Lecture 5. The Incompressibility Method

- A key problem in computer science: analyze the average case performance of a program.
- Using the Incompressibility Method:
 - Give the program a random input of length n, say of complexity n- log n (or sometimes complexity n).
 - Analyze the program with respect to this single and fixed input. This is usually easier than average case using the fact this input is almost incompressible.
 - If we used complexity n- log n, the running time for this single input is the average case running time of all inputs, since a (1-1/n)th fraction of all inputs have this high complexity!

Formal language theory

Example: Show L={ $0^{k}1^{k} | k>0$ } not regular. By contradiction, assume that DFA M accepts L. Choose k so that C(k) >> 2|M|. Simulate M: k $000 \dots 0$ 111 ... 1 stop here

C(k) < |M| + |q| + O(1) < 2|M|. Contradiction.
Remark. Generalizes to iff condition: more powerful & easier to use than "pumping lemmas".

Combinatorics

Theorem. There is a tournament (complete directed graph) T of n players that contains no large transitive subtournaments (>1 + 2 log n).

Proof by Picture: Choose a random T.

One bit codes a directed edge, each tournament is encoded in string of n(n-1)/2 bits, and each string of n(n-1)/2 bits codes a tournament. Choose T such that C(T | n) ≥ n(n-1)/2.

If there is a large transitive subtournament on v(n) nodes, then a large number of edges are given for free! Subgraph-edges = v(n)(v(n)-1)/2. Overhead = $v(n) \log n$. Overhead ≥ subgraph edges since

 $C(T \mid n) \le n(n - 1)/2$ subgraph-edges + overhead

Linearly ordered subgraph. Easy to describe

Combinatorics

- Theorem. Let w(n) be the largest integer such that every tournament T has disjoint node sets A and B both of cardinality w(n) such that AxB is a subset of the ordered edge set of T. Then, $w(n) \le 2 \log n$.
- Proof. Choose T with $C(T|n) \ge n(n-1)/2$.
- Add descriptions A and B in 2 w(n) log n bits (in lexicographic order, say).
 - Save bits describing edges between A and B in w(n)² bits.
- Add Save ≥ 0 . QED

Graphs

- Consider undirected labeled graphs.
- A clique is a subset of nodes with edges between every pair.
- An anticlique is a subset of nodes without edges between any pair.
- Encode graph G s.t. The set of node pairs are lexicographically ordered without repetition, {i,j} with i < j, and the corresponding bit is 1 if there is an edge, and 0 otherwise.
- Theorem. There is an undirected labeled graph G on n nodes that contains no clique or anticlique on >1+2 log n nodes.
- Proof. Let G be an undirected labeled graph of high Kolmogorov complexity, C(G|n) ≥ n(n-1)/2. The proof is now isomorphic to that of the transitive subtournaments.

Graphs

- Lemma. A fraction of at least $1 1/2^d(n)$ of all labeled undirected graphs on n nodes have $C(G|n,d) \ge n(n-1)/2 - d(n)$.
- Proof. There are at most 2[{](n(n-1)/2 d(n)} -1 programs of length < n(n-1)/2 -d(n). QED</p>
- Remark. Hence a property that holds for such graphs holds with high probability and in expectation (on average).
- Lemma. All nodes of a graph with d(n)=o(n) have degree
- n/2+-o(n).
- Proof. Choose G s.t. C(G|n) ≥ n(n-1)/2 d(n). For every node i, the scattered substring of bits corresponding to {i,j} or {j,i} has complexity ≥ n-d(n)- 2 log n, since otherwise its description + description i +the literal remainder of G|n gives a description of G| n of length < n(n-1)/2 - d(n). Let d(n)=o(n).</p>
- Since the substring has complexity ≥ n-o(n), we have by similar reasoning to that of the last frame of lecture 2 that the substring contains n/2 +- O(√ o(n)n) = n/2 +- o(n) bits 1, and hence node i has degree n/2+-o(n).

Graphs

Lemma. All graphs with d(n)=o(n) have diameter 2.

- Proof. Diameter 1 is a complete graph G with C(G|n)=O(1).
- Assume there is a shortest path of length >2 between nodes i,j.
- Add identity of nodes i,j in 2 log n bits.
- Save n/2-o(n) bits from omitting edge bits (k,j) (which are all 0) for every k for which there is an edge (i,k). There are >n/2-o(n) of them by previous lemma.
 - Remark. There is some discrepancy between add and save here. We can in fact strengthen the theorem to show that all such graphs have n/4 -o(n) disjoint paths of length 2 between every pair of nodes.

Unlabeled Graphs

- # of labeled undirected graphs on n nodes is 2^{n(n-1)/2}.
- Theorem (Harary, Palmer 1973) # of unlabeled undirected graphs on n nodes is asymptotic to 2^{(n(n-1)/2)} / n!
- Proof by incompressibility (Sketch). There are n! ways to relabel a graph on n nodes for every graph. But, for example, the complete graph stays the same under every relabeling. So the automorphism group of that graph has cardinality n! A Kolmogorov random graph stays the same only under identity relabeling. Its automorphism group has cardinality 1 (such graps are called rigid.)
 - By incompressiblity we estimate the number of graphs (what is their minimum complexity and maximum complexity) which have automorphism groups of given cardinality. This gives the theorem.

Fast adder

Example. Fast addition on average.

- Ripple-carry adder: n steps adding n-bit numbers.
- Carry-lookahead adder: 2 log n steps (divide-and-conquer).
- Burks-Goldstine-von Neumann (1946): log n expected length of carry sequence, so log n expected steps.

S= $x \oplus y$; C= carry sequence; while $(C\neq 0)$ { S= S⊕C: C= new carry sequence; }

Average case analysis: Fix x, take random y s.t. $C(y|x) \ge |y|$

x = ... u1 ... (Max such u is precise carry length) Low order bits right. $y = \dots \hat{u} 1 \dots \hat{u}$ is complement of u

If $|u| > \log n$, then C(y|x) < |y|. Average over all y, get log n. QED

Sorting

- Given n elements (in an array). Sort them into ascending order.
- This is the most studied fundamental problem in computer science.
- Shellsort (1959): p passes. In each pass, compare in subarrays (length related to increment) adjacent elements and move larger elements to the right (Bubblesort) so that the large elements `bubble' to front.
- Open for over 40 years: a nontrivial general average case complexity lower bound of Shellsort?

Shellsort Algorithm

- Using p increments h_1, \ldots, h_p , with $h_p=1$
- At k-th pass, the array is divided in h_k separate sublists of length n/h_k (taking every h_k-th element).
- Each sublist is sorted by insertion/bubble sort.

Application: Sorting networks --- n log² n comparators, easy to program, competitive for medium size lists to be sorted.

Shellsort history

- Invented by D.L. Shell [1959], using p_k= n/2^k for step k. It is a Θ(n²) time algorithm
- Papernow&Stasevitch [1965]: O(n^{3/2}) time by destroying regularity in Shell's geometric sequence.
- Pratt [1972]: All quasi geometric sequences use O(n^{3/2}) time .Θ(nlog²n) time for p=(log n)² with increments 2ⁱ3^j.
- Incerpi-Sedgewick, Chazelle, Plaxton, Poonen, Suel (1980's) best worst case, roughly, Θ(nlog²n / (log logn)²).

Average case:

- Knuth [1970's]: Θ(n^{5/3}) for p=2
- Yao [1980]: p=3 characterization, no running time.
- Janson-Knuth [1997]: O(n^{23/15}) for p=3.
- Jiang-Li-Vitanyi [J.ACM, 2000]: $\Omega(pn^{1+1/p})$ for every p.

Shellsort Average Case Lower bound

Theorem. *p*-pass Shellsort average case $T(n) \ge pn^{1+1/p}$ **Proof**. Fix a random permutation Π with Kolmogorov complexity *nlogn*. I.e. $C(\Pi) \ge nlogn$. Use Π as input. (We ignore the self-delimiting coding of the subparts below. The real proof uses better coding.)

For pass *i*, let $m_{i,k}$ be the number of steps the *k*th element moves. Then $T(n) = \sum_{i,k} m_{i,k}$

From these $m_{i,k}$'s, one can reconstruct the input Π , hence

 $\Sigma \log m_{i,k} \ge C(\Pi) \ge n \log n$

Maximizing the left, all $m_{i,k}$ must be the same (maintaining same sum). Call it *m*. So $\Sigma m = pnm = \Sigma_{i,k} m_{i,k}$ Then,

 $\Sigma \log m = pn \log m \ge \Sigma \log m_{i,k} \ge n \log n \rightarrow m^p \ge n.$

So $T(n) = pnm > pn^{1+1/p}$.

Corollary: p=1: Bubblesort $\Omega(n^2)$ average case lower bound. p=2: $n^{3/2}$ lower bound. p=3, $n^{4/3}$ lower bound (4/3=20/15); and only p= $\Theta(\log n)$ can give average time O(n log n).

Heapsort

- 1964, JWJ Williams [CACM 7(1964), 347-348] first published Heapsort algorithm
- Immediately it was improved by RW Floyd.
- Worst case O(n logn).
- Open for 40 years: Which is better in average case: Williams or Floyd? (choose between n log n and 2n log n)
- R. Schaffer & Sedgewick (1996). Ian Munro provided the solution here.

Heapsort average analysis (I. Munro)

Average-case analysis of Heapsort.

Fix random heap H, C(H) > n log n. Simulate Step (2). Each round, encode the red path in log n -d bits. The n paths describe the heap! Hence, total n paths, length \geq n log n, hence d must be a constant Floyd takes n log n comparisons, and Williams takes 2n log n.

A selected list of results proved by the incompressibility method

- $\Omega(n^2)$ for simulating 2 tapes by 1 (30 years)
- k heads > k-1 heads for PDAs (15 years)
- k one-ways heads can't do string matching (13 yrs)
- 2 heads are better than 2 tapes (40 years)
- Average case analysis for heapsort (30 years)
- k tapes are better than k-1 tapes. (20 years)
- Many theorems in combinatorics, formal language/automata, parallel computing, VLSI
- Simplify old proofs (Hastad Lemma).
- Shellsort average case lower bound (40 years)

More on formal language theory

Lemma (Li-Vitanyi) Let $L \subseteq V^*$, and $L_y = \{y : xy \in L\}$. Then L is regular implies there is c for all x,y,n, let y be the n-th element in L_x , we have $C(y|x) \leq C(n)+c$. Proof. Like example. QED. Example 2. {1^p : p is prime} is not regular. Proof. Let p_i , i=1,2 ..., be the list of primes. Then p_{k+1} is the first element in L_{Pk} , hence by Lemma, $C(p_{k+1})$ $p_k \leq O(1)$. Impossible since $p_{k+1} - p_k \rightarrow \infty$ for $k \rightarrow \infty$

QED

Characterizing regular sets

For an lexicographic enumeration of Σ*={y₁,y₂, ...}, define characteristic sequence X= X₁X₂ ...of
 L_x={y_i : xy_i∈ L} by
 X_i = 1 iff xy_i∈ L

Theorem. L is regular iff there is a c for all x,n, $C(X_{1:n}|n) < c$

Proof. L is regular (finite-state) iff L is the union of finitely many disjoint sets $\{x\}L_x$ (The Myhill-Nerode Theorem). Hence every X of L_x is a recursive sequence. This shows the `if' side. The `only if' side depends on a sophisticated lemma, see textbook.