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ABSTRACT 
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Gold’s (1967) celebrated work on learning in the limit has been taken, by 

many cognitive scientists, to have powerful negative implications for the 

learnability of language from positive data (i.e., from mere exposure to 

linguistic input). This provides one, of several, lines of argument that 

language acquisition must draw on other sources of information, including 

innate constraints on learning. We consider an ‘ideal learner’ that applies a 

Simplicity Principle to the problem of language acquisition. The 

Simplicity Principle chooses the hypothesis that provides the briefest 

representation of the available data—here, the data are the linguistic input 

to the child. The Simplicity Principle allows learning from positive 

evidence alone, given quite weak assumptions, in apparent contrast to 

results on language learnability in the limit (e.g., Gold, 1967). These 

results provide a framework for reconsidering the learnability of various 

aspects of natural language from positive evidence, which has been at the 

center of theoretical debate in research on language acquisition and 

linguistics.  
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Language acquisition involves the rapid mastery of linguistic structure of astonishing 

complexity based on an input that appears noisy and partial. How can such an 

impoverished stimulus support such impressive learning? One influential line of 

argument is that it cannot---this “poverty of the stimulus” argument (Chomsky, 1980) is 

typically used to argue that language acquisition is guided by innate knowledge of 

language, often termed “universal grammar,” that the child brings to bear on the learning 

problem (e.g., Chomsky, 1965, 1980; Hoekstra & Kooij, 1988). This type of argument for 

universal grammar is of central importance for the study of human language and 

language acquisition (e.g., Crain & Lillo-Martin, 1999; Hornstein & Lightfoot, 1981).  

 How can the poverty of the stimulus argument be assessed? At an abstract level, a 

natural approach is to attempt to somehow define an “ideal” language learner, which 

lacks universal grammar, but that can make the best use of the linguistic evidence that the 

child is given. If it were possible to show that this ideal learner is unable to learn 

language from the specific linguistic data available to the child, then we might reasonably 

conclude that some innate information must be available. Indeed, a second step, although 

not one we will consider in this paper, would be to attempt to prove that the ideal 

language learner, when provided with some appropriate innate information, is then able 

to learn language successfully from data of the sort available to the child.  

 Clearly, the task of constructing such an ideal language learner is a formidable 

one. We might reasonably suspect that the project of finding an optimal way of learning 

language is inherently open-ended; and our present understanding both of the 

mechanisms of human learning, and the computational and mathematical theory of 
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learning, is sufficiently undeveloped that it is clear that the project is, in full generality, 

well beyond the scope of current research.  

 How is it, then, that many researchers are already convinced that, whatever form 

such an ideal learner might take, there is not enough information in the child’s language 

input to support language acquisition, without recourse to universal grammar? Two types 

of argument have been proposed. The first considers the problem of language acquisition 

to be in principle problematic.  It is argued that there is a logical problem of language 

acquisition---essentially because the child has access only to positive linguistic data 

(Baker & McCarthy, 1981; Hornstein & Lightfoot, 1981). Despite some controversy, it is 

now widely assumed that negative linguistic data is not critical in child language 

acquisition. Children acquire language even though they receive little or no feedback 

indicating that particular utterances are ungrammatical; and even where they do receive 

such feedback, they seem unwilling to use it (e.g., Brown & Hanlon, 1970). But learning 

from positive data alone seems “logically” problematic, because there appears to be no 

available data to allow the child to recover from overgeneralization. If this line of 

argument is correct, then whatever ideal learner we might describe, it will inevitably face 

these logical problems; and hence it will be unable to learn from positive evidence alone.  

The second, and closely related, type of argument, focuses on patterns of 

acquisitions of particular types of linguistic construction and argues that these specific 

constructions cannot be learned from positive data only (e.g., Baker, 1979; Chomsky, 

1980). This type of argument is sometimes labeled Baker’s paradox, to which we return 

below. The nature of this type of argument is necessarily informal---various possible 
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mechanisms for learning the problematic construction of interest are considered, and 

rejected as unviable.  

We shall present mathematical results concerning an ideal learner, with relevance 

to both issues. In particular, we shall show that, in a specific probabilistic sense, language 

is learnable, given enough positive data, given only extremely mild computability 

restrictions on the nature of the language concerned. Thus, the apparent logical problem 

of  language acquisition must be illusory---because a specific ideal learner can 

demonstrably learn language. Our arguments also, a fortiori, address the construction-

specific version of the poverty of the stimulus argument. If language as a whole can be 

learned from positive data, then any specific linguistic construction can be learned from 

positive data, despite intuitions to the contrary. Indeed, we shall see that there is a general 

mechanism for such learning---one that has frequently been described, though sometimes 

dismissed, in discussions of poverty of the stimulus arguments (e.g., Pinker, 1979, 1984). 

That is, the absence of particular linguistic constructions in the positive data can serve as 

evidence that these structures are not allowed in the language. This point is discussed 

further below in our discussion of what we call the overgeneralization theorem, which 

shows how the ideal learner is able to eliminate over-general models of the language.  

 The results presented here should not, though, be viewed as showing that 

language is learnable by children from positive data. This is for two reasons. First, results 

concerning an ideal learner merely show that the information required to support learning 

is present in principle. It does not, of course, show that the child has the learning 

machinery required to extract it. Indeed, the ideal learner we consider here is able to 

make calculations that are known to be uncomputable---and it is typically assumed that 
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the brain is limited to the realm of the computable. Thus an interesting open question for 

future research concerns learnability results that can be proved with a more restricted 

ideal learner. The second reason that this work does not show that the child can learn 

language from positive data is that the results we describe are asymptotic---that is, we 

allow that the child can have access to as much positive data as required. In practice, 

though, children learn specific linguistic constructions having heard specific amounts of 

positive linguistic data, with a specific degree of incompleteness, errorfulness, and so on. 

The formal results that we describe here do not directly address the question of the speed 

of learning. Nonetheless, this is typically also true of poverty of both logical and 

construction-specific poverty of the stimulus arguments. Both types of argument typically 

suggest that, however much positive data is provided, learning will not be successful. 

These results presented here therefore address these arguments; and raise the question of 

how to provide specific bounds on the amount of positive data that is required by the 

learner to learn specific linguistic phenomena.  

The formal results in this paper, then, aim to sharpen the discussion of poverty of 

the stimulus arguments, rather than to resolve the issue one way or the other. According 

to the results we present, there is enough information in positive linguistic data for 

language to be learnable, in principle, in a probabilistic sense, given sufficient linguistic 

data. A challenge for future work on the poverty of the stimulus argument is to sharpen 

existing arguments, and current formal results, to address the question of what 

increasingly realistic learners might be able to acquire from increasingly realistic models 

of the amount and properties of the linguistic input available to the child. In particular, it 

is interesting to ask whether it is possible to ‘scale-down’ the methods that we describe 
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here, to explore the question of whether there is sufficient information in the linguistic 

input available to the child to acquire specific linguistic phenomena that have been 

viewed as posing particularly difficult problems for the language learner. We hope this 

work will feed into the current debate in linguistics and psychology concerning the scope 

and validity of poverty of the stimulus arguments (e.g., Akhtar, Callanan, Pullum & 

Scholz, 2004; Fodor & Crowther, 2002; Legate & Yang, 2002; Lidz, Waxman & 

Freedman, 2003; Perfors, Tenenbaum & Regier, 2006; Pullum & Scholz, 2002; Regier & 

Gahl, 2004; Tomasello, 2004).  

The ideal learner that we analyse is based on a Simplicity Principle. Roughly, the 

idea is that the learner postulates the underlying structure in the linguistic input that 

provides the simplest, i.e., briefest, description of that linguistic input. We require that 

the description can actually be used to reconstruct the original linguistic input using some 

computable process---thus, the goal of the ideal learner is to find the shortest computer 

program that encodes the linguistic input. The general idea that cognition is a search for 

simplicity has a long history in psychology (Mach, 1959/1886; Koffka, 1962/1935), and 

has been widely discussed, in a relatively informal way, in the field of language and 

language learning (e.g., Fodor & Crain, 1987). We describe a formal theory of inductive 

reasoning by simplicity, based on the branch of mathematics known as Kolmogorov 

complexity theory (Li & Vitányi, 1997). Kolmogorov complexity was developed 

independently by Solomonoff (1964), Kolmogorov (1965) and Chaitin (1969).  

Solomonoff’s primary motivation in developing the theory was to provide a formal model 

of learning by simplicity. Kolmogorov complexity and derivatives from it have been 

widely used in mathematics (e.g., Chaitin, 1987), physics (Zurek, 1991), computer 
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science (e.g., Paul, Seiferas & Simon, 1981), artificial intelligence (Quinlan & Rivest, 

1989), and statistics (Rissanen, 1987, 1989; Wallace & Freeman, 1987). This 

mathematical framework provides a concrete and well-understood specification of what it 

means to learn by choosing the simplest explanation, and provides a way of precisely 

defining the Simplicity Principle for cognitive science (Chater, 1996, 1997, 1999; Chater 

& Vitányi, 2002). Moreover, the simplicity principle has been used practically in a wide 

range of models of language processing and structure (e.g., Brent & Cartwright, 1996; 

Dowman, 2000; Ellison, 1992; Goldsmith, 2001; Onnis, Roberts & Chater, 2002; Wolff, 

1988). This framework will prove to be useful in considering the amount of information 

available about the language that is inherent in positive evidence alone.  

The first substantive section of this paper, Ideal language learning by simplicity, 

outlines the framework for ideal language learning. Roughly, as we have said, the learner 

finds the shortest “computer program” that can reconstruct the linguistic data that has so 

far been encountered; it then makes predictions about future material based on what that 

computer program would produce next. The second section, The Prediction Theorem and 

Ideal Language Learning, presents a remarkable mathematical result, due to Solomonoff 

(1978), that shows that this learning method is indeed, in a certain sense, ideal. This 

method learns to make accurate predictions (with high probability) about the language 

input, given mild computability constraints on the processes generating the linguistic 

data. The subsequent two sections presents and proves new mathematical results.  

In The ideal learning of grammaticality judgments, we show how Solomonoff’s 

prediction theorem can be used to show that the ideal learner can, in a probabilistic sense, 

learn to make arbitrarily good grammaticality judgments. This result is particularly 
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important, given that grammaticality judgments are the primary data of modern linguistic 

theory, and they are frequently thought to embody information that cannot readily be 

extracted from corpora of language. Intuitively, the idea is that sentences which are 

predicted with non-zero probability are judged to be grammatical; sentences that have 

zero probability are judged to be ungrammatical. Note that this result does not allow for 

the errorful character of linguistic input---although extensions to this case may be 

feasible. 

In The ideal learning of language production, we show that prediction can also 

allow the ideal language learner to produce language that is, with high probability, 

indistinguishable from the language that it has heard. Intuitively, the idea is that the 

ability to predict what others might say can be recruited to determine what the speaker 

should say. Of course, language production is much more than this---in particular, it 

requires the ability not merely to continue conversations plausibly, but to say things that 

reflect one’s particular beliefs and goals. Nonetheless, the result that an ideal language 

learner’s can continue conversations plausibly is non-trivial. It requires, among other 

things, the ability to produce language that respects the full range of phonological, 

grammatical, pragmatic, and other regularities governing natural language.  

Finally, in The Poverty of the Stimulus Reconsidered, we relate these results to the 

logical version of the poverty of the stimulus (relating these results to Gold’s [1967] 

results, and later work); and to the construction-specific version (reconsidering Baker’s 

paradox); and we consider open-questions for the approach that we have described. We 

leave a detailed analysis of the methodological and theoretical implications for the 
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poverty of the stimulus argument, and a whether a simplicity principle might explain 

some aspects of human language acquisition, to future work.  

 

Ideal language learning by simplicity 

To specify a set-up for learning a language from positive examples, we need to provide 

(1) the class of linguistic inputs to be learned (the linguistic ‘environment’);  (2) the class 

of possible models of the language; (3) a measure of learning performance; and (4) a 

learning method. Below, the class of linguistic inputs will be those that can be generated 

by a computable process combined with random noise. Learning performance will be 

measured both in terms of the ability to predict new input and in relation to judgements 

of grammaticality. And the learning method will be based on the Simplicity Principle—

that the learner should prefer hypotheses which provide the simplest explanations of the 

linguistic input. We consider each of these points in more detail.  

 

1. The class of allowable linguistic inputs 

Let us assume that linguistic input corresponds to a potentially infinite sequence of 

atomic symbols (an ‘alphabet’). Without loss of generality, we assume that the stream of 

sentences that form the input to the learner can be represented as a continuous binary 

string: a sequence of 0s and 1s. A simple way of doing this is to associate a fixed binary 

string with each element of the original alphabet in which the language is expressed (e.g., 

the standard English alphabet and punctuation symbols for sentences of English). Thus, 

the sequence of sentences of the input can be converted from its standard representation 

into a continuous binary sequence.1
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 We assume, further, that the linguistic input is generated by a real computational 

process. But how, exactly, should we model what counts as a ‘real computational 

process’? A first suggestion would limit possible linguistic inputs to those that can be 

generated by Turing machines. But this would be over-restrictive, because linguistic 

input can also be affected by random factors. For example, imagine a speaker reporting 

successive tosses of a fair coin: “Heads, heads, tails, tails, tails, heads...” and so on. 

Assuming that the coin is tossed fairly, the corresponding utterance is a random infinite 

sequence, which cannot be generated by any Turing machine (Li & Vitányi, 1997). Real 

language input to the child is presumably a mixture of both kinds of factor—deterministic 

computational processes in the speaker (and perhaps also in other aspects of the 

environment which the speaker is describing or reacting to), mixed with random 

influences.2

 So how can we model this mixture of deterministic and random factors? One 

natural approach (which turns out to be quite elegant and general) is to assume that 

language is generated by a deterministic machine (concretely, a Turing machine), fed 

with a random input (concretely, the flips of an unbiased coin, which produce a 

potentially infinite string of binary inputs). As the stream of random input comes in, the 

machine writes its output as a binary string on a dedicated output tape--this corresponds 

to the utterances produced by the machine. This set-up needs to reflect a basic fact about 

utterances--that once they have be said, they cannot then be ‘unsaid.’ This can be 

expressed by saying that symbols on the output cannot be deleted. The intuitive picture to 

have in view is that, as the input grows, the output (the corpus of things ‘said’) gradually 
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increases, and can never decrease.3 Let us call a deterministic Turing machine which has 

this property a monotone Turing machine (Li & Vitányi, 1997).4

 We now have a model for how the linguistic input presented to the learner is 

generated. It is generated by a mixture of random factors (captured by the random input 

to the machine); and deterministic factors (captured by an arbitrary monotone Turing 

machine). The deterministic factors determine which sentences of the language are 

allowed, and their probabilities—the random factors generate an actual corpus of 

language, by choosing a particular stream of sentences. The output of the machine is a 

finite5 or infinite binary sequence, which can be viewed as encoding the corpus of 

linguistic material to which the learner is exposed. Because of the random component, 

many different outputs (corpora) can potentially be generated, and some corpora will 

more likely to be generated than others. The probability associated with each output 

sequence x is the probability that x will be the output of the computational process, when 

supplied with random binary input. Hence we can associate any given (monotone) 

computational process, C, with a probability distribution, μC(x),  over the set of finite and 

infinite binary output sequences, x. The fundamental assumption concerning the nature of 

the linguistic input outlined in this subsection can be summarised as the assumption that 

the linguistic input is generated by some monotone computable probability distribution 

μC(x). 

 But is the definition of monotone computability sufficiently broad? Perhaps 

language is generated by some cognitive process which is not monotone computable. 

There is no definitive way to ascertain whether this occurs—a ‘monotone computability’ 
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thesis must stand as a conjecture, which cannot be verified although it may, at some time 

in the future, be falsified. There are three points to consider.  

The first point is the assumption that the ‘deterministic’ component is no more 

powerful than a Turing machine. This seems relatively uncontroversial, because it is in 

line with standard assumptions in cognitive science that cognitive processes are 

computable (and the Church-Turing thesis, that any computational process can be 

modeled by a Turing machine). Thus the deterministic component does not seem overly 

restrictive.  

The second point appears more problematic. The assumption that the input to the 

machine is the result of tossing a fair coin seems extremely restrictive. But, fortunately, 

this restriction can be weakened without affecting the class of probability distributions 

that are allowed. Specifically, the assumption can be weakened so that the input is 

generated by any ‘enumerable semi-measure.’ Roughly, this is the class of distributions 

that can be approximated in the limit6 by a computational process (Li & Vitányi, 1997). 

This is a very broad class of probabilistic inputs indeed and includes all the distributions 

standardly used in mathematics and probability theory.7  

The third point concerns whether the sharp separation between deterministic 

computational processes and purely random factors is unrealistic. For example, on the 

natural assumption that the computations of the cognitive system are disrupted by 

internal ‘neural’ noise, then some of randomness will creep into the workings of the 

computational process itself. Fortunately, however, incorporating finite amounts of noise 

into the workings of the computational process itself does not affect the class of 

probability distributions over linguistic outputs that can be generated. This is because any 
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finite amount of randomness in the internal workings of the machine can be simulated by 

a deterministic machine that ‘absorbs’ the relevant amount of randomness from part of its 

random input.8

 We shall therefore tentatively adopt the monotone computability conjecture 

henceforth, and therefore assume that language can be viewed as generated by a fair 

random binary input into an arbitrary deterministic, monotone computational process. 

 To get an intuitive sense of how language generation occurs according to the 

present model, consider a variant of a well-worn example. It is often remarked that a 

monkey hitting typewriter keys at random would eventually produce the works of 

Shakespeare. Here, instead, the monkey is hitting the keys, not of a typewriter, but of a 

programmable computer. So the analogous remark is that a monkey randomly hitting the 

keys of a programmable computer will eventually write a computer program that 

produces the works of Shakespeare. 

 The change from random typing to random programming is of vital importance. 

In the former case, the probability of a string being generated depends only on its length. 

So the probability of any billion symbol binary string being generated random is the 

probability of a billion successive coin tosses coming up in some specific way, i.e., 2-

1000,000,000. Thus, all binary strings, whether they encode Shakespeare or are completely 

random are treated as having precisely the same probability. But this would be of no use 

as a model of language generation--because in providing the same probability to all 

outputs, the ‘monkey-at-the-typewriter’ scenario completely fails to favor grammatical, 

or relevant, or coherent, utterances over unintelligible gibberish.  
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 By contrast, the ‘monkey-at-the-programmable-computer’ scenario, allows for 

such biases to be incorporated into the structure of the computer. These biases can take 

forms as varied as the possible computer programs. To choose a simple example of 

relevance to language generation, the programmable computer might, for example, 

support a ‘programming language’ in which the rules of a phrase structure grammar can 

be specified (in this case by the random input). When run, such a program then generates 

a binary output, encoding a sequence of sentences that are in accordance with those rules. 

In this case, some binary strings (those that correspond to sequences of sentences which 

are grammatical according to a phase structure grammar) will be relatively probable; and 

others (those that do not correspond to such sequences) will have probability 0. So while 

the monkey typing at random is equally likely to produce any random sequence, the 

monkey programming at random (on this particular language generating ‘machine’) is 

very much more likely to produce some outputs than others. 

 The specific probability distribution over binary outputs depends crucially, of 

course, on the choice of programmable computer, C, into which the random binary input 

is fed. But if we fix a particular C, we can quantify the probability that a particular 

output, x, will be generated from random input quite straightforwardly. This probability 

depends on the number of different ‘programs,’ y, that produce output x, and on the 

length of each of these programs, l(y).  

 Focussing on a specific program, y, the probability that it is generated from 

random input is the probability that first l(y) symbols in the random input correspond 

precisely to y. There is a probability 1/2 that each particular symbol will correspond to 

the corresponding symbol of the sequence y, and hence a probability 2-l(y) that all l(y) 
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symbols correspond to y. This means that outputs which correspond to short programs for 

the computer, C, are overwhelmingly more probable than outputs for which there are no 

short programs in C. Now we can derive the total probability, μC(x…) that an output 

beginning with, x..., is generated by random input to the computer C.  We just need to 

sum the probabilities of all the inputs y which produce an output x… (i.e., an output that 

begins with the subsequence x) when run on the C (in symbols, all the y such that 

C(y…)=x…). So the total probability, μC(x…), that x… is generated from random input to 

C is:9  

 

 μC (x...) = 2−l (y...)

y:C (y...)= x ...
∑        (1) 

 

where x… denote a finite or infinite sequence that begins with the subsequence x, and 

similarly for y… We shall neglect the ellipsis “…” below. Thus, the fundamental 

assumption of the framework presented here is that the (possibly infinite) corpus of 

utterances which forms the corpus, x, for the language learner is generated by a 

probability distribution μC(x), associated with a monotone computational process, C, 

provided with fair coin flips.10 We shall call such μC(x) monotone computable probability 

distributions. We show below that the structure of corpora generated in this way can be 

learned, to an approximation, from positive evidence alone. 

 Finally, note that we have skated over some technical complications in the 

interests of clarity. First, defining probability distributions over infinite sequences 

requires care, because probabilities typically all tend to zero in the limit. Technically, this 
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requires introducing the notion of a measure (we introduce measures, from a non-

standard point of view [Li & Vitányi, 1997], which will be useful in subsequent proofs, 

in Appendix A). Second, the ‘probability distributions’ we have been discussing do not 

all obey a standard feature of probability: that the probabilities of outcomes sum to 1. In 

particular, this arises because some inputs to a monotone machine may produce no wel

defined output (the monkey typing into the computer may type a syntactically in

program, or a program which goes into an infinite loop, or exhibits some other 

pathology). This means that the sum of the probabilities of the well-defined outputs, s, 

which we wrote μ

l-

valid 

m 

below, the 

omplications without substantial loss of comprehension or continuity below.  

 

ts 

fy 

s 

994). 

C(s), may be less than 1. This complication requires generalizing fro

the conventional measures used in probability theory to the notion of a semi-measure 

(Appendix A). Where measures and semi-measures are drawn on in the results 

discussion is relegated to other Appendices. Thus, the reader may ignore such 

c

2. The class of possible models of the language. 

Many standard formal analyses of the problem of language provide specific constrain

on the types of language that are learnable. From the point of view of Gold’s (1967) 

framework of identification in the limit, for example, the goal of the learner is to identi

the language by picking out one of a (typically infinite) set of possible languages: for 

example, the set of finite state languages, context-free languages, or, from the point of 

view of Chomsky’s (1981) principles and parameters framework, the class of language

defined by the possible values of a finite set of parameters (Gibson & Wexler, 1

Here, instead the class of languages from which the learner must choose is less 
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constrained; the learner is, in principle, able to entertain all possible processes that migh

have generated the input. That is, the only restriction is that the model of the linguistic 

data can be generated by a computable process, supplied, if required, with random input, 

as described above. Of course, this weak assumption includes all the gra

t 

mmatical 

formalisms currently used in linguistics and computational linguistics.  

otone 

of each 

 

 in language learning (e.g., Christiansen & Chater, 1994, 

1999; E

t the 

 

y 

weaker, and more natural, sense of acquiring just language-specific information, such as 

 

3. Measuring learning performance 

We have defined the class of monotone computable generating mechanisms—and we 

assume that the linguistic input to the learner (e.g., the child) is generated by a mon

computable process. But how are we to measure how well learning succeeds? Our 

primary measure is prediction—how well can the learner specify the probabilities 

possible continuation of a sentence or text? The use of prediction as a measure of 

learning language structure can be traced back to Shannon (1951) and has been widely

used in connectionist models

lman, 1990, 1993).  

This prediction criterion is very difficult to meet. Intuitively, it requires tha

learner must not merely uncover the phonological and syntactic rules underlying 

language structure, but must also master whatever other regularities determine which 

sentences in the corpus are generated, whether these regularities are pragmatic, semantic,

or due to the influence of world knowledge. Thus, this criterion requires that the learner 

acquire not merely the language, but much else besides. Nonetheless, it seems intuitivel

plausible that if language is learned in this strong sense, it is necessarily learned in the 
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the grammar of the language. We shall see below that there is a precise sense in which 

this is true, in the section Prediction and grammaticality, below.  

 Let us frame the prediction criterion more exactly. A particular subsequence, x, is 

generated according to a monotone computable probability distribution μC. The learner is 

exposed to this specific x with a probability μC. The learner is faced with the problem of 

predicting how the binary sequence will continue, i.e., what language input is to come. 

Let us consider this input, symbol by symbol. The basic problem is to decide the 

probability that sequence, x, will be followed by either a ‘1’ or a ‘0’. The true probability 

that it will be followed by a ‘0’ can be written, using standard notation from probability, 

as:  

 

μC (0 | x) =
μC (x 0)
μC (x)

       (2) 

 

But, of course, the learner does not know the ‘true’ distribution μC (we will typically drop 

the subscript below)—because the learner does not know the language at the outset. 

Instead, the learner must use some other probability distribution, and hope that the 

predictions that it makes will approximate, to some degree, the predictions that arise from 

the true distribution. 

 

4. The learning method: Predicting by simplicity 

Rather than attempting to provide a model of human language acquisition, we shall 

instead adopt an idealized formal model of learning. This formal model will allow an 
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analysis of what can be learned from the linguistic input—and hence to address the issue 

of the poverty of the linguistic stimulus.  

Specifically, the formal model is that learning follows a Simplicity Principle. The 

learner prefers hypotheses, theories, or patterns to the extent that they provide simple 

explanation of the data. Thus, we assume that the learner chooses the underlying theory 

of the probabilistic structure of the language that provides the simplest explanation of the 

history of linguistic input to which the learner has been exposed.  

The learner can then make predictions about subsequent input by applying the 

prediction of this best (simplest) theory of the language. More accurately, as we shall see 

below, it makes predictions by considering the predictions of many different theories, and 

being influenced by each prediction to the extent that the theory that generates it provides 

a simple encoding of the data. 

 So prediction by simplicity requires finding the theory which provides the 

simplest explanation of the language input that has been encountered (or, more exactly, a 

weighted combination of explanations with the simplest explanations weighted more 

heavily). What does this mean in practice? A first suggestion is that the simplest 

hypothesis should be preferred. To see how this might work, consider a trivial input 

which consists of, for example, an initial sub-sequence of 1,000,000 alternations of 1 and 

0, that is: 1010...1010. Intuitively, the simplest hypothesis is that the sequence continues 

to alternate indefinitely—leading to the prediction that the next symbol will be 1. This 

hypothesis is therefore favored over, for example, the intuitively more complex 

hypothesis that the sequence consists of 1,000,000 alternations of 1 and 0, followed by 

infinitely many 0s, which would make the opposite prediction. But, taken alone, the 
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injunction to accept the simplest hypothesis has an absurd consequence. An even simpler 

hypothesis, e.g., that the sequence consists of an infinite sequence of 0s, leading to the 

prediction that the next symbol will therefore be a 0, will always be preferred. Such 

possibilities are, of course, ruled out by the constraint that the hypothesis  has to be 

consistent with the available data—i.e., some hypotheses are just too simple. But this 

point itself raises difficult questions: What does it mean for a hypothesis  to be consistent 

with the available data?  Can consistency with the input be traded against simplicity of 

hypothesis? If so, how are simplicity and consistency with the data to be jointly 

optimised? The theoretical account of simplicity presented below answers these 

questions.   

 There is, however, also a more subtle difficulty: What rules out the simplest 

possible “vacuous” hypothesis which allows any sequence whatever—such a 

“hypothesis” could be interpreted as saying that “anything goes?”  This hypothesis  

seems extremely simple; and it is also consistent with the available data. Indeed it would 

be consistent with any data, because it rules nothing out. Mere consistency or 

compatibility with the data is plainly not enough; the hypothesis  must also, in some 

sense, capture regularities in the data. That is, it must have explanatory power (Harman, 

1965). So we appear to be faced with the unattractive conclusion that we must somehow 

jointly optimize two factors, simplicity and explanatory power; and the relative influence 

of these two factors is unspecified.  

 Fortunately, there is an alternative way to proceed. This is to view a hypothesis as 

a way of encoding the data; and to propose that the hypothesis chosen is that which 

allows the shortest encoding of the data.  This proposal disfavours vacuous or nearly 
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vacuous hypotheses, that bear little or no relation to the data. These hypotheses do not 

help encode the data simply because they capture no regularities in the data.  Focussing 

on using the hypothesis as a way of encoding the data also suggests an operational 

definition of the “explanatory power” of a hypothesis—as the degree to which that 

hypothesis helps provide a simple encoding of the data.  If a hypothesis captures the 

regularities in the data  (i.e., if it “explains” those regularities), then it will provide the 

basis for a short description of the data. Conversely, if a hypothesis fails to capture 

regularities in the data, then it does not provide a short description. Explanatory power is 

therefore not an additional constraint that must be traded off against simplicity; 

maximizing explanatory power is the same as maximizing the simplicity of the encoding 

of the data. 

 Measuring simplicity as brevity of encoding appears to face two problems. First, 

it seems that a new description language, in terms of which the linguistic or other data are 

to be encoded, may be required for each new hypothesis (e.g., each new grammatical 

theory). Second, it seems that brevity of encoding of hypotheses and data will depend on 

the description language chosen—and hence the predictions derived from the Simplicity 

Principle will likewise depend on the choice of description language. 

 These problems are addressed by the mathematical theory of Kolmogorov 

complexity (Li & Vitányi, 1997). The first problem, of needing a new language for each 

new type of data, is avoided by choosing a general coding language. Specifically, the 

language chosen is a universal programming language. A universal programming 

language is a general purpose language for programming a computer. The familiar 

programming languages such as Prolog, Java and Pascal are all universal programming 
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languages. All these programming languages are what is called “prefix-free,” that is, no 

syntactically correct program in the language is a proper prefix of any other syntactically 

correct program in the language. Moreover, the machine executing the program can 

determine where the program ends without having to read past the last symbol of the 

program. Such programs are prefix-free, effectively so, and are called “self-delimiting.” 

For example, a language consisting of the programs “01, 001, 0001” is prefix-free, and 

the language  “10, 100, 1000” is not prefix-free. For technical reasons we require that all 

universal programming languages considered in this paper are prefix-free. This is a 

crucial requirement for the development of the later mathematical arguments. 

How can an object, such as a corpus of linguistic input, be encoded in a universal 

programming language such as Java? The idea is that a program in Java encodes an 

object if the object is generated as the output or final result of running the program. By 

the definition of a universal programming language, if an object has a description from 

which it can be reconstructed in some language, then it will have a description from 

which it can be reconstructed in the universal programming language. It is this that 

makes the programming language universal. Notice that, above, we assumed that 

linguistic input can be viewed as generated by a computational process (possibly mixed 

with a source of random input). By using a universal programming language, the learner 

can be sure to be able, at least in principle, to represent every such computational 

process.11

 Moreover, in solving the first problem, the second problem, that different coding 

languages give different code lengths, is, at least partially, addressed.  A central result of 

Kolmogorov complexity theory, the invariance theorem (Li & Vitányi, 1997), states that 
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the length of the shortest description of an object, x, is invariant (up to a constant) 

between different universal languages.12 The invariance theorem thus allows us to speak 

of the code length required to specify an object, x, related to a fixed choice of universal 

language, where this code length is, up to an additive constant, independent of the 

particular universal language in which the shortest code for x is written. The additive 

constant depends on the universal language but not on the particular object, x. The 

shortest code length required to specify x is defined to be its Kolmogorov complexity, 

K(x). So, by assuming that the coding language that the cognitive system uses is 

universal, we can avoid having to provide a detailed account of the codes that the learner 

uses. 

 Psychologists and linguists are frequently unsettled by the invariance theorem---

because such a large part of both disciplines concerns attempting to determine the nature 

of mental representations. Thus, any theoretical framework which treats very large 

classes of mental representation as equivalent may appear to be missing something 

important. In the present context, agnosticism concerning the specific way in which 

linguistic input is coded is a decided advantage---because it is possible to prove 

asymptotic results concerning learnability from positive evidence, irrespective of the 

psychological or linguistic theoretical framework adopted. Given that there is such a 

diversity of such frameworks currently under discussion, this lack of commitment is 

reassuring. On the other hand, however, the question of the amount of data that is 

required in learning does depend on representations. Thus, choice of representation can 

be viewed as providing the learner with a specific inductive bias, albeit a bias which will 

‘wash out’ given the sufficient data. Nonetheless, however, the size of these biases may, 
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for some grammatical formalisms at least, be fairly small. For example, a few hundred or 

at the very most, thousands, bits of information may be enough to provide a formal 

description of the basic formalism of phrase structure (e.g., Gazdar, Klein, Pullum & Sag, 

1985), tree-adjoining grammar (e.g., Joshi & Schabes, 1997), or categorial grammar (e.g, 

Steedman, 1996). We can think of these formalisms as analogous to the programming 

languages discussed above---and hence we can conclude that the code length differences 

between these formalisms will differ by at most hundreds, or perhaps thousands, of bits. 

Hence, the difference in inductive bias inherent in such formalisms must be fairly small 

(and, of course, there are, moreover, close formal relationships between them). On the 

other hand, the full complexity of government and binding would appear to be very much 

greater (e.g., Chomsky, 1981); and the complexity of the basic machinery of the 

minimalist program would be appear to be intermediate between these two extremes 

(Chomsky, 1995).  

 So far we have considered how to measure the complexity of individual objects. 

But linguistic input consists not of a single ‘objects’ (e.g., a single sentence, paragraph, 

or whatever, which can be represented as a finite binary sequence) but a sequence of 

objects, which may be indefinitely long. How can Kolmogorov complexity be applied to 

measure the complexity to potentially infinite sequences? The only modification that we 

require is that complexity is measured in terms of the shortest input to a monotone 

universal machine (as discussed above), which produces a particular sequence. Thus, 

given that a short input to a universal monotone machine will generate a long string of 0s, 

then this string has low monotone Kolmogorov complexity. We define the monotone 

Kolmogorov complexity of a finite sequence x as the length in bits of the shortest string 
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such that every input that begins with this string produces an output that begins with x 

(the output sequence may then continue in any way at all). The monotone Kolmogorov 

complexity for a sequence, x, is denoted Km(x). The invariance theorem holds for Km(x) 

just as for K(x) and, indeed, for finite sequences, Km(x) closely approximates K(x) (see Li 

& Vitányi, 1997, p. 285). Note also that a program on a universal monotone machine can 

implement a probability distribution over potentially infinite binary strings. The 

probability associated with a binary string is simply the probability the string will be 

generated by that random binary input—that is, the probability that it will be generated 

by a monkey typing random input to the program, to pick up our earlier picture. More 

formally, an initial program p of length K(μ) (note that this program must be self-

delimiting, so the interpreting machine can parse it) causes the universal monotone 

machine to start simulating the machine Tμ that transforms the following (possibly 

infinite) input sequence into a (possibly infinite) output sequence in such a way that the 

uniform distribution over the input sequences (that is, infinite sequences of 0's and 1's 

generated by fair coin flips) following the initial program p is transformed in the 

distribution μ over the output sequences. Thus, we can speak of the monotone 

complexity, K(μ),  of a probability distribution, μ—signifying the shortest self-delimiting 

program on the universal machine that implements μ.13  

 We have been focussing up to now purely on finding the single simplest input 

program which encodes the sequence, x. But for any sequence which can be encoded at 

all, there will be many—in fact, infinitely many—such programs.14 Suppose that an input 

program (i.e., a binary sequence) p has length l(p). The probability that it will be 
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generated by chance is 2-l(p). Thus, the probability, λ(x), of a sequence x being generated 

on a universal monotone machine is a special case of (1) above: 

 

 λ (x) = 2− l(y )

y :M (y...) = x
∑        (3) 

 

 We shall call λ(x) the universal monotone distribution, and, following 

Solomonoff (1964, 1978), we assume that the learner uses λ to predict the next linguistic 

input in the sequence:  

 

 λ (0 | x) =
λ(x0)
λ (x)

       (4) 

 

This is a special case of (2) above. It is worth observing  that λ(x) is not computable—

that is, there is no computable program that, for given any subsequence x, can output the 

probability of x according to the distribution λ(.). λ(x) can, however, be approximated 

arbitrarily closely. We shall return to the implications of these observations in the final 

section of this paper.  

 So far, we have specified the weak condition that language is generated by a 

monotone computable distribution, μ. We have also specified that the learner follows a 

Simplicity Principle—favoring hypotheses in so far as they provide brief encodings of 

linguistic data—and that the learner makes predictions according to a universal 

monotone computable distribution, λ. We have, furthermore, suggested that the learner’s 

performance can usefully be assessed in terms of its ability to predict the linguistic input 
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successfully, while allowing that another important criterion is the learner’s ability to 

judge the grammaticality of novel sentences. We can now consider the possible 

effectiveness of language learnability by simplicity, from positive instances alone. 

 

The Prediction Theorem and Ideal Language Learning 

This section rests on a key result, which we label the Prediction Theorem, by Solomonoff 

(1978). This theorem shows that, in a specific rigorous sense, the universal monotone 

distribution λ is reliable for predicting any computable monotone distribution μ, with 

very little expected error.15

Given the assumption, made in the previous section, that language is generated 

according to such a distribution, Solomonoff’s result is immediately relevant to the 

formal problem of language acquisition. It implies that the universal monotone 

distribution λ is reliable for predicting what linguistic input is to come: it almost always 

is guaranteed to converge. For the moment, though, let us consider the result in general 

terms.  

According to the prediction theorem, λ is a universal approximation for monotone 

computable probability distributions. If the learner makes predictions by using λ, the 

learner will rapidly close in on the ‘correct’ predictions of μ. Given this informal 

statement, it may seem that λ may sound too good to be true—and indeed it may seem 

conceptually impossible that a single distribution can simultaneously approximate  every 

one of the entire class of computable probability distributions, because these distributions 

will themselves be so diverse. To see how this is possible, let us state Solomonoff’s result 

more precisely.  
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 Suppose that a sequence of n-1 binary values are generated by a computable data-

generating mechanism, associated with a probability distribution, μ, in the way described 

in the previous section. Let us call this sequence of n-1 values x. Given this sequence, we 

can ask how closely the prediction according to μ agrees with the predictions from the 

prior, λ. Specifically, we measure the difference in these predictions by the square of 

difference in the probabilities that μ and λ assign to the next symbol being 0.16 Formally, 

this difference is:  

 

      (5) 
Error(x) = λ(0 | x) − μ(0 | x)( )2

 

Error(x) measures how good an approximation λ(0|x)  is to μ(0|x)—but its value clearly 

depends on which previous sequence of items, x, has been generated. To get a general 

comparison between λ and μ, we need to take into account the various sequences x that 

μ(x) might have generated. Moreover, we weight these sequences by the probability μ(x) 

that they were generated by the true distribution, μ.  

 

 sn = μ(x)Error
x:l (x )=n −1

∑ (x)      (6) 

 

sn is thus the expected value of the squared error between the predictions of λ and μ on 

the nth prediction. The smaller the sn, the better λ predicts μ.  

This weighting by the actual distribution, μ, reflects the fact that we would 

intuitively view λ as a good approximation to the true distribution μ if it assigns similar 
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probabilities to events which are actually likely to occur (according to μ). It does not 

matter whether μ and λ disagree on cases that never arise in practice (i.e., where μ(x) is 

0). This weighting by the actual distribution will be important below, when we apply 

these ideas to language learning. Specifically, in assessing how well a learner has learned 

the structure of a language, there will be considerable weight attached to linguistic 

material which might actually be said; and little weight attached to sentences (e.g., a 

sentence containing 1000 clauses linked by and) which will never actually be produced.  

Finally, the expected prediction performance over the entire sequence is just:  

  

sj
j =1

∞

∑           (7) 

 

We shall use this measure as our overall measure of predictive success. To get a feel for 

the meaning of , consider the case where the expected value of the sum square 

difference between two computable probability distributions μ

sj
j =1

∞

∑

1 and μ2 is always greater 

than some constant d, where d may be arbitrarily small. In this case, sj
j =1

∞

∑  is at least 

(∞)(d) which is, of course,  ∞. But, remarkably, Solomonoff’s Prediction Theorem 

shows that, in relation to the distributions λ and μ considered here, the sum  has a 

limit bounded by a constant, and hence that as the amount of data increases, the expected 

prediction error tends to 0. That is, given enough data, expected prediction should be 

almost perfect—using the universal distribution λ the learner should accurately be able to 

sj
j =1

∞

∑
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learn, in an approximate sense, any true computable distribution μ. Specifically, the 

following result holds:  

  

Prediction Theorem (Solomonoff, 1978): Let μ be a computable monotone distribution. 

Then, 

 s j
j =1

∞

∑ ≤
loge 2

2
K(μ)       (8) 

 

We shall consider below how the Prediction Theorem can be related to language 

acquisition, but first, we show how Solomonoff’s remarkable theorem can be proved.17 

The proof has four steps. 

 The first, and crucial, step is to show that, for any finite or infinite computable 

data x:  

 

 log2
μ(x)
λ (x)

≤ K(μ)        (9) 

 

This puts an upper bound on how much μ(x) can exceed λ(x). Intuitively, it implies that if 

x is probable according to μ, it is also reasonably probable according to the universal 

prior probability λ. 

 The second step is to show that (9) implies a bound on a measure of similarity 

between the distributions  μ and λ over the set of computable data strings x. This measure 

of similarity is Kullback-Liebler distance D(μ||λ):  
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D(μ || λ) ≤ K (μ )

       (10) 

 

 The third step breaks up this similarity measure over the distribution over whole 

strings x into an infinite sum of Kullback-Liebler similarity measures over each of the j 

positions in the string Dj(μ||λ) . This step is conceptually straightforward, but 

algebraically complex:  

 

       (11) Dj(μ || λ)
j =1

∞

∑ = D(μ || λ )

 

 The final step makes the connection between the Kullback-Liebler measure of 

similarity and the measure of similarity with which we are primarily concerned: sum-

squared error.  

 

 s j
j =1

∞

∑ ≤
step 4

loge 2
2

Dj (μ || λ )
j=1

∞

∑       (12) 

 

We can now put the last three steps together to obtain the final result:  

 

 s j
j =1

∞

∑ ≤
step 4

loge 2
2

Dj (μ || λ )
j=1

∞

∑ =
step 3

loge 2
2

D(μ || λ) ≤
step 2

loge 2
2

K(μ)  (13) 

 

thus proving the theorem. We now prove each step in turn.   
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Step 1 

To prove:    log2
μ(x)
λ (x)

≤ K(μ)      (9)  

 

Consider a universal monotone machine, U. Because U is universal, for any monotone 

machine W, there will be a finite string, p, which ‘programs’ U to behave like W.18 That 

is, for any monotone machine W, there will be a program p (in fact, many such 

programs), such that for all x, U(px) = W(x). Since U must parse px into p and x it must 

be able to detect the end of p; that is, p must be self-delimiting. As noted above, the 

probability of randomly generating a binary program, p, of length l(p), is 2-l(p). This 

means that short programs have the highest probability.  

 Let us therefore focus on the shortest and hence most probable program for W in 

U; if there are several programs which tie for the shortest length, we choose one of them 

arbitrarily. The length of this shortest self-delimiting program is K(W) by the definition 

of prefix-complexity, K. Each monotone machine is associated with a distribution over 

all its possible output sequences, as defined above. If W is associated with the true 

probability distribution μ, then we can write K(μ) to denote the length of the shortest 

program which generates μ.  

 Now consider a string x, with probability μ(x). What can we say about λ(x)? By 

the considerations above, we know that one input (of many inputs) to λ which will 

generate x is as follows: first a program of length K(μ) which converts U into W (and 

hence λ into μ) followed by any of the inputs to W which produce x. The probability of 

the first part is the probability of a specific binary sequence of length K(μ), which is 2-
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K(μ). The probability that the second part of the sequence then generates x is, by 

definition, μ(x). Thus the probability of both parts of the sequence is the product of these 

two:  

2-K(μ)μ(x ). This is just one way of obtaining x in U (there are infinitely many other 

programs which produce any given output, of course), which means that the probability 

of this single program cannot be greater than λ(x), the overall probability of obtaining 

output x from U. Thus,  

 

 
2− K(μ ) μ(x) ≤ λ (x)

       (14) 

 

Rearranging, we get:  

 

 μ(x)
λ (x)

≤ 2K(μ )         (15) 

 

Taking logs in base 2 of both sides of the inequality proves Step 1.  

  

Step 2 

To prove:  
D(μ || λ) ≤ K (μ )

     (10) 

 

Let us introduce a measure of the similarity between two probability distributions, which 

can be related to, but is easier to deal with, than sum-squared difference, defined above. 

This measure is Kullback-Liebler divergence, D(P||Q). This measure originates in 
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information theory. It measures the expected amount of information that is wasted in 

transmitting a message x which is actually generated by a probability distribution P, but 

is encoded using a code which is instead optimally adjusted to transmit messages 

generated by probability distribution Q. The waste arises because an optimal code assigns 

short codes to probable items, and longer codes to less probable items. Thus, if P and Q 

are very different, then codes will be assigned in an inappropriate way. Specifically, short 

codes will be used for items which are probable according to Q, but which may not be 

probable according to the actual distribution P, and vice versa. When P = Q, there is, of 

course, no waste at all, and D(P||P) is therefore 0. Moreover, if P ≠ Q the expected waste 

is positive, so that D(P||Q) ≥ 0—and the amount of waste measures how similar or 

different the two probability distributions are.19

 The Kullback-Liebler divergence between probability distributions P and Q is 

defined:20

  

 D(P || Q) = P(x) log2
x

∑ P(x)
Q(x)

      (16) 

 

 Let us now consider the Kullback Liebler divergence between the distributions 

μ(x) and λ(x), where x ranges over (possibly infinite) output sequences: 

 

 D(μ || λ) = μ (x) log2
x

∑ μ(x)
λ(x)

      (17) 

 

Applying (9), we have:  
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 D(μ || λ) ≤ μ(x)K(
x

∑ μ) ≤ K(μ)      (18) 

 

where the second inequality follows because μ(x) is a semi-measure, i.e., μ(x)
x

∑ ≤ 1. 

This proves Step 2.  

 

Step 3 

To Prove:       (11) Dj(μ || λ)
j =1

∞

∑ = D(μ || λ )

 

We have seen how Kullback-Liebler divergence can be defined over distributions of 

entire (possibly infinite) sequences. It will turn out to be useful to relate this to the 

Kullback-Liebler divergence at each location in the sequence.  

 A useful intuition concerning how this works is as follows. D(μ||λ) measures the 

expected amount of ‘wasted’ information required to send a randomly selected sequence 

generated by the distribution μ, using codes which are optimal relative to the assumption 

that the distribution is λ, over and above the expected amount of information required if 

the codes were optimized to the true distribution, μ. Suppose we consider the expected 

amount of information wasted in transmitting the first symbol; then the expected amount 

of information wasted in transmitting the second symbol; and so on. These quantities 

correspond to Kullback-Liebler divergences, defined over each symbol in turn. It seems 

plausible that the sum of the expected amounts of information wasted in transmitting 
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each symbol should be equal to the total amount of information wasted in transmitting 

the entire sequence—this is the intuitive content of the result that we are aiming to prove.  

 To put this more exactly, we need to express the expected amount of information 

wasted at symbol j. Suppose that the sequence of symbols from 1 to j-1 is x. According to 

μ, the probabilities of the next symbols are given by μ(⋅|x). Similarly, according to λ, the 

probabilities of the next symbols are given by λ(⋅|x).  

 Then, using standard Kullback-Liebler distance regarding the outcomes for the jth 

symbol, we have:  

 

 

 Dj(μ(⋅ | x) || λ(⋅ | x)) = μ(a | x)log2
a= 0,1
∑ μ(a | x)

λ (a | x)
   (19)  

 

The expected value of this term with respect to the true distribution μ(.) requires 

weighting it by μ(x), the probability that the first j-1 symbols in the sequence are x 

according to the true distribution μ. Thus, the expected amount of wasted information in 

encoding the jth symbol using λ instead of μ, which we shall denote by Dj(μ||λ) is:  

 

 Dj(μ || λ ) = μ(x)Dj (μ (⋅ | x) || λ(⋅ | x))
x: l(x )= j −1

∑     (20) 

 

 Here we have merely defined the terms in the conjecture above, and explained the 

intuition behind it. That is, the amount of information wasted in transmitting a sequence 

by using a code optimized to the ‘wrong’ probability distribution is the same, whether the 
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sequence is encoded all at once, or symbol by symbol. A rigorous derivation that 

substantiates this intuition is given in Appendix B.  

 

Step 4:  

To Prove: 

   s j
j = 1

∞

∑ ≤
loge 2

2
Dj (μ || λ )

j = 1

∞

∑     (12) 

 

We have shown that the learner’s distribution λ is similar to any computable distribution 

μ, where similarity is measured by Kullback-Liebler distance. Moreover, we have shown 

how the expected divergence between the distributions over infinite sequences can be 

converted to a sum of the expected divergences at each location in the series. It remains 

to relate Kullback-Liebler distance to the familiar measure of goodness of prediction with 

which we began: the expected sum-squared error between μ and λ.  

 The key to doing this is the following result, which applies to arbitrary 

distributions P and Q that can take just two values 0 and 1 (the proof is given Appendix 

C).  

 

 (P(0) − Q(0))2 ≤
loge 2

2
D(P || Q)     (21) 

 

 It immediately follows that the same result holds if P and Q are conditional on a 

previous string, x: 
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 (P(0 | x) − Q(0 | x))2 ≤
loge 2

2
D(P(⋅ | x) || Q(⋅ | x))    (22) 

 

Substituting μ and λ and for P and Q, and using the definition of Error(.) in equation (5), 

we obtain: 

 

 Error(x) = (μ(0 | x) − λ (0 | x))2 ≤
loge 2

2
D(μ(⋅ | x) || λ(⋅ | x))  (23) 

 

Using the definition of sj (Equation 6), 

 

sj = μ(x)
x :l( x)= j −1

∑ Error(x) ≤

μ(x)
x:l (x )= j −1

∑ loge 2
2

D(μ(. | x) || λ(. | x)) ≤ log2 2
2

Dj (μ || λ )  (24) 

 

We now take the expected sum squared error over all symbols in the sequence, which 

immediately gives equation (12), and hence proves Step 4.  

 Having proved Steps 1 to 4, we have hence completed the proof of the Prediction 

Theorem.  

 The Prediction Theorem provides a counterweight (alongside more specific 

positive learnability results, e.g., Horning, 1969; Feldman, 1972; van der Mude & 

Walker, 1978; Pitt, 1989) to some interpretations of Gold’s (1967) negative results 

concerning the apparently limited conditions under which languages can be learned in the 

limit from positive evidence. It shows that learning by simplicity can, in principle, be 
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expected to converge to the correct conditional probabilities in predicting subsequent 

linguistic material. Intuitively, if an ideal learner can predict accurately, it seems that it 

must be able to learn a great deal about the range of linguistic, pragmatic, social and 

environmental factors which influence the linguistic input that is received. This appears 

to imply that the learner must know a good deal about the specifically linguistic structure 

of the language. 

 It is appropriate to ask whether this intuition can be backed up with a quantitative 

measure of how well the learner must acquire specifically linguistic information. The 

results in the next section shows that this can be done, by putting an upper bound on the 

number of ‘grammaticality’ errors that the learner can make in the course of predicting 

the linguistic input. 

 

The ideal learning of grammaticality judgments 

A straightforward test of the learner’s ability to distinguish grammatical from non-

grammatical linguistic input: Suppose that the learner has to ‘guess’ the next word in the 

text at each point. How often does the ideal learner overgeneralize and guess 

continuations that are ungrammatical? And how often does it undergeneralize, and 

erroneously rule out continuations which are, in reality, acceptable in the language? We 

consider bounds on each type of error in turn.  

 

Overgeneralization errors 

In overgeneralization, linguistic sequences are allowed by the learner’s probability 

distribution (i.e., they are viewed as grammatical by the learner), but they are not allowed 
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by the true grammar. We wish both to measure, and to attempt to put limits on, the 

amount of overgeneralization that learning according to the Simplicity Principle will 

involve (here, we ignore the possibility of “performance error” by speakers producing the 

linguistic input to the learner---we assume that the linguistic input consists purely of 

grammatical sentences). 

 In the discussion of both overgeneralization and undergeneralization, it is 

convenient to consider language input as a sequence of words,21 rather than coded as a 

binary sequence. Of course, a binary sequence is, by stipulation, simply a particular way 

of encoding words—words are encountered one-by-one, and each word stands in one-to-

one correspondence with a binary string. Thus, each possible corpus of language, viewed 

as a sequence of words, stands in a one-to-one correspondence with a possible binary 

string; and the probabilities of each corpus of words are identical to the probabilities 

associated with the corresponding binary strings. Thus, instead of dealing with 

distributions over finite and infinite binary sequences, μ, and the learner’s universal 

approximation, λ, we shall deal with corresponding distributions defined over finite and 

infinite sequences of words. We shall call these corresponding distributions Pμ and Pλ.  

Suppose that the learner has seen a specific corpus, x, of j-1 words. Suppose that 

the learner has a probability Δj(x) of erroneously guessing that the next (i.e., the jth) word 

in the input is a word which is actually not allowed by the grammar. In symbols, we can 

define:  

 

Δ j (x) = Pλ(k | x)
k : xk is ungrammatical,
l (x )= j −1

∑       (25) 
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That is, Δj(x) is the amount of probability that the learner devotes to grammatically 

impossible overgeneralization on the jth word. Because we assume that the linguistic 

input contains no noise, ungrammatical continuations have zero probability of occurring.  

The probability Δj(x) will, of course, depend on the specific x that has been 

encountered. The expected value of Δj(x), which we shall write Δ j , is defined as 

follows:  

 

Δ j = Pμ(x)
x:l (x )= j −1

∑ Δ j(x)      (26) 

 

Our goal is to put some bound on the expected number of overgeneralization errors 

throughout the corpus, i.e., to put a bound on Δ j
j =1

∞

∑ . The following Overgeneralization 

Theorem holds. 

 

Overgeneralization Theorem. 

Where Δ j  is defined as above, 

 

 Δ j
j =1

∞

∑ ≤
K(μ)
loge 2

       (27) 
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That is, the expected amount of probability devoted by the learner to overgeneralizations, 

in the course of encountering an infinite corpus, sums to a finite quantity. Thus, the 

typical degree of overgeneralization, as the corpus increases in size, must go to 0.  

 

Proof. The proof has two parts. The first part concerns how the waste of probability, 

Δj(x), due to overgeneralization after seeing a sequence x, inevitably leads to a waste of 

information. This information is quantified by the Kullback-Liebler divergence between 

Pμ and Pλ, which can later on be related to K(μ). But this leaves a crucial gap—it deals 

with Δj(x) for some particular x; but it says nothing about Δ j , the expected amount of 

probability wasted by the learner, averaged across all x. The second part of the proof fills 

in this gap, and hence provides the required bound on Δ j
j =1

∞

∑ . To finish the proof, we 

also need to relate the results from these two steps to some of the analysis we have 

described above, in proving the Prediction Theorem.  

 The first part of the proof begins by considering the following scenario. Suppose 

that the learner uses its probability distribution Pλ to encode the output from the true 

underlying distribution, Pλ. After the sequence, x, of j-1 words has been encountered, we 

can ask: What is the expected amount of wasted information in encoding the jth item? 

Such waste is inevitable, because the learner is using codes which are optimized to the 

learner’s distribution (i.e., Pλ(.|x)), rather than to the true (but from the learner’s point of 

view, unknown) distribution (i.e., Pμ(.|x)). The key underlying intuition is that, to the 

extent that the learner has a tendency to overgeneralize, the learner must necessarily 

waste a certain amount of information. This is because the learner encodes items as if 
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some continuations are possible, where in reality they are not possible. This means that 

some code length must be ‘used up’ in specifying the actual continuation in order to rule 

out these continuations. The greater the degree to which the learner overgeneralizes, the 

greater the amount of wasted information.  

 Suppose, then, that the learner has a particular Δj(x). How much wasted 

information must follow from this wasted probability? The minimum level of wasted 

information is achieved as follows.22 Assume that, for all the other lexical items, k, which 

are possible continuations, the probability assigned by the learner to this continuation, 

Pλ(k|x)), is just (1-Δj(x)) times the true probability Pμ(k|x). Thus, a certain  amount of 

‘probability’ is wasted by the learner, on continuations that are impossible; but otherwise 

the probabilities of all the possible continuations are correct, except that they have to be 

appropriately re-scaled. What is the expected amount of waste that occurs by encoding 

the actual continuation in terms of the learner’s Pλ(k|x)), rather than the true Pμ(k|x), 

using this maximally efficient ‘re-scaled’ encoding? Applying Kullback-Liebler 

divergence: 

 

 D(Pμ (. | x) || Pλ (. | x)) ≥ Pμ(k | x) log2
k

∑ Pμ (k | x)
Pλ (k | x)

 

 = Pμ (k | x)log2
xk ungrammatical: 
Pμ (k|x )= 0

∑ Pμ(k | x)
Pλ (k | x)

+ Pμ(k | x) log2
xk grammatical; 
Pμ (k |x )≥ 0

∑ Pμ(k | x)
(1 − Δ j (x))Pμ(k | x)

  (28) 

 

The first term is 0, because Pμ(k|x) is zero for ungrammatical continuations. Simplifying 

the second term, we obtain:23

  45



 

 log2
1

(1− Δ j(x))

⎛ 

⎝ 
⎜ ⎞ 

⎠ 
⎟ Pμ (k | x)

xk grammatical, 
Pμ (k |x )≥0

∑      (29) 

 

Because the input continues in some way or other, Pμ(k | x)
xk grammatical, 
Pμ (k| x)≥ 0

∑ = 1, and hence we can 

conclude that:  

 

 D(Pμ (. | x) || Pλ (. | x)) ≥ log2
1

(1 − Δ j (x))

⎛ 

⎝ 
⎜ ⎞ 

⎠ 
⎟     (30) 

 

This is the minimum expected amount of waste that accrues for a particular guess, with 

probability Δj(x) of the learner guessing an ungrammatical continuation.  

 We have considered a particular x. We now average over all the possible 

sequences of j-1 words, to get the expected amount of information loss on encoding the 

jth item, which is denoted by Dj(Pμ (. | x) || Pλ (. | x))  (using the definition in equation 20 

above). Thus, we obtain:  

 

Dj(Pμ (. | x) || Pλ (. | x)) ≥ Pμ(x)log2
1

1− Δ j(x)

⎛ 

⎝ 
⎜ ⎞ 

⎠ 
⎟ 

x :l(x )= j −1
∑ = log2

1
1 − Δ j(x)

⎛ 

⎝ 
⎜ ⎞ 

⎠ 
⎟   (31) 

 

This completes the first part of the proof.  
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 The second part of the proof shows how the above result can be applied to put a 

bound on Δ j
j =1

∞

∑ . Log is a concave function, and we can therefore use the standard 

result that for expectations over an arbitrary random variable, z (where z > 0):  

 

log2 z ≥ log2 z        (32) 

 

This implies that:  

 

− log2 z ≥ − log2 z  

log2
1
z

≥ log2
1
z

       (33) 

 

if we then substitute in 1 - Δj(x) for z, we obtain:  

 

log2
1

1 − Δ j (x)
≥ log2

1
1− Δ j(x)

= log2
1

1− Δ j(x)
  (34) 

 

This is a crucial part of the second step in the proof—we have now introduced the 

expected value, Δ j(x) , across all possible x. We can now get at Δ j(x) more directly, 

but replacing the log expression on the right hand side of the inequality using a Taylor 

expansion.  
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log2
1

(1− Δ j(x) )

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = log2 e Δ j (x) +

Δ j(x)
2

2
+ ... +

Δ j (x)
m

m
+ ...

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ≥ Δ j(x) log2 e  

          (35) 

 

Stringing together the inequalities (31), (34) and (35), we obtain:  

 

Dj(Pμ (.| x) || Pλ(. | x)) ≥ Δ j(x) log2 e    (36)  

 

So far we have only considered the probability of overgeneralization, and consequent 

waste of information, for the jth word in the corpus. We now sum over all j. The left hand 

side of equation (36) immediately simplifies, using the result above (equation 20) that 

. This gives:  Dj(μ || λ)
j =1

∞

∑ = D(μ || λ )

 

D(Pμ || Pλ ) ≥ Δ j (x) log2 e       (37) 

 

In this section, we have so far worked with probability distributions Pμ and Pλ over 

sequences of words, rather than with the familiar μ and λ, which are defined over binary 

sequences. We can now relate the present discussion back to the binary analysis. By 

stipulation, there is a one to one correspondence between possible binary states and 

sequences of words.24 There is therefore also a direct correspondence between the 

probabilities of these corresponding states. The probability of generating a particular 

word sequence is the same as the probability of generating the corresponding binary 
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sequence. Information-theoretic measures, such as Kullback-Liebler distance, are of 

interest precisely because they are independent of the details of the coding scheme used 

to represent a probability distribution. Thus, it makes no difference whether the 

probability distributions are defined over strings of words (like Pμ and Pλ) or are defined 

over the corresponding binary strings (like μ and λ). Hence,  

 

D(Pμ || Pλ ) = D(μ || λ) ≤ K(μ )     (38) 

 

where the right hand inequality follows from (20) above. Putting (37) and (38) together 

gives the result:  

 

Δ j
j =1

∞

∑ ≤
K(μ)
loge 2

       (39) 

 

 The intuitive significance of the overgeneralization theorem can be thought of in 

the following way. Suppose that the language learner were to continually attempt to 

guess the next word of every linguistic interchange. If the learner follows the Simplicity 

Principle, and makes predictions according to the distribution Pλ (or, equivalently, 

according to λ over a binary code), then the expected number of times that the learner 

will make a prediction that violates the grammar of the language has a finite bound, even 

on an infinite corpus. This implies, for example, that, for a linguistic input of n words, the 

expected average number of overgeneralization errors can be no more than: 
2log

)(

en
K μ . 
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Thus, if we consider a sufficiently large corpus (i.e., we increase n), the average expected 

number of overgeneralization errors tends to zero.  

 

Undergeneralization errors 

In undergeneralization, a sentence, s, is allowed by the true grammar, but it disallowed by 

the learner’s probability distribution. If this were to occur, after hearing a prior sequence 

of words x, a word, k, would be encountered which the learner had assigned a probability 

of 0. The learner would have undergeneralized, by assuming that the language is more 

restrictive than it in fact is.25

 For a learner using the Simplicity Principle, however, such undergeneralizations 

never occur. This apparently remarkable result can be understood intuitively as following 

simply from the fact that the learner’s probability distribution, λ, corresponds to a 

universal monotone computer. Any computable output (including any corpus of language 

generated by a monotone computable process) therefore has a non-zero probability of 

being generated by this universal machine—because a universal machine, by definition, 

can simulate the computable process that generated this output. There is therefore a non-

zero probability that a program that simulates this computational process will be 

generated by chance.26

 But further reflection suggests that the problem of undergeneralization has not 

really been ruled out effectively by the analysis above. So far we have ruled out the 

possibility that the learner assumes a continuation to be impossible, when it is actually 

possible; but it seems relevant also to consider the case where the learner drastically 

underestimates (perhaps by a vast factor) the probability that a sentence might occur. In 
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this case, the true distribution might allow that a continuation (e.g., dogs after the context 

raining cats and...) is actually rather common; whereas the learner believes that it is so 

infinitesimally probable that it is unlikely to occur in the entire history of the universe. 

Such a learner would seem, intuitively, to be making an undergeneralization  error (and a 

rather blatant one!); but such errors will not be detected by the previous criterion, as the 

learner believes the probability of the continuation to be non-zero.  

 To address this concern, let us therefore consider a ‘soft’ version of 

undergeneralization. Suppose, as before, that the sequence of words encountered by the 

learner is generated according to a computable probability distribution Pμ, and that the 

learner attempts to predict this sequence by a universal probability distribution Pλ. As 

usual, we denote the sequence of the initial j-1 words that the learner encounters by x, 

and let us call the jth word, k. If the learner undergeneralizes on word k by a factor f, this 

means that the learner underestimates the probability that k will occur after x by a factor 

f. That is, Pλ(k|x)f ≤Pμ(k|x). What is the probability that the k that is chosen according to 

the true distribution is a word on which the learner undergeneralizes, given the preceding 

sequence, x? This probability, which we denote Λj(x), can be expressed:  

 

Λ j (x) = Pμ(k | x)
k : f .Pλ (k |x )≤ Pμ (k |x )

∑       (40) 

 

The expected probability, Λ j , with which this occurs on the jth item is expressed:  

 

 Λ j = Pμ(x)
x:l (x )= j −1

∑ Λ j (x)      (41) 
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Our goal is to put some bound on the expected number of undergeneralization errors 

throughout the corpus, i.e., Λ j
j =1

∞

∑ . The following result can be derived (see Appendix F 

for a proof): 

 

Soft undergeneralization theorem 

 

Λ j
j =1

∞

∑ ≤ K(μ)
1

log2 f e
      (42) 

 

(so long as f > e) 

 

The theorem implies that the expected number of ‘soft’ undergeneralizations is bounded 

by a constant, even for an infinitely long sequence of linguistic input. As with 

overgeneralizations, the upper bound is proportional to the complexity of the underlying 

probabilistic mechanism generating the language (including, presumably, the grammar of 

the language). Moreover, the more severe the criterion for an undergeneralization (the 

greater the value of f), the fewer such undergeneralizations can occur.  

 We have shown that, if language is generated by an arbitrary computable 

probability distribution, Pμ, and the learner employs the universal distribution Pλ, the 

expected number of over- and under-generalizations that the learner makes will be 

bounded by a constant, over an infinitely long linguistic input.  
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 Thus, in testing grammaticality judgements by prediction, as discussed above 

(and assuming the highly idealized case where linguistic input consists only of 

grammatical sentences), the learner can, in the limit, make highly accurate 

grammaticality judgements. 

 

The ideal learning of language production 

So far we have presented two results. First, we have shown that learning using a 

Simplicity Principle can be used to successfully predict linguistic input, in the asymptote; 

this result arises directly from Solomonoff’s (1978) Prediction Theorem. Second, we 

showed that the Prediction Theorem has implications for the ability to learn to make 

grammaticality judgements from positive evidence alone. Roughly, the logic of the 

argument was to show how a learner that can predict effectively can use this ability to 

make grammaticality judgements; and hence to use the result concerning the quality of 

prediction to provide an insight to the quality of grammaticality judgements.  

 It might appear, however, that a more challenging task for the learner is not 

merely to judge whether sentences that it hears are grammatical, but to successfully 

produce sentences of its own. Fortunately, it is possible to show that by learning using 

the universal distribution, λ, the learner can also produce language effectively, in the 

asymptote.  

 To see how this works, we can imagine that our ideal learner has been exposed to 

a large corpus of linguistic input, involving conversation between other speakers. The 

learner’s goal is to be able to join the conversation with linguistic outputs of its own---in 

a way that is indistinguishable from the linguistic outputs of other speakers. If the learner 
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is able to blend in successfully with such conversation, then it must have learned to 

produce language in conformity with the grammatical, semantic, and other, regularities 

respected by other speakers. Of course, the mere ability to blend in with other speakers is 

a limited goal---in practice, language learners wish to be able produce language that does 

much more: that reflects their own specific beliefs and utilities. We consider an aspect of 

how this ability can be learned, by learning to map represenatations of linguistic meaning 

and linguistic form, in future work. 

 Let us consider some particular contribution, y, that our ideal learner decides 

upon, after hearing a linguistic corpus, x (for convenience, assume these are encoded as 

binary strings). The probability that the sentence has this continuation, if the sequence 

continues to the generated by the existing speakers, is μ(y|x). The learner generates 

utterances instead by the same distribution that it uses in prediction, i.e., with probability 

λ(y|x). The learner blends in, to the extent that λ(y|x) is a good approximation to μ(y|x).  

 The following result ensures that the match is a good one (Li & Vitányi, 1997, 

Theorem 5.2.2). Where μ is a probability distribution (strictly, a semi-measure) generated 

by a monotone computable process, and λ is the universal distribution (used by the 

learner), then for any finite sequence y, then as the length of sequence x tends to 

infinity:27

 

 
λ (y | x)
μ(y | x)

→ 1        (43) 
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with a probability converging to 1 for fixed y and as the length of x increases (provided 

there is an ε > 0 such that μ(y|x) > ε for all y and x involved). Interpreting (43) in the 

context of language production, this means that, in the asymptote, the learner will blend 

in arbitrarily well. The probability of the learner producing any continuation of the 

conversation will tend towards the probability of that continuation being made by another 

speaker. In particular, this means that there will not be sentences that the other speakers 

might say with some significant probability, but which the learner is incapable of saying; 

and conversely that everything that the learner might say with significant probability will 

be something that the other speakers might have said. Thus, in the asymptote, the learner 

can speak the language indistinguishably from the speakers in the language community in 

which the language was learned. 

 

The Poverty of the Stimulus Reconsidered 

We have shown that, under quite broad assumptions about the linguistic input over which 

learning occurs, there is enough information in positive input alone to learn a good deal 

about a language. In this section, we briefly consider the application of these results to a 

concrete linguistic discussions; we reconsider the relationship of the present results to the 

logical and construction-specific versions of the poverty of the stimulus argument, as 

discussed earlier, and we also outline open questions for future research.  

 

Implications for theories of language acquisition 

To make the implications of this theorem linguistically concrete, note that our results 

have direct implications for the learnability, from positive evidence, of any specific 
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principle of grammar. Suppose, for example, we consider the subtle principles of 

government and binding (e.g., Chomsky, 1981, 1986) that are presumed to explain that 

44a and 44b are possible in English, but that 44c and 44d are not:  

 

a. John is too stubborn [to talk to] 

b. John is too stubborn [to expect [anyone to talk to]]   (44) 

c. *John is too stubborn [to visit [anyone who talked to]] 

d. *John is too stubborn [to ask anyone [who talked to]] 

 

The principles underlying these and many related phenomena (Chomsky, 1986) seem to 

be enormously intricate. It might therefore be expected that they cannot be learned from 

positive evidence alone. Nonetheless, the results described here show that, given 

sufficient positive evidence, these constraints (or rather, approximations to these 

constraints) are learnable from positive evidence. For suppose that the learner is never 

able to master these constraints. Then, either the learner will persistently fail to realize 

that viable structures (such as 44a and 44b) are in fact allowed. This will lead to 

ineliminable on-going prediction errors: after John is too stubborn to… the learner will 

not consider that the sentence might continue with …talk to, or …expect anyone to talk 

to. Alternatively, the learner may falsely believe that nonviable structures (such as 44c 

and 44d) are part of the language. Thus, on hearing John is too stubborn to…, the learner 

may wrongly predict that the speaker may continue …visit anyone who talked to or …ask 

anyone who talked to. As we have noted, any ineliminable prediction errors, summed 

over predictions over an indefinitely large corpus, will lead our error measure to go to 
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infinity. This is what the Prediction Theorem rules out: an ideal learner, with sufficient 

positive evidence, will learn to respect these linguistic constraints. This does not, of 

course, imply that the learner will necessarily respect these constraints by discovering the 

specific principles of the theory of government and binding; the theorem concerns the 

predictions of the learner, rather than the specific representational methods that the 

learner might use. This linguistic application suggests that the ability to learn to predict 

over a corpus requires finding all the linguistic regularities in that corpus. Thus, the ideal 

learner might be viewed as an “ideal structural linguist” (Harris, 1951)---in that it finds 

the regularities in a language purely from exposure to a corpus of that language 

(although, of course, it merely outputs its predictions---it does  not output a “theory” of 

the linguistic structure of the language, which is of course the goal of the linguist). 

Chomsky (1957, 1965) has, however, re-oriented linguistics, to be concerned 

primarily with linguistic judgments, rather than with attempts to find regularities in 

corpora. Most notably, speaker/hearers’ judgments of which linguistic forms 

(phonological, syntactic, semantic) are acceptable in the language, are the primary 

linguistic data of linguistic theory. Human language acquisition clearly results in our 

ability to make such judgments---speakers of English typically agree that 44a and 44b are 

acceptable, and that 44c and 44d are not. Can the ability to make such judgments be 

learned purely from a corpus? Our analysis of grammaticality judgments, described 

above, indicates a positive result. An ideal learner will, with arbitrarily high probability, 

learn to be able to make approximately correct grammaticality judgments concerning 

stimuli of this kind, where the expected approximation becomes arbitrarily accurate, 

depending on the amount of available data.  
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The same point applies, more generally, to the wide range of linguistic 

phenomena that have been argued to be difficult or impossible to learn from positive 

evidence alone. For example, a well-known textbook, Crain and Lillo-Martin (1999) 

makes frequent use of the argument that constraints on what sentences can occur cannot 

be learned, and hence must be innate, because constraints can only be learned from 

negative data (data concerning what the constraints rule out). For example, they discuss 

the Empty Category Principle (ECP), the statement of which is rather technical, but 

which aims to explain patterns such as:  

 

a. Who do you think Sarah will hire 

b. Who do you think that Sarah will hire    (45) 

c. Who do you think will win 

d. *Who do you think that will win 

 

They argue “Like other constraints, the ECP is used to rule out ungrammatical sentences; 

hence it must be innate…” (p. 225). But according to the analysis above, this argument is 

not correct. Constraints are learnable from positive data alone; but, of course, the 

question of how much data is required to learn specific constraints, and whether the child 

is able to explain this data, remains unresolved.  

 

The logical problem reconsidered: Relationship to identification in the limit 

We noted at the outset that the scope for learning language from positive evidence alone 

has been viewed as limited in the light of Gold’s (1967) classic paper “Language 
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identification in the limit.” These results were one motivation for the view that there is a 

fundamental logical problem with language acquisition from positive data. By contrast, 

the present results suggest that under very general conditions positive evidence can 

provide enough information for a learner to gain a great deal of information about a 

language (though we shall mention a number of caveats below). 

 Gold’s (1967) paper, and the subsequent literature, has proved a range of positive 

and negative results concerning what can be learned from positive evidence. Gold’s most 

celebrated result, and variants upon it, cast the problem of learning from positive 

evidence in what appears to be a negative light. Specifically, we define identification in 

the limit to require eventually correctly identifying a language (purely extensionally---

i.e., picking out the, typically infinite, set of sentences that it does contain), from any text 

of that language (where a text is a semi-infinite sequence, i.e., with a determinate start, 

but no end item, of sentences of the language, such that each sentence in the language 

eventually appears). The learner need merely settle on the correct hypothesis and “stick” 

with it; it is not required that the learner is able to announce that it has identified the 

language successfully (and indeed this will typically not be possible). Now, we can 

informally state Gold’s key result as follows: for any family of languages consisting of 

all finite languages (i.e., languages consisting of any finite set of sentences) and at least 

one infinite language, then that family of languages is not learnable in this limit. This 

means that there is at least one language, and a text generated by that language, such that 

the learner will not settle on the correct language, and stick with it, however much of the 

text it sees. The emphasis on finite languages is not crucial---similar negative results hold 

when learning only infinite languages (e.g., Niyogi, in press). In particular, these results 
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lead to the conclusion that finite state languages, and all languages generated by more 

complex grammatical formalisms are not learnable in the limit. Interestingly, these 

negative results have been extended to the case where the goal is merely probabilistically 

approximately correct (Valiant, 1984) identification of the target language (Niyogi, in 

press), which follow, roughly, because almost any interesting class of languages has an 

infinite VC dimension (Vapnik, 1998; see Niyogi, in press, for analysis and discussion).  

 The present results do not, of course, cast doubt on the validity of these negative 

results. Nor does it cast doubt on the usefulness of Gold’s approach to the study of 

learning. Indeed, an important subfield of research, learning theory, has emerged from 

extensions of Gold’s results (Angluin, 1980; Blum & Blum, 1975; Jain, Osherson, Royer 

& Kumar Sharma, 1999; Martin & Osherson, 1998; Osherson, Stob & Weinstein, 1985). 

Moreover, results from learning theory have been extensively related to human learning, 

including language learning (e.g., Niyogi, in press; Osherson & Weinstein, 1982; 

Osherson, Stob & Weinstein, 1982, 1984; Pinker, 1979, 1984).  

 The present results do emphasize the general truism that different formal 

idealizations of a single process--here the process of language acquisition--can lead to 

very different theoretical conclusions. The pressing question, therefore, is in what ways 

do the idealizations differ, and which idealization appears to be most relevant to how 

children learn natural language. An exhaustive analysis of the issues is beyond the scope 

of this paper. Here we briefly mention three critical points of difference (see Rohde & 

Plaut, 1999 for related discussion).  

 

Identifying vs. modeling the language 
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A first difference is that Gold’s criterion for successful learning is more exacting than 

that considered here. Gold is concerned with precisely ‘identifying’ a language—i.e., 

specifying exactly (or almost exactly—see Osherson, Stob & Weinstein, 1985) what 

sentences it does or does not contain. This seems too strict a criterion of learning in 

relation to how children learn language—after all the idiolects of any two native speakers 

will presumably show at least subtle differences. Moreover, even a single difference over 

a specific grammatical rule between two idiolects can lead two speakers to disagree on 

the grammaticality of the infinite number of sentences in which that grammatical rule is 

involved. Thus, we would expect that any two people would disagree on the 

grammaticality of an infinite number of sentences. This means that theoretical results 

showing that a learner cannot precisely identify a language from a teacher providing only 

positive evidence, such as Gold provides, may not apply directly to language acquisition 

in the child. The model developed here allows that the learner and the ‘teachers’ from 

whom the language is learned may make different judgments about the grammaticality of 

an infinite number of sentences (and the teachers may, presumably, also differ among 

themselves). But the learner and teachers will agree on almost all sentences that have a 

substantial probability of being said. This means that, for example, a disagreement 

between learner and teachers concerning the application of a controversial grammatical 

rule in a ten billion word long sentence will not count noticeably against the learner’s 

having successfully acquired the language. From the pragmatic point of view of 

explaining how learners come to understand the actual sentences that they hear, and learn 

to produce similar sentences, the more relaxed criterion adopted here seems reasonable, 
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and indeed, arguably required to explain “endogenous” aspects of language change (e.g., 

Niyogi, in press).  

 

The impact of statistical properties of language 

A second, and related, difference is that Gold’s result makes a crucial simplification in 

ignoring statistical properties of the language. In Gold’s learning set-up, a language is a 

collection of sentences; and the goal of learning is to identify this set. But in the speech to 

which children are exposed, some types of sentences are more common than others—and 

learning the language critically involves learning these types of sentences, over and 

above types of sentences which are rarely or never produced. Thus, all native speakers of 

English agree that the cat is on the mat is an acceptable grammatical sentence; but 

examples of a rare structure, such as the multiply center-embedded such as the cat the 

dog the man saw chased ran leaves native speakers uncertain regarding grammaticality.  

 

Worst case vs. typical case analysis 

A third difference between Gold’s framework and the present set-up is that Gold’s 

original results demand that for a language to be learnable, it must be possible for the 

learner to learn the language given any text for that language. Here a text is defined as a 

(typically infinite) sequence of sentences (allowing arbitrary repetitions) which includes 

all and every sentence of the language. This means that every grammatical sentence of 

the language will be encountered eventually, but that there are typically no further 

constraints concerning the order in which sentences are encountered. Gold (1967) notes 

that the demand that language can be learned from every text may be too strong. That is, 
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he allows the possibility that language learning from positive evidence may be possible 

precisely because there are restrictions on which texts are possible. As we have noted, 

when texts are restricted severely, e.g., they are independent, identical samples from a 

probability distribution over sentences, positive results become provable (e.g., Pitt, 

1989); but the present framework does not require such restrictive assumptions. 

 

The power of absence as implicit  negative evidence 

Indeed, once the demand that the learner must successfully acquire the language from 

any text is abandoned, then a potentially powerful source of ‘implicit’ negative evidence 

becomes available: absence as implicit negative evidence. To see how critically 

important this factor can be consider a language learner that is considering the viability of 

the ‘vacuous’ grammar, that any set of words in any order is grammatical—‘anything 

goes.’ But suppose that the ten million words that the learner has so far encountered have 

been generated by a trivial finite state grammar. It might seem that the learner can pretty 

safely rule out the ‘vacuous’ hypothesis, under these conditions—and, indeed, it might 

seem that any intelligent learning mechanism is likely to reach this conclusion. The 

absence of all but a tiny fraction of possible sentences would seem to be strong evidence 

that these sentences (or at least, the vast bulk of them) are not allowed in the language. 

Thus, it seems reasonable to interpret absence as a potential source of implicit negative 

evidence. But in Gold’s set-up, a learner that adopts this assumption will be found 

wanting, because learners are required to acquire the language successfully, whatever the 

text on which they learn (so long as the text includes all and only the grammatical 

sentences of the language). Thus, any text at all is a perfectly legitimate text for the 
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‘vacuous’ grammar, including the one mentioned above; that is, the text can be ‘rigged’ 

arbitrarily to ‘mislead’ the learner; and Gold’s criterion requires that the learner should, 

nonetheless, always ultimately succeed in identifying the language correctly. More 

broadly, because the text can be rigged arbitrarily, the learner can never rule out ‘over-

general’ grammars—i.e., grammars that allow more sentences in the language than the 

target grammar. Intuitively, the point is that for any ‘reasonable’ text, including the 

linguistic inputs to which children are exposed, absence can be used as negative 

evidence. Thus, by allowing ‘unreasonable’ texts, Gold’s idealization makes the learning 

problem unduly difficult.  

 The potential importance of absence as a source of negative evidence applies not 

just at the general level mentioned above. As Rohde and Plaut (1999) have elegantly 

argued, it is also at the core of a wide range of specific proposals that attempt to explain 

how the child can acquire aspects of language from positive evidence alone. These 

proposals, which include the “uniqueness principle,” “competition,” “preemption,” 

“blocking,” the “principle of contrast,” “mutual exclusivity” and the “M-constraint” 

(Bowerman, 1988; MacWhinney, 1993, 2004; Pinker, 1984; Wexler & Culicover, 1980), 

all rely on absence as an implicit signal than certain forms cannot occur. Rohde and Plaut 

(1999) point out that these principles require the learner to use ‘soft’ constraints such as 

that verbs typically have a single past tense, or that nouns typically have a single plural 

form. The constraints are ‘soft’ because they are some cases in which they do not apply. 

For example, in US English, ‘dive’ has two past tense forms ‘dived’ and ‘dove,’ both of 

which are reasonably frequent. But the soft constraint can nonetheless be extremely 

useful to the learner, if combined with the use of absence as negative evidence. Suppose, 
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for example, that the learner hears countless examples of ‘went’ as the past tense of ‘go.’ 

The constraint that verbs typically have just one past tense means that the learner may 

reasonably conjecture that ‘goed’ is not viable. By using absence as surrogate negative 

evidence, the more examples of ‘went’ are heard, the more confident the learner can be. 

The learner can reason that if ‘goed’ existed, it would very likely have been encountered. 

Indeed, presumably it is just such an inference which underlies our adult intuition that 

‘goed’ is not viable—it would seem incredibly unlikely that ‘goed’ is a valid past tense 

form, but that due to a remarkable chain of coincidence, one has never heard anyone say 

it. Note, by contrast, that this style of reasoning would not be appropriate in the context 

of a typical learnability set-up; this is because the learner must succeed even in the 

‘rigged’ text where ‘goed’ is legitimate, but is only heard after one billion examples of 

‘went.’ 

To use absence as a source of negative evidence requires, then, some restrictions on 

the class of possible inputs to the learner (texts cannot be arbitrarily rigged). But which 

assumptions about the class of texts are appropriate? One extreme idealization would be 

to assume that texts are created by concatenating sentences chosen independently from an 

identical distribution over the (infinite) space of possible sentences (e.g., Horning, 1969). 

This idealization is attractive from a formal point of view—because it allows the 

application of the standard probability theory concerned with the properties of such 

sequences. But this assumption is clearly too restrictive, because there are patently very 

strong, and linguistically crucial, interdependencies between successive sentences. A 

natural direction to explore is to weaken this assumption by allowing dependencies 
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between short sub-sequences of sentences, or in some other way assume that the 

language is relatively stationary (Rohde & Plaut, 1999).  

Any such assumption that the language is ‘stationary’ is subject to the concern, 

however, that there are dependencies between chunks of language over arbitrary scales. 

To see this, consider the dependencies in an academic journal, which apply between 

sentences and subsequent sentences; between paragraphs and subsequent paragraphs; 

between sections and subsequent sections; and even between articles and subsequent 

articles. Thus, it is not clear that language is a stationary stochastic process over any 

time-scale, although the possibility remains that it may be approximately stationary, to 

some useful degree, or at some level of linguistic analysis. The present framework places 

strong, but rather general, restrictions on texts, but without requiring stationarity. 

Specifically, infinite texts must be monotone computable. This restriction is significant. 

The overwhelming majority of infinite texts will correspond to uncomputable 

sequences.28 However, the uncomputable sequences, being incompressible (every initial 

segment is incompressible) to some degree, correspond more or less to "white noise" and 

have no meaning or regularity, and hence there is no cogent reason why one should want 

to learn them or that they would express any interesting structure. Note, too that the 

restriction to computability is still quite weak, in the sense that it does not impose any 

constraints which are specific to learning natural language. Nonetheless, the results we 

have discussed here show that adding this constraint on inputs suffices to make language 

learning possible.  

 

Summary 
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In a nutshell, Gold’s learning paradigm embodies the view that the child’s goal in 

learning language is primarily theoretical:The goal is to get the correct theory that 

decides all possible cases, whether or not they arise in practice or not; and Gold demands 

that this theory is learnable on all possible texts for the language. But it may be more 

appropriate to view the child’s primary goal as practical: What matters is learning to 

handle the language as it is actually spoken, from samples of the language that might 

actually be heard. In brief, Gold’s results show that language learning from positive 

evidence alone is impossible, when viewed as a problem of theory discovery; but the 

present results show that practical knowledge of how to predict, judge and produce 

sentences of a language can in principle be derived from positive evidence alone. The 

present analysis seems appropriate for natural languages where there is typically little 

consensus concerning what constitute correct sentences is necessarily fluid: different 

native speakers and linguists may completely disagree on the correctness of infinitely 

many sentences; and grammaticality judgments may be inconsistent across different 

occasions for the same speaker.  

 

Open questions 

The analysis in this paper considers the amount of information available to a learner from 

positive evidence alone; but it does not consider the extent to which it is possible for a 

learner to exploit this information fully.  

 To consider whether this information can be exploited fully, let us assume that the 

learner has the same computational power as the mechanism producing the corpus (this 

seems a reasonable assumption, as today’s learner is tomorrow’s corpus-generator for 
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future learners). Thus, the learner is modeled as a monotone Turing machine with access 

to a random input. To obtain optimal learning, the learner needs to predict according to 

the universal distribution, λ, conditional on previous input. But in general, at least, this 

will not be possible, because λ is an uncomputable distribution--this is a standard result 

of Kolmogorov complexity theory (Li & Vitányi, 1997). So, although the information 

may be available, the learner cannot exploit it fully.  

 Hence, a psychological mechanism that learns using a Simplicity Principle must 

operate by approximating the probability distribution λ--i.e., finding a short, but not 

necessarily the shortest, encoding of past linguistic data. This opens up the very 

interesting question of how approximations to λ will fare in language acquisition--in 

prediction, making grammaticality judgements, and language production. Two extreme 

possibilities may be envisaged. One extreme possibility is that computational restrictions 

change the picture dramatically. Although for a learner with no computational 

limitations, the linguistic input contains enough information for successful learning, it 

might be that for real computational learners, very little useful information about 

language structure can be extracted from the input. The other extreme possibility is that 

computational limitations do not qualitatively affect what can be learned--i.e., the learner 

can predict, judge grammaticality, and produce language successfully, by choosing the 

simplest account of the language that it is able to find, although not, of course, quite as 

accurately as would be possible if the Simplicity Principle could be implemented 

precisely.  The question of which extreme represents the true situation, or which 

compromise between them is appropriate, is currently an open problem. Nonetheless, 

some steps have been made in this direction. Vitányi & Li (2000) consider a computable 
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approximation to the universal distribution--the statistical Minimum Description Length 

Principle (e.g., Rissanen, 1987, 1989) and show via mathematical analysis that, under 

certain conditions, this computable approximation is expected to lead to successful 

predictions with probability 1. There remains, though, a rich set of open questions 

concerning the properties of learners which various more specific computational 

properties and restrictions (e.g., learners that can only entertain certain languages). Most 

important, of course, is the analysis of idealized learners that are psychologically realistic 

as models of human learners.  

 A related area set of questions concerns more specific models of both of the 

language to be learned, and of the nature of the learner. In the analysis here, our only 

constraint on the language is that it could be produced by a ‘monotone’ Turing 

computable process (with access to a source of randomness). The learning problem may 

be expected to become substantially easier if constraints are placed in the class of 

languages that might need to be learned. These constraints might range from very general 

properties of language (which might emerge from communicative constraints, cognitive 

limitations, or in a variety of other ways) to highly specific and elaborate constraints of 

language structure, such as those embodied in ‘universal grammar’ (Chomsky, 1981).  

 A third important set of open questions, that we touched on at the end of the last 

subsection, concerns the quality and amount of data required for language acquisition to 

occur. Formal results both in the tradition of formal learning theory started by Gold and 

learning by simplicity started by Solomonoff have focussed on learning in the asymptote, 

using a potentially infinite supply to data. But real language learning must occur reliably 

using limited amounts of data (although the available data to the child will comprise 
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many millions of words each year). Thus a crucial set of open questions concerns how 

rapidly learners can converge well enough on the structure of the linguistic environment 

to succeed reasonably well in prediction, grammaticality judgements and language 

production. Some progress on this issue has already been made by Solomonoff (1978), 

who has shown that the expected squared error in the n-th prediction probabilities of 

using the universal distribution to decrease more rapidly than 1/(n log(n)) (see Li & 

Vitányi, 1997). 

 

Conclusion 

This paper presents some positive results concerning what is learnable from positive 

linguistic data. We have seen that exposure to positive data is sufficient for an ideal 

learner to predict new material from a corpus, learn to make grammaticality judgments, 

and learn to produce language. These results re-open the question of the viability of 

language learning from positive evidence under less idealized conditions, of limited 

computational resources or amounts of linguistic data available to the  learner. The 

framework developed here presents a complementary idealization of the problem of 

language acquisition to that initiated by Gold (1967).  They also suggest that purely 

logical arguments against the general viability of language acquisition from positive 

evidence may need to be rethought.  
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Appendix A: Measures and semi-measures 

We want to specify a probability distribution over one-way binary sequences of 0s and 

1s. This requires us to introduce the notions of measures and semi-measures. A non-

standard approach to measures is standard in the relevant areas of Kolmogorov 

complexity theory, namely the sub-field of algorithmic probability (see Li & Vitanyi, 

1997, pp. 242-244).  

 Let us define a probability measure, φ, over these sequences, as satisfying:  

 

 φ(empty-string) = 1      (A1) 

 

 φ(x) = φ(x0) + φ(x1)      (A2) 

 

where x is a binary sequence. According to this definition, the empty string has 

probability 1; for any n, the sum of the probabilities of strings of length n is also 1.  

 For the analysis below, it is convenient to introduce a more general notion. Let us 

define a probability semi-measure, σ, over these sequences, as satisfying:  

 

 σ(empty-string) ≤ 1      (A3) 

 

 σ(x) ≥ σ(x0) + σ(x1)      (A4) 

 

According to this definition, the probability of the empty string is less than 1. The sum of 

the probability of strings of length n+1 will be less than or equal to the sum of the 
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probability of the strings of length n. The definitions of measures and semi-measures can 

be generalized in the obvious ways to sequences which can contain more than two 

symbols.  

 Notice that monotone computable distributions, μ, discussed above will typically 

be semi-measures, but not measures. This is because there may be some inputs that lead 

to undefined outputs from the associated monotone machine at some point in the output 

sequence, so that the sum probability over the output sequences will be less than 1. In 

particular, the universal monotone distribution, λ, is a semi-measure rather than a 

measure. 
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Appendix B: Proof of Step 3:  

We need to prove: 

D(μ || λ) = Dj (μ || λ )
j =1

∞

∑        (B1) 

where μ is a measure and λ is a semimeasure.  
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Because μ is a measure, the sum of conditional probabilities of all possible continuations 

of a sequence is 1. This means that, for any j,  

 

 μ(xj +1... | x1...xj )
x j+1 ...
∑ = 1      (B3) 
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leading to the simplified form of (B2) as:  

 

= μ(x1 )log
μ(x1)
λ(x1)x1

∑ + μ(x1,x2 )
x 1, x2

∑ μ(x2 | x1 )
λ (x2 | x1 )

...

... + μ(x1...xj )
x 1...x j

∑
μ(x j | x1...x j −1)
λ(x j | x1...xj −1 )

+ ...     (B4) 

 

This can be rewritten as:  

 

= μ(x1) log
μ(x1)
λ(x1 )x 1

∑ + μ(x1 )
x 1

∑ μ(x2 | x1 )
x 2

∑ μ(x2 | x1)
λ (x2 | x1)

...

... + μ(x1...x j −1 )
x1 ...x j −1

∑ μ(x j | x1...x j −1 )
x j

∑
μ(x j | x1...x j −1 )
λ(x j | x1...x j −1)

+ ...   (B5) 

 

which, by the definition of standard Kullback-Liebler distance (Equations (17) and (19)), 

can be rewritten:  

 

= D(μ(x1 ) || λ (x1)) + μ(x1 )
x 1

∑ D(μ(x2 | x1) || λ(x2 | x1 ))...

... + μ(x1...x j −1 )
x1 ...x j −1

∑ D(μ(x j | x1 ...x j −1 ) || λ(x j | x1...x j −1 )) + ...   (B6) 

 

which, by the definition of the Kullback Liebler distance, Dj, (equation 20) is:  

 

= Dj(μ || λ )
j =1

∞

∑         (B7) 
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This proves the theorem.  

 There is, 

however, a complication, with respect to applying this theorem in the wider context of 

the proof. This is because the proof holds only if μ is a measure, whereas, in general μ 

will often be a semi-measure. This is because μ may can correspond to an arbitrary 

monotone Turing machine M, and such machines will not typically lead to a well-defined 

output for each input (e.g., the machine may halt or go into an infinite loop after a certain 

input, and then produce no further output). Given that this can happen the sum of the 

probabilities over all possible infinite output sequences of 0s and 1s will be less than 1, 

because of the non-zero probability than a well-defined infinite output will not be 

produced at all. Li and Vitanyi (1997) show that this can be handled simply by adding a 

third symbol ‘u’ for undefined. In these terms, an input that leads to the output 010100 

and then goes into an infinite loop is viewed as producing the infinite sequence 

010100uuu.... Thus, we define μ (and hence also λ) as a measure over the set of infinite 

sequences of the three symbols 0, 1 and u. This means that the Kullback-Liebler 

divergences above are defined over sequences of the three symbols. We shall pick up the 

ramifications of this complication for Step 4 of the proof in Appendix C. 
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Appendix C: Proof of part of Step 4  

The material in this section is an elaboration of the discussion in (Li & Vitanyi, 1997, p. 

329). We have to show that  

 

 (P(0) − Q(0))2 ≤
loge 2

2
D(P || Q)     (C1)  

   

 

where P and Q range over 0 and 1. Define p = P(0) and q = Q(0). Then we expand the 

Kullback-Liebler term, and rewrite the result in terms of p and q to give the inequality:  

 

(p − q)2 ≤
loge 2

2
plog2

p
q

+ (1 − p)log2
1 − p
1 − q

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ =

1
2

p loge
p
q

+ (1− p)loge
1 − p
1− q

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  

           (C2) 

 

where the equality involves switching from base 2 to base e, which will be convenient 

below, using the fact that:  

 

  
log 2. log e x

      (C3) 
e 2 x = log

 

The inequality will hold if, for all p and q: 

 

 p ln
p
q

+ (1 − p) ln
1 − p
1 − q

− 2(p − q)2 ≥ 0    (C4) 
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let us fix p and treat it as a constant. We can then consider the left hand side of the 

inequality (C4) as a function of q, F(q). To prove the inequality, we need to show that 

F(q) ≥ 0, whatever the value of q, for arbitrary p.  

 It is useful to consider in which direction F(q) changes as q changes—i.e., to 

know the derivation dF/dq, which can evaluate term by term: 

 

 dF
dq

= −p / q + (1 − p)/(1 − q) + 4(p − q)     (C5) 

 

and rearrange:  

 

=
1

q(1 − q)
q − p + 4(p − q)q(1 − q)( )     (C6) 

 

Because 
1

q(1− q)
 is positive, 

dF
dq

≥ 0  if and only if:  

 

q − p + 4(p − q)q(1 − q) ≥ 0
      (C7) 

 

which can be rewritten: 

 

(q − p)(1− 4q(1 − q)) ≥ 0
       (C8) 

 

  86



Note that 1 for any q between 0 and 1—specifically, the left hand side is 

always nonnegative, reaching a minimum of 0, when q is 1/2. This means that the sign of 

− 4q(1− q) ≥ 0

dF
dq

 depends only on the q-p term. This means that: if q > p, 
dF
dq

≥ 0 , and if q < p, 

dF
dq

≤ 0 .  

 We are now in a position to show that  for all q. First, note that if q = p, 

we have:  

F(q) ≥ 0

 

 F( p) = pln
p
p

+ (1− p)ln
1− p
1− p

− 2( p − p)2 = 0    (C9)  

  

Now suppose that we increase q above p. Where q > p, 
dF
dq

≥ 0 , which implies that F(q) 

will increase, and hence that . Suppose instead that we decrease q below p. 

Where q < p, 

F(q) ≥ 0

dF
dq

≤ 0 , which implies that F(q) will increase as q decreases, and hence 

again that . Thus, we have shown that for all q, and for arbitrary p, and 

the theorem is proved.  

F(q) ≥ 0 F(q) ≥ 0

 A final complication arises because, as we noted in the proof of Step 3 (see the 

discussion at the end of Appendix B), the Kullback-Liebler distance between μ and λ is 

calculated over three symbols, 0, 1, u—we shall write this D0,1, u(μ,λ ) . But the result 

bounding sum-squared error above applies only for the case where there are two symbols. 

To fill in this gap in the proof, we consider the Kullback-Liebler distance between μ and 

λ for two symbols, 0 and v, where v collapses together 1 and u. This distance, which we 
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shall write D0,v(μ,λ ) is binary, and hence the upper bound on sum-squared error applies. 

Moreover, we shall show that Kullback-Liebler distance can only decrease when symbols 

are collapsed in this way—and hence that the Kullback-Liebler distance between μ and λ 

calculated over the three symbols, 0, 1, u must exceed the two symbol case, which itself 

must exceed sum-squared error. Thus the three-symbol Kullback-Liebler distance does 

provide an upper bound on sum-squared error.  

 To complete the proof, then, we need to show that D0,1, u(μ,λ ) ≥ D0,v (μ, λ). To 

show this, we start by rewriting the three outcomes of D0,1, u(μ,λ ) as sequences: 00, v1, 

vu, where we define μseq(00) = μ(0), μseq(v1) = μ(1) and μseq(vu) = μ(u), and similarly for 

λ. All other two item sequences have zero probability. The Kullback-Liebler divergence 

between μ and λ over these two symbol sequences will be just D0,1, u(μ,λ ), because there 

are three outcomes with exactly the same probabilities as in the standard definition of 

D0,1, u(μ,λ ) . But using the representation as sequences of two items, we can use a general 

result, which is a special case of main derivation in Step 3 above:  

 

 D0,1, u(μ,λ ) = D(μseq (x1 x2 ) || λseq (x1x2 )) = μseq (x1x2 )
x1 = 0, v; x2 =0,1,u

∑ log
μseq(x1x2 )
λseq(x1x2)

 (C10) 

= μ(x1 ) log
μ(x1 )
λ(x1)x1 =0,v

∑ + μ(x1 )
x1 =0,v
∑ μ seq(x2 | x1)

x 2 = 0,1,u
∑ log

μseq(x2 | x1 )
λseq(x2 | x1)

 

= D0, v(μ(x1) || λ (x1)) + μ(x1)
x1

∑ D(μseq (x2 | x1) || λseq (x2 | x1))  

 

Kullback-Liebler distance cannot be negative, as we have noted, so the sum on the right 

hand side cannot be negative, and we can conclude:  
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 D0,1,u (μ,λ ) ≤ D0,v(μ || λ )       (C11) 

 

which proves the result.   
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Appendix D: Proof of the re-scaling lemma 

We have a probability distribution P(yi). We wish to encode these outcomes according to 

a probability distribution Q(yi). A proper subset of outcomes that Q assigns a non-zero 

probability are actually impossible in P (i.e., Q(yi) > 0 but P(yi) = 0). The re-scaling 

lemma states that given this constraint the minimum expected number of bits of 

information wasted, measured by the Kullback-Liebler divergence, D(P||Q), is 

log2
1

(1− Δ j)

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ , which is attained when, for all yj ∉ S0,  

 

 
Q(y ) = (1− Δ)j P(y )j

       (D1) 

 

That is, the minimum waste is obtained by re-scaling all the P(yi) values that can occur 

into the available probability for these items under the distribution Q.  

 Proof. Consider a probability distribution P. We want to find the probability 

distribution Q(yi) which minimizes the Kullback Liebler divergence D(P||Q), subject to 

the constraint that there is a subset S0 of outcomes yi for which Q(yi) > 0, but P(yi) = 0, 

such that: 

 

         (D2) Q(yj )
y j ∈S0

∑ = Δ
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 The Kullback-Liebler distance between P and Q will be the same as the Kullback-

Liebler distance between probability distributions over sequences with the same 

probabilities (see the last part of Appendix C for a similar method). Define  

Qseq(0yi) = Q(yi) for yi in S0; and Qseq(1yi) = Q(yi) for yi not in S0. These are the only 

allowable sequences—other binary sequences have probability 0. Define  

Pseq(0yi) = 0 and Pseq(1yi) = P(yi) for all yi. It is easy to verify that the probabilities of the 

different sequences are the same as the probabilities of the single outcomes in the original 

distributions so that:  

 

 
D(P || Q) ≡ D(Pseq seq|| Q )

      (D3) 

 

Now, using the representation as sequences of two items, we can use a standard result, 

which is a special case of the result used in the main derivation of Step 3 of the prediction 

theorem (equation 11) above:  

 

D(R(x1x2 ) || S(x1x2 )) = D(R(x1) || S(x1)) + R(x1 )
x1

∑ D(R(x2 | x1) || S(x2 | x1 ))     

(D4) 

 

and apply the special cases of Pseq and Qseq we obtain: 

 

 
D(Pseq (x1x2 ) || Qseq (x1x2 )) = P(1)log2

P(1)
Q(1)

+ P(0)log2
P(0)
Q(0)

+ P(1)D(Pseq (y j | 1) || Qseq (yj |1)) + P(0)D(Pseq(yj | 0) || Qseq (y j | 0))
  (D5)  
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This can be simplified using the facts that P(1) = 1, P(0) = 0, Q(1) = 1 - Δ, Q(0) = Δ, 

Pseq(yi |1) = P(yi), Pseq(yi |0) = 0. Moreover, we know that for yi not in S0, Qseq(yi |1) = 

Qseq(1 yi)/Q’(1) = Q(yi)/(1 - Δ). The resulting simplification is: 

 

 = log2
1

1− Δ
+ D(P(yj ) ||

Q(yj )
1− Δ

)       (D6) 

 

The choice of Q only affects the second term. (D6) can be minimized if the two 

distributions compared by Kullback-Liebler divergence are the same (we use the general 

result that Kullback-Liebler diverge is minimal, and attains 0, only between a probability 

distribution and itself). This means the minimum is attained when:  

 

 P(yj ) =
Q(yj )
1− Δ

        (D7) 

 

When rearranged, this gives the required result.  
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Appendix E: Proof of the undergeneralization theorem 

Suppose that a past sequence of words, x, has been encountered. The next word, k, is 

allowed by the true grammar, and has a non-zero probability of being said, but is 

disallowed by the learner’s probability distribution. As usual, we assume that language is 

generated from a monotone computable probability distribution, Pμ, over word 

sequences; and that the learner is using the universal prior distribution, Pλ, over word 

sequences. Then undergeneralization will occur when Pμ(xk) > 0, but when Pλ(xk) = 0. It 

is convenient to convert this formulation into the equivalent binary representation. 

Suppose that the word sequence xk corresponds to the binary sequence y. Then, because 

the binary code stands in one-to-one correspondence with the representation in terms of 

word sequences, the criterion for undergeneralization can be stated as: μ(y) > 0, whereas 

λ(y) = 0. Can there be such a sequence, y? There cannot, because by applying equation 

(14) above, we obtain: 

 

λ (y) ≥ 2−Km (μ )μ(y) > 0       (E1) 

 

This implies, trivially, that μ(y) > 0, then λ(y) > 0. Hence undergeneralizations cannot 

occur.  
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Appendix F: Proof of the soft undergeneralization theorem 

Suppose that the sequence of words encountered by the learner is generated according to 

a computable probability distribution Pμ, and that the learner attempts to predict this 

sequence by a universal probability distribution Pλ. We denote the sequence of the initial 

j-1 words that the learner encounters by x, and let us call the jth word, k. If the learner 

undergeneralizes on word k by a factor f, this means that the learner underestimates the 

probability that k will occur after x by a factor f, i.e., f.Pλ(k|x) ≤Pμ(k|x). We write  Λj(x) to 

denote the probability that the k that is chosen according to the true distribution is a word 

on which the learner undergeneralizes, given the preceding sequence, x. Λj(x), can be 

expressed:  

∑
≤

=Λ
)|()|(:

)|()(
xkPfxkPk

j xkPx
μλ

μ        (F1) 

 

The expected probability, Λ j , with which this occurs on the jth item is:  

 

 Λ j = Pμ(x)
x:l (x )= j −1

∑ Λ j (x)      (F2) 

 

The Soft Undergeneralisation Theorem states that: 

 

Λ j
j =1

∞

∑ ≤ Km(μ)
1

log2 f e
      (F3) 
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(so long as f > e) 

 

Proof. The overall logic of the proof is similar to that used in proving the 

overgeneralization theorem. As before, we consider the scenario in which the learner uses 

its probability distribution Pλ to encode the output from the true distribution, Pμ. After 

the sequence x, of j-1 words, has been encountered, we can ask: What is the expected 

amount of wasted information in encoding the jth item? As in the case of 

overgeneralization, such waste is inevitable, because the learner is using codes which are 

optimized to the learner’s distribution (i.e., Pλ(.|x)), rather than to the true (but from the 

learner’s point of view, unknown) distribution (i.e., Pμ(.|x)). The key underlying intuition 

is that, to the extent that the learner has a tendency to undergeneralize, the learner must 

necessarily waste a certain amount of information. This is because the learner encodes 

some items with long codes, because the learner assumes that they are very unlikely; but 

in reality, they are likely, and hence should optimally be assigned short codes. By using 

long codes where short codes would do, the learner therefore wastes information in 

encoding the sequence. The greater to degree to which the learner undergeneralizes, the 

greater the amount of wasted information.  

 More specifically, the aim of the proof is to put a lower bound on the amount of 

information that is wasted (as measured by Kullback-Liebler divergence), given that a 

specified amount of undergeneralization occurs.  

 To get started, we aim to specify to know how information waste can be 

minimized, given that a certain amount of undergeneralization occurs. That is, suppose 

that, instead of the specific distributions, Pμ and Pλ, we consider arbitrary distributions Q 
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and R (where Q stands in for Pμ, and is viewed as the true distribution, and R stands in for 

Pλ, and is viewed as the learner’s distribution). The only constraint on R and Q, is that R 

undergeneralizes with respect to Q with probability, Λ. We then specify the distributions 

Q and R in a way that we can show minimizes the information wasted. This amount of 

waste incurred in this ‘minimal’ case must therefore be a lower bound on the amount of 

waste incurred in the case where we use the distributions of interest, Pμ and Pλ. In an 

analogous aspect of the proof of the overgeneralization theorem, the ‘re-scaling lemma’ 

(Appendix D) showed that the lowest information loss was achieved by specifying the 

learner’s distribution as a re-scaled version of the true distribution (for the items where 

overgeneralization did not occur). We shall see that a similar, though slightly more 

complex, result holds here.  

 

Lemma. Consider probability distributions Q and R over outcomes, i , with a probability, 

Λ, (with respect to the ‘true’ distribution Q) that an outcome i  arises for which R 

‘undergeneralizes’ with respect to Q by a factor of at least f. That is, we assume that:   

 

Λ = Q(i)
i ∈U
∑         (F4) 

 

where . (The set U consists of the items on which 

undergeneralization occurs.) Then,  

{ )()(| iQfiRiU ≤= }

 

 D(Q || R) ≥ Λ log2
f
e

       (F5) 
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as long as f > e. Thus, this lemma relates the amount of undergeneralization to the 

amount of informational waste involved in using R to encode Q.  

 We now prove the Lemma. We break down the proof into two steps. First, we 

specify that the sum probability in R of the items that are underestimated by R is Λ , 

where: 

'

 

∑
≤

=Λ
)()(:

' )(
iQfiRi

iR        (F6) 

 

Now we consider how the probabilities for all the should be set in order to minimize 

D(Q||R). The second step is to consider the optimal value of 

R(i)

Λ' to minimize D(Q||R). 

 To prove the first step, we begin by rewriting the distribution R in a rather indirect 

way, in terms of a new distribution S, where R(i) =
Λ'
Λ

S(i) for i ∈U ; and 

R(i) =
1 − Λ'
1− Λ

S(i)  for i . Note that S sums to one, and hence is a probability 

distribution, as shown below:  

∉U

 

S(i)
i

∑ = S(i)
i ∈U
∑ + S(i)

i ∉U
∑ =

Λ
Λ'

R(i)
i ∈U
∑ +

1 − Λ
1 − Λ'

R(i)
i ∉U
∑

=
Λ
Λ'

R(i)
i ∈U
∑ +

1 − Λ
1 − Λ'

R( i)
i∉U
∑ =

Λ
Λ'

Λ' +
1− Λ
1 − Λ'

(1− Λ' ) = 1
  (F7) 

 

Now we adopt the method used in proving the re-scaling lemma above (Appendix D). 

The Kullback-Liebler distance between Q and R will be the same as the Kullback-Liebler 

  97



distance between probability distributions over sequences with the same probabilities. 

Let us call the distributions over sequences, corresponding to Q and R, Qseq and Rseq 

respectively. Define Q  for iseq (0i) = Q(i) ∈U ; and Qseq (1i) = Q(i)  for i . Similarly, 

define 

∉U

Rseq(0 i) = R( i)  for i ; and ∈U Rseq(1i) = R( i)  for i ∉U . These are the only 

allowable sequences—other sequences have probability 0 in both Q and R. 

 Now we write down probabilities associated with the sequential representation. 

The probabilities associated with the first symbol are:Qseq (0) = Q(i)
i ∈U
∑ = Λ ; 

; Qseq (1) = 1− Λ Rseq(0) = R(i)
i∈U
∑ = Λ' ; Rseq(1) = 1 − Λ' . By routine calculation, the 

conditional probabilities of the second symbol, given the first symbol, 

are:Qseq (i | 0) =
Q(i)

Λ
; Qseq (i | 1) =

Q(i)
1 − Λ

; Rseq(i | 0) =
R(i)
Λ'

; Rseq(i | 1) =
R(i)

1 − Λ'
. For these 

last two expressions, we substitute S for R, to obtain: Rseq(0 i) =
1
Λ'

Λ'
Λ

⎛ 
⎝ 

⎞ 
⎠ S(i) =

S(i)
Λ

 and 

Rseq(1i) =
1

1− Λ'
1− Λ'
1 − Λ

⎛ 
⎝ 

⎞ 
⎠ S(i) =

S(i)
1 − Λ

.  

 Now the Kullback-Liebler distance between the sequences Q and R is defined as 

(adapting equation D4):  

 

))|(||)|(()())(||)(())(||)(( 12121112121
1

xxRxxQDxQxRxQDxxRxxQD seqseq
x

seqseqseqseqseq ∑+=

          (F8) 

 

Expanding and filling in the specific formulae above gives the following derivation: 
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D(Q || R) = Qseq(0)log2

Qseq(0)
Rseq (0)

+ Qseq(1)log2

Qseq(1)
Rseq(1)

+

Qseq (0) Qseq (i | 0)log2
Qseq(i | 0)
Rseq (i | 0)i∈U

∑
⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ + Qseq (1) Qseq(i | 1)log2
Qseq(i | 1)
Rseq(i | 1)i∉U

∑
⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥  

          

= Λ log2
Λ
Λ'

+ 1− Λ( )log2
1− Λ
1 − Λ'

+

Λ Q(i) Λ( )log2
Q(i) Λ
S(i) Λi∈U

∑⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ + 1 − Λ( ) Q(i) 1 − Λ( )log2

Q(i) 1 − Λ
S(i) 1 − Λ( )i ∉U

∑⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥  

 

= Λ log2
Λ
Λ'

+ 1− Λ( )log2
1− Λ
1 − Λ'

+ Q(i)log2
Q(i)
S(i)i

∑  

 

= Λ log2
Λ
Λ'

+ 1− Λ( )log2
1− Λ
1 − Λ'

+ D(Q || S)    (F9) 

 

The choice of S(i) to minimize this expression is S(i) = Q(i) for all i . This sets D(Q||S) at 

its minimum value of 0. Translating back from S to the original distribution R, we have 

R(i) =
Λ'
Λ

Q(i) for ; and i ∈U R(i) =
1 − Λ'
1− Λ

Q(i) for i ∉U . This completes the first step in 

the proof. 

 The second step concerns choosing the optimal choice of Λ' . By definition, 

. Moreover, we know that ∑
≤

=Λ
)()(:

' )(
iQfiRi

iR Λ' is bounded by: 

 

f
iQ

f
iR

iQfiRiiQfiRi

Λ
=≤=Λ≤ ∑∑

≤≤ )()(:)()(:

' )(1)(0     (F10)  

  99



 

Let us view the quantity to be minimized as a function of Λ' : 

 

F(Λ' ) = Λ log2
Λ
Λ'

+ 1− Λ( )log2
1 − Λ
1 − Λ'

    (F11) 

 

Differentiating and simplifying, we obtain:  

 

dF
dΛ'

= log2 e
dF
dΛ'

Λ loge
Λ
Λ'

+ 1 − Λ( )loge
1− Λ
1 − Λ'

⎛ 
⎝ 

⎞ 
⎠ 

 

dF
dΛ'

= log2 e Λ −
1
Λ'

⎛ 
⎝ 

⎞ 
⎠ − 1− Λ( ) −

1
1 − Λ'

⎛ 
⎝ 

⎞ 
⎠ 

⎛ 
⎝ 

⎞ 
⎠ 

 

dF
dΛ'

= log2 e
Λ' −Λ

1 − Λ'( )Λ'
⎛ 

⎝ 
⎜ ⎞ 

⎠ 
⎟       (F12) 

 

By equation F10, we know that Λ' < Λ , which implies that dF
dΛ'

< 0. This means that to 

minimize F, we should maximize Λ' , which means that it should be set to its maximum 

value (again by equation F10) Λ ' =
Λ
f

.  

 Putting the results of steps 1 and 2 together, we have the result that the 

distribution R should be chosen as follows, in order to minimize the Kullback-Liebler 

distance with Q: R(i) =
Λ f
Λ

Q(i) =
Q(i)

f
 for i ∈U ; and R(i) =

1 − Λ / f
1 − Λ

Q(i) for i , 

with the resulting minimum Kullback-Liebler distance:  

∉U
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  D(P || Q) = Λ log2 f + 1− Λ( )log2
1 − Λ

1 − Λ f
    (F13) 

 

We can bound this quantity as follows. We first note that this expression increases 

monotonically as f tends to infinity, which implies that:  

 

D(P || Q) ≥ Λ log f + 1 −2 Λ( )log 12 − Λ( )
    (F14) 

 

A Taylor expansion of the right hand side of F14 gives:  

 

(1 − Λ)log2 (1− Λ) = (1− Λ) −Λ −
Λ2

2
− ... −

Λm

m
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ log2 e  

−Λ +
Λ2

2.1
+

Λ3

3.2
... +

Λm

m(m −1)
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ log2 e ≥ −Λ log2 e    (F15) 

 

Putting these results together, we have:  

D(P || Q) ≥ Λ log2 f − Λ log2 e = Λ log2
f
e

     (F16) 

 

This completes the proof of the Lemma.  

In proving the Lemma, we have considered arbitrary P and Q. We now consider 

the case where a sequence of j-1 words have made up the linguistic input so far, which 

we denote, x; and the distributions are the ‘true’ distribution Pμ(.|x) (corresponding to P 

in F16) and the learner’s distribution Pλ(.|x) (corresponding to Q in F16). Let us write the 
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probability of an undergeneralization error after the sequence x as Λ i x( ) . The expected 

number undergeneralization errors at the jth word in the sequence, which we shall write 

Λ j , is the sum of the probabilities of such an error after x  (i.e., Λ i x( ) ) weighted by the 

probability of the initial sequence, x, (i.e., Pμ(x)). Thus,  

 

 Λ j = Pμ(x)Λ j (x)
x:l (x )= j −1

∑       (F17) 

 

 Applying the equation for the expected amount of information wasted in encoding 

the jth item, Dj, is defined (equation 20, in the main text):  

 

 

Dj(Pμ || Pλ) = Pμ(x)D(Pμ (⋅ | x) || Pλ(⋅ | x))
x :l (x )= j −1

∑

≥ log2
f
e

Pμ(x)Λ j x( )
x:l (x )= j −1

∑ = log2
f
e

Λ j     (F18)  

 

where the inequality follows from F16 and the equality from F17.  

 If f > e, then log2
f
e

> 0, and hence we can divide through by this factor to give:  

 

 Λ j ≤ Dj(μ || λ)
1

log2 f e
      (F19) 

 

Thus, the expected number of ‘soft’ undergeneralization errors for an infinite input 

sequence, where the probability of a sequence is underestimated by a factor f > e is:  
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Λ j
j =1

∞

∑ ≤ Dj(μ || λ )
1

log2 f ej =1

∞

∑ ≤ Km(μ)
1

log2 f e
   (F20) 

 

here the final inequality follows from Step 2 of the proof of the Prediction Theorem in 

 

w

the main text. This completes the proof. 
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Notes 

1 The only subtlety here is that the mapping into the binary alphabet should be 

reversible, meaning that the original alphabetic representation can be uniquely 

decoded. This can be ensured by, for example, using a prefix binary code for the 

original alphabet and punctuation marks—that is, a code such that no initial portion 

(i.e., prefix) for any item corresponds to the code for some other item.  

2  No great metaphysical weight needs to be borne by the concept of randomness here. 

What matters is that many aspects of linguistic input (e.g., those affected by coin 

tosses, the weather, and ‘chance’ events of all kinds) will be, from a practical point of 

view, random for the learner. That is, no underlying pattern can conceivably be found 

by the learner, whether or not some such pattern ultimately exists. This epistemic 

notion of randomness is made precise by defining random sequences as sequences that 

are their own shortest description, leading to the mathematical theory of algorithmic 

randomness (Li & Vitányi, 1997). 

3 Technically, it is allowed that, at some point, no further output might be produced. 

4  More precisely, the requirement is that the output is a produced by a monotone 

computational process acting on the input. We define a monotone computational 

process as follows: it reads its input in one direction only (i.e., it cannot ‘go back’ to 

look at earlier inputs, although it can store this input in its memory); and it cannot 

modify this input (the input is ‘read-only’). Moreover, the output can be written in one 

direction only (i.e., one an output is ‘written’ it cannot be altered); and the output 
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cannot be read (the output is ‘write-only’). The output of the machine is defined as the 

binary sequence on the output tape, if the machine halts (and hence all subsequent 

inputs are ignored); and the infinite sequence binary sequence on the output tape, if 

the machine does not halt, but continues producing further outputs indefinitely. See Li 

and Vitányi (1997, p.276-277) for a rigorous description. Thus, as input is added, 

output cannot be deleted--although it is possible that the machine becomes ‘mute’--it 

produces no more output after a certain point.  

5  The output is finite if the machine produces no more output after a certain point in the 

infinite binary input sequence. For example, the machine might halt, or go into an 

infinite loop. 

6  Strictly, approximated in the limit from below. 

7  Provided that these distributions have rational parameters. 

8  This class of outputs of the machine is broader, however, if the internal noise in the 

system can contribute an infinite amount of randomness--more technically, if the 

internal randomness supplies an infinite number of bits of information. This is because 

the model presented here only allows a finite amount of randomness to be absorbed 

from the environment in making any particular output. For example, a computational 

process which depended on the real valued variable sampled from a probability 

density function--i.e., where the value of this variable must be known to infinite 

precision in order to assess its computational significance--could not be simulated by 

the model described here. It is conceptually possible that this might arise--but this 

assumption is not embodied in any current theoretical and computational model of 

language processing, to our knowledge. 
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9 Equation 1 is a simplification, because it ignores the issue of double counting two 

input sequences which both start with a sub-sequence z, and where z alone generates x. 

See Li & Vitányi, 1997 for a rigorous specification, which takes account of this 

problem. We have ignored this subtlety here and elsewhere below in the interests of 

clarity. 

10 Or some other enumerable (semicomputable) probability distribution. This is a very 

broad class of distributions, including all those that are used in statistics (see Li & 

Vitányi, 1997). It disallows, though, distributions with arbitrary, infinite precision, 

real parameters, for example (see footnote 7). These do not, of course, arise in practice 

in statistics, which inevitably works with finite precision approximations.  

11 Strictly, a universal language can represent only the deterministic part of the mixture 

between deterministic and random factors assumed above to be involved in generating 

the corpus. This is not a substantial limitation for the learner in encoding the input, 

however. At any point in learning, the learner has only encountered a finite amount of 

data, and this finite amount of data only contains a finite amount of randomness. A 

universal machine can straightforwardly represent an input that contains only a finite 

amount of randomness (e.g., by just storing it verbatim). 

12 Crucially, this is true if all languages use the same alphabet—here, for simplicity, we 

assume that any coding language is, at bottom, encoded in a binary alphabet. With 

larger alphabets, shortest code lengths get shorter, as each choice of symbol can carry 

more information. Converting code lengths depending on alphabet size is 

straightforward—we lose no generality by restricting ourselves to a binary alphabet 

here. 
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13  The reader may wonder why, given that we are dealing a monotone Universal Turing 

machine, the relevant measure for the complexity of a probability distribution is not 

Km(μ) rather than K(μ). The reasons are technical, but the essence is that we shall 

want to be able to specify a probability distribution, and then to sample from it—and 

to do this, we have to know when the probability distribution has been specified. 

Therefore, we need to be able to specify a description of the distribution, rather than a 

sequence which begins with a specification of the distribution (see Li & Vitányi, 

1997)—that is, the code for the distribution must be self-delimiting. 

14  Consider, for example, padding a computer program with arbitrarily large amounts of 

null operations, in the case of a conventional computer language. 

15  Similarly it can be shown that the predictions according to the universal distribution 

asymptotically approximate those according to the real distribution μ, for almost all 

sequences (the μ-random sequences) (Li & Vitányi, 1997). As it happens, this doesn't 

follow from Solomonoff's result and Solomonoff's result doesn’t follow from this one. 

Solomonoff's result states that the expected prediction error (square difference) in the 

n-th prediction decreases faster than 1/(nlogn), but it doesn't state that with μ-

probability1 the ratio between the conditional real probability of the n-th prediction 

and the universal probability of the n-th prediction (given the previous n-1 outcomes) 

goes to 1. The key point concerning the present result is that it must hold for almost all 

sequences individually, whereas Solomonoff's prediction theorem tells us something 

over the average taken over all sequences. This is a similar difference as that between 

the “Strong Law of Large Numbers” that holds for almost all infinite sequences 
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individually and the “Weak Law of Large Numbers” that holds on average. The 

problem is that it is consistent with Solomonoff's result that μ(0|x) = 0 infinitely often 

which prevents the ratio λ(0|x)/μ(0|x) from going to 1 in the limit. Nonetheless, 

Solomonoff's result has a speed-of-convergence estimate that is quite strong (but only 

holds for the average) while the convergence law has no speed-of-convergence 

estimate although it guarantees convergence with probability 1. 

16 We could, of course, equally well consider the difference in the probability that the 

next symbol is a 1, with no substantive change to the proof. 

17 We here follow the spirit and much of the notation of Li and Vitányi’s (1997) 

treatment, which is based on a proof suggested by Peter Gács. Solomonoff’s original 

proof is quite different. We have also reworked the proof in order to reduce it to its 

essentials as far as possible, and to provide a self-contained presentation, not 

presupposing knowledge of algorithmic probability theory (e.g., Zvonkin & Levin, 

1970) or the general theory of Kolmogorov complexity (Li & Vitányi, 1997). 

18 Strictly, we stipulate that this program is self-delimiting, which means that it is clear 

when the end of the program has been reached, and hence when the data input to the 

program begins. This apparently minor point actually has substantial mathematical 

consequences, which bedeviled early attempts to formalize these ideas (e.g., 

Solomonoff, 1964). 

19 Some theories of similarity in cognitive science presuppose that similarity must be 

symmetrical. That is, A must be exactly as similar to B as B is to A. But Kullback 

Liebler divergence is not symmetrical. Hence, from the perspective of these accounts, 

Kullback-Liebler distance can be related to similarity only at a metaphorical level. We 
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nonetheless use the term ‘similarity’ in relation to Kullback-Liebler distance here, for 

clarity, without intending any particular stand on these issues (see, e.g., Chater & 

Vitányi, 2003; Hahn & Chater, 1998). 

20  Kullback-Liebler divergence is sometimes defined using logs in base e, rather than 

base 2. This leads to some minor differences between statements of results here and 

those in Li and Vitányi (1997). 

21  Nothing theoretically substantial rests on the choice of the word as the unit of choice. 

The important point here is that language is considered as a sequence of a finite 

number of linguistically significant and separate chunks. The arguments below would 

equally well go through if we assumed that language input were coded in terms of 

phonemes, morphemes or syllables. 

22 See Appendix D for a proof of this ‘re-scaling lemma.’ 

23 Note that this formula allows for the possibility that there are grammatical sentences 

which have zero probability of being heard. 

24 Strictly, this is true for binary states with non-zero probability of occurrence. We 

assume that all and only the binary strings that can be generated are sequences of 

words—the whole point of the binary code is to encode language input. 

25 Note that the learner might undergeneralize not only because of an underestimation of 

which sentences are grammatical. The learner might, instead, assume that a certain 

sentence is impossible for a variety of other reasons. For example, the learner might 

wrongly assume that people can only produce center-embedded sentences of depth 

one—this could be viewed as an incorrect estimation of people’s short-term memory 

constraints, rather than a misconstrual of the grammar. In more general terms, to the 
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extent that a distinction between linguistic competence and linguistic performance can 

be made (Chomsky, 1965), the learner may undergeneralize with respect to either 

competence or performance. The bounds that we develop here apply to 

undergeneralization of both kinds; and hence automatically provide bounds on 

undergeneralizations of linguistic competence, which are of most interest to linguists. 

Hence, we need not consider the difficult questions concerning how, if at all, the 

competence/performance distinction can be made precise (though see Christiansen & 

Chater, 1999). 

26 A proof is given in Appendix E. 

27 Strictly, this theorem does not hold for all sequences xy; but the probability that the 

theorem holds tends to 1, as the length of x tends to infinity. Thus, the ‘pathological’ 

sequences where the theorem does not hold will do not arise too often in practice. 

28 This follows because the number of computable texts is bounded by the number of 

Turing machines, which is countable; but the set of all infinite texts is uncountable. 
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