
 

Lecture 5. The Incompressibility 
Method
 A key problem in computer science: analyze the 

average case performance of a program.

 Using the Incompressibility Method: 
 Give the program a random input of length n, say of 

complexity n- log n (or sometimes complexity n).
 Analyze the program with respect to this single and 

fixed input. This is usually easier than average case 
using the fact this input is almost  incompressible.

 If we used complexity n- log n, the running time for this 
single input is the average case running time of all 
inputs, since a (1-1/n)th fraction of all inputs have this 
high complexity!



 

 Example: Show L={0k1k | k>0} not regular. By 
contradiction, assume that DFA M accepts L. 

   Choose k so that C(k) >> 2|M|. Simulate M:

   

          000 … 0 111 … 1

   C(k) < |M| + |q| + O(1) < 2|M|. Contradiction. 
 Remark. Generalizes to iff condition: more powerful

    & easier to use than “pumping lemmas”.
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stop here

Formal language theory



 

Combinatorics

 Theorem. There is a tournament (complete directed graph) T of n 
players that contains no large transitive subtournaments (>1 + 2 log n).

Proof by Picture: Choose a random T.
 One bit codes a directed edge, each tournament is encoded in string of 

n(n-1)/2 bits, and each string of n(n-1)/2 bits codes a tournament. 
Choose T such that C(T | n) ≥  n(n-1)/2.

 If there is a large transitive subtournament on v(n) nodes, then a large 
number of edges are given for free! Subgraph-edges = v(n)(v(n)-1)/2. 
Overhead = v(n) log n.  Overhead ≥ subgraph edges since

      C(T | n)≤ n(n − 1)/2 − subgraph-edges +  overhead

T
Linearly ordered
subgraph.
Easy to describe



 

Combinatorics 

 Theorem. Let w(n) be the largest integer such 
that every tournament T has disjoint node sets 
A and B both of cardinality w(n) such that AxB 
is a subset of the ordered edge set of T. Then, 
w(n) ≤ 2 log n.

 Proof. Choose T with C(T|n) ≥ n(n-1)/2. 
 Add descriptions A and B in 2 w(n) log n bits 

(in lexicographic order, say).
 Save bits describing edges between A and B 

in w(n) ² bits. 
 Add – Save ≥ 0.                      QED



 

Graphs

 Consider undirected labeled graphs. 
 A clique is a subset of nodes with edges between every pair.
 An anticlique is a subset of nodes without edges between any 

pair.
 Encode graph G s.t. The set of node pairs are lexicographically 

ordered without repetition, {i,j} with i < j, and the corresponding bit 
is 1 if there is an edge, and 0 otherwise.

 Theorem.  There is an undirected labeled  graph G on n nodes 
that contains no clique or anticlique on >1+2 log n nodes.

 Proof. Let G be an undirected labeled graph of high Kolmogorov 
complexity, C(G|n) ≥ n(n-1)/2. The proof is now isomorphic to that 
of the transitive subtournaments.



 

Graphs

 Lemma. A fraction of at least  1 – 1/2^d(n) of all labeled 
undirected graphs on n nodes have C(G|n,d) ≥ n(n-1)/2 -d(n).

 Proof. There are at most 2^{n(n-1)/2 – d(n)} -1 programs of length 
< n(n-1)/2 -d(n). QED

 Remark. Hence a property that holds for such graphs holds with 
high probability and in expectation (on average).

 Lemma. All nodes of a graph with d(n)=o(n) have degree 
 n/2+-o(n). 
 Proof. Choose G s.t. C(G|n) ≥ n(n-1)/2 - d(n). For every node i, 

the scattered substring of bits corresponding to {i,j} or {j,i} has 
complexity ≥ n-d(n)- 2 log n, since otherwise its description + 
description i +the literal remainder of G|n gives a description of G|
n of length  < n(n-1)/2 – d(n). Let d(n)=o(n).

 Since the substring has complexity ≥ n-o(n), we have by similar 
reasoning to that of the last frame of lecture 2 that the substring 
contains n/2 +- O(√ o(n)n) = n/2 +- o(n) bits 1, and hence node i 
has degree n/2+-o(n).                          QED



 

Graphs

 Lemma. All graphs with d(n)=o(n)  have diameter 2.

 Proof. Diameter 1 is a complete graph G with C(G|n)=O(1).
 Assume there is a shortest path of length >2 between nodes i,j.
 Add identity of nodes i,j in 2 log n bits.
 Save n/2-o(n) bits from omitting edge bits (k,j) (which are all 0) for 

every k for which there is an edge (i,k). There are >n/2-o(n) of 
them by previous lemma.                     QED

 Remark. There is some discrepancy between add and save here. 
We can in fact strengthen the theorem to show that all such 
graphs have n/4 -o(n) disjoint paths of length 2 between every 
pair of nodes.



 

Unlabeled Graphs

 # of labeled undirected graphs on n nodes is 2^{n(n-1)/2}.
 Theorem (Harary, Palmer 1973) # of unlabeled undirected graphs 

on n nodes is asymptotic to 2^{n(n-1)/2} / n!

 Proof by incompressibility (Sketch). There are n! ways to relabel a 
graph on n nodes for every graph. But, for example, the complete 
graph stays the same under every relabeling. So the 
automorphism group of that graph has cardinality n! A 
Kolmogorov random graph stays the same only under identity 
relabeling. Its automorphism group has cardinality 1 (such graps 
are called rigid.)

 By incompressiblity we estimate the number of graphs (what is 
their minimum complexity and maximum complexity)  which have 
automorphism groups of given cardinality. This gives the theorem.

 QED



 

Fast adder
 Example. Fast addition on average.

 Ripple-carry adder:  n steps adding n-bit numbers.
 Carry-lookahead adder: 2 log n steps (divide-and-conquer).
 Burks-Goldstine-von Neumann (1946): log n expected length 

of carry sequence, so log n expected steps. 
   S= x⊕y; C= carry sequence;
   while (C≠0) {
        S= S⊕C;
        C= new carry sequence; }

    Average case analysis: Fix x, take random y s.t. C(y|x)≥|y|
              x = … u1  …      (Max such u is precise carry length) Low order bits right.

              y = … û1  …,     û is complement of u
    If |u| > log n, then C(y|x)<|y|.  Average over all y, get log n. QED



 

Sorting

 Given n elements (in an array). Sort them into 
ascending order.

 This is the most studied fundamental problem in 
computer science.

 Shellsort (1959): p passes. In each pass, compare in 
subarrays (length related to increment) adjacent 
elements and move larger elements to the right 
(Bubblesort) so that the large elements `bubble’ to 
front.

 Open for over 40 years: a nontrivial general  average 
case complexity lower bound of Shellsort?



 

Shellsort Algorithm

 Using p increments h1, … , hp, with hp=1

 At k-th pass, the array is divided in hk 
separate sublists of length n/hk (taking every 
hk-th element).

 Each sublist is sorted by insertion/bubble sort.

-------------
 Application: Sorting networks --- n log2 n 

comparators, easy to program, competitive 
for medium size lists to be sorted.



 

Shellsort history

 Invented by D.L. Shell [1959], using pk= n/2k for step k. It is a 
Θ(n2) time algorithm

 Papernow&Stasevitch [1965]: O(n3/2) time by destroying 
regularity in Shell’s geometric sequence.

 Pratt [1972]: All quasi geometric sequences use O(n3/2) time 
.Θ(nlog2n) time for p=(log n)^2 with increments 2^i3^j.

 Incerpi-Sedgewick, Chazelle, Plaxton, Poonen, Suel (1980’s) –
best worst case, roughly,  Θ(nlog2n / (log logn)2).

 Average case:
 Knuth [1970’s]: Θ(n5/3) for p=2
 Yao [1980]: p=3 characterization, no running time.
 Janson-Knuth [1997]: O(n23/15) for p=3.
 Jiang-Li-Vitanyi [J.ACM, 2000]: Ω(pn1+1/p) for every p.



 

Shellsort Average Case Lower bound

Theorem. p-pass Shellsort average case T(n) ≥ pn1+1/p

Proof. Fix a random permutation Π with Kolmogorov complexity 
nlogn. I.e. C(Π)≥ nlogn. Use Π as input. (We ignore the self-delimiting 
coding of the subparts below. The real proof uses better coding.)

    
    For pass i, let mi,k be the number of steps the kth element 

moves.  Then T(n) =  Σi,k mi,k  

    From these mi,k's, one can reconstruct the input Π, hence 
                Σ log mi,k ≥ C(Π) ≥ n logn
    Maximizing the left, all mi,k must be the same (maintaining same 

sum). Call it m.  So Σ m = pnm = Σi,k mi,k   Then, 
Σ log m = pn log m ≥ Σ log mi,k ≥ nlogn    mp ≥ n.
    So T(n) = pnm > pn1+1/p.                                       ■
Corollary: p=1: Bubblesort Ω(n2) average case lower bound.       

p=2: n3/2 lower bound. p=3, n4/3 lower bound (4/3=20/15); and 
only p=Θ(log n) can give average time O(n log n).



 

Heapsort

 1964, JWJ Williams [CACM 7(1964), 347-
348] first published Heapsort algorithm

 Immediately it was improved by RW Floyd.
 Worst case O(n logn). 
 Open for 40 years: Which is better in average 

case: Williams or Floyd? (choose between n log n 
and 2n log n)

 R. Schaffer & Sedgewick (1996). Ian Munro 
provided the solution here. 



 

Heapsort average analysis (I. Munro)
 Average-case analysis of Heapsort.

Heapsort:  (1) Make Heap.  O(n) time.
                  (2) Delete max at root, restore heap, repeat.

dd

log n

Williams Floyd

2 log n - 2d log n + d

Fix random heap H, C(H) > n log n.  Simulate Step (2). Each round,
encode the red path in log n -d bits. The n paths describe the heap! 
Hence, total n paths, length ≥  n log n, hence d must be a constant. 
Floyd takes n log n comparisons, and Williams takes 2n log n.

comparisons/round

Compare sons;
Compare largest
 with candidate.
2 comparisons/
step

Compare sons,
Repeat this for
largest son.
1 comparison/step



 

A selected list of results proved by the 
incompressibility method
 Ω(n2) for simulating 2 tapes by 1 (30 years)
 k heads > k-1 heads for PDAs (15 years)
 k one-ways heads can’t do string matching (13 yrs)
 2 heads are better than 2 tapes (40 years)
 Average case analysis for heapsort (30 years)
 k tapes are better than k-1 tapes. (20 years)
 Many theorems in combinatorics, formal 

language/automata, parallel computing, VLSI
 Simplify old proofs (Hastad Lemma).
 Shellsort average case lower bound (40 years)



 

More on formal language theory

Lemma (Li-Vitanyi) Let L ⊆ V*, and Lx={y: xy ∈ L}. Then 
L is regular implies there is c for all x,y,n, let y be the 
n-th element in Lx, we have C(y|x) ≤ C(n)+c.

Proof. Like example.     QED.

Example 2. {1p : p is prime} is not regular.

Proof. Let pi, i=1,2 …, be the list of primes. Then pk+1 is 
the first element in LPk, hence by Lemma, C(pk+1|
pk)≤O(1). Impossible since pk+1-pk→∞ for k→∞ 

  QED



 

Characterizing regular sets

 For an lexicographic enumeration of Σ*={y1,y2, …}, 
define characteristic sequence X= X1 X2 …of 

    Lx={yi : xyi∈ L} by

           Xi = 1 iff xyi∈ L

Theorem. L is regular iff there is a c for all x,n,

          C(X1:n|n) < c

Proof. L is regular (finite-state) iff L is the union of 
finitely many disjoint sets {x}Lx  

(The Myhill-Nerode Theorem). Hence every X of Lx is a 
recursive sequence. This shows the `if’ side. The `only if’
side depends on a sophisticated lemma, see textbook. 
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