
project and that project takes the success factors into consideration the process will result in a successful
open source project.”

As an evaluation to the research and a test of the hypothesis two failed open source projects have been
studied. This evaluation has resulted in a final list with open source success factors.

The thesis ends with the strategy for an open source Trinidad Platform. The results of the internship, apart
from this thesis itself, can be found in Appendix A: Trinidad Reference Architecture and Appendix B:
Trinidad Open Source Strategy.

J. Jong – Master Thesis Page 6 of 51

1 Project relevance
To stay ahead of the competition, Capgemini is standardizing the way software is developed which
manifests itself in the realization of the Trinidad Platform. The Trinidad Platform is a fairly new method
making its way through and being accepted by the organization. The Trinidad Platform will be released to
customers according to an open source model. To do this, Capgemini needs insight in the pro and cons
and the various ways to organize an open source community within a profit company.

Currently most of the knowledge about the Trinidad Platform is contained by a small group within the
organization. In order to allow an easy spread of the platform, within Capgemini and throughout the
community, clear (technical) documentation is mandatory. Therefore a detailed description of the most
important concepts of the platform will be created during this internship.

1.1 The Trinidad Platform

The number of challenges modern software development projects encounter is expanding quickly. Think
about integration with existing back-ends and third parties, service orientation, new platforms and media,
and emerging technologies. For projects, executing on-time and on-budget becomes a diligent quest, with
this ever increasing complexity. In order to deal with these challenges, Capgemini introduced the Trinidad
Platform.

The Trinidad Platform executes on the vision that projects need to be empowered and highly standardized
in order to achieve high productivity and high quality at the same time. The Trinidad Platform consists of
a number of integrated core elements.

- Agile methodology
A flexible agile methodology, using best practices from Rational Unified Process (RUP), MSF
Agile, extreme programming and Smart. An agile methodology is used to guarantee frequent, high
quality delivery of working software. With this methodology comes a clear and easy-to-use
estimation technique, based on pragmatic use cases, modeling guidelines and an online use case
based planning and measurement tool. Furthermore, additional project and process support can
be achieved by executing the customer’s project in one of Capgemini’s Accelerated Delivery
Centers (ADC).

- Trinidad Reference Architecture
Projects executed with the Trinidad Platform de facto apply platform independent multi-tier
reference software architecture. Be it web, mobile or Windows development, employing databases,
service oriented architectures (SOA) and enterprise busses.

The reference architecture is supported by a broad and extensible framework, called the Havana
Framework. This allows for maximum re-use of functional, technical built-in and third party
services and components, such as authorization, SharePoint, web services, BizTalk, Microsoft
Dynamics, and SAP. Capgemini gathered years of experience in constructing and using
frameworks, such as Sculptor, CSLA and numerous project specific workbenches.

- Model Driven Development
High quality code is delivered at high speed. This is facilitated using model driven architecture
and development (MDA). The Tobago MDA Generator uses UML models, and produces code
according to patterns defined. Model driven development guarantees high quality design and code
and keeps testing effort low.

- Community
Capgemini is keen on collaborating with its customers on the Trinidad Platform. Thus, an open

J. Jong – Master Thesis Page 7 of 51

source community-style business model is applied, were customers worldwide can use and
contribute to the platform. In this way, the knowledge and experience of the platform expand at
high pace.

- People
The single most important asset in software development projects is people. In the Trinidad
Platform, training and coaching are key towards success. Workshops are therefore available for
each of the core elements of the platform, including estimation techniques, modeling, and using
code generation and frameworks.

The Trinidad Lifecycle

The agile methodology used within Trinidad projects is called the Trinidad Lifecycle. The Trinidad
Lifecycle is the beating hart of every Trinidad project.

Fig. 1.1 Trinidad Lifecycle

The Trinidad Lifecycle exists of the following phases.

♦ Propose. The project’s scope, size and complexity are determined roughly during a number of short
intensive workshops. This stage leads to the initial project proposal.

♦ Scope. The project proposal is elaborated upon, again in workshops, leading to the plan of approach
for the project. This stage includes smart use-case modeling and domain modeling, stakeholder and
risk analysis, resourcing, and an estimate for the project.

♦ Build. The “Build” phase stands in light of interactively realizing software. “Build” is divided into short
iterations of preferably two weeks. During these iterations a number of smart use cases are realized.
At the start of an iteration the use cases that will de realized are selected. This happens in the sub-
phase “Plan”. Next every iteration has a sub-phase “Build”, in which the use cases are elaborated and
realized. Deployment happens in the sub-phase “Run”.

♦ Finalize. During the Finalize phase the project is finalized and evaluated.

♦ Manage. The (ongoing) stage Manage executes the maintenance of the delivered software. During
this stage again smart use-cases underlie the possible changes in the software. The stage Manage is
usually executed in monthly or two-monthly iterations.

J. Jong – Master Thesis Page 8 of 51

1.2 Internship

The internship can be roughly divided into two parts. The first part of the internship is a description of the
Trinidad Reference Architecture and the second part will be issuing an advice about an open source
strategy for the Trinidad Platform. These two parts of the internship will be described in the following
chapters of this document.

1.3 Project approach

In order to successfully finish this project a certain approach is followed. The approach can be divided into
3 sections; there was the initial prework and preparation before starting the project, following by the
approach to documenting the Trinidad reference architecture and at last the approach to setting up a
Trinidad open source model. The most important steps are shown below in chronological order.

1.3.1 Prework

Internship description
Prior to the internship a clear description of the assignment was formulated and described, along with the
project’s scope. This document was reviewed by the organization to make sure both parties were on the
same line.

Literature study
The execution of the assignment starts with a literature study. Within this study literature is gathered that
can be helpful during the project. As project continues the list of literature eventually expanded with
additional literature.

1.3.2 Documenting the reference architecture

The process of documenting the Trinidad Reference Architecture is described in chapter 2. In order to
keep a clear structure in this document the approach to the research and documentation of the reference
architecture are bundled together with the description of this process. Chapter 2.2 gives a detailed
overview of the steps taken in the approach.

1.3.3 Trinidad Open Source

The approach taken in the research on the Trinidad open source advisory model is also described with the
description of this process, which can be found back in chapter 3. The reason for this is also to keep a clear
structure in the document.

1.4 Project risks

Like every other project there are risks that need to be taken into account during the project. Below are
some of the risks the project carries and how these risks will be dealt with during the course of the project.

- The Trinidad Reference Architecture is very extensive, therefore it takes a lot of effort to fully
understand and document it. However a clear understanding of the reference architecture is
mandatory for performing research on a suitable open source model. Because of the limited
amount of time available the process will have a tight schedule and the description of the reference
architecture will start right after the literature study.

- The internship contains a lot of dependencies. Most of the knowledge regarding the Trinidad
Platform has to come from more experienced Trinidad developers within Capgemini. These

J. Jong – Master Thesis Page 9 of 51

developers have a tight schedule so clear appointments need to be made way in advance in order to
acquire the needed information.

1.5 Knowledge

To successfully complete this project a certain degree of knowledge is required. Qualities which the
performer must possess have to be among other things knowledge of/experience with the reference
architecture of the Trinidad Platform, UML, use cases, design patterns and the open source model. This
knowledge will come from different sources, varying from literature to people.

1.6 Deliverables

The project knows the following deliverables:
• Research report (thesis) of the performed research
• Description of the Trinidad Reference Architecture
• Trinidad open source advisory report

J. Jong – Master Thesis Page 10 of 51

2 Trinidad Reference Architecture
The focus of the first part of the project is documenting the Trinidad Reference Architecture. The reference
architecture is a very important part of the Trinidad Platform. The reference architecture, supported by
the Havana Framework, builds upon knowledge gathered over the last years. It takes time to uncover and
fully understand all the possibilities of the reference architecture. This chapter covers the actual research
that has been done to find out how the Trinidad Reference Architecture works and document it.

2.1 Research questions and goals

The Trinidad Reference Architecture needs to be documented. This document will serve as a reference for
the Trinidad Reference Architecture and the Havana Framework. Just like the Trinidad Platform the
document will be a dynamic one which will be updated and changed during the development of the
platform. The intended audience for the document will exist of developers and architects wanting to get
more insight in the technical details of the Trinidad Reference architecture.

A thorough research of the reference architecture is mandatory in order to describe it in a clear and correct
way. The research is based on the following main questions:

- What are the criteria for the reference architecture description?

- How can the reference architecture best be documented in a clear way?

- What are the most important components that form the reference architecture?

- Which design patterns are contained by the reference architecture and how are they used?

2.2 Approach

In order to structure the research an approach is needed to document the Trinidad Reference
Architecture. Structured and well over thought research promotes the results off this process. The
approach exists of the following steps:

Goal of the document
The goal of the document is one of the most important issues to deal with from the start of the project. The
goal of the document determines the stakeholders, the criteria, the way of documenting and even the
evaluation. The first step in the research is getting a clear picture of the goal of the architectural overview.

Analyzing Stakeholders
The goal of the document automatically points out the stakeholders involved. A stakeholder analysis will
be performed to find out which concerns the stakeholder have. The document will be created according to
this information in order to meet these concerns.

Defining criteria
After the goal of the document and the concerns of the stakeholders are known, criteria for the document
can be formulated. These criteria will be taken into account and will be leading during the creation of the
reference architecture document.

Documenting
There are many ways to describe a reference architecture. Before documenting it is wise to decide on a
suitable documentation manner that will allow the goal of the document to be met. This step covers the
research and decisions that have to be made in order to decide on a suitable structure for the document.

J. Jong – Master Thesis Page 11 of 51

Identifying important components and design patterns
The Trinidad Reference Architecture exists of a lot of components and design patterns. The most
important ones need to be identified so that they can be described. This step covers the method used to
identify the most important components and design patterns within the Trinidad Reference Architecture.

Evaluation
The evaluation is a very important step in the research. How do you prove that the document is correct,
meets the criteria and is useful to the organization? In order to do this the following activities will be
carried out:

- Matching the document to the criteria that were defined in the beginning of the project.

- Assessment of the document by the target audience, which in this case are developers and
architects. The target audience can give the best feedback about the extent to which the goal of the
document is reached.

- Feedback (interim) from the project managers of Capgemini.

2.3 Prework

After the global introduction to the Trinidad Platform, the reference architecture was studied in more
detail. The first step was to find out what is understood by a reference architecture. In [1] the following
definition of a reference architecture is given:

“A reference architecture is, in essence, a predefined architectural pattern, or set of patterns, possibly
partially or completely instantiated, designed, and proven for use in particular business and technical
contexts, together with supporting artifacts to enable their use. Often, these artifacts are harvested from
previous projects.”

This definition clearly describes what a reference architecture is because it points out its essential
characteristics, like a predefined pattern or set of patterns, supported by artifacts harvested from previous
projects, etc. Therefore this definition was used during the project. The Trinidad Reference Architecture
meets all the criteria stated in the definition above.

2.4 Goal, stakeholders and criteria

The goal of the architectural overview is to serve as a reference for developers and architects who want to
gain more insight in the technical details of the Trinidad Reference Architecture and the Havana
Framework. A stakeholder analysis has been done to establish what the different stakeholders required
from the description. The two main groups of stakeholders are developers and architects. Below are the
most important concerns these two groups have:

Developers
Developers that are new to the Trinidad Platform and development with the Havana Framework will use
the document. By reading the document developers can get an overview of all the important technical
aspects within the framework and the way these aspects link to each other. The document also shows the
rationale behind the technical aspects. The reason, benefits and even the possible alternatives, if any, are
documented. Furthermore experienced developers will use the document as a reference during
development.

Architects
Architects new to the Trinidad Platform can use the architectural overview in order to get a clear picture of

J. Jong – Master Thesis Page 12 of 51

the reference architecture and the different variations that are possible within the platform. Architects will
also use the document as a reference.

Taking the concerns of these stakeholders into consideration the following main criteria were formulated:

- Clear scope, The Trinidad Reference Architecture is part of the Trinidad Platform which contains a
lot of elements that speed up development. A lot of other steps are involved (like use case modeling
and code generation) before using the Trinidad Reference Architecture. However the focus of the
architectural overview needs to be only on the reference architecture.

- Reference for architects and developers, the architectural overview needs to serve as a reference for
architects and developers new to the Trinidad Platform. The architectural overview needs to
contain a clear description of the technical aspects of the reference architecture (design patterns,
etc.)

In order to reach these criteria the first step was to find a logical way of organizing the information in a
document.

2.5 Documenting the reference architecture

Both the stakeholders have different initial concerns. The Trinidad Reference Architecture starts out with
a roadmap which marks the chapters that are most important for a particular stakeholder. However, all
the chapters in the architectural overview can be useful to both stakeholders; this roadmap only provides
an aid for the reader. The chapters below show the structure of the document.

2.5.1 Platform Overview

The Trinidad Reference Architecture is part of the Trinidad Platform. In order to give the reader an
overview of the role the reference architecture plays within the platform, the architectural overview starts
out with a concise description of the platform itself and every component contained by it.

2.5.2 Architectural Layers

The Reference Architecture exists of a couple of layers. In literature there are a number of models that can
be used to describe an architecture. Initially the 4+1 view model as described in [2] was chosen to
document the reference architecture. This model can show a software architecture from multiple
stakeholder views and different levels of composition. The model contains 4 views which, combined with
scenarios, result in a well documented software architecture. The 4+1 view model implies using different
views for different stakeholders while describing the architecture. However, in a reference architecture
the amount of detailed information is limited, therefore making it hard to create all of the different views
in the model. Because of the lack of information this would result in poorly documented views that
wouldn’t contribute anything to the document. A reference architecture only contains properties that are
common to every project that is based upon that reference architecture. Once a project is launched the
other views can be build for that specific project. Below is an overview of the views in the 4+1 view model
and the information that is required in order to create these views.

Logical view
Shows the object model of the design and contains class diagrams. It isn’t possible to create a class
diagram for the Reference Architecture because the classes in the application depend on the specific
project based upon the reference architecture. A class diagram of all the base classes could be created
instead, but this wouldn’t contribute much to the reader.

Process view
Captures the concurrency and synchronization aspects of the design. This view describes the tasks of the
application and the communication between these tasks. The flow of the program depends on the kind of

J. Jong – Master Thesis Page 13 of 51

application being built with the reference architecture. This makes this view impossible to develop on
forehand.

Physical view
Mapping of software onto the hardware. The Trinidad Reference architecture isn’t bound to specific
hardware. Trinidad applications can operate on any kind of hardware. Therefore choosing a much used
hardware setup, like that of a webapplication, and creating the Physical view wouldn’t be useful because of
the many variations that can be present in hardware setups. The view would just represent a single
situation.

Development view
Static organization of the software in its development environment. This view describes development
issues like the layers of the application. The layers of an application are just the specific issues that are
captured within a reference architecture. This view can be used in order to describe the Trinidad Reference
Architecture.

The Trinidad Reference Architecture is a reference for the development of applications, so the
stakeholders are interested in development issues. Of all the views in the 4+1 view model the development
view is the one that can be created fully, based upon the information available. This view also captures all
the information required by the stakeholders. Therefore the development view can be used to describe the
reference architecture.

The complete 4+1 view model is not suitable for documenting the Trinidad Reference architecture. The
three other views, besides the development view, can only be created in such a limited way. This wouldn’t
contribute anything to the document, other than confuse the reader. Therefore the decision has been made
to use only the development view.

For documenting the Trinidad Reference Architecture the development view is used. This view shows the
layered organization of a standard Trinidad application based upon the reference architecture. This
development view is enhanced with the objects that characterize every layer (figure 2.1). The functionality
and purpose of every layer is described in the architectural overview.

Fig. 2.1 Reference Architecture

J. Jong – Master Thesis Page 14 of 51

2.5.3 Variations

There are a number of variations possible with Trinidad based applications, which are not shown in this
view but clearly described in the architectural overview (appendix A.) Aimed at Service Oriented
Architectures a Trinidad based application can for example be created as a service providing or service
consuming application.

In order to clearly document these variations research was done about the applicability of the product line
notation as described in [3]. There is a difference between a product line architecture and a reference
architecture. A product line architecture is used to create a family of products that mostly contain
commonalities and a few variation points. A reference architecture on the other hand is used to create all
kinds of applications. The focus of a product line lies in the commonality and variations between features,
while applications based on the reference architecture might have no commonality whatsoever.

However the concept of variation points used to describe the variations between the members in a product
line can be used to describe the different variations of the Trinidad reference architecture. After
identifying the variation points they were each described in a different picture. The product line notation
prescribes the creation of a single architectural image which shows all the possible variations, sometimes
completed by a feature tree. However, the variation points in the Trinidad reference architecture are all
technical. Displaying each in a separate picture makes it possible to show the varying components along
with the layers they are active in. This makes the variations easier to understand. Placing these variations
in a single picture could decrease the readability of the picture. Therefore the product line notation was
rejected.

A feature tree could have been used to emphasize the variations in writing and drawing. However the
separate architectural pictures already give sufficient overview and clarity that a feature tree was abundant
and therefore omitted. The results can be found back in the architectural overview.

2.5.4 Technical components and design patterns

The technical components in the document are organized per layer. From every layer the most important
technical aspects and their main functionalities are described.

The technical components and design patterns within the Trinidad Reference architecture needed to be
described in a structured and concise way. A clear way to describe these technical components is by using
a pattern. A pattern gives the user an unambiguous outline of every pattern, and the user knows exactly
where certain information is described. Furthermore many books on design patterns for example describe
them according to a pattern, leading to clear, easy to read books.

The “Gang of Four Template”, which is used to describe the design patterns in [4] (and can be found at
[5]), is a clear and suitable pattern to use in the architectural overview. In order to make the pattern
suitable not only for design patterns, but also for the other technical components within the Trinidad
Reference architecture the pattern was adapted and some of the sections left out (fig 2.2).

J. Jong – Master Thesis Page 15 of 51

Intent
Short statement that answers the following questions: What does the component do?
What is its rationale and intent? What particular design issue or problem does it
address?

How (Motivation)
A scenario or example that illustrates a design problem and how the component can
solve the problem. The scenario will help you understand the more abstract
description of the component that follows.

Benefits
What are the benefits from using this component.

Consequences
How does the component support its objectives? What are the trade-offs and results
of using the component? What aspect of system structure does it let you vary
independently?

Alternatives
What are (if any) alternative ways to solve this particular design issue or
problem?

Fig. 2.2 Technical component template

2.6 Identifying important components

Having decided on the structure used to document the reference architecture, it became important to
determine what to describe in the architectural overview.
“What are the most important components that form the reference architecture?”

In order to answer this question “architectural sessions” were held with developers of the platform. In an
architectural session a few developers came together in order to explain the components of the reference
architecture. The goal of such an architectural session was to gather information about the framework and
the components contained by it. These sessions varied from 1 to 1,5 hour. Mostly the components were
handled per layer.

Researching and examining the most important components within the reference architecture took a great
deal of time. There are a lot of technical components within the reference architecture which all contain
rationale, variations and sometimes a number of alternatives that could have been chosen. All these
aspects needed to be understood in order to describe them. A lot of components within the reference
architecture are based upon well-known design patterns. Literature from Martin Fowler [6] and “The
Gang of Four” [4] were used in order to identify, understand and describe these components.

J. Jong – Master Thesis Page 16 of 51

The components within the framework are linked to each other instead of being individual pieces. The
inter-layer components were first examined and described to get an overview of the total structure and the
relations between the layers. This made it easier to describe the layer-specific components because the
total picture was somewhat clear. However the description of every layer contributed to the total image of
the flow within the reference architecture.

2.7 Evaluation

In order to assess the correctness of the Trinidad architectural overview it was evaluated after
documentation. This evaluation was done in the form of an assessment, which exists of testing the
document against the formulated criteria and the initial goals. The research done in order to create the
architectural overview also been evaluated.

2.7.1 Assessment

The Trinidad architectural overview was assessed by members of the target audience. To get “objective”
opinions people were chosen that were not directly involved with the research. A developer and a member
of management were chosen to asses the document. The assessment was carried out with the use of a
questionnaire.

The document was assessed by a developer new to the Trinidad Platform. Because the developer doesn’t
have any knowledge of the platform the outcome can say something about the extent to which the
architectural overview helped get a clear overview about the Trinidad Reference Architecture. The
document was also assessed by someone active in management of the Trinidad Platform, but also has
thorough knowledge of the platform and the reference architecture. This assessment was aimed more at
the applicability of the document. The combined results of the assessment are summarized below, divided
into positive and negative comments:

Positive

- Clear overall impression; The document gives a clear overall impression of the Trinidad Reference
Architecture. Even for developers that are new to the platform the document is understandable and
instructive.

- Correctness; The technical aspects in the document are described in a clear way, with a correct
description of their specifics. The pattern for describing these technical aspects aided the readability of
the document.

- Most important concepts; The architectural overview contains a description of the most important and
interesting technical aspects of the Trinidad Reference Architecture. All aspects that speed up
development are documented.

- Scope; The document has a clear scope. The Trinidad Reference Architecture is the only part of the
Trinidad Platform that has been fully described.

Negative

- Starting a Trinidad project; The developer new to the Trinidad Platform hasn’t been able to
participate in a Trinidad project based upon the information in the architectural overview.

- Applicability; The document isn’t mature enough to be used by the customers of Capgemini using
Trinidad through the open source model. There is still information missing in the document for it to
meet the concerns of the customers. However, the document forms a good basis.

- Class Overview; At the current version the Trinidad Reference Architecture lacks an overview of the
base classes that are to the disposal of the developers. This might be helpful for the developers reading
the document because it provides an overview of the whole.

J. Jong – Master Thesis Page 17 of 51

2.7.2 Research questions

From the results of the evaluation the following conclusions concerning the research questions can be
drawn.

How can the reference architecture best be documented in a clear way?
Research has been done in order to come up with a clear way of documenting the Trinidad Reference
architecture. During the assessment the readers found the document clear and easy to read. These factors
provide enough ground to state that this research question has been answered during the research.

What are the criteria for the reference architecture description?
During the evaluation the criteria haven’t been assessed enough to conclude if this research question has
been answered. However the results of the evaluation state that the architectural overview is not directly
applicable to customers of Capgemini, even though the formulated criteria didn’t require this. This
indicates that the initial criteria may have been incorrect or that the criteria experienced a change during
the second part of the research.

What are the most important components that form the reference architecture?
During the research “architectural sessions” were held in order to elicitate the most important components
of the reference architecture. While documenting, the architectural overview has been iteratively assessed
by the internship supervisor and other developers well known with the Trinidad Platform. The evaluation
of the architectural overview, partly done by someone from the target audience with extended knowledge
of the platform, also results that the most important components of the reference architecture have been
documented.

Which design patterns are contained by the reference architecture and how are they used?
There are a lot of design patterns used in the Trinidad Reference Architecture. Not all are yet described in
the architectural overview. The choice has been made to focus on the most important components, and
describe the design patterns that are present in them. The remaining design patterns can be documented
in future versions of the document.

2.7.3 Research

Research has been done in order to document the right things about the Trinidad Reference Architecture
in the right way. A detailed approach to the project has been thought out on forehand. Figure 2.3 gives a
graphical overview of the research process as it has been carried out within this project.

J. Jong – Master Thesis Page 18 of 51

sources elicitation transformation

Developers

Code

raw
knowledge

Architectural overview

(new) Developers Customers

used by

Fig. 2.3 Research process

Sources
The input for the architectural overview came from the developers. It was an option to use the code as
input for the document, either with or without the developers. However exploring the code without any
knowledge of the reference architecture would have been hard. Furthermore the developers had such good
knowledge of the Trinidad Platform that they were trusted as sole source for the document.

Elicitation
The elicitation of the information went smooth. If the research had to be done over, the elicitation process
could have been structured more, in order to perfect it (think about standard elicitation forms, standard
session setup, etc.).

Transformation
The transformation of raw knowledge to the architectural overview, the process of documentation could
have been improved. Because of the complexity and size of the Trinidad Platform the process of
documenting the platform took far more time than the research on it. A different approach tot the project
would have been one where the process of documenting itself got more attention. Below are a few ways in
which this could have been done.

- Using a persona and scenarios; Persona’s and scenarios could have been created in order to draw out
and represent the use of the document by the target audience. The document would have been written
accordingly.

- Intermediate assessments; The use of assessments not only at the end of the research but also interim
can reveal any shortcomings of the document early.

- Target audience involvement; More involvement and interaction with the target audience during the
creation of the document. Without any knowledge of the platform the author could have even stepped
in the role of a new Trinidad developer, in order to discover the information required in the document.

In fact all the possibilities named above all relate to the following; better research on the way the
document will be used.

Future work on the architectural overview of the Trinidad Reference Architecture would be extending it
with all of the technical aspects instead of just the most important ones. This process of documenting
resulted in the architectural overview of the Trinidad Reference Architecture which can be found in
Appendix A.

J. Jong – Master Thesis Page 19 of 51

3 The open source model
The open source principle is becoming more and more popular to the developers of software. The Trinidad
Platform will be developed and released to customers according to an open source model. This means that
customers will use the platform for their own software development projects and at the same time
contribute to further development and improvement of the platform. In order to successfully manage this
process a clear open source strategy including version- and configuration management is needed. All
parties need to be able to easily present and integrate their contributions to the architecture and the
framework.

There are benefits but also disadvantages attached to releasing software under an open source model. In
order to set up a grounded advice for the Trinidad open source model research about the characteristics of
open source is necessary.

3.1 Approach

Because open source is a topic that is becoming more popular, the available information about open
source is growing. In order to make a way through this pile and find the required information structured
research is necessary. The following approach has been used during this research:

Open source
As a starting point of the research the question “What is open source?” needs to be answered. Furthermore
research will be done on the reason open source projects is interesting for companies, and why an open
source Trinidad Platform is interesting for Capgemini.

Characteristics
In the extent of what open source is, the characteristics of open source projects and the tools required to
launch an open source project will be analyzed. Tools can differ from documentation and support to
configuration management and development tools. This list of characteristics will serve as input for the
Trinidad open source advisory report.

Successful open source projects
Two successful open source projects will be analyzed. They will be compared with the list of open source
characteristics in order to see how they managed them. Research will be done in order to try and reveal the
succes factors of these projects, or maybe even come to the conclusion that some of the open source
characteristics are success factors themselves.

Expert interaction
Besides the two successful open source projects input of experts on the area of open source will also be
used in order to complete the success factors and characteristics of open source projects.

Hypothesis
Armed with the characteristics and succes factors of open source projects, at this point in the research a
hypothesis can be formulated.

Proof of concept
To proof the hypothesis wrong or right it needs to be tested. The proof of concept will be done in the
following ways:

- Comparing the succes criteria to failed open source projects. Research will be done to see if the
failed project lacked essential success criteria. The failure factors of the open source projects can

J. Jong – Master Thesis Page 20 of 51

say a great deal about the list of success criteria. The analysis of these projects may even result in
some fail criteria, which can be used in the final advice.

- Review of the advice by experts in the area of open source.

Advisory report
After the research is done the results will be documented in an advisory report, intended for Capgemini.

3.2 What is open source

Open source software automatically makes people think of “free” software. Actually open source software
is much more than that. In [7] the author gives the following definition of open source:

“Open source software is any computer software distributed under a license which allows users to
change or share the software’s source code”

The open source Model allows users to develop and contribute to a project voluntarily, which eliminates
the need of an actual supplier. The software is shared and can be used freely by anyone. Suppliers can
choose to go open source with their products because of the rapid development of their projects that
results from the many developers. Communities of developers and contributors are formed where users
share knowledge and report bugs and feature requests. Open source doesn’t just mean access to the source
code. The distribution terms of an open source program must comply with a number of criteria. These
criteria are recorded in the open source Definition. Bruce Perens gives in [8] a short summary of these
criteria including a link to the full version, which can be found at
http://www.opensource.org/docs/definition_plain.html.

There are a lot of different applications of open source methods, combining properties of markets and
communities. In order to set up an open source model it is necessary to know exactly what the open source
model is. Most open source models share the following characteristics [7]. This list of characteristics serves
merely as an aid to helping the reader form the picture of an open source model. The research will not be
based on this list, however most, if not all these characteristics are already “touched” by the defined
research questions.

♦ Transparency, potential contributors need to understand what it is they’re contributing to.
♦ Examination of participants only after they’ve got involved, reducing the barriers to involvement by

allowing absolutely anyone to get involved.
♦ Low cost and ease of engagement, many people can get involved at no additional outlay beyond what

they already spend on their computing.
♦ A legal structure and enforcement mechanism, open source does not mean a free for all. Instead it

depends on a clearly defined legal framework which shapes the incentives for participation.
♦ Leadership, most open source projects have some centralized element of leadership or control that

sets the general direction and ethos assigns tasks and acts as an editor, approving changes to the
source code.

♦ Common standards, Successful open source projects rely on open, free-to-use standards, and they
create new, open, free-to-use standards for their users.

♦ Peer review and feedback loops, the open source collaborative approach manages to produce high
quality work because of the many reviews people among themselves.

♦ A shared conception of goals, open source projects may deal with internal dissent about particular
choices and directions but there is enough of a common conception of the good to make each project
thrive.

♦ Incrementalist, small players can still make useful contributions.
♦ Powerful non-monetary incentives, open source methods contain the ability to replace traditional

cash incentives with non-monetary ones like motives of social or personal fulfillment.

J. Jong – Master Thesis Page 21 of 51

http://www.opensource.org/docs/definition_plain.html

3.3 Capgemini’s vision on open source

The Trinidad Platform is a new development platform within Capgemini. In the short time that the
platform exists it has seen a growth of acceptance and interest from other parts of the organization. There
are a few projects already carried out on the Trinidad Platform.

Open source projects are booming, even though open source seems like a counterintuitive strategy. Some
of the open source supporters even claim that open source projects can withstand Brooke’s Law [9] which
sounds as follows “Adding manpower to a late software project makes it even later”. In an open source
project people continuously join or quit development. Even though this claim is not completely true,
because most open source projects don’t have a schedule so the words “late” and “later” used in Brooks
Law are of no meaning here, open source projects are characterized by rapid development by a great
number of developers.

Custom software development projects are diminishing. Companies tend to choose offshoring or standard
packages, which don’t fully fit their needs over custom software development. The main reason for this
choice is a financial consideration. In order to compete, custom software development needs to offer
benefits over these new development ways. Capgemini believes in the power of the Trinidad Platform and
the many benefits it contains for custom software development. Trinidad stands for cheaper, faster, tailor
fit custom software development.

The Trinidad platform can be interesting for a lot of custom software development projects. The aim of
Capgemini is to spread the Trinidad Platform throughout the world. Capgemini wishes to offer the
Trinidad platform to customers in order to let them carry out their own software development projects. If
we look at the above, this would fit perfectly within an open source model.

As the founding company behind the Trinidad Platform the Capgemini’s name will be spread along with
the platform. For support participating companies will turn to Capgemini which has good economical side
effects. Capgemini will train and school developers on the Trinidad Platform and deliver support. In
exchange, the users of the platform need to contribute any modifications or additions they’ve made to the
platform.

Implementing an open source model has benefits, but doesn’t come without risks either. The risks and the
benefits Capgemini expects of an open source model are described below.

3.3.1 Technical benefits for Capgemini

There are a number of expected economical benefits for Capgemini from an open source Trinidad
Platform. These benefits depend on the chosen business model and open source license. Besides
economical benefits Capgemini expects and wishes to achieve the following technical benefits with the
release of an open source Trinidad platform:

- Rapid development of extensions to the Havana Framework. The core of the Havana Framework is
mature and stable enough, so at the right moment in time to be released as an open source project.

- Quick bug report and fixes, patches, ports to new platforms, etc.

- Growth and evolution of the Trinidad platform and the community.

With the Trinidad platform Capgemini wants to lean more and more to standardization, because
standardization is the key to rapid custom software development. The platform is relatively young and still
has a lot of work. However Capgemini knows from experience that most additions, like a specific logging
mechanism, are only build when there’s a customer who actually has the need for it. Releasing the
platform as open source will speed up the development of such extensions rapidly.

J. Jong – Master Thesis Page 22 of 51

3.3.2 Technical risks for Capgemini

The risks for a project to go open source are just as important as the benefits. Before starting an open
source project many companies have the same worries about potential risks that such a project may carry
[10]. Capgemini oversees the following main risks when starting an open source Trinidad platform:

- Unstructured development process, a lot of open-source software development is still done ad hoc,
without good development practice. Most developers start coding before writing down a design
[11]. This slows down open source development, while programming is likely to be more regulated
and professionalized.

- Fragmentation of the products into incompatible versions, if everybody can issue releases and
bring out new versions there can be a spread of different incompatible versions. There need to be a
controlling entity in order to structure this.

- Exposing strategies to competitors, the open source model implies sharing strategies and
methodologies. This can be a risk, but with good initial support from Capgemini, competitors will
rather join development and require support than start an own platform.

- Becoming a product vendor when that is not Capgemini’s primary business.

3.4 Research question and goals

 There are a lot of concerns that need to be taken into account before setting up an open source model
within a company like Capgemini. The goal of this research is to issue a grounded advice about an open
source model and version- and configuration management. The advice will be based on thorough research,
among others about literature regarding open source models and version and configuration management,
license structures for open source projects, and research about the extent of support that Capgemini wants
to deliver to the framework. The main research questions are:

- What are the different license structures in open source projects and which one suits the needs of
Capgemini best?

- What are the motives and benefits for developers, architects or other interested parties to
participate and contribute to an open source Trinidad Platform?

- How do you safeguard the quality of code within an open source project?

- How do you implement an open source strategy, what are the tools required in order to launch a
successful open source project? Tools can differ from documentation and support to
configuration management and development tools.

- What are the requirements for a successful open source project?

As a basis for the research two successful open source projects will be analyzed. The research questions
can be compared to the two projects. The conclusions drawn from the way these projects are set up and
managed will be used as input for creating the advisory report for the Trinidad Platform. The succes
factors of these projects will also be examined. The two open source projects that will be compared are
Hibernate and the Spring Framework. These are both architectural frameworks which support
development, therefore sharing a lot of resemblance with the Havana Framework.

The Trinidad reference architecture description will, once the open source model is implemented, also
function as a tool in the community, serving as a reference not only for employees of Capgemini, but to
everyone using the platform.

J. Jong – Master Thesis Page 23 of 51

3.5 Open Source Licenses

Open source projects are based upon the willingness of other developers to work for free. In order to get
developers to contribute to a project (besides their personal motives which will be discussed in the next
chapter) they need to be provided with some kind of freedom. Developers feel comfortable contributing to
any open source project because they are assured of the following rights [8]:

- The right to make copies of the program, and distribute those copies

- The right to have access to the software’s source code, a necessary preliminary before you can
change it.

- The right to make improvements to the program.

These rights keep all the contributors at the same level relative to each other. These rights are formalized
in the form of an open-source license. Open source software is very much copyrighted software, with the
difference that the program’s license grants the user rights that give much more freedom than
conventional software. The Trinidad Platform will need a license that connects to the goals and vision of
Capgemini.

Below are a few standard license agreements [8] that can be used for or modified to fit an open source
project.

Public Domain License
Public domain stands for a program which has no copyright at all. Every one can do as he or she pleases
with the program (including re-licensing it and / or removing it from the public domain).

The GNU General Public License (GPL)
This license prohibits developers from making changes to open source products and not contributing
those changes back to the developer community. These modifications must also be distributed under the
GPL license. GPL programs are not allowed to be mixed with non-free software.

The GNU Library General Public License (LGPL)
The LGPL license is a derivative of the GPL. Unlike the GPL, a LGPL licensed program can be mixed with
non-free software.

X, BSD and Apache Licenses
These three licenses are relatives from each other. The main difference between these and the GPL license
is that modifications can be taken private.

The Artistic License
The Artistic License is known for its ambiguous and self contradicting rules. Therefore programs using this
license are often dual-licensed with the GPL license.

The Netscape Public License (NPL) and the Mozilla Public License (MPL)
The NPL license was created by Netscape when they made the Netscape Navigator and includes rules that
give Netscape special privileges that only apply to them. In order to use this license in public Netscape
created the MPL, which is a copy of the NPL but without the clause that grants Netscape special rights to
the software.

There are many more open source licenses. The full text of the above and the other available open source
licenses can be found at http://opensource.org/licenses/. A common characteristic of all open source
licenses is that they each disclaim all warranties.

The table below shows the important characteristics of the mostly used open source licenses. This list can
be of help when choosing an appropriate license for the Trinidad Platform.

J. Jong – Master Thesis Page 24 of 51

http://opensource.org/licenses/

 License

Can be
mixed with
non-free
software.

Modifications can be taken
private and not returned to you.

Can be re-
licensed
by anyone

Contains special
privileges for the
original copyright holder over
your modifications.

GPL no no no no
LGPL yes no no no
BSD yes yes no no
NPL yes yes no yes
MPL yes yes no no
Public
Domain yes yes yes no

3.5.1 Business models

A frequently asked question is how to generate revenue from an open source project. The idea of giving
away software eliminates the traditional revenue from license fees. In order to still make profit it is
mandatory to select a suitable business model and execute it well. As Daly [12] states the answer doesn’t
lie within the product itself, but within the industry and business surrounding the product. A suitable
business model will be selected for the Trinidad Platform. Hecker [10] identifies eight styles (shown
below) from which one may be selected for the Trinidad Platform.

♦ Support Sellers; Revenue comes from media distribution, branding, training, consulting, custom
development, and post-sales support.

♦ Loss Leader; A no-charge open-source product can be used to lead customers towards the company’s
own proprietary software.

♦ Widget Frosting; Used by hardware manufacturing companies that use the open source model to
develop software like drivers and applications to go with the hardware.

♦ Accessorizing; A company distributes books, computer hardware, and other physical items associated
with and supportive of open-source software.

♦ Service Enabler; Open source software is created and distributed primarily to support access to
revenue-generating online services.

♦ Brand Licensing; One company charges other companies for the right to use its brand names and
trademarks in creating derivative products.

♦ Sell it, Free it; A company’s software products start out their product life cycle as traditional
commercial products and are then continually converted to open-source products when appropriate.

♦ Software Franchising; This is a combination of the support selling and brand licensing model. A
company may wish to sell trademark rights or franchise rights with materials and training to other
businesses that wish to enter the same market space. In this way, revenues would come from franchise
and trademark royalties.

3.6 Developers motives

Even though the open source strategy may seem counterintuitive as it goes against years of tried and true
commercial practice [10], there are still a lot of developers voluntarily contributing to open source
projects. The question that rises is what drives these developers to do this. After all developers are the
most important factor in any open source project. Without developers willing to participate and contribute
time and effort in an open source project it will surely fail. In order to set up a successful open source
project it is necessary to understand these motives and use them to attract developers.

J. Jong – Master Thesis Page 25 of 51

As the last open source characteristic from chapter 3.2 already states there are non-monetary motives
involved. There have been many studies about the motivation of open source software developers. In [13]
the authors make the distinction between individual psychological factors (internal factors) and rewards
(external factors). Internal factors, also called intrinsic motivation [14], are certain activities and behaviors
that people like to perform naturally. If we put this in the open source context, this category describes
programmers who make a hobby out of programming and are motivated from the feeling of competence,
satisfaction and fulfillment that arises from writing programs [13]. External rewards or extrinsic
motivation is motivation based on external factors. While most open source developers don’t get paid
directly they may receive indirect rewards such as expanding their knowledge or fulfilling their need for
particular software.

The results of the different studies [13] & [14] regarding the most important reasons to contribute vary.
However, based upon these studies can be concluded that the joy of programming itself forms the most
important motivation to participate in an open source project. External factors follow and stand on a
slightly lower (if not equal) footplate.

In the context of the Trinidad Platform the external factors are the most important to focus on. The extent
to which a developer likes to program is personal and project independent and therefore not suggestible,
furthermore most of the potential contributors already possess this intrinsic motivator. External factors
however are profitable to examine in order to attract contributors. If we look at external factors according
to [13] we can distinguish a number of different categories:

♦ Revenues from related products and services
As an open source program grows and its usage starts to spread a lot of companies start to offer
commercial consulting, training, support etc. This is an important external factor for developers to
participate in the Trinidad Platform. As founder of the Trinidad Platform Capgemini will initially
provide training and service and collect the revenues. Companies that foresee a grow or see
enough potential in the Trinidad Platform can put up developers to participate in order to later on
deliver service themselves.

♦ Human Capital
Developers participating in the development of the framework in order to expand their own skill
base. Personal skills, capabilities and knowledge are the forms of capital that are gained here.
Companies using the Trinidad Platform will gather knowledge on different fronts because of the
many development aspects that are covered by the platform.

♦ Self-marketing
Developers often use open source projects to demonstrate their programming skills. Sometimes
this can work against the open source principle, by commercial vendors luring the most productive
minds away from these projects into commercial development. The Trinidad Platform supports
the easy integration of components, giving developers the ability to contribute marked pieces of
functionality.

♦ Peer recognition
Open source developers receive rapid and constructive feedback about the quality of their work. A
company letting its developers work on the Trinidad Platform can increase the skills of the
developers.

♦ Personal Needs
Many open source projects are initiated or joined because developers have a personal need for
software. This is the most important motivation for people to use and participate in developing the
Trinidad Platform. In a time where development needs to be faster a standardized reference
architecture supported by an extensible framework are key elements in the development of
software. Companies are going to want to speed up their own software development by using the

J. Jong – Master Thesis Page 26 of 51

Trinidad Platform. Bugs and additions to the framework will be reported during use, therefore
increasing the quality.

If these benefits or future returns are supported in an open source project it makes them interesting for
contributors. However these benefits are somewhat objective and every developer may see other benefits
in the same project. In order to motivate contributors (being companies adopting the platform for their
own development process or developers) the Trinidad open source model needs to contain elements that
support or promote these benefits.

3.7 Safeguarding the quality of code

It is often proclaimed by open source proponents that open source development stands for higher quality
of code because of the presence of many developers. To what extent is this true, what are the aspects of
open source responsible for high quality and how can the quality be safeguarded in an open source
project? Stamelos et al [15] have done an extended study on the quality of code within open source
projects, using a set of ten metrics among which the McCabe index [16].

As a result of the study there are things that speak for and things that speak against the quality of open
source software. An important requirement on open source code is that it needs to be modular, self-
documenting code in order to allow development by many people at the same time. Looking at the quality
of code, according to [15] the average percentage of acceptable components (functions) across open source
programs is high, and half of the components are in good shape. On the contrary the other half of the
components are below industry standards in contrast to what open source proponents have claimed up to
now.

Commercial vendors often claimed that the quality of code in open source software is weaker, because of
the lack of professional testers. However a study of an inspection firm on the code quality of the Apache
Web Server concluded that it is comparable in quality to its commercial brethren [17].

Comparing the different facts that are available there can be concluded that the open source code is not of
lesser nor higher quality than conventional code.

The question that rises here is why open source software isn’t automatically of better quality, after all there
are a great number of developers that can fix bugs, perform code-reviews, etc. According to McConnell
[18] the strength of open source lies in its massive code-level peer review. However, McConnell states that
open source lacks a structured development process which harms the efficiency of working and therefore
the quality of code. The best attempt to describe the open source development process is done by Eric
Raymond in “The Cathedral and the Bazaar” [19], but according to McConnell even this description can’t
be called complete.

However, to safeguard the quality of code in an open source project, and also in the Trinidad Platform,
there are a few key points to keep in mind [15].

- Develop clear coding guidelines and request from the programmers to keep to this guideline.

- The project co-coordinator can asses the code returned by programmers according to a guideline.
This implies that the co-coordinator has the right to reject non-conformant contributions, even if
they correct a bug or provide new functionality.

- Code re-engineering decisions can be taken by the project co-coordinator whenever the project
seems to experience problems.

J. Jong – Master Thesis Page 27 of 51

3.8 Implementing an open source Strategy

This chapter covers the steps that are involved when implementing an open source strategy. Besides
selecting an appropriate open source license and business model there are other steps that need to be
taken. The guidelines below are helpful when implementing an open source strategy. A variety of tools are
available that simplify many of these steps.

Clean code
Code that will be released under an open source license must be clear of any technology licensed by third
parties. Best is to remove the code entirely or seek permission to include the code. To ensure the code is
ready to be sent out into the public make sure the code doesn’t contain any inappropriate comments, etc.

Core development team
Especially in the early stages of the introduction of an open source project it is necessary that the
organization has a team that leads the development of the product.

Setting up a community
Support for external developers: newsgroups, source code repositories, bug-tracking systems. The
developers of the core development team should also be a member of the community and develop in the
same manner as external developers.

Version control
Different releases of the product will be identified by their associating version numbers. The purpose of
assigning version numbers to different releases is to identify the stability and to differ between previous
versions.

Change management
Especially in an open source project changes can be multiple and complex. In custom software
development a change is always carried out as the result of a change request [20]. In open source software
development however, there are no change proposals. Everyone can propose a change and even
implement it right away.

Release management
Conducting a release is an important activity within an open source project. Therefore it is necessary to
have proper guidelines for release management. Erenkrantz [21] makes the following division in the
release management process.

- Pre-release testing; Test a set of standard criteria that every release has to meet. These criteria can
vary from code passing unit test to the presence of new features. These criteria can also contain
rules about fore- and backwards compatibility.

- Release approval; A release manager, perhaps the head of the core development team, needs to
approve a release before it is distributed.

- Distribution; The community needs to be made aware of the new release and needs to have access
to the release. The release needs to be in a format that every user can deal with.

J. Jong – Master Thesis Page 28 of 51

4 Successful open source projects
There are a lot of open source projects, some more successful then others. This chapter covers the analysis
of two successful open source projects. The open source projects will be analyzed according to the open
source characteristics studied in the previous chapter. The way the different processes are organized
within these successful projects are analyzed in order to serve as input for the Trinidad open source
strategy.

The open source projects that will be analyzed are Hibernate and the Spring Framework, because both are
frameworks that speed up development, therefore showing some kind of resemblance to the Trinidad
Platform.

4.1 Hibernate

Hibernate is an object / relational persistence and query service [22]. Hibernate’s goal is to relieve the
developer form 95 percent of common data persistence related programming tasks, compared to SQL.
Hibernate represents data in the database as simple Java objects, which provides easy access to data.
Hibernate is a free open source Java package, which also exists as a version for the .Net framework named
NHibernate. All the information in the chapters below originates from [22].

4.1.1 Open source license

Hibernate is licensed under the terms of the LGPL. This protects the Hibernate community as well as any
contributors to Hibernate. Anyone who wanted to release Hibernate under a different license would have
to obtain permission from all the contributors who have contributed code to Hibernate, which would be
impractical. Therefore Hibernate will remain free software. If Hibernate is changed in any way, those
changes should be made available to users, under the same license terms as Hibernate (i.e. the LGPL).
[22]

4.1.2 Business model

Hibernate was originally founded by Gavin King in order to solve his own development problems. JBoss
Inc. later sponsored the development of Hibernate by employing several members of the Hibernate
developer team.

JBoss Inc. clearly uses the Support Sellers business model to make profit out of Hibernate. JBoss
employees a team of professional full-time developers dedicated to the project. To cover these costs JBoss
Inc. provides Hibernate-specific development and production support contracts with service levels up to
24x7 with a 2 hour response time [22].

4.1.3 Safeguard the quality

In order to safeguard the quality of the project hibernate has taken the key points mentioned in chapter 3
in mind. The Hibernate development team assesses the code returned by programmers and decides
whether or not the code is of expected quality. In order to help all the developers reach the expected
quality clear coding guidelines are set up.

4.1.4 Community

Hibernate is supported by a wide community which consists of the following elements:

J. Jong – Master Thesis Page 29 of 51

User forum
Forum for Hibernate and NHibernate users, those who use it to aid in their own software development.
Users can post questions and answer questions from other users. Posting questions in some of the
categories costs ‘credits’ while answering them in whatever category provides the user with credits. The
forum is also used for announcements like new releases, etc. Remarkable about the user forum is that
there is a category for a few major languages. In these categories users can ask questions in their own
native language.

Hibernate has an extended etiquette on how to ask for help while posting in the forum in order to prevent
multiple identical questions and to keep the information clear.

Developer Mailing list
Discussions about the internals of Hibernate and NHibernate can be held in the developer mailing list.
Developers can subscribe to the list and enter in discussions on development of Hibernate itself.

Bug tracking and feature requests
Hibernate uses an issue tracking system called JIRA. Users are allowed to browse the database without
logging in, but in order to submit, track, and vote on issues, a user must register with JIRA. Even when it
comes to submitting bugs Hibernate has etiquette in order to keep information clear. Potential bugs need
to be discussed in the user forum before being inserted into JIRA, because according t0 Hibernate 99% of
bugs found by users are actually misuse. Besides bugs feature request and patches can be submitted into
JIRA as well. Patches need to be submitted in ‘patch’ format.

Team weblog
There is a central weblog for Hibernate where members of the team recently post new items.

4.1.5 Version control

Since of March 2006 Hibernate’s source is maintained in a subversion repository hosted by the JBoss Labs
project. Besides the Hibernate core the subversion contains the source of a lot of Hibernate add-ons like
Hibernate Tools, Hibernate Entitymanager and others which are all also available for download at [22].

Backwards compatibility
Hibernate strives for backwards compatibility but doesn’t fully guarantee this to its users. Hibernate deals
with compatibility or migration problems by releasing a migration guide with every new major Hibernate
release. This guide specifies in detail which functions, methods or classes are left out or modified and
therefore might lead to compatibility problems. Based on this guide users can determine whether it is
smart to migrate to the new version or not.

4.1.6 Change management

Hibernate offers anonymous and developer access to the source code in subversion. Anonymous access
doesn’t contain rights to commit. Contributors can check out the latest Hibernate version from subversion,
but can’t commit modified source code. Patch files need to be made of the changes so that they can be
submitted through the JIRA issue tracking system. The benefit of this approach is that al the changes and
bug fixes arrive through one central place.

There is however a group of developers that do have rights to commit to the Hibernate subversion source
code. These developers are members of the Hibernate team. The Hibernate team gathers all the patches
submitted through JIRA. These patches are then assessed and applied or rejected.

4.1.7 Release management

There is a release checklist for Hibernate developers that have the rights to issue a new release. This list
describes the steps that need to be taken in order to issue a release [22].

J. Jong – Master Thesis Page 30 of 51

Pre-release testing
Unfortunately the list doesn’t specify anything about running regression tests. All the submitted patches
need to be accompanied by TestFixtures so it can be assumed that these test are run before the release is
built.

Release approval
The approval of releases is done by the Hibernate development team. However there is no information
available about how this process is organized and who has the final responsibility for a release.

Distribution
Hibernate is distributed in the form of an ant distribution. Before distribution the changelog, readme and
other files need to be modified according to the release checklist. The new release is announced on the
forum, the developer mailing list and the front page [22] accompanied by a list of the most important
changes. The releases can be downloaded from the Hibernate web site.

4.1.8 Remarks

Hibernate is an open source project that can be called successful. Hibernate is more than five years old,
the Hibernate core is over 76 000 lines of Java code, together with 36 000 lines of Java unit test code.
About 25 000 developers are registered on the Hibernate forums (including international forums for
German, French, Chinese, and Russian speakers).

The main development and course of Hibernate is decided upon by the Hibernate development team
employed by JBoss. The source code is freely available to everyone. Developers can edit the source locally
in order to solve bugs and contribute their changes, but they will be assessed by the Hibernate
development team.

One thing that Hibernate lacks is documentation about the internals and the most important objects that
Hibernate contains. Besides the API javadoc there is no concrete description of the basic toolkit a user
needs in order to implement persistence in an application.

4.2 Spring Framework

The Spring Framework [23] is a layered Java/J2EE application framework based on code published in
“Expert One-on-One J2EE Design and Development” by Rod Johnson [24]. The Spring Framework
provides solutions to many technical challenges faced by Java developers and organizations wanting to
create applications based on the Java platform [25]. The Spring Framework was first released as an open
source project in February 2003.

4.2.1 Open source license

The Spring Framework is licensed under the Apache License, version 2.0. This basically means that
modifications and add-ons to the code can be kept secret and or sold. Using this license carries the risk
that all the modifications don’t come back to the original version.

4.2.2 Business model

The initial Spring Framework was developed by Rod Johnson while writing his previously mentioned
book. Because of the potential the framework possessed an open source development team was formed in
order to further develop the framework. There was no initial Business model used, as the framework was
developed for own use. Interface 21 however, the company Rod Johnson is currently working for is using
the Support Sellers business model. The company offers commercial support on and training in the Spring
Framework.

J. Jong – Master Thesis Page 31 of 51

4.2.3 Safeguard the quality

The Spring Framework has a way similar to Hibernate in order to safeguard the quality of their code. They
have a core development team that asses the code that is contributed by developers and also have a list of
coding guidelines to assist the developers.

4.2.4 Community

The Spring Framework is also supported by a community, consisting of the following elements:

Spring Framework Support Forums
The Spring Framework contains a lot of categories of development topics. There is even a Chinese support
forum for the Chinese speaking Spring Users. Spring doesn’t have such strict rules regarding posting
topics. The only etiquette mentioned is to search for the answer first in order to save time.

Spring JIRA Issue Tracker
Just like Hibernate the Spring Framework also uses the JIRA issue tracker. Bugs and feature requests can
be submitted, even as patches to bugs. There are a few guidelines regarding to posting bugs, (like
searching if the bug isn’t reported earlier) but they are not as strict as the ones Hibernate handles.

Developer Mailing list
Developers of the framework itself can subscribe to the Spring Framework developer mailing list. This
mailing list contains discussions about the internals of the Spring Framework.

4.2.5 Version control

The source of the Spring Framework is available in a CVS repository at SourceForge. The server can be
reached through anonymous access. Only for project-developers is the code available through developer
access. Developers can edit the code directly from the CVS while through anonymous access the code can
only be checked out.

Backwards compatibility
The Spring Framework developers feel very strongly about backwards compatibility. All the Spring
Framework releases claim to be 100% compatible with their previous versions. This prevents users from
migration problems, but considering previous releases can get more troublesome as the project grows and
knows more historic releases.

4.2.6 Change management

The spring Framework knows a change management process similar to Hibernate. Users can apply
patches to bugs that will be picked up by a member of the Spring Framework development team. The
patches will be assessed and rejected or applied.

4.2.7 Release management

Unfortunately there is not much information available about the release management process of the
Spring Framework. However, the fact that the nightly snapshots of a release candidate are distributed for
testing and development purposes before the release is distributed leads to believe that there is a more
sophisticated pre-release test process underneath, but this isn’t specified anywhere. Neither is information
about the approval of new releases.

New releases are announced in the support forums, the Spring Framework home page and on the
developer mailing list.

J. Jong – Master Thesis Page 32 of 51

4.2.8 Remarks

The Spring Framework was first released as an open source project in February 2003. Because of his
young age the Spring Framework is not as mature as Hibernate. The amount of developers and users
involved in the Spring Framework are less than those of Hibernate. This can be seen back in the “loose”
guidelines the Spring Framework handles in comparison to Hibernate.

J. Jong – Master Thesis Page 33 of 51

5 Success factors
Looking only at how the open source projects from the previous chapters manage and or handle the open
source characteristics isn’t sufficient for drawing conclusions and issuing an advice for the Trinidad open
source project. In order to get a complete picture of the reason for their success research needs to be done
about open source success factors in general, and the specific success factors for these projects.

For a project to contain all the open source characteristics that were discovered during research and to
manage them in a proper way can be considered a success factor itself. If an open source project would
take all these characteristics into consideration, like choosing the right business model, the right license,
having a clear version and configuration management, etc. the project would have a strong basis. However
just managing these characteristics does not guarantee a successful open source project. On their site [22]
Hibernate points out a few factors that helped make the project popular and successful. Unfortunately the
Spring Framework didn’t release such a documented list of success factors. However many of the factors
below are also present in the Spring Framework.

- Rapid release schedule; Regular file releases (even a few days from one version to the next) are the
best way to keep the project bug-free and users confident that the project is active.

- Regression tests; A comprehensive test suite is central to the maintainability and stability of the
Hibernate project, as it went through massive changes in functionality and design. The mentality
should be that if there’s no test for a feature, then we have absolutely no idea whether that feature
works or not.

- Do one thing well; Be the best at something, let other projects worry about all the other things
which you can't be the best at.

- Avoid over-design; Aiming for too much abstraction and flexibility at an early stage is a great way
to waste time that could be better spent solving actual problems that your actual users are facing.

- A central vision; It’s got to be a pretty damn big project before you need a committee to make
decisions. Most projects are better off with one or two open minded people guiding the project and
maintaining a single coherent vision.

- Documentation; There's no such thing as an undocumented feature. If your users don't know about
a feature, it’s a non-feature. Get rid of it; it's just complicating the source code.

- Avoid standardism; Good standards can provide interoperability and portability. Bad standards
can stifle innovation. Standards are only useful if they are adopted industry-wide.

- Up and running in ten minutes or less! ; Prospective users don't have time to spend half an hour
installing, configuring, troubleshooting a piece of software the first time they download it.
Hibernate’s aim is that new users can have the demo running in five minutes (assuming sufficient
knowledge of JDBC) and their own simple Hello World style application going inside of an hour.

- Developer responsiveness; When users have problems, which they inevitably will, the development
team must be responsive and helpful. Users let you know about holes in your documentation. Users
find the subtle bugs that your test suite misses. And besides, the project is a waste of time without
them.

- Easily update-able wiki pages.

- Professional Open Source; Not many business models have emerged to allow open source
developers to make a living from their software, one of them is JBoss Inc's Professional open
source. In addition to supporting developers, it allows business users to get what they need in
critical projects: development support, production support, and professional training. A successful
open source project needs full-time developers and commercial backing.

J. Jong – Master Thesis Page 34 of 51

5.1 Literature

Besides the last success factor all of them are in terms of development practice. Having a strong
community is just as important as good development practice. This leads to believe that success factors
can be divided into development success factors and success factors that improve the collaboration and
communication within the community. In [26] the authors already made such a distinction between
success factors for the community and success factors for the software development, which are shown
below.

Factors for a successful community:

- To establish a strong network there must be active marketing and promotion of the open source
project.

- Members of open source projects are usually spread all over the world; they need a central place of
appointment with support fora and communication amongst all community members.

- Ideas and viewpoints of others in any respects must be accepted, appreciated and incorporated, if
appropriate.

- Stability, openness, transparency and fast response times for these communication and
information exchange activities.

- Conferences, developer meetings and workshops about a special subject.
- A sense of community together with clear dispute resolution mechanisms – in a democratic sense

of decision making.
- Initiation of self-organization processes like support of new participants by experienced

community members.

As a conclusion to these factors the study in [26] states that a flat organization cannot fit the needs for
coordination, guidance and involvement in many respects. This means that there must be project
management!

Factors for successful open source development:

- Short intervals for new releases and application and testing by as many users as possible
(predictability).

- A clear declaration and identification of beta-and stable releases.
- A comprehensive documentation of the code and a roadmap for development.
- General preparations (by a core team) for and following discussion of requirements and targets of

further development in the community.
- Definition of preferences and priorities of certain projects.
- Avoidance of monolithic code.
- Permanent quality management.
- A comfortable opportunity for distributed software-development with a concurrent versions

system.
- Permanent bug-fixing

As a closing conclusion to these factors the following can be stated: Besides project management there
must be a competent technical core of developers who guarantee ongoing development, quality of the
product and support in a growing community!

Besides community and development factors, economic aspects cannot be neglected if an open source
project wants to be successful. Open source projects, just like closed source projects, need some kind of
business model.

The subject of business models has already been fully studied as part of the open source characteristics.
Looking at the rest of the success factors some of them are already mentioned under the open source
characteristics. However like mentioned earlier good management of the open source basics is a success

J. Jong – Master Thesis Page 35 of 51

factor itself. Therefore it’s not strange that many projects and studies point these characteristics out as
success factors.

Most of Hibernate’s success factors from the previous chapter can be mapped directly to the ones in this
chapter. The success factors that can’t be associated with any factors within this list, and are general
enough are added. The combined list of success factors is used for the rest of the research.

5.2 Hypothesis

Based on the above success factors and the research done the following hypothesis can be drawn.

“If an open source project manages all the characteristics in a way that is appropriate for that specific
project and that project takes the success factors into consideration the process will result in a successful
open source project.”

 In order to check the correctness of this hypothesis research will be done about failed open source
projects, and their reason of failure. The thought behind this research is to check if application of these
open source factors could have prevented failure.

5.3 Succes factors of Hibernate and Spring

Before studying the failed open source projects it is interesting to see to which extent the two successful
open source projects from the previous chapters support these succes factors.

OS projects

Succes factors
Hibernate

Spring
Framework

Community
C1.Marketing / Promotion of the open source project +\- +\-
C2.Central community with support fora and
communication

++ ++

C3.Respecting and accepting ideas and viewpoints of
others, if appropriate

+ +

C4.Stability, openness, transparency and fast response
times for these communication and information exchange
activities

? ?

C5.Conferences, developer meetings and workshops
about a special subject.

+ ++

C6.A sense of community together with clear dispute
resolution mechanisms – in a democratic sense of
decision making.

? ?

C7.Initiation of self-organization processes like support
of new participants by experienced community members.

? ?

C8. A central vision, most projects are better off with one
or two open minded people guiding the project and
maintaining a single coherent vision.

++ ?

Development
D1.Short intervals for new releases and application and
testing by as many users as possible

++ ?

D2.A clear declaration and identification of beta-and ++ ++

J. Jong – Master Thesis Page 36 of 51

stable releases.
D3.A comprehensive documentation of the code and a
roadmap for development

+ +

D4.General preparations (by a core team) for and
following discussion of requirements and targets of
further development in the community.

? ?

D5.Definition of preferences and priorities of certain
projects.

+\- +\-

D6.Avoidance of monolithic code. + +
D7.Permanent quality management. ++ ++
D8.A comfortable opportunity for distributed software-
development with a concurrent versions system.

++ ++

D9.Permanent bug-fixing ++ ++
D10. Avoid over-design, Aiming for too much abstraction
and flexibility at an early stage is a waste of time.

+ ?

Economical
E1.Professional Open Source, generating revenue by
choosing the right business model.

++ ++

E2.Full-time developers backed by a commercial
company.

++ ++

There are a few unknown factors from which it is not clear whether they are present in Hibernate and the
Spring Framework or not. However, leaving these unknown factors out of consideration the matrix shows
that these two projects score well on every success factor. This result speaks in favor for the defined
hypothesis. In order to strengthen this conclusion the following chapters discuss two failed open source
projects.

5.4 (Open)Darwin

Since its first release in March 1999, Darwin has been the open-source OS technology underlying Apple's
Mac OS X operating system. All development was being managed and hosted by Apple. Darwin was a free
UNIX based OS for Mac users and Apple's Mac OS X releases were based directly on the live Darwin CVS
repository. In order to improve cooperative development OpenDarwin [27] was cooperatively founded in
April 2002 by Internet Systems Consortium, Inc (ISC) and Apple. Many of the members of OpenDarwin
were either Apple employees or Darwin Committers.

5.4.1 Apple’s motivation

When Apple started shipping Mac OS X Server, it included some GPL'd projects in addition to many other
open source projects. Apple thought that since they were required to release some of the source anyway,
why not release modifications to all of their open source software? From there it was one short marketing
leap away from releasing the low level components of Mac OS X as open source, and one large, consistent
project to release the entire base of Mac OS X as a standalone OS. This was Apple's way of getting a piece
of the increasing open source pie. However, just releasing some source code wasn’t enough. Apple needed
something concrete they could show. As an answer to this Apple came up with a build system that was
compatible with Apple's internal build system so they could offer the open source community, a new, free
operating system called Darwin.

5.4.2 Darwin open source project lifecycle.

Rob Braun, an employee of Apple during the Darwin open source project elaborately discusses the failure
of Darwin on his webpage [28]. All the information in this chapter origins from this website. At the start

J. Jong – Master Thesis Page 37 of 51

the Darwin open source project showed much potential. Contributors were excited by the possibility of a
free OS for their MAC, others just to be part of a brand new project. Being supported by a large company
such as Apple, promised great things for Darwin.

However the potential was slow to be realized. With the release of Darwin 1.2 also came Mac OS X Public
Beta. There it came to light that Apple cared more about the product Mac OS X than Darwin and the
community. Some of the Darwin source started having dependencies to non-open source components.
Apple started to work as a whole on Mac OS X while Darwin got engineering leftovers. This could be seen
back in unusual decisions for the open source project, like removing old hardware support. Clearly this
was done to Mac OS X as a business decision, so Darwin automatically inherited this.

Apple was developing a reputation for not taking contributions, particularly not new features or additions.
Small bug fixes which were easily reviewed might be accepted back, but medium or large sized features
were not getting traction which upset the developers. During this time Apple ended up hiring over half of
their most active contributors, which drained the contributor pool significantly. The Darwin lists were
almost entirely populated by people running Mac OS X and had questions about UNIX problems.

Apple recognized the problems and hired people to create a better Darwin community. This resulted in the
OpenDarwin project, jointly created by Apple and ISC.

With the creation of OpenDarwin Apple was able to push back open source and satisfy with hardware
donations instead of cultural shift and true interaction. However the original goal of creating a free
standalone OS and a community around it had failed. There was no community, and the free standalone
OS had become composed of binary packages and source no one could build. On the 25th of July 2006 the
OpenDarwin project was shut down.

5.4.3 Reasons for failure

After analyzing the project lifecycle and the failure of Darwin the following reasons for failure were drawn
up:

- Marketing trick; Apple’s marketing department thought they could increase their market share and
revenue by going open source. Apple was right with this. The popularity of Mac OS X has been
growing since. However Apple realized this goal at the cost of Darwin. It seems like Apple itself,
with the exception of a few engineers, had no intention of becoming involved with any community
outside its own walls. This point of failure indicates that a good and clear strategy and support
from the supporting company is mandatory for an open source project. (Success factors E1).

- Community; In order to keep contributors and users pleased they must feel respected and feel that
their work is being appreciated. A community plays a great role in pleasing the developers. They
need to be able to interact with each other and the core development team. Darwin lacked many of
the success factors regarding a strong community amongst which are: Stability, openness,
transparency and fast response times, Accepting and appreciating Ideas and viewpoints of others.
(Success factors C3 and C4).

- Core development team; In order to achieve fast responses and to appreciate the contributions of
developers a core development team needs to exist. This team’s only focus needs to be development
of the open source project. Darwin did have such a team, however the focus of Apple was more on
Mac OS X than it was on Darwin. (Success factor E2).

- Motivation of developers; In order to keep a project alive the developers need to be motivated.
However Darwin developers were either hired by apple or left the project with dissatisfaction.

The failure of Darwin lies for a great deal in Apple’s marketing concerns (Mac OS X) and the inability of
Apple to set up a community around their project.

J. Jong – Master Thesis Page 38 of 51

If we compare the reason of failure and the total process of Darwin to the list of open source success
factors there are a few things that can be noticed.

The open source project started out with a bad basis, overall management of the open source
characteristics wasn’t done properly. There were a lot of hurdles, like registration, to overcome in order to
download the software. After download the project was hard to build. Despite these hurdles some people
who saw the potential in this project accepted these “start-up” problems and were excited about the
project

Most of Darwin’s failure factors are focused on the community. The community lacked a lot of essential
things, already mentioned with the reasons of failure. Only a few of the success factors regarding a
community that were stated in the previous chapter can be found back in the Darwin open source project.

As the list of success factors concludes economic aspects cannot be neglected if an open source project
wants to be successful. However the marketing strategy and chosen business model of Apple didn’t fit an
open source project. Apple chose to create revenue from their commercial product Mac OS X by releasing
an open source derivative. Because of the model the revenue generating product received the most
attention which led to failure of the open source project.

Concluding it is important to remark that all the points responsible for the failure of Darwin were in the
previous chapters identified as open source project characteristics that need to form the basis of every
open source project and open source success factors. This indicates that if Apple had set up its open source
project according to the characteristics and with the success factors proposed here, Darwin probably
wouldn’t have failed. These results speak for the correctness of the open source success factors.

5.5 NDoc

Compared to Darwin Ndoc[29] is a smaller open source project. Ndoc generates class library
documentation from .NET assemblies and the XML documentation files generated by the C# compiler.
Ndoc is created by Kevin Downs, who developed the project in his spare time. Ndoc isn’t backed up by a
commercial company. Therefore the motives for the creation of the Ndoc project were simple, the tool was
created for personal use and the developer wanted to share it with the world.

5.5.1 Ndoc project lifecycle

Before his departure Kevin Downs sent an email to the NDoc community, explaining the reasons for the
termination of NDoc. This email can be read on a lot of blogs on the internet amongst which the one of B.
House [30]. The information about the NDoc project lifecycle in this chapter origins from this email and
the NDoc website [29].

According to many developers Ndoc is more or less being considered to be the standard for documenting
.NET class libraries. Still the creator of the project didn’t get any development help from the community.
As Ndoc started to grow in popularity, so did the user base. However the project failed to attract
developers who wanted to participate in development of the product itself.

When Ndoc started to become popular and was being used and depended upon by people, the community
started to act like Ndoc was commercial and demanded to receive updates and fixes. The developer of the
project, Kevin Downs, started to feel more and more pressure from the community and less appreciated.
Combined with the lack of donations this made him announce the end of the project on the 26th of July
2006.

The closure of the project is sad news in the development community. However the retiring developer is
opening up the position of project admin these chances that some one else will take over are considered to

J. Jong – Master Thesis Page 39 of 51

be small. Remarkable is that many of the developers using Ndoc state that the Ndoc project has a lot of
potential to go commercial, and if it did, they would be eager to pay for it.

5.5.2 Reasons for failure

With his departure Kevin Downs mentioned a few reasons why he left the NDoc open source project [30].
All these reasons can be traced back to the following reasons of failure which are stated below:

- Lack of support; The main reason the NDoc project failed is the lack of support and appreciation
from the community. Everyone was using the software without contributing anything back. The
project failed to attract developers willing to participate in development. (Success factor C1).

- Core development team; the project received bug reports and feature request but unfortunately
these were too much for the core development team. In this case the core development team
existed only of one developer working on the project in his spare time. The user base that was
starting to depend on NDoc got impatient. (Success factors D1, D9 and E2).

Comparing the problem in this project to the list of success factors the crucial factor NDoc lacked is having
a core development team stable enough to withstand the pressure from the community. Every core
development team would, at one moment in time yield under the pressure of the growing user base.
However a 10 person core development team has a longer time span to this period than the one-man core
development team of NDoc. Within this extra period of time the possibility that developers attracted to
contribute instead of only use the project would come by is much larger.

NDoc yielded under the extra risk that an open source project not backed up by a company is facing; once
the project becomes successful the success totally depends on the willingness of the users to either
contribute to development or to donate to the project.

The second failed open source project that was studied didn’t test much more of the success factors than
the previous. The importance of having a stable core development team has become clear however, with
that supporting the correctness of this open source characteristic.

Concluding to the research on the failed open source projects, they are compared below in the success
factor matrix.

OS projects

Succes factors
(Open)Darwin NDoc

Community
C1.Marketing / Promotion of the open source project -- --
C2.Central community with support fora and
communication

-- -

C3.Respecting and accepting ideas and viewpoints of
others, if appropriate

-- +

C4.Stability, openness, transparency and fast response
times for these communication and information exchange
activities

-- --

C5.Conferences, developer meetings and workshops
about a special subject.

? --

C6.A sense of community together with clear dispute
resolution mechanisms – in a democratic sense of
decision making.

- ?

C7.Initiation of self-organization processes like support
of new participants by experienced community members.

? ?

J. Jong – Master Thesis Page 40 of 51

C8. A central vision, most projects are better off with one
or two open minded people guiding the project and
maintaining a single coherent vision.

- +

Development
D1.Short intervals for new releases and application and
testing by as many users as possible

- --

D2.A clear declaration and identification of beta-and
stable releases.

+ +/-

D3.A comprehensive documentation of the code and a
roadmap for development

- +/-

D4.General preparations (by a core team) for and
following discussion of requirements and targets of
further development in the community.

? ?

D5.Definition of preferences and priorities of certain
projects.

? ?

D6.Avoidance of monolithic code. ? ?
D7.Permanent quality management. + +
D8.A comfortable opportunity for distributed software-
development with a concurrent versions system.

++ ++

D9.Permanent bug-fixing - -
D10. Avoid over-design; Aiming for too much
abstraction and flexibility at an early stage is a waste of
time.

? ?

Economical
E1.Professional Open Source, generating revenue by
choosing the right business model.

-- --

E2.Full-time developers backed by a commercial
company.

+/- --

The matrix shows that, besides the unknown factors, these two projects lacked a lot of success factors
which probably caused them to fail. However this matrix once again speaks in favor for the defined open
source factors and the hypothesis.

5.6 Evaluation

The list of success factors couldn’t be proven incorrect by analysis of both of the failed open source
projects, their correctness was rather indicated both times. Both projects failed by lacking some basic open
source characteristic and/or an open source success factor.

The research has led to the understanding that the standard open source characteristics are success factors
themselves. It seems that proper management of the open source characteristics when starting an open
source project provides a solid basis for a successful project. Many projects fail because of bad
management of these characteristics.

The result of the analysis of two failed open source projects indicates that a combination of the open
source characteristics and the list of open source success factors lead to a successful project. Based on
these findings the formulated hypothesis can said to be correct.

However in order to be able to give a more grounded judgement on the correctness of the hypothesis the
following activities could have been done different:

J. Jong – Master Thesis Page 41 of 51

- Full research on failed projects; In the current research only the failure factors of the failed open
source projects have been analyzed. To get a better view of the failure of the open source project the
open source characteristics need to be researched. The way the project managed these
characteristics and to which extent are important factors that affect the failure or success of the
project.

- Assessment of all the success factors; The current research tests the open source factors according
to the failure of two open source projects. The way in which the success factors could have
prevented the failure of the project is analyzed. However, this analysis focuses on the specific
success factors responsible for prevention of the project failure. The rest of the factors in the list are
judged upon in the matrix, but not fully researched and tested. Additional failed open source
projects are needed in order to fully test the complete list of success factors.

The total open source research has resulted in the Trinidad open source advice which is described in the
next chapter.

J. Jong – Master Thesis Page 42 of 51

6 Trinidad open source advice
This chapter will contain a grounded advice based upon the research described in chapter 4 and
experiences from other open source projects as described in chapter 5. This advice will form the strategy
for an open source Trinidad Platform.

6.1 License and Business Model

Users or developers of the Trinidad platform might fix bugs or develop additional features. It is important
for Capgemini that these modifications are contributed back into the framework so everyone can benefit
from a better working framework. Capgemini can enforce this by using the right open source license.

As the study resulted there are a lot of open source licenses available. The Spring Framework uses the
Apache license, which allows the users to keep modifications private. Developers of the Spring Framework
can make modifications and for example easily sell them. This is not what Capgemini wants for the
Trinidad Platform. In order to suit the needs of Capgemini best, the most appropriate license to be chosen
is the LGPL license. This license is also used by Hibernate and enforces users to distribute modifications
under the same license.

Another characteristic of the LGPL license is that software licensed under it can be mixed with non-free
(commercial) software. Because of the open and modular structure of the Trinidad reference architecture
it is not unthinkable that the need for connecting with commercial software might occur. The LGPL license
is flexible enough to allow this. The full description of the LGPL license can be found at
http://opensource.org/licenses/.

Business Model
In order to create revenue from an open source model it is wise to decide on a business strategy.
Capgemini wants to offer customers the Trinidad Platform for free but still generate revenue. The
approach that Capgemini wants to take in this is to generate revenue by offering training and support.

The companies behind Hibernate and the Spring Framework have business goals similar to Capgemini’s.
These business goals are accomplished by using a business model called “Support Sellers”. These
companies have employed a core development team, devoted to working on the project. They provide
professional support and training to users and developers of the product. This business model has the
advantage that companies using the open source software rather turn to the original developers for
support. The more successful the open source project becomes, the more income the business model
generates.

Capgemini needs to carry out the Support Sellers business model in order to meet their business goals.
Because of the nature of the Trinidad Platform it is likely that the platform will be mostly used by
companies rather than individual developers. Especially for companies it is important that the open source
project they use is backed up by a company. This gives them a sense of security. When in need of training
and support Capgemini will be the obvious company to provide this.

6.1.1 Core development team

In order to support the Trinidad Platform Capgemini will need to form a core development team. Among
other things this team will be responsible for releasing new versions of the Framework and coordinating
the development of the Framework. The other functions this development team will fulfill will become
clear in the following chapters.

J. Jong – Master Thesis Page 43 of 51

6.2 Developers

As we have seen developers are the most important factor in any open source project. Without developers
willing to participate and contribute time and effort in an open source project it will surely fail. The study
in chapter 3.6 results in a few external factors for developers to contribute to an open source project. Some
of these external factors are of a more objective personal nature and can not be influenced by a specific
project (like peer recognition). Therefore the most a company can do to make developers comfortable is to
provide or stimulate these external factors. In the context of Capgemini and the Trinidad Platform the
following issues need to be emphasized in order to make the project interesting for developers and / or
customers.

Ready for the Future
Development of software needs to be done faster and faster, because of the growing demands of the
customers. In order to reach faster development the development process needs to be standardized.
Development within the Trinidad Platform is highly standardized and contains elements that speed up
development. Working on a new way of development can boost the joy of programming for developers,
and make it interesting for companies to learn the framework and later on even deliver support.

Expanding the developer’s skill base
Development within the Trinidad Platform contains a lot of modern development techniques like Use Case
modeling, Use Case estimation, Model Driven Architecture and an agile development process. Developers
can gather a lot of knowledge on different techniques which make it interesting to participate.

Developer’s recognition
Developers like to show their skills, and even get recognition. A reward system within the community
could be a good way to support this. Hibernate has a system where users get ‘credits’ for answering
questions from other users. A similar system, with rewards for bug-fixes and patches can attract
developers.

Personal needs
Every software development company needs a structured development process. Especially for companies
it is interesting to adopt and use the Trinidad Platform.

6.3 Safeguard the quality

As chapter 3.7 already states the strength of code quality within open source projects lies in its massive
code-level peer review. However open source projects lack a structured development process which hurts
the quality of code. The benefit of the Trinidad Platform is that it contains a structured development
process itself. Development of the framework itself needs to be done according to the same agile
development process. Sticking to this development process and keeping in mind the key points below can
safeguard the quality of code within the Trinidad platform.

- Develop clear coding guidelines and request from the programmers to keep to this guideline.

- The core development team could asses the code returned by programmers according to a
guideline. This implies that the co-coordinator has the right to reject non-conformant
contributions, even if they correct a bug or provide new functionality.

- Code re-engineering decisions can be taken by the core development team whenever the project
seems to experience problems.

J. Jong – Master Thesis Page 44 of 51

6.4 Community

A successful open source project needs a community where developers can get in touch with each other
and provide support amongst them. Users need to be able to ask questions and be kept up to date about
news and info regarding the project.

Trinidad User Support Forum
Looking at the Hibernate and the Spring Framework we can learn that it is advisable to distinguish
between user support and framework developers support. The user support forum will allow users to posts
and answer questions about Trinidad based software development. A reward system similar to the one
Hibernate uses is a valuable extra function to the user forum. It is also preferred that the forum supports
multiple languages in order to support users from all over the world. However the initial forum needs to be
English, and can later on be extended with additional forums in other languages.

To keep postings in the forums structured it is wise to create a forum etiquette containing guidelines on
how to post a question, the amount of additional information that needs to be posted along with the
question, etc.

Developer’s Mailing list
Many open source projects (Hibernate and the Spring Framework) use a mailing list for developers
support. Mailing lists have the benefit that developers stay updated about everything that happens,
because every mail that is submitted is received by every member.

It is wise to set up a mailing list within the Trinidad Platform. The Havana framework developers can
discuss technical issues in the Trinidad Mailing list. The mailing list is intended for use only by developers
actually working on development of the Havana Framework.

Bug tracking
Using a bug tracker is mandatory for every open source project. There are many open source and
commercial bug trackers available. The bug tracker is the place where bugs, patches to bugs and feature
requests can be submitted. Also for reporting bugs there need to be clear guidelines. Because the Trinidad
platform is a new open source project there aren’t as many developers reporting bugs yet. Therefore the
guidelines don’t need to be as strict as for example the ones Hibernate handles. As the project and the
amount of developers grow the guidelines can be adjusted if necessary in order to reduce ‘traffic’ in the bug
tracker.

Portal
The Trinidad open source project needs a project portal where users can find information about the
Trinidad platform. Documentation like coding guidelines, manuals and news items need to be available on
this site. Also all the other aspects of the community (forum, bug tracker) need to be present on or through
this site. As the company supporting the Trinidad development Capgemini needs to host and maintain this
site. Possible courses and training regarding Trinidad can also be offered through this portal.

6.5 Version control

The source code of the Havana Framework needs to be made publicly available in order to become a full
open source project. However, releasing the source code doesn’t mean just offering any body access to
modify the code. The source code needs to be placed in a repository (CVS, Subversion, etc) so multiple
developers can work together. A good strategy used by Hibernate and the Spring Framework is to make a
distinction in rights between developers and users. Developers are initially the core development team
from Capgemini containing rights to check out and commit modifications to the source code. In the light
of safety and safeguarding the quality of code everyone else has user access. This means that the code can
be checked out but modifications can’t be committed. Bug-fixes or patches need to be submitted through
the bug tracker.

J. Jong – Master Thesis Page 45 of 51

As the project starts to grow the core development team will eventually become too small to keep up with
the growth. In this situation the core development team may select loyal users who have committed much
to the project through the bugtracker to join the development. These developers will then be part of the
core development team and will be given developer rights on the source code.

Backwards compatibility
Open source software doesn’t require a company to guarantee backwards compatibility. However it is wise
for developers not to vary too much between releases because this will result in dissatisfaction from the
users. It is wise to strive to backward compatibility, but guaranteeing 100% compatibility between every
release will almost be impossible in the long run. The Spring Framework has all compatible releases up
until the present, but hasn’t guaranteed this for the future.

It is good for Capgemini to take this as a starting point for the Trinidad Platform. It is wise to strive to
maximal backwards compatibility. However if this gets to complicated, mostly when the project starts to
grow and expand the strategy of Hibernate can be used. Compatibility and migration problems can be
dealt with by means of a migration guide. In this guide all the differences between releases and steps to
take when upgrading need to be explained. This doesn’t give the users 100% backwards compatibility but
compensate for this by guiding the users through the migration process.

6.6 Change management

The proposed change management process for the Trinidad Platform is already partially enforced by the
version control system. Only members of the core development team can directly modify the code. All the
changes, bug-fixes or feature requests from other developers are submitted through the bug tracking
system. The core development team will decide on the correctness of the bug-fix, the quality of the code
and reject or approve the change accordingly.

Both Hibernate and the Spring Framework use the same change management process. This is a safe way
to secure the integrity and quality of the code.

6.7 Release management

In order to frequently issue new releases of the framework a release management process needs to be
configured. Hibernate has a checklist that developers need to follow before issuing a release. The Spring
Framework doesn’t seem to have a fully structured process. However in both projects the core
development team is responsible for the release. This team decides on for example the bugfixes that will be
implemented in the next release.

Pre-release testing
Before publishing a new release it should be tested according to a few criteria like code tests, acceptance
test, etc. The core development team needs to make sure that every new feature or bugfix is tested. The
advice here is to set up guidelines for testing that can be directed back to the developers. Every developer
needs to bundle a patch or bugfix with a test.

This doesn’t mean that the core development team doesn’t need to test anymore. It is the responsibility of
the team to gather and structure all the tests, carry out regression tests and perform the final check.
Acceptance tests can also be part of the pre-release testing process.

Release approval
A member of the development team needs to coordinate the pre-release activities en give the final
approval for issuing a release. This member can function as a controlling mechanism on top of the pre-
release testing process. It is not clear how this process is done in Hibernate or the Spring Framework but
for the Trinidad Platform it would certainly be a valuable addition.

J. Jong – Master Thesis Page 46 of 51

Distribution
After a release is formed it needs to be distributed. The latest version of the code can of course be obtained
from the source code repository, but it also needs to be made available in a more user friendly manner.
The first step that needs to be taken is to notify users and developers of the new release. The best place to
announce the release is in the community; within the forum, the developer mailing list, the frontpage of
the website, etc. Like Hibernate and the Spring Framework the best place to distribute the framework is
the Trinidad Platform website.

6.8 Success factors

In order to set up a successful open source Trinidad Platform the open source success factors that have
been studied need to be taken into consideration. The open source success factors are described in chapter
5. Some of these open source success factors are closely associated to the open source characteristics that
are discussed in this chapter. However the advice to Capgemini is to use the full list of open source factors
as a supplement to the open source characteristics.

The advice as presented to Capgemini can be read in the Trinidad open source Strategy document which
can be found as appendix B to this document.

J. Jong – Master Thesis Page 47 of 51

Bibliography
[1] Kruchten, P. The Rational Unified Process: An Introduction, 2nd Edition. Addison-Wesley, 2000.

[2] Kruchten, P. Architectural Blueprints – The “4+1” View Model of Software Architecture, IEEE
Software, 1995.

[3] Bass, L., Clements, P., Kazman, R. Software Architecture in Practice, Second Edition, Addison-
Wesley, 2003.

[4] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. Design Patterns, Elements of Reusable
Object-Oriented Software. Addison-Wesley Professional, 1995.

[5] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. Gang of Four Template,
http://hillside.net/patterns/DPBook/DPBook.html, 1995.
Visited at 15-08-2006.

[6] Fowler, M. Patterns of Enterprise Application Architecture, Addison-Wesley Professional, 2002.

[7] Mulgan, G., Steinberg, T., Salem, O. Wide Open, Open source methods and their future potential,
Demos, 2005.

[8] Perens, B. The Open Source Definition, http://perens.com/Articles/OSD.html.
Visited at 15-08-2006.

[9] Brooks, F. The Mythical Man- Month, Addison-Wesley, 1975.

[10] Hecker, F. Setting Up Shop: The Business of Open-Source Software, IEEE Software, 1999.

[11] Wilson, G. Is The Open-Source Community Setting a Bad Example ?, IEEE Software, 1999.

[12] Daly, P. The Economics of Open Source Software, The University of Waterloo, 2002.

[13] Hars, A., Ou, S. Working for Free? – Motivations of Participating in Open Source Projects, IEEE,
2001.

[14] Lakhani, K., Wolf, R. Why Hackers Do What They Do: Understanding Motivation Effort in
Free/Open Source Software Projects.

[15] Stamelos, I., Angelis, L., Oikonomou, A., Bleris, G. Code quality analysis in open source software
development, Information Systems Journal, 2002.

[16] McCabe, T. A complexity measure, IEE Transactions of Software Engineering, 1976.

[17] Boulton, C. Open Source, Proprietary Code Quality Comparable,
http://www.internetnews.com/dev-news/article.php/2230481, 2003.
Visited at 15-08-2006.

[18] McConnell, S. Open source methodology: ready for prime time?, IEEE Software, 1999.

[19] Raymond, E. The Cathedral and the Bazaar, http://www.catb.org/esr/writings/cathedral-
bazaar/, 2000.
Visited at 15-08-2006.

J. Jong – Master Thesis Page 48 of 51

[20] Asklund, U., Bendix, L. Configuration Management for Open Source Software, Aalborg
University Dept. of CS, 2001.

[21] Erenkrantz, E. Release Management Within Open Source Projects, Proceedings of the 3rd
Workshop on Open Source Software Engineering, 2003.

[22] JBoss Inc. Hibernate, http://www.hibernate.org.
Visited at 15-08-2006.

[23] Interface21, Springframework.org, http://www.springframework.org.
Visited at 15-08-2006.

[24] Johnson, R. Expert One-on-One J2EE Design and Development, Wrox Press, 2002.

[25] Wikipedia. Spring Framework (Java),
http://en.wikipedia.org/wiki/Spring_Framework_%28Java%29
Visited at 15-08-2006.

[26] Koch, K., Hartung, M., Hesser, W. Success Factors of Open Source Projects, Presentation on the
2nd International ILIAS Conference, 2003.

[27] OpenDarwin Wiki, http://wiki.opendarwin.org/index.php/OpenDarwin.
Visited at 15-08-2006.

[28] Braun, R. Why Darwin Failed, http://www.opendarwin.org/~bbraun/osfail.html, 2006.
Visited at 15-08-2006.

[29] NDoc online, http://ndoc.sourceforge.net/.
Visited at 15-08-2006.

[30] House, B. Brenton House : NDoc 2.0 – R.I.P.,
http://weblogs.asp.net/bhouse/archive/2006/07/26/NDoc-2.0-_2D00_-R.I.P.aspx, 2006.
Visited at 15-08-2006.

J. Jong – Master Thesis Page 49 of 51

Appendix A: Trinidad Reference Architecture
The architectural overview of the Trinidad Reference Architecture is separately added.

J. Jong – Master Thesis Page 50 of 51

Appendix B: Trinidad Open Source Strategy
The Trinidad open source strategy is separately added.

J. Jong – Master Thesis Page 51 of 51

Trinidad

Architectural overview

| the way we see it

Version control

Version Date Short description changes

0.1 March 09, 2006 Start Report

0.2 April 27, 2006 First draft by Jermaine Jong

0.3 May 09, 2006 Filled in blank chapters

0.4 May 29, 2006 Deleted “Management Summary” Chapter

Added info from .Net seminar

Added clear scope definition

0.5 August 15, 2006 Minor changes according to feedback

1.0 <date> Definitive document

Name author(s): Jermaine Jong

| the way we see it

Trinidad

Name author(s): Jermaine Jong

Company name: Capgemini N.V.

Place: Utrecht

Date: August 15, 2006

© 2006 Capgemini. No part of this document may be modified, deleted or
expanded by any process or means without prior written approval from
Capgemini

| the way we see it

1

Preface / Introduction

This document contains an overview of the architecture of the Trinidad Platform,
and gives an introduction to the Trinidad Platform and its agile methodology.
Furthermore this document gives an elaborate description of the reference
architecture and the framework supporting the Trinidad Platform.

The goal of this document is to serve as a reference for the Trinidad Reference
Architecture and the Havana Framework. Just like the Trinidad Platform this
architectural overview is a dynamic document which will be updated and
changed during the development of the platform.

This document doesn’t provide a complete description of the Trinidad platform
but merely a detailed description of two important concepts within that platform
namely, the Trinidad Reference Architecture and the Havana Framework. The
remaining concepts within the Trinidad Platform are only mentioned briefly in
order to give the reader a clear view of the platform and the position of the
described concepts within that platform.

 The intended audience for this document exists of developers and architects
wanting to get more insight in the technical details of the Trinidad Reference
architecture.

| the way we see it

2

Table of Contents
1 Trinidad Platform 4
1.1 Trinidad 4
1.2 Components 4
1.3 Trinidad Lifecycle 5
1.4 Tobago MDA Generator 5
1.5 Havana Framework 6
1.6 Smart Estimator 6
1.7 Trinidad Dashboard 7
1.8 Benefits 7
2 Trinidad Reference Architecture 9
2.1 Goals 9
2.2 Overview 9
2.3 Layers 9
2.4 Blends 11
3 Framework-wide Concepts 15
3.1 Plug-in Architecture 15
3.2 Layer Supertypes 19
3.3 Frameworking 20
3.4 Binding & Persisting 21
4 Presentation 24
4.1 Custom & User Controls 24
5 Process 26
5.1 Task Pattern 26
6 Business 28
6.1 Factories & Business Entities 28
6.2 Internal State 29
6.3 Reference Types 31
6.4 Value Types 35
6.5 Nullable Types 36
7 Data / Services 38
7.1 Table Classes 38
7.2 Query Pattern 39
7.3 Data Factories 40
7.4 Service Gateway 41
8 Patterns 43

| the way we see it

3

| the way we see it

4

1 Trinidad Platform

1.1 Trinidad
The number of challenges modern software development projects encounter is
expanding quickly. Think about integration with existing back-ends and third
parties, service orientation, new platforms and media, and emerging technologies.
For projects, executing on-time and on-budget becomes a diligent quest, with this
ever increasing complexity. In order to deal with these challenges, Capgemini
introduced the Trinidad Platform.

1.2 Components
The Trinidad Platform executes on the vision that projects need to be empowered
and highly standardized in order to achieve high productivity and high quality at
the same time. The Trinidad Platform consists of a number of integrated core
elements.

♦ Trinidad Lifecycle. A flexible agile methodology, using best practices from
Rational Unified Process (RUP), MSF Agile, extreme programming and
Smart. An agile methodology is used to guarantee frequent, high quality
delivery of working software. With this methodology comes a clear and
easy-to-use estimation technique, based on pragmatic use cases, modeling
guidelines and an online use case based planning and measurement tool.
Furthermore, additional project and process support can be achieved by
executing your projects in one of Capgemini’s Accelerated Delivery Centers
(ADC).

♦ Trinidad Reference architecture. Projects executed with the Trinidad
Platform de facto apply platform independent multi-tier reference software
architecture. Be it web, mobile or Windows development, employing
databases, service oriented architectures (SOA) and enterprise busses. The
reference architecture is supported by a broad and extensible framework,
called the Havana Framework. This allows for maximum re-use of
functional, technical built-in and third party services and components, such
as authorization, SharePoint, web services, BizTalk, Microsoft Dynamics,
and SAP. Capgemini gathered years of experience in constructing and using
frameworks, such as Sculptor, CSLA and numerous project specific
workbenches. The Havana Framework benefits from these experiences.

♦ Model Driven Architecture. The Trinidad Platform encompasses high
quality code delivered at high speed. This is facilitated using model driven
architecture (MDA). The flexible and extensible Tobago MDA Code
Generator uses UML models from any UML modeling tool, and produces
code according to predefined templates. Model driven architecture
guarantees high quality and keeps testing effort low.

♦ Havana Framework. The Havana Framework is an easy extendable .Net
framework, based upon well-known design patterns. Use of the Havana
Framework speeds up development and increases the quality of software by
offering common used, basic functionality

| the way we see it

5

1.3 Trinidad Lifecycle
The Trinidad Lifecycle is the beating hart of every project.

Fig. 1.1 Trinidad Lifecycle

The Trinidad Lifecycle exists of the following phases.

♦ Propose. The project’s scope, size and complexity are determined roughly
during a number of short intensive workshops. This stage leads to the initial
project proposal.

♦ Scope. The project proposal is elaborated upon, again in workshops, leading
to the plan of approach for the project. This stage includes use-case
modeling and domain modeling, stakeholder and risk analysis, resourcing,
and an estimate for the project.

♦ Build. The “Build” phase stands in light of interactively realising software.
“Build” is divided into short iterations of preferably two weeks. During
these iterations a number of smart use cases are realised. At the start of an
iteration the use cases that will de realised are selected. This happens in the
sub-phase “Plan”. Next every iteration has a sub-phase “Build”, in which
the use cases are elaborated and realised. Deployment happens in the sub-
phase “Run”.

♦ Finalise. During the Finalise phase the project is finalized and evaluated.

♦ Manage. The (ongoing) stage Manage executes the maintenance of the
delivered software. During this stage again smart use-cases underly the
possible changes in the software. The stage Manage is usually executed in
monthly or two-monthly iterations.

1.4 Tobago MDA Generator
The Tobago MDA Generator, Capgemini’s flexible and extendable code
generator produces a great deal of code in a Trinidad project according to
predefined patterns and templates.

The use of model driven architecture and the Tobago code generator has a few
important benefits. Development that is considered to be routine can be delivered
at high speed, shifting the focus in the project to the business logic and complex
functional and technical challenges. A gain in time is realized by maximizing
reuse and capitalizing from experiences of preceding projects.

| the way we see it

6

1.5 Havana Framework
The Havana Framework is a set of classes and other constructs that assist and
speed up development for Trinidad based applications by eliminating repeating
work. The use of the Havana Framework improves the quality of developed
software. The Havana Framework is available for both .Net and Java.

The Havana Framework implements the layers and classes from the Trinidad
Reference Architecture and handles the communication between those layers.
The Havana Framework speeds up software development by alleviating routine
work such as database connections and exception handling. Capgemini
developed the Havana Framework for the following reasons:

♦ To create a common basis for all projects worldwide.

♦ To speed up development by facilitating reuse.

♦ To ensure a correct implementation of the Trinidad Reference Architecture.

1.6 Smart Estimator
Smart Estimator is a pragmatic use case based project estimation and
measurement tool which provides dependable estimations that can be made in
early stages of the project.

Nowadays most of the available use case based estimation techniques are coarse
grained, therefore knowing a huge risk of deviation. The use cases are
inappropriate as unit of work because they are not of equal granularity. Therefore
Capgemini developed the Smart Estimator, which in fact supplies guidelines for
modelling use cases and uses these use cases as unit of estimation. The use cases
in Smart estimator are called Smart use cases.

1.6.1 Smart use cases
Smart use cases are from an equal small granularity and serve as suitable unit of
work in the Trinidad Project Lifecycle. Smart use cases facilitate the re-use of
requirements and allow for traceability in code. The unit of measuring
complexity in the Smart Estimator is called a Smart use case point (SUCP). A
Smart use case point is equal to approximately 1,4 function points.

Below are a few pointers on how to model use case diagrams:

♦ model actors and use cases

♦ keep use cases independent, use pre and post conditions

♦ keep use cases pragmatic, one form per use case

Below are a few pointers on how to describe use cases:

♦ use a pragmatic simple template

♦ describe the use case goal

♦ describe pre and post conditions

♦ describe the use cases steps

| the way we see it

7

1.7 Trinidad Dashboard
The Trinidad Dashboard is an online project dashboard which clearly visualizes
the scope and progress of the project. The dashboard helps stakeholders to
monitor and manage a project and can assist in gathering metrics and decide on
project velocity. The Trinidad Dashboard visualizes the progress in realizing use
cases, as they are the unit of work in Trinidad projects. The dashboard also
includes the possibility to create simple reports for different stakeholders,
including management.

Fig. 1.2 Trinidad Dashboard

1.8 Benefits
Using the Trinidad Platform in software development projects realizes a few
important benefits.

♦ High quality. Standardized guidelines for modelling and coding, optimal
code generation and integrated tests lead to high-quality design and code.

♦ High productivity. Projects can be delivered on time and within budget
because of the Trinidad Lifecycle and the optimal use of modelling and code
generation.

| the way we see it

8

♦ Less testing. The use of short agile iterations maximizes costumer and end-
user’s feedback. This rapidly increases the quality of the product and
reduces the required testing effort.

♦ Little and easy maintenance. Because of the standardized approach,
supported by the reference architecture requirements can literally be traced
back to design and code. This speeds up maintenance.

| the way we see it

9

2 Trinidad Reference
Architecture

2.1 Goals
The Trinidad Reference Architecture is an important link in the realisation of
applications and the stimulation of reuse. The reference architecture supports
easy maintenance of produced software, because it guarantees traceability of
requirements to code and design.

2.2 Overview
Because “reinventing the wheel” costs unnecessary time and money, Capgemini
created the Trinidad Reference Architecture, one of the accelerators included in
the Trinidad Platform.

The Trinidad Reference Architecture is a layered architecture. The use of layers
is a good way to distinguish between the different responsibilities of the
architecture, which accounts for a clear software architecture. The Trinidad
Reference Architecture is created because of the following main reasons.

♦ The reference architecture presents a clear vision on how to develop
software and introduces standardization

♦ The reference architecture assures the quality of software being built under
the architecture because the architecture contains fully tested and proven
components

♦ The reference architecture stimulates reuse over projects.

♦ The reference architecture diminishes architectural work in projects, only
the deviation to the reference architecture needs to be explored.

2.3 Layers
The following figure shows an overview of the Trinidad Reference Architecture.
The reference architecture has four layers which all have different
responsibilities. Besides these four layers there is also a layer called the outside
world. The layers and their functionality are further explained in the paragraphs
below.

| the way we see it

10

Fig. 2.1 Layered architecture

2.3.1 Presentation layer
The presentation layer presents information to the customer in a windows, web or
even a mobile device application. Preferably, the presentation layer is a thin
client which contains no logic, such as business logic or process logic, from other
layers.

2.3.2 Process layer
The process layer is responsible for executing the use cases in the application.
Every use case in the model is represented as a task, and the process layer
manages these tasks. The process layer separates these processes from the rest of
the application, making them flexible.

Use cases
The problem with most development techniques working with use cases is that
the use cases often have a different level of granularity. The Trinidad platform
uses smart use cases, which are from equal granularity.

During a Trinidad project a use case diagram is made for every elementary
business process. In most cases this diagram represents a single user task, and
consists of sub-function level use cases. Use case diagrams are used to reduce the
complexity of functional requirements.

2.3.3 Business layer
The Business layer is the most important layer in the reference architecture. This
layer contains all the business logic which is offered to the process layer. The
business classes are located in the business layer. The business classes are
derived from the classes of the domain model of the application. Every business
object in the business layer is represented by a class in the domain model.

| the way we see it

11

2.3.4 Data / Services layer
The Data / Services layer isolates the connections with data providers from the
business layer. This layer provides the internal status of the business objects in
the business layer. For every Business class in the Business Layer there’s a Table
or Service class in the Data / Services layer.

2.3.5 Outside World
The Outside World is everything in the surroundings of the application that is
somehow connected with or has influence on the application. This “layer”
represents the interfacing between the application and the outside world.
Examples of components of the outside world are Siebel, CRM, SAP, Web
Services, Databases, etc.

2.4 Blends
The Trinidad reference architecture can be implemented in a couple of blends
which are described below.

2.4.1 Database
The Database variation is the standard reference architecture of the Trinidad
Platform. This architecture represents a standard Trinidad application which
consists of a webbased, Windows or mobile Microsoft .Net application,
supported by an SQL server.

Fig. 2.2 Standard reference architecture

2.4.2 Service Consumer
Service Oriented Architectures are a growing trend. The Trinidad platform fully
supports service oriented architectures. Fig. 2.3 shows a reference architecture
which uses a service as data source.

| the way we see it

12

Fig. 2.3 Service consumer

As the outside worlds in Fig. 2.3 shows, the application can access the web
service and use it as data source. The application can also easily access a bus
structure which gets data from any other source which could be another web
service, application, etc.

The only layer that has been modified in order to create this services client
architecture is the Data / Services layer. Instead of Table classes this layer now
contains Service classes in order to communicate with the service. Because of the
layered structure of the architecture the other layers continue to function as if
they were still using data directly from a database server. This example
architecture contains multiple tiers; the application, the web service and the
application delivering the web service.

2.4.3 Service Provider
The previous example showed a reference architecture which uses a service as
the data source. What if we don’t want to create an application which uses a
service, but an application which itself functions as a service. This is also
possible within the Trinidad Platform. An example service architecture could
look like Fig. 2.4.

| the way we see it

13

Fig. 2.4 Service provider

Looking at this figure we can see that the process and business layer are still
identical to the standard reference architecture. In order to create a service the
only layer that has to be changed is the presentation layer, instead of creating a
form to represent the data a service interface has to be created. Again we can
identify multiple tiers in this example architecture

The created service architecture can access data from a database server, but also
from another data source. Fig. 2.4 shows the different possible data sources in the
Outside world en Data / Services layer. Because of the layered architecture all
kinds of variations are possible.

Fig. 2.5 gives a visual representation of some of the possibilities of applications
in the Trinidad Platform. This picture shows a clear overview of how a service
oriented architecture could be realised within the Trinidad Platform. The basis for
every application is still the same, all these applications have more
commonalities than differences.

| the way we see it

14

Fig. 2.5 Service Oriented Architecture

| the way we see it

15

3 Framework-wide Concepts
The Trinidad Reference Architecture consists of a lot of components. Some of
these components have a function through all the layers of the architecture and
others aid development only in a particular layer.

Fig. 3.1 Important components in the Havana Framework

Fig. 3.1 shows the Trinidad Reference Architecture complemented by the most
important components. This picture also gives an overview of the specific
components and the layers they are used in. Some of the components in Fig. 3.1
operate in a specific layer while others work through all the layers. The
components discussed in this chapter are framework-wide components.

3.1 Plug-in Architecture
Nowadays applications can make use of all kinds of external services to fulfill a
task. Depending on the wishes of the client applications need to support these
services. Integrating with or switching from different services can sometimes be
difficult. Applications constructed with the Trinidad Platform are built upon an
extensibility mechanism that supports easy integration of external services. This
mechanism is called the Plug-in Architecture.

3.1.1 Intent
Applications created with the Havana Framework are created upon a plug-in
architecture. The framework is flexible and scalable enough to offer support for
the integration of new components and external services.

A Trinidad based application gets its components and or services “plugged in” at
startup. The component for lets say an authorization mechanism based on data
from a database is added at startup. If the customer decides that the application

| the way we see it

16

needs to use Active Directory authorization instead, the previous authorization
mechanism is removed and the Active Directory authorization is plugged in.
while the remainder of the application remains unmodified.

The plug-in architecture enables a great deal of flexibility in Trinidad based
applications. All the required components can just be plugged into the application
without further modifications.

3.1.2 How
The plug-in architecture is based on the Bridge pattern. The Bridge pattern is
intended to decouple an abstraction from its implementation so that the two can
vary independently. The use of this pattern enables the easy implementation of
external services in Trinidad based applications.

The Bridge pattern is useful when the implementation must be exchangeable
(during runtime). The abstraction and implementation in the Bridge pattern can
both be extended by deriving subclasses from them. Changes to the
implementation have no effect on the abstraction or the clients using the
abstraction. The client code doesn’t even have to be compiled again which
enables runtime switching between implementations.

Fig. 3.2 shows the standard view of the Bridge Pattern in UML. The Bridge
pattern exists of the following classes or objects:

♦ Abstraction, Defines the abstraction’s interface and maintains a reference to
an object of type Implementor.

♦ RefinedAbstraction, Extends the interface defined by Abstraction.

♦ Implementor, Defines the interface for implementation classes. This
interface doesn't have to correspond exactly to Abstraction's interface; in
fact the two interfaces can be quite different. Typically the Implementation
interface provides only primitive operations, and Abstraction defines higher-
level operations based on these primitives.

♦ ConcreteImplementor, Implements the Implementor interface and defines its
concrete implementation.

Fig. 3.2 Bridge Pattern

| the way we see it

17

Every type of pluggable component in a Trinidad application contains a plug-in
manager class (the abstraction) and an interface (the implementor). Continuing
with the previous example, a Trinidad application would contain an
Authorizationmanager and an IAuthorizer interface. All the authorization
mechanisms in the Framework implement the IAuthorizer interface.

Using the plug-in architecture in a Trinidad application makes it easy to add,
remove and switch from different implementations. At startup the
implementations are plugged into the abstractions. When the implementation is
used the client calls the abstraction, which routes the call to the implementation.
The implementations to use are defined in the startup script of the application.
Figure 4.3 shows a code example that defines the implementations that will be
plugged into the application at startup.

Fig. 3.3 Definitions for a Web based application.

The code example in Fig. 3.3 origins from a Webbased application. The plugged
in implementations that are defined in this code example are specifically
designed for a webbased application. The state of the application is controlled by
an implementation called, the WebState, the exceptions are handled by the
WebExceptionHandler, etc.

The application in Fig. 3.3 can easily be adapted to a windows application. The
specific webbased implementations are just plugged out of the application while
windows based implementations are plugged in instead.

| the way we see it

18

Fig. 3.4 Definitions for a Windows based application

The actual code that makes use of these implementations doesn’t need to be
changed or modified. Fig. 3.4 shows the windows implementations of the
application. The WebState is replaced by a WinState, the resource management
differs, etc.

Additionally it is possible to define an array of implementations for a specific
component. If an application has e.g. different kind of logging mechanisms they
can both be used in the application by inserting them in an array and defining that
array as implementation for the logging control. This is known as the so called
“multiple Bridge pattern”.

3.1.3 Benefits
The plug-in architecture has a great impact on the total reference architecture,
and is frequently used throughout the whole architecture. The plug-in
architecture makes the reference architecture flexible and scalable. Stated below
are the most important benefits that the plug-in architecture offers.

♦ A clear separation of definition and implementation.

♦ Replaceable and exchangeable omponents.

♦ Allowing easy integration in all kinds of external services such as user
interface, databases, web services, enterprise service busses.

3.1.4 Consequences
There are a few consequences of using the plug-in architecture, some of which
have already been mentioned at the benefits of the plug-in architecture. The
consequences of using the plug-in architecture are stated below.

♦ Decoupling interface and implementation, An implementation is not bound
permanently to an interface. The implementation of an abstraction can be
configured at run-time. It's even possible for an object to change its
implementation at run-time.

♦ Improved extensibility, You can extend the Abstraction and Implementor
hierarchies independently.

♦ Hiding implementation details from clients, You can shield clients from
implementation details, like the sharing of implementor objects and the
accompanying reference count mechanism (if any).

| the way we see it

19

3.2 Layer Supertypes
A layer supertype is an object who acts as a supertype for all the types in its
layer. All the actual types in that layer inherit from the layer supertype. Every
layer in the Trinidad Reference Architecture contains layer supertypes.

3.2.1 Intent
Layer supertypes force common features on inherited types. The use of layer
supertypes prevents redundant code. If we look at the business layer for example,
we see that this layer contains a lot of business classes (one for every type of
business object). These business classes share a lot of common functionality.
Instead of recoding this shared functionality into every single business class, it is
raised a level of abstraction higher and put in a layer supertype. Every business
class in the business layer now inherits from the layer supertype.

3.2.2 How
Every layer supertype is actually an abstract class from which other classes in the
layer can inherit. The layer supertype is initially empty, but will be supplemented
with common functionality during development. Fig. 3.5 shows a few layer
supertypes in a project. The BusinessClass in the Business package is the layer
supertype for every business class in the business layer.

Every business class implements the IBusinessClass interface. Calls from
anywhere in the application are made to objects of the type IBusinessClass. The
benefit of this is that external third party business object can simply implement
this interface in order to be recognized as a business object by the rest of the
application.

Fig. 3.5 Layer Supertypes

Another layer supertype is the Table Class in the Data / Services layer. Fig. 3.6
shows a code snippet from the TableClass layer supertype.

| the way we see it

20

Fig. 3.6 TableClass layer supertypes

3.2.3 Benefits
Layer-supertypes are good object oriented programming practices. Layer
supertypes prevent redundant code by abstracting common functionality to a
higher level. Using layer supertypes also supports maintainability of the
application. Changes in the way a table class handles operations on data, for
example a conversion between data types, can be made only in the layer
supertype.

3.2.4 Consequences

♦ Prevention of redundant code, The application will not contain any
redundant code because all the common functionality is placed in the layer
supertype.

♦ Carefully select supertype data, Realize that not everything can be placed
into the supertype, object specific code should be in the object itself instead
of in the layer supertype.

♦ Maintainable code, Changes can be made to a central class, the layer
supertype.

3.3 Frameworking
If you want to speed up development and eliminate rework you can’t go without
frameworking in a reference architecture. A Framework is a set of classes and
other constructs that assist and speed up development. The Trinidad platform
uses the Havana Framework.

3.3.1 Intent
The main purpose of a framework is to find a solution to a problem in a given
context that is originally used in a different context, in other words: reuse. A

| the way we see it

21

framework can become a solid base for building applications, containing fully
tested, high quality code.

3.3.2 How
While creating a framework the target architecture must be kept in mind. There
are different strategies to create a framework. Frameworks can be implemented
using design patterns, or even be based on an open source framework.

Below are 2 strategies to create a framework.

♦ Up-front, Creating the entire framework before building the application.
Working according to this strategy carries the risk of creating unnecessary
items. It is difficult to foresee the required functionality, therefore difficult
to plan.

♦ Dynamic, This is the opposite of the up-front strategy, Code that is needed
in the framework is created when it is needed, just-in-time. Using the Layer
Supertype pattern is a good example of dynamic framework building.

The Dynamic strategy seems like the wiser strategy to choose while setting up a
framework. Just create what is needed, when it is needed and add it to the
Framework.

3.3.3 Benefits
Besides speeding up development by eliminating rework, the use of a framework
also stands for an improved quality of the code. The code in a framework has
been used and re-used many times before. Therefore this code is fully tested and
not likely to contain an error.

3.3.4 Consequences
An essential part of building up a good framework is to only implement code in
the framework that has already been used. A framework needs to be a collection
of proven code and patterns. Harvest and refactor in order to create a structured
framework. Layer Supertypes, Plug-in Architecture and Refactoring tools such as
Resharper support this process.

3.4 Binding & Persisting
The Trinidad reference architecture is a layered architecture, with every layer
carrying his own responsibility. Although these layers operate independently they
have to share data with each other somehow. This is done through the process of
binding and persisting.

3.4.1 Intent
The binding and persisting mechanism is actually an in memory representation of
data contained in a record set, and is used to pass data around. This can be data
from databases, tables and rows but also data from other sources such as XML
and web services. This data representation can easily be connected to
presentation widgets.

| the way we see it

22

Instead of having every layer making his own call to the data source the data is
accessed in a single layer and passed around through the binding and persisting
mechanism. This brings structure to the dataflow, and limits the data calls.

3.4.2 How
As the name already reveals, the binding and persisting process exists of two
separate activities, namely binding and persisting.

When a user requests information through e.g. the user interface the binding
process is started. The requested data is gathered and presented to the user. The
left arrows in Fig. 3.7 show the flow of the binding process.

Fig. 3.7 Binding and Persisting

When data is committed through e.g. a webform in the user interface, the
persisting process takes place. The data in the user interface is saved to its source.
The right arrows in Fig. 3.7 represent this process.

As we can see in Fig. 3.7 both of the processes have an interruption in the
business layer. Trinidad applications bind to business classes instead of datasets.
The business layer is in full control of the data and contains a Bindmanager.
Upon a data request the Bindmanager receives the object and the business class
to which to bind. The business class is searched by means of reflection and the
properties of the data object are bound to the properties of the business class.
However, the property names of the two objects must match in order to bind
them together.

 The business layer delivers the right data and decides on correctness of changes
made to the data.

| the way we see it

23

3.4.3 Benefits
The Binding & Persisting mechanism localizes data calls and realizes a
structured data-flow.

3.4.4 Consequences
The major consequence of using the binding and persisting mechanism is that the
Business layer has got to have full control of the data. The Business layer decides
on correctness of changes made to the data.

In order for the binding and persisting process to work all data requests should go
through the business layer, record sets are not to appear above the business layer.
The application must also be data source independent.

3.4.5 Alternatives
The Microsoft data binding architecture (Mdba) is an alternative for the Binding
and persisting mechanism used in the Trinidad Platform, the Smarter binding
architecture (Sba). These two mechanisms differ from each other on the
following points:

♦ The Mdba automatically binds properties of controls to elements in the data
source while Sba binds to business classes instead of DataSets and uses
reflection to locate bindable properties. Sba can create data bindings on the
fly which increases the flexibility and makes the mechanism more dynamic.

♦ The Mdba has different windows and web implementations while Sba is
transparent to windows or web.

| the way we see it

24

4 Presentation

4.1 Custom & User Controls
The user interface is an important part of an application. The interface forms the
view of the application to the outside world and consists of forms and controls,
which are used to operate the application. Trinidad based applications are built
on user and custom controls located in the framework.

User controls are designed visually in Visual Studio, by dragging and dropping
them while custom controls are designed programmatically.

4.1.1 Intent
Custom and user controls are specific user elements, designed to fulfill a specific
function. Custom controls are mostly standard controls with added functionality
which are designed to simplify the most recurring actions in applications.

4.1.2 How
User controls are the standard controls which are available in Visual Studio.
These controls can be dragged and dropped on top of a page. The properties of
these controls can be modified using the property explorer, and double clicking a
user controls reveals the code behind them.

Custom controls are programmatically designed controls that serve a specific
function in a Trinidad application. An example of a custom control is
“NumericText”. This control only accepts numeric values and is an adapted
version of the default .NET textfield control. This control inherits from the .Net
control class. Fig. 4.1 shows how properties like the style sheet class or the
control’s state can be customized.

Fig. 4.1 NumericText

| the way we see it

25

4.1.3 Benefits
User controls are easy to use. They can by easily added to a page by dragging
and dropping them and contain easy event handling.

Custom controls simplify the development of the most recurring actions in
applications and can be even be generated automatically.

Both of these controls result in a richer user interface.

4.1.4 Consequences
Custom controls contain a certain amount of business logic, they can for example
check on the correctness of input. There needs to be a clear separation between
the type of business logic in the business layer and the controls. The designer
must be aware of this and make explicit choices on where to place certain
business logic.

| the way we see it

26

5 Process

5.1 Task Pattern
Pragmatic use cases (smart use cases) are the unit of work in Trinidad projects.
The use cases are implemented in the Process layer, and managed by the Task
pattern. The Task pattern states that each use case should be implemented as a
single separate task and handles the navigation between tasks as well.

5.1.1 Intent
Use cases are the de facto standard for modeling functional requirements.
Implementing use cases as separate tasks allows for traceability in code, and re-
use of use cases. The task pattern is a mechanism that provides a way to
implement these use cases separately, and to communicate and navigate between
the use cases.

5.1.2 How
Every use case is implemented as a separate task. Each task that is implemented
inherits from the base class called Task. The base Task class is a layer supertype
for tasks. This layer supertype contains, among other methods, a validation and
execution method (Fig. 5.1).

Fig. 5.1 Task Layer Supertype

Every use case contains pre-conditions. When a use case is started the task
validates its pre conditions before executing the use case steps. After successful
validation the task handles the use case actions in order to realize the use case
goals and make the post conditions come true. Use case actions can vary from
starting a user interface screen to even starting another use case.

| the way we see it

27

In order to keep the tasks independent a “Router” is implemented in the process
layer. The Router functions as a communication mechanism in the process layer.
The tasks only communicate with this router. As shown in Fig. 5.2, a task
communicates with another task through the router.

Fig. 5.2 Task Router

The communication between tasks and the principal of the router are based upon
the Command pattern.

5.1.3 Benefits
Using the Task pattern enables the re-use of use cases. If any other task requires
functionality from another previously implemented use case the task can simply
go back and connect to the use case via the router. An additional benefit is that
the use cases can be used as unit of work.

5.1.4 Consequences
Pragmatic use cases must be used in order to implement every use case as an
independent task. The use cases must be independent and have to contain specific
pre and post conditions.

Every use case needs to be implemented as its own task. The use of the task
pattern supports incremental development as defined in the Trinidad life cycle.

| the way we see it

28

6 Business

6.1 Factories & Business Classes
The primary function of the business layer is managing the business logic of the
application. Trinidad applications use factories and business entities as way of
dealing with business logic.

6.1.1 Intent
The intent of Factories and Business classes is to manage the business logic, and
providing a mechanism to link the business classes to the database.

6.1.2 How
Modeling business entities is essential. Before implementing the business entities
a domain model which contains all the business entities is modeled. The domain
model (Fig. 6.1) contains the properties, the property types and the relationships
between the business entities. Each class represents an entity in the real world.

Fig. 6.1 Domain model

| the way we see it

29

A Factory is an object that creates and possibly manages other objects. Within
the Trinidad Platform the Factory is responsible for executing business services
and managing the life-cycle for business entities.

A business entity is instantiated by a factory. A business entity contains business
logic on a single instance and implements the internal state (§ 6.2) as shown in
Fig. 6.2.

Fig. 6.2 Business factory

6.1.3 Benefits
The use of a Factory to create business objects keeps the code reusable and
extensible. The business objects assure data-hiding, the objects only "know"
about the data they need in order to fulfill their task. This reduces the possibility
that wrong data is changed inadvertently during maintenance.

6.2 Internal State
The business entities in the business layer are stateless, they are objects
containing the business logic of the corresponding business entity. The actual
state of a business entity is encapsulated by the Internal State. The business entity
is unaware of the way the state is retrieved and persisted.

6.2.1 Intent
The business objects in the business layer can have a number of properties.
Instead of keeping the value of these properties in the business object itself, these
values are provided by the internal state that every business object contains. This
provides a clean separation of concerns, the business object only contains the
business logic while the internal state handles the state of the object’s properties

| the way we see it

30

6.2.2 How
The implementation of the Internal State is based upon the State Design Pattern.
Every Business class has an internal state object which implements an
IInternalState interface. Through this interface the Business class gets and sets
the actual data (Fig. 6.3).

Fig. 6.3 Internal State

For every data source there is a different state object. Fig. 6.3 shows a graphical
overview of the Internal State. Every state object implements the interface
IInternalState. DataState is responsible for getting and setting data in a database.
DataState internally stores the data in a DataSet.

Another possible implementation of the Internal State is to create a Layer
Supertype which implements the IInternalState interface. In Fig. 6.4 the
XMLState and the WebState implement from the Layer Supertype InternalState.
Both of these states communicate with a different data source.

| the way we see it

31

.
Fig. 6.4 Internal State overview

6.2.3 Benefits
The biggest benefit of the Internal State is that the business entities are unaware
of the way data is acquired or the source the data origins from. This supports the
data source independency of the business layer.

6.2.4 Consequences
The Internal State manages the status of an object’s data and allows the data to be
changed without the business entity being aware of where the data comes from.
In order to support additional data sources, internal states have to be made to
handle every specific data source.

6.3 Reference Types
The business logic of most application deals with collections. These collections
can vary from a list of countries from which to choose, to different states of a
product. At first glimpse, enumerated types and referential classes appear to be to
the most obvious patterns for implementing reference types, but there are other
patterns that can do the job for you. The Havana Framework contains five
patterns for dealing with reference types:

♦ Enumeration

♦ String collection

♦ Descriptor

♦ Small business class

♦ Smart Reference

| the way we see it

32

6.3.1 Intent
Every pattern that can be used for dealing with reference types has advantages
and disadvantages. The framework contains these five patterns in order to keep
the platform flexible and to assure a suitable pattern for every situation.

6.3.2 Enumeration
When you have a fixed number of elements to choose from, an enumeration is a
suitable pattern for implementing references. An enumeration is a hard-coded
collection of values. The enumeration Levels in Fig. 6.5is an excellent example.

Fig. 6.5 Enumeration

If somehow the value of an element needs to be changed or new elements need to
be introduced, enumerations lack the flexibility to perform this operation without
recompiling the application. Enumerations are also implemented as a value type
in .NET, which means that there is no way of extending them.

6.3.3 String collection
In this pattern the collection of possible values is implemented as a class with a
number of constants defined as its fields, like in Fig. 6.6. Such a class can easily
be inherited from.

Fig. 6.6 String collection

One can only retrieve all possible values using reflection. This may not be very
desirable. Even worse is that constant collections are not always type safe, even
if they appear to be at first sight.

6.3.4 Descriptor
The third pattern, the descriptor pattern, mixes best practices from the previous
two patterns. Basically, a descriptor is a collection of instances of the class itself.
Using this pattern, the Levels class can be implemented as follows:

| the way we see it

33

Fig. 6.7 Descriptor

Because the instances are again static, descriptors are type safe, both in simple
checks as in operation signatures, just like enumerations. Descriptors have a
fixed number of elements, just like enumerations and constant collections. And
again, like the latter, retrieving the set of possible values requires reflection.

6.3.5 Small business class
Suppose you have a Location class that specifies a location where courses are
held. Such a class would have a property Country that refers to a specific
instance of a reference type Countries, such as in figure 7.8.

In this implementation of the Location class the property Country can be set to
any valid instance of the Countries class. The Countries class is a small business
class. New elements are hardly ever entered, existing elements rarely change and
small business classes are mostly used as references. In most cases, the data of
instances of small business classes are kept in a database, each small business
class having an associated table in the database. Regardless of how the data is
retrieved from the database, a small business class may look something like Fig.
6.8.

Fig. 6.8 Small Business Class

Using a small business classes as reference allows for great flexibility. That is, it
is easy to change or add an element, without having to recompile the application.
Another benefit of using small business classes is that retrieving the collection of
all instances is straightforward. It is not unlikely that a small business class holds

| the way we see it

34

a static property All (or likewise operation) that returns the collection of all
countries, as an array of instances of Countries. And more, it is easy to inherit
from a small business class and add additional functionality.

6.3.6 Smart Reference
In the last pattern, a single small business class is defined. This single small
business class is used to refer to any reference type that can be expressed in the
properties of that class. Typically such a class, called a smart reference, has
properties such as Name and Description. The single-most important property of
a smart reference however, is the Type property, which declares which specific
reference type is meant.

The Type property can best be expressed using an enumeration, for instance
called ReferenceTypes, as in the following code example. Using this property,
operations such as All() and Default() can be defined for retrieving all instances
of SmartReference for a specific type, or even the default instance. Such
operations can be declared both static and not static, either specifying the type, or
using the instance's Type property.

Fig. 6.9 Smart Reference

This last pattern is extremely flexible. New elements can easily be added to any
of the types in the ReferenceTypes enumeration. The main benefit of using a
smart reference over a number of small business classes is that it saves you a lot
of programming effort. Maintenance functionality for all your reference types
consists only of a single form, allowing the user to select a reference type and
maintain the elements of that type.

6.3.7 Benefits
Collections are used in every application. Every reference type contains different
characteristics and is applicable under different circumstances. Implementing a

| the way we see it

35

variability of Reference types in the framework supports the flexibility of the
Trinidad Platform.

6.3.8 Consequences
Using references is inevitable when using business classes. However, there a lot
of different implementations, all of which are variations or extensions to one of
the five patterns mentioned above. The big issue is when to use which pattern.
Table 6.1 sums up the characteristics for each of the patterns.

 Type
Safety

Collections
of values

Display
values

Flexibility Extensibility
(inheritance)

Enumeration Yes Yes Limited to
enumerated
values

Fixed,
change of
code
required

No

String
collection

Not when
used as
parameter

Yes, using
reflection

Limited to
defined
values

Fixed,
change of
code
required

Yes

Descriptor Yes Yes, using
reflection

Yes Fixed,
change of
code
required

Yes

Small
business
class

Yes, when
defining
static
instances

Yes, easily
retrieved
from
database

Any
combination
of its fields

Flexible,
alter
dedicated
table

Yes

Smart
reference

No,
anonymous

Yes, easily
retrieved
from
database

Any
combination
of its fields

Flexible,
alter single
table

Yes

Table 6.1 Characteristics

The first three patterns are best in situations where a limited and fixed number of
elements are expected. The three patterns mainly differ in that different display
values can be used or where extensibility by inheritance is required. The last two
patterns are best used in situations where there is a large collection of elements,
and this collection is likely to change more often than the code is put in
production. This requires the elements to be stored externally, rather than being
hard coded, most commonly in a database.

Together, these five patterns, and the numerous variations and extensions to
them, will give you control over the references you need to deal with in your
projects.

6.4 Value Types
Value types are predefined custom types, used to store data that has a certain
standard format. Examples of possible value types could be an email address, a
phone number, etc.

| the way we see it

36

6.4.1 Intent
Define your own data types as value types is a good practice. A value type
contains custom validation rules to ensure that the right format is stored in the
value type. Value types also enable automatic casting.

6.4.2 How
All value types are derived implicitly from the Object class. Fig. 6.10 shows a
few examples of value types.

Fig. 6.10 Value types

6.4.3 Benefits
Value types ease the use of data in a specific format by eliminating the need to
check on the data. Value types contain their own validation rules.

6.4.4 Consequences
Unlike reference types, it is not possible to derive a new type from a value type.

6.5 Nullable Types
Nullable types are regular base types like booleans and integers with the
difference that they can be given a null value.

6.5.1 Intent
Nullable types can be useful to store information from which the value is not yet
known at the moment. These could be values like date of birth, number of
attendees in a course, etc.

| the way we see it

37

6.5.2 How
Nullable types are custom made data types. These data types are sometimes
based on regular data types complemented with additional functionality.
Looking at Fig. 6.11 we can see that the NullDateTime object is based upon the
regular DateTime object, but the NullDateTime contains extra functionality like
IsNull.

Fig. 6.11 Nullable Types

Nullable types are custom build in the Trinidad Platform, but are also supported
by the .Net Framework 2.0.

6.5.3 Benefits
A value is not always known or can not be defined at initialization. With the aid
of Nullable types these values can be assigned the null value, until they are
needed or until their value is known.

6.5.4 Consequences
A data type can be both a Nullable and a Value type. By defining a null value for
a Value type it can act as a Nullable type as well.

| the way we see it

38

7 Data / Services

7.1 Table Classes
When the application uses a database as the data source, the Data / Services layer
contains a Table Class for every business entity in the domain model. The Table
Class communicates with the data source, ensuring that execution of database
logic is isolated from the business entities.

7.1.1 Intent
Isolating communication with the data source to only the Data / Service layer
supports database independence. The Table Classes provide this isolated
communication. Because all the database specific code is located in the Table
Class, the remainder of the application remains unchanged when the application
changes its data source.

7.1.2 How
When a request for data is made, the Table Class connects to the appropriate
database and gets the data from the database in a record set.

Fig. 7.1 Table Class

The Table Class updates altered data from business entities and business factories.
The Table Class doesn’t have knowledge of specific business classes.

Table Classes are implemented by creating a Layer SuperType (§ 3.2). The
resulting Table Classes for every business entity are static classes. The Table
Classes make use of the Query Pattern which will be explained in the next
paragraph.

| the way we see it

39

. Property names in the Business class can differ from column names in the
database. Therefore every Table class has a describer which handles the mapping
between the database and the Table class

7.1.3 Benefits
Table classes give the application database independence. Table classes can
individually connect to different kinds of data sources without having any affect
on the rest of the application. Because Table classes are implemented using a
layer supertype they reduce redundant code in the application.

7.1.4 Consequences
Like said earlier the Table Class connects to the database. Because connecting to
the database is a repeatable activity it is best to build a service to carry out this
task. In the case of multiple databases the Abstract Factory pattern can be used.

7.2 Query Pattern
SQL can be a complicated language, and many developers aren't particularly
familiar with it. Furthermore, you need to know what the database schema looks
like to form queries. The Query pattern enables query’s to be written without
knowledge of the type of database.

7.2.1 Intent
The Query pattern simplifies and localizes creation of database queries.

7.2.2 How
A Query Object is an interpreter, that is, a structure of objects that can form itself
into a SQL query. You can create this query by referring to classes and fields
instead of tables and columns. In this way the queries can be written
independently of the database schema and changes to the schema can be
localized in a single place.

| the way we see it

40

Fig. 7.2 Query Pattern

7.2.3 Benefits
Using the Query pattern abstracts the SQL from the code, making it easier to
swap databases.

7.3 Data Factories
A valuable feature of the Trinidad Reference architecture is its database
independency. A Trinidad based application can easily switch from database
without having to make changes to the code or the queries. The Data Factory
facilitates this.

7.3.1 Intent
The Data factory handles al the connections to the database, so the application
remains database independent. It encapsulates access to any database from the
rest of your application.

7.3.2 How
We have seen earlier that the business class only connects to the table class when
in need of data from the data source. The Data Factory gets called from the Table
classes in the Data Layer as shown in Fig. 7.3. The Data Factory then connects to
the database and retrieves or saves the data.

| the way we see it

41

Fig. 7.3 Data Factory

The Data layer contains an interface called IDatabaseprovider. This interface is
implemented by an implementation which is plugged into the application
according to the plug-in architecture theory. The implementation defines and
handles the connection to a specific type of database. A SQLServerprovider class
is an example of an implementation connection to a SQL server. The data
factories handle the connection to the database but don’t execute database queries.

7.3.3 Benefits
The most important benefit of using a Data factory is the database independency
it provides.

7.3.4 Consequences
In order to create a structured application the Data Factory should never be
directly addressed from layers above the Data Layer. The business logic is
isolated in the Business layer and communicates only with the Table class.

7.4 Service Gateway
As we have seen earlier it is possible to create applications with the Trinidad
Platform that function as a service consumer. The data source for these
applications is a webservice. The Service Gateway pattern is not much different
from a Data Factory, except that it facilitates the connection to a webservice
instead of a database.

7.4.1 Intent
The service Gateway pattern handles the connections between the service and the
application.The service gateway encapsulates access to services and busses from
the rest of your application so that the application remains datasource
independent.

| the way we see it

42

7.4.2 How
The Service Gateway pattern actually works in the same manner as the Data
Factory. The Service Gateway gets called from the Table classes in the Data
Layer as shown in Fig. 7.4. The Service Gateway then connects to the webservice
and retrieves or saves the data.

Fig. 7.4 Service Gateway

A Service Gateway can additionally be implemented using an Internal State (§
6.2). This Internal State object can be used to transfer objects and XML.

7.4.3 Benefits
The Gateway Pattern provides the ability to create service consuming
applications (which are making a great march) with the Trinidad Platform. With
the aid of the Service Gateway Pattern the Trinidad Platform becomes a flexible
development environment.

7.4.4 Consequences
The Service Gateway should also never be directly addressed from layers above
the Data Layer. The business logic is isolated in the Business layer and
communicates only with the Table class.

| the way we see it

43

8 Patterns
This chapter contains a description of the remaining design patterns that are used
in the Trinidad Platform, but have not yet been discussed.

About Capgemini and the Collaborative Business Experience

Capgemini, one of the world’s foremost providers of Consulting, Technology and Outsourcing
services, has a unique way of working with its clients, called the Collaborative Business
Experience.

Backed by over three decades of industry and service experience, the Collaborative Business
Experience is designed to help our clients achieve better, faster, more sustainable results
through seamless access to our network of world-leading technology partners and
collaboration-focused methods and tools. Through commitment to mutual success and the
achievement of tangible value, we help businesses implement growth strategies, leverage
technology and thrive through the power of collaboration. Capgemini employs
approximately 60,000 people worldwide and reported 2004 global revenues of 6.3 billion euros.

The Capgemini Group is headquartered in Paris.

www.capgemini.com

44

Trinidad Open Source
Strategy

Advisory report

| the way we see it

Version control

Version Date Short description changes

0.1 June 19, 2006 Start Report

1.0 August 15, 2006 Definitive document

Name author(s): Jermaine Jong

| the way we see it

Trinidad Open Source Strategy

Name author(s): Jermaine Jong

Company name: Capgemini N.V.

Place: Utrecht

Date: August 15, 2006

© 2006 Capgemini. No part of this document may be modified, deleted or
expanded by any process or means without prior written approval from
Capgemini

| the way we see it

ii

Preface / Introduction
This document contains a strategy for an open source Trinidad Platform. The
advice in this document is based on research performed during the author’s
internship on the Trinidad Platform.

| the way we see it

iii

Table of Contents

1 The Open Source Model 1
1.1 What is open source 1
1.2 Capgemini’s vision on Open Source 2

1.2.1 Technical benefits for Capgemini 3
1.2.2 Technical risks for Capgemini 3

2 Trinidad open source strategy 4
2.1 License and Business Model 4

2.1.1 Core development team 5
2.2 Developers 5
2.3 Safeguard the quality 5
2.4 Community 6
2.5 Version control 7
2.6 Change management 7
2.7 Release management 8
2.8 Success factors 8
Bibliography 10

| the way we see it

1

1 The Open Source Model
The open source principle is becoming more and more popular to the developers
of software. The Trinidad Platform will be developed and released to customers
according to an open source model. This means that customers will use the
platform for their own software development projects and at the same time
contribute to further development and improvement of the platform. In order to
successfully manage this process a clear open source strategy including version-
and configuration management is needed. All parties need to be able to easily
present and integrate their contributions to the architecture and the framework.

There are benefits but also disadvantages attached to releasing software under an
open source model. In order to set up a grounded advice for the Trinidad open
source model research about the characteristics of open source is necessary.

1.1 What is open source
Open source software automatically makes people think of “free” software.
Actually open source software is much more than that. In [1] the author gives the
following definition of open source:

“Open source software is any computer software distributed under a license
which allows users to change or share the software’s source code”

The open source Model allows users to develop and contribute to a project
voluntarily, which eliminates the need of an actual supplier. The software is
shared and can be used freely by anyone. Suppliers can choose to go open source
with their products because of the rapid development of their projects that results
from the many developers. Communities of developers and contributors are
formed where users share knowledge and report bugs and feature requests. Open
source doesn’t just mean access to the source code. The distribution terms of an
open source program must comply with a number of criteria. These criteria are
recorded in the open source Definition. Bruce Perens gives in [2] a short
summary of these criteria including a link to the full version, which can be found
at http://www.opensource.org/docs/definition_plain.html.

There are a lot of different applications of open source methods, combining
properties of markets and communities. In order to set up an open source model
it is necessary to know exactly what the open source model is. Most open source
models share the following characteristics [1]. This list of characteristics serves
merely as an aid to helping the reader form the picture of an open source model.

♦ Transparency, potential contributors need to understand what it is they’re
contributing to.

♦ Examination of participants only after they’ve got involved, reducing the
barriers to involvement by allowing absolutely anyone to get involved.

♦ Low cost and ease of engagement, many people can get involved at no
additional outlay beyond what they already spend on their computing.

♦ A legal structure and enforcement mechanism, open source does not mean a
free for all. Instead it depends on a clearly defined legal framework which
shapes the incentives for participation.

♦ Leadership, most open source projects have some centralized element of
leadership or control that sets the general direction and ethos assigns tasks
and acts as an editor, approving changes to the source code.

http://www.opensource.org/docs/definition_plain.html

| the way we see it

2

♦ Common standards, Successful open source projects rely on open, free-to-
use standards, and they create new, open, free-to-use standards for their
users.

♦ Peer review and feedback loops, the open source collaborative approach
manages to produce high quality work because of the many reviews people
among themselves.

♦ A shared conception of goals, open source projects may deal with internal
dissent about particular choices and directions but there is enough of a
common conception of the good to make each project thrive.

♦ Incrementalist, small players can still make useful contributions.
♦ Powerful non-monetary incentives, open source methods contain the ability

to replace traditional cash incentives with non-monetary ones like motives of
social or personal fulfillment.

1.2 Capgemini’s vision on Open Source
The Trinidad Platform is a new development platform within Capgemini. In the
short time that the platform exists it has seen a growth of acceptance and interest
from other parts of the organization. There are a few projects already carried out
on the Trinidad Platform.

Open source projects are booming, even though open source seems like a
counterintuitive strategy. Some of the open source supporters even claim that
open source projects can withstand Brooke’s Law [3] which sounds as follows
“Adding manpower to a late software project makes it even later”. In an open
source project people continuously join or quit development. Even though this
claim is not completely true, because most open source projects don’t have a
schedule so the words “late” and “later” used in Brooks Law are of no meaning
here, open source projects are characterized by rapid development by a great
number of developers.

Custom software development projects are diminishing. Companies tend to
choose offshoring or standard packages, which don’t fully fit their needs over
custom software development. The main reason for this choice is a financial
consideration. In order to compete, custom software development needs to offer
benefits over these new development ways. Capgemini believes in the power of
the Trinidad Platform and the many benefits it contains for custom software
development. Trinidad stands for cheaper, faster, tailor fit custom software
development.

The Trinidad platform can be interesting for a lot of custom software
development projects. The aim of Capgemini is to spread the Trinidad Platform
throughout the world. Capgemini wishes to offer the Trinidad platform to
customers in order to let them carry out their own software development projects.
If we look at the above, this would fit perfectly within an open source model.

As the founding company behind the Trinidad Platform the Capgemini’s name
will be spread along with the platform. For support participating companies will
turn to Capgemini which has good economical side effects. Capgemini will train
and school developers on the Trinidad Platform and deliver support. In exchange,
the users of the platform need to contribute any modifications or additions
they’ve made to the platform.

Implementing an open source model has benefits, but doesn’t come without risks
either. The risks and the benefits Capgemini expects of an open source model are
described below.

| the way we see it

3

1.2.1 Technical benefits for Capgemini

There are a number of expected economical benefits for Capgemini from an open
source Trinidad Platform. These benefits depend on the chosen business model
and open source license. Besides economical benefits Capgemini expects and
wishes to achieve the following technical benefits with the release of an open
source Trinidad platform:

- Rapid development of extensions to the Havana Framework. The core of
the Havana Framework is mature and stable enough, so at the right
moment in time to be released as an open source project.

- Quick bug report and fixes, patches, ports to new platforms, etc.

- Growth and evolution of the Trinidad platform and the community.

- With the Trinidad platform Capgemini wants to lean more and more to
standardization, because standardization is the key to rapid custom
software development. The platform is relatively young and still has a lot
of work. However Capgemini knows from experience that most
additions, like a specific logging mechanism, are only build when there’s
a customer who actually has the need for it. Releasing the platform as
open source will speed up the development of such extensions rapidly.

1.2.2 Technical risks for Capgemini

The risks for a project to go open source are just as important as the benefits.
Before starting an open source project many companies have the same worries
about potential risks that such a project may carry [4]. Capgemini oversees the
following main risks when starting an open source Trinidad platform:

- Unstructured development process, a lot of open-source software
development is still done ad hoc, without good development practice.
Most developers start coding before writing down a design [5]. This
slows down open source development, while programming is likely to be
more regulated and professionalized.

- Fragmentation of the products into incompatible versions, if everybody
can issue releases and bring out new versions there can be a spread of
different incompatible versions. There need to be a controlling entity in
order to structure this.

- Exposing strategies to competitors, the open source model implies
sharing strategies and methodologies. This can be a risk, but with good
initial support from Capgemini, competitors will rather join development
and require support than start an own platform.

- Becoming a product vendor when that is not Capgemini’s primary
business.

| the way we see it

4

2 Trinidad open source strategy
This chapter will contain a grounded advice based upon the research and study
described in the master thesis. This advice will form the strategy for an open
source Trinidad Platform.

2.1 License and Business Model

Users or developers of the Trinidad platform might fix bugs or develop additional
features. It is important for Capgemini that these modifications are contributed
back into the framework so everyone can benefit from a better working
framework. Capgemini can enforce this by using the right open source license.

As the study resulted there are a lot of open source licenses available. The Spring
Framework uses the Apache license, which allows the users to keep
modifications private. Developers of the Spring Framework can make
modifications and for example easily sell them. This is not what Capgemini
wants for the Trinidad Platform. In order to suit the needs of Capgemini best, the
most appropriate license to be chosen is the LGPL license. This license is also
used by Hibernate and enforces users to distribute modifications under the same
license.

Another characteristic of the LGPL license is that software licensed under it can
be mixed with non-free (commercial) software. Because of the open and modular
structure of the Trinidad reference architecture it is not unthinkable that the need
for connecting with commercial software might occur. The LGPL license is
flexible enough to allow this. The full description of the LGPL license can be
found at http://opensource.org/licenses/.

Business Model
In order to create revenue from an open source model it is wise to decide on a
business strategy. Capgemini wants to offer customers the Trinidad Platform for
free but still generate revenue. The approach that Capgemini wants to take in this
is to generate revenue by offering training and support.

The companies behind Hibernate and the Spring Framework have business goals
similar to Capgemini’s. These business goals are accomplished by using a
business model called “Support Sellers”. These companies have employed a core
development team, devoted to working on the project. They provide professional
support and training to users and developers of the product. This business model
has the advantage that companies using the open source software rather turn to
the original developers for support. The more successful the open source project
becomes, the more income the business model generates.

Capgemini needs to carry out the Support Sellers business model in order to meet
their business goals. Because of the nature of the Trinidad Platform it is likely
that the platform will be mostly used by companies rather than individual
developers. Especially for companies it is important that the open source project
they use is backed up by a company. This gives them a sense of security. When
in need of training and support Capgemini will be the obvious company to
provide this.

| the way we see it

5

2.1.1 Core development team

In order to support the Trinidad Platform Capgemini will need to form a core
development team. Among other things this team will be responsible for
releasing new versions of the Framework and coordinating the development of
the Framework. The other functions this development team will fulfill will
become clear in the following chapters.

2.2 Developers

As we have seen developers are the most important factor in any open source
project. Without developers willing to participate and contribute time and effort
in an open source project it will surely fail. The study results in a few external
factors for developers to contribute to an open source project. Some of these
external factors are of a more objective personal nature and can not be influenced
by a specific project (like peer recognition). Therefore the most a company can
do to make developers comfortable is to provide or stimulate these external
factors. In the context of Capgemini and the Trinidad Platform the following
issues need to be emphasized in order to make the project interesting for
developers and / or customers.

Ready for the Future
Development of software needs to be done faster and faster, because of the
growing demands of the customers. In order to reach faster development the
development process needs to be standardized. Development within the Trinidad
Platform is highly standardized and contains elements that speed up
development. Working on a new way of development can boost the joy of
programming for developers, and make it interesting for companies to learn the
framework and later on even deliver support.

Expanding the developer’s skill base
Development within the Trinidad Platform contains a lot of modern development
techniques like Use Case modeling, Use Case estimation, Model Driven
Architecture and an agile development process. Developers can gather a lot of
knowledge on different techniques which make it interesting to participate.

Developer’s recognition
Developers like to show their skills, and even get recognition. A reward system
within the community could be a good way to support this. Hibernate has a
system where users get ‘credits’ for answering questions from other users. A
similar system, with rewards for bug-fixes and patches can attract developers.

Personal needs
Every software development company needs a structured development process.
Especially for companies it is interesting to adopt and use the Trinidad Platform.

2.3 Safeguard the quality

The strength of code quality within open source projects lies in its massive code-
level peer review. However open source projects lack a structured development
process which hurts the quality of code. The benefit of the Trinidad Platform is
that it contains a structured development process itself. Development of the
framework itself needs to be done according to the same agile development
process. Sticking to this development process and keeping in mind the key points
below can safeguard the quality of code within the Trinidad platform.

| the way we see it

6

- Develop clear coding guidelines and request from the programmers to
keep to this guideline.

- The core development team could asses the code returned by
programmers according to a guideline. This implies that the co-
coordinator has the right to reject non-conformant contributions, even if
they correct a bug or provide new functionality.

- Code re-engineering decisions can be taken by the core development
team whenever the project seems to experience problems.

2.4 Community

A successful open source project needs a community where developers can get in
touch with each other and provide support amongst them. Users need to be able
to ask questions and be kept up to date about news and info regarding the project.

Trinidad User Support Forum
Looking at the Hibernate and the Spring Framework we can learn that it is
advisable to distinguish between user support and framework developer’s
support. The user support forum will allow users to posts and answer questions
about Trinidad based software development. A reward system similar to the one
Hibernate uses is a valuable extra function to the user forum. It is also preferred
that the forum supports multiple languages in order to support users from all over
the world. However the initial forum needs to be English, and can later on be
extended with additional forums in other languages.

To keep postings in the forums structured it is wise to create a forum etiquette
containing guidelines on how to post a question, the amount of additional
information that needs to be posted along with the question, etc.

Developer’s Mailing list
Many open source projects (Hibernate and the Spring Framework) use a mailing
list for developers support. Mailing lists have the benefit that developers stay
updated about everything that happens, because every mail that is submitted is
received by every member.

It is wise to set up a mailing list within the Trinidad Platform. The Havana
framework developers can discuss technical issues in the Trinidad Mailing list.
The mailing list is intended for use only by developers actually working on
development of the Havana Framework.

Bug tracking
Using a bug tracker is mandatory for every open source project. There are many
open source and commercial bug trackers available. The bug tracker is the place
where bugs, patches to bugs and feature requests can be submitted. Also for
reporting bugs there need to be clear guidelines. Because the Trinidad platform is
a new open source project there aren’t as many developers reporting bugs yet.
Therefore the guidelines don’t need to be as strict as for example the ones
Hibernate handles. As the project and the amount of developers grow the
guidelines can be adjusted if necessary in order to reduce ‘traffic’ in the bug
tracker.

Portal
The Trinidad open source project needs a project portal where users can find
information about the Trinidad platform. Documentation like coding guidelines,

| the way we see it

7

manuals and news items need to be available on this site. Also all the other
aspects of the community (forum, bug tracker) need to be present on or through
this site. As the company supporting the Trinidad development Capgemini needs
to host and maintain this site. Possible courses and training regarding Trinidad
can also be offered through this portal.

2.5 Version control

The source code of the Havana Framework needs to be made publicly available
in order to become a full open source project. However, releasing the source code
doesn’t mean just offering any body access to modify the code. The source code
needs to be placed in a repository (CVS, Subversion, etc) so multiple developers
can work together. A good strategy used by Hibernate and the Spring
Framework is to make a distinction in rights between developers and users.
Developers are initially the core development team from Capgemini containing
rights to check out and commit modifications to the source code. In the light of
safety and safeguarding the quality of code everyone else has user access. This
means that the code can be checked out but modifications can’t be committed.
Bug-fixes or patches need to be submitted through the bug tracker.

As the project starts to grow the core development team will eventually become
too small to keep up with the growth. In this situation the core development team
may select loyal users who have committed much to the project through the
bugtracker to join the development. These developers will then be part of the
core development team and will be given developer rights on the source code.

Backwards compatibility
Open source software doesn’t require a company to guarantee backwards
compatibility. However it is wise for developers not to vary too much between
releases because this will result in dissatisfaction from the users. It is wise to
strive to backward compatibility, but guaranteeing 100% compatibility between
every release will almost be impossible in the long run. The Spring Framework
has all compatible releases up until the present, but hasn’t guaranteed this for the
future.

It is good for Capgemini to take this as a starting point for the Trinidad Platform.
It is wise to strive to maximal backwards compatibility. However if this gets to
complicated, mostly when the project starts to grow and expand the strategy of
Hibernate can be used. Compatibility and migration problems can be dealt with
by means of a migration guide. In this guide all the differences between releases
and steps to take when upgrading need to be explained. This doesn’t give the
users 100% backwards compatibility but compensate for this by guiding the users
through the migration process.

2.6 Change management

The proposed change management process for the Trinidad Platform is already
partially enforced by the version control system. Only members of the core
development team can directly modify the code. All the changes, bug-fixes or
feature requests from other developers are submitted through the bug tracking
system. The core development team will decide on the correctness of the bug-fix,
the quality of the code and reject or approve the change accordingly.

Both Hibernate and the Spring Framework use the same change management
process. This is a safe way to secure the integrity and quality of the code.

| the way we see it

8

2.7 Release management

In order to frequently issue new releases of the framework a release management
process needs to be configured. Hibernate has a checklist that developers need to
follow before issuing a release. The Spring Framework doesn’t seem to have a
fully structured process. However in both projects the core development team is
responsible for the release. This team decides on for example the bugfixes that
will be implemented in the next release.

Pre-release testing
Before publishing a new release it should be tested according to a few criteria
like code tests, acceptance test, etc. The core development team needs to make
sure that every new feature or bugfix is tested. The advice here is to set up
guidelines for testing that can be directed back to the developers. Every
developer needs to bundle a patch or bugfix with a test.

This doesn’t mean that the core development team doesn’t need to test anymore.
It is the responsibility of the team to gather and structure all the tests, carry out
regression tests and perform the final check. Acceptance tests can also be part of
the pre-release testing process.

Release approval
A member of the development team needs to coordinate the pre-release activities
en give the final approval for issuing a release. This member can function as a
controlling mechanism on top of the pre-release testing process. It is not clear
how this process is done in Hibernate or the Spring Framework but for the
Trinidad Platform it would certainly be a valuable addition.

Distribution
After a release is formed it needs to be distributed. The latest version of the code
can of course be obtained from the source code repository, but it also needs to be
made available in a more user friendly manner. The first step that needs to be
taken is to notify users and developers of the new release. The best place to
announce the release is in the community; within the forum, the developer
mailing list, the frontpage of the website, etc. Like Hibernate and the Spring
Framework the best place to distribute the framework is the Trinidad Platform
website.

2.8 Success factors

In order to set up a successful open source Trinidad Platform the open source
success factors that have been studied need to be taken into consideration. T
Some of these open source success factors are closely associated to the open
source characteristics that are discussed in this chapter. However the advice to
Capgemini is to use the full list of open source factors as a supplement to the
open source characteristics.

Community

C1.Marketing / Promotion of the open source project
C2.Central community with support fora and communication
C3.Respecting and accepting ideas and viewpoints of others, if appropriate
C4.Stability, openness, transparency and fast response times for these
communication and information exchange activities
C5.Conferences, developer meetings and workshops about a special subject.

| the way we see it

9

C6.A sense of community together with clear dispute resolution mechanisms – in
a democratic sense of decision making.
C7.Initiation of self-organization processes like support of new participants by
experienced community members.
C8. A central vision, most projects are better off with one or two open minded
people guiding the project and maintaining a single coherent vision.

Development

D1.Short intervals for new releases and application and testing by as many users
as possible
D2.A clear declaration and identification of beta-and stable releases.
D3.A comprehensive documentation of the code and a roadmap for development
D4.General preparations (by a core team) for and following discussion of
requirements and targets of further development in the community.
D5.Definition of preferences and priorities of certain projects.
D6.Avoidance of monolithic code.
D7.Permanent quality management.
D8.A comfortable opportunity for distributed software-development with a
concurrent versions system.
D9.Permanent bug-fixing
D10. Avoid over-design; Aiming for too much abstraction and flexibility at an
early stage is a waste of time.

Economical

E1.Professional Open Source, generating revenue by choosing the right business
model.
E2.Full-time developers backed by a commercial company.

| the way we see it

10

Bibliography
[1] Mulgan, G., Steinberg, T., Salem, O. Wide Open, Open source methods

and their future potential, Demos, 2005.

[2] Perens, B. The Open Source Definition,
http://perens.com/Articles/OSD.html.
Visited at: 15-08-2006.

[3] Brooks, F. The Mythical Man- Month, Addison-Wesley, 1975.

[4] Hecker, F. Setting Up Shop: The Business of Open-Source Software,
IEEE Software, 1999.

[5] Wilson, G. Is The Open-Source Community Setting a Bad Example?,
IEEE Software, 1999.

About Capgemini and the Collaborative Business Experience

Capgemini, one of the world’s foremost providers of Consulting, Technology and Outsourcing
services, has a unique way of working with its clients, called the Collaborative Business
Experience.

Backed by over three decades of industry and service experience, the Collaborative Business
Experience is designed to help our clients achieve better, faster, more sustainable results
through seamless access to our network of world-leading technology partners and
collaboration-focused methods and tools. Through commitment to mutual success and the
achievement of tangible value, we help businesses implement growth strategies, leverage
technology and thrive through the power of collaboration. Capgemini employs
approximately 61,000 people worldwide and reported 2005 global revenues of 6,954 million
euros.

The Capgemini Group is headquartered in Paris.

www.capgemini.com

11

	Final Scriptie.pdf
	1 Project relevance
	1.1 The Trinidad Platform
	1.2 Internship
	1.3 Project approach
	1.3.1 Prework
	1.3.2 Documenting the reference architecture
	1.3.3 Trinidad Open Source

	1.4 Project risks
	1.5 Knowledge
	1.6 Deliverables
	2 Trinidad Reference Architecture
	2.1 Research questions and goals
	2.2 Approach
	2.3 Prework
	2.4 Goal, stakeholders and criteria
	2.5 Documenting the reference architecture
	2.5.1 Platform Overview
	2.5.2 Architectural Layers
	2.5.3 Variations
	2.5.4 Technical components and design patterns

	2.6 Identifying important components
	2.7 Evaluation
	2.7.1 Assessment
	2.7.2 Research questions
	2.7.3 Research

	3 The open source model
	3.1 Approach
	3.2 What is open source
	3.3 Capgemini’s vision on open source
	3.3.1 Technical benefits for Capgemini
	3.3.2 Technical risks for Capgemini

	3.4 Research question and goals
	3.5 Open Source Licenses
	3.5.1 Business models

	3.6 Developers motives
	3.7 Safeguarding the quality of code
	3.8 Implementing an open source Strategy

	4 Successful open source projects
	4.1 Hibernate
	4.1.1 Open source license
	4.1.2 Business model
	4.1.3 Safeguard the quality
	4.1.4 Community
	4.1.5 Version control
	4.1.6 Change management
	4.1.7 Release management
	4.1.8 Remarks

	4.2 Spring Framework
	4.2.1 Open source license
	4.2.2 Business model
	4.2.3 Safeguard the quality
	4.2.4 Community
	4.2.5 Version control
	4.2.6 Change management
	4.2.7 Release management
	4.2.8 Remarks

	5 Success factors
	5.1 Literature
	5.2 Hypothesis
	5.3 Succes factors of Hibernate and Spring
	5.4 (Open)Darwin
	5.4.1 Apple’s motivation
	5.4.2 Darwin open source project lifecycle.
	5.4.3 Reasons for failure

	5.5 NDoc
	5.5.1 Ndoc project lifecycle
	5.5.2 Reasons for failure

	5.6 Evaluation

	6 Trinidad open source advice
	6.1 License and Business Model
	6.1.1 Core development team

	6.2 Developers
	6.3 Safeguard the quality
	6.4 Community
	6.5 Version control
	6.6 Change management
	6.7 Release management
	6.8 Success factors

	Trinidad Architecture v0.5.pdf
	1 Trinidad Platform
	1.1 Trinidad
	1.2 Components
	1.3 Trinidad Lifecycle
	1.4 Tobago MDA Generator
	1.5 Havana Framework
	1.6 Smart Estimator
	1.6.1 Smart use cases

	1.7 Trinidad Dashboard
	1.8 Benefits
	2 Trinidad Reference Architecture
	2.1 Goals
	2.2 Overview
	2.3 Layers
	2.3.1 Presentation layer
	2.3.2 Process layer
	2.3.3 Business layer
	2.3.4 Data / Services layer
	2.3.5 Outside World

	2.4 Blends
	2.4.1 Database
	2.4.2 Service Consumer
	2.4.3 Service Provider

	3 Framework-wide Concepts
	3.1 Plug-in Architecture
	3.1.1 Intent
	3.1.2 How
	3.1.3 Benefits
	3.1.4 Consequences

	3.2 Layer Supertypes
	3.2.1 Intent
	3.2.2 How
	3.2.3 Benefits
	3.2.4 Consequences

	3.3 Frameworking
	3.3.1 Intent
	3.3.2 How
	3.3.3 Benefits
	3.3.4 Consequences

	3.4 Binding & Persisting
	3.4.1 Intent
	3.4.2 How
	3.4.3 Benefits
	3.4.4 Consequences
	3.4.5 Alternatives

	4 Presentation
	4.1 Custom & User Controls
	4.1.1 Intent
	4.1.2 How
	4.1.3 Benefits
	4.1.4 Consequences

	5 Process
	5.1 Task Pattern
	5.1.1 Intent
	5.1.2 How
	5.1.3 Benefits
	5.1.4 Consequences

	6 Business
	6.1 Factories & Business Classes
	6.1.1 Intent
	6.1.2 How
	6.1.3 Benefits

	6.2 Internal State
	6.2.1 Intent
	6.2.2 How
	6.2.3 Benefits
	6.2.4 Consequences

	6.3 Reference Types
	6.3.1 Intent
	6.3.2 Enumeration
	6.3.3 String collection
	6.3.4 Descriptor
	6.3.5 Small business class
	6.3.6 Smart Reference
	6.3.7 Benefits
	6.3.8 Consequences

	6.4 Value Types
	6.4.1 Intent
	6.4.2 How
	6.4.3 Benefits
	6.4.4 Consequences

	6.5 Nullable Types
	6.5.1 Intent
	6.5.2 How
	6.5.3 Benefits
	6.5.4 Consequences

	7 Data / Services
	7.1 Table Classes
	7.1.1 Intent
	7.1.2 How
	7.1.3 Benefits
	7.1.4 Consequences

	7.2 Query Pattern
	7.2.1 Intent
	7.2.2 How
	7.2.3 Benefits

	7.3 Data Factories
	7.3.1 Intent
	7.3.2 How
	7.3.3 Benefits
	7.3.4 Consequences

	7.4 Service Gateway
	7.4.1 Intent
	7.4.2 How
	7.4.3 Benefits
	7.4.4 Consequences

	8 Patterns

	Open Source Strategy v1.0.pdf
	1 The Open Source Model
	1.1 What is open source
	1.2 Capgemini’s vision on Open Source
	1.2.1 Technical benefits for Capgemini
	1.2.2 Technical risks for Capgemini

	2 Trinidad open source strategy
	2.1 License and Business Model
	2.1.1 Core development team

	2.2 Developers
	2.3 Safeguard the quality
	2.4 Community
	2.5 Version control
	2.6 Change management
	2.7 Release management
	2.8 Success factors

	Bibliography

