
 

Lecture 6. Prefix Complexity K , 
Randomness, and Induction
 The plain Kolmogorov complexity C(x) has a lot of 

“minor” but bothersome problems
 Not subadditive: C(x,y)≤C(x)+C(y) only modulo a log n 

term. There exists x,y s.t. C(x,y)>C(x)+C(y)+log n –c. 
(This is because there are (n+1)2n pairs of x,y s.t. |x|+|
y|=n. Some pair in this set has complexity n+log n.)

 Nonmonotonicity over prefixes
 Problems when defining random infinite sequences in 

connection with Martin-Lof theory where we wish to 
identify infinite random sequences with those whose 
finite initial segments are all incompressible, Lecture 2

 Problem with Solomonoff’s initial universal distribution
            P(x) = 2-C(x)

   but Σ P(x)=∞.



 

In order to fix the problems …

 Let x=x0x1 … xn , then  

          x =x00x10x20 … xn1         and 

          x’=|x| x
 Thus, x’ is a prefix code such that |x’| ≤ |x|+2 log|x|
 x’ is a self-delimiting version of x.
 Let reference TM’s have only binary alphabet {0,1}, no blank B. 

The programs p should form an effective prefix code: 

         ∀p,p’ [ p is not prefix of p’]
 Resulting self-delimiting Kolmogorov complexity (Levin, 1974, 

Chaitin 1975). We use K for prefix Kolmogorov complexity to 
distinguish from C, the plain Kolmogorov complexity.



 

Properties

 By Kraft’s Inequality (proof – look at the binary tree): 
          Σx ∈Σ* 2-K(x) ≤ 1
 Naturally subadditive
 Not monotonic over prefixes (then we need another 

version like monotonic Kolmogorov complexity)
 C(x) ≤ K(x) ≤ C(x)+2 log C(x)
 K(x) ≤ K(x|n)+K(n)+O(1)
 K(x|n) ≤ C(x) + O(1)
              ≤ C(x|n) + K(n)+O(1)
              ≤ C(x|n)+log*n+log n+loglog n+…+O(1)



 

Alice’s revenge

 Remember Bob at a cheating casino flipped 100 
heads in a row. 

 Now Alice can have a winning strategy. She proposes 
the following: 
 She pays $1 to Bob for every time she looses on 0-flip, 

gets $1 for every time she wins on 1-flip.
 She pays $1 extra at start of the game.
 She receives 2100-K(x) in return, for flip sequence x of 

length 100.

 Note that this is a fair proposal as expectancy for 100 
flips of fair coin is

     Σ|x|=100 2-100 2100-K(x) < $1

    But if Bob cheats with 1100, then Alice gets 2100-log100



 

Chaitin’s mystery number Ω

Define Ω = ∑p halts 2-|p|  (<1 by Kraft’s inequality and there is a 
nonhalting program p). Now Ω is a nonrational number.

Theorem 1. Let Xi=1 iff the ith program halts. Then Ω1:n encodes 
X1:2^n. I.e., from Ω1:n we can compute X1:2^n 

Proof. (1) Ω1:n < Ω < Ω1:n+2-n. (2) Dovetailing simulate all programs 
till Ω’> Ω1:n. Then if p, |p|≤n, has not halted yet, it will not (since 
otherwise Ω > Ω’+2-n> Ω).    QED

 Bennett: Ω1:10,000 yields all interesting mathematics.

Theorem 2. For some c and all n: K(Ω1:n) ≥n – c.
 Remark. Ω is a particular random sequence!

Proof.   By Theorem 1, given Ω1:n we can obtain all halting 
programs of length ≤ n. For any x that is not an output of these 
programs, we have K(x)>n. Since from Ω1:n we can obtain such  
x, it must be the case that K(Ω1:n) ≥n – c.                QED



 

Universal distribution

 A (discrete) semi-measure is a function P that satisfies 
Σx∈NP(x)≤1. 

 An enumerable (=lower semicomputable) semi-measure P0 is 
universal (maximal) if for every enumerable semi-measure P, 
there is a constant cp, s.t. for all x∈N, cPP0(x)≥P(x). We say that 
P0 dominates each P. We can set cP = 2^{K(P)}. Next 2 theorems 
are due to L.A. Levin.

Theorem. There is a universal enumerable semi-measure m. 
We can set m(x)=∑ P(x)/cP  the sum taken over all enumerable 

probability mass functions P (countably many) 
Coding Theorem. log 1/m(x) = K(x) + O(1)-Proofs omitted.
 Remark. This universal distribution m is one of the foremost 

notions in KC theory. As prior probability in a Bayes rule, it 
maximizes ignorance by assigning maximal probability to all 
objects (as it dominates other distributions up to a multiplicative 
constant).



 

Randomness Test for Finite Strings

 Lemma. If P is computable, then 
                 δ0 (x) = log m(x)/P(x)
 is a universal P-test. Note -K(P) ≤ log m(x)/P(x) by dominating 

property of m.

 Proof. (i) δ0  is lower semicomputable.
                    δ0(x)
 (ii) ∑   P(x)2          = ∑    m(x) ≤  1.
         x                        x
                                              δ(x)
 (iii) δ is a test → f(x)=   P(x)2          is lower
  semicomputable & ∑ f(x) ≤  1.
                                                                        
 Hence, by universality of m,  f(x) = O(m(x)).
 Therefore, δ(x) ≤ δ0(x) +O(1). 
          QED



 

Individual randomness (finite |x|) 

 Theorem. X is P-random iff log m(x)/P(x)≤0 (or 
a small value).

 Recall: log 1/m(x)=K(x) (ignore O(1) terms).

 Example. Let P be the uniform distribution. Then, 
 log 1/P(x) =|x| and x is random iff K(x) ≥ |x|.

 1. Let x=00...0 (|x|=n). Then, K(x) ≤ log n + 2 log log n.
     So K(x) << |x| and x is not random.

 2. Let y = 011...01 (|y|=n and typical fair coin flips).
  Then, K(y) ≥ n. So K(y)≥ |y| and y is random.



 

Occam’ Razor

 m(x) = 2^{-K(x)} embodies `Occam’s Razor’.

 Simple objects (with low prefix complexity)
  have high probability and complex objects 
 (with high prefix complexity) have low
  Probability. 

 x=00...0  (n 0’s) has K(x) ≤ log n + 2 log log n 
    and m(x) ≥ 1/n (log n)^2

 y=01...1 (length n random string) has K(y) ≥ n 
       and m(y) ≤ 1/2^n 



 

Randomness Test for Infinite  
Sequences: Schnorr’s Theorem 
 Theorem. An infinite binary sequence ω is (Martin-Lof) 

random (random with respect to the uniform measure  
λ) iff there is a constant c such that for all n, 

                 K(ω1:n)≥n-c. 

 Proof omitted---see textbook.

 (Note, please compare with Lecture 2, C-measure)



 

Complexity oscillations of initial 
segments of infinite high-complexity 
sequences



  

Entropy

 Theorem. If P is a computable probability 
mass function with finite entropy H(P), then

    H(P) ≤ ∑  P(x)K(x) ≤ H(P)+K(P)+O(1).

Proof. 
Lower bound: by Noiseless Coding Theorem since 

{K(x)} is length set prefix-free code.

Upper bound: m(x) ≥ 2^{-K(P)} P(x) for all x. Hence,
   K(x) = log 1/m(x)+O(1)≤ K(P)+ log 1/P(x)+O(1).
               QED



  

Symmetry of Information.

 Theorem. Let x* denote shortest program for 
x (1st in standard enumeration). Then, up to an
 additive constant 

K(x,y)=K(x)+K(y|x*)=K(y)+K(x|y*)=K(y,x). 

Proof. Omitted---see textbook. QED

Remark 1.Let I(x:y)=K(x)-K(x|y*) (information in x about 
y). Then: I(x:y)=I(y:x) up to a constant. So we call I(x:y) 
the algorithmic mutual information which is symmetric 
up to a constant.

Remark 2. K(x|y*)=K(x|y,K(y)).



  

Complexity of Complexity

 Theorem. For every n there are strings x of
  length n such that (up to a constant term):

        log n – log log n ≤ K(K(x)|x) ≤ log n .

 Proof. Upper bound is obvious since K(x) ≤ n+2 log n.
   Hence we have K(K(x)|x) ≤ K(K(x)|n)+O(1) ≤ log n +O(1). 
 Lower bound is complex and omitted, see textbook. QED

 Corollary.Let length x be n. Then, 
  K(K(x),x) = K(x)+K(K(x)|x,K(x))=K(x), but
 K(x)+K(K(x)|x) can be K(x)+log n – log log n. Hence the
  Symmetry of Information is sharp.



 

Average-case complexity under m

Theorem [Li-Vitanyi]. If the input to an algorithm A is distributed 
according to m, then the average-case time complexity of A is 
order-of-magnitude of  A’s worst-case time complexity.

Proof. Let T(n) be the worst-case time complexity. Define P(x) as 
follows:
 an=Σ|x|=nm(x) 
 If |x|=n, and x is the first s.t. t(x)=T(n), then P(x):=an 

else P(x):=0.
Thus, P(x) is enumerable, hence cPm(x)≥P(x). Then the average 

time complexity of A under m(x) is:
       T(n|m) = Σ|x|=nm(x)t(x) / Σ|x|=nm(x)
                   ≥ 1/cP Σ|x|=n P(x)T(n) / Σ|x|=nm(x)
                   = 1/cP Σ|x|=n [P(x)/Σ|x|=nP(x)] T(n) = 1/cPT(n).          QED
 Intuition: The x with worst time has low KC, hence large m(x)
Example: Quicksort. With easy inputs, more likely incur worst case. 



 

General Prediction

 Hypothesis formation, experiment, outcomes, 
hypothesis adjustment, prediction, experiment,  
outcomes, ....

 Encode this (infinite) sequence as  0’s and 1’s
 The investigated phenomenon can be viewed 

as a measure μ over the {0,1}∞ with probability 
μ(y|x)=μ(xy)/μ(x) of predicting y after having 
seen x.

 If we know μ then we can predict as good as is 
possible.



 

Solomonoff’s Approach

 Solomonoff (1960, 1964): given a sequence of observations: 
S=010011100010101110 ..

 Question: predict next bit of S.
 Using Bayesian rule: 
     P(S1|S)=P(S1)P(S|S1) / P(S)
                  =P(S1) / P(S)
    here P(S1) is the prior probability, and we know P(S|S1)=1. 
 Choose universal prior probability:
              P(S) = M(S) = ∑ 2^-l(p)  summed over all p which are 

shortest programs for which U(p…) = S....
 M is the continuous version of m (for infinite sequences in 

{0,1}^∞ .



 

Prediction a la Solomonoff

 Every predictive task is essentially 
extrapolation of a binary sequence:

 ...0101101░  0 or 1   ?

 Universal semimeasure 
 M(x)= M{x....: x ε {0,1}*} constant-

multiplicatively  dominates all  
(semi)computable semimeasures μ.



 

General Task

 Task of AI and prediction science: Determine 
for a phenomenon expresed by measure μ

         μ(y|x) = μ(xy)/μ(x)

 The probability that after having observed data 
 x the next observations show data y.



 

Solomonoff: M(x) is good predictor

 Expected error squared in the nth prediction:
                                                            
 S   = ∑           μ(x) [ μ(0|x) – M(0|x) ] ²
    n        |x|=n-1

 Theorem. ∑     S        ≤ constant ( ½K(μ) ln 2)
                    n      n    

 Hence:  Prediction error S       in n-th prediction:
                                           n

1/n
S
   n

n



 

Predictor in ratio

 Theorem. For fixed length y and computable μ:

          M(y|x)/μ(y|x)  → 1 for x →∞
 with μ-measure 1.

 Hence we can estimate conditional μ-
probability by M  with almost no error.

 Question: Does this imply Occam’s razor:
 ``shortest program predicts best’’?



 

 M is universal predictor for all 
computable μ in expectation
 But M  is a continuous measure over {0,1}∞ 

and weighs all programs for x, including 
shortest one:                 -|p|

 M(x)  =  ∑                   2         (p minimal)
                  U(p…)=x....

 Lemma (P. Gacs)  For some x, log 1/ M(x) << 
shortest program  for x. This is different from 
the Coding Theorem in  the discrete case 
where always log 1/m(x) =K(x)+O(1).

 Corollary: Using shortest program for data is 
not always best predictor!



 

Theorem (Vitanyi-Li)

 For almost all x (i.e. with μ-measure 1):

 log 1/M(y|x) = Km(xy)-Km(x) +O(1) with Km the 
complexity (shortest program length |p|) with 
respect to U(p...)= x.... 

 Hence, it is a good heuristic to choose an 
extrapolation y that minimizes the length 
difference between the shortest program 
producing xy... and the one that produces x... 

 I.e.; Occam’s razor!


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

