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Minimum Description Length Induction,
Bayesianism, and Kolmogorov Complexity

Paul M. B. Vitanyi and Ming Li

Abstract—The relationship between the Bayesian approach prediction of sequences. To demonstrate these benificial aspects
and the minimum description length approach is established. We of compression we use the Kolmogorov theory of complexity
sharpen and clarify the general modeling principles minimum 115 ¢4 express the optimal effective compression. The general

description length (MDL) and minimum message length (MML), idea t d data f dicti fl
abstracted as the ideal MDL principle and defined from Bayes's '0€@ 10 US€ compressed data for prediction was apparently

rule by means of Kolmogorov complexity. The basic condition first put forward by Solomonoff [30], [46]. Independently,
under which the ideal principle should be applied is encapsulated Wallace and coauthors formulated in [38] the idea of minimum
as the fundamental inequality, which in broad terms states that message length (MML) as compressed two-part codes for the
the principle is valid when the data are random, relative to every data corresponding to replacing negative-log probabilities in

contemplated hypothesis and also these hypotheses are rando \ .
relative to the (universal) prior. The ideal principle states that the ayes's rule by Shannon-Fano code lengths. Rissanen [25],

prior probability associated with the hypothesis should be given independent of Wallace but inspired by Solomonoff's and
by the algorithmic universal probability, and the sum of the log Kolmogorov’'s idea of ultimate effective compression of data,
universal probability of the model plus the log of the probability  formulated the minimum description length (MDL) idea using
of the data given the model should be minimized. If we restrict - gqqanially the formal equivalent of negative-log probabilities.
the mpdel class to finite sets Fhen app.llc.:atlon of.th.e ideal principle In 1989, the current authors formulated ideal MDL [20], and in
turns into Kolmogorov’'s minimal sufficient statistic. In general, ' o 1=
we show that data compression is almost always the best strategy, 1991 Barron and Cover [4] analyzed statistical MDL and hinted
both in model selection and prediction. at (but did not formulate) the idea of ideal MDL. Here we
Index Terms—Bayes’s rule, data compression, Kolmogorov com- eXten.d ar!d Completg th? analysis of [20] and i.deljtify prgcigely
plexity, MDL, MML, model selection, prediction, randomness test, the situations in which ideal MDL and Bayesianism coincide
universal distribution. and where they differ. We indirectly validate MDL by showing
that in a “typical” situation its decisions coincide with those
of Bayesianism: With probability rising to one with increasing
sample size, both the MDL principle and Bayesian induction
T 1S widely believed that the better a theory compresses thelect the same hypothesis or prediction. In fact, we identify
data concerning some phenomenon under investigation, the class of hypothesis—sample pairs for which this happens:
better we have learned, generalized, and the better the thety“individually random” ones. Consequently, all results about
predicts unknown data. This belief is vindicated in practice arn@nvergence of Bayesian methods carry over to convergence
is a form of “Occam’s razor” paradigm about “simplicity” butwith probability one for MDL induction.
apparently has not been rigorously proved in a general settingModel Selection:To demonstrate that compression is good
Here we show that data compression is almost always the biggtmodel selection we use the ideal MDL principle defined
strategy, both in model selection by using an ideal form éfom Bayes’'s rule by means of Kolmogorov complexity,
the minimum description length (ideal MDL) principle and irSection Il. This transformation is valid only for individually
random objects in computable distributions; if the contemplated
objects are nonrandom or the distributions are not computable
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mean that every contemplated individual hypothesis and evevg use the notion of randomness of individual objects. This
contemplated individual data sample is to be maximally conalusive notion’s long history goes back to the initial attempts
pressed: the description lengths involved should be the shortegtvon Mises, [35] to formulate the principles of application
effective description lengths. We use “effective” in the sense of the calculus of probabilities to real-world phenomena.
“Turing computable” [34], [47]. Shortest effective descriptiorClassical probability theory cannot even express the notion of
length is asymptotically unique and objective and known as thandomness of individual objects.” Following almost half a
Kolmogorov complexitjl 5] of the object being described. Thuscentury of unsuccessful attempts, the theory of Kolmogorov
“ideal MDL” is a Kolmogorov complexity based form of thecomplexity, [15], and Martin-L6f tests for randomness, [22],
minimum description length principle. In order to define idedinally succeeded in formally expressing the novel notion of
MDL from Bayes's rule we require some deep results due to Individual randomness in a correct manner, see [21]. Every in-
A. Levin [19] and P. Gacs [13] based on the novel notion of irdividually random object possesses individually all effectively
dividual randomness of objects as expressed by P. Martin-Loféstable properties that are ordypectedor outcomes of the
randomness tests [22]. We show that the principle is valid wheemdom source concerned. It will satis&ll effective tests for
a basic condition encapsulated as the “fundamental inequalitghdomness—known and unknown alike. In Appendix C we
(12) in Section Il is satisfied. Broadly speaking, this happemscapitulate the basics.
when the data are random, relative to each contemplated hypothFfwo-Part Codes:The prefix code of the shortest effective
esis, and also these hypotheses are random relative to the c&scriptions gives an expected codeword length close to the en-
templated prior. The latter requirement is always satisfied for tir@py and also compresses the regular objects until all regularity
so-called “universal” prior. Under those conditions ideal MDLis squeezed out. All shortest effective descriptions are com-
Bayesianism, MDL, and MML, select pretty much the samgletely random themselves, without any regularity whatsoever.
hypothesis. Theorem 6 states that minimum description lengthe MDL idea of a two-part code for a body of ddbas natural
reasoning using shortest effective descriptions coincides witbm the perspective of Kolmogorov complexity.lf does not
Bayesian reasoning using the universal prior distribution [19jpntain any regularities at all, then it consists of purely random
[12], [9], provided the minimum description length is achievedata and the hypothesis is precisely that. Assume that the body
for those hypotheses with respect to which the data samplefsiatal contains regularities. With the help of a description of
individually random (in the sense of Martin-Lof). If we restricthose regularities (a model) we can describe the data compactly.
the model class to finite sets then this procedure specializesAgsuming that the regularities can be represented in an effective
Kolmogorov's minimal sufficient statistics [8], [21]. manner (that is, by a Turing machine), we encode the data as a
Kolmogorov Complexity:We recapitulate the basic defini-program for that machine. Squeezing all effective regularity out
tions in Appendix A in order to establish notations. Shortesf the data, we end up with a Turing machine representing the
effective descriptions are “effective” in the sense that we cameaningful regular information in the data together with a pro-
compute the described objects from them. Unfortunately, [1%jram for that Turing machine representing the remaining mean-
[41], there is no general method to compute the length ofirrgless randomness of the data. This intuition finds its basis in
shortest description (the Kolmogorov complexity) from th®efinitions 10 and 11 in Appendix A. However, in general, there
object being described. This obviously impedes actual usge many ways to make the division into meaningful informa-
Instead, one needs to consider recursive approximationstitm and remaining random information. In a painting, the rep-
shortest descriptions; for example, by restricting the allowalhiesented image, the brush strokes, or even finer detail can be the
approximation time. This course is followed in one sense oglevant information, depending on what we are interested in.
another in the practical incarnations such as MML and MDWM/hat we require is a rigorous mathematical condition to force a
There one often uses simply the Shannon—-Fano code, whigmsible division of the information at hand in a meaningful part
assigns prefix code length := —log P(z) to x irrespective and a meaningless part. One way to do this in a restricted set-
of the regularities in. If P(z) = 27% for everyz € {0, 1}, ting where the hypotheses are finite sets was suggested by Kol-
then the codeword length of an all-zerequals the codeword mogorov at a Tallin conference in 1973 and published in [16].
length of a truly irregularc. While the Shannon-Fano codeSee [8] and [21] and Section II-A. Given daty the goal is to
gives an expected codeword length close to the entropy, it dogentify the “most likely” finite setA of which D is a “typical”
not distinguish the regular elements of a probability ensemtdéement. For this purpose we consider sétsuch thatD € A
from the random ones. and we represem by theshortestprogramA* that computes
Universal Probability Distribution: Just as the Kolmogorov the characteristic function of. We use the notatio#{ A) for the
complexity measures the shortest effective description lengthrafmber of elements in a finite sdt TheKolmogorov minimal
an object, the universal probability measures the greatest effeafficient statistigs the shortesi*, say A§ associated with the
tive probability. Both notions are objective and absolute in theet Ag, over all A containingD such that the two-part descrip-
sense of being recursively invariant by Church’s thesis [21]. Wien consisting of4§ andlog d(Ap) is as short as the shortest
give definitions in Appendix B. We use universal probability asingleprogram that compute® without input. This definition
a universal prior in Bayes’s rule to analyze ideal MDL. is nonvacuous since there is a two-part code (based on hypoth-
Martin-L6f RandomnessThe common meaning of aesisAp = {D}) thatis as concise as the shortest single code.
“random object” is an outcome of a random source. SuchThe shortest two-part code must be at least as long as the
outcomes have expected properties but particular outconsé®rtest one-part code. Therefore, the descriptidn given Aj
may or may not possess these expected properties. In contreestnot be significantly shorter thdwg d(Ap). By the theory of
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Martin-L6f randomness in Appendix C this means thats a Ideal MDL hypothesis selection generalizes this procedure to
“typical” element of A. The ideal MDL principle expounded arbitrary settings. It is satisfying that our findings on ideal MDL
in this paper is essentially a generalization of the Kolmogoraonfirm the validity of the “real” MDL principle which rests on
minimal sufficient statistic. the idea of stochastic complexity. The latter is defined in such
Note that in general finding a minimal sufficient statistic is way that it represents the shortest code length only for almost
not recursive. Similarly, even computing the MDL optimum in @ll data samples (stochastically speaking the “typical” ones)
much more restricted class of models may run into computatitor all models with real parameters in certain classes of proba-
difficulties since it involves finding an optimum in a large set obilistic models except for a set of Lebesgue measure zero, [26],
candidates. In some cases one can approximate this optim{#d], [10], [23]. Similar results concerning probability density
[36], [40]. estimation by MDL are given in [4]. These references consider
Prediction: The most likely single hypothesis does not negrobabilistic models and conditions. We believe that in many
essarily give the prediction with the best expectation. For egurrent situations the models are inherently nonprobabilistic
ample, consider a situation where we are given a coin of uas, for example, in the transmission of compressed images
known biasp of coming up “heads” which is either, = % or over noisy channels, [32]. Our algorithmic analysis of ideal
P2 = % Suppose we have determined that there is probal§ilityMDL is about such nonprobabilistic model settings as well as
thatp = p; and probability% thatp = po. Then the most likely probabilistic ones (provided they are computable). The results
hypothesis ig = p; which predicts a next outcome “heads” asire derived in a nonprobabilistic manner entirely different
having probability%. Yet the expectation of throwing “heads”from the cited papers. It is remarkable that there is a close
is given by the mixture agreement between the real properly articulated MDL principle
and our ideal one. The ideal MDL principle is valid in case the
9 1 4 data is individually random with respect to the contemplated
—p1 + =p2 = —. hypothesis and the latter is an individually random element
3 3 9 of the contemplated prior. Individually random objects are

Thus the fact that compression is good for hypothesid @ rigorous formal sense “typical” objects in a probability
identification problems does not imply that compression Rnsemble and together they constitute almost all such objects
good for prediction. In Section Ill, we analyze the relatiof@ll objects except for a set of Lebesgue measure zero in the
between compression of the data sample and prediction in fftinuous case). The nonprobabilistic expression of the range
very general setting of R. Solomonoff [30], [46], [31]. Weof validity of “ideal MDL" implies the probabilistic expressions
explain Solomonoff's prediction method using the univers&ff the range of validity of the “real MDL” principle.
distribution. We show that this method is not equivalent to Ourresults are more precise than the earlier probabilistic ones
the use of shortest descriptions. Nonetheless, we demonstiatthat they explicitly identify the “excepted set of Lebesgue
that compression of descriptions almost always gives optinfpasure zero” for which the principle may not be valid as the
prediction. set of “individually nonrandom elements.” The principle selects

Scientific Inference: The philosopher D. Hume (1711-1776)ynodels such that the presented data are individually random
argued [14] that true induction is impossible because we c@fth respect to these models: if there is a true model and the
only reach conclusions by using known data and methodkita are not random with respect to it then the principle avoids
Therefore, the conclusion is logically already contained in tfiBis model. This leads to a mathematical explanation of corre-
start configuration. Consequently, the only form of inductiofPondences and differences between ideal MDL and Bayesian
possible is deduction. Philosophers have tried to find a way dg@soning, and in particular it gives some evidence under what
of this deterministic conundrum by appealing to probabi”sti@OﬂditiOﬂS the latter is prone to overfitting while the former is
reasoning such as using Bayes'’s rule [2], [42]. One problef@t.
with this is where the “prior probability” one uses has to
come from. Unsatisfactory solutions have been proposed by Il IDEAL MDL
philosophers like R. Carnap [5] and K. Popper [24]. '

Essentially, combining the ideas of Epicurus, Ockham, The idea of predicting sequences using shortest effective de-
Bayes, and modern computability theory, Solomonoff [30)criptions was first formulated by R. Solomonoff [30], [46]. He
[46], [31] has successfully invented a “perfect” theory ofised Bayes’s formula equipped with a fixed “universal” prior
induction. It incorporates Epicurus’s multiple explanationdistribution. In accordance with Occam’s dictum, that distri-
idea, [1], since no hypothesis that is still consistent with thaution gives most weight to the explanation which compresses
data will be eliminated. It incorporates Ockham’s simpleshe data the most. This approach inspired Rissanen [25], [26],
explanation idea since the hypotheses with low Kolmogorgd4] to formulate the MDL principle. The applied principle and
complexity are more probable. It uses the objective fixetie associated one-part code length (the stochastic complexity)
“universal” prior distribution in all cases instead of a variablbave evolved; the latest and most complete survey is [3]. Un-
“real” prior distribution. The inductive reasoning is performe@ware of Solomonoff’s work, Wallace and his coauthors [38],
by means of the mathematically sound rule of Bayes. [39] formulated a related but somewhat differexihimum mes-

Comparison with Related WorkiKolmogorov's minimal sage lengtiMML) principle.
sufficient statistic deals with hypothesis selection where theWe focus only on the following central ideal version which
considered hypotheses are finite sets of bounded cardinalte believe is the essence of the matter. Indeed, we do not even
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care about whether we deal with statistical or deterministic hince the probability’r (D) is constant under varyingf, we
potheses. want to find theH, that

Definitiqn 1: Given a sample of data, and an effective Hy := minarg{— log Pr (D|H) — log P(H)}.  (2)
enumeration of modelsgdeal MDL selects the model with the HeH
shortest effective description that minimizes the sum of In MML as in [39] or MDL as in [26], [44] one roughly

* the length, in bits, of an effective description of the modej, e nrets these negative logarithms of probabilities as the cor-
and o ) o responding Shannon—Fano codeword lengtBst we can also
* thelength, inbits, of an effective description of the data whefye gescriptions such that the lengths of the codewords equals
encoded with help of the model. the Kolmogorov complexities. Then the expected codeword
Intuitively, a more complex hypothes® may fit the data length is close to the entropy, but additionally each object is
better and, therefore, decreases the misclassified ddfadi- compressed so that all its regularities are accounted for [21].
scribes all the data, then it does not allow for measuring errofdie resulting codeword is maximally random, that is, it has
A simpler description off may be penalized by increasing thenaximal Kolmogorov complexity.
number of misclassified data. i is a trivial hypothesis that ~Under certain restrictions to be determined later, the proba-
contains nothing, then all data are described literally and thd¥éities involved in (2) can be substituted by the corresponding
is no generalization. The rationale of the method is that a b&lniversal probabilitiesn(-) (Appendix B)
ance in between seems to be required.

One way derive the MDL approach is to start fr@ayes’s log P(H) := log m(H) ©)
rule written as log Pr(D|H) := log m(D|H).
Pr(D|H)P(H) According to the Coding Theorem 12 in Appendix B [19], [12],
Pr(H|D) = Pr(D) () [9], we can substitute
If the hypotheses spadé is countable and the hypothesHs —log m(H) = K(H) 4
are exhaustive and mutually exclusive, then —log m(D|H) =K(D|H)
. ) . ) where K (-) is the prefix complexity of Appendix A. This way
HEE;{P(H) =1 Pr(D) = HEE;{PI (DIH)P(H). we replace the sum of (2) by the sum of the minimum lengths

of effective self-delimiting programs that compute descriptions
For clarity and because it is relevant for the sequel we distiff H andD|H. The resultis the code-independent, recursively
guish notationally between the given prior probabilit?(“)”  invariant, absolute form of the MDL principle [20].

and the probabilitiesPr ()" that are induced by>(-) and the  pefinition 2: Given an hypothesis clagg and a data sample

hypothesed?. Bayes's rule maps input’(H), D) to output  p, wheideal MDL principle selects the hypothesis
Pr (H|D)—the posteriorprobability. For many model classes

(Bernoulli processes, Markov chains), as the numbef data Hy:=minarg{K(D|H)+ K(H)}. (5)
generated by a true model in the class increases the total inferred HCH

pr(_)bab?lity can be_ _expected to concentrate on the "true” Nypothyqre is more than on@ that minimizes (5) then we break
esis (with probability one fon — o). That is, as» grows the the tie by selecting the one of least complexify H ).

weight of the factoPr (D|H)/ Pr (D) dominates the influence
of the priorP(-) for typical data off —by the law of large num-  The key question of Bayesianism versus ideal MDL is: When
bers. The importance of Bayes's rule is that the inferred prois-the substitution (3) valid? We show that in a simple setting
ability gives us as much information as possible about the pagere the hypotheses are finite sets the ideal MDL principle
sible hypotheses from only a small number of (typical) data aathd Bayesianism using the universal pries(x) coincide
the prior probability. with each other and with the “Kolmogorov minimal sufficient
In general we do not know the prior probabilities. The MDIstatistic.” We generalize this to probabilistic hypothesis classes.
approach in a sense replaces the unknown prior probabilit){,\m,m(m0 _
that depends on the phenomenon being investigated by a fixed).
probability that depends on the coding used to encode theTheterm—1log Pr(D|H) is also known as theelf-informatiorin informa-
hypotheses. In ideal MDL the fixed “universal” probabilityﬁon theory and theegative log-likelihoodh statistics. It can now be regarded
(Appendix B) is based on Kolmogorov complexity—the Iengtﬁz\fgfo”;mﬁg;&feb'stf]:rfﬁlgﬁf;grzidf;;:2260 gzgﬁﬂﬁ'fhca” ideal code rel-
of the shortest effective code (Appendix A). SThe relation between the Shannon—Fano code and Kolmogorov complexity
In Bayes's rule we are concerned with maximizing the termtreated in Section II-C. For clarity of treatment, we refer the reader to the Ap-

Pr (H|D) over H. Taking the negative logarithm at both sidegendices or [21] for all definitions and the analysis of auxiliary notions. This
: way we also do not deviate from the main argument, do not obstruct the knowl-

of the equation, this is equivalent teinimizingthe expression eggeable reader, and do not confuse or discourage the reader who is unfamiliar
—log Pr (H|D) over H given as with Kolmogorov complexity theory. The bulk of the material is Appendix C on
Martin-L6f's theory of randomness tests. In particular the explicit expressions
of universal randomness tests for arbitrary recursive distributions seems unpub-
—log Pr(H|D)=—log Pr(D|H)—log P(H)+log Pr(D). lished apart from [21] and partially in [13].

min arg, { f(«)} assigns ta:q the argument that minimizes
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In full generality, however, ideal MDL and Bayesianism may TheKolmogorov structure functiof(, (D|n) of D e {0, 1}
diverge due to the distinction between thelog P(-) (the is defined in [8] as
Shannon-Fano code length) and the Kolmogorov complexity ]
K(-) (the shortest effective code length). We establish the K (D|n) = min{log d(H): D € H, K(H|n) < k}.
fundamen_tal _inequality defining the range of coincidence ‘iﬁfor a given small constant let
the two principles.

From now on, we will denote by an inequality to within an Ki(Dln) +k < K(D|n) +c. (6)
additive constant, and b¥ the situation when botk: and>
hold.

be the leask such that

Let Hy be the corresponding set, and I&t be its shortest pro-
gram. Thisko with K (Hp|n) < kg is the least: for which the

o . o two-part description oD is as parsimonious as the best single
A. Kolmogorov Minimal Sufficient Statistic part description o).

Considering only hypotheses that are finite sets of binary For this approach to be meaningful we need to show that
strings of finite lengths, the hypothesis selection principldéiere always exists & satisfying (6). For example, consider
known as “Kolmogorov’s minimal sufficient statistic” [16] hasthe hypothesisHp := {D}. Then,log d(Hp) = 0 and
a crisp formulation in terms of Kolmogorov complexity, Shenk (Hp|n)=K (DJn) which shows that setting:=K (D|n)
[29], V'yugin [37], and Cover and Thomas [8]. We use prefissatisfies (6) sinceé(;(D|n)=0.
complexity instead of plain complexity as in [21]. For this re- We can view this as selectinf’s until we found one, say
stricted hypothesis class we show that the Kolmogorov minimé&l,, such thatD is maximally complex in it—rather similar
sufficient statistic is actually Bayesian hypothesis selectido aiming a magnifying glass at an object choosing different
using the universal distributiom(-) as prior distribution and positions until the object is sharply in focus. The optimal
it also coincides with the ideal MDL principle. Létandé be position Hy represents all nonaccidental structuredinThe
natural numbers. A binary strind representing a data sampleK, (D|n)-part of the description just provides an index for
is called(k, 6)-stochastidf there is a finite setd C {0, 1}* =z in Ho—essentially the description of the randomness or

andD € H such that accidental structure of the string.
Definition 3: Let H:={H:H C {0, 1}"} andD € {0, 1}™.
K(H)<k  K(D|H)2>logd(H) -6 Define

The first inequality (withk not too large) means thaf is suffi-  Ho := minarg{ K (H|n): K(H|n) + log d(H)=K (D|n)}.

ciently simple. The second inequality (with the randomness de- HcH 7
ficiencyé nottoo large) means thatis an undistinguished (typ- 7)
ical) element offf. Indeed, ifD) had simple properties defining The shortest programi;; that prints out the characteristic se-

a very small subseff’ of H, then these could be used to obtai@‘uence ofH, € {0, 1}™ is called theKolmogorov minimal suf-
a simple description o) by determining its ordinal number ficient statistic (KMSSjor D, givenn.

in H', which would requirdog d(H") bits, which is much less . _

thanlog d(H). All programs describing setd with K(H|n) < kg such
Suppose we carry out some experiment of which the outcoff@t K, (D|n) + ko=K(Dln) are sufficient statistics. But the

cana priori be every binary string. Suppose the outcom®is “Minimal” sufficient statistic is induced by the séf, having

Knowing D, we want to recover the appropriate hypothésigt  the shortest description among thefihe Kolmogorov min-

seems reasonable to require that fifgthave a simple descrip- imal sufficient statistic is related to Bayesian inference and ideal

tion, and second, thd be a “typical” outcome of an experi-

ment under hypothesi#; that is, D to be maximally random  Theorem 1:Let n be a large enough positive integer. Con-
with respect toH . Suppose that under the hypotheHivery  siger the hypotheses class:= {H: H C {0, 1}"} and a data

outcome.is a binary string of length with n/2 1’s..This set sampleD € {0, 1}". All of the following principles select the
has cardinality at mog{;,) = ©(2"/,/n). To describe an el- same hypothesis:

ementD € H requiresén — (1/2)log n bits. To describe i) Bayes's rule to select the least complexity hypothesis

H C {0, 1} givenn requiresO(1) bits (that is,k is small among the hypotheses of maxingposteriorprobability

in (6) below). Conditioning everything on the lengthwe have using both: a) the universal distributiom(-) as prior
distribution and b)Pr (D|H) is the uniform probability
1/d(H) for D € H and0 otherwise;

i) Kolmogorov minimal sufficient statistic; and

iii) ideal MDL—provided we ignore here the “least complexity

1
K(D|n)<K(D|H, n) + K(H|n)<n — 5 log n

and for the overwhelming majority of th@’s in H we have hypothesis” requirement.
Proof:
K(D|n)§n _ llog n. i) ii)_. Substitute probabilities as in the statement of the
2 theorem in (2).

SuchD’s are called O(1), O(1))-stochastic. 4explicit forms of KMSS will be given in a future paper [33].
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i) < iii). Let Hy be the Kolmogorov minimal sufficient The hypothesigi,—rather the shortest prografy; that prints

statistic forD so that (7) holds. It is straightforward that out the characteristic sequencef € {0, 1}"—is called the
generalized Kolmogorov minimal sufficient statistic (GKMSS)
K(Hon) + K(D|Hy, n)>K(D|n) for D. Since™ is complete the GKMSS exists?
and Theorem 2:The least complexity maximuma poste-
K(D|H,, n)zlog d(Hyp) riori probability hypothesisi, in Bayes's rule using prior

P(H) := m(H) coincides with the generalized Kolmogorov
because we can describeby its index in the sel. Altogether minimal sufficient statistic.
it follows that K (D|Ho, n)= log d(H,) and Proof: SubstituteP(z) := m(x) in (2). Using (4) the least
complexity hypothesis satisfying the optimization problem is
K(Hy|n) + K(D|Hy, n)=K(Dln).
) Ho := minarg{K(H'): H := minarg{K(H)
. . H HeH
SinceK (H|n) 4+ K(D|H, n)>K(D|n) forall H € H, if ~log Pr(D|H)}. ©)
! ! : .
Ho={H": H' = m}{n;{rg{K(HM) + K(DIH, n)}} By assumptions in Definition 4 there is aHp such that
K(Hp) —log Pr (D|Hp)=K(D). It remains to be shown that
then K(H) —log Pr (D|H)>K(D) for all H, D.
Ho = minarg{K (H): H € Ho} It i_s straightfprward thaK(}{) + K(D|H)§K(_D). For re-

H cursivePr () it holds thatl,= — log Pr (D|H) is the code
length of the effective Shannon—Fano prefix code (see Section
[I-C or [8], [21]) to recoverD given H. Since the prefix com-

Example 1:Let us look at a coin toss example. If theplexity is the length of the shortest effective prefix code we have
probability p of tossing 1" is unknown, then we can give a —log Pr(D|H)§K(D|H). O
two-part description of a strind representing the sequence
of n outcomes by describing the numbenf 1's in D first, C. Shannon—Fano Code Versus Shortest Programs
followed by the indexy < d(H) of D in the setH of strings

which is what we had to prove. O

: : _ = _ ; It is well-known that there is a tight connection between
with £ 1's. In this way, k|”+ functions as the mogel. Ikn's prefix codes, probabilities, and notions of optimal codes. A key
incompressible with (k|n)=log n and K (j|k, n)=log (k) distinction between Bayesianism and ideal MDL lies in the
then the Kolmogorov minimal sufficient statistic is described byictinction between of codes that are optimal on average and
k|n inlog n bits. However ifp is a simple value like; (or1/m), codes that are optimal in every individual case.
then with overwhelming probability we obtain a much simpler e shannon-Fano prefix code [8] for an ensemble of source
Kolmogiorov m|n|:1a| sufficient characterlsgc1 by a descriptio),5rds with probability c_iensity has codeword Igngtb,(a:) =
of p= 5 andk = 5 +O(y/n) sothatK (k|n)<jlog n. & _log ¢(x) (up to rounding) for source word. This code satis-
fies

B. Probabilistic Generalization of KMSS

Comparison of (2), (7), and Theorem 1 suggests a more H(g) < Z‘Y(x)l(l(x) < H(g)+1
general probabilistic version of Kolmogorov minimal sufficient *
statistic prO_posed by Shen [29] (alsc_) [37])- Tf_liS \_/ersion turighere H(¢) is the entropy of;. By the Noiseless Coding The-
out to coincide with maximura posterioriBayesian inference. orem this is the least expected codeword length among all prefix

Our analysis comparing it with ideal MDL proceeds moreodes. Therefore, the hypothe&isvhich minimizes (2) written
smoothly if we restrict consideration to hypotheses classgs

satisfying some mild conditions.

Definition 4: We call a hypothesis clags completéfitis an ter 1 (D) + Lp(H)

enumerable class of probabilistic hypotheses Brid an enu-  mjinimizes the sum of lengths of two prefix codes that both have
merable domain of data samples such that for e¥ery 7 the  shortestexpectectodeword lengths. This is more or less what
probability density functiorPx (-|H') over the domain of data i [39] and MDL [26], [44] do.

samples is recursive. We require additionally thatontains a gyt there are many prefix codes that have expected codeword
trivial hypothesisH, satisfying K (Hy)=0, that is,k(Ho) < ¢ |engthalmostequal to the entropy. Consider only the class of
for a small fixed constantindependent of{, and also for every prefix codes that can be decoded by Turing machines (other
data sampleD in the domain there is all, € H such that codes are not effective). There is an optimal code in that class

+ .
Pr(D|Hp) = 1 andK(D|Hp)=0 (the hypothesis forces theith codeword lengthi () for objectz. “Optimality” means
data sample).
5The equivalent hypothesis for a data samplen the setting of the Kol-
Let H be a complete hypothesis class and let mogorov minimal sufficient statistic wall , = {D}.
6The Kolmogorov minimal sufficient statistic of Section II-A is the special

Hy := min arg{K(H): K(H)—log Pr (D|H)£K(D)}. (8) Sase of th?.generali'zed version fqr hypotheﬁes that are finite sets and with
Her : Pr (D|H)" is the uniform probability 1/d(H ).
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that for every prefix code in the class there is a constamich then we can consider the sequence of recursive conditional
that for allz the length of the code for is at leastK(z) — ¢, probability distributionsP,,(x) := P(z|l(z) = n) for
see Appendix A or [21]. n=12 ---.
. In ideal MDL We minimize the sum of the effective Qescr|p- Lemma 1:Let R(n) denote the probability that a binary
tion lengths of théndividualelementsd, D involved as in (5). ; ! N

o . ) ; ._string of lengthn is a Martin-L6f random element of the
This is validated by Bayes’s rule provided (3) holds. To satls@. S . N

. istribution P,,(-) as in Definition 6. Then

one part of (3) we are free to make the nassumptiorthat
the prior probabilityP(-) in Bayes's rule (1) is fixed as(-). R(n) =1 —0(1/2K@Fm)y,
However, with respect to the other part of (3) wa&nnot as- 5
sumethat the probabilityPr (-|H) equalsm(-|H). The reason The probabilityR(n) goes tol for n — oc. Moreover
is that the probabilityr (-| H) may be totally determined by the . _
hypothesis . Depending orf, therefore/p, ;) (D) may be h;lf;lop R(n) =1-0(1/n).
verydifferent fromK ( D| H). This holds especially for “simple”

dataD which have low probability under assumption of hypOthE)ility density distribution. The conditional probability on binary

Proof: Let P: {0, 1}* — [0, 1] be a recursive proba-

esis k. trings of length is 7 bove. We want to estimate th
Example 2: Suppose we flip a coin of unknown biagimes. S nrligTa'?t engtin is I,(«) as above. We want to estimate the
Let hypothesisd and dataD be defined by probabiiity
m(z) +
H :=[Probability‘head" is3] Py, {a:; log — ((x)) <K(Pn('))}' (10)
D:= hh---h, , o ,
t%gr’d) We can describe the distributioR,(-) by P(-) andn. This
T shows K(P,(-))<K(P, n). Conversely, given the recur-
Then we havé’r (D|H) = ()" and sive distribution P,(-) as a Turing machine computing the
probability values for allz’s we can compute: by simply
Ipr (y(D) = —log Pr(D|H) = n. computing the probabilities for all argumenis in lexico-
graphical nondecreasing order. Sinp¢;,,_, Pn(z) = 1
In contrast . . - nn
there is anz of length n with probability P.(z) > (3) .
K(D|H)210gn+210g log n. ¢ The first z in the enumeration that satisfie§,(z) > 0
determinesn. := I(xz). Since P is recursive its description
o _ takes O(1) bits. HenceK(P,,,(-))ﬁK(P, n) and, therefore,
D. Individually Random Strings K(P,(-))=K(P, n). By the Coding Theorem 12 in Appendix

The question arises: When islog P(z) = K(z)? Thisis Bwe haveK(x)E — log m(x). Altogether we can rewrite (10)
answered by the theory of individual randomness. Consideiraexponential form as
probabilistic ensemble consisting of the 46t 1}* endowed m(z) ’
with a recursive probability density functioR: {0, 1}* — A:==P, {a:: By = o2k (P "’))}. (11)
[0, 1].7. 8 By Theorem 15 (Appendix C) an element is n ()
Martin-L6f random with randomness deficiengy if the Since the expectation
universal tesko(z| P) = log (m(x)/P(x)) = 6.2 m(z)
Definition 5: Let P: {0, 1}* — [0, 1] be a recursive prob- ZP"(x)m <1
ability density distribution. Then, the prefix complexify( P) ”

of P is defined as the length of the shortest self-delimiting prave find by Markov's Inequality ((26) in Appendix C) that
gram for the reference universal prefix machine to simulate the

1
Turing machine computing the probability density functiBn 1-A=0 <W) .
It is the shortest effective self-delimiting descriptionfof (Ap-
pendix A). This shows the first part of the theorem. Sif€ér, n);K(n)

Definition 6: Let P’: {0, 1}* — [0, 1] be a recursive prob- andK(@) — oo.fOI‘n — o0 [21] the second part of the theorem
ability density function. An object € {0, 1}* is Martin-L6f  follows immediately. Since alstim sup,, ., K(n) > log n
random with respect toP if the randomness deficiency (in fact, K (n) > log n + log log n for infinitely manyn [21])
ro(z|P) = log (m(x)/p(x))zK(p). the third part of the theorem follows as well. O

Let /() denote the length (number of bits) im € .
{0, 1}*—as in Appendix A. IfP(x) is a recursive distribution E. The Fundamental Inequality

In ideal MDL as applied to a complete hypothesis class
A real-valued function isecursiveif there is a Turing machine that for every (“complete” in the sense of Definition 4) there are two boundary
argument and precision parametezomputes the function value within preci-

sion2—* and halts. cases: Using the trivial hypothest, with K (Hy)=0 we al-
8We can identify\” (the natural numbers) ard, 1}* as in Appendix A.  Ways obtaink (D|Hy)= K (D) and, therefore,

9This means thagveryz is random (has randomness deficieywith re- N
spect to the universal distribution (=) (substituteP () := m(z) above). K(Hy) + K(D|Hp)=K(D).
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The hypothesi#l, of Definition 4 also yields for a complete hypothesis class, we cannot in general also set
N —log Pr(D|H,) := K(D|H,) to obtain ideal MDL. For this
K(Hp) + K(D|Hp)=K(D). we need the theory dealing with randomness of individual

objects that states the conditions ferlog Pr(D|H) and

Since alwaysK (H) + K(D|H)>K(D), both of these hy- K(D|H) to be close?

potheses minimize the ideal MDL description.
For trivial hypotheses, only Kolmogorov random data are Definition 7—Fundamental Inequalityt et Pr (-|-) andP(-)
typical. In fact, ideal MDL correctly selects the trivial hypoth-be recursive probability density functions. TiRendamental In-
esis for individually random data. However, in general, “mea@quality is the following relation that possibly holds between
ingful” data are “nonrandom” in the sense tia{D) < [(D). dataD and hypothesig!
But thenD is typical only for nontrivial hypotheses, and a trivial
hypothesis selected by ideal MDL is not one for which the dat& (DH) + K(H) +log Pr (D|H) +log P(H)| < o(P, H)
are typical. We need to identify the conditions under which ideal, (12)
MDL restricts itself to selection among hypotheses for whicHt
the given data are typical—it performs as the generalized Kol- (P, H) = K(Pr (-|H)) + K(P).
mogorov minimal sufficient statistic.
Note that hypotheses satisfying (8) may not always exist if Theorem 3: Assume the terminology above. If both hypoth-
we do not require that every data sample in the domain is forcesis H is P(-)-random and datd are Pr (-|H)-random then
by some hypothesis in the hypothesis space we consider, asthieefundamental inequality is satisfied.

did in Definition 4. Proof: We first consider the data part: Becalde(-|H)
i i —K(Pr (-[H))
Example 3: We look at a situation where the three optimiz |_shre0t;r3|ve we havey(D|H) 2 27% Pr(D|H), (27).
tion principles (2), (5), and (8) act differently. Again, conside eretore,
the outcome of: coin flips of a coin with probability of flip- - m(D|H) )
ping “1” and probabilityl — p of flipping “0.” There are two log Pr(D[H) 2 —K(Pr(|H)). (13)

possible hypothese¥ = {H,, H;} where .
Note that K(Pr (-|H))<K(H) because fromH we can

Hy = |:p = 1} computePr (-|H) by assumption orPr (-|-). Second,D is a
H—[p 0]2 Martin-L6f random element of the distributidtx (-|H ) if
1 m(D|H)
The priorP is P(Ho) = 3 andP(H,) = . Consider the data log Pr(D|H) < K(Pr(:|H)) (14)
sampleD = 0™ with n Kolmogorov random (also with respect
to Hy andH;) so that by Theorem 15 and Definition 6. IP is a Martin-L6f random

N N element of the distributioRr (-| H) then by (3), (13), and (14)
log n< K(D), K(D|Ho), K(D|H,) < log n 4 2log log n. We obtain

Now K (D|H) +log Pr(D|H)| < K(Pr(-|H)).  (15)
—log P(Hy) — log Pr (D|Ho)=n We now consider the hypothesis part: If we set ghgriori
—log P(H,) — log Pt (D|H,)=0. probability P(H) of hypothesis to the universal probability

then we obtain directly- log P(H) = m(x). However, we do
Therefore, Bayesianism seled# which is intuitively correct. not need to make this assumption. For a recursive @rigy,
Both hypotheses have complexi#). Hence, we can substitutewe can analyze the situation whéhis random with respect to

—log P(H) := K(H) to obtain P().
. If H is a Martin-L6f random element @?(-) then we obtain
K (Ho) —log Pr(D|Ho)=n analogous to the proof of (15)

K(H) — log Pr (DIH)Z0. (K (H) +log P(H)| < K(P). (16)

Now the generalized Kolmogorov minimal statistic does not se- )
lect any hypothesis at all because the right-hand side is uneql&@ether (15) and (16) yield the theorem. O
K (D). Ideal MDL, on the other hand, has tae equachoice Theorem 4: The probability that hypotheses of binary length

o L m and data of binary length satisfy the fundamental inequality
K(Ho) + K(D|Ho) = log n + O(log log n) goes to one form andn grow unboundedly. Moreover, the
K(H) + K(D|Hy) = log n + O(log log n) lim sup of that probability exceeds — O(1/ min {m, n}).

L . . . Proof: By Theorem 3 the fundamental inequality is satis-
which intuitively seems incorrect. So we need to 'dem'ined for Martin-L6f random hypothese (with respect to prior
the conditions under which ideal MDL draws correct con- yp b P

clusions N P) together with Martin-L6f random dat& (with respect to
While we can set the priaP(-) := m(-) in Bayes’s rule to the densityPr (-|H) of the correspondind{). The probability

obtain the generalized Kolmogorov minimal sufficient statistic 1°This follows from (27) in Appendix C.
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of satisfying the fundamental inequality is estimated by pickingimple effectively testable properties that distinguish it from a
a pair from the joint probability?(D, H) = Pr(D|H)P(H) majority. Here “simple” means properties that can be expressed
by first picking a randomin-bit hypothesisgd from the prior and by tests that have Kolmogorov complexity that is low in terms
then picking a random-bit data sample from thBr (-|H) dis- of the complexity ofH. This matter is treated in some detail in
tribution. By Lemma 1 the contemplated probability is at leas®\ppendix C and more completely in [21]. The set of “typical”
hypothesed? are those that satisfif (H)= — log P(H) up to
<1 —0 <L)> <1 -0 <L>> . an additive term of{(P). In caseP(H) = m(H), that is, the
2K (m) 2K () prior distribution equals the universal distribution, then dir
Since the Kolmogorov complexity grows unboundedly with? We haveK (H)= — log P(H), that is,everyhypotheses is
increasing arguments [21] this proves the first statement. TH#'dom with respect to the universal distribution.

limsup of the displayed expression exceétls-1/m)(1—1/n) For other prior distributions hypotheses can be random or
sincelim sup K(z) > log x + log log z [21]. (7 honrandom. For example, let the possible hypotheses corre-

spond to the binary strings of length and letL,, be the
What does the fact that the fundamental inequality is satisfigdiform distribution that assigns probabilify, (H) = (%)"
say about the typicality (randomness) of the hypothesis and dggavery hypothesigf. Let us assume that the hypotheses are

concerned? coded as binary strings of length so thatd € {0, 1}". Then,
. +
Theorem 5: Assume the above notation. If H :=00---0 has low complexity X (H|n)<log n. However,
—log L,.(H) = n. Therefore, by (16)H is not L,,-random.
—log Pr(D|H) —log P(H)ZK(D|H)+ K(H) (17) If we obtain H by n flips of a fair coin, however, then with
overwhelming probability we will have thak (H|n)<n and,

thenH is P(-)-random up to randomness deficiency therefore,~ log L, (H):K (H|n) andH is L,-random.
+ That data sample) is Pr(-|H)-random means that the
<K(Pr(|H)) - K(P) data are random with respect to the probability distribution

Pr(-|H) induced by the hypothesigZ. This is illustrated

andD is Pr (-|H)-random up to randomness deficiency easiest using the identification of a Bernoulli process

+ B . B, = (p,1 —p) (0 < p < 1) that generates a given
<K(P) = K(Pr (|H)). data sampleD € {0, 1}". Let Pr(D|B,, n) denote the
(Negative randomness deficiencies corresporid)to distribution of th? outf:on:d.) of n trials of the process,,.
Proof: By Theorem 12 in Appendix B and (27) in Ap-!f the dataD are "atypical” like D = 00---0 (n failures) for
pendix C we know that always p = 5 andn large, then |f[ violates th&r (:|By /2, n)-ran-
domness test (14) by havinglog Pr(D|B,,2) = » and
—log Pr(D|H) > K(D|H) — K(Pr(-|H)). —log m(D|B1/2)£K(D|B1/2)210g n 4 2log log n. &
Similarly, always F. Ideal MDL and Bayesianism
—log P(H) > K(H) — K(P). The best model or hypothesis to explain the data should be
- a “typical” element of the prior distribution such that the data
SupposeD is notPr (-|H)-random. Then, by (14) are “typical” for the contemplated hypothesis—as prescribed by
Kolmogorov's minimum sufficient statistics. Thus it is reason-
—log Pr(D|H) - K(D|H) = K(Pr(-|H))+ A able to admit only hypotheses as defined below in selecting the
best one.
for randomness deficienc > 0. By our assumption this im-
plies Definition 8: Given data sampl® and prior probability?,
we call a hypothesi#!/ admissiblef H is P-random andD is
—log P(H) — K(H)x — K(Pr(-|H)) — A Pr (-|H)-random.
which is only possible if By Theorem 3, admissible hypotheses satisfy the funda-
mental inequality (12). By Theorem 4, admissible hypotheses
Aé[{(p) — K(Pr(-|H)). have high probability.

Theorem 6: Let the data sample b® and let the corre-
sponding set of admissible hypothesestie C H. Then the
Remark 1: The only way to violate the fundamental in-maximuma posterioriprobability hypothesigfiayes € Hp in
equality is that either the dat® are notPr(:|H)-random Bayes's rule and the hypothedig,q1 € Hp selected by ideal

and, therefore-log Pr(D|H) > K(D|H), or thatH is not MDL are roughly equal

P-random and, therefore; log P(H) > K(H). Hypoth- P H- D
esis H is P-random means thall is “typical” for the prior |log m
distribution P(-) in the sense that it must not belong to any Pr(Hyayes| D)
effective minority (sets on which a minority dP-probability [ (D[Hma) + K(Hma) — K(D|Hpayes) = K(Hpayes)|

is concentrated). That is, hypothesit does not have any < 2a(P, H). (18)

The case thal is notP-random is handled similarly. O

| <2a(P, H)
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Proof: Assume the fundamental inequality (12). Bytively, are close in the sense of satisfying relations (18) of The-

definition H = H,,q minimizes K(H|D) + K(H). De- orem 6 goes to one, fer. andn grow unboundedly. Moreover,
note the minimal value byAd. Then in (12) theH’ that thelimsup of that probability exceeds— O(1/ min {m, n}).
minimizes —log Pr(D|H) — log P(H) yields a valueB Proof: By Theorems 4 and 6. O

with |[A — B| < «P, H). This is easy to see since if
A— B > ofP, H)thenK(H'|D) + K(H') < A by (12)
contradicting thatd is the minimum for the sum of the com-
plexities, and ifB — A > a(P, H) then

The choice ofm(-) as prior fulfills part of the requirements
for the fundamental inequality (and the above theorem). This
prior is an objective and recursively invariant form of Occam’s
razor: a simple hypothesiH (with K(H) < I(H)) has high

—log Pr(D|Hya) — log P(Hya) < B m-probability, and a complex or random hypothe&is(with
K(H) ~ I(H)) has lowm-probability 2=*1). The random-
contradicting thai3 is the minimum for the sum of the negativeness testog (m(H)/P(H)) evaluates t® for everyH, which

log probabilities. NowH = Hj,ayes Maximizes means that all hypotheses are random with respect to distribu-
tion m(-).1
Pr(H|D)=Pr(D|H)P(H)/Pr (D) ©)
Theorem 8:Let «(P, H) in the FI (12) be small (for
with Pr (D) constant and thereforH},ay.s is an H' as above example, a=0) and prior P(-) := m(:). Then the fun-
that minimizes damental inequality (12) is satisfied iff data samplk is

Pr (-|Hyua1)-random. This has probability going to one for the

—log Pr (D|H) — log P(H). binary lengthn of the data rising unboundedly (and the sup

Denote of the probability exceeds — O(1/n)).
Proof: With o(P, H)X0 and P(-) := m(.) (so
—log Pr (D|Hma) — log P(Hma1) —log P(H) = K(H)) by the Coding Theorem 12 in Ap-

pendix B, we can rewrite (12) as
by B’. Then by (12) we havgd — B’| < «( P, H) and, there-

fore, _log Pr(D|H):K(D|H).
!
|B = B'| < 2o(P, H). (19) This defines the admissible hypotheses for dataBy Defini-
By Bayes's rule tion 6, D is Pr (-|H)-random for these admissible hypotheses.
In particular, theH := H,,q minimizing K(D|H) + K(H) is
B +log Pr (D) = —log Pr (Hyayes| D) admissible iffD is Pr (| H)-random. This happens with proba-
and bility going to one by Lemma 1. O

B’ +log Pr (D) = —log Pr(Huma|D) Corollary 1: Ideal MDL is an application of Bayes's rule

with the universal prior distributiomr(-) and selection of an

wherelog Pr (D) is constant. Substitution in (19) yieldsthefirstoptima| admissible hypothesiH,,q (that is, the data sample

inequality of the theorem. The second inequality follows by thg i p,. (-|Huma)-random) with probability going to one for in-
same argument with the roles of complexities and negative le%asing data.

probabilities interchanged. Since the notion of individual randomness incorporates all

Remark 2: Let us first interpret what the theorem says: If ireffectively testable properties of randomness (but in this finite
the fundamental inequality(P, H) is small then this means case only to some degree), application of ideal MDL will select
that both the prior distributiot® is simple, and that the prob-the simplest hypothesi& that balanced((D|H) and K (H)
ability distributionPr (-|H) over the data samples induced bysuch that the data sample is random to it—as far as can ef-
hypothesisH is simple. The theorem states that the hypotfiectively be ascertained. Restricted to the class of admissible
esis selected by MDL and by Bayesianism are close both in thgPotheses, ideal MDL does not simply select the hypothesis
sense ofa postiori probability (the Bayesian criterion) and inthat precisely fits the data but it selects a hypothesis that would
sum of the complexities of the hypothesis and the data encodggically generate the data.
with help of the hypothesis (the MDL criterion). In contrast,
if (P, H) is large, which means that either of the mentione@. Applications

distributions is not simple, for example, whé((Pr (-|H)) = unfortunately, the functiork is not computable [21]. For
K (H) for complexH, then the discrepancy can widen for bothyractical applications one must settle for easily computable ap-
critera. proximations, for example, restricted model classes and partic-

As a consequence, if(P, H) is small enough and Bayes's|ar codings of hypotheses. In this paper we will not address the
rule selects an admissible hypothesis, and so does ideal Mlglestion which encoding one uses in practice, but refer to [26],
then both criteria are (approximately) optimized by both sg44), [38], [40], and [36].
lected hypotheses. Is this a likely situation? In statistical applications,H is some statistical distri-

Theorem 7: The probability that for data of binary length Pution (or model) H = P(f) with a list of parameters

hypotheses of binary length selected by Bayesian maximum  111he choice ofn as prior agrees with the preceding analysis even though it
a posterioriand minimum description length principle, respeds not recursive. This is because the randomnessitg<EZL s identicallyO.

m(H)
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6 = (61, ---, ), where the numbet may vary and influence is the same as

the (descriptional) complexity of. (For example H can be

a normal distributionN(;, o) described byd = (u, o).) Hya = minargy {K(H'): H' = minarg, {K(H)
Each paramete#; is truncated to fixed finite precision. The + K(y|H, z)}}.

data sample consists af outcomesy = (y1, -+, ,) of n

trialsz = (xy, ---, x,,) for distribution P(6). The dataD in Ignoring the constant in the conditionalK (y|H, =) corre-
the above formulas is given d3 = (z, y). By expansion of sponds taK (E|H). O

conditional probabilities we have, therefore,

I1l. PREDICTION BY MINIMUM DESCRIPTIONLENGTH
Pr(D|H) =Pr H)=Pr(z|H) -Pr(ylH, ). . L .
r(D|H) ="Pr(z, y|H)="Pr(z|H) Pr(ylH, z) Let us consider theory formation in science as the process of

In the argument above we take the negative logarithm gbtaining a compact description of past observations together

Pr (D|H), that is with predictions of future ones. R. Solomonoff [30], [46],
[31] argues that the preliminary data of the investigator, the
—log Pr(D|H) = —log Pr (x|H) — log Pr (y|H, z). hypotheses he proposes, the experimental setup he designs, the

trials he performs, the outcomes he obtains, the new hypotheses
Taking the negative logarithm in Bayes’s rule and the andie formulates, and so on, can all be encoded as the initial
ysis of the previous section now yields that MDL selectsegment of a potentially infinite binary sequence. The investi-
the hypothesis with highest inferred probability satisfying gator obtains increasingly longer initial segments of an infinite
is Pr(-|H)-random andy is Pr(-|H, )-random. Bayesian binary sequence by performing more and more experiments
reasoning selects the same hypothesis provided the hypothesisome aspect of nature. To describe the underlying regularity
with maximal inferred probability hag, ¢ satisfy the same of w, the investigator tries to formulate a theory that governs
conditions. lllustrative examples related to learning polynes on the basis of the outcome of past experiments. Candidate

mials are given by Rissanen [26], [44]. theories (hypotheses) are identified with computer programs

Remark 3. Exception-Based MDLA hypothesisH mini- that compute binary sequences starting with the observed initial
mizing K(D|H) + K(H) always satisfies segment. : TR .

There are many different possible infinite sequences (histo-

K(D|H) + K(H) > K(D) ries) on which the investigator can embark. The phenomenon

he wants to understand or the strategy he uses can be stochastic.
Let E C D denote the subset of the data that exeeptiongo Each such sequence corresponds to one never-ending sequen-
H in the sense of not being classified correctly By The fol- tial history of conjectures and refutations and confirmations and

lowing exception-baseMIDL (E-MDL) is sometimes confused €ach initial segment has different continuations governed by
with MDL: With E := D — Dy and Dy as the data set classi-C€rtain probabilities. In this view each phenomenon can be iden-

fied according toH, select tified with a measure: on the continuous sample space of infi-
nite sequences over a basic description alphabet. This distribu-
He pal tion 4. can be said to be the concept or phenomenon involved.

— minare{ K(H"): H' = minare . { K(H) + K(E|H)Y. Now the'aim is_ tcp.redictou.tcomes concerning a phgnomgnon
72 sLK(H) gu (K (H) (E1H)}} i under investigation. In this case we have some prior evidence

. . (prior distribution over the hypotheses, experimental data) and
In E-MDL we look for the shortest description of an acceptin

for the d - ¢ 2 classification rEleand e want to predict future events.
program for the data consisting of a classification rilean This situation can be modeled by considering a sample space

an exception list. While this principle sometimes gives goodS of one-way infinite sequences of basic elemehtiefined by

results, application may lead to absurdity as shown in the f(gr: B>. We assume prior distribution ;. over S with ()

lowing. d : . : .
: . enoting the probability of a sequence starting witkere(-
In many problems the data sample consists of positive q 'asem?meazufiésatis)flying d g ne)

amples only. For example, in learning (the grammar for the

English language, given th®xford English Dictionary.Ac- ple) <1

cording to E-MDL the best hypothesis is the trivial grammiéar S

generatingall sentences over the alphabet. This grammar gives ) = 2;3 wwa)
ac

K(H)Z0 independent oD and alsoE := (. Consequently,
_ . Given a previously observed data stringhe inference problem
min {K(H) + K(E|H)} = K(H)=0 is to predict the next symbol in the output sequence, that is, to
extrapolate the sequengeln terms of the variables in (1),
whichis absurd. The E-MDL principle is vindicated and reduces the hypothesis that the sequence starts with initial segment
to standard MDL in the context of interpretidg = (x, y) with  DataD,, consists of the fact that the sequence starts with initial
z fixed as in “supervised learning.” Now for constaiitz|H) segmentr. Then,Pr (D,|H,,) = 1, thatis, the data is forced

H._ — minare., {K(H: H = minare.{K(H ~ 12Traditional notation is ji(T"..)" instead of (x)” wherecylinderT",, =
e-mdl g A (H) gr{K(H) {w € §: w starts withz}. We use #«(z)" for conveniencey is ameasuref

+K(yH, )+ K(x|H)}} equalities hold.
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by the hypothesis, dfr (D.|H,,) = O for zis not a prefix of =~ Theorem 10:Let 1 be a positive recursive measure. If the
zy, that is, the hypothesis contradicts the data.FQH.,) and length ofy is fixed and the length af grows to infinity, then
Pr (D.) in (1) we substitute:(xy) andu(x), respectively. For

Pr (H,,|D.) we substitutg:(y|z). This way (1) is rewritten as M((y||$) ) 4
(ylx
1(xy)
z) = . 20
w(ylx) (@) (20)

with p-probability one. The infinite sequencesvith prefixese

The final probability.(y|z ) is the probability of the next symbol satisfying the displayed asymptotics are precisely#iandom
string beingy, given the initial stringe. Obviously, we now only sequences.

need the prior probability. to evaluate.(y|z). The goal of in- Proof: We use an approach based on the Submartingale
ductive inference in general is to be able to either: i) prediadfonvergence Theorem, [11, pp. 324—-325], which states that the
or extrapolate, the next element afteor ii) to infer an under- following property holds for each sequence of random variables
lying effective process that generatedand hence to be able tow;, w,, ---. If f(w;.,) is au-submartingale, and the-expec-
predict the next symbol. In the most general deterministic caggion E|f(w; . )| < oo, then it follows thafim ,,— o f(w1 . )

such an effective process is a Turing machine, but it can alsodxsts with.-probability one.

a probabilistic Turing machine or, say, a Markov process. Theln our case

central task of inductive inference is to find a universally valid M(wi.0)
approximation tg: which is good at estimating the conditional twr:nlp) = i)
probability that a given segmentwill be followed by a seg- pwrin)
menty. is a u-submartingale, and the-expectationEt(wy . ,|p) < 1.

Ingeneral, this is impossible. But suppose we restrict the claggerefore, there is a st C {0, 11> with ;(A) = 1, such that
of priors . to therecursivesemimeasurésand restrict the set for eachw € A the limit lim,,_. .. #H(w :np) < 0. These are

of basic elements t¢0, 1}. Under this relatively mild restric- the ,-randomw’s by [21, Corollary 4.5.5]. Consequently, for
tion on the admissible semimeasuest turns out that we can fixed m, for eachw in A, we have

use theuniversal semimeasur®d as a “universal prior” (re-

placing the real prioy:) for prediction. The theory of the uni- lim M (w1 nm)/ 1(W1 s ntm) -1

versal semimeasud, the analog in the sample spajgg 1} nooo M(wiip)/m(wiin)

of m i.n the sample spact0, 1}* eq.uivaler]t to, is devel- rovided the limit of the denominator is not zero. The latter fact
oped in [21, Chs. 4 and 5]. It is defined with respect to a sp " guaranteed by the universality M for everyz € {0, 1}*

cial type Turing machine callesionotoneTuring machine. The | haveM (z)/u(z) > 2-%( py [21, Theorem 4.5.1 and eq.
universal semimeasu® multiplicatively dominates all enu- (4.11)] - ’ O

merable (Definition 12, Appendix B) semimeasures. It can be’

shown that if we flip a fair coin to generate the successive bitsExample 4:Suppose we are given an infinite decimal
on the input tape of the universal reference monotone Turigg§quence.. The even positions contain the subsequent digits
machine, then the probability that it outputs (z followed by of = = 3.1415---, and the odd positions contain uniformly

something) isM (), [41]. distributed, independently drawn random decimal digits.
The universal probability () allows us to explicitly express Then, M(alw;.2;) — 1/10 for a = 0,1, ---,9, while

a universal randomness test for the element®in }>° analo- M(a|wi.2:+1) — 1 if a is theith digit of 7, and to0

gous to the universal randomness tests for the finite element®tferwise. &

{Q’hl} developed in A_ppend|>_< C. This n_otfl_on c;]f r?rlldomness-l-he universal distribution combines a weighted version of
with respect to arecursive semimeasusafishies the following predictions of all enumerable semimeasures, including

explicit characterization of a universal (sequential) randomnetﬁ% prediction of the semimeasure with the shortest program.

test (for proof see [21, Ch. 4]). It is not a priori clear that the shortest program dominates
in all cases—and as we shall see it does not. However, we

Lemma2: Let be arecursive semimeasurefin 137 AN g0y that in the overwhelming majority of cases—the typical

infinite binary sequence is u-random if
1%Ve can express the “goodness” of predictions accordidd teith respect
sup M(wy - wy)/pu(wr -+ wy) < 00 to a trueu as follows: LetS,, be thep-expected value of the square of the dif-
n ference inu-probability andAM -probability of 0 occurring at theth prediction
and the set oﬁ-(andom sequences hasmeasure one. _ Se= S p(@)(MOle) — u(0]e))>.
In contrast with the discrete case, the element$0ofl } Warmm1
can be sharply divided into the random ones that pHssffec-
ti Ii yl d test dth péi Xﬁ éan callS,, theexpected squared error at theth prediction.The following
ve (Sequen 'a) ranaomness tests an € nonrandom ones rated result of Solomonoff, [31], says thdiis very suitable for prediction

do not. (a proof using Kulback—Leibler divergence is given in [21]) .
We start by demonstrating convergence Mf(y|z) and  theorem o:Let i be a recursive semimeasure. Using the notation of
p(y|x) for z — oo, with p-probability 1.24 Footnote 143" S, < k/2 with k = K (1) In 2. (Hence,S,, converges td
faster thanl).
13There is a Turing machine that for everyandb computesi(z) within However, Solomonoff’s result is not strong enough to give the required con-

precision2 . vergence of conditional probabilities with-probability 1.
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cases—the shortest program dominates sufficiently to uéeés shown in Claim 2 that-log M(z) is slightly smaller

shortest programs for prediction. than K'm(z), the length of the shortest program feron the
Taking the negative logarithm on both sides of (20), we wantference universal monotonic machine. For binary programs
to determiney with I(y) = n that minimizes this difference is very small, Claim 1, but can be unbounded in
the length ofz.
—log p(ylx) = —log pzy) + log (). Together this shows the following. Givery that is a prefix of
a (possibly noj:.-random)w, optimal prediction of fixed length
This y is the most probable extrapolation of extrapolationy from an unboundedly growing prefix of w

Definition 9: Let U be the reference monotone machind!€€d not necessarily be achieved by the shortest programs for

The complexitykXm, calledmonotone complexitys defined *¥ @ndx minimizing K'm(xy) — Km(x), but is achieved by
as K'm: monotone complexity considering the weighted version of all programs:fgrandx
which is represented by
Km(z) = min {{(p): U(p) = 2w, w € {0, 1}*}.
—log M(zy) + log M(x)
We omit the Invariance Theorem fé&fm complexity, stated and — (Km(zy) — g(zy)) — (Km(z) — g(z))
proven completely analogous to the theorems with respect to the o v -9\ g '

C'and K varieties. Hereg(x) is a function which can rise to in between the inverse

Theorem 11:Let i be a recursive semimeasure, andJdéte  of the Ackermann function an&m(i(x)) < log log a—but
ap-random infinite binary sequence ang be a finite prefix of only in caser is not p-random.

w. Forl(z) growing unboundedly ant{y) fixed Therefore, for certainr andy which arenot p-random, op-
timization using the minimum-length programs may result in
lim —log p(y|z)EKm(zy) — Km(z) < oo incorrect predictions. Fgi-randomez we have that- log m(x)
H@)=oo and Km(z) coincide up to an additional constant independent
where K'm(zy) and Km(z) grow unboundedly. of z, that is,g(zy) = g(x)Z0, Claim 2. Hence, together with
Proof: By definition, —log M(z) < Km(z) since the (22),the theorem is proven. -
left-hand side of the inequality weighs the probabilitgtiforo- By its definition Km is monotone in the sense that always

grams that produce while the right-hand side weighs the prob-Km(xy) — Km(z) > 0. The closer this difference is to zero,
ability of the shortest program only. In the discrete case we hayR petter the shortest effective monotone program: fisralso
the Coding Theorem 17 (z)= —log M(x). L. A. Levin [18] 3 shortest effective monotone program fiar and hence pre-
erroneously conjectured that algom(z)= — log M(x). But dicts 4 given . Therefore, for all large enough-randomz,

P. Gacs [13] showed that they are different, although the diffg§redicting by determining which minimizes the difference of
ences must in some sense be very small. the minimum program lengths ef; andz gives a good predic-

Claim 1: tion. Herey should be preferably large enough to eliminate the
influence of theO(1) term.

N
—log M(x) < Km(r)< —log M(x) + Km(l(z)); (21) Corollary 2. Prediction by Data CompressiorAssume the
sup | —logM(z) — Km(x)| = co. conditions of Theorem 11. With-probability going to one as
=C{0, 1} I(x) grows unboundedly, a fixed-lengthextrapolation frome
maximizesu(y|z) iff ¥ can be maximally compressed with re-

However, fora priori almost all infinite sequencaes the differ- X R
spect tox in the sense that it minimize&m(zy) — Km(x).

ence betwee&m(-) and— log M(-) is bounded by a constant

[13] That is,y is the string that minimizes the length difference be-
' tween the shortest program that outpus - - and the shortest
Claim 2: program that outputs - - -.
i) For random stringse € {0, 1}* we haveKm(z) +
. +
log M (z)=0. IV. CONCLUSION

ii) There exists a functiorf(n) which goes to infinity with
n — oo such thatkm(z) +log M(x) > f(I(z)), for infinitely The analysis of both hypothesis identification by ideal MDL
many.z. If z is a finite binary string, then we can choogg:) and prediction shows that maximally compressed descriptions

as the inverse of some version of Ackermann’s function.  give good results on data that is individually random with re-
spect to the contemplated probabilistic hypothesis. This situa-

Let w be ay-random infinite binary sequence ang be a 5 occurs with probability going to one with increasing data.

finite prefix of w. Forl(z) grows unboundedly witf(y) fixed,

we have by Theorem 10
APPENDIX A

l(li)m log p(y|z) — log M(y|z) = 0. (22) KOLOMOGROV COMPLEXITY
The Kolmogorov complexity [15] of a finite objeat is the

Therefore, if z and y satisfy the above conditions, thenlength of the shortest effective binary description:ofVe give
maximizing p(y|x) overy means minimizing-log M (y|z). some definitions to establish notation. For more details see [41]
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and [21]. Letz, v, = € N, whereN denotes the natural num-of them form a prefix-free set. Taking the universal prefix
bers and we identifyy” and{0, 1}* according to the correspon-machinel/’ we can define the prefix complexity analogously
dence with the plain Kolmogorov complexity. i is the first shortest
program forz then the sef{z*: U(z*) =z, x € {0, 1}*} isa
(0, ¢), (1, 0), (2, 1), (3, 00), (4,01), ---. prefix code That is, each:* is a codeword for some, and if
Heree denotes thempty word’ with no letters. Thdengthl(x) z p?;‘(ijfofrf codewords far andy with  # y thenx is not
of « is the number of bits in the binary string For example, v . . . .
. . st inary string xamp Let (-} be a standard invertible effective one—one encoding

1(010) = 3 andl(e) = 0. ) .
The emphasis is on binary sequences only for conveniengg,mN x N to prefix-free recursive subset &f. For example,

. . . n = z’7/. We insist on prefix-freen nd re-
observations in any alphabet can be so encoded in a way thal fs°> selz, y) = 2’y’. We insist on prefix-freeness and re
“theory neutral.” cursiveness because we want a universal Turing machine to be

A binary stringx is aproper prefixof a binary stringy if we at;lle to_:ea(jjan |Tr?giund<§} from Itezthtolngtht an%dletermlne
can writex = yz for z # . Aset{xz, y,---} C {0,1}"is where it ends, without reading past the 1ast symbot.

prefix-freeif for any pair of distinct elements in the set neither Definition 11: Theprefix Kolmogorov complexityf z given

is a prefix of the other. A prefix-free set is also callegrafix y (for free) is

code.Each binary string: = x125 - - - z,, has a special type of

prefix code, called aelf-delimiting code K(z|y)=min {{{{p, ©)): ¢:({p, v)) ==z, pe {0, 1}, ie N'}.
p,t

T = 2121 TaLy - T T Define K (z) = K(xle).
whereja:,,,_ = 0if z, =1and-z, =1 otherwise. Thiscodeis  The nice thing abouf («) is that we can interprez—< ()
self-delimiting because we can determine where the codewgyd 5 probability distribution sincé(z) is the length of a

end ofz. Using this code we define the standard self-delimiting,equality, see for example [8], [21], we know thatif I, - - -

code forz to bez’ = I(z)z. Itis easy to check thd{z) = 2n  gre the codeword lengths of a prefix code, then2-—t < 1.

andi(z’) = n + 2log n. . . This leads to the notion of universal distribution—a rigorous
Let 11, 13, - - - be a standard enumeration of all Turing Masgrm of Occam’s razor—in Appendix B.

chines, and lep, ¢, - - - be the enumeration of corresponding
functions which are computed by the respective Turing ma-
chines. That is7; computesp;. These functions are thmartial
recursivefunctions orcomputableunctions. The Kolmogorov _ _ _
complexity C(x) of z is the length of the shortest binary pro- A Turing machinel’ computes a function on the natural num-

gram from whichz is computed. Formally, we define this ad€rs. However, we can also consider the computation of real-
follows. valued functions. For this purpose we consider both the argu-

o ) . ment of ¢ and the value of) as a pair of natural numbers ac-
Definition 10: TheKolmogorov complexitpf = giveny (for - ¢ording to the standard pairing functi¢i. We define a function
free on a special input tape) is from A to the realsR by a Turing machin& computing a func-
. . . tion ¢ as follows. Interprete the computatiof(x, t)) = (p, q)
C(aly) = min{l(i'p): ¢; = 0, 1}*, 1 . L . ) &
() 12,1?{ (7p): dilp, y) = v, p €40, 17, 1 €N} to mean that the quotiepy q is the rational valuedth approxi-
mation of f ().

APPENDIX B
UNIVERSAL DISTRIBUTION

Define C(z) = C(x]e).

Though defined in terms of a particular machine model, the Definition 12: A function f : A" — R is enumerabléf there
Kolmogorov complexity is machine-independent up to an adds a Turing machinég” computing a total functio such that
tive constant and acquires an asymptotically universal and abgz, t+1) > ¢(x, t) andlim; ... ¢(x, t) = f(z). Thismeans
lute character through Church’s thesis, from the ability of unthat f can be computably approximated from below.fItan
versal machines to simulate one another and execute any effdso be computably approximated from above then we gall
tive process. The Kolmogorov complexity of an object can lrecursive.
viewed as an absolute and objective quantification of the amountA function P: ¥ — [0, 1] is a probability distributionif
of information in it. This leads to a theory absoluteinforma- > ., P(z) < 1. (The inequality is a technical convenience.
tion contentsof individual objects in contrast to classic infor-We can consider the surplus probability to be concentrated on
mation theory which deals withiveragenformationto commu- the undefined element ¢ A.)
nicateobjects produced by mndom sourcg21]. Consider the family¢’P of enumerablerobability distribu-

For technical reasons we need a variant of complexityons onthe sample spadée(equivalently{0, 1}*). Itis known,
so-called prefix complexity, which is associated with TuringR1], that€P contains an elememt that multiplicatively dom-
machines for which the set of programs resulting in a haltirigates all elements &P. That is, for eachP? € £P there is a
computation is prefix-free. We can realize this by equippingonstant such thatm(z) > P(z) forall z € . We callm a
the Turing machine with a one-way input tape, a separate warkiversal distribution.
tape, and a one-way output tape. Such Turing machines ar&he family£P contains all distributions with computable pa-
called prefix machines since the halting programs for anyor@meters which have a name, or in which we could conceivably
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be interested, or which have ever been considered. The domilength, it would not be natural to fix an and call a string
nating property means that assigns at least as much proba- with m zeros random and a string with + 1 zeros non-
bility to each object as any other distribution in the fan®l} random.

does—up to the multiplicative factor. In this sense it is a unjie take some ideas from statistics. Consider a sample space
versala priori by accounting for maximal ignorance. Itturns oufyith an associated distributioRt. Given an element: of the
that if the truea priori distribution in Bayes’s rule is recursive, sample space, we want to test the hypothesis  typical out-
then using the single distributial, or its continuous analog come.” Practically speaking, the property of being typical is the
the measuren on the sample spac), 1}°° (Section 1), is property of belonging to any reasonable majority. In choosing

provably as good as using the tragriori distribution. an object at random, we have confidence that this object will
We also know, [19], [12], [9], that fall precisely in the intersection of all such majorities. The latter
Theorem 12: condition we identify withz being random.
To ascertain whether a given element of the sample space be-
—log m(z) = K(z) + O(1). (23) longsto a particular reasonable majority we introduce the notion

of a test. Generally, a test is given by a prescription which, for
That means thatm assigns high probability to simpleevery level of significance, tells us for what elements of S
objects and low probability to complex or randonthe hypothesisi belongs to majorityM in S” should be re-
objects. For example, for = 00---0 (n 0's) we jected, where =1 — P(M).Takinge=2"",m=1,2,---,
haveK(x)EK(n)Elog n + 2log log n since the program this amounts to saying that we have a description of the set
V C N x S of nesteccritical regions

print n_times a “0"

Vi ={z: (m, ) € V}
printsz. (The additiona® log log n term is the penalty term for Vo OV
a self-delimiting encoding.) Then/(nlog? n) = O(m(z)). m= mi
But if we flip a coin to obtain a string of n bits, then with 10 ¢ongition tha,, be a critical region on theignificance

. . +
overwhelming probabilityK (/)>n (becausey does not con- |evel = 2-™ amounts to requiring, for alt
tain effective regularities which allow compression), and hence

m(y) = O(1/2").

m=1,2, -

Y A{P@):Uz)=n, €V} <e
APPENDIX C ’
RANDOMNESS TESTS The complement of a critical regioW,, is called the(l — ¢)

One can consider those objects as nonrandom in which difiifidence intervalf z € V;,,, then the hypothesisi“belongs

can find sufficiently many regularities. In other words, we woullP major'i,t)'/M,"' and, th.eref.ore','the stronger hypothesisi$
like to identify “incompressibility” with “randomness.” This is random,” is rejected with significance lewelWe can say that

proper if the sequences that are incompressible can be shdw@!'S the test at the level of critical regidn,,.
to possess the various properties of randomness (stochasticityfgxample 5: A string 1z - - - z,, with many initial zeros

known from the theory of probability. That this is possible I$5 not very random. We can test this aspect as follows.

the substance of the celebrated theory developed by the SwedifB special test’ has critical regions/;, V5, - --. Consider
mathematician P. Martin-Lof [22]. This theory was further elaby — 0.4, 5 - - - z,, as a rational number, and each critical region
orated in [41], [28], [45], [17], [43], and later papers. as a half-open interval,, = [0, 27)in [0, 1),m =1, 2, ---.

There are many properties known which probability theoryhen the subsequent critical regions test the hypothesis *
attributes to random objects. To give an example, consider $gndom” by considering the subsequent digits in the binary
quences of. tosses with a fair coin. Each sequenceiaferos expansion of:. We reject the hypothesis on the significance
and ones is equiprobable as an outcome: its probabil2y s  |evele = 2= providedz; = zo = -+ = z,,, = 0. S
If such a sequence is to be random in the sense of a proposed o ]
new definition, then the number of onesdrshould be nearto  Example 6: Another test for randomness of finite binary
n/2, the number of occurrences of blocki” should be close strings rejects whe_n the .relative frequenc;_/ of ones differs
to n/4, and so on. top m.uch froml. This partlcular test can be implemented by

Itis not difficult to show that each such single property sep&€iecting the hypothesis of randomnesszof= 12z -z,
rately holds for all incompressible binary strings. But we wa/it 1evele = 27 provided[2f, —n[ > g(n, m), where
to demonstrate that incompressibility implies all conceivable: = 2_i=1 %i» @1dg(n, m) is the least number determined by
effectively testable properties of randomness (both the knolift réguirement that the number of binary stringsf lengthn
ones and the as yet unknown ones). This way, the various tffd-Which this inequality holds is at most—. %
orems in probability theory about random sequences carry oveln practice, statistical tests agéfectiveprescriptions such that
automatically to incompressible sequences. we can compute, at each level of significance, for what strings

In the case of finite strings we cannot hope to distin- the associated hypothesis should be rejected. It would be hard
guish sharply between random and nonrandom strings. Foto imagine what use it would be in statistics to have tests that
instance, considering the set of binary strings of a fixed are not effective in the sense of computability theory.
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Definition 13: Let P be a recursive probability distribution any tests, letV = {(m, z): §(x) > m}. Then, defining
on the sample spac¥. A total functioné: A" — N is a P-test the associated critical zones as before, we find
(Martin-Lof test for randomness) if
1) 6 is enumerable (the sét = {(m, z): 6(x) > m}is

recursively enumerable); and wherec is a constant (dependent only bhand V).
2) 2 AP(x): 6(z) zm, l(z) =n} <277, forallnandm.  |tis a major result that there exists a univerBalest. The proof

The critical regions associated with the common statisticgbes by first showing that the set of all tests is enumerable.
tests are present in the form of the sequeticeo V5 O - -+,
whereV,,, = {z: é(z) > m}, form > 1. Nesting is assured
sinceé(x) > m + 1 impliesé(z) > m. Each se¥,,, is recur-
sively enumerable because of Item 1).

A patrticularly important case is wheR is the uniform dis-
tribution, defined byL(x) = 2724®)~1 The restriction ofL. to
strings of lengtt is defined byL,,(x) = 27" for [(z) = n and
0 otherwise. (By definitionL, (z) = L(z|l(z) = n).) Then,
Item 2) can be rewritten agxevm L, (z) <27™ which is the
same as

Vrn-l—c g Urna m = 1a 2a

Lemma 3: We can effectively enumerate dfi-tests.
Proof: (Sketch.) We start with the standard enumeration

o1, ¢o, -- - of partial recursive functions froo” into A" x A,
and turn this into an enumeratiafi, 6, --- of all and only
P-tests. Thelispy, ¢, - - - enumerates all and only recursively
enumerable sets of pairs of integers{ds(z):x > 1} for i =

1, 2, ---. In particular, for anyP-testé, the set (m, z):6(z) >

m} occurs in this list. Thenly thing we have to do is to elimi-
nate those,; of which the range does not correspond 8-test.
This gives the idea. For details see [21]. O

d{z: l(z) =n, z € V, }) < 2™, Theorem 13:Let 61, 62, --- be an enumeration of above
P-tests. Thendy(z|P) = max {é,(x) — y: y > 1} is a uni-

In this case we often speak simply otest,with the uniform VersalP-test.
distribution L understood. Proof: Note first thatsy(-| P) is a total function onV be-

In statistical tests membership @f:, ) in V' can usu- cause of Item 2) 'h Definition _14' )
ally be determined in polynomial time im) + 1(z). 1) The enumeratiofy, é,, - in Lemma 3 yields an enumer-
ation of recursively enumerable sets
Example 7: The previous test examples can be rephrased in

terms of Martin-Lof tests. Let us try a more subtle example. A {(m, z): 61(z) > m}, {(m, z): b2(x) > m}, ---.
real number such that all bits in odd positions in its binary repre- heref ) S . vel
sentation ard’s is not random with respect to the uniform dis- | "erefore,v:. = {(m, 2): 6o(z|P) = m} is recursively

tribution. To show this we need a test which detects sequenc Senumerab_le. . .
of the formaz = 1zplz4leglas - - -. Define a tess by 2) Let us verify that the critical regions are small enough: for

eachn

> AP(w): bo(elP) 2 m}

6($) = max{i; T1 =Tz = " =2To_1 = ]_} i(z)=n

and §(z) = 0if 1 = 0. For example:§(01111) = 0;
8(10011) = 1; §(11011) = 1; 6(10100) = 2; §(11111) = 3. v
To show thaté is a test we have to show théatsatisfies the
definition of a test. Clearly$ is enumerable (even recur-
sive). If §(x) > m wherel(z) = n > 2m, then there are
2m~* possibilities for the(2m — 1)-length prefix ofz, and  3) By its definition, &(-|?) majorizes eachs additively.
2n—(2m—1) possibilities for the remainder af. Therefore, Hence, it is universal. O
d{z: 6(z) > m, l(x) =n} <2777, &
Definition 14: A universal Martin-Lof test for randomness
with respect to distributior”, a universal P-testfor short, is
a testdo(-|P) such that for eacli’-testés, there is a constant we haves, (z) < do(z|P) + y for all z.

h that for allz, we haveSy(z|P) > é(z) — c. _ :
such that-for afle, We hav O,(.x| )2 (x) ¢ " For any two universaP-testssy(-|P) and&’o(-|P), there is
We say that, (| P) (additively) majorize$. Intuitively, a constant: > 0, such that for allz, we have|6y(z|P) —
bo(-|P) constitutes a test for randomness which incorpo- §o(z|P)| < e

rates all particular tesiin a single test. No test for ran- \we started out with the objective to establish in what sense
domnes$ othertharﬁo(~.|F.’) can discover more than acon-  incompressible strings may be called random.

stant amount more deficiency of randomness in any string

. In terms of critical regions, a universal test is a test such ~ Theorem 14:The functionf(z) = I(z) — C(x|l(z)) — 1 s

that if a binary sequence is random with respect to that test 2 universalL-test with L the uniform distribution.

then it is random with respect to any conceivable test, ne- Proof:

glecting a change in significance level. Wi -| P) a uni- 1) We first show thatf(x) is a test with respect to the uni-
versal P-test, letU = {(m, x): do(z|P) > m}, and, for form distribution. The sef(m, z): f(z) > m} is recur-

nEAqg

Z {P(x): 6,(z) 2 m+y}
Li(z)=n

2—nl—y — 2—771 .

L,

<
Il
—

By definition of éo(-|P) as a universaP-test, any particular
P-testé can discover at most a constant amount more regularity
in a sequence than does(-|P), in the sense that for eaéh
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sively enumerable sina€( ) can be approximated from Conversely, it§(x) satisfies (25) for alh, then for some con-
above by a recursive process. stante, the functioné(z) — 2log 6(x) — ¢ satisfies (24). O

2) We verify the condition on the critical regions. Since the
number ofz’s with C(z|l(x)) < I(xz) — m — 1 cannot
exceed the number of programs of length at nigst —
m — 1, we haved({z : f(z) > m}) < 2!@—m _ 1,

3) We show that for each tetthere is a constant such that
f(x) > 6(x) — c. The main idea is to boun@(x|l(x))
by exhibiting a description of, giveni(z). Fix . Let the Theorem 15:Let P be a recursive probability distribution.
setA be defined as The function

This shows that the sum test is not much stronger than the
original test. One advantage of (24) is that it is just one in-
equality, instead of infinitely many, one for eaghWe give an
exact expression for a universal sufatest in terms of com-
plexity.

A={z:6(2)>8), l(z) =1(z)}.
We have definedd such thatz € A andd(4) <
2U@)=5(=) et § = &, in the standard enumerationjs a universal sun-test.

61, 62, --- of tests. Giveny, [(x), and 6(x), we can Proof: Since m is enumerable, and® is recursive,

enumerate all elements ef. Together withz's indexj  4(z|P) is enumerable. We first show thag (| P) is a sum
in enumeration order od, this suffices to finde. We pad  p-test

the standard binary representationjofvith nonsignifi-

cant zeros to a string= 00 - - - 05 of lengthi(z) — é(x). Zp(x)gm(wll’) — Zm(x) <1,

This is possible sincé(s) > I(d(A)). The purpose of - p

changingj to s is that now the numbef(x) can be de-

duced fromi(s) and(z). In particular, there is a Turing It is only left to show thatxo(z|P) additively dominates all
machine which computes from input7s, wheni(z) is Sum P-tests. For each sunf-tests, the functionP(x)2°(*)
given for free. Consequently, sin¢¥ ) is the shortest ef- is a semimeasure that is enumerable. It has been shown,
fective descriptiorC(z|l(z)) < I(z) — §(z) + 2I(y)+1. Appendix B, that there is a positive constantsuch that
Sincey is a constant depending only @ we can set ¢ m(x) > P(x)2°(*). Hence, there is another constarstuch
c=2l(y) + 2. O thatc- ko(x|P) > 6(x), for all x. O

ro(z|P) = log (m(x)/ P(x))

In Theorem 13, we have exhibited a univergatest for ran- Example 8: An important case is as follows. If we consider
domness of a string of lengthn with respect to an arbitrary @ distribution? restricted to a domaial C N, then we have
recursive distributior over the sample st = 3~ with B = two choices for the universal suf-test
{0, 1}. i) log(m(x|A)/P(x|A)). For example, ifL,, is the uniform

The universalP-test measures how justified is the assumption distribution onA = {0, 1}, then the universal sui,, -test
thatz is the outcome of an experiment with distributiéhn We for x € A becomes
now usemn to investigate alternative characterizations of random

elements of the sample s&t= B* (equivalently,S = N). log (m(x|A)/L,(z))En — K (z|n).

Definition 15: Let P be a recursive probability distribution

on A. A sum P-test is a nonnegative enumerable function ~ We haveL,(z) = 1/2" andlog m(x|4) = —K(x|4) by
satisfying the Coding Theorem, Appendix B where we can describe

by giving n.
Zp(x)gé(w) <1. (24) i) log(m(z)/P(x|A)) where we viewP(z|A) as a distribu-
> tion P4(x) that is positive only on subdomain. For the

A universal sumP-test is a test that additively dominates each uniform distributionZ, this gives the universal sui, -test

sum P-test. N
The sum tests of Definition 15 are slightly stronger than the log (m(z)/ Ly (2))=n — K(z). <
tests according to Martin-L6f’s original Definition 13.

Lemma 4: Each sumP-test is aP-test. If §(x) is a P-test,
then there is a constansuch that’ (x) = 6(x) —2log 6(x)—e¢
is a sumP-test.

Proof: It follows immediately from the new definition that

Example 9: The Noiseless Coding Theorem states that the
Shannon—Fano code, which codes a source wastlaightfor-
wardly as a word of about log P(z) bits, Appendix B, nearly
achieves the optimal expected codeword length. This code is
uniform in the sense that it does not use any characteristics of

for all itself to associate a codeword with a source werd he code
Pl2): § Eol(z) = nt < 92—k o5y that codes each source wardas a codeword of length (x)
Z{ (@): 6(w) > k. Uz) = n} < (25) also achieves the optimal expected codeword length. This code
If (25) is false, then we contradict (24) by is nonuniform in that it uses characteristics of individu& to
obtain shorter codewords. Any difference in codeword length
> P@)2® > M Pa)2t > 1. between these two encodings for a particular objecan only

zCN Uzm)=n be due to exploitation of the individual regularitiesiin
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Define therandomness deficienayf a finite objectz with Then, by Markov’'s Inequality
respectto P as

1
Plz):m(z) < kP(z)} >1— —. 26)
—log P(z)] — K(2)£ — log P(x) + log m(z)Zrko(z|P) Em:{ () :m(z) (z)} A (

by the major theorems in this appendix. That is, the randomné¥gcem dominates all enumerable semimeasures multiplica-
deficiency is the outcome of the universal siitvtest of The- tively, we have for alks
orem 15. &

Example 10: Let us compare the randomness deficiency as
measured by:o(x| P) with that measured by the universal tesEquations (26) and (27) have the following consequences.
8o(z), for the uniform distribution. That test consisted actuall)i) If  is a random sample from a simple recursive distribution

P(z) < epm(z), and it can be showap = 257 (27)

of tests for a whole family_,, of distributions, wherd.,, is the P, where “simple” means tha (P) is small, therm is a
uniform distribution such that eadh, (x) = 27" for I(z) = n, good estimate for’. For instance, ifr is randomly drawn
and zero otherwise. Rewritg(xz) as from distributionP, then the probability that

bo(x|Ln) =n — C(z[n) cptm(z) < P(z) < epm(z)

for I(x) = n, andoc otherwise. This is close to the expres- s at leastl — 1/cp.
sion for ro(x|L,) obtained in Example 8. From the relationsp) |f we know or believe that is random with respect t&,

betweenC and K in [21] it follows that and we knowP(x), then we can us®(x) as an estimate of
m(x).
N
|60(@|Ln) — ko(x|Ln)|<2log C(). < In both cases the degree of approximation depends on the

_ ] ) index of P, and the randomness ofwith respect ta”, as mea-
The formulation of the universal sum test in Theorem 15 c&jyred by the randomness deficiency

be interpreted as to express the notion of randomness of objects

with respect to a given distribution. While for infinite binary ro(z|P) = log (m(z)/P(x)).

sequences the Martin-Lof theory gives a sharp distinction be-

tween the random and the nonrandom sequences, for finite ser example, the uniform discrete distribution8hcan be de-

quences this distinction is blurred. We cannot say that a givéihed by L(z) = 2-2=) Then, for each we haveL, (z) =

finite string is random and by changing one bit it becomes non{z|i(x) = n). To describel. takesO(1) bits, and, therefore,

random. Therefore, we more or less arbitrarily introduce cutoff

points. The real significance lies in the fact that a random se- ro(x|L)El(z) — K(x).

quence should have small randomness deficiency as defined pre-

viously. In the main text in Definition 6 we define an elementhe randomness deficieney(z|L)=0 iff K(x);l(a:), that is,

z to be Martin-L6f random with respect to distributid? if  if + is random.

ko(z|P)<K(P). The nonrecursive “distributionfn(z) = 2-%® has the re-
This means that for to be randomP(z) should be large markable property that the test(z|m)=0 for all z: the test

enough, not in absolute value but relativangz). If we did not  shows all outcomes random with respect to it. We can inter-

have this revitalization, then we would not be able to distinguigret (26) and (27) as saying that if the real distributioRjshen

between random and nonrandom outcomes for the uniform diz¢z) andm(x) are close to each other with largeprobability.

tribution L,,(z) above. Therefore, ifz comes from some unknown recursive distribu-
Let us look at an example. Lat = 00---0 of lengthn. tion P, then we can usm (z) as an estimate faP(x). In other

Then, ko(z|L,)=n — K (x|n)En. If we flip a coinn times to  words,m () can be viewed as the universapriori probability

generatey, then with overwhelming probabilitf (y|n) > »n  of .

andeo(y|L,) = O(1). The universal sunP-testxq(x|P) can be interpreted in the

framework of hypothesis testing as the likelihood ratio between

hypothesig” and the fixed alternative hypothesis In ordinary

statistical hypothesis testing, some properties of an unknown

distributionP are taken for granted, and the role of the universal

test can probably be reduced to some tests that are used in sta-

Z{P(a:): f(x)/E >k} <1/k. tistical practice. >

Example 11: Markov’s Inequalityays the following. LeP
be any probability distributionf any nonnegative function with
P-expected valugZ = > P(x)f(z) < oo. ForE > 0 we
have

Let P be any probability distribution (not necessarily recur- ACKNOWLEDGMENT
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