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Abstract
Normalized web distance (NWD) is a similarity or normalized semantic distance based on the World Wide Web or another 
large electronic database, for instance Wikipedia, and a search engine that returns reliable aggregate page counts. For sets 
of search terms the NWD gives a common similarity (common semantics) on a scale from 0 (identical) to 1 (completely dif‑
ferent). The NWD approximates the similarity of members of a set according to all (upper semi)computable properties. We 
develop the theory and give applications of classifying using Amazon, Wikipedia, and the NCBI website from the National 
Institutes of Health. The last gives new correlations between health hazards. A restriction of the NWD to a set of two yields 
the earlier normalized Google distance (NGD), but no combination of the NGD’s of pairs in a set can extract the informa‑
tion the NWD extracts from the set. The NWD enables a new contextual (different databases) learning approach based on 
Kolmogorov complexity theory that incorporates knowledge from these databases.

Keywords Normalized web distance · Pattern recognition · Data mining · Similarity · Classification · Kolmogorov 
complexity

Mathematics Subject Classification (1) CCS · Information systems · World Wide Web · Web searching and information 
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Introduction

Certain objects are computer files that carry all their prop‑
erties in themselves. For example, the scanned handwritten 
digits in the MNIST database [18]. However, there are also 
objects that are given by name, such as ‘red,’ ‘three,’ ‘Ein‑
stein,’ or ‘chair.’ Such objects acquire their meaning from 
the common knowledge of mankind. We can give objects 
either as the object itself or as the name of that object, such 
as the literal text of the work “Macbeth by Shakespeare” 
or the name “Macbeth by Shakespeare.” We focus on the 

name case and provide semantics using the background 
information of a large database such as the World Wide Web 
or Wikipedia, and a search engine that produces reliable 
aggregate page counts. The frequencies involved enable us 
to compute a distance for each set of names. This is the 
web information distance of that set or more properly the 
web information diameter of that set. The normalized form 
of this distance expresses similarity, that is, the semantics 
(properties, features) the names in the set have in common. 
Insofar as the distance or diameter of the set as discov‑
ered by this process approximates the common semantics 
of the objects in the set in human society, the above dis‑
tance expresses this common semantics. The term “name” 
is used here synonymously with “word” “search term” or 
“query.” The normalized distance above is called the nor‑
malized web distance (NWD). To compute NWD(X) of a 
set X = { name 1,… , name n} we just use the number of 
web pages returned on the query “ name 1 … name n ,” the 
minimum number of web pages returned on the query for 
a name in X, the maximum number of web pages returned 
on the query for a name in X, and the total number of web 
pages capable of being returned. A restriction of the NWD 
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to a set of two yields the earlier normalized Google distance 
(NGD) [4], but no combination of the NGD’s of pairs in a 
set can extract the information the NWD extracts from the 
set as we shall show.

Goal

Suppose, we want to classify a new object in the most appro‑
priate one of several classes of objects. The objects in each 
class have a certain similarity to one another. For example, 
all the objects may be red, flowers, and so on. We are talk‑
ing here of properties which all the objects in a class share. 
Intuitively, the new object should go into the class of which 
the similarity changes as little as possible under the inser‑
tion. Among those, we should choose the class of maximal 
similarity. A red flower may go into the class in which all 
the objects are red flowers. To achieve this goal, we need 
to define a measure of similarity between the objects of a 
class. This similarity measure is associated with the class, 
and to compare different classes, it should be relativized. 
Namely, if in class C1 , all objects are 1% the same and in 
class C2 , all objects are 50% the same while all objects in C1 
are 1000 times larger than all objects in C2 , then in absolute 
terms, the objects in C1 are more the same than the objects 
in C2 . Therefore, the measure of similarity of a class should 
be relative and expressed by a number between 0 and 1. The 
NWD proposed here is such a measure of similarity.

Semantics

The NWD is an extension to sets of the normalized Google 
distance (NGD) [4] which computes a distance between two 
names. Since we deal with names, it may be appropriate 
to equate “similarity” with relative semantics for a pair of 
names and common semantics for a set of more than two 
names. For example, the common semantics of {red, green, 
blue, yellow} comprises the notion “color” and the common 
semantics of {one, two, three, four} comprises the notion 
“number”. A theory of common semantics of a set of objects 
as we develop it here is based on (and unavoidably biased 
by) a background contents consisting of a database and a 
search engine. An example is the set of pages constituting 
the World Wide Web and a search engine like Google. In 
[14] (see also the many references to related research), it 
is shown that web searches for rare two‑word phrases cor‑
related well with the frequency found in traditional corpora, 
as well as with human judgments of whether those phrases 
were natural. The common semantics relations between a 
set of objects is distilled here from the web pages by just 
using the number of web pages in which the names of the 
objects occur, singly and jointly (irrespective of location or 
multiplicity). Therefore, the common semantics is that of a 
particular database (World Wide Web, Wikipedia, Amazon, 

Pubnet) and an associated search engine. Insofar as the 
effects of a database–search engine pair approximates the 
utterances of a particular segment of human society, we can 
identify the NWD associated with a set of objects with the 
(normalized) common semantics of that set in that segment 
of human society.

NWD and NGD

It is impossible, in general, to use combinations of NGD’s 
to compute the common semantics of a set of more than two 
names. This is seen as follows. The only thing one can do using 
the NGD is to compute the NGD’s between all pairs of mem‑
bers in the set and take the minimum, the maximum, the aver‑
age, or something else. This means that one uses the relative 
semantics between all pairs of members of the set but not the 
semantics that all members of the set have in common. For 
example, each pair may have a lot of relative semantics but pos‑
sibly different relative semantics for each pair. These semantics 
may be different so that the common semantics involved may 
not be inferable from the NGD’s. The conclusion may be that 
the members of the set have a lot in common. But in actual fact, 
the set may have little or no semantics in common at all.

The common semantics of all names in the set is 
accounted for by the NWD. Therefore, using the NWD 
may give very different results from using the NGD’s. An 
example using Google counts is given by homonyms such 
as “grave,” “iron,” and “shower.” On 18 September 2019, 
Google gave “grave iron shower” 12.900.000 results indi‑
cating that this triple of words have little in common. But 
“grave iron” got 168.000.000 results, “iron shower” got 
478.000.000 results, and “grave shower” got 46.000.000 
results indicating that each of these three word pairs have 
more in common than the word triple. We defer further dis‑
cussion to “Comparing NWD and NGD” when the necessary 
formal tools are in place.

Classification

In classification, we use the semantics the objects in a class 
have in common. Up till now, this was replaced by other 
measures such as distances in Euclidean space. The NWD 
of a class expresses directly (possibly an approximation of) 
the common semantics of the objects in the class. According 
to “Semantics,” this cannot be achieved by combinations of 
the relative semantics between pairs of objects in the class. 
Therefore, classification using the NGD’s alone may be 
inferior to using the NWD’s which take crucial information 
into account as is shown by theorem 3.1. It shows that any 
method using NGD’s also has a much larger computational 
complexity.
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Background

To develop the theory behind the NWD, we consider the 
information in individual objects. These objects are finite 
and expressed as finite binary strings. The classic notion of 
Kolmogorov complexity [15] is an objective measure for 
the information in a single object, and information distance 
measures the information between a pair of objects [3]. To 
develop the NWD, we use the new notion of common infor‑
mation between many objects [9, 21].

Related Work

To determine word similarity or word associations has been 
topical in cognitive psychology [17], linguistics, natural 
language processing, search engine theory, recommender 
systems, and computer science. One direction is to use word 
(phrases) frequencies in text corpora to develop measures 
for word similarity or word association, see the surveys in 
[32, 33]. A successful approach is latent semantic analy‑
sis (LSA) [17] that appeared in various forms in a great 
number of applications. LSA and its relation to the NGD 
approach is discussed in [4]. As with LSA, many other 
previous approaches of extracting correlations from text 
documents are based on text corpora that are many order 
of magnitudes smaller, and that are in local storage, and on 
assumptions that are more refined, than what we propose. 
Another recently successful approach is [25] which uses the 
large text corpora available at Google to compute so‑called 
word‑vectors of two types: predicting the context or deduc‑
ing the word from the context. This brute‑force approach 
yields word analogies and other desirable phenomena. For 
example, the word vector of “king” minus that of “man” plus 
that of “woman” gives a word vector near that of “queen.” 
However, just as the other methods mentioned, it gives no 
common semantics of a set of words but only a distance 
between two words like the NGD. Counter examples to 
using the NGD as in Theorem 3.1 work here too: large rela‑
tive semantics between every pair of words of a set may not 
imply large common semantics of these words. One needs 
a relation between all the objects like the NWD does. The 
NWD makes use of the Internet queries. The database used 
is the Internet which is the largest database on earth, but this 
database is a public facility which does not need to be stored. 
To use LSA, we require large text corpora in local storage, 
and to compute word vectors, we require even larger corpora 
of words in local storage than LSA does. Similarly [2, 5], 
and the many references cited there, use the web and Google 
counts to identify lexico‑syntactic patterns or other data. 
Again, the theory, aim, feature analysis, and execution are 
different from ours, and cannot meaningfully be compared. 
Essentially, the NWD method below automatically extracts 
semantic relations between sets of arbitrary objects from the 

web in a manner that is feature‑free, up to the database and 
search engine used, and computationally feasible.

In [21], the notion is introduced of the information 
required to go from any object in a finite multiset (a set 
where a member can occur more than once) of objects to 
any other object in the set. Let X denote a finite multiset 
of n finite binary strings defined by {x1,… , xn} , the con‑
stituting elements ordered length‑increasing lexicographic. 
We identify the nth string in {0, 1}∗ ordered lexicographic 
length‑increasing with the nth natural number 0, 1, 2,… . 
We denote the natural numbers by N  . A pairing function 
⟨⋅, ⋅⟩ ∶ N ×N → N  uniquely encodes two natural numbers 
(or strings) into a single natural number (or string) by a 
primitive recursive bijection. One of the best‑known ones 
is the computationally invertible Cantor pairing function 
defined by ⟨a, b⟩ = 1

2
(a + b)(a + b + 1) + a.

The information distance in X is defined by

(see Appendix C for the undefined notions like the univer‑
sal computer U). For instance, with X = {x, y} the quan‑
tity EGmax(X) is the least number of bits in a program to 
transform x to y and y to x. In [34] the mathematical theory 
is developed further, and the difficulty of normalization 
is shown. In [9], the normalization is given, justified, and 
many applications are given of using compression to clas‑
sify objects given as computer files, for example, related to 
the MNIST database of handwritten digits and to stem cell 
classification [35].

Results

The NWD is a similarity (a common semantics) between all 
search terms in a set. (We use set rather than multiset as in 
[9] since a set seems more appropriate than multiset in the 
context of search terms.) The NWD can be thought of as a 
diameter of the set. For sets of cardinality two, this diameter 
reduces to a distance between the two elements of the set. 
The NWD can be used for the classification of an unseen 
item into one of several classes (sets of names or phrases). 
This is required in constructing classes of more than two 
members while the NGD’s as in [4] suffice for classes of 
two members.

The basic concepts like the web events, web distribution, 
and web code are given in “Web distribution and web code.” 
These are similar to what is used in [4] for the NGD. The 
remaining derivation and results are of necessity new and 
different. We determine the length of a single shortest binary 
program to compute from any web event of a single mem‑
ber in a set to the web event associated with the whole set 
(Theorem 2.5). The mentioned length is an absolute infor‑
mation distance associated with the set. It is incomputable 

EGmax(X) = min{�p� ∶ U(p, ⟨x, n⟩) = X, for all x ∈ X}.
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(Lemma 2.4). It can be large while a set has similar mem‑
bers and small when the set has dissimilar members. This 
depends on the relative size of the difference between mem‑
bers. Therefore, we normalize to express the relative infor‑
mation distance which we associate with similarity between 
members of the set. We approximate the incomputable nor‑
malized version with the computable NWD (Definition 2.6). 
In “Comparing NWD and NGD,” we compare the NWD 
and the earlier NGD with respect to the computational com‑
plexity (expressed in required number of queries) and accu‑
racy. The NWD method requires less queries compared to 
the NGD method while the latter may also yield inferior 
results. In “Theory,” we present properties of the NWD such 
as the range of the NWD (Lemma 4.1), whether and how 
it changes under adding members (Lemma 4.3), and that 
it does not satisfy the triangle inequality and hence is not 
metric (Lemma 4.6). Theorem 4.8 and Corollary 4.9 show 
that the NWD approximates the common similarity of the 
queries in a set of search terms (that is, a common seman‑
tics). We subsequently apply the NWD to various data sets 
based on search results from Amazon, Wikipedia and the 
National Center for Biotechnology Information (NCBI) web‑
site from the U.S. National Institutes of Health in “Applica‑
tions.” For the methodology of the examples, we refer to 
“Methodology.” We treat strings and self‑delimiting strings 
in Appendix A, computability notions in Appendix B, Kol‑
mogorov complexity in Appendix C, and metric of sets in 
Appendix D. The proofs are deferred to Appendix E.

Web Distribution and Web Code

We give a derivation that holds for idealized search engines 
that return reliable aggregate page counts from their ide-
alized databases. For convenience, we call this the “web” 
consisting of “web pages.” Subsequently, we apply the ide‑
alized theory to real problems using real search engines on 
real databases.

Web Event

The set of singleton search terms is denoted by S , a set of 
search terms is X = {x1,… , xn} with xi ∈ S for 1 ≤ i ≤ n , 
and X  denotes the set of such X. Let the set of web pages 
indexed (possible of being returned) by the search engine 
be Ω.

Definition 2.1 We define the web event e(X) ⊆ Ω by the set 
of web pages returned by the search engine doing a search 
for X such that each web page in the set contains occurrences 
of all elements from X.

If x, y ∈ S and e(x) = e(y) , then, x ∼ y and the equiva‑
lence class [x] = {y ∈ S ∶ y ∼ x} . Unless otherwise stated, 

we consider all singleton search terms that define the same 
web event as the same term. Hence, we deal actually with 
equivalence classes [x] rather than x. However, for ease of 
notation, we write x in the sequel and consider this to mean 
[x].

If x ∈ S , then, the frequency of x is f (x) = |e(x)| ; if 
X = {x1,… , xn} ,  then,  e(X) = e(x1)

⋂
⋯

⋂
e(xn) and 

f (X) = |e(X)| . The web event e(X) embodies all direct con‑
text in which all elements from X simultaneously occur in 
these web pages. Therefore, web events capture in the out‑
lined sense all background knowledge about this combina‑
tion of search terms on the web.

The Web Code

It is natural to consider code words for web events. We 
base those code words on the probability of the event. 
Define the probability g(X) of X as g(X) = f (X)∕N  with 
N =

∑
X∈X f (X) . This probability may change over time, 

but let us imagine that the probability holds in the sense of 
an instantaneous snapshot. A derived notion is the average 
number of different sets of search terms per web page � . 
Since � =

∑
X∈X f (X)∕�Ω� , we have N = �|Ω|.

A probability mass function on a known set allows us 
to define the associated prefix code word length (informa‑
tion content) equal to unique decodable code word length 
[16, 19, 23, 24]. Such a prefix code is a code such that no 
code word is a proper prefix of any other code word. By the 
ubiquitous Kraft inequality [16], if l1, l2,… is a sequence of 
positive integers satisfying

then, there is a set of prefix code words of length l1, l2,… . 
Conversely, if there is a set of prefix code words of length 
l1, l2,… , then these lengths satisfy the above‑displayed equa‑
tion. By the fact that the probabilities of a discrete set sum 
to at most 1, every web event e(X) having probability g(X) 
can be encoded in a prefix code word.

Definition 2.2 The length G(X) of the web code word for 
X ∈ X  is

or ∞ for g(X) = 0 . The case |X| = 1 gives the length of the 
web code word for singleton search terms. The logarithms 
are throughout base 2.

The web code is a prefix code. The code word associ‑
ated with X and therefore with the web event e(X) can be 
viewed as a compressed version of the set of web pages 

(2.1)
∑

i

2−li ≤ 1,

(2.2)G(X) = log 1∕g(X),
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constituting e(X). That is, the search engine compresses 
the set of web pages that contain all elements from X into a 
code word of length G(X). (In the following Definition 2.3, 
we use the notion of U and the prefix Kolmogorov com‑
plexity K as in Appendix C.)

Definition 2.3 Let p ∈ {0, 1}∗ and X ∈ X ⧵ S . The informa-
tion EGmax(X) to compute event e(X) from event e(x) for any 
x ∈ X  is defined by EG

max
(X) = minp{|p| ∶ for all x ∈ X we

have U(e(x), p) = e(X)}.

In this way, EGmax(X) corresponds to the length of a 
single shortest self‑delimiting program to compute output 
e(X) from an input e(x) for all x ∈ X.

Lemma 2.4 The function EGmax is upper semicomputable 
but not computable.

Theorem 2.5 EGmax(X) = maxx∈X{K(e(X)|e(x))} up to an 
additive logarithmic term O(logmaxx∈X{K(e(X)|e(x))}) 
which we ignore in the sequel.

To obtain the NWD, we must normalize EGmax . Let 
us give some intuition first. Suppose X, Y ∈ X  with 
|X|, |Y| ≥ 2 . If the web events e(x)’s are more or less the 
same for all x ∈ X , then, we consider the members of X 
very similar to each other. If the web events e(y)’s are very 
different for different y ∈ Y  , then, we consider the mem‑
bers of Y to be very different from one another. Yet for 
certain such X and Y depending on the cardinalities of X 
and Y and the cardinalities of the web events of the mem‑
bers of X and Y, we can have EGmax(X) = EGmax(Y) . That 
is to say, the similarity is dependent on size. Therefore, 
to express similarity of the elements in a set X, we need 
to normalize EGmax(X) using the cardinality of X and the 
events of its members. Expressing the normalized values 
allows us to express the degree in which all elements of 
a set are alike. Then, we can compare truly different sets.

Use the symmetry of information law (10.1) to rewrite 
EGmax(X) as K(e(X)) −minx∈X{K(e(x))} up to a logarithmic 
additive term which we ignore. Since G(X) is computable 
prefix code for e(X), while K(e(X)) is the shortest comput‑
able prefix code for e(X), it follows that K(e(X)) ≤ G(X) . 
Similarly K(e(x)) ≤ G(x) for x ∈ X  . The search engine 
G returns frequency f(X) on query X (respectively, fre‑
quency f(x) on query x). These frequencies are readily con‑
verted into G(X) (respectively, G(x)) using (2.2). Replace 
K(e(X)) by G(X) and minx∈X{K(e(x))} by minx∈X{G(x)} 
in EGmax(X) . Subsequently, use as normalizing term 
maxx∈X{G(x)}(|X| − 1) which gives the best classification 
results in “Applications” among several possibilities tried. 
This yields the following.

Definition 2.6 The normalized web distance (NWD) of 
X ∈ X  with G(X) < ∞ (equivalently, f (X) > 0) ) is

otherwise NWD(X) is undefined.

The second equality in (2.3), expressing the NWD in 
terms of frequencies, is seen as follows. We use (2.2). The 
numerator is rewritten by G(X) = log 1∕g(X) = log(N∕f (X)) 
= logN − log f (X) and minx∈X{G(x)} = minx∈X{log 1∕g(x)}

= logN −maxx∈X{log f (x)} . The denominator is rewritten 
as maxx∈X{G(x)}(|X| − 1) = maxx∈X{log 1∕g(x)}(|X| − 1) =

(logN −minx∈X{log f (x)})(|X| − 1).

Example 2.7 Although Google gives notoriously unreliable 
counts, it serves well enough for an illustration. On our scale 
of similarity, if NWD(X) = 0 , then, the search terms in the 
set X are identical, and if NWD(X) = 1 , then, the search 
terms in X are as different as can be. In October 2019, search‑
ing for “Shakespeare” gave 224,000,000 hits; searching for 
“Macbeth” gave 52,200,000 hits; searching for “Hamlet” 
gave 110,000,000 hits; searching for “Shakespeare Macbeth” 
gave 26,600,000 hits; searching for “Shakespeare Hamlet” 
gave 38,900,000 hits; and searching for “Shakespeare Mac‑
beth Hamlet” gave 9,390,000 hits. The number of web pages 
which can potentially be returned by Google was estimated by 
searching for “the” as 25,270,000,000. Using this number, as  
N we obtain by (2.3) the NWD({Shakespeare,Macbeth})

≈ 0.34 , NWD({Shakespeare,Hamlet}) ≈ 0.32 and NWD

({Shakespeare,Macbeth,Hamlet}) ≈ 0.26 . We conclude that 
Shakespeare and Macbeth have a lot in common, that Shake‑
speare and Hamlet have just a bit more in common, and that 
taken together the terms Shakespeare, Hamlet, and Macbeth 
are even more similar. The ability to compute the NWD for 
multiple objects simultaneously, taking a common measure of 
shared information across the entire query is a unique advan‑
tage of the proposed approach. ♢

Remark 2.8 In Definition 2.6, it is assumed that f (X) > 0 
which, since it has integer values, means f (X) ≥ 1 . The 
case f (X) = 0 means that there is an x ∈ X  such that 
e(x)

⋂
e(X ⧵ {x}) = ∅ . That is, query x is independent of the 

set of queries X ⧵ {x} , x has nothing in common with X ⧵ {x} 
since there is no common web page. Hence, the NWD is 
undefined. The other extreme is that e(x) = e(y) ( x ∼ y ) for 
all x, y ∈ X . In this case, the NWD(X) = 0 . ♢

(2.3)
NWD(X) =

G(X) −minx∈X{G(x)}

maxx∈X{G(x)}(|X| − 1)

=
maxx∈X{log f (x)} − log f (X)

(logN −minx∈X{log f (x)})(|X| − 1)
,
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Comparing NWD and NGD

The NGD (see Footnote 1) is a distance between two names. 
The NWD is an extension of the NGD to sets of names of 
finite cardinality. It is shown that the NWD has far less com‑
putational complexity than the NGD. Moreover, the NWD 
uses information to which the NGD is blind, that is, the 
common similarity determined by the NWD is far better 
than that determined by the NGD. Possibly, each pair of 
objects has a particular relative semantics (NGD) but not 
necessarily the same relative semantics. Yet if this is always 
the same quantity of relative semantics, we may conclude 
wrongly that the whole set of objects have a single semantics 
in common. With the NWD, we are certain that it pertains 
to a single common semantics.

Computational Complexity

The number of queries needed for using the NWD is usu‑
ally much less than that using the NGD.1 We ignore the cost 
of the arithmetic operations (which is larger anyway in the 
NGD case) and of determining N which has to be done in 
both cases. There are two tasks we consider.

Computing the common similarity of a set. The compu‑
tational complexity of computing the common similarity 
using the NGD with a set of n terms is as follows. One has 
to use the search engine on the database to determine the 
search term frequencies. This requires n +

(
n

2

)
 frequency 

computations, namely the frequencies of the singletons and 
of the pairs. To computational complexity of computing the 
common similarity of the same set of n terms by the NWD 
requires n queries to determine the singleton frequencies and 
1 query to determine the frequency of pages containing the 
entire set, that is, n + 1 times computing frequencies. Hence, 
computational complexity using the NGD is much higher for 
large n than that using the NWD.

Classifying. Let n be the total number of elements divided 
over classes A1,… ,Am of cardinalities n1,… , nm , respec‑
tively, with 

∑m

i=1
ni = n . We classify a new item x into one of 

the m classes according to which class achieves the minimum 
common similarity (CS) difference CS(A

⋃
{x}) − CS(A) . If 

there are more than one such classes, we select a class of 
maximal CS. We compute the CS using the NGD or the 
NWD. Using the NGD, we require n +

∑m

i=1

�
ni

2

�
 queries to 

determine CS(A1),… ,CS(Am) . (Trivially, 
∑m

i=1

�
ni

2

�
≤
�
n

2

�
 ). 

To determine subsequently, CS(A1

⋃
{x}),… ,CS(Am

⋃
{x}) 

we require 1 query extra to determine f(x) and n queries 

extra to determine f(x, y) for every item y among the original 
n elements. Altogether there are 2n + 1 +

∑m

i=1

�
ni

2

�
 queries 

required using the NGD.
Using the NWD requires 

∑m

i=1
(ni + 1) = n + m queries to 

determine the NWD of A1,… ,Am . To subsequently deter‑
mine the NWDs of A1

⋃
{x},… ,Am

⋃
{x} , we extra require 

f(x) and each of f ({y ∶ y ∈ Ai}
⋃
{x}) for 1 ≤ i ≤ m . That is, 

1 + m queries. So in total, n + 2m + 1 queries.
To classify many new items, we may consider training 

cost and testing cost. Training cost is to pre‑compute all the 
queries required for classifying a new element—without the 
costs for the new element. This is done only once. Testing 
cost is how many queries are required for each new item that 
comes along. Above, we combined these two in the case of 
one new element.

The training cost for the NGD is up to n +
(
n

2

)
 . The testing 

cost for each new item is n + 1.
The training cost for the NWD is n + m . The testing cost 

for each new item is m + 1.

Extracted Information

Let A, B be two sets of queries and B ⊂ A . Then, the com‑
mon similarity of the queries in A ⧵ B may or may not agree 
with the common similarity of the queries in B, but adding 
A ⧵ B to B to obtain A will not increase the common similar‑
ity of the queries in A above that in B. Therefore, the com‑
mon similarity in A is at most that in B. This is generally 
followed by the NWD without the normalizing factor |X| − 1 
in the denominator, see Lemma 4.3, except in the pathologi‑
cal case when condition (4.1) does no hold.

Assume that A = {a1,… , an} and B = {b1, b2} with  
b1, b2 ∈ A . Then NWD(A) ≤ minb

1
,b

2
∈A NWD(B) = minb

1
,b

2
∈A

NGD(b
1

, b
2

) . Only in this sense, using the NGD to determine 
the common similarity in a set A gives an upper bound on 
NWD(A). All formulas using only NGD’s use a subset of 
the f (ai) ’s and the f (ai, aj) ’s ( 1 ≤ i, j ≤ n ). The NWD uses 
the f (ai) ’s and f (a1,… , an) . For given f (ai) and the f (ai, aj) 
( 1 ≤ i, j ≤ n ), the values of f (a1,… , an) can be any value in 
the interval [0,minb1,b2∈A NGD(b1, b2)] . Hence, the NWD can 
vary a lot (and therefore the common similarity) for most 
fixed values of the NGD’s.

Example 3.1 Firstly, we give an example where the com‑
mon similarity computed from NGD’s is different from that 
computed by the NWD. Let f (x) = f (y) = f (z) = N1∕4 be 
the cardinalities of the sets of web pages containing occur‑
rences of the term x, the term y, and the term z, respectively. 
The quantity N is the total number of web pages multiplied 
by the appropriate constant � as in Section II‑B. Let fur‑
ther, f (x, y) = f (x, z) = f (y, z) = N1∕8 and f (x, y, z) = N1∕16 . 
Here f(x,  y) is the number of pages containing both 
terms x and y, and so on. Computing the NGD’s gives 

1 Defined in [4, Eq. (6) in Section 3.4 ] as

NGD(x, y) =
max{log f (x), log f (y)} − log f (x, y)

logN −min{log f (x), log f (y)}
.
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NGD(x, y) = NGD(x, z) = NGD(y, z) = 1∕6 . Using for the 
set {x, y, z} , either the minimum NGD, the maximum NGD, 
or the average NGD will always give the value 1/6. Using 
the NWD as in (2.3), we find NWD({x, y, z}) = 1∕8 . This 
shows that, in this example, the common similarity deter‑
mined using the NGD is smaller than the common similarity 
determined using the NWD. (Recall that the common simi‑
larity is 0 if it is maximal and 1 if it is minimal.)

Secondly, we give an example of a difference in classifi‑
cation between the NGD and the NWD. The class is selected 
where the absolute difference in common similarity with 
and without inserting the new item is minimal. If more 
than one class is selected, we choose a class with maximal 
common similarity. The frequencies of x, y, z and the pairs 
(x, y), (x, z), (y, z) are as above. For the terms u, v and the pairs 
(u, v), (u, z), (v, z), the frequencies are f (u) = f (v) = N1∕4 
and f (u, v) = f (u, z) = f (v, z) = N1∕9 . Suppose we clas‑
sify the term z into classes A = {x, y} and B = {u, v} using 
a computation with the NGD’s. Then, the class B will be 
selected. Namely, the insertion of z in class A will induce 
new NGD’s with all exactly having the values of 1/6 (as 
above). Since NGD(u, v) = NGD(u, z) = NGD(v, z) = 5∕36 
insertion of z into the class B = {u, v} will give the NGD’s 
of all resulting pairs (u, v),  (u, z),  (v, z) values of 5/36. 
The choice being between classes A and B we see that 
in neither class the common similarity according to the 
NGD’s is changed. Therefore, we select the class where 
all NGD’s are least (that is, the most common similarity) 
which is B = {u, v} . Next, we select according to the NWD. 
Assume f (u, v, z) = N1∕10 . Then, NWD(u, v, z) = 1∕4 . Then, 
NWD({u, v, z}) − NWD({u, v})(= NGD(u, v)) = 1∕4 − 5∕36 = 4∕36 . 
Since NWD({x, y, z}) − NWD({x, y})(= NGD(x, y)) = 1∕8 − 1∕6

= −1∕24 and selection according to the NWD chooses the 
least absolute difference, we select class A = {x, y} .  ♢

Theory

Let X = {x, y} ∈ X  . The NGD distance between x and y in 
Footnote 1 equals NWD(X) up to a constant.

Range First, we consider the range of the NWD. For sets 
of cardinality greater or equal to two, the following holds.

Lemma 4.1 Let X ∈ X ⧵ S and N > |X| . Then, NWD(X) ∈

[0, (log|X|(N∕|X|))∕(|X| − 1)].

(In practice, the range is from 0 to 1; the higher values 
are theoretically possible but seem not to occur in real 
situations.)

Change for Supersets We next determine bounds on 
how the NWD may change under addition of members 

to its argument. These bounds are necessary loose since 
the added members may be similar to existing ones or 
very different. In Lemma 4.3 below, we shall distinguish 
two cases related to the minimum frequencies. The second 
case divides into two subcases depending on whether the 
Eq. (4.1) below holds or not:

where x0 = argminx∈X{log f (x)} , y0 = argminy∈Y{log f (y)} , 
x1 = argmaxx∈X{log f (x)} , and y1 = argmaxy∈Y{log f (y)}.

Example 4.2 Let |X| = 5 , f (x0) = 1, 100, 000 , f (y0) = 1, 000, 000 , 
f (x1) = f (y1) = 2, 000, 000  ,  f (X) = 500  ,  f (Y) = 100  , 
and NWD(X) = 0.5 . The right‑hand side of the inequality 
(4.1) is 1.12 = 1.21 while the left‑hand side is 5. Therefore, 
(4.1) holds. It is also possible that inequality (4.1) does 
not hold, that is, it holds with the ≥ sign replaced by the < 
sign. We give an example. Let |X| = 5 , f (x0) = 1, 100, 000 , 
f (y0) = 1, 000, 000 , f (x1) = f (y1) = 2, 000, 000 , f (X) = 110 , 
f (Y) = 100 , and NWD(X) = 0.5 . The right‑hand side of the 
inequality (4.1) with ≥ replaced by < is 1.12 = 1.21 while the 
left‑hand side is 1.1. ♢

Lemma 4.3 Let X, Z ⊆ Y , X, Y , Z ∈ X ⧵ S , and minz∈Z{f (z)}

= miny∈Y{f (y)}.

(i) If f (y) ≥ minx∈X{f (x)} for all y ∈ Y  , then, (|X| − 1) 
NWD(X) ≤ (|Y| − 1)NWD(Y) . (ii) Let f (y) < minx∈X{f (x)} for some  
y ∈ Y . If (4.1) holds, then, (|X| − 1)NWD(X) ≤ (|Y| − 1)NWD(Y) .  
If (4.1) does not hold, then, (|X| − 1)NWD(X) > (|Y| − 1)

NWD(Y)) ≥ (|Z| − 1)NWD(Z).

Remark 4.5 To interpret Lemma 4.3, we give the following 
intuition. Under addition of a member to a set, there are 
two opposing tendencies on the NWD concerned. First, the 
range of the NWD decreases by Lemma 4.1 and the defini‑
tion (2.3) of the NWD shows that addition of a member 
tends to decrease the value of the NWD, that is, it moves 
closer to 0. Second, the common similarity, and hence, the 
similarity of queries in a given set as measured by the NWD 
is based on the number of properties all members of a set 
have in common. By adding a member to the set clearly 
the number of common properties does not increase and 
generally decreases. This diminishing tends to cause the 
NWD to possibly increase—move closer to the maximum 
value of the range of the new set (which is smaller than that 
of the old set). The first effect may become visible when 
(|X| − 1)NWD(X) > (|Y| − 1)NWD(Y) , which happens in the 
case of Lemma 4.3 item (ii) for the case when the frequen‑
cies do not satisfy (12.1). The second effect may become 
visible when (|X| − 1)NWD(X) ≤ (|Y| − 1)NWD(Y) , which 

(4.1)
f (y1)f (X)

f (x1)f (Y)
≥

(
f (x0)

f (y0)

)(|X|−1)NWD(X)

,
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happens in Lemma 4.3 item (i), and item (ii) with the fre‑
quencies satisfying (12.1). ♢

Metricity For every set X, we have that the NWD(X) 
is invariant under permutation of X: it is symmetric. The 
NWD is also positive definite as in Appendix D (where 
equal members should be interpreted as saying that the 
set has only one member). However, the NWD does not 
satisfy the triangle inequality and hence is not a metric. 
This is natural for a common similarity or semantics: The 
members of a set XY (shorthand for X

⋃
Y  ) can be less 

similar (have greater NWD), then, the similarity of the 
members of XZ plus the similarity of the members of ZY 
for some set Z.

Lemma 4.6 The NWD violates the triangle inequality.

Similarity Explained It remains to formally prove that 
the NWD expresses in the similarity of the search terms 
in the set. We define the notion of a distance on these 
sets using the web as side information. For a set X, a dis‑
tance (or diameter) of X is denoted by d(X). We consider 
only distances that are upper semicomputable, that is, the 
distance can be computably approximated from above 
(Appendix B). A priori we allow asymmetric distances, 
but we exclude degenerate distances such as d(X) = 1∕2 
for all X ∈ X  containing a fixed element x. That is, for 
every d, we want only finitely many sets X ∋ x such that 
d(X) ≤ d . Exactly how fast we want the number of sets 
we admit to go to ∞ is not important; it is only a matter 
of scaling.

Definition 4.7 A web distance function (quantifying the 
common properties or common features) d ∶ X → R+ is 
admissible if d(X) is (i) a nonnegative total real function 
and is 0 if X ∈ S ; (ii) it is upper semicomputable from the 
e(x)’s with x ∈ X and e(X); and (iii) it satisfies the density 
requirement: for every x ∈ S

We give the gist of what we are about to prove. Let 
X = {x1, x2,… , xn} . A feature of a query is a property of 
the web event of that query. For example, the frequency in 
the web event of web pages containing an occurrence of 
the word “red.” We can compute this frequency for each 
e(xi) ( 1 ≤ i ≤ n ). The minimum of those frequencies is 
the maximum of the number of web pages containing the 
word “red” which surely is contained in each web event 
e(x1),… , e(xn) . One can identify this maximum with the 
inverse of a distance in X. There are many such distances in 
X. The shorter a web distance is, the more dominant is the 

∑

X∋x, |X|≥2
2−d(X) ≤ 1.

feature it represents. We show that the minimum admissible 
distance is EGmax(X) . It is the least admissible web distance 
and represents the shortest of all admissible web distances in 
members of X. Hence, the closer the numerator of NWD(X) 
is to EGmax(X) the better it represents the dominant feature 
all members of X have in common.

Theorem 4.8 Let X ∈ X  . The function G(X) −minx∈X{G(x)} 
is a computable upper bound on EGmax(X) . The closer it is to 
EGmax(X) , ,the better it approximates the shortest admissible 
distance in X. The normalized form of EGmax(X) is NWD(X).

The normalized least admissible distance in a set is the 
least admissible distance between its members which we 
call the common admissible similarity. Therefore, we have:

Corollary 4.9 The function NWD(X) is the common admis-
sible similarity among all search terms in X. This admissible 
similarity can be viewed as semantics that all search terms 
in X have in common.

Applications

Methodology

The approach presented here requires the ability to query a 
database for the number of occurrences and co‑occurrences 
of the elements in the set that we wish to analyze. One chal‑
lenge is to find a database that has sufficient breadth to con‑
tain a meaningful numbers of co‑occurrences for related 
terms. As discussed previously, an example of one such 
database is the World Wide Web, with the page counts 
returned by Google search queries used as an estimate of 
co‑occurrence frequency. There are two issues with using 
Google search page counts. The first issue is that Google lim‑
its the number of programmatic searches in a single day to a 
maximum of 100 queries, and charges for queries in excess of 
100 at a rate of up to $50 per thousand. The second issue with 
using Google web search page counts is that the numbers are 
not exact, but are generated using an approximate algorithm 
that Google has not disclosed. For the questions considered 
previously [4], we found that these approximate measures 
were sufficient at that time to generate useful answers, espe‑
cially in the absence of any a priori domain knowledge. It 
is possible to implement the Internet‑based searches with‑
out using search engine API’s, and therefore, not subject to 
daily limit. This can be accomplished by parsing the HTML 
returned by the search engine directly. The issue with Google 
page counts in this study being approximate counts based on 
a non‑public algorithm was more concerning as changes in 
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the approximation algorithm can influence page count results 
in a way that may not reflect true changes to the underly‑
ing distributions. Since any Internet search that returns a 
results count can be used in computing the NWD, we adopt 
the approach of using websites that return exact rather than 
approximate page counts for a given query.

Here, we describe a comparison of the NWD using 
the set formulation based on website search result counts 
with the pairwise NWD formulation. The examples are 
based on search results from Amazon, Wikipedia, and the 
National Center for Biotechnology Information (NCBI) 
website from the U.S. National Institutes of Health. The 
NCBI website exposes all of the NIH databases search‑
able from a single web portal. We consider example clas‑
sification questions that involve partitioning a set of words 
into underlying categories. For the NCBI applications, we 
compare various diseases using the loci identified by large 
genome‑wide association studies (GWAS). For the NWD 
set classification, we determine whether to assign element 
x to class A or class B (both classes preexisting) by com‑
puting NWD(Ax) − NWD(A) and NWD(Bx) − NWD(B) and 
assigning element x to whichever class achieves the mini‑
mum difference. A combination of pairwise NGD’s for each 
class suffers in many cases from shortcomings as pointed out 
before and formally in Example 3.1. Therefore, with the aim 
of doing better, for the pairwise NWD, we use an approach 
based on spectral clustering. Rather than using a combi‑
nation of simple pairwise information distances (NGD’s), 
the spectral approach [26] constructs a representation of the 
objects being clustered using an eigen decomposition. In 
previous work, we have found such spectral approaches to 
be most accurate when working with compression‑based dis‑
tance measures [7, 8, 12]. Mapping from clusters to classes 

for the pairwise analysis is done following the spectral clus‑
tering step by using a majority vote.

Example Applications

We now describe results from a number of sample applica‑
tions. For all of these applications, we use a single imple‑
mentation based on co‑occurrence counts. For each search 
engine that we used, including Amazon, Wikipedia, and 
NCBI, a custom MATLAB script was developed to parse 
the search count results. We used the page counts returned 
using the builtin search from each website for the frequen‑
cies, and following the approach in [4] choose N as the fre‑
quency for the search term ’the’. The results described were 
not sensitive to the choice of search term used to establish 
N, for example, identical classification results were obtained 
using the counts returned by the search term ’N’ as the nor‑
malizing factor. Following each classification result below, 
we include, in parenthesis, the 95% confidence interval for 
the result, computed as described in [36]

The first three classification questions we considered used 
the Wikipedia search engine. These questions include clas‑
sifying colors vs. animals, classifying colors vs. shapes, and 
classifying presidential candidates by political party for the 
US 2008 U.S. presidential election. For colors vs animals 
and shapes, both pairwise and multiset NWD classified all of 
the elements 100% correctly (0.82, 1.0). For the presidential 
candidate classification by party, the pairwise NWD formu‑
lation performed poorly, classifying 58% correctly (0.32, 
0.8), while the set formulation obtained 100% correct clas‑
sification (0.76, 1.0). Table 1 shows the data used for each 
question, together with the pairwise and set accuracy and the 
total number of website queries required for each method.

Table 1  Classification results 
using Wikipedia. The multiset 
distance measure is more 
accurate compared to the 
previous pairwise approach, 
while requiring less database 
queries

search engine: wikipedia
Multisets 
Correct

Pairwise 
Correct

Groups found 
by gap spectral

{red, orange, yellow, green, blue, indigo}

{lion, tiger, bear, monkey, zebra, 
elephant, aardvark, lamb, fox, ape, dog}

{red, orange, yellow, green, blue, indigo, 
violet, purple, cyan, white}
{square,circle,rectangle,ellipse,triangle, 
rhombus}

{Barack Obama, Hillary Clinton, John 
Edwards, Joe Biden, Chris Dodd, Mike 
Gravel} 
{John McCain, Mitt Romney, Mike 
Huckabee, Ron Paul, Fred Thompson, 
Alan Keyes}

100% 100% 2

100% 58% 2

100% 100% 2
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The next classification question [24] considered used 
page counts returned by the Amazon website search engine 
to classify book titles by author. Table 2 summarizes the sets 
of novels associated with each author, and the classification 
results for each author as a confusion matrix. The multiset 
NWD (top) misclassified one of the Tolstoy novels (’War 
and Peace’) to Stephen King, but correctly classified all 
other novels 96% accurate (0.83, 0.99). The pairwise NWD 
performed significantly more poorly, achieving only 79% 
accuracy (0.6, 0.9).

The final application considered is to quantify simi‑
larities among diseases based on the results of genome‑
wide association studies (GWAS). These studies scan the 
genomes from a large population of individuals to iden‑
tify genetic variations occurring at fixed locations, or loci 
that can be associated with the given disease. Here, we 
use the the NIH NCBI database to search for similari‑
ties among diseases, comparing loci identified by recent 
GWAS results for each disease. The diseases included 
Alzheimers [13], Parkinsons [31], Amyotrophic lateral 
sclerosis (ALS) [1], Schizophrenia [28], Leukemia [30], 
Obesity [27], and Neuroblastoma [22]. The top of Table 3 
lists the loci used for each disease. The middle panel of 
Table 3 shows at each location (i, j) of the distance matrix 
the NWD computed for the combined counts for the loci 
of disease i concatenated with disease j. The diagonal ele‑
ments (i, i) show the NWD for the loci of disease i. The 
bottom panel of Table 3 shows the NWD for each element 
with the diagonal subtracted, (i, j) − (i, i) . This is equiva‑
lent to the NWD(Ax) − NWD(A) value used in the previous 

classification problems. The two minimum values in the 
bottom panel, showing the relationships between Parkin‑
sons and Obesity, as well as between Schizophrenia and 
Leukemia were surprising. The hypothesis was that neuro‑
logical disorders such as Parkinsons, ALS and Alzheimers, 
would be more similar to each other. After these findings, 
we found that there actually have been recent findings of 
strong relationships between both Schizophrenia and Leu‑
kemia [11] as well as between Parkinsons and Obesity 
[6], relationships that have also been identified by clinical 
evidence not relating to GWAS approaches.

Software Availability

Free and open source (BSD) software implementations for 
the NWD are available from https ://git‑bioim age.coe.drexe 
l.edu/opens ource /nwd.

Conclusion

Consider queries to a search engine using a database 
divided in chunks called web pages. On each query the 
search engine returns a set of web pages. Let n be the car‑
dinality of a query set and N the number of web pages in 
the database multiplied by the average number of search 
terms per web page. We propose a method, the normalized 
web distance (NWD) for sets of queries that quantifies 
in a single number between 0 and (logn(N∕n))∕(n − 1) the 

Table 2  Classifying novels by 
author using Amazon

Shakespeare = {Macbeth, The Tempest, Othello, King Lear, Hamlet, The Merchant of Venice, A Midsummer Nights 
Dream, Much Ado About Nothing, Taming of the Shrew, Twelfth Night}   

King = {Carrie, Salems Lot, The Shining, The Stand, The Dead Zone, Firestarter, Cujo}    

Twain = {Adventures of Huckleberry Finn, A Connecticut Yankee in King Arthurs Court, Life on the Mississippi, 
Puddnhead Wilson}  

Hemingway = {The Old Man and The Sea, The Sun Also Rises, For Whom the Bell Tolls, A Farewell To Arms} 

Tolstoy = {Anna Karenina, War and Peace, The Death of Ivan Ilyich}

Multiset NWD
Shakespeare King Twain Hemingway Tolstoy

Shakespeare 10 0 0 0 0
King 0 7 0 0 1

Twain 0 0 4 0 0
Hemingway 0 0 0 4 0

Tolstoy 0 0 0 0 2
Correct: 96%

Pairwise NWD
Shakespeare King Twain Hemingway Tolstoy

Shakespeare 10 0 0 1 1
King 0 6 0 0 0

Twain 0 0 4 0 0
Hemingway 0 1 0 3 3

Tolstoy 0 0 0 0 0
Correct: 79%

Predicted 
Class

True Class

True Class

Predicted 
Class

https://git-bioimage.coe.drexel.edu/opensource/nwd
https://git-bioimage.coe.drexel.edu/opensource/nwd
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way in which the queries in the set are similar: 0 means 
all queries in the set are the same (the set has cardinal‑
ity one) and (logn(N∕n))(n − 1) means all queries in (in 
practice the upper bound is 1) the set are maximally dis‑
similar to each other. The similarity among queries uses 
the frequency counts of web pages returned for each query 
and the set of queries. The method can be applied using 
any big database and a search engine that returns reliable 
aggregate page counts. Since this method uses names for 
the objects, and not the objects themselves, we can view 
the common similarity of the names as a common seman‑
tics between those names (words or phrases). The common 
similarity between a finite nonempty set of queries can be 
viewed as a distance or diameter of this set. We show that 
this distance ranges in between 0 and (logn(N∕n))∕(n − 1) , 
how it changes under adding members to the set, that it 
does not satisfy the triangle property, and that the NWD 
formally and provably expresses common similarity (com‑
mon semantics).

To test the efficacy of the new method for classification, 
we experimented with small data sets of queries based on 
search results from Wikipedia, Amazon, and the National 
Center for Biotechnology Information (NCBI) website from 

the U.S. National Institutes of Health. In particular, we 
compared classification using pairwise NWDs (the NGDs) 
with classification using set NWD. The last mentioned per‑
formed consistently equal or better, sometimes much better.
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Appendix A: Strings and the Self‑Delimiting 
Property

We write string to mean a finite binary string, and � denotes 
the empty string. (If the string is over a larger finite alpha‑
bet we recode it into binary.) The length of a string x (the 
number of bits in it) is denoted by |x|. Thus, |�| = 0 . The self-
delimiting code for x of length n is x̄ = 1|x|0x of length 2n + 1 , 
or even shorter x� = 1x̄0x of length n + 2 log n + 1 (see [20] 

Table 3  GWAS loci from NIH 
NCBI input to NWD quantifies 
disease similarity

Schizophrenia = {'rs1702294', 'rs11191419', 'rs2007044', 'rs4129585', 'rs35518360'} 

Leukemia = {'rs17483466', 'rs13397985', 'rs757978', 'rs2456449', 'rs735665', 'rs783540', 'rs305061', 'rs391525', 
'rs1036935', 'rs11083846'} 

Alzheimers={'rs4420638', 'rs7561528', 'rs17817600', 'rs3748140', 'rs12808148', 'rs6856768', 'rs11738335', 
'rs1357692'}; 

Obesity={'rs10926984', 'rs12145833', 'rs2783963', 'rs11127485', 'rs17150703', 'rs13278851'}; 

Neuroblastoma = {'rs6939340', 'rs4712653', 'rs9295536', 'rs3790171', 'rs7272481'}; 

Parkinsons={'rs356219', 'rs10847864', 'rs2942168', 'rs11724635'} 

ALS = {'rs2303565', 'rs1344642', 'rs2814707', 'rs3849942', 'rs2453556',  'rs1971791',  'rs8056742'}; 

Alzheimers Parkinsons ALS Schizophrenia Leukemia Obesity Neuroblastoma
Alzheimers 1.29E-02 2.43E-02 1.38E-02 1.55E-02 1.23E-02 1.49E-02 1.61E-02
Parkinsons 2.43E-02 1.80E-02 1.83E-02 1.58E-02 1.68E-02 1.53E-02 2.23E-02

ALS 1.38E-02 1.83E-02 9.76E-03 1.19E-02 1.46E-02 9.96E-03 1.75E-02
Schizophrenia 1.55E-02 1.58E-02 1.19E-02 1.38E-02 1.13E-02 1.60E-02 1.93E-02

Leukemia 1.23E-02 1.68E-02 1.46E-02 1.13E-02 7.54E-03 1.15E-02 1.61E-02
Obesity 1.49E-02 1.53E-02 9.96E-03 1.60E-02 1.15E-02 1.23E-02 1.51E-02

Neuroblastoma 1.61E-02 2.23E-02 1.75E-02 1.93E-02 1.61E-02 1.51E-02 1.51E-02

Alzheimers Parkinsons ALS Schizophrenia Leukemia Obesity Neuroblastoma
Alzheimers 0 1.14E-02 9.20E-04 2.64E-03 -6.08E-04 1.98E-03 3.22E-03
Parkinsons 6.26E-03 0 2.77E-04 -2.28E-03 -1.28E-03 -2.76E-03 4.26E-03

ALS 4.04E-03 8.57E-03 0 2.11E-03 4.87E-03 2.00E-04 7.75E-03
Schizophrenia 1.75E-03 2.01E-03 -1.90E-03 0 -2.44E-03 2.20E-03 5.56E-03

Leukemia 4.73E-03 9.23E-03 7.09E-03 3.78E-03 0 3.99E-03 8.53E-03
Obesity 2.57E-03 3.01E-03 -2.33E-03 3.69E-03 -7.58E-04 0 2.78E-03

Neuroblastoma 1.01E-03 7.23E-03 2.43E-03 4.25E-03 9.92E-04 -1.04E-05 0

NWD(i,j)

NWD(i,j)-NWD(i,i)
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for still shorter self‑delimiting codes). Self‑delimiting code 
words encode where they end. The advantage is that if many 
strings of varying lengths are encoded self‑delimitingly using 
the same code, then, their concatenation can be parsed in their 
constituent code words in one pass going from left to right. 
Self‑delimiting codes are computable prefix codes. A prefix 
code has the property that no code word is a proper prefix of 
any other code word. The code word set is called prefix-free.

We identify strings with natural numbers by asso‑
ciating each string with its index in the length‑increas‑
ing lexicographic ordering according to the scheme 
(�, 0), (0, 1), (1, 2), (00, 3), (01, 4), (10, 5), (11, 6),… . In this 
way, the Kolmogorov complexity can be about finite binary 
strings or natural numbers.

Appendix B: Computability Notions

A pair of integers such as (p, q) can be interpreted as the 
rational p/q. We assume the notion of a function with rational 
arguments and values. A function f(x) with x rational is upper 
semicomputable if it is defined by a rational‑valued total 
computable function �(x, k) with x a rational number and k a 
nonnegative integer such that �(x, k + 1) ≤ �(x, k) for every k 
and limk→∞ �(x, k) = f (x) . This means that f can be computed 
from above (see [20], p. 35). A function f is lower semicom-
putable if −f  is semicomputable from above. If a function is 
both upper semicomputable and lower semicomputable, then, 
it is computable.

Appendix C: Kolmogorov Complexity

The Kolmogorov complexity is the information in a single 
finite object [15]. Informally, the Kolmogorov complexity of 
a finite binary string is the length of the shortest string from 
which the original can be lossless reconstructed by an effec‑
tive general‑purpose computer such as a particular (so‑called 
“optimal”) universal Turing machine. Hence, it constitutes a 
lower bound on how far a lossless compression program can 
compress. For technical reasons, we choose Turing machines 
with a separate read‑only input tape that is scanned from left 
to right without backing up, a separate work tape on which the 
computation takes place, an auxiliary tape inscribed with the 
auxiliary information, and a separate output tape. All tapes 
are divided into squares and are semi‑infinite. Initially, the 
input tape contains a semi‑infinite binary string with one bit 
per square starting at the leftmost square, and all heads scan 
the leftmost squares on their tapes. Upon halting, the initial 
segment p of the input that has been scanned is called the 
input program and the contents of the output tape is called 
the output. By construction, the set of halting programs is 
prefix‑free (Appendix A), and this type of Turing machine 
is called a prefix Turing machine. A standard enumeration of 

prefix Turing machines T1, T2,… contains a universal machine 
U such that U(i, p, y) = Ti(p, y) for all indexes i, programs p, 
and auxiliary strings y. (Such universal machines are called 
“optimal” in contrast with universal machines like U′ with 
U�(i, pp, y) = Ti(p, y) for all i,  p,  y, and U�(i, q, y) = 1 for 
q ≠ pp for some p.) We call U the reference universal prefix 
Turing machine. This leads to the definition of prefix Kol‑
mogorov complexity.

Formally, the conditional prefix Kolmogorov complexity 
K(x|y) is the length of the shortest input z such that the refer‑
ence universal prefix Turing machine U on input z with auxil‑
iary information y outputs x. The unconditional Kolmogorov 
complexity K(x) is defined by K(x|�) where � is the empty 
string. In these definitions, both x and y can consist of strings 
into which finite sets of finite binary strings are encoded. The‑
ory and applications are given in the textbook [20].

For a finite set of strings, we assume that the strings are 
length‑increasing lexicographic ordered. This allows us to 
assign a unique Kolmogorov complexity to a set. The condi‑
tional prefix Kolmogorov complexity K(X|x) of a set X given 
an element x is the length of a shortest program p for the refer‑
ence universal Turing machine that with input x outputs the 
set X. The prefix Kolmogorov complexity K(X) of a set X is 
defined by K(X|�) . One can also put set in the conditional 
such as K(x|X) or K(X|Y). We will use the straightforward laws 
K(⋅|X, x) = K(⋅|X) and K(X|x) = K(X�|x) up to an additive 
constant term, for x ∈ X and X′ equals the set X with the ele‑
ment x deleted.

We use the following notions from the theory of Kolmogo‑
rov complexity. The symmetry of information property [10] 
for strings x, y is

with equalities up to an additive term O(log(K(x, y))).

Appendix D: Metricity

A distance function d on X  is defined by d ∶ X → R+ 
where R+ is the set of nonnegative real numbers. If 
X, Y , Z ∈ X  , then, Z = XY  if Z is the set consisting of the 
elements of the sets X and Y ordered length‑increasing 
lexicographic. A distance function d is a metric if 

(1) Positive definiteness: d(X) = 0 if all elements of X are 
equal and d(X) > 0 otherwise. (For sets equality of all 
members means |X| = 1.)

(2) Symmetry: d(X) is invariant under all permutations of 
X.

(3) Triangle inequality: d(XY) ≤ d(XZ) + d(ZY).

(10.1)K(x, y) = K(x) + K(y|x) = K(y) + K(x|y),
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Appendix E: Proofs

Proof of Lemma 2.4 Run all programs dovetailed fash‑
ion and at each time instant select a shortest program 
that with inputs e(x) for all x ∈ X has terminated with the 
same output e(X). The lengths of these shortest programs 
gets shorter and shorter, and in for growing time eventu‑
ally reaches EGmax(X) (but, we do not know the time for 
which it does). Therefore, EGmax(X) is upper semicomput‑
able. It is not computable since for X = {x, y} , we have 
EGmax(X) = max{K(e(x)|e(y)),K(e(y)|e(x))} + O(1) ,  t he 
information distance between e(x) and e(y) which is known 
to be incomputable [3].   ◻

Proof of Theorem  2.5 (≤ ) We use a modification of 
the proof of [21, Theorem  2]. According to Defini‑
tion  2.1 x = y iff e(x) = e(y) . Let X = {x1,… , xn} and 
k = maxx∈X{K(e(X)|e(x)} . A set of cardinality n in S is for 
the purposes of this proof represented by an n‑vector of 
which the entries consist of the lexicographic length‑increas‑
ing sorted members of the set. For each 1 ≤ i ≤ n let Yi be 
the set of computably enumerated n‑vectors Y = (y1,… , yn) 
with entries in S such that K(e(Y)|e(yi)) ≤ k for each 
1 ≤ i ≤ n . Define the set V =

⋃n

i=1
Yi . This V is the set of 

vertices of a graph G = (V ,E) . The set of edges E is defined 
by: two vertices u = (u1,… , un) and v = (v1,… , vn) are 
connected by an edge if there is 1 ≤ j ≤ n such that uj = vj . 
There are at most 2k self‑delimiting programs of length at 
most k computing from input e(uj) to different e(v)’s with 
uj in vertex v as jth entry. Hence, there can be at most 2k 
vertices v with uj as jth entry. Therefore, for every u ∈ V  
and 1 ≤ j ≤ n , there are at most 2k vertices v ∈ V  such that 
vj = uj . The vertex‑degree of graph G is therefore bounded 
by n2k . Each graph can be vertex‑colored by a number of 
colors equal to the maximal vertex degree. This divides the 
set of vertices V into disjoint color classes V = V1

⋃
⋯

⋃
VD 

with D ≤ n2k . To compute e(X) from e(x) with x ∈ X , we 
only need the color class of which e(X) is a member and 
the position of x in n‑vector X. Namely, by construction 
every vertex with the same element in the jth position is 
connected by an edge. Therefore, there is at most a single 
vertex with x in the jth position in a color class. Let x be 
the jth entry of n‑vector X. It suffices to have a program of 
length at most log(n2k) + O(log nk) = k + O(log nk) bits to 
compute e(X) from e(x). From n and k, we can generate G 
and given log(n2k) bits, we can identify the color class Vd 
of e(X). Using another log n bits, we define the position of x 
in the n‑vector X. To make such a program, self‑delimiting 
add a logarithmic term. In total, k + O(log k) suffices since 
O(log k) = O(log n + log nk).

(≥ ) That EGmax(X) ≥ maxx∈X{K(e(X)|e(x)} follows trivi‑
ally from the definitions.   ◻

Proof of Lemma 4.1 (≥ 0 ) Since f (X) ≤ f (x) for all x ∈ X 
the numerator of the right‑hand side of (2.3) is non‑
negative. Since the denominator is also nonnegative, 
we have NWD(X) ≥ 0 . Example of the lower bound: if 
maxx∈X{log f (x)} = log f (X) , then, NWD(X) = 0.

(≤ (log|X|(N∕|X|))∕(|X| − 1)  )  W r i t e  n = |X|  , 
xM = argmaxx∈X f (x) and xm = argminx∈X f (x) . Rewrite (2.3) 
as (n − 1)NWD(X) = log(f (xM)∕f (X))∕ log(N∕f (xm)) . This 
expression can only reach its maximum if f(X) is as small 
as possible which can be achieved independent of the other 
parameters. To this end, the web events e(x) for x ∈ X sat‑
isfy 

⋂
x∈X e(x) is a singleton set which means that f (X) = 1 . 

(For f (X) = 0 we have 
⋂

x∈X e(x) = ∅ and NWD(X) is unde‑
fined.) For f (X) = 1 the expression can be rewritten as 
(n − 1)NWD(X) = logN∕f (xm) f (xM) = � where � is determined 
by (N∕f (xm))� = f (xM) . The side conditions which must be 
satisfied are f (xm) ≤ f (xM) and (n − 1)f (xm) + f (xM) ≤ N  . 
For any fixed f (xM) the value of � is maximal if f (xm) is 
as large as possible which means that f (xm) = f (xM) . Then, 
f (xM) = N�∕(�+1) . With 

⋃
x∈X e(x) = Ω and 

⋂
x∈X e(x) is a 

singleton set, we have f (xM) = (N − 1)∕n + 1 . It follows 
that log((N + n − 1)∕n) = (�∕(� + 1)) logN  . Rewriting 
yields first 1 − logN((N + n − 1)∕n) = 1∕(� + 1) , and then, 
� = (1∕(1 − logN((N + n − 1)∕n))) − 1 = (1∕ logN(Nn∕(N + n − 1)))

−1 . Hence, NWD(X) ≤ (1∕ logN(Nn∕(N + n − 1)) − 1)∕(n − 1)

< (1∕ logN n − 1)∕(n − 1) = (logn(N∕n))∕(n − 1) .   ◻

P r o o f  o f  L e m m a  4 . 3  ( i )  S i n c e  X ⊆ Y  a n d 
because of the condition of item (i) we have 
miny∈Y{log f (y)} = minx∈X{log f (x)} . From X ⊆ Y  also 
fo l l o w s  maxy∈Y{log f (y)} ≥ maxx∈X{log f (x)} ,  a n d 
log f (X) ≥ log f (Y) . Therefore, the numerator of NWD(Y) is 
at least as great as that of NWD(X), and the denominator of 
NWD(Y) equals (|Y| − 1)∕(|X| − 1) times the denominator 
of NWD(X).

(ii) We have minx∈Y log f (y) < minx∈X{log f (x)} . If 
NWD(X) is maximal, then, NWD(Y) is maximal (in both cases 
there is least common similarity of the members of the set). 
Item (ii) follows vacuously in this case. Therefore assume 
that NWD(X) is less than maximal. Write NWD(X) = a∕b 
with a equal to the numerator of NWD(X) and b equal to the 
denominator. If c, d are real numbers satisfying c∕d ≥ a∕b , 
then, bc ≥ ad . Therefore, ab + bc ≥ ab + ad which rear‑
ranged yields (a + c)∕(b + d) ≥ a∕b . If c∕d < a∕b , then by 
similar reasoning, (a + c)∕(b + d) < a∕b.

Assume (4.1) holds. We take the logarithms 
of both sides of (4.1) and rearrange it to obtain 
log f (X) −maxx∈X{log f (x)} − log f (Y) +maxy∈Y{log f (y)} ≥

(minx∈X{log f (x)} −miny∈Y{log f (y)})(|X| − 1)NWD(X) . Let 
the left‑hand side of the inequality be c and the right‑hand 
side of the inequality be dNWD(X). Then
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The inequality holds by the rewritten (4.1) and the a, b, c, d 
argument above since c∕d ≥ NWD(X) = a∕b.

Assume (4.1) does not hold, that is, it holds with 
the ≥ sign replaced by a < sign. We take logarithms 
of both sides of this last version and rewrite it to obtain 
log f (X) −maxx∈X{log f (x)} − log f (Y) +maxy∈Y{log f (y)} . 
Let the left‑hand side of the inequality be c and the right‑
hand side dNWD(X). Since c∕d < NWD(X) = a∕b , we have 
a∕b > (a + c)∕(b + d) by the a, b, c.d argument above. Hence, 
(12.1) holds with the ≤ sign switched to a > sign. It remains 
to prove that NWD(Y) ≥ NWD(Z)(|Z| − 1)∕(|Y| − 1) . This 
follows directly from item (i).   ◻

Proof of Lemma 4.6 The following is a counterexample. Let 
X = {x1} , Y = {x2} , Z = {x3, x4} , maxx∈XY{log f (x)} = 10 ,  
maxx∈XZ{log f (x)} = 10 , maxx∈ZY{log f (x)} = 5 , log f (XY) 
= log f (XZ) = log f (ZY) = 3 , minx∈XY{log f (x)} = minx∈XZ
{f (x)} = minx∈ZY{log f (x)} = 4 ,  and logN = 35 .  This 
arrangement can be realized for queries x1, x2, x3, x4 . (As 
usual, we assume that e(xi) ≠ e(xj) for 1 ≤ i, j ≤ 4 and i ≠ j .) 
Computation shows NWD(XY) > NWD(XZ) + NWD(ZY) 
since 7∕31 > 7∕62 + 1∕62 .   ◻

Proof of Theorem 4.8 We start with the following:

Claim 12.1 EGmax(X) is an admissible web distance function 
and EGmax(X) ≤ D(X) for every computable admissible web 
distance function D.

Proof Clearly EGmax(X) satisfies items (i) and (ii) of Defini‑
tion 4.7. To show it is an admissible web distance, it remains 
to establish the density requirement (iii). For fixed x, con‑
sider the sets X ∋ x and |X| ≥ 2 . We have

since for every x the set {EGmax(X) ∶ X ∋ x & EGmax(X) > 0} 
is the length set of a binary prefix code, and therefore, the 
summation above satisfies the Kraft inequality [16] given by 
(2.1). Hence, EGmax is an admissible distance.

It remains to prove minorization. Let D be a comput‑
able admissible web distance, and the function f defined 
by f (X, x) = 2−D(X) for x ∈ X and 0 otherwise. Since D is 
computable, the function f is computable. Given D, one 
can compute f, and therefore, K(f ) ≤ K(D) + O(1) . Let � 

(12.1)

NWD(X) =
maxx∈X{log f (x)} − log f (X)

(logN −minx∈X{log f (x)})(|X| − 1)

≤
maxy∈Y{log f (y)} − log f (Y)

(logN −miny∈Y{log f (y)})(|X| − 1)

=
|Y| − 1

|X| − 1
NWD(Y).

∑

X∶X∋x & |X|≥2
2−EGmax(X) ≤ 1,

denote the universal distribution [19, 20]. By [20, Theo‑
rem 4.3.2] cD�(X|x) ≥ f (X, x) with cD = 2K(f ) = 2K(D)+O(1) , 
that is, cD is a positive constant depending on D only. By 
[20, Theorem 4.3.4], we have − log�(X|x) = K(X|x) + O(1) . 
Altogether, for every X ∈ X  and for every x ∈ X  
holds log 1∕f (X, x) ≥ K(X|x) + log 1∕cD + O(1) . Hence, 
D(X) ≥ EGmax(X) + log 1∕cD + O(1) .   ◻

By Lemma 2.4, the function EGmax is upper semicomputable 
but not computable. The function G(X) −minx∈X{G(x)} is a 
computable and an admissible function as in Definition 4.7. 
By Claim 12.1, it is an upper bound on EGmax(X) , and 
hence, EGmax(X) < G(X) −minx∈X{G(x)} . Every admissible 
property or feature that is common to all members of X is 
quantized as an upper bound on EGmax(X) . Thus, the closer 
G(X) −minx∈X{G(x)} approximates EGmax(X) , the better it 
approximates the common admissible properties among all 
search terms in X. This G(X) −minx∈X{G(x)} is the numera‑
tor of NWD(X). The denominator is maxx∈X{G(x)}(|X| − 1) , 
a normalizing factor.   ◻
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