

Lecture 5. The Incompressibility
Method
 A key problem in computer science: analyze the

average case performance of a program.

 Using the Incompressibility Method:
 Give the program a random input of length n, say of

complexity n- log n (or sometimes complexity n).
 Analyze the program with respect to this single and

fixed input. This is usually easier than average case
using the fact this input is almost incompressible.

 If we used complexity n- log n, the running time for this
single input is the average case running time of all
inputs, since a (1-1/n)th fraction of all inputs have this
high complexity!

 Example: Show L={0k1k | k>0} not regular. By
contradiction, assume that DFA M accepts L.

 Choose k so that C(k) >> 2|M|. Simulate M:

 000 … 0 111 … 1

 C(k) < |M| + |q| + O(1) < 2|M|. Contradiction.
 Remark. Generalizes to iff condition: more powerful

 & easier to use than “pumping lemmas”.

k k

M q

stop here

Formal language theory

Combinatorics

 Theorem. There is a tournament (complete directed graph) T of n
players that contains no large transitive subtournaments (>1 + 2 log n).

Proof by Picture: Choose a random T.
 One bit codes a directed edge, each tournament is encoded in string of

n(n-1)/2 bits, and each string of n(n-1)/2 bits codes a tournament.
Choose T such that C(T | n) ≥ n(n-1)/2.

 If there is a large transitive subtournament on v(n) nodes, then a large
number of edges are given for free! Subgraph-edges = v(n)(v(n)-1)/2.
Overhead = v(n) log n. Overhead ≥ subgraph edges since

 C(T | n)≤ n(n − 1)/2 − subgraph-edges + overhead

T
Linearly ordered
subgraph.
Easy to describe

Combinatorics

 Theorem. Let w(n) be the largest integer such
that every tournament T has disjoint node sets
A and B both of cardinality w(n) such that AxB
is a subset of the ordered edge set of T. Then,
w(n) ≤ 2 log n.

 Proof. Choose T with C(T|n) ≥ n(n-1)/2.
 Add descriptions A and B in 2 w(n) log n bits

(in lexicographic order, say).
 Save bits describing edges between A and B

in w(n) ² bits.
 Add – Save ≥ 0. QED

Graphs

 Consider undirected labeled graphs.
 A clique is a subset of nodes with edges between every pair.
 An anticlique is a subset of nodes without edges between any

pair.
 Encode graph G s.t. The set of node pairs are lexicographically

ordered without repetition, {i,j} with i < j, and the corresponding bit
is 1 if there is an edge, and 0 otherwise.

 Theorem. There is an undirected labeled graph G on n nodes
that contains no clique or anticlique on >1+2 log n nodes.

 Proof. Let G be an undirected labeled graph of high Kolmogorov
complexity, C(G|n) ≥ n(n-1)/2. The proof is now isomorphic to that
of the transitive subtournaments.

Graphs

 Lemma. A fraction of at least 1 – 1/2^d(n) of all labeled
undirected graphs on n nodes have C(G|n,d) ≥ n(n-1)/2 -d(n).

 Proof. There are at most 2^{n(n-1)/2 – d(n)} -1 programs of length
< n(n-1)/2 -d(n). QED

 Remark. Hence a property that holds for such graphs holds with
high probability and in expectation (on average).

 Lemma. All nodes of a graph with d(n)=o(n) have degree
 n/2+-o(n).
 Proof. Choose G s.t. C(G|n) ≥ n(n-1)/2 - d(n). For every node i,

the scattered substring of bits corresponding to {i,j} or {j,i} has
complexity ≥ n-d(n)- 2 log n, since otherwise its description +
description i +the literal remainder of G|n gives a description of G|
n of length < n(n-1)/2 – d(n). Let d(n)=o(n).

 Since the substring has complexity ≥ n-o(n), we have by similar
reasoning to that of the last frame of lecture 2 that the substring
contains n/2 +- O(√ o(n)n) = n/2 +- o(n) bits 1, and hence node i
has degree n/2+-o(n). QED

Graphs

 Lemma. All graphs with d(n)=o(n) have diameter 2.

 Proof. Diameter 1 is a complete graph G with C(G|n)=O(1).
 Assume there is a shortest path of length >2 between nodes i,j.
 Add identity of nodes i,j in 2 log n bits.
 Save n/2-o(n) bits from omitting edge bits (k,j) (which are all 0) for

every k for which there is an edge (i,k). There are >n/2-o(n) of
them by previous lemma. QED

 Remark. There is some discrepancy between add and save here.
We can in fact strengthen the theorem to show that all such
graphs have n/4 -o(n) disjoint paths of length 2 between every
pair of nodes.

Unlabeled Graphs

 # of labeled undirected graphs on n nodes is 2^{n(n-1)/2}.
 Theorem (Harary, Palmer 1973) # of unlabeled undirected graphs

on n nodes is asymptotic to 2^{n(n-1)/2} / n!

 Proof by incompressibility (Sketch). There are n! ways to relabel a
graph on n nodes for every graph. But, for example, the complete
graph stays the same under every relabeling. So the
automorphism group of that graph has cardinality n! A
Kolmogorov random graph stays the same only under identity
relabeling. Its automorphism group has cardinality 1 (such graps
are called rigid.)

 By incompressiblity we estimate the number of graphs (what is
their minimum complexity and maximum complexity) which have
automorphism groups of given cardinality. This gives the theorem.

 QED

Fast adder
 Example. Fast addition on average.

 Ripple-carry adder: n steps adding n-bit numbers.
 Carry-lookahead adder: 2 log n steps (divide-and-conquer).
 Burks-Goldstine-von Neumann (1946): log n expected length

of carry sequence, so log n expected steps.
 S= x⊕y; C= carry sequence;
 while (C≠0) {
 S= S⊕C;
 C= new carry sequence; }

 Average case analysis: Fix x, take random y s.t. C(y|x)≥|y|
 x = … u1 … (Max such u is precise carry length) Low order bits right.

 y = … û1 …, û is complement of u
 If |u| > log n, then C(y|x)<|y|. Average over all y, get log n. QED

Sorting

 Given n elements (in an array). Sort them into
ascending order.

 This is the most studied fundamental problem in
computer science.

 Shellsort (1959): p passes. In each pass, compare in
subarrays (length related to increment) adjacent
elements and move larger elements to the right
(Bubblesort) so that the large elements `bubble’ to
front.

 Open for over 40 years: a nontrivial general average
case complexity lower bound of Shellsort?

Shellsort Algorithm

 Using p increments h1, … , hp, with hp=1

 At k-th pass, the array is divided in hk
separate sublists of length n/hk (taking every
hk-th element).

 Each sublist is sorted by insertion/bubble sort.

 Application: Sorting networks --- n log2 n

comparators, easy to program, competitive
for medium size lists to be sorted.

Shellsort history

 Invented by D.L. Shell [1959], using pk= n/2k for step k. It is a
Θ(n2) time algorithm

 Papernow&Stasevitch [1965]: O(n3/2) time by destroying
regularity in Shell’s geometric sequence.

 Pratt [1972]: All quasi geometric sequences use O(n3/2) time
.Θ(nlog2n) time for p=(log n)^2 with increments 2^i3^j.

 Incerpi-Sedgewick, Chazelle, Plaxton, Poonen, Suel (1980’s) –
best worst case, roughly, Θ(nlog2n / (log logn)2).

 Average case:
 Knuth [1970’s]: Θ(n5/3) for p=2
 Yao [1980]: p=3 characterization, no running time.
 Janson-Knuth [1997]: O(n23/15) for p=3.
 Jiang-Li-Vitanyi [J.ACM, 2000]: Ω(pn1+1/p) for every p.

Shellsort Average Case Lower bound

Theorem. p-pass Shellsort average case T(n) ≥ pn1+1/p

Proof. Fix a random permutation Π with Kolmogorov complexity
nlogn. I.e. C(Π)≥ nlogn. Use Π as input. (We ignore the self-delimiting
coding of the subparts below. The real proof uses better coding.)

 For pass i, let mi,k be the number of steps the kth element

moves. Then T(n) = Σi,k mi,k

 From these mi,k's, one can reconstruct the input Π, hence
 Σ log mi,k ≥ C(Π) ≥ n logn
 Maximizing the left, all mi,k must be the same (maintaining same

sum). Call it m. So Σ m = pnm = Σi,k mi,k Then,
Σ log m = pn log m ≥ Σ log mi,k ≥ nlogn  mp ≥ n.
 So T(n) = pnm > pn1+1/p. ■
Corollary: p=1: Bubblesort Ω(n2) average case lower bound.

p=2: n3/2 lower bound. p=3, n4/3 lower bound (4/3=20/15); and
only p=Θ(log n) can give average time O(n log n).

Heapsort

 1964, JWJ Williams [CACM 7(1964), 347-
348] first published Heapsort algorithm

 Immediately it was improved by RW Floyd.
 Worst case O(n logn).
 Open for 40 years: Which is better in average

case: Williams or Floyd? (choose between n log n
and 2n log n)

 R. Schaffer & Sedgewick (1996). Ian Munro
provided the solution here.

Heapsort average analysis (I. Munro)
 Average-case analysis of Heapsort.

Heapsort: (1) Make Heap. O(n) time.
 (2) Delete max at root, restore heap, repeat.

dd

log n

Williams Floyd

2 log n - 2d log n + d

Fix random heap H, C(H) > n log n. Simulate Step (2). Each round,
encode the red path in log n -d bits. The n paths describe the heap!
Hence, total n paths, length ≥ n log n, hence d must be a constant.
Floyd takes n log n comparisons, and Williams takes 2n log n.

comparisons/round

Compare sons;
Compare largest
 with candidate.
2 comparisons/
step

Compare sons,
Repeat this for
largest son.
1 comparison/step

A selected list of results proved by the
incompressibility method
 Ω(n2) for simulating 2 tapes by 1 (30 years)
 k heads > k-1 heads for PDAs (15 years)
 k one-ways heads can’t do string matching (13 yrs)
 2 heads are better than 2 tapes (40 years)
 Average case analysis for heapsort (30 years)
 k tapes are better than k-1 tapes. (20 years)
 Many theorems in combinatorics, formal

language/automata, parallel computing, VLSI
 Simplify old proofs (Hastad Lemma).
 Shellsort average case lower bound (40 years)

More on formal language theory

Lemma (Li-Vitanyi) Let L ⊆ V*, and Lx={y: xy ∈ L}. Then
L is regular implies there is c for all x,y,n, let y be the
n-th element in Lx, we have C(y|x) ≤ C(n)+c.

Proof. Like example. QED.

Example 2. {1p : p is prime} is not regular.

Proof. Let pi, i=1,2 …, be the list of primes. Then pk+1 is
the first element in LPk, hence by Lemma, C(pk+1|
pk)≤O(1). Impossible since pk+1-pk→∞ for k→∞

 QED

Characterizing regular sets

 For an lexicographic enumeration of Σ*={y1,y2, …},
define characteristic sequence X= X1 X2 …of

 Lx={yi : xyi∈ L} by

 Xi = 1 iff xyi∈ L

Theorem. L is regular iff there is a c for all x,n,

 C(X1:n|n) < c

Proof. L is regular (finite-state) iff L is the union of
finitely many disjoint sets {x}Lx

(The Myhill-Nerode Theorem). Hence every X of Lx is a
recursive sequence. This shows the `if’ side. The `only if’
side depends on a sophisticated lemma, see textbook.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

