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Exact Expression For Information Distance

Paul M.B. Vitdnyi

Abstract—Information distance can be defined not only
between two strings but also in a finite multiset of strings of
cardinality greater than two. We determine a best upper bound
on the information distance. It is exact, since the upper bound
on the information distance for all multisets is the same as the
lower bound for infinitely many multisets of each of infinitely
many cardinalities, up to a constant additive term.

Index Terms— Information distance, multiset, Kolmogorov
complexity, similarity, pattern recognition, data mining.

I. INTRODUCTION

HE length of a shortest binary program to compute from

one object to another object and vice versa expresses the
amount of information that separates the objects. This is a
proper distance [8, p. 205], is (almost) a metric, and spawned
theoretic issues. Normalized in the appropriate manner it
quantifies a similarity between objects [5], [6], [14] and is
now widely used in pattern recognition [2], learning [4], and
data mining [12]. Extending this approach we can ask how
much the objects in a set of objects are alike, that is, the
common information they share. All objects we discuss are
represented as finite binary strings and we use Kolmogorov
complexity [13] to express the central notion of this paper:
information distance. Informally, the Kolmogorov complexity
of a string is the length of a shortest binary program from
which the string can be computed by a special type of Turing
machine. It is a lower bound on the length of a compressed
version of that string for any current or future computer.
The text [16] introduces the notions, develops the theory, and
presents applications.

We write string to denote a finite binary string. Other
finite objects, such as multisets of strings (a multiset is a
generalization of the notion of a set where each member can
occur more than once), may be encoded into single strings in
natural ways. The length of a string x is denoted by |x|. The
empty string of 0 bits is denoted by €. Thus |e| = 0. Denote by
a capital a finite multiset of strings ordered length-increasing
lexicographic. The cardinality |X| of a finite multiset X is the
number of occurrences of (possibly the same) elements in X.
Confusion with the notation of the length of a string is avoided
by the context. In this paper | X| > 2. Examples are X = {x, x}
and X = {x, y} with x # y. In both cases |X| = 2. That is,
we use the set notations of {-} and |- | also for multisets. The
logarithms are binary throughout.
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A Turing machine has a program tape, an auxiliary tape,
one or more work tapes and an output tape [16]. Every tape
is semi-infinite and divided into squares. At the start the
input tape is inscribed with the program with one bit per
square from the origin onwards and finishing with a special
endmarker. (This is sometimes designated as a plain Turing
machine.) Some Turing machines can simulate every Turing
machine. We call them universal. We need a special type of
universal machine called optimal [13] (see also [16]) which
also use short programs. Let U be a fixed reference optimal
universal Turing machine. We denote a computation by U as
U(p,y) = z where the input (p, y) consists of p (the pro-
gram) which is a string and y (the auxiliary) which is a finite
sequence of strings (in this paper at most two), and z is the
output. Following the notation in the text [16] for the “plain”
Kolmogorov complexity used here, the minimal length of a
program for U computing a string x with y on the auxiliary
tape is the conditional Kolmogorov complexity C(x|y) of x
conditional to y. The unconditional Kolmogorov complexity
is defined as C(x) = C(x|e) with € denoting the empty
string.

In the concatenation xy of a pair of strings x an y we do
not know where x ends and y begins. Therefore we design
a version of x which is barely longer than x but where we
know where x ends. The self-delimiting encoding of string x
is 11¥10|x | x. If the length of x is equal n then its self-delimiting
encoding has length n 42 logn 4 1. We identify the nth string
in {0, 1}* ordered lexicographic length-increasing with the nth
natural number O, 1, 2, .. .. We denote the natural numbers by
N. A pairing function uniquely encodes two natural numbers
(or strings) into a single natural number (or string) by a
primitive recursive bijection. One of the best-known ones [3]
is the computationally invertible Cantor pairing function (-, -) :
N x N — N defined by (a,b) = S(a+b)a+b+1)+a.

A. Related Work

In the seminal [1] the information distance ID(x,y)
between pairs of strings x and y was introduced as the length
of a shortest program p for the reference optimal universal
Turing machine U such that U(p,x) = y and U(p, y) = x.
It was shown that ID(x,y) = max{C(x|y),C(ylx)} +
O (logmax{C(x]|y), C(y|x)}). Using the prefix variant of Kol-
mogorov complexity [15] defined the information distance
ID(x1,...,x,) between a set of strings (xi,...,x,) as the
length of a shortest program p such that U(p,x;, j) =
xj for all 1 < i,j < n. References [17] (for n = 2)
and [15] (for n > 2) contain related claims to Claim 2.
Reference [18] denoted X = {xy, ..., x,} and defined I D(X)
as the length of a shortest program that computes X from
every x € X.
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B. Results

If a program computes from every x € X to every y € X
then it must compute X on the way and specify additionally
only the index of y € X. The essence is to compute X.
If the input also gives the cardinality of X then it is proper to
define

ID(X) = min{|p|: |X|=n,
U(p, (x,n)) = X for all x € X}, €))

where p,x € {0,1}* and n € N. The information distance
ID(X) can be viewed as a diameter of X. For |X| = 2 it
is a conventional distance between the two members of X.
Since it is a metric (with minor discrepancies in the metric
inequalities) as shown in [18] the name “distance” seems
appropriate. Since the 1990s it was perceived as a nuisance and
a flaw that equality between I D(X) and max,cx{C(X|(x, n))}
held only up to an O (log max,cx{C(X|(x, n))}) additive term
(initially |X| = 2). We prove that for all finite X holds
ID(X) < maxyex{C(X|{x,n))} + log|X| + O(1) and for
infinitely many n there are infinitely many X with |X| = n
and I D(X) > max,;cx{C(X|{x,n))} + log|X| — O(1).

II. THE EXACT EXPRESSION

Theorem 1: Let n > 2 be an integer, X be a multiset of
n strings and max,ex{C(X|({x,n))} = k. Every multiset X
of cardinality n > 2 satisfies /D(X) < k 4+ logn + O(1). For
infinitely many integers n there are infinitely many k such that
there exists a multiset X of cardinality n satisfying I D(X) >
k+logn — O(1).

Proof: Computably enumerate all Y’s of cardinality n
without repetition such that max,ey{C(Y|(y, n))} < k. (Since
for every Y the value of max,cy{C(Y|(y,n))} is upper semi-
computable! these Y’s can be computably enumerated.) Let
Y be the set of these Y. The set ) is in general infinite since
already for n = 2 and large enough k it contains {x, x} for
every string x. Define a bipartite graph G = (V, E) with V
the vertices and E the edges by

Vi={Y:Ye)}
Vo={y:yeY eV},

v=viJw,
E={{,y):yeY eV}

We want to determine a labeling of every edge (Y,y) €
E such that for each ¥ € ) and y € Y the labeling
satisfies:

(i) all edges incident with the same vertex in V are labeled
with identical labels; and

(i) all different edges incident with the same vertex in V>
are labeled with different labels.

It follows from conditions (i) and (ii), that if two vertices U,
W e Vy satisfy U (| W # @ then the edges incident on U are

A real function f with rational arguments x, y is upper semicomputable
if it is defined by a rational-valued computable function ¢(x, y, k) with x, y
rational numbers and k a nonnegative integer such that ¢(x,y,k + 1) <
¢(x, v, k) for every k and limy_, o ¢(x, y,k) = f(x,y). This means that f
can be computably approximated arbitrary close from above.
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labeled differently from the edges incident on W. By (1) a
vertex in V, and the cardinality of the target vertex together
with a program of length at most k determines a vertex in V7.
Using these programs as labels, we obtain a labeling satisfying
(1)—(ii)). We want to determine an optimal or nearly optimal
upper bound on the number of labels required. This is done
informally at first in order to determine the structure of these
labels. In Claim 2 a formal proof of the upper bound is
presented.

LetY € Y. Since C(Y|(y,n)) < k for every y € Y there are
at most f (k) = Z?:o 21 = 2%+l _1 programs computing from
y to different members of ). Therefore each vertex y € V;
has degree at most f (k) and is connected by an edge with a
vertex ¥ € Vi for which holds y € Y. There are n or less
different vertices in V5 (Y. Each vertex in V> ()Y may be
connected by an edge with at most f (k) — 1 different vertices
in V1 \ {Y} apart from the one edge incident on Y. The labels
on the edges incident on Y from each y € Y are identical but
different from the labels on the other edges incident on each
y € Y. This results in an upper bound of nf (k) — (n — 1)
different labels, namely at most n(f (k) — 1) labels for the
edges incident on different vertices in V; \ {Y} and 1 label
for the at most n edges incident on Y. Let P (k) be the set of
strings of length at most k. Then |P(k)| = f(k). We define
Q(k)y = P(k) x {1,...,n} where every (p,m) € Q(k) is
described by a string

Okflp\lp()\n\*lm\m )

with the different blocks marked by

n are the standard binary representations of the nonnegative
integers m and n starting with a 1. Assuming that we know
n and k this description can be uniquely parsed. The first
block is 0¥=1”11p with p € P(k). We can determine where
p starts and since the length of the block is k + 1 we know
which bit of p is the last one. The second block with leading
nonsignificant 0’s and m right adjusted (m < n) has length |n]|.
Therefore we know where it starts and where it ends. By this
construction the length of the description of each member of
Q(k) is k + |n| + 1. The description can be parsed uniquely
from left to right. Therefore every label (member) in Q(k) is
represented by a string from which k can be extracted if we
know n.

Claim 2: For every finite integer n > 2 every multiset X
of cardinality n satisfies ID(X) <k +logn + O(1).

Proof: First we formally show that the number of labels
in Q(k) is sufficient. Namely, by induction on the enumeration
Y1, Ya, ... of the vertices in V| we show that the edges arising
can be labeled by at most |Q(k)| labels. It is convenient to
order Q(k) lexicographic with the first coordinate according
to the lexicographic length-increasing order and the second
coordinate according to the usual order 1 < --- < n.

Base case (m = 1) Label all edges incident on Y; with the
least label in Q(k). This labeling satisfies condition (i), and
condition (ii) is satisfied vacuously.

Induction (m > 1) Assume that all edges incident on
vertices Y1, ..., Y, have been labeled satisfying conditions (i)
and (ii). Label the edges incident on Y,,4| by the least label

. The strings m and
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in Q(k)\ Q' (k) where Q'(k) is defined below and it is shown
there that the set difference is non-empty. Every edge incident
on a vertex y € Y41 and vertex Y41 must be labeled by
the same label by condition (i). Every y € Y,,11 is connected
by an edge with at most f (k) — 1 vertices in V] (excluding
Yn+1). Hence Y41 is connected by a path of length 2 via
some vertex y € Y41 (there are at most n such vertices) with
at most n(f (k) — 1) different vertices in Y1, ..., Y,. Let Z be
the set of these vertices and Q’(k) be the set of labels on the
edges in these paths incident on a vertex in the set Z. Then
|Q' (k)| < n(f(k)—1). Since |Q(k)| = nf (k) and n > 2 the
set difference Q(k)\ Q'(k) # . We label in the lexicographic
order of Q(k) such that the labels in Q’(k) are the least labels
in Q(k). To satisfy condition (ii) the label on an edge incident
on Y, is not in Q’'(k). To satisfy condition (i) all labels
on edges incident on Y4 are the same and therefore can be
labeled by the least element from Q (k) \ Q' (k). End induction

Represented according to (2) the labels in Q(k) have length
k+ |n| 4+ 1. Let r be an O(1)-length self-delimiting program.
Since n is given, program r can extract k from the length of
the label and make the reference machine U generate graph
G and do the labeling process. Let the edge connecting y € Y
with Y € V| be labeled by u € Q(k). Since all edges (Y, y)
with y € Y have the same label u# by condition (i) and u does
not label any edge incident on Z € V| with Z(\Y # @ by
condition (ii) we can define sy = u.

The length of rsy is an upper bound on 7/ D(X) as follows.
In the computation U (rsx, (x,n)) = X the machine U uses
first the O(1)-bit program r. This r retrieves k from [sx| =
k+|n|+1. Next r computably enumerates ) and therefore G.
Subsequently r labels the edges of G in a standardized manner
satisfying conditions (i) and (ii) with labels in Q(k). It does
so until it labels an edge by sy which is incident on vertex x.
Since the label sx is unique for edges (X, y) with y € X the
program r using x finds edge (X, x) and therefore X. Since
|rsx| = k +1logn + O(1) this implies the claim. [l

Claim 3: There are infinitely many integers n > 2
such that for infinitely many X with |X| = =n and
max,ecx C(X|{(x,n)) <k we have ID(X) > k+logn— O(1).

Proof: (n = 2). The claim is immediate since if
maxycx C(X|{(x,n)) =k then ID(X) > k.

(n > 2): The following simple example is illustrative for
the general principle involved.

Example 4: The sets A = {1,2}, B ={2,3},C = {3, 1} are
three sets of cardinality two that intersect each other pairwise,
every integer from {1,2,3}isintwosetsand A(B () C = .
By making M copies of sets A, B and C and enlarging each
copy with a unique new integer not equal to 1,2, or 3, we
obtain 3M sets of cardinality three that intersect each other
pairwise only. That is, integers 1, 2 and 3 belong to 2M sets
each and no integer belongs to all 3M sets. The intersections
of the 3M sets are not centralized in a single integer but
distributed over different integers. It is impossible to prove
the claim without this distributive property.

We start the proof proper here. Consider sets of cardinality
n — 1. First use an argument from projective geometry as
described in the texts [7], [11]. Represent each set as a line
in the projective plane with the members of the set as points
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on the line. Let integer g be a prime power, n = g + 2, and k
an element in an infinite sequence of integers which satisfies
2% < t(g+1) < 2% and k > 2logn+c for some r € A and a
constant ¢ > 0 defined later. Let (P, L) be the projective plane
over G F(q) with P the set of points and L the set of lines.
(Then |P| = |L| = g>+q+1, every point is on ¢ +1 lines and
every line contains ¢ + 1 points. Every pair of lines intersect.)
Add t|L| dummy points. For every line [ € L make ¢ copies
of [ and add to each of the resulting lines a different dummy
point such that all sets of points on a line become different.
Let F be the resulting collection of sets of cardinality n. Then
every set in F is different and every two sets in F have a
nonempty intersection (the two corresponding lines intersect
at a point). Every point is in #(g + 1) sets in F. Moreover
|F| =t(q?+q+1) > n2k =224 > pok 2k+2 40k /(n—1).

Subclaim 5: F C ).

Proof: EachY € F is asetof |Y| = g+2(= n) points on
a corresponding line in the projective plane. Here g + 1 points
of Y are among the g2 + g + 1 points of P in the projective
plane proper and one point of Y is a special dummy point
dp ¢ P such that all Y € F are unique. Recall that g is given
since n = g + 2 is given. An effective description of Y \ {dp}
given ¢q is as follows.

« Construction of (P, L) given q. If there are more projec-
tive planes than one then take the first one enumerated.
This takes constant number of bits in a self-delimiting
program.

o Description of the line [ € L such that the set of points
on [ equals Y \ {dp}. Since |L| = ¢> + ¢ + 1 a line in
L can be selected given L in at most 3logg bits. Since
this item can be the last item in the description it need
not be self-delimiting.

o A self-delimiting program of a constant number of bits
to construct Y from the items above.

Since |L| = ¢> 4+ g + 1 = n*> — 3n + 7 this description can
be given in 2logn + ¢y bits with ¢; > 0 a constant. Since
C(Y|{dp,n)) = C(Y\{dp}|{dp,n))+c, for a constant ¢c; > 0
it follows that C(Y \{dp}|(dp,n)) < k—c2 iff C(Y|(dp, n)) <
k. If maxyey C(Y|(y,n)) < k then C(Y|(dp,n)) < k. Hence
every set Y e F satisfying max,cy C(Y|(y,n)) < k with
k > 2logn 4+ ¢ with ¢ = ¢] + ¢ is in Y and therefore
Fc). O

Subclaim 6: To label the edges incident on members of F

there are | F'| labels required.

Proof: By construction all the sets in F are different and
every two sets in F' have a nonempty intersection. It therefore
follows from conditions (i) and (ii) that if Y;,Y, € F and
Y1 # Y, then all edges incident on Y] are labeled with the
same label but a different one from the label that labels all
edges incident on Y5. O

To complete the proof of the main claim equip Y and F with

subscripts n, k writing ), x and F, x, respectively. There are
infinitely many n = g 42 with ¢ a prime power, and for every
such n there are infinitely many k satisfying 28 < (g + 1) <
2%+1 and k > 2logn + ¢ for some ¢ € N. Call these n and k
the good n and k. By Subclaim 5 for the good n and k we have
Fux € YVu k. By Subclaim 6 for the good n and k holds that
for each F,  there are |F, «| different labels required. Using
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programs as labels requires therefore | F, | different programs.
Hence for each pair of good n and k there is a program p,, x of
length at least log | F, | labeling the edges incident on some
set Yo € Fuk. That is, U(pui, (y,n)) = Yu i for every
y € Y, k. Altogether, for every pair of good integers n and k
we have Y, x € Fyx € Vnk. Hence for infinitely many n and
for each such n for infinitely many k there is a multiset Y, x
with |Y, k| = n and maxyey, , C(Ynkl(y,n)) < k such that
ID(Y, k) = log|Fu x| = k +logn — O(1) since log |F, x| >
log(n2k — 2542 4 2k /(n — 1)) = k + logn + log(1 — 4/n +
1/(n(n —1)))) =k +logn— 0(Q) forn > 5. O
d
Corollary 7: For |X| = 2 Claim 2 shows the
result of [1, Th. 3.3] with error term O(1) instead of
O(logmax,cx{C(X|{x,n))}). That is, with X = {x,y}
the theorem computes x from y and y from x with the
same program of length max,cx{C(X|{x, n))} + O(1). (One
simply adds to program r the instruction “the other one”
in O(1) bits.)
Corollary 8: If the cardinality n of X is unknown we define

ID'(X) = min{|p|: U(p,x) =X for all x € X}.

The same proof of the upper bound of Theorem 1 shows
that for |X| = n we have ID'(X) < ID(X) + C(n) +
21log C(n) + O(1) by adding in the proof of Claim 2 a self-
delimiting program computing n of length C(n)+2log C(n)+
O(1). With respect to the lower bound the number of
labels required stays the same as in Claim 3. Hence the
lower bound on ID(X) is the same as the lower bound
on ID'(X).
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