
 

Lecture 6. Prefix Complexity K , 
Randomness, and Induction
 The plain Kolmogorov complexity C(x) has a lot of 

“minor” but bothersome problems
 Not subadditive: C(x,y)≤C(x)+C(y) only modulo a log n 

term. There exists x,y s.t. C(x,y)>C(x)+C(y)+log n –c. 
(This is because there are (n+1)2n pairs of x,y s.t. |x|+|
y|=n. Some pair in this set has complexity n+log n.)

 Nonmonotonicity over prefixes
 Problems when defining random infinite sequences in 

connection with Martin-Lof theory where we wish to 
identify infinite random sequences with those whose 
finite initial segments are all incompressible, Lecture 2

 Problem with Solomonoff’s initial universal distribution
            P(x) = 2-C(x)

   but Σ P(x)=∞.



 

In order to fix the problems …

 Let x=x0x1 … xn , then  

          x =x00x10x20 … xn1         and 

          x’=|x| x
 Thus, x’ is a prefix code such that |x’| ≤ |x|+2 log|x|
 x’ is a self-delimiting version of x.
 Let reference TM’s have only binary alphabet {0,1}, no blank B. 

The programs p should form an effective prefix code: 

         ∀p,p’ [ p is not prefix of p’]
 Resulting self-delimiting Kolmogorov complexity (Levin, 1974, 

Chaitin 1975). We use K for prefix Kolmogorov complexity to 
distinguish from C, the plain Kolmogorov complexity.



 

Properties

 By Kraft’s Inequality (proof – look at the binary tree): 
          Σx ∈Σ* 2-K(x) ≤ 1
 Naturally subadditive
 Not monotonic over prefixes (then we need another 

version like monotonic Kolmogorov complexity)
 C(x) ≤ K(x) ≤ C(x)+2 log C(x)
 K(x) ≤ K(x|n)+K(n)+O(1)
 K(x|n) ≤ C(x) + O(1)
              ≤ C(x|n) + K(n)+O(1)
              ≤ C(x|n)+log*n+log n+loglog n+…+O(1)



 

Alice’s revenge

 Remember Bob at a cheating casino flipped 100 
heads in a row. 

 Now Alice can have a winning strategy. She proposes 
the following: 
 She pays $1 to Bob for every time she looses on 0-flip, 

gets $1 for every time she wins on 1-flip.
 She pays $1 extra at start of the game.
 She receives 2100-K(x) in return, for flip sequence x of 

length 100.

 Note that this is a fair proposal as expectancy for 100 
flips of fair coin is

     Σ|x|=100 2-100 2100-K(x) < $1

    But if Bob cheats with 1100, then Alice gets 2100-log100



 

Chaitin’s mystery number Ω

Define Ω = ∑p halts 2-|p|  (<1 by Kraft’s inequality and there is a 
nonhalting program p). Now Ω is a nonrational number.

Theorem 1. Let Xi=1 iff the ith program halts. Then Ω1:n encodes 
X1:2^n. I.e., from Ω1:n we can compute X1:2^n 

Proof. (1) Ω1:n < Ω < Ω1:n+2-n. (2) Dovetailing simulate all programs 
till Ω’> Ω1:n. Then if p, |p|≤n, has not halted yet, it will not (since 
otherwise Ω > Ω’+2-n> Ω).    QED

 Bennett: Ω1:10,000 yields all interesting mathematics.

Theorem 2. For some c and all n: K(Ω1:n) ≥n – c.
 Remark. Ω is a particular random sequence!

Proof.   By Theorem 1, given Ω1:n we can obtain all halting 
programs of length ≤ n. For any x that is not an output of these 
programs, we have K(x)>n. Since from Ω1:n we can obtain such  
x, it must be the case that K(Ω1:n) ≥n – c.                QED



 

Universal distribution

 A (discrete) semi-measure is a function P that satisfies 
Σx∈NP(x)≤1. 

 An enumerable (=lower semicomputable) semi-measure P0 is 
universal (maximal) if for every enumerable semi-measure P, 
there is a constant cp, s.t. for all x∈N, cPP0(x)≥P(x). We say that 
P0 dominates each P. We can set cP = 2^{K(P)}. Next 2 theorems 
are due to L.A. Levin.

Theorem. There is a universal enumerable semi-measure m. 
We can set m(x)=∑ P(x)/cP  the sum taken over all enumerable 

probability mass functions P (countably many) 
Coding Theorem. log 1/m(x) = K(x) + O(1)-Proofs omitted.
 Remark. This universal distribution m is one of the foremost 

notions in KC theory. As prior probability in a Bayes rule, it 
maximizes ignorance by assigning maximal probability to all 
objects (as it dominates other distributions up to a multiplicative 
constant).



 

Randomness Test for Finite Strings

 Lemma. If P is computable, then 
                 δ0 (x) = log m(x)/P(x)
 is a universal P-test. Note -K(P) ≤ log m(x)/P(x) by dominating 

property of m.

 Proof. (i) δ0  is lower semicomputable.
                    δ0(x)
 (ii) ∑   P(x)2          = ∑    m(x) ≤  1.
         x                        x
                                              δ(x)
 (iii) δ is a test → f(x)=   P(x)2          is lower
  semicomputable & ∑ f(x) ≤  1.
                                                                        
 Hence, by universality of m,  f(x) = O(m(x)).
 Therefore, δ(x) ≤ δ0(x) +O(1). 
          QED



 

Individual randomness (finite |x|) 

 Theorem. X is P-random iff log m(x)/P(x)≤0 (or 
a small value).

 Recall: log 1/m(x)=K(x) (ignore O(1) terms).

 Example. Let P be the uniform distribution. Then, 
 log 1/P(x) =|x| and x is random iff K(x) ≥ |x|.

 1. Let x=00...0 (|x|=n). Then, K(x) ≤ log n + 2 log log n.
     So K(x) << |x| and x is not random.

 2. Let y = 011...01 (|y|=n and typical fair coin flips).
  Then, K(y) ≥ n. So K(y)≥ |y| and y is random.



 

Occam’ Razor

 m(x) = 2^{-K(x)} embodies `Occam’s Razor’.

 Simple objects (with low prefix complexity)
  have high probability and complex objects 
 (with high prefix complexity) have low
  Probability. 

 x=00...0  (n 0’s) has K(x) ≤ log n + 2 log log n 
    and m(x) ≥ 1/n (log n)^2

 y=01...1 (length n random string) has K(y) ≥ n 
       and m(y) ≤ 1/2^n 



 

Randomness Test for Infinite  
Sequences: Schnorr’s Theorem 
 Theorem. An infinite binary sequence ω is (Martin-Lof) 

random (random with respect to the uniform measure  
λ) iff there is a constant c such that for all n, 

                 K(ω1:n)≥n-c. 

 Proof omitted---see textbook.

 (Note, please compare with Lecture 2, C-measure)



 

Complexity oscillations of initial 
segments of infinite high-complexity 
sequences



  

Entropy

 Theorem. If P is a computable probability 
mass function with finite entropy H(P), then

    H(P) ≤ ∑  P(x)K(x) ≤ H(P)+K(P)+O(1).

Proof. 
Lower bound: by Noiseless Coding Theorem since 

{K(x)} is length set prefix-free code.

Upper bound: m(x) ≥ 2^{-K(P)} P(x) for all x. Hence,
   K(x) = log 1/m(x)+O(1)≤ K(P)+ log 1/P(x)+O(1).
               QED



  

Symmetry of Information.

 Theorem. Let x* denote shortest program for 
x (1st in standard enumeration). Then, up to an
 additive constant 

K(x,y)=K(x)+K(y|x*)=K(y)+K(x|y*)=K(y,x). 

Proof. Omitted---see textbook. QED

Remark 1.Let I(x:y)=K(x)-K(x|y*) (information in x about 
y). Then: I(x:y)=I(y:x) up to a constant. So we call I(x:y) 
the algorithmic mutual information which is symmetric 
up to a constant.

Remark 2. K(x|y*)=K(x|y,K(y)).



  

Complexity of Complexity

 Theorem. For every n there are strings x of
  length n such that (up to a constant term):

        log n – log log n ≤ K(K(x)|x) ≤ log n .

 Proof. Upper bound is obvious since K(x) ≤ n+2 log n.
   Hence we have K(K(x)|x) ≤ K(K(x)|n)+O(1) ≤ log n +O(1). 
 Lower bound is complex and omitted, see textbook. QED

 Corollary.Let length x be n. Then, 
  K(K(x),x) = K(x)+K(K(x)|x,K(x))=K(x), but
 K(x)+K(K(x)|x) can be K(x)+log n – log log n. Hence the
  Symmetry of Information is sharp.



 

Average-case complexity under m

Theorem [Li-Vitanyi]. If the input to an algorithm A is distributed 
according to m, then the average-case time complexity of A is 
order-of-magnitude of  A’s worst-case time complexity.

Proof. Let T(n) be the worst-case time complexity. Define P(x) as 
follows:
 an=Σ|x|=nm(x) 
 If |x|=n, and x is the first s.t. t(x)=T(n), then P(x):=an 

else P(x):=0.
Thus, P(x) is enumerable, hence cPm(x)≥P(x). Then the average 

time complexity of A under m(x) is:
       T(n|m) = Σ|x|=nm(x)t(x) / Σ|x|=nm(x)
                   ≥ 1/cP Σ|x|=n P(x)T(n) / Σ|x|=nm(x)
                   = 1/cP Σ|x|=n [P(x)/Σ|x|=nP(x)] T(n) = 1/cPT(n).          QED
 Intuition: The x with worst time has low KC, hence large m(x)
Example: Quicksort. With easy inputs, more likely incur worst case. 



 

General Prediction

 Hypothesis formation, experiment, outcomes, 
hypothesis adjustment, prediction, experiment,  
outcomes, ....

 Encode this (infinite) sequence as  0’s and 1’s
 The investigated phenomenon can be viewed 

as a measure μ over the {0,1}∞ with probability 
μ(y|x)=μ(xy)/μ(x) of predicting y after having 
seen x.

 If we know μ then we can predict as good as is 
possible.



 

Solomonoff’s Approach

 Solomonoff (1960, 1964): given a sequence of observations: 
S=010011100010101110 ..

 Question: predict next bit of S.
 Using Bayesian rule: 
     P(S1|S)=P(S1)P(S|S1) / P(S)
                  =P(S1) / P(S)
    here P(S1) is the prior probability, and we know P(S|S1)=1. 
 Choose universal prior probability:
              P(S) = M(S) = ∑ 2^-l(p)  summed over all p which are 

shortest programs for which U(p…) = S....
 M is the continuous version of m (for infinite sequences in 

{0,1}^∞ .



 

Prediction a la Solomonoff

 Every predictive task is essentially 
extrapolation of a binary sequence:

 ...0101101░  0 or 1   ?

 Universal semimeasure 
 M(x)= M{x....: x ε {0,1}*} constant-

multiplicatively  dominates all  
(semi)computable semimeasures μ.



 

General Task

 Task of AI and prediction science: Determine 
for a phenomenon expresed by measure μ

         μ(y|x) = μ(xy)/μ(x)

 The probability that after having observed data 
 x the next observations show data y.



 

Solomonoff: M(x) is good predictor

 Expected error squared in the nth prediction:
                                                            
 S   = ∑           μ(x) [ μ(0|x) – M(0|x) ] ²
    n        |x|=n-1

 Theorem. ∑     S        ≤ constant ( ½K(μ) ln 2)
                    n      n    

 Hence:  Prediction error S       in n-th prediction:
                                           n

1/n
S
   n

n



 

Predictor in ratio

 Theorem. For fixed length y and computable μ:

          M(y|x)/μ(y|x)  → 1 for x →∞
 with μ-measure 1.

 Hence we can estimate conditional μ-
probability by M  with almost no error.

 Question: Does this imply Occam’s razor:
 ``shortest program predicts best’’?



 

 M is universal predictor for all 
computable μ in expectation
 But M  is a continuous measure over {0,1}∞ 

and weighs all programs for x, including 
shortest one:                 -|p|

 M(x)  =  ∑                   2         (p minimal)
                  U(p…)=x....

 Lemma (P. Gacs)  For some x, log 1/ M(x) << 
shortest program  for x. This is different from 
the Coding Theorem in  the discrete case 
where always log 1/m(x) =K(x)+O(1).

 Corollary: Using shortest program for data is 
not always best predictor!



 

Theorem (Vitanyi-Li)

 For almost all x (i.e. with μ-measure 1):

 log 1/M(y|x) = Km(xy)-Km(x) +O(1) with Km the 
complexity (shortest program length |p|) with 
respect to U(p...)= x.... 

 Hence, it is a good heuristic to choose an 
extrapolation y that minimizes the length 
difference between the shortest program 
producing xy... and the one that produces x... 

 I.e.; Occam’s razor!


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

