Lecture 3. Relation with Information
Theory and Symmetry of Information

Shannon entropy of random variable X over sample space S:
H(X) = > P(X=x) log 1/P(X=x),
the sum taken over x in S.

Interpretation: H(X) bits are necessary on P- average to describe
the outcome x in a prefix-free code.

Example. For P is uniform over finite S, we have H(X)=> (1/|S|)log |S| = log |S].
C(x), the Kolmogorov complexity, is the minimum description
(smallest program) for one fixed x. It is a beautiful fact that H(X)
and the P-expectation of C(x) converge to the same thing.

The expected complexity and symmetry of information are
examples that the two concepts approximately coincide.



Prefix (free) codes and the
ubiquitous Kraft Inequality

Prefix (free) code is a code such that no code
word is a proper prefix of another one.

Example: 1, 01, 000, 001 with length set 1_1=1,
| 2=2,1 3=3,| 4=3.
l

Kraft Inequality: ZX 2 <1, (*).
(a) (*) holds for {1 x} 1s the length set of a prefix code.
(b) If {I x} satisfies (*) then d prefix code with that length set.

Proof. Consider binary rooted tree with 0 labeling left edge and 1 labeling
I'l%ht ed%e. The prefix code words are leafs labeled with the concatenated
labels of the edges on path from root to leaf. The code word length 1s # edges.
Put weight 1 on root, weight %2 on each of its sons, ¥4 on each of their sons

Eol the prefix code leaves x have weight 2" {-1 x}, and the sum (3% tII;e weights



Kullback-Leibler Divergence

The KL-divergence between two probability
mass functions P and Q is

D(P||Q) = 3 P(x) log (P(x)/Q(x)).

® Asymmetric ,
® Always >0 and =0 only if P = Q



Noiseless Coding

The expected code word length with code ¢ for random
variable Xis [(X,c)=> P(X=x) |c(x)|.

Noiseless Coding Theorem (Shannon):
H(X) =min {I(X,c): c is prefix code} < H(X)+1.

Proof: (left <) Let P be as above, and let {|_x:x in S} be a length set of a
prefix code. Let Q be a probability mass function defined by Q(x)=2"{-1 x}
(Q is probability by Kraft inequality).

Then, -D(P||Q) = ¥ P(x) log 1/P(x) - ¥ P(x) log 1/Q(x)
= H(P)-Y P(x) log1/Q(x) = H(P)-¥ P(x) | x)< 0 and = 0 only if Q=P.

(right <) Shannon-Fano code achieves this by coding x as c(x) with length
<log 1/P(x)+1. (Code word length = log 1/P(x) rounded upwards).



Asymptotic Equivalence Entropy and
Expected Complexity

Stringx=y 1...y_ m (I(y_i)=n)
p_k=d({i:y_i=k})/ mfork=1,...,2*n=N.

Theorem (2.8.1 in book). C(x) < m(H + €(m))
with H= > p klog 1/p_k, ¢(m) = 2n+1} [(m)/m
(e(m)—0 for m—w and n fixed).

Proof. C(x) < 2l(mp_1)+...+ 2I(mp_N)+I(j) with j < ( m )
mp_1..mp_N
Since mp_k < m we have C(x)<2N I(m) + I(j), and writing multinomial as
factorials and using Stirling’s approximation, the theorem is proved. m



Continued

For x is an outcome of a sequence of independent
trials, a random variable X, the inequality can be
replaced by an asymptotic equality w.h.p. Namely, X
uniform with 2*n outcomes:

H(X)= > P(X=x)log 1/P(X=x) and E=) P(X=x) C(x)
(I(x)=n). There are at least 2*n(1-2*{-c+1}) many x’s
with C(x)2n-c.

Hence, n/(n+0O(1)) < H(X)/E < n/(1-2"{-c+1})(n-C)).
Substitute c=log n to obtain

lim H(X)/E =1 for n —»omo.



Symmetry of Information

In Shannon information theory, the symmetry of
information is well known:

[(X;Y)=I(Y;X) with
1(X;Y)=H(Y)-H(Y|X) (information in random variable X about

random variable Y)

Here X,Y are random variables, and probability P(X=x)=p_x
and the entropy

H(X)=> p_xlog 1/p_x.

The proof is by simple rewriting.



Algorithmic Symmetry of Information

In Kolmogorov complexity, the symmetry of information is :
1(x;y)=I(x;y) with 1(x;y)=C(y)-C(y|x) up to an additive log term.
The proof is totally different, as well as the meaning, from
Shannon’s concept.

The term C(y)-C(y|x) is known as “the information x knows
about y”. That information is symmetric was first proved by
Levin and Kolmogorov (in Zvonkin-Levin, Russ. Math Surv, 1970)

Theorem (2.8.2 book). C(x)-C(x|y)=C(y)-C(y|X), up to an additive log-term.
Proof. Essentially we will prove:

C(x,y)=C(y[x)+C(x) + O(log C(x,y)).
(Since C(x,y)=C(x|y)+C(y) + O(log C(x,y)), Theorem follows).
(). ltis trivial that C(x,y)<C(y|x)+C(x) + O(log C(x,y)) is true.
(2). We now need to prove C(x,y)2C(y|x)+C(x) + O(log C(x,y)).



Proving: C(x,y) 2C(y|x)+C(x) + O(log C(x,y)).

Assume to the contrary: for each ¢=0, there are x and y s.t.
C(x,y)<C(y[x)*+C(x) - c log C(x.y) (1)
Let A={(u,z): C(u,z) < C(x,y)}. Given C(x,y), the set A can be recursively enumerated.
Let A ={z: C(x,z) < C(x,y)}. Given C(x,y) and x, we have a simple algorithm to recursively enumerate A,. One can describe
y, given X, using its index in the enumeration of A, , and C(x,y). Hence
C(ylx) = log |A,| + 2logC(x,y) + O(1) (2)
By (1) and (2), for each c, there are x, y s.t.
|A,|>2¢, where e=C(x,y)-C(x)+(c-2) log C(x,y)-O(1).

But now, we obtain a too short description for x as follows. Given C(x,y) and e, we can recursively enumerate the strings u
which are candidates for x by satisfying condition

A ={z: C(u,z) < C(x,y)}, and 2¢ <|A |. (3)
Denote the set of such u by U. Clearly, x € U. Also
{(uz):ueU&zeA}SA (4)
The number of elements in A cannot exceed the available number of programs that are short enough to satisfy its
definition:
|A| < 2Cxy+0() (5)

Note that {u} x A, is a disjoint subset of A for every different u in U. Using (3), (4), (5),
U] < |A] / min { |{A,]| : uin U}| < |A] /28 < 2Cxy)*0(1) [ e
Hence we can reconstruct x from C(x,y), e, and the index of x in the enumeration of U. Therefore
C(x) < 2log C(x,y) *+ 2log e + C(x,y) — e +O(1)
substituting e as given above yields C(x)<C(x), for large c, contradiction. QED



Symmetry of Information is sharp

Example.

Let n be random: C(n) = |n[+O(1).

Let x be random of length n: C(x|n)=n+0O(1)
and C(x)=n+0O(1).

Then:

C(n)-C(n|x) = [n|+O(1) = log n+O(1)

C(x)-C(x|n) = n-n+0O(1) = O(1).

So l(x:n) = I(n:x)+log n +O(1).



Kamae Theorem

For each natural number m, there is a string x
such that for all but finitely many strings v,

I(y;x)= C(x) = C(x]y) 2 m

That is: there exist finite objects x such that
almost all finite objects y contain a large
amount of information about them.
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