Lecture 3. Relation with Information Theory and Symmetry of Information

- Shannon entropy of random variable X over sample space S: H(X) = ∑ P(X=x) log 1/P(X=x),
 - the sum taken over x in S.

Interpretation: H(X) bits are necessary on P- average to describe the outcome x in a prefix-free code.

Example. For P is uniform over finite S, we have $H(X)=\sum (1/|S|)\log |S| = \log |S|$.

- C(x), the Kolmogorov complexity, is the minimum description (smallest program) for one fixed x. It is a beautiful fact that H(X) and the P-expectation of C(x) converge to the same thing.
 - The expected complexity and symmetry of information are examples that the two concepts approximately coincide.

Prefix (free) codes and the ubiquitous Kraft Inequality

Prefix (free) code is a code such that no code word is a proper prefix of another one.
Example: 1, 01, 000, 001 with length set I_1=1, I_2=2, I_3=3, I_4=3.

Kraft Inequality:

$$\sum_{x} 2^{-l_{x}} \le 1.$$
 (*)

(a) (*) holds for $\{l_x\}$ is the length set of a prefix code.

(b) If $\{l_x\}$ satisfies (*) then \exists prefix code with that length set.

Proof. Consider binary rooted tree with 0 labeling left edge and 1 labeling right edge. The prefix code words are leafs labeled with the concatenated labels of the edges on path from root to leaf. The code word length is # edges. Put weight 1 on root, weight $\frac{1}{2}$ on each of its sons, $\frac{1}{4}$ on each of their sons, ... So the prefix code leaves x have weight $2^{-1}x$, and the sum of the weights ≤ 1 .

Kullback-Leibler Divergence

- The KL-divergence between two probability mass functions P and Q is
- $\square D(P \| Q) = \sum P(x) \log (P(x)/Q(x)).$
 - Asymmetric • Always ≥ 0 and =0 only if P = Q

Noiseless Coding

The expected code word length with code c for random variable X is I(X,c)=∑ P(X=x) |c(x)|.

Noiseless Coding Theorem (Shannon):

• $H(X) \le \min \{I(X,c): c \text{ is prefix code}\} \le H(X)+1.$

Proof: (left ≤) Let P be as above, and let {I_x:x in S} be a length set of a prefix code. Let Q be a probability mass function defined by Q(x)=2^{-I_x} (Q is probability by Kraft inequality).

Then, $-D(P \| Q) = \sum P(x) \log 1/P(x) - \sum P(x) \log 1/Q(x)$

= H(P)- $\sum P(x) \log 1/Q(x)$ = H(P)- $\sum P(x) \mid x$) ≤ 0 and = 0 only if Q=P.

(right \leq) Shannon-Fano code achieves this by coding x as c(x) with length $\leq \log 1/P(x)+1$. (Code word length = log 1/P(x) rounded upwards). QED Asymptotic Equivalence Entropy and Expected Complexity

String x=y_1 ... y_m (l(y_i)=n)

p_k= d({i: y_i = k}) / m for k = 1,...,2^n=N.

Theorem (2.8.1 in book). $C(x) \le m(H + \epsilon(m))$ with $H = \sum p_k \log 1/p_k$, $\epsilon(m) = 2^{n+1} l(m)/m$ $(\epsilon(m) \rightarrow 0 \text{ for } m \rightarrow \infty \text{ and } n \text{ fixed}).$

Proof. $C(x) \le 2l(mp_1)+...+ 2l(mp_N)+l(j)$ with $j \le (m_m)$ $mp_1 ... mp_N$ Since $mp_k \le m$ we have $C(x)\le 2N l(m) + l(j)$, and writing multinomial as

factorials and using Stirling's approximation, the theorem is proved.

Continued

- For x is an outcome of a sequence of independent trials, a random variable X, the inequality can be replaced by an asymptotic equality w.h.p. Namely, X uniform with 2ⁿ outcomes:
- $H(X)=\sum P(X=x) \log 1/P(X=x)$ and $E=\sum P(X=x) C(x)$ (I(x)=n). There are at least 2^n(1-2^{-c+1}) many x's with $C(x)\ge n-c$.
- Hence, $n/(n+O(1)) \le H(X)/E \le n/(1-2^{-c+1})(n-c))$. Substitute c=log n to obtain

lim H(X)/E = 1 for $n \rightarrow \infty$.

Symmetry of Information

In Shannon information theory, the symmetry of information is well known:

I(X;Y)=I(Y;X) with

I(X;Y)=H(Y)-H(Y|X) (information in random variable X about random variable Y)

Here X,Y are random variables, and probability $P(X=x) = p_x$ and the entropy

 $H(X) = \sum p_x \log 1/p_x.$

The proof is by simple rewriting.

Algorithmic Symmetry of Information

- In Kolmogorov complexity, the symmetry of information is : I(x;y)=I(x;y) with I(x;y)=C(y)-C(y|x) up to an additive log term. The proof is totally different, as well as the meaning, from Shannon's concept.
- The term C(y)-C(y|x) is known as "the information x knows about y". That information is symmetric was first proved by Levin and Kolmogorov (in Zvonkin-Levin, Russ. Math Surv, 1970)

Theorem (2.8.2 book). C(x)-C(x|y)=C(y)-C(y|x), up to an additive log-term. **Proof.** Essentially we will prove:

 $C(x,y)=C(y|x)+C(x) + O(\log C(x,y)).$

(Since $C(x,y)=C(x|y)+C(y) + O(\log C(x,y))$, Theorem follows).

(≤). It is trivial that $C(x,y) \le C(y|x) + C(x) + O(\log C(x,y))$ is true.

(≥). We now need to prove $C(x,y) \ge C(y|x) + C(x) + O(\log C(x,y))$.

Proving: $C(x,y) \ge C(y|x)+C(x) + O(\log C(x,y))$.

Assume to the contrary: for each $c \ge 0$, there are x and y s.t.

$$C(x,y) \leq C(y|x) + C(x) - c \log C(x,y)$$

Let $A=\{(u,z): C(u,z) \le C(x,y)\}$. Given C(x,y), the set A can be recursively enumerated.

Let $A_x = \{z: C(x,z) \le C(x,y)\}$. Given C(x,y) and x, we have a simple algorithm to recursively enumerate A_x . One can describe y, given x, using its index in the enumeration of A_x , and C(x,y). Hence

(2)

(3)

 $C(y|x) \le \log |A_x| + 2\log C(x,y) + O(1)$

By (1) and (2), for each c, there are x, y s.t.

 $|A_x|>2^e$, where $e=C(x,y)-C(x)+(c-2) \log C(x,y)-O(1)$.

But now, we obtain a too short description for x as follows. Given C(x,y) and e, we can recursively enumerate the strings u which are candidates for x by satisfying condition

 $A_u = \{z: C(u,z) \le C(x,y)\}, and 2^e < |A_u|.$

Denote the set of such u by U. Clearly, x ε U. Also

{(u,z) : u ε U & z ε A_u} ⊆A

(4)

(5)

The number of elements in A cannot exceed the available number of programs that are short enough to satisfy its definition:

 $|A| \le 2^{C(x,y)+O(1)}$

Note that {u} x A_u is a disjoint subset of A for every different u in U. Using (3), (4), (5),

 $|U| \le |A| / \min \{ |\{A_u| : u \text{ in } U\}| \le |A| / 2^e \le 2^{C(x,y)+O(1)} / 2^e$

Hence we can reconstruct x from C(x,y), e, and the index of x in the enumeration of U. Therefore

 $C(x) < 2\log C(x,y) + 2\log e + C(x,y) - e + O(1)$

substituting e as given above yields C(x) < C(x), for large c, contradiction.

(1)

QED

Symmetry of Information is sharp

Example.

Let n be random: C(n) = |n|+O(1). Let x be random of length n: C(x|n)=n+O(1)and C(x) = n+O(1).

Then:

 $C(n)-C(n|x) = |n|+O(1) = \log n+O(1)$ C(x)-C(x|n) = n-n+O(1) = O(1).So $I(x:n) = I(n:x)+\log n +O(1).$

Kamae Theorem

For each natural number m, there is a string x such that for all but finitely many strings y, $I(y;x)=C(x)-C(x|y) \ge m$

That is: there exist finite objects x such that almost all finite objects y contain a large amount of information about them.