
 

Lecture 3. Relation with Information 
Theory and Symmetry of Information
 Shannon entropy  of random variable X over sample space S:

       H(X) = ∑ P(X=x) log 1/P(X=x), 

     the sum taken over x in S.

    Interpretation: H(X) bits are necessary on P- average to describe 
the outcome x in a prefix-free code.

Example. For P is uniform over finite S, we have H(X)=∑ (1/|S|)log |S| = log |S|.

 C(x), the Kolmogorov complexity, is the minimum description 
(smallest program) for one fixed x. It is a beautiful fact that H(X) 
and the P-expectation of C(x)  converge to the same thing.

 The expected complexity and symmetry of information are 
examples that the two concepts approximately  coincide.



 

Prefix (free) codes and the 
ubiquitous Kraft Inequality
 Prefix (free) code is a code such that no code 

word is a proper prefix of another one. 
 Example: 1, 01, 000, 001 with length set  l_1=1, 

l_2=2, l_3=3, l_4=3.                             

Kraft Inequality:                                                                     (*).

(a)  (*) holds for {l_x} is the length set of a prefix code. 
 
(b)  If  {l_x} satisfies  (*) then  prefix code with that length set.

Proof.  Consider binary rooted tree with 0  labeling left edge and 1 labeling 
right edge. The prefix code words are leafs labeled with the concatenated  
labels of the edges on path from root to leaf. The code word length is # edges.
Put weight 1 on root, weight ½ on each of its sons, ¼ on each of their sons, ...
So the prefix code leaves x have weight 2^{-l_x}, and the sum of the weights
≤ 1.                                                                                              QED

∑x 2
−lx≤1.



 

Kullback-Leibler Divergence

 The KL-divergence between two probability 
mass functions P and Q is

 D(P║Q) = ∑ P(x) log (P(x)/Q(x)).
 Asymmetric
Always ≥ 0 and =0 only if P = Q



 

Noiseless Coding

 The expected code word length with code c for random 
variable X is l(X,c)=∑ P(X=x) |c(x)|.

Noiseless Coding Theorem (Shannon):
• H(X) ≤min {l(X,c): c is prefix code} ≤ H(X)+1.

Proof: (left ≤) Let P be as above, and let {l_x:x in S} be a length set of a 
prefix code. Let Q be a probability mass function defined by Q(x)=2^{-l_x} 
(Q is probability by Kraft inequality). 

Then,  -D(P║Q) = ∑ P(x) log 1/P(x) - ∑ P(x) log 1/Q(x) 
= H(P)-∑ P(x) log1/Q(x) = H(P)-∑ P(x) l_x)≤ 0 and = 0 only if Q=P.
 
(right ≤) Shannon-Fano code achieves this by coding x as c(x) with length
 ≤ log 1/P(x)+1. (Code word length = log 1/P(x) rounded upwards).

QED



 

Asymptotic Equivalence Entropy and 
Expected Complexity
 String x=y_1 ... y_m  (l(y_i)=n)

p_k= d({i: y_i = k}) / m for k = 1,...,2^n=N.

Theorem (2.8.1 in book). C(x) ≤ m(H + ε(m)) 
with H= ∑ p_k log 1/p_k , ε(m) = 2^{n+1} l(m)/m
(ε(m)→0 for m→∞ and n fixed).

Proof.  C(x) ≤ 2l(mp_1)+...+ 2l(mp_N)+l(j) with j ≤ (         m           )

                                                                                                         mp_1 ... mp_N

Since mp_k ≤ m we have C(x)≤2N l(m) + l(j), and writing multinomial as 
factorials and using Stirling’s approximation, the theorem is proved. ■



 

Continued

 For x is an outcome of a sequence of independent 
trials, a random variable X, the inequality can be 
replaced by an asymptotic equality w.h.p. Namely, X 
uniform with 2^n outcomes:

 H(X)= ∑  P(X=x) log 1/P(X=x)  and E=∑P(X=x) C(x) 
(l(x)=n).  There are at least 2^n(1-2^{-c+1}) many x’s 
with C(x)≥n-c. 

 Hence,  n/(n+O(1)) ≤ H(X)/E ≤ n/(1-2^{-c+1})(n-c)). 
Substitute c=log n to obtain

             lim  H(X)/E = 1 for n →∞.



 

Symmetry of Information

 In Shannon information theory, the symmetry of 
information is well known:

  I(X;Y)=I(Y;X) with

 I(X;Y)=H(Y)-H(Y|X) (information in random variable X about 
random variable Y)

 Here X,Y are random variables, and  probability    P(X=x) = p_x 
and the entropy

     H(X) = ∑ p_x log 1/p_x.

 The proof is by simple rewriting.



 

 In Kolmogorov complexity, the symmetry of information is : 
I(x;y)=I(x;y) with I(x;y)=C(y)-C(y|x) up to an additive log term. 
The proof is totally different, as well as the meaning, from 
Shannon’s concept.

 The term C(y)-C(y|x) is known as “the information x knows 
about y”. That information is symmetric was first proved by 
Levin and Kolmogorov (in Zvonkin-Levin, Russ. Math Surv, 1970)

Theorem (2.8.2 book). C(x)-C(x|y)=C(y)-C(y|x), up to an additive log-term.

Proof. Essentially we will prove:

                 C(x,y)=C(y|x)+C(x) + O(log C(x,y)). 

(Since  C(x,y)=C(x|y)+C(y) + O(log C(x,y)), Theorem follows).

(≤). It is trivial  that C(x,y)≤C(y|x)+C(x) + O(log C(x,y)) is true.

(≥). We now need to prove C(x,y)≥C(y|x)+C(x) + O(log C(x,y)). 

Algorithmic Symmetry of Information



 

Proving: C(x,y) ≥C(y|x)+C(x) + O(log C(x,y)).

Assume to the contrary: for each c≥0, there are x and y s.t.
                          C(x,y)<C(y|x)+C(x) - c log C(x,y)                                           (1)
Let A={(u,z): C(u,z) ≤ C(x,y)}. Given C(x,y), the set A can be recursively enumerated.
Let Ax={z: C(x,z) ≤ C(x,y)}. Given C(x,y) and x, we have a simple algorithm to recursively enumerate Ax. One can describe 

y, given x, using its index in the enumeration of Ax , and C(x,y). Hence

                          C(y|x) ≤ log |Ax| + 2logC(x,y) + O(1)                   (2)

By (1) and (2), for each c, there are x, y s.t. 
         |Ax|>2e, where e=C(x,y)-C(x)+(c-2) log C(x,y)-O(1).

But now, we obtain a too short description for x as follows. Given C(x,y) and e, we can recursively enumerate the strings u 
which are candidates for x by satisfying condition 

          Au={z: C(u,z) ≤ C(x,y)}, and 2e <|Au|.                                         (3)

Denote the set of such u by U. Clearly, x ε U. Also
           {(u,z) : u ε U & z ε Au} ⊆A                                         (4)
The number of elements in A cannot exceed the available number of programs that are short enough to satisfy its 

definition: 
                 |A| ≤ 2C(x,y)+O(1)                                                                                                    (5)
Note that  {u} x Au  is a disjoint subset of A for every different u in U. Using (3), (4), (5), 

                 |U| ≤ |A| / min { |{Au| : u in U}| < |A| /2e ≤ 2C(x,y)+O(1) / 2e

Hence we can reconstruct x from C(x,y), e, and the index of x in the enumeration of U. Therefore
       C(x) < 2log C(x,y) + 2log e + C(x,y) – e +O(1)

substituting e as given above  yields C(x)<C(x), for large c, contradiction.               QED



  

Symmetry of Information is sharp

Example. 

Let n be random: C(n) = |n|+O(1).

Let x be random of length n: C(x|n)=n+O(1)

                                      and   C(x) = n+O(1).

Then:

C(n)-C(n|x) = |n|+O(1) = log n+O(1)

C(x)-C(x|n) = n-n+O(1) = O(1).

So I(x:n) = I(n:x)+log n +O(1).



 

Kamae Theorem

For each natural number m, there is a string x 
such that for all but finitely many strings y,

 I(y;x)= C(x) – C(x|y) ≥ m

That is: there exist finite objects x such that 
almost all finite objects y contain a large 
amount of information about them.
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