

Lecture 9. Resource bounded KC

 K-, and C- complexities depend on unlimited
computational resources. Kolmogorov himself first
observed that we can put resource bounds on such
computations. This was subsequently studied by
Barzdins, Loveland, Daley, Levin, Adleman.

 Hartmanis, Ko, Sipser started a new trend in
computer science in the 1980’s.

 In the 1960’s, two parallel theories were developed:
 Computational complexity – Hartmanis and Stearns,

Rabin, Blum, measuring time/space complexity
 Kolmogorov complexity, measuring information.

 Resource bounded KC links the two theories.

Theory (I will do C, same applies for K)

 Ct,s(x|y) is the t-time s-space limited Kolmogorov
complexity of x condition on y. I.e. the length of
shortest program that with input y, produces x in time
t(n) and space s(n) with n = |x|.

 In standard C, K complexity, it does not matter if we
say “produces x” or “accepts x”, they are the same.
But in resource bounded case, they are likely to be
different. So Sipser defined CDt,s(x|y) to be the length
of the shortest program that with input y accepts x in
time t(n) and space s(n).

 When we use just one parameter such as time, we
will simply write Ct or CDt.

Relationship between Ct and CDt

Theorem (Sipser). (a) For any t, CDt(x)≤Ct+O(n)(x)+O(1).
(b) Reversely, for polynomial p, there is polynomial q,
Cq(x|A) ≤ CDp(x)+O(1), where A is an NP-complete
set.

Remark: When t is exponential, Ct and CDt are same.

Proof. (a) is trivial. (b) Define T such that it accepts only
x and it runs in time p(n). Use T with oracle A to
determine the successive bits of x. The set A is
defined by A={<T,y,1t,1n>: T accepts yz in time t(n)
for some z s.t. |yz|=n} is NP-complete. So we can find
a string accepted by T by querying its successive bits
(next bit would be 0 or 1, ask both ways) in time
polynomial in p(n). QED

Hierachy

 (Hartmanis) It is possible to obtain a resource
bounded hierarchy --- there are always
strings that need more seed length, time, or
space to compute. I.e. define C[f(n), t(n),
s(n)] to be the set of strings of length n that
can be generated by programs of length f(n),
in time t(n) and space s(n). Then increasing
each of the three parameters (to some
degree) will result a bigger class.

Compression relative to a set

 If A is computable, |x|=n and x∈A, we know:

 C(x|A), CD(x|A) ≤ log|A=n|+O(logn)
 But with time limit, this is not so easy. The

above proof requires us to check all 2n strings
to see which are in A, even if A is in P. We
will only provide some sample of the results in
this direction.

Theorem [Buhrman-Fortnow-Laplante] Let A be any set
given as oracle. There is a polynomial p s.t.
for all x∈A=n

 CDp(x|A=n)≤2log|A=n|+2logn+O(1).

Proof of Buhrman-Fortnow-Laplante’s theorem

Proof.
Lemma. Let S={x1, … , xd} ⊆ {0, … ,2n-1}. For all xi ∈ S, there exists a

prime pi≤2dn such that for all j≠ i, xi ≠ xj mod pi

Proof of Lemma. For each pair (i,j) there are at most logc2n = log2n /logc
different primes p s.t. c ≤ p ≤ 2c, and xi=xj mod p. Fixing i, we have d-1
pairs (xi,xj) for j ≠ i. Total there are at most (d-1)logc 2n such primes. By
prime number theorem, there are c/logc primes in the range of [c,2c].
Taking dn>c>(d-1)n, then there must be at least one pi s.t. for j≠ i, xi ≠ xj
mod pi. Since pi ≤2c, pi≤2dn. QED

Use the lemma with d=|A=n|, for x∈A=n , to get px. We can write a program:
input y, if y∉A=n by oracle query, then reject y; else check if y=x mod px
then accept y, else reject y.

The above program needs information: px and x mod px , px ≤ 2|A=n|n.
This is 2|px|+O(1), approximately 2log|A=n|+2logn+O(1). QED

 Remark: it is possible to improve to log|A=n| if we use an extra random
string beside the oracle in the conditional (Sipser, Theorem 7.2.2 in
textbook).

Using it …

Example. There is a recursive set A s.t. PA≠ NPA

Proof. Define f(1)=2, f(k)=2f(k-1). By diagonalization,
choose B so that B⊆{1f(k)} and B∈DTIME[nlogn]-P. Use
B to construct A as follows: For each 1f(k)∈B, put first
string of length n=f(k) from

 C[logn,nlogn] – C[logn,nloglogn] (*)
 in A for each k.
 A is recursive and B∈NPA as an NTM can guess the

string in A in poly time. But B is not in P, and a DTM
cannot find a string in A to query (in polynomial time)
by (*). Hence the oracle A does not help it. Thus B is
also not in PA.

 QED
 Remark: We have used the fact that some strings are

hard to get to, without enough time.

Instance Complexity (Orponen-Ko-Schoning-Watanabe)

 This is a cute concept. Let T be a UTM. Given a set A
and time bound t, define the instance complexity of x
as: (with A(y)=1 if y in A and 0 otherwise)

 icT
t
 (x: A)= min{|p|: T(p,x) halts, and for all

 y such that T(p,y) halts,
 T(p,y)=A(y) in time t.}
 You can prove an invariance theorem for this also. So

we will drop T. The goal is to identify hard instances
that makes a language hard.

 Facts:
 CDt(x)=ict(x: {x})
 A set A is in P iff there is a polynomial p, such that for

all x, icp(x: A)=constant.

Levin’s Kt complexity and universal search

 Imagine how much time God takes to create a
sequence (such as our genomes). Assume He can
flip a coin, and He has Turing machines. He can
either keep on flipping a coin or enumerate until he
gets x in time 2|x|, or He can start to compute x from a
short seed.

 For random sequence x, it takes expected 2|x| time.
But for easy sequences, it can be generated from
shorter (random) seed in time t. So let’s define

 age(x)=minp {2|p|t : U(p)=x in t steps}

 Then Kt(x)=log age(x).

Universal search

 If there is a polynomial time algorithm to solve NP-
hard problems, can we find it?

 Yes, we now describe a method of Levin who called it
“universal search”.

Lemma. If there is an alg A that solves SAT in time t(n),
then the following algorithm solves it in time ct(n) for
some constant c.

Proof. The algorithm is: Simulate all TM’s in the
following dovetailing fashion: T1 every 2nd step; T2
every 2nd step among the remaining steps; T3 every
2nd step among the remaining steps; … Then if Tk

solves the SAT problem in time t(n), then this
algorithm solves it in 2kt(n) + O(1) steps. QED

Remark: Levin’s algorithm uses Kt complexity and is slightly faster.

Logical depth (Chaitin, Bennett)

 We think a book in number theory is deep. It is not
random, it has very low Kolmogorov complexity. In
fact, all its theorems can be derived automatically by
enumerating all the proofs --- hence C(number theory

book)=O(1).
 Some other things are shallow: children books,

sequence 1n. In fact a Kolmogorov random sequence
such as ideal gas is also shallow.

 Can we identify information with depth? 1n does not
contain information, but a random string also does
not contain information.

Shallow and deep things

 Crystal is shallow

 Gas is also shallow

 A math book is deep

 Life is deep

A structure is deep, if it is superficially
 random but subtly redundant ... Bennett

Defining “depth”

 Attempt 1. We cannot use the number of steps
needed to compute from x*, the shortest program
generating x, to x, since perhaps there is another
program slightly longer than x* but it runs much faster
– such a definition is not “stable”.

 Attempt 2. So we relax to almost minimum programs.
We can say x has depth d within error 2-b if x can be
computed in d steps by a program p s.t. |p|≤|x*|+b,
i.e. 2-|p|/2-K(x)≥2-b. But what about there are many such
programs of length |x*|+b? Consider them?

 Thus, we should consider all such programs
 Q(x) = ΣU(p)=x 2-|p|

Defining “depth”, cont.

Definition. The depth of a string x at significance
level ε=2-b is

 depthε(x)=min{t: Qt(x)/Q(x) ≥ ε},

 where Qt(x)=Σp runs in t steps2-|p|. We say a string x
is (b,d) deep if d=depthε(x) and ε=2-b.

Remark. Thus a (d,b)-deep string receives 1/2b
fraction of its algorithmic probability from
programs running in d steps.

Examples

 Remember the halting probability Ω, and χ (its i-th bit indicates if
the i-th TM halts). Although both encodes the halting information
of TMs, χ is deep and Ω is shallow. This is because Ω encodes
the halting problem in maximum density and it is recursively
indistinguishable from a random string, hence practically
useless. I.e. K(Ω1:n)≥n-O(1). K(χ1:n) on the other hand is small
(logn). If t is the minimum time required to compute χ1:n from a
logn-sized program, then it is t-deep at all significance levels. In
fact it is very deep as t grows faster than any computable
function.

 Consider our genome. How deep is it? If it needs to evolve from
nothing (or very shallow strings), how long does it take? This is
possibly a computation in PSPACE (linear space). If so, and if
P=PSPACE, then every string (genome) has polynomial depth.
Otherwise, some may have exponential depth. We of course
know (from the historical records) that our genomes did not
have exponential depth, if God did not play dice with us.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

