Automatic Meaning Discovery Using Google

Paul Vitanyi

CWI, University of Amsterdam, National ICT Australia

Joint work with Rudi Cilibrasi

New Scientist, Jan. 29, 2005

Slashdot: News for Nerds; Stuff that Matters, Jan. 28, 2005

Slashdot I Deriving Semantic Meaning From Google Results

http://science.slashdot.org/article.pl?sid=05/01/29/1815242&tid=217...

OSTG | SourceForge - ThinkGeek - IT Product Guide - Linux.com - NewsForge - freshmeat - Newsletters - TechJobs - Slashdot Br

These kinds of articles never seem to get a very basic problem--natural languages. English is full of words that trip even humans. "Right" the direction versus "right" the judgement is a good example. In wartime something as simple as that may have lead to

Dutch Radio: TROS Radio Online, March 8, 2005

The Problem:

Given: Literal objects (binary files)

Determine: "Similarity" Distance Matrix (distances between every pair)Applications:Clustering, Classification, Evolutionary trees of
Internet documents, computer programs, chain letters,
genomes, languages, texts, music pieces, ocr,

TOOL:

• Information Distance (Li, Vitanyi, 96; Bennett, Gacs, Li, Vitanyi, Zurek, 98)

 $D(x,y) = \min \{ |p|: p(x)=y \& p(y)=x \}$

Binary program for a Universal Computer (Lisp, Java, C, Universal Turing Machine)

Theorem (i) $D(x,y) = \max \{K(x|y), K(y|x)\}$

Kolmogorov complexity of x given y, defined as length of shortest binary ptogram that outputs x on input y.

(ii) $D(x,y) \le D'(x,y)$ Any computable distance satisfying $\sum_{y \ge 2} -D'(x,y) \le 1$ for every x.

(iii) D(x,y) is a metric.

Properties NID:

• **Theorem:** (i) 0 ≤ d(x,y) ≤ 1

(i) $0 \le d(x,y) \le 1$ (ii) d(x,y) is a metric [symmetric,triangle inequality, d(x,x)=0(iii) d(x,y) is universal $d(x,y) \le d'(x,y)$ for every computable, normalized $(0\le d'(x,y)\le 1)$ distance satisfying standard "density" condition.

 Drawback: NID(x,y) = d(x,y) is noncomputable, since K(.) is!

In Practice:

NCD(x,y)= C(xy)-min{C(x), C(y)}

$max{C(x),C(y)}$

Normalized Compression Distance (NCD) Length (#bits) compressed version x using compressor C (gzip, bzip2, PPMZ,...)

 This NCD is the same formula as NID, but rewritten using "C" instead of "K"

Example: Phylogeny using whole mtDNA of species

Genomics just one example; also used with (e.g.): MIDI music files (music clustering) Languages (language tree) Literature OCR

Time sequences: (All data bases used in all major data-mining conferences of last 10Y) Superior over all methods: In: Anomaly detection Heterogenous data

New Scientist, March 28, 2003

Izvestia, April 2003

Ирландии надгробные сооружения во время летнего и зимчего солнцестояния обращены к восходящему Солнцу, которое достигает в это время своей самой северной или самой южной точки на небосводе, что легко увидеть в любом месте земного шара.

АРХИВАТОР РАЗБИРАЕТСЯ В МУЗЫКЕ

С помощью обычной компьютерной программы сжатия файлов можно отличить классическую музыку от джаза и рока, не воспроизводя ни одной ноты. Это неожиданное открытие поможет определить, кому из композиторов принадлежат музыкальные произведения, авторы которых до сих пор считались неизвестными.

Программы архивирования данных, наподобие zip, не только сжимают файлы в приемлемые по размерам архивы. Их можно использовать и для распознавания языка, на котором написан отрывок текста.

Руди Цилибраси, Пол Витыньи и Рональд де Вольф из Голландского национального исследовательского института в Амстердаме решили посмотреть, можно ли использовать эту особенность, чтобы распознавать музыку разных жанров. Отличительная особенность приема в том, что для различения музыкальных жанров не требуется проигрывать ни одной ноты. Вместо того чтобы искать общие мелодические и ритмические рисунки, программа просто сжимает звуковые файлы.

ЗАПАХ ПОРАЖЕНИЯ

Запах влияет на наше поведение, так как мы склонны запоминать его в связи с эмоциями, которые ему сопутствовали, считает психолог из университета Брауна (США).

Рейчел Херц провела серию экспериментов с участием студенток университета Брауна, чтобы проверить, как влияет запах на эмоции и по-

тим игру. победить в которой С

Если атомоход д

Дер' прг случ

CompLearn Toolkit

- <u>home</u>
- documentation
- download
- <u>forums</u>
- <u>license</u>
- development
- What is CompLearn?
- The CompLearn Toolkit is a suite of simple-to-use utilities that you can use to apply compression techniques to the process of discovering and learning patterns. The compression-based approach used is powerful because it can mine patterns in completely different domains. It can classify musical styles of pieces of music and identify unknown composers. It can identify the language of bodies of text. It can discover the relationships between species of life and even the origin of new unknown viruses such as SARS. Other uncharted areas are up to you to explore. In fact, this method is so general that it requires no background knowledge about any particular classification. There are no domain-specific parameters to set and only a handful of general settings. Just feed and run.CompLearn was written by <u>Rudi Cilibrasi</u>.**Press**
- CompLearn is described in <u>New Scientist</u> and <u>Technology Research News</u>. About
- CompLearn was developed at the <u>National Research Institute CWI</u> in Amsterdam. It was created to support the research paper <u>Algorithmic Clustering of Music</u>.
- System Requirements
- CompLearn runs under Windows and Unix. Complearn requires an installation of the <u>Ruby</u> scripting language. Installation instructions for <u>Windows, Linux, and Unix here.</u>
- Compression is achieved through the Ruby <u>BZ2</u> library.
- For visualizing your graphed results, the AT&T's graphviz package is also needed.
- The toolkit requires very small amounts of disk space to install and run.
- Web design by juliob.com

You can use it too!

CompLearn Toolkit:

http://complearn.sourceforge.net

"x" and "y" are literal objects (files);

What about abstract objects like "home", "red", "Socrates", "chair",?

Or names for literal objects?

Non-Literal Objects

Googling for Meaning

 Google distribution:
 g(x) = Google page count "x" # pages indexed

Google Compressor

$$G(x) = \log 1 / g(x)$$

This is the Shannon-Fano code length that has minimum expected code word length w.r.t. g(x).

Hence we can view Google as a Google Compressor.

Normalized Google Distance (NGD)

$$NGD(x,y) = G(x,y) - \min\{G(x),G(y)\}$$
$$\max\{G(x),G(y)\}$$

Same formula as NCD, using C = Google compressor

Use the Google counts and the CompLearn Toolkit to apply NGD.

Example

- "horse": #hits = 46,700,000
- "rider": #hits = 12,200,000
- "horse" "rider": #hits = 2,630,000
- #pages indexed: 8,058,044,651

NGD(horse,rider) = 0.443 Theoretically+empirically: scale-invariant

Universality

 Every web author i generates its own individual Google distribution g_i individual Google code length G_i individual NGD denoted NGD_i

Theorem $g_i(x) = O(g(x));$ $G(x) = G_i(x)+O(1);$ $NGD(x,y) \le NGD_i(x,y), w.h.p.$

Numbers versus log-probability

Probability according to Google.

Names in variety of languages and digits.

Same behavior in all formats. Google detects meaning:

All multiples of five stand out.

Colors and Numbers—The Names! Hierarchical Clustering

Colors vs Numbers: Minimum Spanning Tree Animation

Hierarchical Clustering of 17th Century Dutch Painters, Paintings given by name, **without painter's name**.

Hendrickje slapend, Portrait of Maria Trip, Portrait of Johannes Wtenbogaert, The Stone Bridge, The Prophetess Anna, Leiden Baker Arend Oostwaert, Keyzerswaert, Two Men Playing Backgammon, Woman at her Toilet, Prince's Day, The Merry Family, Maria Rey, Consul Titus Manlius Torquatus, Swartenhont, Venus and Adonis

Using NGD in SVM (Support Vector Machines) to learn concepts (binary classification)

Training Data

Positive Training avalanche death threat hurricane rape train wreck	(22 cases) bomb threat fire landslide roof collapse trapped miners	broken leg flood murder sinking ship	burglary gas leak overdose stroke	car collision heart attack pneumonia tornado
Negative Training arthritis dandruff flat tire missing dog sore throat	(25 cases) broken dishwasher delayed train frog paper cut sunset	broken toe dizziness headache practical joke truancy	cat in tree drunkenness leaky faucet rain vagrancy	contempt of court enumeration littering roof leak vulgarity
Anchors crime wash	(6 dimensions) happy	help	safe	urgent

Example:

Emergencies

Testing Results

	Positive tests	Negative tests
Positive	assault, coma,	menopause, prank call,
Predictions	electrocution, heat stroke,	pregnancy, traffic jam
	homicide, looting,	
	meningitis, robbery,	
	suicide	
Negative	sprained ankle	acne, annoying sister,
Predictions		campfire, desk,
		mayday, meal
Accuracy	15/20 = 75.00%	

Example: Classifying Prime Numbers

Training Da	ta			
	(2.1			
Positive Training	(21 cases)		10	
11	13	17	19	2
23	29	3	31	37
41	43	47	5	53
59	61	67	7	71
73				
Negative Training	(22 cases)			
10	12	14	15	16
18	20	21	22	24
25	26	27	28	30
32	33	34	4	6
8	9			
Anchors	(5 dimensions)			
$\operatorname{composite}$	number	orange	prime	record
Testing Re	sults			
10000008 100	Positi	ve tests	Negat	ive tests
Positive	101, 1	.03,	110	
Predictions	107, 1	.09,		
	79, 83	, [.]		
	89, 91	,		
	97			
Negative			36, 38	,
Predictions			40, 42	,
			44, 45	,
			46, 48	з,
			49	
Accuracy	18/19	= 94.74%		

Example: Electrical Terms

Training Data

Positive Training Cottrell precipitator attenuator brush control board electric circuit electrical fuse filter instrument panel precipitator security solar panel transmitting aerial	(58 cases) Van de Graaff generator ballast capacitance control panel electrical circuit electrical relay flasher jack reactor security measures spark arrester transponder	Wimshurst machine battery capacitor distributer electrical condenser electrograph fuse light ballast rectifier security system spark plug zapper	aerial bimetallic strip circuit electric battery electrical device electrostatic generator inductance load relay solar array sparking plug	antenna board condenser electric cell electrical distribute electrostatic machi inductor plug resistance solar battery suppresser
Negative Training Andes Gibbs Quakeress affecting capitals deeper exclamation introduces monster repudiate sob	(55 cases) Burnett Hickman Southernwood aggrieving concluding definitions faking kappa parenthesis retry swifter	Diana Icarus Waltham attractiveness constantly dimension helplessness maims pinches royalty teared	DuPonts Lorraine Washington bearer conviction discounting humidly marine predication shopkeepers thrashes	Friesland Madeira adventures boll damming distinctness hurling moderately prospect soap tuples
Anchors bumbled	(6 dimensions) distributor	premeditation	resistor	suppressor

Testing Results

	Positive tests	Negative tests
Positive	cell, male plug,	
Predictions	panel, transducer,	
	transformer	
Negative		Boswellizes, appointer,
Predictions		enforceable, greatness,
		planet
Accuracy	10/10 = 100.00%	

Example: Religious Terms

Training Data

Positive Training Allah Jerry Falwell Saint Jude crucifix religion	(22 cases) Catholic Jesus The Pope devout sacred	Christian John the Baptist Zeus holy	Dalai Lama Mother Theresa bible prayer	God Muhammad church rabbi
Negative Training Abraham Lincoln Jimmy Carter encyclopedia minus seven	(23 cases) Ben Franklin John Kennedy evolution money telephone	Bill Clinton Michael Moore helmet mouse walking	Einstein atheist internet science	George Washington dictionary materialistic secular
Anchors evil spirit	(6 dimensions) follower	history	rational	scripture

Testing Results

	Positive tests	Negative tests
Positive	altar, blessing,	earth, shepherd
Predictions	communion, heaven,	
	sacrament, testament,	
	vatican	
Negative	angel	Aristotle, Bertrand Russell,
Predictions		Greenspan, John,
		Newton, Nietzsche,
		Plato, Socrates,
		air, bicycle,
		car, fire,
		five, man,
		monitor, water,
		whistle
Accuracy	24/27 - 88.89%	

Comparison with WordNet Semantics http://www.cogsci.princeton.edu/~wn

NGD-SVM Classifier on 100 randomly selected WordNet Categories

Randomly selected positive, negative and test sets

Histogram gives accuracy With respect to PhD experts entered knowledge in the WordNet Database

Mean Accuracy is 0.8725 Standard deviation is 0.1169

Accuracy almost always > 75% --Automatically

Translation Using NGD

Problem:	Given starting vocabulary	
	English	$\mathbf{Spanish}$
	tooth	diente
	joy	alegria
	tree	arbol
	electricity	electricidad
	table	tabla
	money	dinero
	sound	sonido
	music	musica
	Unknown-permutation vocabulary	
	plant	bailar
	car	hablar
	dance	amigo
	speak	coche
	friend	planta

ransialion		-	:-			-	Т
I I AI ISIALIOI	2	วท	IO	at	ns	ra	н

	English	\mathbf{S} panish
	plant	planta
Dradiated (optimal) pormutation	car	coche
Fredicted (optimal) permutation	dance	bailar
	speak	hablar

lar əlar friend amigo

Selected Bibliography

D. Benedetto, E. Caglioti, and V. Loreto. Language trees and zipping, Physical Review Letters, 88:4(2002) 048702. C.H. Bennett, P. Gacs, M. Li, P.M.B. Vitanyi, and W. Zurek. Information Distance, IEEE Transactions on Information Theory, 44:4(1998), 1407--1423.

C.H. Bennett, M. Li, B. Ma, Chain letters and evolutionary histories, Scientific American, June 2003, 76--81.

- X. Chen, B. Francia, M. Li, B. McKinnon, A. Seker, Shared information and program plagiarism detection, IEEE Trans. Inform. Th., 50:7(2004), 1545--1551.
- R. Cilibrasi, The CompLearn Toolkit, 2003, http://complearn.sourceforge.net/ .

R. Cilibrasi, P.M.B. Vitanyi, R. de Wolf, Algorithmic clustering of music based on string compression, Computer Music Journal, 28:4(2004), 49-67.

R. Cilibrasi, P.M.B. Vitanyi, Clustering by compression, IEEE Trans. Inform. Th., 51:4(2005)

R. Cilibrasi, P.M.B. Vitanyi, Automatic meaning discovery using Google, http://xxx.lanl.gov/abs/cs.CL/0412098 (2004)

E. Keogh, S. Lonardi, and C.A. Rtanamahatana, Toward parameter-free data mining, In: Proc. 10th ACM SIGKDD Intn'l Conf. Knowledge Discovery and Data Mining, Seattle, Washington, USA, August 22---25, 2004, 206--215.
M. Li, J.H. Badger, X. Chen, S. Kwong, P. Kearney, and H. Zhang. An information-based sequence distance and its application to whole mitochondrial genome phylogeny, Bioinformatics, 17:2(2001), 149--154.
M. Li and P.M.B. Vitanyi, Reversibility and adiabatic computation: trading time and space for energy, Proc. Royal Society of

London, Series A, 452(1996), 769-789.

M. Li and P.M.B Vitanyi. Algorithmic Complexity, pp. 376--382 in: International Encyclopedia of the Social \& Behavioral Sciences, N.J. Smelser and P.B. Baltes, Eds., Pergamon, Oxford, 2001/2002.
M. Li, X. Chen, X. Li, B. Ma, P.M.B. Vitanyi. The similarity metric, IEEE Trans. Inform. Th., 50:12(2004), 3250- 3264.
M. Li and P.M.B. Vitanyi. An Introduction to Kolmogorov Complexity and its Applications, Springer-Verlag, New York, 2nd Edition, 1997.

A.Londei, V. Loreto, M.O. Belardinelli, Music style and authorship categorization by informative compressors, Proc. 5th Triannual Conference of the European Society for the Cognitive Sciences of Music (ESCOM), September 8-13, 2003, Hannover, Germany, pp. 200-203.

S. Wehner, Analyzing network traffic and worms using compression, Manuscript, CWI, 2004. Partially available at http://homepages.cwi.nl/~wehner/worms/

TEXTS AND MONOGRAPHS IN COMPUTER SCIENCE AN INTRODUCTION TO KOLMOGOROV COMPLEXITY AND ITS APPLICATIONS

Ming Li Paul Vitányi

NEW SCIENTIST, 29 Jan. 2005

Technology

A search for meaning

Using search engines to glean the meaning of words may be the vital spark leading to intelligent computers

DUNCAN GRAHAM-ROWE

COMPUTERS can learn the meaning of words simply by plugging into Google. The finding could bring forward the day that true artificial intelligence is developed.

Trying to get a computer to work out what words mean distinguish between "rider" and "horse" say, and work out how they relate to each otheris a long-standing problem in artificial intelligence research.

One of the difficulties has been working out how to represent knowledge in ways that allow computers to use it. But suddenly that is not a problem any more, thanks to the massive body of text that is available, ready indexed, on search engines like Google (which has more than 8 billion pages indexed).

The meaning of a word can usually be gleaned from the words used around it. Take the word "rider". Its meaning can be deduced from the fact that it is often found close to words like "horse" and "saddle". Rival attempts to deduce meaning by relating hundreds of

thousands of words to each other require the creation of wast, elaborate databases that are taking an enormous amount of work to construct.

But Paul Vitanyi and Rudi Clilibrasi of the National Institute for Mathematics and Computer Science in Amsterdam, the Netherlands, realised that a Google search can be used to measure how closely two words relate to each other. For instance, imagine a computer needs to understand what a hat is

To do this, it needs to build a word tree - a database of how words relate to each other. It might start off with any two words to see how they relate to each other. For example, if it googles "hat" and "head" together it gets nearly 9 million hits, compared to, say, fewer than half a million hits for "hat" and "banana". Clearly "hat" and "head" are more closely related than "hat" and "banana".

IN THIS SECTION

A CD writer with a difference, page 22
 Paint-powered solar sails, page 23
 Beware low-resolution flat-panel TVs, page 24

To gauge just how closely, Viranyi and Cilibrasi have developed a statistical indicator based on these hit counts that gives a measure of a logical distance separating a pair of words. They call this the normalised Google distance, or NGD. The lower the NGD, the more closely the words are related.

By repeating this process for lots of pairs of words, it is possible to build a map of their distances,

The web might make all the difference to whether we make an artificial intelligence or not"

indicating how closely related the meanings of the words are. From this a computer can infer meaning, says Vitanyi. "This is automatic meaning extraction. It could well be the way to make a computer understand things and act semi-intelligently," he says.

The technique has managed to distinguish between colours, numbers, different religions and Dutch painters based on the number of hits they return, the researchers report in an online preprint (www.arxiv.org/abs/ cs.CL/0412098).

The pair's results do not surprise Michael Witbrock of the Cyc project in Austin, Texas, a 20-year effort to create an encyclopaedic knowledge base for use by a future artificial intelligence. Cyc represents a vast quantity of fundamental human knowledge, including word meanings, facts and rules of thumb. Witbrock believes the web will ultimately make it possible for computers to acquire a very detailed knowledge base. Indeed, Cyc has already started to draw upon the web for its knowledge. "The web might make all the difference in whether we make an artificial intelligence or not." says Witbrock.

29 January 2005 | NewScientist | 21