
 

Lecture 2. Randomness

 Goal of this lecture: We wish to associate 
incompressibility with randomness. 

 But we must justify this.
 We all have our own “standards” (or tests) to decide if 

a sequence is random. Some of us have better tests.
 In statistics, there are many randomness tests. If 

incompressible sequences pass all such effective 
tests, then we can happily call such sequences 
random sequences.

 But how do we do it? Shall we list all randomness 
tests and prove our claim one by one?



 

Compression

 A file (string) x, containing regularities that can be 
exploited by a compressor, can be compressed. 

 Compressor PPMZ finds more than bzip2, and 
bzip2 finds more than gzip, so PPMZ compresses 
better that bzip2, and bzip2 better than gzip.

 C(x) is the ultimate in using every effective 
regularity in x: the shortest compressed version of 
x that can be decompressed by a single 
decompressor that works for every x. Hence at 
least as short as any (known or unknown) 
compressor can do.



 

Randomness

 Randomness of strings mean that they do not 
contain regularities.

 If the regularities are not effective, then we 
cannot use them.

 Hence, we consider randomness of strings as 
the lack of effective regularities (that can be 
exploited).

 For example: a random string cannot be 
compressed by any known or unknown real-
world compressor.



 

Randomness, continued.

 C(x) is the shortest program that can generate 
x, exploiting all effective regularity in x.

 Example 1.  Flipping a fair coin n times gives   
x that with high probability 99.9% that C(x)≥n-
10. No real world compressor can compress 
such an x below n-10.

 Example 2. The initial n bits of π=3.1415... 
cannot be compressed by any real-world 
compressor, because they don’t see the 
regularity. But there is a short program that 
generates π, so C(π|n)=O(1).



 

Intuition: 
Randomness = incompressibility
 But we need a formal proof. So we formalize 

the notion of a single effective regularity. Such 
a regularity can be exploited by a Turing 
machine in the form of a test. 

 Then we formalize the notion of all possible 
effective regularities together, as those that 
can be exploited by the single Universal Turing 
Machine in the form of a universal test.

 Strings x passing the universal test turn out to 
be the incompressible ones.



 

Preliminaries

 We will write x=x1x2 … xn …, and xm:n =xm … xn and we usually 
deal with binary finite strings or binary infinite sequences.

 For finite string x, we can simply define x to be random if 
                    C(x)≥|x| or C(x) ≥ |x| - c for small constant c.
 But this does not  work for infinite sequences x. For example if 

we define: x is random if for some c>0, for all n
                     C(x1:n) ≥ n-c 
    Then no infinite sequence is random.
Proof of this fact: For an infinite x and an integer m>0, take n 

such that x1x2 … xm is binary representation of n-m. Then
       C(x1x2 .. xmxm+1 …xn) ≤ C(xm+1 … xn) + O(1) ≤ n-logn     QED

 We need a reasonable theory connecting incompressibility 
with randomness a la statistics. A beautiful theory is provided 
by P. Martin-Lof during 1964-1965 when he visited 
Kolmogorov in Moscow.



 

Martin-Lof’s theory

 Can we identify “incompressibility” with “randomness” (as known 
from statistics)?

 We all have our own “statistical tests”. Examples: 
 A random sequence must have ½  0’s and ½  1’s. 

Furthermore, ¼   00’s, 01’s, 10’s 11’s.
 A random sequence of length n cannot have a large (say 

length √n) block of 0’s.
 A random sequence cannot have every other digit identical 

to corresponding digits of π.
 We can list millions of such tests.

 These tests are necessary but not sufficient conditions. But we 
wish our random sequence to pass all such (un)known tests!

 Given sample space S and distribution P, we wish to test the 
hypothesis: “x is a typical outcome” --- that is: x belongs to some 
concept of “majority”. Thus a randomness test is to pick out the 
atypical minority y’s (e.g. too many more 1’s than 0’s in y) and if 
x belongs to a minority  reject the hypothesis of x being typical.



 

Statistical tests

 Formally, given sample space S, distribution P, a statistical test 
V, subset of NxS, is a prescription that, for every majority M in 
S, with level of significance ε=1-P(M), tells us for which 
elements x of S the hypothesis “x belongs to  M” should be 
rejected. We say x passes the test (at some significance level) if 
it is not rejected at that level. 

 Taking ε=2-m, m=1,2, …, we do this by nested critical regions:

 Vm = {x: (m,x) in V}
 Vm⊇Vm+1, m=1,2, … 
 For all n, ∑x {P(x | |x|=n): x in Vm} ≤ ε=2-m

 Example (2.4.1 in textbook): Test number of leading 0’s in a 
sequence. Represent a string x=x1…xn as 0.x1…xn. Let 

                                  Vm=[0,2-m). 

     We reject the hypothesis ``x is random’’ at significance level 2-m 
if x1=x2 = … = xm=0.



 

1. Martin-Lof tests for finite sequences

 Let probability distribution P be computable. A total function δ is a P-
test (Martin-Lof test for randomness) if 

 δ is lower semicomputable. I.e. V ={(m,x): δ(x)≥m} is r.e.
    Example: in previous page (Example 2.4.1), δ(x)=# of leading 0’s in x.

 ∑{P(x | |x|=n): δ(x)≥m} ≤ 2-m, for all n.
 Remark.The higher δ(x) is, the less random x is wrt property tested.

 Remember our goal was to connect “incompressibility” with “passing 
randomness tests”. But we cannot do this one by one for all tests. So 
we need a universal randomness test that encompasses all tests.

 A universal P-test for randomness, with respect to distribution P, is a 
test δ0(.|P) such that for each P-test δ, there is a constant c s.t. for all x 
we have δ0(x|P)≥ δ(x)-c.

 Note: if a string passes the universal P-test, then it passes every P-
test, at approximately the same confidence level.

Lemma: We can effectively enumerate all P-tests.
Proof Idea. Start with a standard enumeration of all TM’s φ1, φ2 … . Modify 

them into legal P-tests. 
  



 

Universal P-test

Theorem. Let δ1, δ2, … be an enumeration of P-
tests (as in Lemma). Then δ0(x|P)=max{δy(x)-
y : y≥1} is a universal P-test.

Proof. (1) V={(m,x): δ0(x|P)≥m} is obviously r.e. 
as all the δi’s yield r.e. sets. For each n:

 (2)     ∑|x|=n{P(x| |x|=n) : δ0(x|P)≥m}

         ≤∑y=1..∞  ∑|x|=n{P(x| |x|=n): δy(x)-y≥m}

         ≤∑y=1..∞ 2-m-y = 2-m

(3) By its definition δ0(.|P) majorizes each δ 
additively. Hence δ0 is universal.   QED



 

Connecting to Incompressibility
(finite sequences)
Theorem. The function δ0(x|L)=n-C(x|n)-1, where n=|x|, is a universal L-

test, with L the uniform distribution.
Proof. (1) First {(m,x): δ0(x|L)≥m} is r.e.

(2) Since the number of x’s with C(x|n)≤n-m-1 cannot exceed the number 
of programs of length at most n-m-1, we have

        |{x : δ0(x|L)≥m}| ≤ 2n-m-1 so L({x:…})< 2n-m / 2n  =2-m

(3) Now the key is to show that for each P-test δ, there is a c s.t. δ0(x|L)≥ 
δ(x)-c. Fix x, |x|=n, and define

           A={z: δ(z)≥δ(x), |z|=n}
    Clearly, |A|≤2n-δ(x), as L(A)≤2-δ(x) by P-test definition. Since A can be 

enumerated, C(x|n)≤ n-δ(x)+c, where c depends only on A and hence 
δ, therefore δ0(x|L)=n-C(x|n)-1≥ δ(x)-c-1.                     QED.

Remark: Thus, if x passes the universal n-C(x|n)-1 test, δ0(x|L) ≤c, then it 
passes all effective P-tests. We call such strings c-random.

Remark. Therefore, the lower the universal test  δ0(x|L) is, the more 
random x is. If  δ0(x|L)≤0, then x is 0-random or simply random.



 

2. Infinite Sequences

 For infinite sequences, we wish to finally accomplish 
von Mises’ ambition to define randomness.

 An attempt may be: an infinite sequence ω is random 
if for all n, C(ω1:n)≥n-c, for some constant c. However 
one can prove:

Theorem. If ∑n=1..∞2-f(n)=∞, then for any infinite binary 
sequence ω, we have C(ω1:n|n)≤n-f(n) infinitely often.

 We omit the formal proof. An informal proof has 
already been provided at the beginning of this lecture

 Nevertheless, we can still generalize Martin-Lof test 
for finite sequences to the infinite case, by defining a 
test on all prefixes of a finite sequence (and take 
maximum), as an effective sequential approximation 
(hence it will be called sequential test).



 

Sequential tests.

Definition. Let μ be a computable  probability measure on the 
sample space {0,1}∞. A total function δ: {0,1}∞  N∪{∞} is a 
sequential μ-test if 
 δ(ω)=supn ε N{γ(ω1:n)}, γ is a total function such that  

V={(m,y) : γ(y)≥m} is an r.e. set.
  μ{ω : δ(ω) ≥ m}≤2-m, for each m≥0.

If μ is the uniform measure λ on x’s of length n, λ(x)=2-n, then we 
simply call this a sequential test.

Example. Test “there are 0’s in even positions of ω”. Let
       γ(ω1:n)= n/2    if ∑i=1..n/2 ω2i=0
                     0       otherwise
The number of x’s of length n such that γ(x)≥m is at most 2n/2 for 

any m≥1. Hence, λ{ω : δ(ω)≥m} ≤ 2-m for m>0. For m=0, this 
holds trivially since 20=1. Note that this is obviously a very weak 
test. It does filter out sequences with all 0’s at the even positions 
but it does not even reject 010∞.



 

Random infinite sequences & 
sequential tests
 If δ(ω)=∞, then we say ω fails δ (or δ rejects ω). 

Otherwise we say ω passes δ. By definition, the set 
of ω’s that are rejected by δ has μ-measure 0, the set 
of ω’s that pass δ has μ-measure 1.

 Suppose δ(ω)=m, then there is a prefix y of ω with |y| 
minimal, s.t. γ(y)=m. This is clearly true for every 
infinite sequence starting with y. Let Γy ={ ζ : ζ=yρ, ρ 
in {0,1}∞}, for all ζ in Γy, δ(ζ)≥m. For the uniform 
measure we have  λ(Γy)=2-|y|

 The critical regions: V1⊇V2 ⊇ … where Vm={ω: 
δ(ω)≥m} = ∪{Γy : (m,y) in V}. Thus the statement of 
passing sequential test δ may be written as

               δ(ω)<∞  iff ω not in ∩m=1.. ∞Vm



 

Martin-Lof randomness: definition

Definition. Let V be the set of all sequential μ-tests. An 
infinite binary sequence ω is called μ-random if it 
passes all sequential tests:

                 ω not in ∪V∈V  ∩m=1..∞Vm

   From measure theory: μ(∪V∈V  ∩m=1..∞Vm)=0 since 
there are only countably many sequential μ-tests V.

 It can be shown that, similarly defined as finite case, 
universal sequential test exists. However, in order to 
equate incompressibility with randomness, like in the 
finite case, we need prefix Kolmogorov complexity 
(the K variant). Omitted. Nevertheless, Martin-Lof 
randomness can be characterized (sandwiched) by 
incompressibility statements.



 

Looser condition.
Lemma (Chaitin, Martin-Lof). Let ∑2-f(n) < ∞ be recursively convergent and f is 

recursive. If x is random wrt uniform measure, then C(x1:n|n)≥ n-f(n), for all but 
finitely many n’s. 

Proof. See textbook Theorem 2.5.4.
Remark. f(n)=logn+2loglogn works and look up def recursively convergent.

Lemma (Martin-Lof) Let ∑2-f(n) < ∞ . Then the set of x’s such that C(x1:n|n)≥ n-f(n), for 
all but finitely many n’s has uniform measure 1. Exercise 2.5.5.

Proof. There are only 2n-f(n) programs with length less than n-f(n). Hence the 
probability that an arbitrary string y such that C(y|n)≤n–f(n) is 2-f(n). The result  
then follows from the fact ∑2-f(n) < ∞ and the Borel-Cantelli Lemma. Note that this 
proof says nothing about the set of x’s concerned containing the Martin-Lof 
random ones, in contrast to the previous Lemma.                                 QED

Borel-Cantelli Lemma: In an infinite sequence of outcomes generated by (p,1-p) Bernoulli process, let A1,A2, .. 
be an infinite sequence of events each of which depends only on a finite number of trails. Let Pk=P(Ak). 
Then

     (i) If ∑Pk converges, then with probability 1 only finitely many Ak occur.

     (ii) If ∑Pk diverges, and Ak are mutually independent, then with probability 1 infinitely many Ak’s occur.



 

Complexity oscillations of initial segments of 
infinite high-complexity sequences

 --

C(x1:n)



 

Tighter Condition.

Theorem. (a) If there is a constant c s.t. 
C(ω1:n)≥n-c for infinitely many n, then ω is 
random in the sense of Martin-Lof under 
uniform distribution. (b) The set of ω in (a) 
has λ-measure 1



 

Characterizing random infinite 
sequences

There is constant c,
for infinitely many n, 
C(ω1:n|n)≥n-c

Martin-Lof random

∑2-f(n) < ∞, C(ω1:n|n) ≥ n-f(n) for all n



 

Statistical properties of incompressible 
strings
 As expected, incompressible strings have similar properties as 

the statistically random ones. For example, it has roughly same 
number of 1’s and 0’s, n/4  00, 01, 10, 11 blocks, n2-k length-k 
blocks, etc, all modulo an O(√(n2-k) ) term and overlapping.

Fact 1.  A c-incompressible binary string x has n/2± O(√n) ones 
and zeroes. 

Proof. (Book uses Chernoff bounds. We provide a more direct 
proof here for this simple case.) Suppose C(x|n)≥|x|=n and x 
has k ones and k=n/2± d (d≤n/2). Then x can be described by 

               log(n choose k)+log d +O(log log d) ≥ C(x|n) bits.    (1)
   log(n choose k)≤ log (n choose n/2)=n – ½ logn.
   Hence, d = Ω(√n). On the other hand,
     log (n choose (d+n/2) ) = log n! / [(n/2 + d)!(n/2 –d)!]
                                       = n + log e-2d*d/n – ½ logn.
  Thus d = O(√n), otherwise (1) does not hold.                QED



 

Summary

 We have formalized the concept of 
computable statistical tests as P-tests 
(Martin-Lof tests) in the finite case and 
sequential tests in the infinite case.

 We then equated randomness with “passing 
all computable statistical tests”.

 We proved there are universal tests --- and 
incompressibility is a universal test: thus 
incompressible sequences pass all tests. So, 
we have finally justified incompressibility and 
randomness to be equivalent concepts.
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