
 

Lecture 5. The Incompressibility 
Method
 A key problem in computer science: analyze the 

average case performance of a program.

 Using the Incompressibility Method: 
 Give the program a random input of length n, say of 

complexity n- log n (or sometimes complexity n).
 Analyze the program with respect to this single and 

fixed input. This is usually easier than average case 
using the fact this input is almost  incompressible.

 If we used complexity n- log n, the running time for this 
single input is the average case running time of all 
inputs, since a (1-1/n)th fraction of all inputs have this 
high complexity!



 

 Example: Show L={0k1k | k>0} not regular. By 
contradiction, assume that DFA M accepts L. 

   Choose k so that C(k) >> 2|M|. Simulate M:

   

          000 … 0 111 … 1

   C(k) < |M| + |q| + O(1) < 2|M|. Contradiction. 
 Remark. Generalizes to iff condition: more powerful

    & easier to use than “pumping lemmas”.
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stop here

Formal language theory



 

Combinatorics

 Theorem. There is a tournament (complete directed graph) T of n 
players that contains no large transitive subtournaments (>1 + 2 log n).

Proof by Picture: Choose a random T.
 One bit codes a directed edge, each tournament is encoded in string of 

n(n-1)/2 bits, and each string of n(n-1)/2 bits codes a tournament. 
Choose T such that C(T | n) ≥  n(n-1)/2.

 If there is a large transitive subtournament on v(n) nodes, then a large 
number of edges are given for free! Subgraph-edges = v(n)(v(n)-1)/2. 
Overhead = v(n) log n.  Overhead ≥ subgraph edges since

      C(T | n)≤ n(n − 1)/2 − subgraph-edges +  overhead

T
Linearly ordered
subgraph.
Easy to describe



 

Combinatorics 

 Theorem. Let w(n) be the largest integer such 
that every tournament T has disjoint node sets 
A and B both of cardinality w(n) such that AxB 
is a subset of the ordered edge set of T. Then, 
w(n) ≤ 2 log n.

 Proof. Choose T with C(T|n) ≥ n(n-1)/2. 
 Add descriptions A and B in 2 w(n) log n bits 

(in lexicographic order, say).
 Save bits describing edges between A and B 

in w(n) ² bits. 
 Add – Save ≥ 0.                      QED



 

Graphs

 Consider undirected labeled graphs. 
 A clique is a subset of nodes with edges between every pair.
 An anticlique is a subset of nodes without edges between any 

pair.
 Encode graph G s.t. The set of node pairs are lexicographically 

ordered without repetition, {i,j} with i < j, and the corresponding bit 
is 1 if there is an edge, and 0 otherwise.

 Theorem.  There is an undirected labeled  graph G on n nodes 
that contains no clique or anticlique on >1+2 log n nodes.

 Proof. Let G be an undirected labeled graph of high Kolmogorov 
complexity, C(G|n) ≥ n(n-1)/2. The proof is now isomorphic to that 
of the transitive subtournaments.



 

Graphs

 Lemma. A fraction of at least  1 – 1/2^d(n) of all labeled 
undirected graphs on n nodes have C(G|n,d) ≥ n(n-1)/2 -d(n).

 Proof. There are at most 2^{n(n-1)/2 – d(n)} -1 programs of length 
< n(n-1)/2 -d(n). QED

 Remark. Hence a property that holds for such graphs holds with 
high probability and in expectation (on average).

 Lemma. All nodes of a graph with d(n)=o(n) have degree 
 n/2+-o(n). 
 Proof. Choose G s.t. C(G|n) ≥ n(n-1)/2 - d(n). For every node i, 

the scattered substring of bits corresponding to {i,j} or {j,i} has 
complexity ≥ n-d(n)- 2 log n, since otherwise its description + 
description i +the literal remainder of G|n gives a description of G|
n of length  < n(n-1)/2 – d(n). Let d(n)=o(n).

 Since the substring has complexity ≥ n-o(n), we have by similar 
reasoning to that of the last frame of lecture 2 that the substring 
contains n/2 +- O(√ o(n)n) = n/2 +- o(n) bits 1, and hence node i 
has degree n/2+-o(n).                          QED



 

Graphs

 Lemma. All graphs with d(n)=o(n)  have diameter 2.

 Proof. Diameter 1 is a complete graph G with C(G|n)=O(1).
 Assume there is a shortest path of length >2 between nodes i,j.
 Add identity of nodes i,j in 2 log n bits.
 Save n/2-o(n) bits from omitting edge bits (k,j) (which are all 0) for 

every k for which there is an edge (i,k). There are >n/2-o(n) of 
them by previous lemma.                     QED

 Remark. There is some discrepancy between add and save here. 
We can in fact strengthen the theorem to show that all such 
graphs have n/4 -o(n) disjoint paths of length 2 between every 
pair of nodes.



 

Unlabeled Graphs

 # of labeled undirected graphs on n nodes is 2^{n(n-1)/2}.
 Theorem (Harary, Palmer 1973) # of unlabeled undirected graphs 

on n nodes is asymptotic to 2^{n(n-1)/2} / n!

 Proof by incompressibility (Sketch). There are n! ways to relabel a 
graph on n nodes for every graph. But, for example, the complete 
graph stays the same under every relabeling. So the 
automorphism group of that graph has cardinality n! A 
Kolmogorov random graph stays the same only under identity 
relabeling. Its automorphism group has cardinality 1 (such graps 
are called rigid.)

 By incompressiblity we estimate the number of graphs (what is 
their minimum complexity and maximum complexity)  which have 
automorphism groups of given cardinality. This gives the theorem.

 QED



 

Fast adder
 Example. Fast addition on average.

 Ripple-carry adder:  n steps adding n-bit numbers.
 Carry-lookahead adder: 2 log n steps (divide-and-conquer).
 Burks-Goldstine-von Neumann (1946): log n expected length 

of carry sequence, so log n expected steps. 
   S= x⊕y; C= carry sequence;
   while (C≠0) {
        S= S⊕C;
        C= new carry sequence; }

    Average case analysis: Fix x, take random y s.t. C(y|x)≥|y|
              x = … u1  …      (Max such u is precise carry length) Low order bits right.

              y = … û1  …,     û is complement of u
    If |u| > log n, then C(y|x)<|y|.  Average over all y, get log n. QED



 

Sorting

 Given n elements (in an array). Sort them into 
ascending order.

 This is the most studied fundamental problem in 
computer science.

 Shellsort (1959): p passes. In each pass, compare in 
subarrays (length related to increment) adjacent 
elements and move larger elements to the right 
(Bubblesort) so that the large elements `bubble’ to 
front.

 Open for over 40 years: a nontrivial general  average 
case complexity lower bound of Shellsort?



 

Shellsort Algorithm

 Using p increments h1, … , hp, with hp=1

 At k-th pass, the array is divided in hk 
separate sublists of length n/hk (taking every 
hk-th element).

 Each sublist is sorted by insertion/bubble sort.

-------------
 Application: Sorting networks --- n log2 n 

comparators, easy to program, competitive 
for medium size lists to be sorted.



 

Shellsort history

 Invented by D.L. Shell [1959], using pk= n/2k for step k. It is a 
Θ(n2) time algorithm

 Papernow&Stasevitch [1965]: O(n3/2) time by destroying 
regularity in Shell’s geometric sequence.

 Pratt [1972]: All quasi geometric sequences use O(n3/2) time 
.Θ(nlog2n) time for p=(log n)^2 with increments 2^i3^j.

 Incerpi-Sedgewick, Chazelle, Plaxton, Poonen, Suel (1980’s) –
best worst case, roughly,  Θ(nlog2n / (log logn)2).

 Average case:
 Knuth [1970’s]: Θ(n5/3) for p=2
 Yao [1980]: p=3 characterization, no running time.
 Janson-Knuth [1997]: O(n23/15) for p=3.
 Jiang-Li-Vitanyi [J.ACM, 2000]: Ω(pn1+1/p) for every p.



 

Shellsort Average Case Lower bound

Theorem. p-pass Shellsort average case T(n) ≥ pn1+1/p

Proof. Fix a random permutation Π with Kolmogorov complexity 
nlogn. I.e. C(Π)≥ nlogn. Use Π as input. (We ignore the self-delimiting 
coding of the subparts below. The real proof uses better coding.)

    
    For pass i, let mi,k be the number of steps the kth element 

moves.  Then T(n) =  Σi,k mi,k  

    From these mi,k's, one can reconstruct the input Π, hence 
                Σ log mi,k ≥ C(Π) ≥ n logn
    Maximizing the left, all mi,k must be the same (maintaining same 

sum). Call it m.  So Σ m = pnm = Σi,k mi,k   Then, 
Σ log m = pn log m ≥ Σ log mi,k ≥ nlogn    mp ≥ n.
    So T(n) = pnm > pn1+1/p.                                       ■
Corollary: p=1: Bubblesort Ω(n2) average case lower bound.       

p=2: n3/2 lower bound. p=3, n4/3 lower bound (4/3=20/15); and 
only p=Θ(log n) can give average time O(n log n).



 

Heapsort

 1964, JWJ Williams [CACM 7(1964), 347-
348] first published Heapsort algorithm

 Immediately it was improved by RW Floyd.
 Worst case O(n logn). 
 Open for 40 years: Which is better in average 

case: Williams or Floyd? (choose between n log n 
and 2n log n)

 R. Schaffer & Sedgewick (1996). Ian Munro 
provided the solution here. 



 

Heapsort average analysis (I. Munro)
 Average-case analysis of Heapsort.

Heapsort:  (1) Make Heap.  O(n) time.
                  (2) Delete max at root, restore heap, repeat.

dd

log n

Williams Floyd

2 log n - 2d log n + d

Fix random heap H, C(H) > n log n.  Simulate Step (2). Each round,
encode the red path in log n -d bits. The n paths describe the heap! 
Hence, total n paths, length ≥  n log n, hence d must be a constant. 
Floyd takes n log n comparisons, and Williams takes 2n log n.

comparisons/round

Compare sons;
Compare largest
 with candidate.
2 comparisons/
step

Compare sons,
Repeat this for
largest son.
1 comparison/step



 

A selected list of results proved by the 
incompressibility method
 Ω(n2) for simulating 2 tapes by 1 (30 years)
 k heads > k-1 heads for PDAs (15 years)
 k one-ways heads can’t do string matching (13 yrs)
 2 heads are better than 2 tapes (40 years)
 Average case analysis for heapsort (30 years)
 k tapes are better than k-1 tapes. (20 years)
 Many theorems in combinatorics, formal 

language/automata, parallel computing, VLSI
 Simplify old proofs (Hastad Lemma).
 Shellsort average case lower bound (40 years)



 

More on formal language theory

Lemma (Li-Vitanyi) Let L ⊆ V*, and Lx={y: xy ∈ L}. Then 
L is regular implies there is c for all x,y,n, let y be the 
n-th element in Lx, we have C(y|x) ≤ C(n)+c.

Proof. Like example.     QED.

Example 2. {1p : p is prime} is not regular.

Proof. Let pi, i=1,2 …, be the list of primes. Then pk+1 is 
the first element in LPk, hence by Lemma, C(pk+1|
pk)≤O(1). Impossible since pk+1-pk→∞ for k→∞ 

  QED



 

Characterizing regular sets

 For an lexicographic enumeration of Σ*={y1,y2, …}, 
define characteristic sequence X= X1 X2 …of 

    Lx={yi : xyi∈ L} by

           Xi = 1 iff xyi∈ L

Theorem. L is regular iff there is a c for all x,n,

          C(X1:n|n) < c

Proof. L is regular (finite-state) iff L is the union of 
finitely many disjoint sets {x}Lx  

(The Myhill-Nerode Theorem). Hence every X of Lx is a 
recursive sequence. This shows the `if’ side. The `only if’
side depends on a sophisticated lemma, see textbook. 
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