

Lecture 5. The Incompressibility
Method
 A key problem in computer science: analyze the

average case performance of a program.

 Using the Incompressibility Method:
 Give the program a random input of length n, say of

complexity n- log n (or sometimes complexity n).
 Analyze the program with respect to this single and

fixed input. This is usually easier than average case
using the fact this input is almost incompressible.

 If we used complexity n- log n, the running time for this
single input is the average case running time of all
inputs, since a (1-1/n)th fraction of all inputs have this
high complexity!

 Example: Show L={0k1k | k>0} not regular. By
contradiction, assume that DFA M accepts L.

 Choose k so that C(k) >> 2|M|. Simulate M:

 000 … 0 111 … 1

 C(k) < |M| + |q| + O(1) < 2|M|. Contradiction.
 Remark. Generalizes to iff condition: more powerful

 & easier to use than “pumping lemmas”.

k k

M q

stop here

Formal language theory

Combinatorics

 Theorem. There is a tournament (complete directed graph) T of n
players that contains no large transitive subtournaments (>1 + 2 log n).

Proof by Picture: Choose a random T.
 One bit codes a directed edge, each tournament is encoded in string of

n(n-1)/2 bits, and each string of n(n-1)/2 bits codes a tournament.
Choose T such that C(T | n) ≥ n(n-1)/2.

 If there is a large transitive subtournament on v(n) nodes, then a large
number of edges are given for free! Subgraph-edges = v(n)(v(n)-1)/2.
Overhead = v(n) log n. Overhead ≥ subgraph edges since

 C(T | n)≤ n(n − 1)/2 − subgraph-edges + overhead

T
Linearly ordered
subgraph.
Easy to describe

Combinatorics

 Theorem. Let w(n) be the largest integer such
that every tournament T has disjoint node sets
A and B both of cardinality w(n) such that AxB
is a subset of the ordered edge set of T. Then,
w(n) ≤ 2 log n.

 Proof. Choose T with C(T|n) ≥ n(n-1)/2.
 Add descriptions A and B in 2 w(n) log n bits

(in lexicographic order, say).
 Save bits describing edges between A and B

in w(n) ² bits.
 Add – Save ≥ 0. QED

Graphs

 Consider undirected labeled graphs.
 A clique is a subset of nodes with edges between every pair.
 An anticlique is a subset of nodes without edges between any

pair.
 Encode graph G s.t. The set of node pairs are lexicographically

ordered without repetition, {i,j} with i < j, and the corresponding bit
is 1 if there is an edge, and 0 otherwise.

 Theorem. There is an undirected labeled graph G on n nodes
that contains no clique or anticlique on >1+2 log n nodes.

 Proof. Let G be an undirected labeled graph of high Kolmogorov
complexity, C(G|n) ≥ n(n-1)/2. The proof is now isomorphic to that
of the transitive subtournaments.

Graphs

 Lemma. A fraction of at least 1 – 1/2^d(n) of all labeled
undirected graphs on n nodes have C(G|n,d) ≥ n(n-1)/2 -d(n).

 Proof. There are at most 2^{n(n-1)/2 – d(n)} -1 programs of length
< n(n-1)/2 -d(n). QED

 Remark. Hence a property that holds for such graphs holds with
high probability and in expectation (on average).

 Lemma. All nodes of a graph with d(n)=o(n) have degree
 n/2+-o(n).
 Proof. Choose G s.t. C(G|n) ≥ n(n-1)/2 - d(n). For every node i,

the scattered substring of bits corresponding to {i,j} or {j,i} has
complexity ≥ n-d(n)- 2 log n, since otherwise its description +
description i +the literal remainder of G|n gives a description of G|
n of length < n(n-1)/2 – d(n). Let d(n)=o(n).

 Since the substring has complexity ≥ n-o(n), we have by similar
reasoning to that of the last frame of lecture 2 that the substring
contains n/2 +- O(√ o(n)n) = n/2 +- o(n) bits 1, and hence node i
has degree n/2+-o(n). QED

Graphs

 Lemma. All graphs with d(n)=o(n) have diameter 2.

 Proof. Diameter 1 is a complete graph G with C(G|n)=O(1).
 Assume there is a shortest path of length >2 between nodes i,j.
 Add identity of nodes i,j in 2 log n bits.
 Save n/2-o(n) bits from omitting edge bits (k,j) (which are all 0) for

every k for which there is an edge (i,k). There are >n/2-o(n) of
them by previous lemma. QED

 Remark. There is some discrepancy between add and save here.
We can in fact strengthen the theorem to show that all such
graphs have n/4 -o(n) disjoint paths of length 2 between every
pair of nodes.

Unlabeled Graphs

 # of labeled undirected graphs on n nodes is 2^{n(n-1)/2}.
 Theorem (Harary, Palmer 1973) # of unlabeled undirected graphs

on n nodes is asymptotic to 2^{n(n-1)/2} / n!

 Proof by incompressibility (Sketch). There are n! ways to relabel a
graph on n nodes for every graph. But, for example, the complete
graph stays the same under every relabeling. So the
automorphism group of that graph has cardinality n! A
Kolmogorov random graph stays the same only under identity
relabeling. Its automorphism group has cardinality 1 (such graps
are called rigid.)

 By incompressiblity we estimate the number of graphs (what is
their minimum complexity and maximum complexity) which have
automorphism groups of given cardinality. This gives the theorem.

 QED

Fast adder
 Example. Fast addition on average.

 Ripple-carry adder: n steps adding n-bit numbers.
 Carry-lookahead adder: 2 log n steps (divide-and-conquer).
 Burks-Goldstine-von Neumann (1946): log n expected length

of carry sequence, so log n expected steps.
 S= x⊕y; C= carry sequence;
 while (C≠0) {
 S= S⊕C;
 C= new carry sequence; }

 Average case analysis: Fix x, take random y s.t. C(y|x)≥|y|
 x = … u1 … (Max such u is precise carry length) Low order bits right.

 y = … û1 …, û is complement of u
 If |u| > log n, then C(y|x)<|y|. Average over all y, get log n. QED

Sorting

 Given n elements (in an array). Sort them into
ascending order.

 This is the most studied fundamental problem in
computer science.

 Shellsort (1959): p passes. In each pass, compare in
subarrays (length related to increment) adjacent
elements and move larger elements to the right
(Bubblesort) so that the large elements `bubble’ to
front.

 Open for over 40 years: a nontrivial general average
case complexity lower bound of Shellsort?

Shellsort Algorithm

 Using p increments h1, … , hp, with hp=1

 At k-th pass, the array is divided in hk
separate sublists of length n/hk (taking every
hk-th element).

 Each sublist is sorted by insertion/bubble sort.

 Application: Sorting networks --- n log2 n

comparators, easy to program, competitive
for medium size lists to be sorted.

Shellsort history

 Invented by D.L. Shell [1959], using pk= n/2k for step k. It is a
Θ(n2) time algorithm

 Papernow&Stasevitch [1965]: O(n3/2) time by destroying
regularity in Shell’s geometric sequence.

 Pratt [1972]: All quasi geometric sequences use O(n3/2) time
.Θ(nlog2n) time for p=(log n)^2 with increments 2^i3^j.

 Incerpi-Sedgewick, Chazelle, Plaxton, Poonen, Suel (1980’s) –
best worst case, roughly, Θ(nlog2n / (log logn)2).

 Average case:
 Knuth [1970’s]: Θ(n5/3) for p=2
 Yao [1980]: p=3 characterization, no running time.
 Janson-Knuth [1997]: O(n23/15) for p=3.
 Jiang-Li-Vitanyi [J.ACM, 2000]: Ω(pn1+1/p) for every p.

Shellsort Average Case Lower bound

Theorem. p-pass Shellsort average case T(n) ≥ pn1+1/p

Proof. Fix a random permutation Π with Kolmogorov complexity
nlogn. I.e. C(Π)≥ nlogn. Use Π as input. (We ignore the self-delimiting
coding of the subparts below. The real proof uses better coding.)

 For pass i, let mi,k be the number of steps the kth element

moves. Then T(n) = Σi,k mi,k

 From these mi,k's, one can reconstruct the input Π, hence
 Σ log mi,k ≥ C(Π) ≥ n logn
 Maximizing the left, all mi,k must be the same (maintaining same

sum). Call it m. So Σ m = pnm = Σi,k mi,k Then,
Σ log m = pn log m ≥ Σ log mi,k ≥ nlogn mp ≥ n.
 So T(n) = pnm > pn1+1/p. ■
Corollary: p=1: Bubblesort Ω(n2) average case lower bound.

p=2: n3/2 lower bound. p=3, n4/3 lower bound (4/3=20/15); and
only p=Θ(log n) can give average time O(n log n).

Heapsort

 1964, JWJ Williams [CACM 7(1964), 347-
348] first published Heapsort algorithm

 Immediately it was improved by RW Floyd.
 Worst case O(n logn).
 Open for 40 years: Which is better in average

case: Williams or Floyd? (choose between n log n
and 2n log n)

 R. Schaffer & Sedgewick (1996). Ian Munro
provided the solution here.

Heapsort average analysis (I. Munro)
 Average-case analysis of Heapsort.

Heapsort: (1) Make Heap. O(n) time.
 (2) Delete max at root, restore heap, repeat.

dd

log n

Williams Floyd

2 log n - 2d log n + d

Fix random heap H, C(H) > n log n. Simulate Step (2). Each round,
encode the red path in log n -d bits. The n paths describe the heap!
Hence, total n paths, length ≥ n log n, hence d must be a constant.
Floyd takes n log n comparisons, and Williams takes 2n log n.

comparisons/round

Compare sons;
Compare largest
 with candidate.
2 comparisons/
step

Compare sons,
Repeat this for
largest son.
1 comparison/step

A selected list of results proved by the
incompressibility method
 Ω(n2) for simulating 2 tapes by 1 (30 years)
 k heads > k-1 heads for PDAs (15 years)
 k one-ways heads can’t do string matching (13 yrs)
 2 heads are better than 2 tapes (40 years)
 Average case analysis for heapsort (30 years)
 k tapes are better than k-1 tapes. (20 years)
 Many theorems in combinatorics, formal

language/automata, parallel computing, VLSI
 Simplify old proofs (Hastad Lemma).
 Shellsort average case lower bound (40 years)

More on formal language theory

Lemma (Li-Vitanyi) Let L ⊆ V*, and Lx={y: xy ∈ L}. Then
L is regular implies there is c for all x,y,n, let y be the
n-th element in Lx, we have C(y|x) ≤ C(n)+c.

Proof. Like example. QED.

Example 2. {1p : p is prime} is not regular.

Proof. Let pi, i=1,2 …, be the list of primes. Then pk+1 is
the first element in LPk, hence by Lemma, C(pk+1|
pk)≤O(1). Impossible since pk+1-pk→∞ for k→∞

 QED

Characterizing regular sets

 For an lexicographic enumeration of Σ*={y1,y2, …},
define characteristic sequence X= X1 X2 …of

 Lx={yi : xyi∈ L} by

 Xi = 1 iff xyi∈ L

Theorem. L is regular iff there is a c for all x,n,

 C(X1:n|n) < c

Proof. L is regular (finite-state) iff L is the union of
finitely many disjoint sets {x}Lx

(The Myhill-Nerode Theorem). Hence every X of Lx is a
recursive sequence. This shows the `if’ side. The `only if’
side depends on a sophisticated lemma, see textbook.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

