Lecture 6. Prefix Complexity K ,
Randomness, and Induction

The plain Kolmogorov complexity C(x) has a lot of
“minor” but bothersome problems
Not subadditive: C(x,y)<C(x)+C(y) only modulo a log n
term. There exists x,y s.t. C(x,y)>C(x)+C(y)+log n —c.

(This is because there are (n+1)2" pairs of x,y s.t. |x|+|
y|=n. Some pair in this set has complexity n+log n.)

Nonmonotonicity over prefixes

Problems when defining random infinite sequences in
connection with Martin-Lof theory where we wish to
identify infinite random sequences with those whose
finite initial segments are all incompressible, Lecture 2

Problem with Solomonoff’s initial universal distribution
P(x) = 2-CX)
but 2~ P(x)=<.



In order to fix the problems ...

Let x=x,X, ... X, , then

;=&OX1OX20 X1 and

X=|x| x
Thus, X’ is a prefix code such that |X’| < |x|+2 log|x|
X’ is a self-delimiting version of x.

Let reference TM’s have only binary alphabet {0,1}, no blank B.
The programs p should form an effective prefix code:
(p,p’ [ p is not prefix of p’]

Resulting self-delimiting Kolmogorov complexity (Levin, 1974,
Chaitin 1975). We use K for prefix Kolmogorov complexity to
distinguish from C, the plain Kolmogorov complexity.



Properties

By Kraft's Inequality (proof — look at the binary tree):
2, o5 27K < 1
Naturally subadditive

Not monotonic over prefixes (then we need another
version like )

C(x) < K(x) = C(x)+2 log C(x)
K(x) < K(x|n)+K(n)+O(1)
K(x|n) = C(x) + O(1)
< C(x|n) + K(n)+O(1)
< C(x|n)+log*n+log n+loglog n+...+0O(1)



Alice’s revenge

Remember Bob at a cheating casino flipped 100
heads in a row.

Now Alice can have a winning strategy. She proposes
the following:

She pays $1 to Bob for every time she looses on O-flip,
gets $1 for every time she wins on 1-flip.

She pays $1 extra at start of the game.

She receives 210K in return, for flip sequence x of
length 100.

Note that this is a fair proposal as expectancy for 100
flips of fair coin is

Z|x|=100 2-100 2100-K(x) < $1
But if Bob cheats with 119, then Alice gets 2100-0g100



Chaitin’s mystery number €2

Define Q = } ... 2™ (<1 by Kraft’s inequality and there is a
nonhalting program p). Now Q is a nonrational number.

Theorem 1. Let X=1 iff the ith program halts. Then Q,.. encodes
X, €., from Q. we can compute X, ..

Proof. (1) Q,,, <Q <Q, +2". (2) Dovetailing simulate all programs
till Q> Q... Then if p, [p|sn, has not halted yet, it will not (since
otherwise Q > Q’+2"> Q). QED

Bennett: Q,.,, o, Yields all interesting mathematics.

Theorem 2. For some ¢ and all n: K(Q),.,) 2n —c.
Remark. Q is a particular random sequence!
Proof. By Theorem 1, given Q.. we can obtain all halting

programs of length < n. For any x that is not an output of these
programs, we have K(x)>n. Since from Q,.. we can obtain such

X, it must be the case that K(Q,..) =n —c. QED



Universal distribution

A (discrete) semi-measure is a function P that satisfies
2 nP(X)=1.
An enumerable (=lower semicomputable) semi-measure P, is

universal (maximal) if for every enumerable semi-measure P
there is a constant ¢, s.t. for all xCIN, CP P,(x)2P(x). We say that

P, dominates each P. We can set c, = 2M{K(P)}. Next 2 theorems
are due to L.A. Levin.

Theorem. There is a universal enumerable semi-measure m.

Coding Theorem. log 1/m(x) = K(x) + O(1)-Proofs omitted.

Remark. This universal distribution m is one of the foremost
notions in KC theory. As prior probability in a Bayes rule, it
maximizes ignorance by assigning maximal probability to all
objects (as it dominates other distributions up to a multiplicative
constant).



Randomness Test for Finite Strings

Lemma. If P is computable, then
Qo (X) = log m(x)/P(x)
IS a unjversal P-test. Note -K(P) < log m(x)/P(x) by dominating

property of m.

Proof. (i) do is lower semicomputable.

Oo(X)
(i) > P(x)2 =Y m(x)< 1.
X X
O(x)
(iii) O is a test — f(x)= P(x)2 is lower

semicomputable & > f(x) < 1.

Hence, by universality of m, f(x) = O(m(x)).
Therefore, d(x) < do(x) +O(1).
QED



Individual randomness (finite |x|)

Theorem. )S Is P-random iff log m(x)/P(X)<0 (or

a small value
Recall: log 1/m(x)=K(x) (ignore O(1) terms).

Example. Let P be the uniform distribution. Then,
log 1/P(x) =|x| and x is random iff K(x) = |x|.

1. Let x=00...0 (|x|=n). Then, K(x) <log n + 2 log log n.
So K(x) << |x| and x is not random.

2. Lety =011...01 (|y|=n and typical fair coin flips).
Then, K(y) 2 n. So K(y)z |y| and y is random.



Occam’ Razor

m(X) = 2"{-K(X)} embodies Occam'sS Razor.

S|mple ob ects (W|th low prefix complexity)

have h % probability and complex objects
(with |g prefix compIeX|ty) have low
Probabl ity.

x=00...0 (n 0’s) has K(x) <log n + 2 log log n
and m(>g)>1) (Iogn’2 7 J799

=01...1 (length n random string) has K
Y=0Lid mendthnia, 9) has Kiy) =



Randomness Test for Infinite
Sequences: Schnorr’s Theorem

Theorem. An infinite binary sequence w is (Martin-Lof)
random (random with respect to the uniform measure
A) iff there is a constant ¢ such that for all n,

K(w,,)2n-c.

Proof omitted---see textbook.

(Note, please compare with Lecture 2, C-measure)



Complexity.oscillations of nitial |
segnients of nfinite ﬁlgh-comp?emty
sequences

n+|$;(n)

i growing gap

N



Entropy

Theorem. If P is.a computable probability
mass function with finite entropy H(P), then

H(P) < > P(x)K(x) £ H(P)+K(P)+O(1).

Proof.

Lower ?Qund: b¥] Noiseless Coding Theorem since
{K(x)} is length set prefix-free cdde.

Upper bound: m(x) =2 2*{-K(P)} P(x) for all x. Hence,
K(x) = log 1/m(x)+0O(1)< K(P)+ log 1/P(x)+O(1).
QED



Symmetry of Information.

Theorem. Let x* denote shortest program for
X (1st in standard enumeration). Then, up to an
additive constant

K(X,y)=K(x)+K(y[x*)=K(y)+K(x]y*)=K(y,X).
Proof. Omitted---see textbook. QED

Remark 1.Let [(x:y)=K(x)-K(x]y*) (information in x about
y). Then: I(x:y)=I(y:x) up to a constant. So we call [(x:y)
the algorithmic mutual information which is symmetric
up to a constant.

Remark 2. K(x|y*)=K(x|y,K(y)).



Complexity of Complexity

Theorem. For every n there are strings x of
length n such that (up to a constant term):

log n —log log n < K(K(x)|x) <log n .

Proof. Upper bound is obvious since K(x) <n+2log n.
Hence we have K(K(x)|x) < K(K(x)|n)+O(1) < log n +OI(£E)

Lower bound is complex and omitted, see textbook Q

Corollary.Let length x be n. Then,

K(K(x),x) = K(x)+K(K(x)|x,K(x))=K(x), but
K(x)+K(K(x)|x) can be K(x)+log n —log log n. Hence the
Symmetry of Information is sharp.



Average-case complexity under m

Theorem [Li-Vitanyi]. If the input to an algorithm A is distributed
according to m, then the average-case time complexity of A is
order-of-magnitude of A’s worst-case time complexity.

Proof. Let T(n) be the worst-case time complexity. Define P(x) as
follows:

an=z|x|=nm(x)
If [X|=n, and x is the first s.t. t(x)=T(n), then P(x):=a,
else P(x):=0.
Thus, P(x) is enumerable, hence c.m(x)2P(x). Then the average
time complexity of A under m(x) is:
T(nlm) = Z,,_ mOX) / Z,ym(x)
2 1/cp 2., PX)T(N) / Z,,..m(X)
= 1/cp Z- [P(X)V/Z, -, P(X)] T(N) = 1/c,T(n). QED
Intuition: The x with worst time has low KC, hence large m(x)
Example: Quicksort. With easy inputs, more likely incur worst case.

Ix|=n

x|=n



General Prediction

Hypothesis formation, experiment, outcomes,
hypothesis adjustment, prediction, experiment,
outcomes, ....

Encode this (infinite) sequence as 0's and 1's

The investigated phenomenon can be viewed
as a measure y over the {0,1} with probability
u(y|x)=u(xy)/u(x) of predicting y after having
seen X.

If we know p then we can predict as good as is
possible.



Solomonoff’s Approach

Solomonoff (1960, 1964): given a sequence of observations:
S=010011100010101110 ..

Question: predict next bit of S.
Using Bayesian rule:
P(S1[S)=P(S1)P(S|S1) / P(S)
=P(S1) / P(S)
here P(S1) is the prior probability, and we know P(S|S1)=1.
Choose universal prior probability:

P(S)=M(S) =) 2*I(p) summed over all p which are
shortest programs for which U(p...) = S....

M is the continuous version of m (for infinite sequences in
{0,1}7 e .



Prediction a 1a Solomonoff

Every predictive task is essentially
extrapolation of a binary sequence:

..0101101% 0or1 2

Universal semimeasure

M(x)= M{x..... x € {0,1}*} constant-
multiplicatively dominates all
(semi)computable semimeasures p.



General Task

Task of Al and prediction science: Determine
for a phenomenon expresed by measure p

H(Y[X) = p(xy)/ u(x)

The probability that after having observed data
x the next observations show data vy.



Solomonoff: M(x) 1s good predictor

Expected error squared in the nth prediction:

S =2 p(x) [ u(O[x) — M(Ox) ] =
n IX|=n-1

Theorem. > S < constant ( 2K(u) In 2)
n n

Hence: Prediction error S In n-th prediction:




Predictor 1n ratio

Theorem. For fixed length y and computable p:

M(y|x)/u(y|x) — 1 for x —
with y-measure 1.

Hence we can estimate conditional -
probability by M with almost no error.

Question: Does this imply Occam’s razor:
“"shortest program predicts best’’?



M 1s universal predictor for all
computable p 1n expectation

But M is a continuous measure over {0,1}
and weighs all programs for x, including
shortest one: -|p|

M(x) = > 2 (p minimal)
U(p...)=x....

Lemma (P. Gacs) For some x, log 1/ M(x) <<
shortest program for x. This is different from
the Coding Theorem in the discrete case
where always log 1/m(x) =K(x)+O(1).

Corollary: Using shortest program for data is
not always best predictor!



Theorem (Vitanyi-Li)

For almost all x (i.e. with y-measure 1):

log 1/M(y[x) = Km(xy)-Km(x) +O(1) with Km the
complexﬂyéshortes program length |p|) with
respect to

Hence, it is a good heuristic to choose an
extrapolatlon y that minimizes the length
difference between the shortest program
producing xy... and the one that produces x..

|.e.; Occam’s razor!
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