
 

Lecture 3. Relation with Information 
Theory and Symmetry of Information
 Shannon entropy  of random variable X over sample space S:

       H(X) = ∑ P(X=x) log 1/P(X=x), 

     the sum taken over x in S.

    Interpretation: H(X) bits are necessary on P- average to describe 
the outcome x in a prefix-free code.

Example. For P is uniform over finite S, we have H(X)=∑ (1/|S|)log |S| = log |S|.

 C(x), the Kolmogorov complexity, is the minimum description 
(smallest program) for one fixed x. It is a beautiful fact that H(X) 
and the P-expectation of C(x)  converge to the same thing.

 The expected complexity and symmetry of information are 
examples that the two concepts approximately  coincide.



 

Prefix (free) codes and the 
ubiquitous Kraft Inequality
 Prefix (free) code is a code such that no code 

word is a proper prefix of another one. 
 Example: 1, 01, 000, 001 with length set  l_1=1, 

l_2=2, l_3=3, l_4=3.                             

Kraft Inequality:                                                                     (*).

(a)  (*) holds for {l_x} is the length set of a prefix code. 
 
(b)  If  {l_x} satisfies  (*) then  prefix code with that length set.

Proof.  Consider binary rooted tree with 0  labeling left edge and 1 labeling 
right edge. The prefix code words are leafs labeled with the concatenated  
labels of the edges on path from root to leaf. The code word length is # edges.
Put weight 1 on root, weight ½ on each of its sons, ¼ on each of their sons, ...
So the prefix code leaves x have weight 2^{-l_x}, and the sum of the weights
≤ 1.                                                                                              QED

∑x 2
−lx≤1.



 

Kullback-Leibler Divergence

 The KL-divergence between two probability 
mass functions P and Q is

 D(P║Q) = ∑ P(x) log (P(x)/Q(x)).
 Asymmetric
Always ≥ 0 and =0 only if P = Q



 

Noiseless Coding

 The expected code word length with code c for random 
variable X is l(X,c)=∑ P(X=x) |c(x)|.

Noiseless Coding Theorem (Shannon):
• H(X) ≤min {l(X,c): c is prefix code} ≤ H(X)+1.

Proof: (left ≤) Let P be as above, and let {l_x:x in S} be a length set of a 
prefix code. Let Q be a probability mass function defined by Q(x)=2^{-l_x} 
(Q is probability by Kraft inequality). 

Then,  -D(P║Q) = ∑ P(x) log 1/P(x) - ∑ P(x) log 1/Q(x) 
= H(P)-∑ P(x) log1/Q(x) = H(P)-∑ P(x) l_x)≤ 0 and = 0 only if Q=P.
 
(right ≤) Shannon-Fano code achieves this by coding x as c(x) with length
 ≤ log 1/P(x)+1. (Code word length = log 1/P(x) rounded upwards).

QED



 

Asymptotic Equivalence Entropy and 
Expected Complexity
 String x=y_1 ... y_m  (l(y_i)=n)

p_k= d({i: y_i = k}) / m for k = 1,...,2^n=N.

Theorem (2.8.1 in book). C(x) ≤ m(H + ε(m)) 
with H= ∑ p_k log 1/p_k , ε(m) = 2^{n+1} l(m)/m
(ε(m)→0 for m→∞ and n fixed).

Proof.  C(x) ≤ 2l(mp_1)+...+ 2l(mp_N)+l(j) with j ≤ (         m           )

                                                                                                         mp_1 ... mp_N

Since mp_k ≤ m we have C(x)≤2N l(m) + l(j), and writing multinomial as 
factorials and using Stirling’s approximation, the theorem is proved. ■



 

Continued

 For x is an outcome of a sequence of independent 
trials, a random variable X, the inequality can be 
replaced by an asymptotic equality w.h.p. Namely, X 
uniform with 2^n outcomes:

 H(X)= ∑  P(X=x) log 1/P(X=x)  and E=∑P(X=x) C(x) 
(l(x)=n).  There are at least 2^n(1-2^{-c+1}) many x’s 
with C(x)≥n-c. 

 Hence,  n/(n+O(1)) ≤ H(X)/E ≤ n/(1-2^{-c+1})(n-c)). 
Substitute c=log n to obtain

             lim  H(X)/E = 1 for n →∞.



 

Symmetry of Information

 In Shannon information theory, the symmetry of 
information is well known:

  I(X;Y)=I(Y;X) with

 I(X;Y)=H(Y)-H(Y|X) (information in random variable X about 
random variable Y)

 Here X,Y are random variables, and  probability    P(X=x) = p_x 
and the entropy

     H(X) = ∑ p_x log 1/p_x.

 The proof is by simple rewriting.



 

 In Kolmogorov complexity, the symmetry of information is : 
I(x;y)=I(x;y) with I(x;y)=C(y)-C(y|x) up to an additive log term. 
The proof is totally different, as well as the meaning, from 
Shannon’s concept.

 The term C(y)-C(y|x) is known as “the information x knows 
about y”. That information is symmetric was first proved by 
Levin and Kolmogorov (in Zvonkin-Levin, Russ. Math Surv, 1970)

Theorem (2.8.2 book). C(x)-C(x|y)=C(y)-C(y|x), up to an additive log-term.

Proof. Essentially we will prove:

                 C(x,y)=C(y|x)+C(x) + O(log C(x,y)). 

(Since  C(x,y)=C(x|y)+C(y) + O(log C(x,y)), Theorem follows).

(≤). It is trivial  that C(x,y)≤C(y|x)+C(x) + O(log C(x,y)) is true.

(≥). We now need to prove C(x,y)≥C(y|x)+C(x) + O(log C(x,y)). 

Algorithmic Symmetry of Information



 

Proving: C(x,y) ≥C(y|x)+C(x) + O(log C(x,y)).

Assume to the contrary: for each c≥0, there are x and y s.t.
                          C(x,y)<C(y|x)+C(x) - c log C(x,y)                                           (1)
Let A={(u,z): C(u,z) ≤ C(x,y)}. Given C(x,y), the set A can be recursively enumerated.
Let Ax={z: C(x,z) ≤ C(x,y)}. Given C(x,y) and x, we have a simple algorithm to recursively enumerate Ax. One can describe 

y, given x, using its index in the enumeration of Ax , and C(x,y). Hence

                          C(y|x) ≤ log |Ax| + 2logC(x,y) + O(1)                   (2)

By (1) and (2), for each c, there are x, y s.t. 
         |Ax|>2e, where e=C(x,y)-C(x)+(c-2) log C(x,y)-O(1).

But now, we obtain a too short description for x as follows. Given C(x,y) and e, we can recursively enumerate the strings u 
which are candidates for x by satisfying condition 

          Au={z: C(u,z) ≤ C(x,y)}, and 2e <|Au|.                                         (3)

Denote the set of such u by U. Clearly, x ε U. Also
           {(u,z) : u ε U & z ε Au} ⊆A                                         (4)
The number of elements in A cannot exceed the available number of programs that are short enough to satisfy its 

definition: 
                 |A| ≤ 2C(x,y)+O(1)                                                                                                    (5)
Note that  {u} x Au  is a disjoint subset of A for every different u in U. Using (3), (4), (5), 

                 |U| ≤ |A| / min { |{Au| : u in U}| < |A| /2e ≤ 2C(x,y)+O(1) / 2e

Hence we can reconstruct x from C(x,y), e, and the index of x in the enumeration of U. Therefore
       C(x) < 2log C(x,y) + 2log e + C(x,y) – e +O(1)

substituting e as given above  yields C(x)<C(x), for large c, contradiction.               QED



  

Symmetry of Information is sharp

Example. 

Let n be random: C(n) = |n|+O(1).

Let x be random of length n: C(x|n)=n+O(1)

                                      and   C(x) = n+O(1).

Then:

C(n)-C(n|x) = |n|+O(1) = log n+O(1)

C(x)-C(x|n) = n-n+O(1) = O(1).

So I(x:n) = I(n:x)+log n +O(1).



 

Kamae Theorem

For each natural number m, there is a string x 
such that for all but finitely many strings y,

 I(y;x)= C(x) – C(x|y) ≥ m

That is: there exist finite objects x such that 
almost all finite objects y contain a large 
amount of information about them.
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