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Abstract

Bennett introduced the notion of logical depth of an object as the amount

of time required for an algorithm to derive the object from a shorter descrip-

tion. He also defined logical depth for infinite strings, in particular strongly

and weakly deep sequences. Later Lutz, Juedes and Mayordomo have further

studied and related these measures. Recently Antunes et al. noted that logi-

cal depth, as introduced by Bennett is connected to Kolmogorov and Levin’s

notion of “randomness deficiency”.

Based on this connection, we revisit the notion of computational depth for

infinite strings, introducing the notion of super deep sequences and relate it

with other approaches.

Classification: Kolmogorov Complexity, Computational Depth.

1 Introduction

The Kolmogorov complexity of a string is a rigorous measure of the amount of in-
formation contained in it. A string with high Kolmogorov complexity contains lots
of information. A randomly generated string has, with high probability, high Kol-
mogorov complexity and hence is very informative. However, intuitively, the very
fact that it is random makes it unlikely to have useful and meaningful information.
How can we measure the nonrandom information in a string?

Bennett [Ben88] introduced the notion of logical depth of an object as the
amount of time required for an algorithm to derive the object from a shorter de-
scription. In fact, with some probability, we can derive the object by simply flipping
a coin. But for long objects this probability is small. If the object has a short de-
scription then we can obtain it by flipping a fair coin with higher probability. In
order to solve some stability problems, Bennett’s definition considers not only the
shortest description of the object, but all descriptions of it that have nearly minimal
length.
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Later Antunes et al. [AFMV06] defined a simpler notion by taking the differ-
ence between polynomial-time Kolmogorov complexity and traditional unbounded
Kolmogorov complexity. We have seen a number of results about computational
depth such as: give a generalization of sparse and random sets [AFMV06], the use
of depth to characterize the worst-case running time of problems that run quickly
on average over all polynomial-time samplable distributions [AF05] as well as find
satisfying assignments for formulas that have at least one assignment of logarithmic
depth [AFPS06].

For infinite sequences Bennett identified the classes of weekly and strongly deep
sequences, and showed that the halting problem is strongly deep. Subsequently
Judes, Lathrop, and Lutz [JLL94] extended Bennett´s work defining the classes of
weekly useful sequences and proved that every weakly useful sequence is strongly
deep in the sense of Bennett. Fenner et al. [FLMR05] proved that there exist
sequences that are weakly useful but not strongly useful. Lathrop and Lutz [LL99]
introduced refinements (named recursive weak depth and recursive strong depth) of
Bennett´s notion of weak and strong depth, and studied its fundamental properties,
showing that recursively weakly (strongly) deep sequences form a proper subclass
of the class of weakly (strongly) deep sequences, and also that every weakly useful
sequences is recursive strongly deep.

Antunes et al. [ACMV07] noted that logical depth and computational depth are
instances of a more general measure namely, the randomness deficiency of a string
x with respect to a probability distribution, developed by Levin [Lev84]. Based
on this connection we extend the notion of computational depth to infinite strings,
introducing the notion of super deep sequences and relate it with other approaches.
The paper is organized as follows: in Section 2 we introduce the necessary notation
and definitions, in Section 3 we study the common information for infinite strings
and finally in Section 4, based on the connection between randomness deficiency and
computational depth, we introduce and study the notion of super deep for infinite
sequences.

2 Preliminaries

We briefly introduce Kolmogorov complexity. We refer to the textbook by Li and
Vitányi [LV97] for more details.

Definition 2.1 Let U be a fixed prefix free universal Turing machine; for every
string x ∈ {0, 1}∗, the Kolmogorov complexity of x is, K(x) = minp{|p| : U(p) = x}.
For any time constructible t, the t-time-bounded Kolmogorov complexity of x is,
Kt(x) = min{|p| : U(p) = x in at most t(|x|) steps}.

A different universal machine U may affect the program size |p| by at most an
additive constant factor, and the running time t by at most a logarithmic multi-
plicative factor. The same holds for all other measures we will introduce.

We refer to mutual information of two finite strings as

I(x : y) = K(x) + K(y) − K(x, y)

and to algorithmic information that a finite string x as about another finite string
y as

I(x; y) = K(x) − K(x|y).

Depth of finite strings

After some attempts Bennett [Ben88] formally defined the b-significant logical depth
of an object x as the time required by a standard universal Turing machine to
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generate x by a program that is no more than b bits longer than the shortest
descriptions of x. Formally:

Definition 2.2 (Bennett) The logical depth of a string x at a significance level b
is

ldepthb(x) = min

{

t :
Qt

U (x)

QU (x)
≥ 2−b

}

where U t(p) = x means that U computes x within t steps and halts and Qt
U (x) =

∑

Ut(p)=x 2−|p|.

Antunes et al. [AFMV06] developed the notion of Computational Depth in order
to capture the amount of non-random or useful information in a string. The con-
cept is simple: they consider the difference of two different Kolmogorov complexity
measures. What remains is the “nonrandom” or “useful” information.

Definition 2.3 (Computational Depth) Let t be a constructible time bound.
For any string x ∈ {0, 1}∗,

deptht(x) = Kt(x) − K(x).

It is interesting to note that logical depth and computational depth are all
instances of a more general measure, namely the randomness deficiency of a string
x with respect to a probability distribution as developed by Levin [Lev84].

Definition 2.4 (Levin) For any r.e. measure µ,

d(x/µ) =

⌊

log
m(x)

µ(x)

⌋

is the randomness deficiency1 of x with respect to µ, where m(x) = 2−K(x) is the
universal distribution.

Levin showed that the randomness deficiency of x with respect to µ is the largest
randomness µ-test for x. So d(x/µ) is, in a sense, a universal characterization of
“non-random” or “useful” information in a string x with respect to the measure µ.

Depth of infinite strings

We denote the n-prefix of an infinite string α by αn, the i-bit of the string x by
xi. Bennett also introduced the classes of weakly and strongly deep sequences and
proved that the halting problem is strongly deep.

Definition 2.5 ([Ben88]) An infinite binary sequence α is defined as

• weakly deep if it is not computable in recursively bounded time from any algo-
rithmically random infinite sequence.

• strongly deep if at every significance level b, and for every recursive function
t, all but finitely many initial segments αn have depth exceeding t(n).

The relation between depth and usefulness was studied by Juedes, Lathrop and
Lutz [JLL94] who defined the conditions for weak and strong usefulness and showed
that every weakly useful sequence is strongly deep. This result generalizes Bennett’s
remark on the depth of diagonal of the halting problem, strengthening the relation
between depth and usefulness. Latter Fenner et al. [FLMR05] proved the existence
of sequences that are weakly useful but not strongly useful.

1brc denotes the integer part of r and dαe denotes the smallest integer bigger than α.
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Definition 2.6 An infinite binary sequence α is defined as

• strongly useful if there is a computable time bound within which every decidable
sequence is Turing reducible to α; and

• weakly useful if there is a computable time bound within which all the sequences
in a non-measure 0 subset of the set of decidable sequences are Turing reducible
to α.

Levin’s notion of randomness deficiency can be extended to infinite strings. Let
α and β be two sequences and m⊗m be defined by m⊗m(α, β) = m(α)m(β).

Definition 2.7 (Levin) The value D(α/µ) = blog sup(m(αn)∗/µ(αn))c is called
the randomness deficiency of α with respect to the semi-measure µ.

Definition 2.8 (Levin) The value I(α : β) = D((α, β)/m ⊗ m) is called the
amount of information in α about β or the deficiency of their independence.

This definition is equivalent to the mutual information I(α : β) = sup I(αn : βn).

3 On the Information of Infinite Strings

Let α and γ be two random infinite and independent strings (in the sense that their
prefixes are independent). Consider the following sequence β

Example 3.1
β = α1γ1α2γ2 . . .

By Definition 2.8 we have

I(α : β) = sup I(αn : βn) = sup(K(αn)+K(βn)−K(αn, βn)) ≥ sup(K(αn/2)) = ∞.

As I(β : α) = I(α : β) then I(β : α) = ∞. However, intuitively β contains more
information about α than the other way around. If one considers both sequences
as the limit of increasing prefixes that are growing at the same speed, then, their
mutual information should be half of the full information, that is, the information
of an incompressible sequence.

This seems to be a lacuna in Definition 2.8. It says more when the information
is finite but that is precisely when we don’t need an accurate result, if it is finite we
can argue that they are independent. One should be able to classify the cases where
the mutual information is infinite. Two infinite strings may have infinite mutual
information and yet infinite information still lacks in order to reconstruct each of
them. In the previous example α fails to provide all the information of β related to
γ, which has infinite information. In this section we will present three approaches
to do it. In order to have a proportion of information as the prefixes grow up we
need some normalization in the process.

3.1 The Algorithmic Information Point of View

Assumed that when calculating the information that a string α has about a string β
one have the full knowledge of the first. We are looking for a normalized algorithmic
information measure In that applied the Example 3.1 gives

In(α; α) = 1; In(α; β) = 1/2; In(β; α) = 1; In(β; β) = 1
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Definition 3.2 (First attempt) Given two infinite strings α and β the normal-
ized algorithmic information that β has about α is defined as

In(β; α) = lim
n→∞

lim
m→∞

I(βm; αn)

I(αn; αn)

One drawback of this definition is that the limit does not always exist. How-
ever, it does exist for the Example 3.1 with the desired properties. Furthermore,
supposing that the above limits exist we obtain for the same α and β

In(α; α) = 1; In(β; β) = 1

In(α; β) = lim
n→∞

K(αn/2)

K(αn/2) + K(γn/2)
= lim

n→∞

K(αn)

K(αn) + K(γn)
; In(β; α) = 1

Showing that the proportion of the information that α gives on β ought to depend on
the complexity of γ. It seems clear that when I(x : y) = ∞ then In(x : y) 6= 0. Thus
one continue to obtain a characterization of independent sequences (I(x : y) < ∞)
and already can say new things when I(x : y) = ∞ and the above limits exist.

Definition 3.3 Given two sequences α and β we define the lower normalized algo-
rithmic information that β has about α as

I∗(β; α) = lim inf
n→∞

lim
m→∞

I(βm; αn)

I(αn; αn)

and the upper normalized algorithmic information that β has about α as

I∗(β; α) = lim sup
n→∞

lim
m→∞

I(βm; αn)

I(αn; αn)

3.2 The mutual information point of view

In this subsection we define the common information between two sequences based
on the mutual information, looking to both prefixes growing at the same rate.

Definition 3.4 Given two sequences α and β we define the lower normalized mu-
tual information that β has about α as

I∗(β : α) = lim inf
n→∞

I(βn : αn)

I(αn : αn)

and the upper normalized mutual information that β has about α as

I∗(β : α) = lim sup
n→∞

I(βn : αn)

I(αn : αn)

We now define independent sequences.

Definition 3.5 Two infinite strings, α and β, are independent if I∗(α : β) = I∗(β :
α) = 0.

In [Lut00, Lut02], the author developed a constructive version of Hausdorff di-
mension. That dimension assigns to every binary sequence α a real number dim(α)
in the interval [0,1]. Lutz claims that the dimension of a sequence is a measure of
its information density, the idea is to differentiate sequences by non-randomness de-
grees, namely by their dimension. Our approach is precisely to introduce a measure
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of the density of information that one sequence has about the other, in the total
amount of the other’s information. So we differentiate non-independent sequences,
by their normalized mutual information. Considering Example 3.1 we have,

In(α : α) = 1; In(β : β) = 1

In(α : β) = lim
n→∞

K(αn/2)

K(αn)
=

1

2

In(β : α) = lim
n→∞

K(αn/2)

K(βn)
= lim

n→∞

K(αn/2)

K(αn/2) + K(γn/2)
=

1

2

Mayordomo [May02] redefined constructive Hausdorff dimension in terms of Kol-
mogorov complexity.

Theorem 3.6 (Mayordomo) For every sequence α,

dim(α) = lim inf
n→∞

K(αn)

n

So, now the connection between constructive dimension and normalized infor-
mation measure introduced here is clear. It is only natural to accomplish results
about the Hausdorff constructive dimension of a sequence, knowing the dimension
of another, and their normalized information.

Lemma 3.7 Let α and β be two sequences. Then

I∗(α : β). dim(β) ≤ dim(α)

Proof. Obviously 0 ≤ I∗(α : β) ≤ 1 and 0 ≤ dim(β) ≤ 1. So,

I∗(α : β). dim(β) =

(

lim inf
n→∞

I(αn : βn)

I(βn : βn)

) (

lim inf
n→∞

K(βn)

n

)

≤ lim inf
n→∞

I(αn : βn)

I(βn : βn)

K(βn)

n

= lim inf
n→∞

I(αn : βn)

n

≤ lim inf
n→∞

K(αn)

n
= dim(α)

�

3.3 The Hausdorff constructive dimension point of view

In this subsection we define the common information between two sequences based
on Hausdorff constructive dimension.

Definition 3.8 The dimensional mutual information of the sequences α and β is
defined as

Idim(α, β) = dim(α) + dim(β) − 2 dim 〈α, β〉

This information measure is symmetric, the definitions considers twice dim 〈α, β〉
because when encoding the prefixes αn and βn the result is a 2n-length string.
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As, Idim(α, β) = dim(α) + dim(β) − 2 dim 〈α, β〉

= lim inf
n→∞

K(αn/2)

n/2
+ lim inf

n→∞

K(βn/2)

n/2
− 2 lim inf

n→∞

K(〈α, β〉n)

n

≤ lim inf
n→∞

K(αn/2) + K(βn/2) − K(αn/2, βn/2)

n/2

= lim inf
n→∞

I(αn : βn)

n
≤ min(dim(α), dim(β))

then the following lemma holds.

Lemma 3.9 Let α and β be two sequences. Then

Idim(α, β) ≤ min(dim(α), dim(β))

When the limits in Hausdorff constructive dimension exist (in the sense that we
take limn→∞ instead lim infn→∞) we have

Idim(α, β) = I∗(α : β). dim(β) = I∗(β : α). dim(α)

One can easily modify the definitions introduced in this section by considering
the limits when n goes to the length of the string, or the maximum length of the
strings being considered. One should also notice that when x and y are finite
strings and K(y) ≥ K(x), I∗(x : y) is 1 − d(x, y), where d(x, y) is the normalized
information distance studied in [Li03].

4 Depth on infinite strings

The Hausdorff constructive dimension comes hand to hand with the three informa-
tion theories for infinite strings studied before. Therefore, in this section we define
the dimensional computational depth of a sequence in order to study the nonrandom
information on a infinite string.

Definition 4.1 The dimensional depth of a sequence α is defined as

deptht
dim(α) = lim inf

n→∞

D(αn/Qt(αn))

n
.

Definition 4.2 The t-bounded dimension of a sequence α is defined as

dimt(α) = lim inf
t→∞

− logQt(αn)

n

Lemma 4.3
deptht

dim(α) ≤ dimt(α) − dim(α)

Proof.

deptht
dim(α) = lim inf

n→∞

D(αn/Qt(αn))

n
= lim inf

n→∞

− log Qt(αn) − K(αn)

n
≤ dimt(α)−dim(α).

�

Now we replace the fixed significance level s by a significance function, s : N → N

in the definition of strongly deep sequences. Naturally, we want s(n) to grow very
slowly so assume that s = o(n). Replacing the fixed significance level s in the
definition of strongly deep by this significance function we obtain a tighter definition
as deepness decreases with the increase of the significance level.
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Definition 4.4 A sequence is called super deep if for every significance function
s : N → N, such that s = o(n), and for every recursive function t : N → N, all but
finitely many initial segments αn have depth exceeding t(n).

We can in fact characterize super deep sequences using their dimensional depth.
For that we need the following result in [ACMV07] stating that for any constructible
time bound t

ldepthb(x) = t ⇔ deptht(x) ≤ b and deptht−1(x) > b.

Theorem 4.5 A sequence α is super deep if and only if deptht
dim(α) > 0 for all

recursive time bound t.

Proof. Let α be a super deep sequence. Then for every significance function s,
such that s = o(n) and every recursive function t we have that for almost all n,
ldepths(n)(αn) > t(n). Then

deptht(n)(αn) > s(n).

Now if for some time bound g, depthg
dim(α) = 0 then there exists a bound S,

such that S = o(n), and infinitely often

deptht(n)(αn) < S(n).

This is absurd and therefore for all recursive time bound t, deptht
dim(α) > 0.

Conversely if deptht
dim(α) > 0 then there is some ε > 0 such that for almost all

n, depth
t(n)
dim (αn) > εn. This implies that

ldepths(n)(αn) > ldepthεn(αn) > t(n)

for all significance function s = o(n) and almost all n. So α is super deep. �

In [JLL94] several characterizations of strong computational depth are obtained.
We can prove analogous characterizations for super deepness.

Theorem 4.6 For every sequence α the following conditions are equivalent.

1. α is super deep.

2. For every recursive time bound t : N → N and every significance function
g = o(n), deptht(αn) > g(n) a.e.

3. For every recursive time bound t : N → N and every significance function
g = o(n), Kt(αn) − K(αn) > g(n) a.e.

4. For every recursive time bound t : N → N and every significance function
g = o(n), Q(αn) ≥ 2g(n)Qt(αn) a.e.

In [JLL94] the authors proved that every weakly useful sequence is strongly
deep. Following the ideas in [JLL94] we can also prove that that every weakly
useful sequence is super deep.

Theorem 4.7 Every weakly useful sequence is super deep.

Corollary 4.8 The characteristic sequences of the halting problem and the diagonal
halting problem are super deep.
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