
 

Lecture 9. Resource bounded KC

 K-, and C- complexities depend on unlimited 
computational resources. Kolmogorov himself first 
observed that we can put resource bounds on such 
computations. This was subsequently studied by 
Barzdins, Loveland, Daley, Levin, Adleman.

 Hartmanis, Ko, Sipser started a new trend in 
computer science in the 1980’s.

 In the 1960’s, two parallel theories were developed:
 Computational complexity – Hartmanis and Stearns, 

Rabin, Blum, measuring time/space complexity
 Kolmogorov complexity, measuring information.

 Resource bounded KC links the two theories.



 

Theory (I will do C, same applies for K)

 Ct,s(x|y) is the t-time s-space limited Kolmogorov 
complexity of x condition on y. I.e. the length of 
shortest program that with input y, produces x in time 
t(n) and space s(n) with n = |x|.

 In standard C, K complexity, it does not matter if we 
say “produces x” or “accepts x”, they are the same. 
But in resource bounded case, they are likely to be 
different. So Sipser defined  CDt,s(x|y) to be the length 
of the shortest program that with input y accepts x in 
time t(n) and space s(n).

 When we use just one parameter such as time, we 
will simply write Ct or CDt.



 

Relationship between Ct and CDt

Theorem (Sipser). (a) For any t, CDt(x)≤Ct+O(n)(x)+O(1). 
(b) Reversely, for polynomial p, there is polynomial q, 
Cq(x|A) ≤ CDp(x)+O(1), where A is an NP-complete 
set.

Remark: When t is exponential, Ct and CDt are same.

Proof. (a) is trivial. (b) Define T such that it accepts only 
x  and it runs in time p(n). Use T with oracle A to 
determine the successive bits of x. The  set A is 
defined by  A={<T,y,1t,1n>: T accepts yz in time t(n) 
for some z s.t. |yz|=n} is NP-complete. So we can find 
a string accepted by T by querying its successive bits 
(next bit would be 0 or 1, ask both ways) in time 
polynomial in p(n).                     QED



 

Hierachy

 (Hartmanis) It is possible to obtain a resource 
bounded hierarchy --- there are always 
strings that need more seed length, time, or 
space to compute.  I.e. define C[f(n), t(n), 
s(n)] to be the set of strings of length n that 
can be generated by programs of length f(n), 
in  time t(n) and space s(n). Then increasing 
each of the three parameters (to some 
degree) will result a bigger class.



 

Compression relative to a set

 If A is computable, |x|=n and x∈A, we know: 

          C(x|A), CD(x|A) ≤ log|A=n|+O(logn)
 But with time limit, this is not so easy. The 

above proof requires us to check all 2n strings 
to see which are in A, even if A is in P. We 
will only provide some sample of the results in 
this direction.

Theorem [Buhrman-Fortnow-Laplante] Let A be any set 
given as oracle. There is a polynomial p s.t. 
for all x∈A=n

         CDp(x|A=n)≤2log|A=n|+2logn+O(1).



 

Proof of Buhrman-Fortnow-Laplante’s theorem

Proof.
Lemma. Let S={x1, … , xd} ⊆ {0, … ,2n-1}. For all xi ∈ S, there exists a 

prime pi≤2dn such that for all j≠ i, xi ≠  xj mod pi

Proof of Lemma. For each pair (i,j) there are at most logc2n = log2n /logc 
different primes p s.t. c ≤ p ≤ 2c, and xi=xj mod p. Fixing i, we have d-1 
pairs (xi,xj) for j ≠  i. Total there are at most (d-1)logc 2n such primes. By 
prime number theorem, there are c/logc primes in the range of [c,2c]. 
Taking dn>c>(d-1)n, then there must be at least one pi s.t. for j≠ i, xi ≠  xj 
mod pi. Since pi ≤2c, pi≤2dn.  QED

Use the lemma with d=|A=n|, for x∈A=n , to get px. We can write a program: 
input y, if y∉A=n by oracle query, then reject y; else check if y=x mod px 
then accept y, else reject y.

The above program needs information: px and x mod px , px ≤ 2|A=n|n.
This is 2|px|+O(1), approximately 2log|A=n|+2logn+O(1).  QED

 Remark: it is possible to improve to log|A=n| if we use an extra random 
string beside the oracle in the conditional (Sipser, Theorem 7.2.2 in 
textbook).



 

Using it …

Example. There is a recursive set A s.t. PA≠ NPA

Proof. Define f(1)=2, f(k)=2f(k-1). By diagonalization, 
choose B so that B⊆{1f(k)} and B∈DTIME[nlogn]-P. Use 
B to construct A as follows: For each 1f(k)∈B, put first 
string of length n=f(k) from 

     C[logn,nlogn] – C[logn,nloglogn]        (*)
    in A for each k.
   A is recursive and B∈NPA as an NTM can guess the 

string in A in poly time. But B is not in P, and a DTM 
cannot find a string in A to query (in polynomial time) 
by (*). Hence the oracle A does not help it. Thus B is 
also not in PA.

                                                        QED
 Remark: We have used the fact that some strings are 

hard to get to, without enough time.



 

Instance Complexity (Orponen-Ko-Schoning-Watanabe)

 This is a cute concept. Let T be a UTM. Given a set A 
and time bound t, define the instance complexity of x 
as: (with A(y)=1 if y in A and 0 otherwise)

     icT
t
 (x: A)= min{|p|: T(p,x) halts, and for all 

                          y such that T(p,y) halts, 
                          T(p,y)=A(y) in time t.}
 You can prove an invariance theorem for this also. So 

we will drop T. The goal is to identify hard instances 
that makes a language hard.

 Facts:
 CDt(x)=ict(x: {x})
 A set A is in P iff there is a polynomial p, such that for 

all x, icp(x: A)=constant.



 

Levin’s Kt complexity and universal search

 Imagine how much time God takes to create a 
sequence (such as our genomes). Assume He can 
flip a coin, and He has Turing machines. He can 
either keep on flipping a coin or enumerate until he 
gets x in time 2|x|, or He can start to compute x from a 
short seed.

 For random sequence x, it takes expected 2|x| time. 
But for easy sequences, it can be generated from 
shorter (random) seed in time t. So let’s define

            age(x)=minp {2|p|t : U(p)=x in t steps}

 Then Kt(x)=log age(x).



 

Universal search

 If there is a polynomial time algorithm to solve NP-
hard problems, can we find it?

 Yes, we now describe a method of Levin who called it 
“universal search”.

Lemma. If there is an alg A that solves SAT in time t(n), 
then the following algorithm solves it in time ct(n) for 
some constant c.

Proof. The algorithm is: Simulate all TM’s in the 
following dovetailing fashion: T1 every 2nd step; T2 
every 2nd step among the remaining steps; T3 every 
2nd step among the remaining steps; … Then if Tk 

solves the SAT problem in time t(n), then this 
algorithm solves it in 2kt(n) + O(1) steps.    QED

Remark: Levin’s algorithm uses Kt complexity and is slightly faster.



 

Logical depth (Chaitin, Bennett)

 We think a book in number theory is deep. It is not 
random, it has very low Kolmogorov complexity. In 
fact, all its theorems can be derived automatically by 
enumerating all the proofs --- hence C(number theory 

book)=O(1).
 Some other things are shallow: children books, 

sequence 1n. In fact a Kolmogorov random sequence 
such as ideal gas is also shallow. 

 Can we identify information with depth? 1n does not 
contain information, but a random string also does 
not contain information.



 

Shallow and deep things

  Crystal is shallow

  Gas is also shallow

  A math book is deep

  Life is deep

A structure is deep, if it is superficially
 random but subtly redundant ... Bennett



 

Defining “depth” 

 Attempt 1. We cannot use the number of steps 
needed to compute from x*, the shortest program 
generating x, to x, since perhaps there is another 
program slightly longer than x* but it runs much faster 
– such a definition is not “stable”.

 Attempt 2. So we relax to almost minimum programs. 
We can say x has depth d within error 2-b if x can be 
computed in d steps by a program p s.t. |p|≤|x*|+b, 
i.e. 2-|p|/2-K(x)≥2-b. But what about there are many such 
programs of length |x*|+b? Consider them?

 Thus, we should consider all such programs
         Q(x) = ΣU(p)=x 2-|p|



 

Defining “depth”, cont.

Definition. The depth of a string x at significance 
level ε=2-b is

               depthε(x)=min{t: Qt(x)/Q(x) ≥ ε},

   where Qt(x)=Σp runs in t steps2-|p|. We say a string x 
is (b,d) deep if d=depthε(x) and ε=2-b.

Remark. Thus a (d,b)-deep string receives 1/2b 
fraction of its algorithmic probability from 
programs running in d steps.



 

Examples

 Remember the halting probability Ω, and χ (its i-th bit indicates if 
the i-th TM halts). Although both encodes the halting information 
of TMs, χ is deep and Ω is shallow. This is because Ω encodes 
the halting problem in maximum density and it is recursively 
indistinguishable from a random string, hence practically 
useless. I.e. K(Ω1:n)≥n-O(1). K(χ1:n) on the other hand is small 
(logn). If t is the minimum time required to compute χ1:n from a 
logn-sized program, then it is t-deep at all significance levels. In 
fact it is very deep as t grows faster than any computable 
function.

 Consider our genome. How deep is it? If it needs to evolve from 
nothing (or very shallow strings), how long does it take? This is 
possibly a computation in PSPACE (linear space). If so, and if 
P=PSPACE, then every string (genome) has polynomial depth. 
Otherwise, some may have exponential depth. We of course 
know (from the historical records) that our genomes did not 
have exponential depth, if God did not play dice with us.
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