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Algorithmic Complexity

1. Introduction

In the mid 1960s, in the early stage of computer science
but with the general theory of Turing machines
(Turing 1936) well understood, scientists needed to
measure computation and information quantitatively.
Kolmogorov complexity was invented by R. J.
Solomonoff (1964), A. N. Kolmogorov (1965), and
G. J. Chaitin (1969), independently and in this chro-
nological order. This theory is now widely accepted as
the standard approach that settled a half-century
debate about the notion of randomness of an indi-
vidual object—as opposed to the better understood
notion of a random variable with intuitively both
‘random’ and ‘nonrandom’ individual outcomes.
Kolmogorov complexity has a plethora of applications
in many areas including computer science, math-
ematics, physics, biology, and social sciences (Li and
Vita! nyi 1993). This article only describes some basic
ideas and some appropriate sample applications.

Intuitively, the amount of information in a finite
string is the size (number of bits) of the smallest
program that, started with a blank memory, computes
the string and then terminates. A similar definition can
be given for infinite strings, but in this case the
program produces element after element forever.

Thus, 1n (a string of n ones) contains little information
because a program of size about logn outputs it.
Likewise, the transcendental number π¯ 3.1415…,
an infinite sequence of seemingly ‘random’ decimal
digits, contains a constant amount (O(1)) of infor-
mation. (There is a short program that produces the
consecutive digits of π forever.) Such a definition
would appear to make the amount of information in
an object depend on the particular programming
language used. This is the case. Fortunately it can be
shown that all choices of universal programming
languages (such as PASCAL, C++, Java, or LISP in
which we can in principle program every task that can
intuitively be programmed at all) lead to quantifica-
tion of the amount of information that is invariant up
to an additive constant. Formally, it is best formulated
in terms of ‘universal Turing machines,’ the celeb-
rated rigorous formulation of ‘computability’ by
A. M. Turing (1936) that started both the theory and
practice of computation.

This theory is different from Shannon information
theory that deals with the expected information in a
message from a probabilistic ensemble of possible
messages. Kolmogorov complexity, on the other hand,
measures the information in an individual string or
message. The randomness deficiency of a binary string
n bits long is the number of bits by which the
complexity falls short of n—the maximum complex-
ity—and a string is the more random the closer the
complexity is to its length.

2. Theory

The Kolmogorov complexity C(x) of a string x is the
length of the shortest binary program (for a fixed
reference universal programming language) that prints
x as its only output and then halts. A string x is
incompressible if C(x) is at least the length rxr (number
of bits) of x: the shortest way to describe x is to give
it literally. Similarly, a string x is ‘nearly’ incom-
pressible if C(x) is ‘almost as large as’ rxr.

The appropriate standard for ‘almost as large’
above can depend on the context, a typical choice
being C(x)& rxr®O(rlogxr). Similarly, the conditional
Kolmogorov complexity of x with respect to y,
denoted by C(xry), is the length of the shortest binary
program that, with extra information y, prints x. And
a string x is incompressible relative to y if C(xry) is
large in the appropriate sense.

Intuitively, we think of such patternless sequences
as being random, and we use the term ‘random
sequence’ synonymously with ‘incompressible se-
quence.’ This is not just a matter of naming but on the
contrary embodies the resolution of the fundamental
question about the existence and characterization of
random individual objects (strings). Following a half-
century of unsuccessful approaches and acrimonious
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scientific debates, in 1965 the Swedish mathematician
Per Martin-Lo$ f resolved the matter and gave a
rigorous formalization of the intuitive notion of a
random sequence as a sequence that passes all effective
tests for randomness. He gave a similar formulation
for infinite random sequences. The set of infinite
random sequences has measure 1 in the set of all
sequences.Martin-Lo$ f’s formulation uses constructive
measure theory and has equivalent formulations in
terms of being incompressible. Every Martin-Lo$ f
random sequence is uni�ersally random in the sense
that it individually possesses all effectively testable
randomness properties. (One can compare this with
the notion of intuitive computability that is precisely
captured by the notion of ‘computable by Turing
machines,’ and every Turing machine computation
can be performed by a universal Turing machine.)
Many applications depend on the following easy facts.

Lemma 1 Let c be a positi�e integer. For e�ery fixed
y, e�ery finite set A contains at least (1®2−c)rAr1
elements x with C(xrA, y)& [log rAr]®c. (Choosing A
to be the set of all strings of length n we ha�e
C(x}n,y)& n®c)

Lemma 2 Let A be a finite set. For e�ery y, e�ery
element x ` A has complexity C(xrA, y)%log rArc.
(Choosing A to be the set of all strings of length n we
ha�e C(x}n,y)% nc)

The first lemma is proved by simple counting. The
second lemma holds since a fixed program that
enumerates the given finite set computes x from its
index in the enumeration order—and this index has
log rAr bits for a set A of cardinality rAr.

We can now compare Kolmogorov complexity with
Shannon’s statistical notion of entropy—the minimal
expected code word length of messages from random
source using the most parsimonious code possible.
Surprisingly, many laws that hold for Shannon en-
tropy (that is, on average) still hold for the Kol-
mogorov complexity of individual strings albeit only
within a logarithmic additive term. Denote by C(xry)
the information in x given y (the length of the shortest
program that computes x from y), and denote by
C(x, y) the length of the shortest program that
computes the pair x, y. Here is the (deep and powerful)
Kolmogorov complexity version of the classical
‘symmetry of information’ law. Up to an additive
logarithmic term,

C(x, y)¯C(x)C(yrx)¯C(y)C(xry) (1)

We can interpret C(x)®C(xry) as the information y
has about x. It follows from the above that the amount
of information y has about x is almost the same as the
amount of information x has about y: information is
symmetric. This is called mutual information.

Kolmogorov complexity is a wonderful measure of
randomness. However, it is not computable, which
obviously impedes some forms of practical use. Never-
theless, noncomputability is not really an obstacle

for the wide range of applications of Kolmogorov
complexity, just like noncomputability of almost
all real numbers does not impede their practical
ubiquitous use.

3. Applications

For numerous applications in computer science, com-
binatorics, mathematics, learning theory, philosophy,
biology, and physics, see Li and Vita! nyi (1993). For
illustrative applications in cognitive psychology see
Chater (1996) (related, more informal strains of
thought are the Structural Information Theory started
in Leeuwenberg (1969)), in economy see Keuzenkamp
and McAleer (1995), and in model selection and
prediction see Vita! nyi and Li (2000). Here we give
three applications of Kolmogorov complexity related
to social sciences, explain the novel ‘incompressibility
method,’ and conclude with an elementary proof
of Go$ del’s celebrated result that mathematics is
undecidable.

3.1 Cogniti�e Distance

For a function f (x, y) to be a proper distance measure
we want it to be a metric: it has non-negative real
values; it is symmetrical, f (x, y)¯ f (y, x); it satisfies
the triangle inequality, f (x, y)% f (x, z)f (z, y); and
f (x, y)¯ 0 iff x¯ y. Given two objects, say two
pictures, how do we define an objective measure that
would define their distance that is universal in the
sense that it accounts for all cognitive similarities?
Traditional distances do not work. For example, given
a picture and its negative (i.e., exchange 0 and 1 in each
pixel), Hamming distance and Euclidean distance both
fail to recognize their similarity. Let us define a new
distance D(x, y) between two objects x and y as the
length of the shortest program that converts them
back and forth (Bennett et al. 1998). It turns out that,
up to a logarithmic additive term,

D(x, y)¯max²C(xry), C(yrx)´ (2)

This distance D is a proper metric and it is uni�ersal
in the sense that if two objects are ‘close’ under any
distance out of a wide class of sensible and computable
metrics, then they are also ‘close’ under d. For
example, the D(x, y) distance between two black-
and-white pictures x and its negative y is a small
constant.

3.2 Phylogeny of Chain Letters (and Biological
E�olution)

Chain letters are an interesting social phenomenon
that have reached billions of people. Such letters
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evolve, much like biological species (rather, their
genomes). Given a set of genomes we want to
determine the evolutionary history (phylogeny tree).
Can we use the information distance D(x, y)? But then
the difference in length of (especially complex) gen-
omes implies a large distance while evolutionarily the
genomes concerned can be very close (part of the
genome was simply erased). We can divide D(x, y) by
some combination of the lengths of x and y, but this
can be shown to be improper as well. As we have seen,
C(y)®C(yrx)¯C(x)®C(xry) within a logarithmic
additive constant: it is the mutual information between
x and y. But mutual information itself does not satisfy
the triangle inequality and hence is not a metric and
therefore clearly cannot be used to determine phyl-
ogeny. The solution is to determine closeness between
each pair of genomes (or pairs of chain letters) x and y
by taking the ratio of the information distance to the
maximal complexity of the two:

d(x, y)¯
D(x, y)

max ²C(x), C(y)´
(3)

Note that d(x, y) is always a sort of normalized
dissimilarity coefficient that is at most 1. Moreover, it
is proper metric. Let us look a little bit closer: suppose
C(y)&C(x). Then, up to logarithmic additive terms in
both nominator and denominator we find (using Eqn.
(2))

d(x, y)¯
C(yrx)

C(y)
¯ 1®

C(y)®C(yrx)

C(y)
(4)

It turns out that d(x, y) is universal (always gives the
smallest distance) in a wide class of sensible and
computable normalized dissimilarity coefficient met-
rics. It measures the percentage of shared information,
which is a convenient way to measure English text or
DNA sequence similarity. We have actually applied
this measure (or rather, a less perfect close relative) to
English texts. Using a compression program called
GenCompress we heuristically approximate C(x) and
C(xry). With the caveat ‘heuristic,’ that is, without
mathematical closeness-of-approximation guarantees,
C. H. Bennett, M. Li and B. Ma (in an article to appear
in Scientific American) took 33 chain letters—collected
by Charles Bennett from 1980 to 1997—and ap-
proximated their pairwise distance d(x, y). Then, we
used standard phylogeny building programs from bio-
informatics research to construct a tree of these chain
letters. The resulting tree gives a perfect phylogeny for
all notable features, in the sense that each notable
feature is grouped together in the tree (so that the tree
is parsimonious). This fundamental notion can be
applied in many different areas. One of these concerns
a major challenge in bioinformatics: to find good
methods to compare genomes. Traditional approaches
of computing the phylogeny use so-called ‘multiple

alignment.’ They would not work here since chain
letters contain swapped sentences and genomes con-
tain translocated genes and noncoding regions. Using
the chain letter method, a more serious application in
Li et al. (2001) automatically builds correct phy-
logenies from complete mitochondrial genomes of
mammals. We confirmed a biological conjecture
that ferungulates—placental mammals that are not
primates, including cats, cows, horses, whales—are
closer to the primates—monkeys, humans—than to
rodents.

3.3 Inducti�e Reasoning

Solomonoff (1964) argues that all inference problems
can be cast in the form of extrapolation from an
ordered sequence of binary symbols. A principle to
enable us to extrapolate from an initial segment of a
sequence to its continuation will either require some
hypothesis about the source of the sequence or
another method to do the extrapolation. Two
popular and useful metaphysical principles for extra-
polation are those of simplicity (Occam’s razor,
attributed to the thirteenth-century scholastic philo-
sopher William of Ockham, but emphasized about 20
years before Ockham by John Duns Scotus), and
indifference. The Principle of Simplicity asserts that
the ‘simplest’ explanation is the most reliable. The
Principle of Indifference asserts that in the absence of
grounds enabling us to choose between explanations
we should treat them as equally reliable. Roughly, the
idea is to define the universal probability, M(x), as the
probability that a program in a fixed universal pro-
gramming language outputs a sequence starting with
x when its input is supplied by tosses of a fair coin
(see Kirchherr et al. 1997). Using this as a sort of ‘uni-
versal prior probability’ we then can formally do the
extrapolation by Bayes’s Rule. The probability that x
will be followed by a 1 rather than by a 0 turns out to
be

M(x1)

M(x0)M(x1)

It can be shown that ®logM(x)¯C(x) up to an
additive logarithmic term, which establishes that the
distribution M(x) is a mathematical version of
Occam’s razor: low complexity xs have high prob-
ability (x¯ 11…1 of every length n has complexity
C(x)% lognO(1) and hence universal probability
M(x)& 1}nc for some fixed constant c), and high
complexity ys have low probability (if y is the outcome
of n flips of a fair coin then for example with
probability 0.9999 we have C(y)& n®10 and there-
fore M(x)% 1}2n−"!). This theory was further deve-
loped in Li and Vita! nyi (1993), Kirchherr et al. (1997)
and Vita! nyi and Li (2000), and relates to more
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informal cognitive psychology work starting with
Leeuwenberg (1969) and the applied statistical ‘mini-
mum description length (MDL)’ model selection and
prediction methods surveyed in Barron et al. (1998).

3.4 Incompressibility Method

Analyzing the performance of computer programs is
very difficult. Analyzing the average case performance
of computer programs is often more difficult since one
has to consider all possible inputs and take the average.
However, if we could find a typical input on which the
program takes an average amount of time, then all we
need to do is to find the performance of the computer
program on this particular input. Then the analysis is
easy. A Kolmogorov random input does exactly that:
providing a typical input. Using this method, we were
able to solve many otherwise difficult problems.
Recent examples are average case analysis of Shell-
sort algorithm (Jiang et al. in press) and the average
case of Heilbronn’s triangle problem. A popular
account about how to analyze the average-case
bounds on Heilbronn’s triangle problem can be found
in Mackenzie (1999).

3.5 GoX del’s Incompleteness Result

A new elementary proof by Kolmogorov complexity
of K. Go$ del’s famous result showing the incomplete-
ness of mathematics (not everything that is true can be
proven) is due to Ya. Barzdin’s and was later popu-
larized by G. Chaitin, see Li and Vita! nyi (1993). A
formal system (consisting of definitions, axioms, rules
of inference) is consistent if no statement that can be
expressed in the system can be proved to be both true
and false in the system. A formal system is sound if
only true statements can be proved to be true in the
system. (Hence, a sound formal system is consistent.)

Let x be a finite binary string. We write ‘x is
random’ if the shortest binary description of x with
respect to the optimal specification method D

!
has

length at least rxr. A simple counting argument shows
that there are random xs of each length.

Fix any sound formal system F in which we can
express statements like ‘x is random.’ Suppose F can
be described in f bits—assume, for example, that this is
the number of bits used in the exhaustive description
of F in the first chapter of the textbook Foundations of
F. We claim that for all but finitely many random
strings x, the sentence ‘x is random’ is not provable in
F. Assume the contrary. Then given F, we can start to
exhaustively search for a proof that some string of
length n( f is random, and print it when we find such
a string x. This procedure to print x of length n uses
only lognf bits of data, which is much less than n.
But x is random by the proof and the fact that F is
sound. Hence, F is not consistent, which is a con-

tradiction. This shows that although most strings are
random, it is impossible to effectively prove them
random. In a way, this explains why the incompres-
sibility method above is so successful. We can argue
about a ‘typical’ individual element, which is difficult
or impossible by other methods.

See also: Algorithms; Computational Approaches to
Model Evaluation; High Performance Computing;
Information Processing Architectures: Fundamental
Issues; Information Theory; Mathematical Psychol-
ogy; Model Testing and Selection, Theory of
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Algorithms

1. Introduction

Around the year 825 the Persian mathematician Abu
Ja’far Mohammed ibn Mu# sa# al-Khowa# rizm wrote a
textbook entitled Kitab al jabr w’al muqabala. The
term ‘algorithm’ is directly derived from the last part
of the author’s name. An algorithm is a mathematical
recipe, formulated as a finite set of rules to be
performed systematically, that has as outcome the
solution to a well-formulated problem. In sequential
algorithms these steps are ordered and should be
performed one after the other. In parallel algorithms
some of the rules are to be performed simultaneously.
Algorithms can be graphically represented by flow-
charts composed by arrows and boxes. The boxes
contain the instructions and the arrows indicate
transitions from one step to the next.

Algorithms were known much earlier than the
eighth century. One of the most familiar, dating from
ancient Greek times (c. 300 BC), is the procedure now
referred to as Euclid’s algorithm for finding the highest
common factor of two natural numbers.

Algorithms often depend on subalgorithms or
subroutines. For instance, the algorithm for obtaining
the highest common factor of two numbers relies on
the algorithm for finding the remainder of division for
two natural numbers a and b. Dividing two numbers a
and b is something we learn at school after having
learnt the multiplication tables by heart. Usually we
perform a division by reducing it to a sequence of
multiplications and subtractions. Yet assume for the
moment that to perform division we cannot rely on
multiplication, nor can we express numbers in base
ten. Both of these operations will require additional
algorithms. We represent numbers in a very primitive
form by simply writing a sequence of dots. Thus
EEEEE, for instance, represents the number 5.

The remainder algorithm works as follows (using
17|5 as an example):
(a) Write the sequence of dots for the dividend (17

in this case).
(b) Erase as many dots as correspond to the divisor

(5 in this case).
(c) If the remaining number of dots is larger than or

equal to the divisor go back to (a)
(d) If the remaining number of dots is smaller than

the dividend print out this number
(e) STOP

The algorithm just described contains a loop.
Observe that for any pair of numbers the algorithm
produces the answer in a finite number of steps.
Applied to our example of 17|5, the algorithm
performs the following steps:
Current state Operation
START Write 17 dots
EEEEEEEEEEEEEEEEE Erase 5 dots
EEEEEEEEEEEE Erase 5 dots
EEEEEEE Erase 5 dots
EE Print 2 dots
STOP

The computational algorithm for finding the remain-
der of a number when divided by another number can
be used as a subroutine of the decision algorithm for
the decidable problem ‘Does b divide a?’ (the answer is
‘yes’ if the remainder is zero). Repeated application of
these algorithms produces the answer to the decidable
question ‘Is a a prime?’ (the answer is ‘no’ if a is
divisible by any smaller natural number besides 1).

An algorithm or machine is deterministic if at each
step there is only one possible action it can perform. A
nondeterministic algorithm or machine may make
random choices of its next action at some steps. An
algorithm is called a decision algorithm if it leads to a
‘yes’ or a ‘no’ result, whereas it is called a computa-
tional algorithm if it computes a solution to a given
well-defined problem.

Despite the ancient origins of specific examples of
algorithms, the precise formulation of the concept of a
general algorithm dates only from the last century.
The first rigorous definitions of this concept arose in
the 1930s. The classical prototype algorithm is the
Turing machine, defined by Alan Turing to tackle the
Entscheidungsproblem or Decision Problem, posed by
the German mathematician David Hilbert in 1900, at
the Paris International Congress of Mathematicians.
Hilbert’s dream was to prove that the edifice of
mathematics is a consistent set of propositions derived
from a finite set of axioms, from which the truth of any
well-formulated proposition can be established by a
well-defined finite sequence of proof steps. The de-
velopment and formalization of mathematics had led
mathematicians to see it as the perfect, flawless science.

2. Algorithms and the Entscheidungsproblem

In 1931 the foundation of mathematics suffered its
most crushing blow from a startling theorem proven
by the Austrian logician Kurt Go$ del. Go$ del showed
that any mathematical system powerful enough to
represent arithmetic is incomplete in the sense that
there must exist propositions that cannot be proven
true or untrue in a finite sequence of steps. Such
propositions are said to be undecidable within the
given system. Turing had been motivated by Go$ del’s
work to seek an algorithmic method of determining
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