
  

Lecture 7: Induction Continued 

MDL and PAC Learning



  

Oxford English Dictionary

Induction is ``the process of inferring a 
general law or principle from the 
observations of particular instances''.

Science is induction: from observed data 
to physical laws.

But, how? …



  

Epicurus: Multiple Explanations

 Greek philosopher of science Epicurus (342--
270BC) proposed the Principle of Multiple 
Explanations: If more than one theory is 
consistent with the observations, keep all 
theories.

 ``There are also some things for which it is not enough to state a 
single cause, but several, of which one, however, is the case. Just 
as if you were to see the lifeless corpse of a man lying far away, it 
would be fitting to state all the causes of death in order that the 
single cause of this death may be stated. For you would not be able 
to establish conclusively that he died by the sword or of cold or of    
illness or perhaps by poison, but we know that there is something of 
this kind that happened to him.'‘ [Lucretius]



  

Occam’s Razor

 Commonly attributed to William of Ockham 
(1290--1349). This was formulated about fifteen 
hundred years after Epicurus. In sharp contrast 
to the principle of multiple explanations, it states: 
Entities should not be multiplied beyond 
necessity.

 Commonly explained as: when have choices, 
choose the simplest theory.

 Bertrand Russell: ``It is vain to do with more 
what can be done with fewer.'‘

 Newton (Principia): ``Natura enim simplex est, et 
rerum causis superfluis non luxuriat''.



  

Example. Inferring a DFA

A DFA accepts: 1, 111, 11111, 1111111; 
and rejects: 11, 1111, 111111. What is it?

There are actually infinitely many DFAs 
satisfying these data.

The first DFA makes a nontrivial inductive 
inference, the 2nd does not.
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1111 1



  

Exampe. History of Science

  Maxwell's (1831-1879)'s equations say that: (a) An oscillating magnetic field 
gives rise to an oscillating electric field; (b) an oscillating electric field gives 
rise to an oscillating magnetic field. Item (a) was known from M. Faraday's 
experiments. However (b) is a theoretical inference by Maxwell and his 
aesthetic appreciation of simplicity. The existence of such electromagnetic 
waves was demonstrated by the experiments of H. Hertz in 1888, 8 years 
after Maxwell's death, and this opened the new field of radio 
communication. Maxwell's theory is even relativistically invariant. This was 
long before Einstein’s special relativity. As a matter of fact, it is even likely 
that Maxwell's theory influenced Einstein’s 1905 paper on relativity which 
was actually titled `On the electrodynamics of moving bodies'.

 J. Kemeny, a former assistant to Einstein, explains the transition from the 
special theory to the general theory of relativity: At the time, there were no 
new facts that failed to be explained by the special theory of relativity. 
Einstein was purely motivated by his conviction that the special theory was 
not the simplest theory which can explain all the observed facts. Reducing 
the number of variables obviously simplifies a theory. By the requirement of 
general covariance Einstein succeeded in replacing the previous 
‘gravitational mass' and `inertial mass' by a single concept.

 Double helix vs triple helix --- 1953, Watson & Crick



  

Counter Example.

 Once upon a time, there was a little girl named Emma. 
Emma had never eaten a banana, nor had she ever 
been on a train. One day she had to journey from New 
York to Pittsburgh by train. To relieve Emma's anxiety, 
her mother gave her a large bag of bananas. At Emma's 
first bite of her banana, the train plunged into a tunnel. At 
the second bite, the train broke into daylight again. At the 
third bite,  Lo! into a tunnel; the fourth bite, La! into 
daylight again. And so on all the way to Pittsburgh. 
Emma, being a bright little girl, told her grandpa at the 
station: ``Every odd bite of a banana makes you blind; 
every even bite puts things right again.'‘ (N.R. Hanson, 
Perception & Discovery)



  

What is “simplicity”?

 We still have not defined `simplicity'. How does 
one define it? Is ¼ simpler than 1/10? Is 1/3 
simpler than 2/3? Note that saying that there are 
1/3 white balls in the urn is the same as that of 
2/3 black balls. If one wants to infer polynomials, 
is x100 +1 more complicated than 13x17 + 5x3 + 7x 
+11?

 Can a thing be simple under one definition of 
simplicity and not simple under another?



  

Bayesian Inference

 Bayes Formula:

     P(H|D) = P(D|H)P(H)/P(D)
 P(H) is prior probability. It is unknown!
 If we give equal probability to all hypothesis H, then that is “principle of 

indifference” For a Bernoulli process with bias a real number p with 
0<p<1, with s successes out of n trials, this yields “Laplace’s Rule of 
Succession” P(success next trial)=(s+1)/(n+2).

 We get “Occam’s Razor”, if we let 

                 P(H) = 2-K(H)     (this is m(H))

  then take –log on both sides, then maximizing P(H|D) becomes 
minimizing –logP(D|H) + K(H)



  

MDL: Interpretation of –logP(D|H)+K(H)

 Interpreting –logP(D|H)+K(H)
 K(H) is mimimum description length of H
 -logP(D|H) is the mimimum description length of D (experimental data) 

given H. That is, if H perfectly predicts D, then P(D|H)=1, then this term 
is 0. If not perfect, then P(D|H) is the probability that D arises if H is true. 
For example, if H is a Bernoulli process with p=1/3 and D has 2 1’s and 
1 0 then P(D|H)=3*2/27=2/9. We can also interprete – log P(D|H)  as the 
number of bits needed to encode errors. If D is P(.|H)-random in Martin-
Lof’s sense for contemplated H’s, then - log P(D|H)=K(D|H), and we 
want to

  minimize K(D|H)+K(H).
 MDL: Minimum Description Length principle (J. 

Rissanen): given data D, the best theory for D is 
the theory H which minimizes the sum of 
 Length of encoding H
 Length of encoding D, based on H (e.g. encoding errors)



  

MDL Example: Learning a polynomial

  Fit a polynomial f of unknown degree to a set of points D= (x1, y1), 
…, (xn, yn). Even if the data did come from a polynomial curve of 
degree, say two, because of measurement errors and noise, we still 
cannot find a polynomial of degree two fitting all n points exactly. In 
general, the higher the degree of fitting polynomial, the greater the 
precision of the fit. For n data points, a polynomial of degree n-1 can 
be made to fit exactly, but probably has no predicting value. Assume 
we describe a (k-1)-degree polynomials by a vector of k entries, 
each entry with a precision of d bits. Then, by MDL principle, given 
the x-coordinates, we want to minimize the sum of

 Description length of degree k-1 polynomial: kd + O(log kd) bits
 Description length of m points not on the polynomial:  md bits.

 Trivial example, suppose the n-1 out of n data points fit a polynomial 
of degree 2 exactly, but only 2 points lie on any polynomial of 
degree 1. Of course, there is a polynomial of degree n-1 fitting the 
data precisely.  Then the MDL cost is 3d + d for the 2nd degree 
polynomial, 2d + (n-2)d for the 1st degree polynomial, and nd for the 
(n-1)-th degree polynomial.



  

Inferring a Decision Tree by MDL

 MDL principle was applied to infer decision trees 
by Quinlan and Rivest. Given a set of data, 
possibly with noise, each example is 
represented by a data item in the data set, which 
consists of a tuple of attributes followed by a 
binary Class value indicating whether the 
example with these attributes is a positive or 
negative example. MDL asks to minimize the 
sum of
 Description length of the decision tree (model)
 Description of those examples not correctly classified by 

the decision tree (errors).



  

PAC Learning (L. Valiant, 1983)

 Fix a distribution for the sample space V (P(v) 
for each v in sample space). A concept class 
C={f} with f: V→ {0,1} is polynomial-time pac-
learnable (probably approximately correct 
learnable) iff there exists a learning algorithm A 
such that, for each f in C and ε (0 < ε < 1), 
algorithm A halts in a polynomial in 1/ε and |f| 
number of steps and examples, and outputs a 
concept  h in C which satisfies: With probability 
at least 1- ε,

                Σf(v) ≠ h (v) P(v)  < ε



  

Simplicity means understanding

 We will prove that given a set of positive and negative 
data, any consistent concept of size `reasonably' shorter 
than the size of data is an `approximately' correct 
concept with high probability. That is, if one finds a 
shorter representation of data, then one learns. The 
shorter the conjecture is, the more efficiently it explains 
the data, hence the more precise the future prediction.

 Let α < 1, β ≥ 1, and  m be the number of examples, and 
s be the length (in number of bits) of the smallest 
concept f in C consistent with the examples. An Occam 
algorithm is a polynomial time algorithm which finds a 
hypothesis h in C consistent with the examples and 
satisfying

                     K(h) ≤ sβ mα



  

Occam Razor Theorem
(Blumer, Ehrenfeucht,  Haussler, Warmuth)

Theorem. A concept class C is polynomially pac-learnable if there is an 
Occam algorithm for it. I.e. With probability >1- ε, Σf(v) ≠ h (v) P(v)  < ε

     Proof. Fix an error tolerance ε (0 < ε <1). Choose m such that 
                m ≥ max { (2sβ/ ε)1/(1- α) , 2/ ε log 1/ ε }.
     This is polynomial in s and 1/ ε. Let m be as above. Let S be a set of 

r concepts, and let f be one of them. 
Claim The probability that any concept h in S satisfies P(f ≠ h) ≥ ε and 

is consistent with m independent examples of f is less than (1- ε )m r.
     Proof: Let Eh be the event that hypothesis h agrees with all m 

examples of f. If P(h ≠ f ) ≥ ε, then h is a bad hypothesis. That is, h 
and f disagree with probability at least ε on a random example. The 
set of bad hypotheses is denoted by B. Since the m examples of f 
are independent, for a bad hypothesis h we have

                  P( Eh ) ≤  (1- ε )m .
     Since there are at most r bad hypotheses,
                  P( Uh in B Eh) ≤ (1- ε)m r.                                  QED (claim)



  

Proof of the theorem continues

The postulated Occam algorithm finds a hypothesis of 
Kolmogorov complexity at most sβmα. The number r of 
hypotheses of this complexity satisfies

          log r ≤ sβmα . 

By assumption on m, r ≤ (1- ε )-m/ 2                    

(Use ε < - log (1- ε) < ε /(1- ε) for 0 < ε <1).  Using the 
claim, the probability of producing a hypothesis with error 
larger than ε is less than

             (1 - ε )m r ≤ (1- ε )m/2 < ε.
The last inequality is by substituting m.                   QED



  

Summary

The simpler, the better.
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