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Abstract— We develop rate-distortion theory in the Kol-
mogorov complexity setting. This is a theory of lossy compression
of individual data objects, using the computable regularities of
the data.

I. INTRODUCTION

The classical theory of lossy compression was initiated by
Shannon in [14], where a rate distortion function is associated
to every random variable

�
and every distortion measure. A

similar approach for lossy compression of individual objects
(and not random variables) was proposed by Yang and Shen
in [19], where a rate-distortion function ��� was assigned
to each individual object � . The function � � maps every
real � to the minimal possible Kolmogorov complexity of �
with distortion at most � with � . (Kolmogorov complexity
is the accepted absolute measure of the information content
of an individual finite object. It gives the ultimate limit on
the number of bits resulting from lossless compression of
the object—more precisely, the number of bits from which
effective lossless decompression of the object is possible.)

We call Yang and Shen’s approach algorithmic, as Kol-
mogorov complexity is an algorithmic notion. The papers [19],
[12], [16] relate the classical and algorithmic approach. They
prove that if the object � is obtained by random sampling of
a sequence of i.i.d. random variables

����	�
�
�

	����
then with

high probability its rate distortion function � � is close to the
Shannon’s rate distortion function of the random variable

���
,

and some generalizations of this statement to arbitrary ergodic
random sources.

In the present paper we describe all possible shapes of Yang
and Shen’s rate-distortion curve ��� (with some accuracy, and
under some conditions on the distortion measure, Theorems 2
and 3). Our description implies that nonrandom data can have a
variety of different curves. It is easy to see that one is generally
interested in the behavior of lossy compression on complex
structured nonrandom data, like pictures, movies, music, while
the typical unstructured random data like noise (represented by
the Shannon curve) is discarded (we are not likely to want to
store it).

Second, we formulate a new theoretical problem related
to the practice of lossy compression. It has been implicitly
addressed before in proposals for denoising of signals by lossy
compression [11], [13], [3], [4]. Is it the case that a lossily
compressed representation that realizes least compressed size
at a given distortion with respect to the source object also

captures an appropriate part of the “essence” or “meaning”
of that object? Clearly, this question cannot be well posed in
the Shannon setting. We show that in algorithmic setting this
question is answered in the affirmative for every distortion
measure. More specifically, we prove that if � witnesses
the rate-distortion curve at point � (that is, � has minimal
Kolmogorov complexity among all � ’s with distortion at most
� with respect to � ) then the randomness deficiency of � in
the set of all ��� with distortion at most � with respect to �
is small, Theorem 5. We are deliberately vague here until we
introduce the appropriate formalism in Section V.

II. PRELIMINARIES

Compared to the classical information theory setting, in the
algorithmic rate-distortion theory we dispense with sequences
of random variables, and we also generalize the distortion mea-
sures from single-letter distortion measures to full generality.
We start from some set � . Its elements will be called source
words. Suppose we want to communicate source words � from
� using a code of at most � bits for each such word. (We
call � the rate.) If ��� is smaller than � ��� , then this is clearly
impossible. However, for every � we can use a representation
� that in some sense is close to � . For example, assume that
we want to communicate a real number ����� �! �"
# . Using �
bits we are able to communicate a representation � that is a
rational number at distance $%�'&(� from � .

Assume that the representations are chosen from a set ) ,
possibly different from � . We call its elements destination
words. Assume furthermore that we are given a function *
from �,+-) to the reals, called the distortion measure. It
measures the lack of fidelity, which we call distortion, of the
destination word � against the source word � . (In our example,
this is the Euclidean distance between � and � .)

In the Shannon theory [14], [15], [1], [2], we are given
a random variable

�
with values in � . Thus every source

word appears with a given probability. The goal is, for a
given rate � and distortion � , to find an encoding function . ,
with a range of cardinality at most �/� , such that the expected
distortion between a source word ���0� and the corresponding
destination word ��1�.�23�(4 is at most � . The set 5 of all pairs6 � 	 �87 for which this is possible is called the rate-distortion
profile of the random variable

�
. For every distortion � , we

consider the minimum rate � such that the pair
6 � 	 �87 is an

element of the profile of
�

. This way we obtain the rate-



distortion function of the random variable
�

:

�82 �84 1 ������� �	� 6 � 	 �87 �05�
 
 (1)

Here, like in [19], [12], [16], we are interested in what
happens for individual source words, irrespective of the prob-
ability distribution on � induced by a random variable. To
this end we use Kolmogorov complexity � 23�'4 and conditional
Kolmogorov complexity � 2 � � �'4 , as defined in [9], and the
textbook [10]. In our treatment it is not essential which version
of Kolmogorov complexity we use, the plain one or the prefix
one. We assume that the set of destination words ) consists of
finite objects and thus � 2 �'4 is defined for all ����) . For every
� � � we want to identify the set of pairs

6 � 	 �87 such that
there is � � ) with � 23�'4 $ � and *�2 � 	 �84 $ � . The set 5 � of
all such pairs will be called the rate-distortion profile of the
source word � . For every distortion � consider the minimum
rate � such that the pair

6 � 	 � 7 belongs to the profile of � . This
way we obtain the rate-distortion function of the source word
� [19]:

���(2 �84 1 ���
��� � 2 �84��/*�2 � 	 �'4 $ ��
 

The quantity � ��2 �84 for Hamming distortion was independently
defined in the paper [8] under the notation ���823� 4 (Hamming
distortion is defined in the example following Theorem 3).

It is often more intuitive to consider, for every rate � , the
minimum distortion � such that the pair

6 � 	 � 7 belongs to the
profile of � . This way we obtain the distortion-rate function
of the individual word � :

* � 2 � 4 1 ������� *(23� 	 �'4���� 23�'4 $ ��
 

It is straightforward from the definitions that * � 23� 4 is a sort
of “inverse” from � ��2 �84 .

III. RELATED WORK

In Shannon’s paper [15], it is assumed that � 1��
�

,
) 1��

�
are the sets of strings of certain length � over

finite alphabets � 	 � . (Here we ignore the generalizations
to infinite or continuous sets.) The distortion measure has
the form *

�
23� 	 �'401��

���� � *(23� � 	 � � 4 �!� where * maps pairs
of letter from � +"� to the reals (the single-letter distor-
tion measure). The random variable

�
is taken as

� 1� � 	�
�
�
�	����
where the

���
’s are independent random variables

identically distributed over � . For every � we obtain the
rate-distortion function �

�
2 �84 . Shannon shows that the limit# ��� ��$&% �

�
2 �84 �!� exists (we denote it by ' 2 �84 ) and determines

its non-constructive description in terms of � 	 � 	 * 	 � 	 � � :
THEOREM 1 (SHANNON): ' 2 �84 1 ���
�(�*) 2 � � �,+ 4 �- *(2 � � 	 + 4 $ ��
 where ) 2 � � �.+ 4 10/-21+ 4324/-21+ � � � 4

denotes the common information in
� �

and + and
- *(2 � � 	 + 4

stands for the expected value of *(2 � � 	 + 4 .
More general distortion measures and random variables, that

were studied later, are treated in [1], [2].
The papers [19], [12], [16], using the same i.i.d. assump-

tions on � 	 ) 	 � 	 * , establish the value of the rate-distortion
functions � � 2 � 4 for specific � ’s in 5

�
and compare them with

' 2 �84 . It is shown that the limit
# ��� �6$&% � � 2 �847�8� is equal to

' 2 �84 almost surely (i.e. with probability 1), and that the limit
of the expectation of � � 2 �847�!� is also equal to ' 2 �84 . These
results show that if � is obtained from a random source, then
with high probability its rate-distortion function is close to
the function ��' 2 �84 . Our results will show that for individual
data � (containing structure and regularity), there are many
different shapes of ���!2 �84 , and all of them are very different
from that of ��' 2 �84 .

Ziv [20] considers also a rate-distortion function for indi-
vidual data. The rate-distortion function is assigned to every
infinite sequence 9 of letters of a finite alphabet � (and not
to a finite object, as in the present paper). The source words �
are prefixes of 9 and the encoding function is computed by a
finite state transducer. Kolmogorov complexity is not involved.

In [17], we treated the special case of list decoding distor-
tion (related to model selection in statistics): � 1 � � 	 ":


�
, and

) is the set of all finite subsets of � � 	 ":

�
; the distortion func-

tion *(23� 	 �'4 is equal to ; #
<6= � � � > if � contains � , and is equal
to infinity otherwise (we need ; #
<6= � � � > of extra information to
identify � given � ). This type of code was pioneered by [5],
[6], [18]. The associated distortion is such a special case that
the proofs and techniques do not generalize. Nonetheless, and
surprisingly so to the authors, the results generalize by more
powerful techniques to somewhat weaker versions, yielding a
completely general algorithmic rate-distortion theory.

IV. POSSIBLE SHAPES OF THE RATE-DISTORTION CURVE

Given � 	 ) and the distortion measure * , satisfying certain
mild properties, we determine all possible shapes of the graph
of � � for the different source words � � � , within a small
margin of error. In contrast to the Shannon case where one
obtains a single profile 5 and rate-distortion function �82 � 4
(for every � 	 ) 	 � and distortion measure * ), we establish
that different � ’s can lead to different profiles.

Although some of our results can be naturally generalized
to infinite or even uncountable sets � , like the segment � �' �"
# ,
for simplicity we will assume further that � is a finite subset
of a fixed set of finite objects ? . We assume that a computable
bijection @ between ? and the set of all binary strings is fixed.
The Kolmogorov complexity � 23�(4 for � �A? is defined as
� 2B@ 23� 4 4 . The bijection @ induces a well order on ? and hence
on � . We make the same assumptions about ) , the fixed set
of finite objects ) is included to is denoted by C . We will
assume that the distortion measure * takes only non-negative
rational values. (This is not an essential restriction for this
paper, since every real can be approximated by a rational and
all bounds in the paper hold to limited precision only.) Let D
denote the range of * and * max the maximal element of D .

A ball of radius � in � is a set of the form EGF 2 �84 1 � � �
�H��*(23� 	 �'4 $ ��
 . The destination word � is called the center
of the ball. Let E�2 �84 stand for maximal cardinality of a ball
of radius � in � . We assume that E�2 � 4 1 " , and for every
� � � there is ��� ) with E F 2 �/4 1 � ��
 . (This is equivalent
to the statement that, for every � ��� , there is a ���0) with
distortion *(23� 	 �'4 1 � .) The graph of distortion measure * is
the set of triples

6 � 	 � 	 *(23� 	 �'4 7 ordered lexicographically. Note



that this list identifies also � 	 ) and D . Let � 2 * 4 stand for the
Kolmogorov complexity of the graph of * . Let � denote the
covering coefficient related to � 	 ) 	 * , defined as the minimal
number that satisfies the following condition: for all � $%���
� � , every ball of radius �8� in � can be covered by at most� E 2 � � 47�8E 2 �84 balls of radius � . (In the examples considered
in this paper the covering coefficient is of order

#�<�=���� ��� � � � .)
The following Theorems 2 and 3 describe all possible

shapes of the rate-distortion functions ��� of individual ��� � .
THEOREM 2: For all � 	 ) 	 * and � ��� we have

� � 2 * max 4 $
	 	 (2)

� � 2 �/4 1 � 2 �(4��
	 	 (3)

� $ � � 2 � � 4 2 � � 2 �84 $ #�<�= 21E�2 �847�8E 2 � � 4 4��
	 for all � � �%� 	
(4)

where 	 1�� 2 #
<6= ��� � 2 * 4�� #�<�= � D ��� #�<�= #
<6= � � � 4 .
We say that 	 1�� 2�� 4 where 	 	 � are functions of � 	 ) 	 * if

� 	!� $������"� , with � an absolute constant, and � depends on
the choice of the optimal description method in the definition
of Kolmogorov complexity, and on the choice of computable
bijections between the set of binary strings and the universes
? 	 C .

Property (4) implies that � � 2 �84 is a rather smooth function
provided

#
<6= E�2 �84 is so. The similar property doesn’t hold
for the “inverse” * �!23� 4 . Theorem 3 will establish that * �!2 � 4
can decrease a lot for � increasing only a little (see Fig 1).
Theorem 2 shows that the rate-distortion function is confined
within the following bounds:

� 23�(4 2 #�<�= E 2 �84 2�	 $ ����2 �84 $ #�<�= � ���:2 #�<�= E�2 �84��
	 

The right-hand bound is obtained by letting � 1 * max in Equa-
tion (4). The left-hand bound can be derived by letting �!��1 �
in (4), or can be shown also by a simple direct argument. If �
is a random element of � , that is, � 2 �(4 1 #
<6= � � ����	 , then
the lower and upper bounds for ���!2 � 4 are close to each other
and we can conclude that ����2 �84 1 #�<�= � ����2 #�<�= E 2 �84���	 . If
� is not such a random element, then there are many possible
behaviors of � � 2 �84 , and the next theorem shows that they are
all realizable.

THEOREM 3: Let � �AD � � satisfy (2) by having
� 2 * max 4 1 � , satisfy (3) by having �82 � 4 1 � , and satisfy (4)
with 	 1 � . Then there is a source word ��� � of complexity�!�"� such that

� �82 �84 2 � � 2 �84�� $#� 	 (5)

where �01$� 2�% #�<�= � ��� #
<6= 2 �&� 4'� � 2 * 4'� � 23� 4�4 and � 23� 4
stands for the complexity of the graph of � , which is the set
of pairs

6 � 	 � 2 �84 7 ( � � D ) ordered lexicographically.
The proof of this theorem is similar to the proof of its

special case for list decoding distortion in [17]. However, there
is an essential difference: in the case of list decoding distortion
we can let � be equal to the first � satisfying the inequality
���!2 �84)( �82 �84 2�� for all ��� D . In the general case this
does not work any more: we construct � together with balls
ensuring the inequalities � � 2 �84 $ �82 �84��"� for all � � D .

We will illustrate the variability of the shapes by the
instructive example of Hamming distortion: The set of source
words � and the set of destination words ) are both equal
to the set � � 	 ":


�
of all binary strings of length � . The

distortion function * is defined by *�2 � 	 �'4 1+*7�!� if � differs
from � in * bit positions. For all �%$

�, the term
#
<6= E�2 � 4

differs by at most � 2 #
<6= � 4 from ��/-2 �84 , where /-2 � 4%1
� #
<6= "!� �-� 2 " 2 �84 #
<6= "!�'2 " 2 �84 is the Shannon entropy
function. For � � �

�,  �"�# the function E 2 �84 is almost constant:
� 2%" $ #
<6= E�2 �84 $ � . The terms

#
<6= #
<6= � ��� , #�<�= � D � , � 2 * 4
are all of order � 2 #�<�= � 4 . As to the term

#
<6= � , it also is of
the same order, as the following lemma shows.

LEMMA 1: For all � $ � � $
�, every Hamming ball of

radius � � can be covered by at most � E�2 �'� 4 �8E 2 �84 , where � 1
poly 21� 4 , Hamming balls of radius � . (We denote by poly 2 � 4
a polynomial of � .)

Thus in the Hamming distortion case the following corollary
of Theorems 2 and 3 describes all possible shapes of rate-
distortion function.

COROLLARY 1: For every � of length � the rate-distortion
function � � of � satisfies the inequalities:

� � 2 "� 4 1�� 2
#
<6= � 4 	 � � 2 �/4 1 � 2 �(4��
� 2 #�<�= � 4 (6)

� $ ���!2 �84 2 � �!2 � � 4 $ � 21/-2 �84 2 / 2 � � 4�4��
� 2 #�<�= � 4 (7)

for all � $ � � � �0$
�, . On the other hand, let � be a

function mapping the set � � 	 "!�8� 	 ���!� 	�
�
�
 	
�, 
 to the naturals

satisfying the condition (7) without � 2 #�<�= � 4 term and such
that � � 2

�, 4 1 � and � � 2 �/4 1.� . Then there is a string � of
length � and complexity �/�+� 2 #�<�= � 4 such that � � 2 � 4-1
�82 �84��
� 210 � #�<�= �2�A� 23� 4�4 for all ��$

�, .
(The bound (7) was announced, without a complete proof, in
the paper [7].)

For example, we can apply Corollary 1 to the function �82 �84
shown in Fig. 1. The rate-distortion graph of the string �

distortion
1/21/31/6

n(1−H(a))

rate

n(1−H(a)+H(1/6)−H(1/3))

Fig. 1. A possible shape of the rate-distortion function for Hamming
distortion

existing by Theorem 1 is in the strip of size � 2 0 � #
<6= � 4
of the graph of �82 � 4 . Therefore � � 2 �84 is almost constant on



the segment �
�
�  
�
� # . Allowing the distortion to increase on this

interval, all the way from
�
� to

�
� , so allowing � � � incorrect

extra bits, we still cannot decrease the rate. This means that
the distortion-rate function * � 2 � 4 of � drops from

�
� to

�
� near

the point � 1�� 2 "	2 /-2
�
� 4 4 , exhibiting a very non-smooth

behavior.
Other examples we have analyzed are list decoding dis-

tortion, and Euclidean distortion. In the former the accuracy	 1 � 2 #�<�= � 4 in Theorem 2 and � 1 � 2 0 � #
<6= �2�"� 23� 4�4 in
Theorem 3 (as shown in [17], the accuracy in Theorem 3 can
be improved to � 2 #�<�= ���	� 2 � 4 4 in this example). In Euclidean
distortion we let � 1�) be the set of rational numbers in the
segment � � 	 "
# having � binary digits and we let *�2 � 	 �84 be
equal the 0 if � 1 � and to � � "�� ; #�<�= � � 2 � � > otherwise.
The accuracy is again of order � 2 #
<6= � 4 in Theorem 2 and� 2 0 � #
<6= ��� � 23� 4 4 in Theorem 3.

V. A THEORETICAL SUPPORT OF DENOISING VIA

COMPRESSION

Consider the following idealized procedure of denoising via
compression. Given the data ���0� to denoise and � � D (the
amount of noise to remove) do the following:
1. Find a destination word � with distortion at most � with
respect to � having the minimum Kolmogorov complexity,
which is equal to � �(2 �84 . (Note that such � is very hard to
find. First, Kolmogorov complexity is not computable. Second,
there are exponentially many � � + with distortion at most �
with respect to � . Thus we consider a very idealized version
of denoising via compression.)
2. If � 23�'4�� #�<�= � E F82 �84�� is close to � 23�(4 then output � . (In this
case the ball E F82 �84 is called an algorithmic sufficient statistic
of � .) Otherwise the procedure fails.

Note that � 23�'4 � #�<�= � E F82 � 4�� cannot be less than � 23�(4 .
Indeed, consider the code for � consisting of the minimum
length description of � and the index � of � in the ball E F82 � 4 .
As the total length of this two-part code cannot be greater than
the Kolmogorov complexity of � , we obtain the inequality
� 23�'4 � #�<�= � E F82 �84�� ( � 2 �(4 . (We ignore here additive terms
of order � 21� 2 * 4 � #�<�= � D ��� #�<�= #
<6= � � � 4 .)

If we have no idea how much noise is there in the data,
we try all � � D to find maximum � such that the procedure
succeeds. The corresponding � is called a minimal sufficient
statistic of � , as � 23�'4 is minimal.

The following two questions arise: (1) Assume that the
procedure succeeds on inputs � and � , that is, E F82 �84 is
a sufficient statistic of � . Why do we think that all the
information present in � but not in � is a noise? (2) Assume
that for some (unknown) destination word � the source word
� is chosen at random in the ball E�� 2 �84 . Is it true that in this
case the procedure succeeds with high probability on inputs
� and � ? In other words, is it true that with high probability
� � 2 �84�� #�<�= E�2 �84 2 � 2 �(4 is small?

The first question is easy to answer. If E F 2 �84 is an algorith-
mic sufficient statistic of � then the complexity of the index
� of � in the ball EGF82 �84 conditional to E F82 � 4 is close to the

binary length � of � . Indeed,

� 23�(4 $ � 2BE.F 2 � 4�4��A� 2�� � E F 2 �84 4 $ � 23�'4��	�
$ � 2 �84 � #�<�= � E.F82 �84���
 � 2 �(4 	

hence all the inequalities here are equalities. That is, in the
two-part representation

6 � 	 � 7 of � the second part has no
regularities and can be considered as a random noise.

The second question is answered in affirmative by the
following theorem.

THEOREM 4: Let � is chosen at random in the ball E�� 2 �84
(all elements in the ball are equiprobable). Then the probability
of the event

� � 2 �84�� #�<�= E�2 �84 2 � 2 �(4
���
is less than �8&������ . Here 	 1 � 21� 2 * 4 � #�<�= #�<�= � ��� � #
<6= � D � �#�<�=�� 4 , where

�
is the maximal ratio � E���2 �84�� �'� E��82 � 4�� over

all � 	�� 	�� . Note that in all our examples
�

is bounded by a
constant.

This theorem easily follows from its algorithmic version,
which uses the notion of randomness deficiency. The random-
ness deficiency of � in a set 5���� containing � is defined
as �823� � 5 4 1 #�<�= � 5 �:2 � 23� � 5 4 	
where 5 in the conditional of � 2 � � 5 4 is given as the list
of elements of 5 (in the fixed order on � ). The following
properties of randomness deficiency explain its meaning:
(1) Randomness deficiency is almost non-negative, that is,�823� � 5 4�( � for some constant � and all � � 5 . Indeed,
every element � of 5 can be described by its

#�<�= � 5 � -bit index
in 5 conditional to 5 . Thus � 23� � 5 4 $ #�<�= � 5 � �
� 2 " 4 .
(2) For all 5 , the randomness deficiency of almost all elements
of 5 is small: the number of � � 5 with �823� � 5 4���� is
less than � 5 � �8&! . Indeed, �823� � 5 4"�#� implies � 2 � � 5 4 �#�<�= � 5 � 2$� . Since there are at most �&% ')(+* ,�* &! programs of
less than

#�<�= � 5 ��2$� bits, the number of � ’s satisfying the
inequality cannot be larger.
(3) Every element with small deficiency in 5 possesses every
property possessed by majority of elements in 5 (we identify a
property of elements of 5 with a subset of 5 consisting of all
elements having the property). More specifically, assume that
E is a subset of 5 with � E�� ( 2 "�2 �8&! '4�� 5 � and � 21E�� 5 4 $ � .
Then the randomness deficiency of all �.-� E in 5 satisfies�823� � 5 4/�0� 2 � 2)� 2 #
<6= #�<�= � 5 � 4 , which is large if � is large
and

�
is small.

The randomness deficiency measures our disbelief that �
can be obtained by random sampling in 5 (where all elements
of 5 are equiprobable). By property (2) with high probability
the randomness deficiency of an element randomly chosen in
5 is small. On the other hand, if �82 � � 5 4 is small, then there
is no way to refute the hypothesis that � was obtained by
random sampling in 5 : every such refutation is based on a
simply described property possessed by a majority of 5 but
not by � . Here it is important that we consider only simply
described properties, as otherwise we can refute the hypothesis
by exhibiting the property E 1 521 � �(
 .



THEOREM 5: Let � belong to a ball E � 2 �84 . Then

� � 2 � 4�� #�<�= E 2 �84 2 � 2 �(4 $#�823� � E � 2 �84 4��
	 	
where 	 is of the same order that in Theorem 4.

An easy calculation shows that

�823� � 5 4 $ � 215 4�� #�<�= � 5 �:2 � 23� 4
for all 5�� � . Thus if � is chosen at random in a ball
E�� 2 �84 and � has minimal Kolmogorov complexity among all
destination words with distortion � with � then �823� � E F 2 �84 4 is
only a little larger than �823� � E�� 2 �84 4 . Indeed,

�823� � E F 2 �84�4 $"� 21E F 2 �84 4�� #�<�= � E F 2 �84��82 � 2 �(4
$
�82 � � E��82 � 4�4��
	 


This gives an additional support to denoising via compression:
the hypothesis “ � is chosen at random in E F 2 �84 ” is almost as
plausible as the hypothesis “ � is chosen at random in E � 2 �84 ”.

VI. AN ALGORITHMIC ANALOG OF THEOREM 1

The proofs of the results of the previous section are based
on the following theorem.

THEOREM 6: For every ball E F 2 �84�� � there is a ball
E�� 2 �84�� � with � 2 � 4 $ ) 23�"���'4���� 2 #�<�= � 23�'4 4 �"	 where) 2 � � �'4 1 � 2 �'4�2"� 2 � � � 4 stands for the information in �
about � . Hence � � 2 �84 1 �������*) 23�H� �'4 � *�2 � 	 �84-$ � 
 �	 ��� 2 #�<�= ����� F	��
 � 2 �84 . Here 	 1 � 21� 2 * 4�� #
<6= #
<6= � ���&�#
<6= � D � 4 .

It is worth to remark that this theorem is very similar
the above Shannon’s Theorem 1. However the proofs of
Theorem 1 and 6 are quite different. The proof of Theorem 6
is based on the following Theorem 7, which is interesting in
its own right. Let � be a family of finite subsets of � (for
instance, distortion balls). A set in � is called a model of � if
it contains � and ��23�(4 denotes the set of all models of � . The
Kolmogorov complexity � 215 4 of 5 is defined as Kolmogorov
complexity of the list of elements of 5 in the fixed order on
� .

THEOREM 7: If � ��23�(4���( � � then � has a model in � with
� 215 4 $ #�<�= � ���82)�!�)	 where 	 1�� 2 #
<6= #�<�= � ��� � � 2 � 4 �
KE 21� 4�� #�<�= #
<6= � � � 4 .

Here KE 2B� 4 stands for the Kolmogorov complexity of “enu-
merating � ”, defined as follows. Fix a computable bijection
5�
� � 5 # between the set of all finite subsets of � and the
naturals. Then KE 2B� 4 is the minimal size of a non-halting
program that prints all elements in the set � � 5 # � 5 � � 
 in
some order (it is essential that we do not know the moment
when the last element in the set is printed out).

Previously an analog of this theorem was known in the case
when � is the class of all sets of fixed cardinality ��� and of
complexity not exceeding a certain level � . For � 1�� this is
an exercise (Ex. 4.3.8 in [10]): if a string � has at least � �
descriptions of length at most � (� is called a description of

� if � 2�� 4 1 � where � is an optimal description method),
then � 2 �(4 $ ��2/� �)� 2 #�<�= � � #
<6= � 4 . The paper [17] proves
this for all � : if a binary string belongs to at least � � sets 5
of cardinality ��� and complexity � 215 4 $�� , then � belongs
to a set E of cardinality � � and complexity � 21E 4 $ �.2��!�� 2 #�<�= � � #�<�= � � #
<6= ��4 .
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