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Normalized Compression Distance of Multisets
with Applications

Andrew R. Cohen and Paul M.B. Vitányi

Abstract—Pairwise normalized compression distance
(NCD) is a parameter-free, feature-free, alignment-free,
similarity metric based on compression. We propose an
NCD of multisets that is also metric. Previously, attempts
to obtain such an NCD failed. For classification purposes
it is superior to the pairwise NCD in accuracy and
implementation complexity. We cover the entire trajectory
from theoretical underpinning to feasible practice. It is
applied to biological (stem cell, organelle transport) and
OCR classification questions that were earlier treated with
the pairwise NCD. With the new method we achieved
significantly better results. The theoretic foundation is
Kolmogorov complexity.

Index Terms— Normalized compression distance, multi-
sets or multiples, pattern recognition, data mining, similar-
ity, classification, Kolmogorov complexity, retinal progen-
itor cells, synthetic data, organelle transport, handwritten
character recognition

I. INTRODUCTION

The way in which objects are alike is commonly called
similarity. This similarity is expressed on a scale of 0
to 1 where 0 means identical and 1 means completely
different. A multiset of objects has the property that each
object in the multiset is similar to each other object
below a certain maximal threshold. This maximum is
the subject of the present investigation. We use the
information in an individual object and concentrate on
classification questions.

To define the information in a single finite object
one uses the Kolmogorov complexity [15] of that ob-
ject (finiteness is taken as understood in the sequel).
Information distance [2] is the information required to
transform one in the other, or vice versa, among a
pair of objects. For research in the theoretical direction
see among others [24]. Here we are more concerned
with normalizing it to obtain the so-called similarity

Andrew Cohen is with the Department of Electrical and Com-
puter Engineering, Drexel University. Address: A.R. Cohen, 3120–
40 Market Street, Suite 313, Philadelphia, PA 19104, USA. Email:
acohen@coe.drexel.edu
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metric and subsequently approximating the Kolmogorov
complexity through real-world compressors [19]. This
leads to the normalized compression distance (NCD)
which is theoretically analyzed and applied to general
hierarchical clustering in [4]. The NCD is parameter-
free, feature-free, and alignment-free, and has found
many applications in pattern recognition, phylogeny,
clustering, and classification, for example [1], [13], [14],
[25], [26], [6], [7], [31] and the many references in
Google Scholar to [19], [4]. The question arises of the
shared information between many objects instead of just
a pair of objects.

A. Related Work

In [20] the notion is introduced of the information
required to go from any object in a multiset of objects
to any other object in the multiset. This is applied to ex-
tracting the essence from, for example, a finite nonempty
multiset of internet news items, reviews of electronic
cameras, tv’s, and so on, in a way that works better than
other methods. Let X denote a finite nonempty multiset
of n finite binary strings defined by (abusing the set
notation) X = {x1, . . . , xn}, the constituting elements
(not necessarily all different) ordered length-increasing
lexicographic. We use multisets and not sets, since if
X is a set then all of its members are different while
we are interested in the situation were some or all of
the objects are equal. Let U be the reference universal
Turing machine, for convenience the prefix one as in
Section VI-C. We define the information distance in
X by Emax(X) = min{|p| : U(xi, p, j) = xj for all
xi, xj ∈ X}. It is shown in [20], Theorem 2, that

Emax(X) = max
x:x∈X

K(X|x), (I.1)

up to an additive term of O(log n). Here the func-
tion K is the prefix Kolmogorov complexity as in
Section VI-C. The information distance in [2] be-
tween strings x1 and x2 is denoted by E1(x1, x2) =
max{K(x1|x2),K(x2|x1)}. Here we use the notation
maxx:x∈X K(X|x). The two coincide for |X| = 2 since
K(x, y|x) = K(y|x) up to an additive constant term. In



[27] this notation was introduced and the many results
were obtained for finite nonempty multisets. A review
of some of the above is [21].

B. Results

For classifying an object into one or another of dis-
joint classes we aim for the class of which the NCD
for multisets grows the least. To compute the NCDs
for these classes directly is more straightforward than
using the pairwise NCD and gives significantly better
results (Section IV). To obtain the NCD for multisets we
proceed as follows. First we treat the theory (Section II).
The normalization of the information distance for mul-
tisets retaining the metricity did not succeed in [27].
Here it is analyzed and performed in Subsection II-A.
We require metricity since otherwise the results may
be inconsistent across comparisons. This section is the
theoretic underpinning of the method in terms of the
ideal mathematics notion of Kolmogorov complexity.
Subsequently we approach the Kolmogorov complexities
of the strings involved by practically feasible lengths of
the compressed versions of the strings. We prove first
that the transition from information distance to compres-
sion distance is a metric as well, Subsection II-B. Next,
the compression distance is normalized and proved to
retain the metricity, Subsection II-C. We go into the
question of how to compute this, and how to apply
this to classification in Section III. Then we treat ap-
plications in Section IV. We apply the NCD for mul-
tisets to retinal progenitor cell classification questions,
Section IV-A, and to synthetically generated data, Sec-
tion IV-B. These were earlier treated with the pairwise
NCD. Here we obtain significantly better results. This
was also the case for questions about axonal organelle
transport, Section IV-C. We apply the NCD for multisets
to classification of handwritten digits, Section IV-D.
Although the NCD for multisets does not improve on
the accuracy of the pairwise NCD for this application,
classification accuracy is much improved over either
method individually by combining the pairwise and
multiset NCD with a partitioning algorithm to divide the
data into more similar subsets. This improved combined
approach was too computationally intensive to be run on
the full MNIST dataset, only a subset was considered.
We applied a less computationally demanding approach,
using the faster but less accurate JPEG2000 compression
with no partitioning. This enabled us to process the full
MNIST dataset, still yielding good results. We treat the
data, software, and machines used for the applications in
Section IV-E. We finish with conclusions in Section V.
In Section VI-A we define strings; in Section VI-B

computability notions; in Section VI-C Kolomogorov
complexity (K); in Section VI-D multisets; in Sec-
tion VI-E information distance, and in Section VI-F
metric. The proofs are deferred to Section VI-G.

II. THE THEORY

Let X be the set of length-increasing lexicographic
ordered finite nonempty multisets of finite nonempty
strings (Sectiones VI-A, VI-D). The quantitative differ-
ence in a certain feature between the strings in a multiset
is an admissible multiset distance if it is a mapping
D : X → R+ with R+ is the set of nonnegative real
numbers, it is upper semicomputable (Section VI-B), and
the following density condition for every string x holds∑

x:x∈X & D(X)>0

2−D(X) ≤ 1, (II.1)

where the X’s run over X . This requirement exclude
trivial distances such as D(X) = 1/2 for every X .

A. Normalized Information Distance for Multisets

By (I.1) we have Emax = maxx∈X{K(X|x)} +
O(log |X|). Theorem 5.2 in [27] shows that Emax (the
proof shows this actually for maxx∈X{K(X|x)}) is
universal in that among all admissible multiset distances
it is always least up to an additive constant. That is,
it accounts for the all computable features (properties)
which all the elements of the multiset share.

Admissible multiset distances as defined above are
absolute, but if we want to express similarity, then we
are more interested in relative ones. For example, if
a multiset X of strings of each about 1,000,000 bits
has information distance maxx∈X{K(X|x)} = 1,000
bits, then we are inclined to think that those strings are
similar. But if a multiset Y consists of strings of each
about 1,100 bits and maxy∈Y {K(Y |y)} = 1,000 bits,
then we think the strings in Y are different.

To express similarity we therefore need to normalize
the information distance in a multiset. It should give
a similarity with distance 0 when the objects in a
multiset are maximally similar (that is, they are equal),
and distance 1 when they are maximally dissimilar. We
desire the normalized version of the universal multiset
information distance to be also a metric.

For pairs of objects x, y the normalized version e of
Emax is defined in [19], [4] by

e(x, y) =
max{K(x, y|x),K(x, y|y}

max{K(x),K(y)}
. (II.2)

It takes values in [0, 1] up to an additive term of
O(1/K(x, y)). It is a metric up to additive terms
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O((logK)/K), where K denotes the maximum of the
Kolmogorov complexities involved in each of the metric
(in)equalities, respectively. A normalization formula for
multisets of more than two elements ought to reduce to
that of (II.2) for the case of multisets of two elements.
The most natural definition of a normalized information
distance for multisets is a generalization of (II.2):

e1(X) =
maxx∈X{K(X|x)}

maxx∈X{K(X \ {x})}
. (II.3)

However e1 is not a metric. For example A = {x}, B =
{y, y}, C = {y},K(x) = n,K(x|y) = n,K(y) = 0.9n
and by using (VI.1) we have K(x, y) = 1.9n,K(y|x) =
0.9n. But e1(AB) = K(x|y)/K(x, y) = n/1.9n ≈ 1/2,
and e1(AC) = K(x|y)/K(x) = n/n = 1, e1(CB) =
K(y|y)/K(y) = 0/0.9n = 0. This shows that the
triangle inequality is violated for e1. The reason is the
following:

Lemma II.1. Let X,Y ∈ X and d : X → R+ be a
distance that satisfies the triangle inequality of a metric.
If Y ⊆ X then d(Y ) ≤ d(X).

The next attempt is nondecreasing over supersets.

Definition II.2. Let X ∈ X . The normalized informa-
tion distance (NID) for multisets with |X| ≥ 2 is

e(X) = max

{
maxx∈X{K(X|x)}

maxx∈X{K(X \ {x})}
,max
Y⊂X
{e(Y )}

}
.

(II.4)
For |X| = 1 we set e(X) = 0.

For |X| = 2 the value of e(X) reduces to that of
(II.2). Instead of “distance” for multisets one can also use
the term “diameter.” This does not change the acronym
NID. The information diameter of a pair of objects is
the familiar NID distance between these objects.

Theorem II.3. For every X ∈ X we have 0 ≤ e(X) ≤
1.

Remark II.4. The least value of e(X) is reached if
all occurrences of elements of X are equal, say x.
In that case 0 ≤ e(X) ≤ O(K(|X|)/K(X \ {x})).
The greatest value e(X) = 1 − O(1/K(X \ {x}))
is reached if maxx∈X{K(X|x)} = maxx∈X{K(X \
{x})+O(1). This is shown as follows: (≤) trivially there
is an O(1)-bit program computing maxx∈X{K(X|x)}
from maxx∈X{K(X \ {x}); and (≥) if X = {x, y},
K(y|x) + O(1) = K(y), and K(x) > K(y), then
K(X|x) = K(y)±O(1).

Another matter is the consequences of (II.4). Rewrite
both the numerator and the denominator of (II.3) (that
is, the left-hand term inside the maximalization of (II.4))

by the symmetry of information law (VI.1). Then we
obtain with equality up to additive logarithmic terms in
the numerator and denominator

e1(X) =
maxx∈X{K(X|x)}

maxx∈X{K(X \ {x})}
(II.5)

=
K(X)−minx∈X{K(x)}

K(X)−minx∈X{K(x|X \ {x})}
(II.6)

= 1− minx∈X{K(x)} −minx∈X{K(x|X \ {x})}
K(X)−minx∈X{K(x|X \ {x})}

.

That is, e1(X) → 1 (and hence e(X) → 1 while
e1(X) = e(X) for infinitely many X), if both

K(X)→∞ and
minx∈X{K(x)}

K(X)
→ 0.

This happens, for instance, if |X| = n, minx∈X = 0,
K(X) > n, and n → ∞. Also in the case that
X = {x, x, . . . , x} (n copies of a fixed x) and n→∞.
Then K(X) → ∞ and minx∈X{K(x)}/K(X) → 0
with |X| → ∞. To consider another case, we have
K(X) → ∞ and minx∈X{K(x)}/K(X) → 0 if
minx∈X{K(x)} = o(K(X)) and maxx∈X{K(x)} −
minx∈X{K(x)} → ∞, that is, if X consists of at least
two elements, the element of minimum Kolmogorov
complexity is always the same, and gap between the
minimum Kolmogorov complexity and the maximum
Kolmogorov complexity of the elements grows to infinity
when K(X)→∞. ♦

Remark II.5. When is Y ⊂ X and e(X) = e(Y ) while
e1(X) < e1(Y )? This happens if

K(Y )−minx∈Y {K(x)}
maxx∈Y {K(Y \ {x})}

>
K(X)−minx∈X{K(x)}
maxx∈X{K(X \ {x})}

,

(II.7)
ignoring logarithmic additive terms. An example is X =
{x, y, y} and Y = {x, y}. Then Y ⊂ X . The left-hand
side of (II.7) equals 1 and the right-hand side equals
≈ 1/2. Therefore, e1(Y ) > e1(X) and by (II.4) we
have e(X) = e(Y ). ♦

Theorem II.6. The function e as in (II.4) is a metric
up to an additive O((logK)/K) term in the respective
metric (in)equalities, where K is the largest Kolmogorov
complexity involved the (in)equality.

B. Compression Distance for Multisets

If G is a real-world compressor. then K(x) ≤ G(x)
for all strings x. We assume that the notion of the real-
world compressor G used in the sequel is “normal” in
the sense of [4]. Let X ∈ X and X = {x1, . . . , xn}.
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The information distance Emax(X) can be rewritten as

max{K(X)−K(x1), . . . ,K(X)−K(xn)}, (II.8)

up to an additive term of O(logK(X)), by (VI.1). The
term K(X) represents the length of the shortest program
for X .

Definition II.7. By G(x) we mean the length of string
x when compressed by G. Consider X ∈ X as a string
consisting of the concatenated strings of its members
ordered length-increasing lexicographic with a means to
tell the constituent elements apart.

EG,max(X) = max{G(X)−G(x1), . . . ,

G(X)−G(xn)} (II.9)
= G(X)−min

x∈X
{G(x)}. (II.10)

Approximation of Emax(X) by a compressor G is
straightforward. We need to show Emax(X) is an ad-
missible distance and a metric.

Lemma II.8. If G is a normal compressor, then
EG,max(X) is an admissible distance.

Lemma II.9. If G is a normal compressor, then
EG,max(X)) is a metric with the metric (in)equalities
satisfied up to logarithmic additive precision.

C. Normalized Compression Distance for Multisets

The transformation of e(X) as in (II.4) by using the
compressor G based approximation of the Kolmogorov
complexity K, is called the normalized compression
distance (NCD) for multisets:

NCD(X) = max

{
G(X)−minx∈X{G(x)}
maxx∈X{G(X \ {x}}

,

max
Y⊂X
{NCD(Y )}

}
, (II.11)

for |X| ≥ 2 and NCD(X) = 0 for |X| = 1.
From (II.11) it follows that the NCD is in the real

interval [0, 1]. Its value indicates how different the files
are. Smaller numbers represent more similar files, larger
numbers more dissimilar files. In practice the upper
bound may be 1 + ε. This ε is due to imperfections
in our compression techniques, but for most standard
compression algorithms one is unlikely to see an ε above
0.1 (in our experiments gzip and bzip2 achieved such
NCD’s above 1, but PPMZ always had NCD at most 1. If
G(X)−minx∈X{G(x)} > 1.1(maxx∈X{G(X \ {x}}),
then the total length of compressed separate files is much
less than the length of the compressed combination of
those files. This contradicts the notion of compression.

If the compressor G is that bad then one should switch
to a better one.

Theorem II.10. If the compressor is normal, then the
NCD for multisets is a normalized admissible distance
and satisfies the metric (in)equalities up to an ignorable
additive term, that is, it is a similarity metric.

III. COMPUTING THE NCD AND ITS APPLICATION

Define

NCD1(X) =
G(X)−minx∈X{G(x)}
maxx∈X{G(X \ {x}}

, (III.1)

the first term of (II.11) inside the maximalization. As-
sume we want to compute NCD(X) and |X| = n ≥ 2.
In practice it seems that one can do no better than the
following (initialized with Mi = 0 for i ≥ 1):

for i = 2, . . . , n

do Mi := max{maxY {NCD1(Y ) : Y ⊂ X, |Y | =
i},Mi−1} od
NCD(X) := Mn

However, this process involves evaluating the NCD’s
of the entire powerset of X requiring at least order 2n

time.

Theorem III.1. Let X be a multiset and n = |X|. There
is a heuristic algorithm to approximate NCD(X) from
below in O(n2) computations of G(Y ) with Y ⊆ X .
(Assuming every x ∈ Y to be a binary string of length
at most m and that G compresses in linear time, then
G(Y ) is computed in O(nm) time.)

This is about computing or approximating the NCD.
However, the applications in Section IV concern classi-
fications. Given a finite set of classes we consider the
changes in normalized compression distances of each
class under addition of the element to be classified. To
compare these changes we require as much discrimina-
tory power as possible. Since the NCD of (II.11) is a
smoothed version of the NCD1 of (III.1), we use the
latter. Let us illustrate the reasons in detail.

Theoretic Reason for Using NCD1 Instead of NCD.
Suppose we want to classify x as belonging to one of
the classes represented by multisets A,B, . . . , Z. Our
method is to consider NCD(A

⋃
{x})−NCD(A), and

similar for classes represented by B, . . . , Z, and then
to select the least difference. However, this difference is
always greater or equal to 0 by Lemma II.1. If we look at
NCD1(A

⋃
{x})−NCD1(A) then the difference may

be negative, zero, or positive and possibly greater in
absolute value. This gives larger discriminatory power
in the classes selection.
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Reason from Practice for Using NCD1 Instead of
NCD. This is best illustrated with details from the
proof of Theorem III.1, and we defer this discussion to
Remark VI.5 the end of that proof in Section VI-G.

Kolmogorov Complexity of Natural Data The Kol-
mogorov complexity of a file is a lower bound on the
length of the ultimate compressed version of that file.
Above we approximate the Kolmogorov complexities
involved from above by a real-world compressor G.
Since the Kolmogorov complexity is incomputable, in
the approximation we never know how close we are to it.
However, we assume that the natural data we are dealing
with contain no complicated mathematical constructs
like π = 3.1415 . . . or Universal Turing machines. In
fact, we assume that the natural data we are dealing
with contains mostly effective regularities that a good
compressor like G finds. Under those assumptions the
Kolmogorov complexity K(x) of object x is not much
smaller than the length of the compressed version G(x)
of the object.

Partition Algorithm Section IV-D describes an algo-
rithm that we developed to partition data for classifica-
tion in cases where the classes are not well separated
according to (IV.2) in that section. This results in that
there are no subsets of a class with separation larger than
that of the smallest inter-class separation. This heuristic
works well in practice, although it is computationally
demanding for large sets.

IV. APPLICATIONS

We detail preliminary results using the NCD for
multisets. (In the classification examples below we use
the non-smooth version NCD1 to which all remarks
below also apply.) For classification of multisets with
more than two elements we use the NCD1 for the
reasons as given in Section III.

The NCD for pairs as originally defined [4] has been
applied in a wide range of application domains—without
domain-specific knowledge. In [12] a close relative was
compared to every time series distance measure pub-
lished in the decade preceding 2004 from all of the major
data analysis conferences and found to outperform all
other distances aside from the Euclidean distance with
which it was competitive. The NCD for pairs has also
been applied in biological applications to analyze the
results of segmentation and tracking of proliferating cells
and organelles [6], [7], [29].

The NCD is unique in allowing multidimensional
time sequence data to be compared directly, with no
need for alignment or averaging. The NCD is also
parameter-free. Specifically, this means that normalized

distance between pairs or multisets of digital objects
can be computed with no additional inputs or domain
knowledge required. It is important to note that many, if
not all, of the analytical steps such as segmentation and
feature extraction that are prerequisite to the application
of the NCD may still require application-specific param-
eters. For example, parameters dealing with necessarily
application-specific factors such as imaging characteris-
tics and object appearances and behaviors are required
by most (if not all) current algorithms for segmenting
and tracking objects over time. Still, by isolating these
application specific values in a modular way it enables
the computation of distances and subsequent classifi-
cation steps to avoid the need for empirical or other
approaches to determining additional parameters specific
to the similarity measurement.

Here, we compare the performance of the proposed
NCD for multisets (always in the form of the NCD1) to
that of a previous application of the NCD for pairs for
predicting retinal progenitor cell (RPC) fate outcomes
from the segmentation and tracking results from live
cell imaging [7]. We also apply the proposed NCD
to a synthetic data set previously analyzed with the
pairwise NCD [6]. Finally, we apply the proposed NCD
for multisets to the classification of handwritten digits,
an application that was previously evaluated using the
pairwise NCD in [4].

A. Retinal Progenitor Cell Fate Prediction

In [7], long-term time-lapse image sequences showing
rat RPCs were analyzed using automated segmentation
and tracking algorithms. Images were captured every five
minutes of the RPCs for a period of 9–13 days. Up to
100 image sequences may be captured simultaneously in
this manner using a microscope with a mechanized stage.
For an example see Figure 1. At the conclusion of the
experiment, the “fate” of the offspring produced by each
RPC was determined using a combination of cell mor-
phology and specific cell-type fluorescent markers for the
four different retinal cell types produced from embryonic
day 20 rat RPCs [3]. At the conclusion of the imaging,
automated segmentation and tracking algorithms [28]
were applied to extract the time course of features for
each cell. These automated segmentation and tracking
algorithms extract a time course of feature data for each
stem cell at a five-minute temporal resolution, showing
the patterns of cellular motion and morphology over
the lifetime of the cell. Specifically, the segmentation
and tracking results consisted of a 6-dimensional time
sequence feature vector incorporating two-dimensional
motion (∆x,∆y), as well as the direction of motion,
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Fig. 1: Example frames from two retinal progenitor
cell (RPC) image sequences showing segmentation (blue
lines) and tracking (red lines) results. The type of cells
the RPCs will eventually produce can be predicted
by analyzing the multidimensional time sequence data
obtained from the segmentation and tracking results. The
NCD for multisets significantly improves the accuracy of
the predictions.

total distance travelled, cellular size or area (in pixels)
and a measure of eccentricity on [0, 1] (0 being linear, 1
being circular shape). The time sequence feature vectors
for each of the cells are of different length and are not
aligned. The results from the segmentation and tracking
algorithms were then analyzed as follows.

The original analysis of the RPC segmentation and
tracking results used a multiresolution semi-supervised
spectral analysis based on the originally formulated
pairwise NCD. An ensemble of distance matrices con-
sisting of pairwise NCDs between quantized time se-
quence feature vectors of individual cells is generated
for different feature subsets f and different numbers of
quantization symbols n for the numerical time sequence
data. The fully automatic quantization of the numeric
time sequence data is described in [6]. All subsets of the
6-dimensional feature vector were included, although it
is possible to use non-exhaustive feature subset selection
methods such as forward floating search, as described in
[6]. Each distance matrix is then normalized as described
in [7], and the eigenvectors and eigenvalues of the
normalized matrix are computed. These eigenvectors are
stacked and ordered by the magnitude of the correspond-
ing eigenvalues to form the columns of a new “spectral”
matrix. The spectral matrix is a square matrix, of the
same dimension N as the number of stem cells being
analyzed. The spectral matrix has the important property
that the ith row of the matrix is a point in RN (R is the
set of real numbers) that corresponds to the quantized
feature vectors for the ith stem cell. If we consider only
the first k columns, giving a spectral matrix of dimension
N × k, and run a K-Means clustering algorithm, this
yields the well-known spectral K-Means algorithm [11].
If we have known outcomes for any of the objects that
were compared using the pairwise NCD, then we can

formulate a semi-supervised spectral learning algorithm
by running for example nearest neighbors or decision
tree classifiers on the rows of the spectral matrix. This
was the approach adopted in [7].

In the original analysis, three different sets of known
outcomes were considered. First, a group of 72 cells
were analyzed to identify cells that would self-renew
(19 cells), producing additional progenitors and cells that
would terminally differentiate (53 cells), producing two
retinal neurons. Next, a group of 86 cells were consid-
ered on the question of whether they would produce
two photoreceptor neurons after division (52 cells), or
whether they would produce some other combination
of retinal neurons (34 cells). Finally, 78 cells were
analyzed to determine the specific combination of retinal
neurons they would produce, including 52 cells that
produce two photoreceptor neurons, 10 cells that produce
a photoreceptor and bipolar neuron, and 16 cells that
produced a photoreceptor neuron and an amacrine cell.
Confidence intervals are computed for the classifica-
tion results by treating the classification accuracy as
a normally distributed random variable, and using the
sample size of the classifier together with the normal
cumulative distribution function (CDF) to estimate the
region corresponding to a fixed percentage of the dis-
tribution [30, pp. 147–149]. For the terminal versus
self-renewing question, 99% accuracy was achieved in
prediction using a spectral nearest neighbor classifier,
with a 95% confidence interval of [0.93, 1.0]. In the
sequel, we will list the 95% confidence interval in square
brackets following each reported classification accuracy.
For the two photoreceptor versus other combination
question, 87% accuracy [0.78, 0.93] was achieved using
a spectral decision tree classifier. Finally, for the specific
combination of retinal neurons 83% accuracy [0.73, 0.9]
was achieved also using a spectral decision tree classifier.

Classification using the newly proposed NCD (II.4)
is much more straightforward and leads to significantly
better results. Given multisets A and B, each consisting
of cells having a given fate, and a cell x with unknown
fate, we proceed as follows. We assign x to whichever
multiset has its distance (more picturesque “diameter”)
increased the least with the addition of x. In other words,
if

NCD1(Ax)−NCD1(A) < NCD1(Bx)−NCD1(B),
(IV.1)

we assign x to multiset A, else we assign x to multiset B.
(The notation Xx is shorthand for the multiset X with
one occurrence of x added.) Note that for classification
purposes we consider the impact of element x on the
NCD1 (III.1) only and do not evaluate the full NCD
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for classification. We use the NCD1 in (IV.1) rather than
the NCD because the NCD1 has the ability to decrease
when element x contains redundant information with
respect to multiset A. See also the reasons in Section III.

The classification accuracy improved considerably us-
ing the newly proposed NCD for multisets. For the
terminal versus self-renewing question, we achieved
100% accuracy in prediction [0.95,1.0] compared to
99% accuracy [0.93,1.0] for the multiresolution spectral
pairwise NCD. For the two photoreceptor versus other
combination question, we also achieved 100% accuracy
[0.95,1.0] compared to 87% [0.78,0.93]. Finally, for the
specific combination of retinal neurons we achieved 92%
accuracy [0.84,0.96] compared to 83% [0.73,0.9] with
the previous method.

B. Synthetic Data

In [6], an approach was developed that used the
pairwise NCD to compute a concise and meaningful
summarization of the results of automated segmentation
and tracking algorithms applied to biological image
sequence data obtained from live cell and tissue mi-
croscopy. A synthetic or simulated data set was analyzed
using a method that incorporated the pairwise NCD.
allowing precise control over differences between objects
within and across image sequences. The features for
the synthetic data set consisted of a 23-dimensional
feature vector. The seven features relating to 3-D cell
motion and growth were modeled as described below,
the remaining 16 features were set to random values.
Cell motility was based on a so-called “run-and-tumble”
model similar to the motion of bacteria. This consists
of periods of rapid directed movement followed by a
period of random undirected motion. Cell lifespan was
modeled as a gamma distributed random variable with
shape parameter 50 and scale parameter 10. Once a cell
reaches its lifespan it undergoes cell division, producing
two new cells, or, if a predetermined population limit
has been reached, the cell undergoes apoptosis, or dies.
The final aspect of the model was cell size. The initial
cell radius, denoted r0, is a gamma-distributed random
variable with shape parameter 200 and scale parameter
0.05. The cells growth rate is labeled υ. At the end of its
lifespan, the cell doubles its radius. The radius at time t
is given by

r(t) = r0 + r0 ·
(

t− t0
lifespan

)υ
In the original analysis, two different populations were
simulated, one population having an υ value of 3, the
second having an υ value of 0.9.

The data was originally analyzed using a multiresolu-
tion representation of the time sequence data along with
feature subset selection. Here we repeat the analysis for
a population of 656 simulated cells, with between 228
and 280 time values for each 23 dimensional feature
vector. This data was analyzed using a minimum distance
supervised classifier with both the original pairwise and
the proposed NCD for multisets. Omitting the feature
subset selection step and incorporating the entire 23
dimensional feature vector, the pairwise NCD was 57%
correct [0.53,0.61] at classifying the data, measured by
leave-one-out cross validation. Using NCD for multisets,
we achieved 91% correct [0.89,.93] classification, a
significant improvement. When a feature subset selec-
tion step was included, both approaches achieved 100%
correct classification.

C. Axonal Organelle Transport

Deficiencies in the transport of organelles along the
neuronal axon have been shown to play an early and
possibly causative role in neurodegenerative diseases
including Huntington’s disease [9]. In [29], we analyzed
time lapse image sequences showing the transport of
fluorescently labeled Brain Derived Neurotrophic Factor
(BDNF) organelles in a wild-type (healthy) population of
mice as well as in a mutant huntingtin protein population.
The goal of this study was to examine the relationship
between BDNF transport and Huntington’s disease. The
transport of the fluorescently labeled BDNF organelles
was analyzed using a newly developed multi-target track-
ing approach we termed ”Multitemporal Association
Tracking” (MAT). In each image sequence, organelles
were segmented and then tracked using MAT and in-
stantaneous velocities were calculated for all tracks.

Image data was collected over eight time-lapse ex-
periments, with each experiment containing two sets of
simultaneously captured image sequences, one for the
diseased population and one for the wild type population.
There were a total of 88 movies from eight data sets.
Although the pairwise NCD was not able to accurately
differentiate these populations for individual image se-
quences, by aggregating the image sequences so that all
velocity data from a single experiment and population
were considered together, we were able to correctly
classify six of the eight experiments as wild type ver-
sus diseased for 75% correct classification accuracy.
Analyzing the velocity data from the individual image
sequences using pairwise NCD with a minimum distance
classifier, we were able to classify 57% [0.47,0.67] of the
image sequences correctly into wild type versus diseased
populations. Using the NCD for multisets formulation

7



described in (IV.1) with the same minimum distance
approach, as described in the previous sections, we
achieved a classification accuracy of 97% [0.91,0.99].

D. NIST handwritten digits

In addition to the previous applications, we applied the
new NCD for multisets to analyzing handwritten digits
from the MNIST handwritten digits database [17], a free
and publicly available version of the NIST handwrit-
ten digits database 19 that was classified in [4]. The
NIST data consists of 128x128 binary images while the
MNIST data has been normalized to a 28x28 grayscale
(0,..,255) images. The MNIST database contains a total
of 70,000 handwritten digits consisting of 60,000 train-
ing examples and 10,000 test examles. Here we consider
only the first 1000 digits of the training set as a proof
of principle due to the time requirements of the parti-
tioning algorithm described below. We also considered
the entire data base using a much faster method based
on JPEG2000 compression but at the price of poorer
accuracy. The images are first scaled by a factor of four
and then adaptive thresholded using an Otsu transform
to form a binary image. The images are next converted
to one-dimensional streams of binary digits and used
to form a pairwise distance matrix between each of the
1000 digits. Originally the input looks as Figure 2.

Fig. 2: Example MNIST digits. Classification accuracy
for this application was improved by combining the
proposed NCD for multisets with the pairwise NCD.

Following the same approach as described for the
retinal progenitor cells above, we form a spectral matrix
from this pairwise distance matrix. In [4], a novel
approach was developed for using the distances as input

to a support vector machine also for a subset of the NIST
handwritten digits dataset. Random data examples along
with unlabeled images of the same size were selected and
used as training data, achieving a classification accuracy
of 85% on a subset of the unscaled NIST database 19
digits. We follow the same approach of incorporating
the distances into a supervised learning framework,
using our spectral matrix as input to an ensemble of
discriminant (Gaussian mixture model) classifiers [10].
Using leave-one-out cross validation, this approach using
the pairwise NCD achieved 82% correct classification
[0.79,0.84] for the 1000 scaled and resized MNIST
digits.

In applying the multisets NCD to this data, we mea-
sured the separation between classes or the margin.
Given multisets A and B, each corresponding to a class
in the testing data, we measure the separation between
the two classes as

NCD1(AB)−NCD1(A)−NCD1(B). (IV.2)

This follows directly from the relevant Venn diagram.
Our goal is to partition the input classes such that the
separation between classes is larger than any separation
between subsets of the same class, subject to a minimum
class size. We have found that this approach works
well in practice. We have developed an expectation
maximization algorithm to partition the classes such that
there exist no subsets of a class separated by a margin
larger than the minimum separation between classes.

Our expectation maximization algorithm attempts to
partition the classes into maximally separated subsets
as measured by (IV.2). This algorithm, that we have
termed K-Lists, is modeled after the K-means algorithm.
Although it is suitable for general clustering, here we
use it to partition the data into two maximally separated
subsets. The algorithm is detailed in Table I. There
is one important difference between proposed K-Lists
algorithm and the K-Means algorithm. Because we are
not using the centroid of a cluster as a representative
value as in K-Means, but rather the subset itself via the
NCD for multisets, we only allow a single element to
change subsets at every iteration. This prevents thrashing
where groups of elements chase each other back and
forth between the two subsets. the algorithm is run
until it either can not find any partitions in the data
that are separated by more than the maximal inter-class
separation, or until it encounters a specified minimum
cluster size.

For the retinal progenitor cell data and synthetic
data sets described in the previous sections, the K-
Lists partitioning algorithm was not able to find any
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1) (Initialize) Pick two elements (seeds) of X at
random, assigning one element to each A and B.
For each remaining element x, assign x to the
closer one of A or B using pairwise NCD to the
random seeds

2) For each element x, compute the distance from
x to class A and B using (IV.1) and assign to
whichever class achieves the smaller distance.

3) Choose the single element that wants to change
subsets, e.g. from A to B or vice versa and whose
change maximizes NCD1(AB) − NCD1(A) −
NCD1(B) and swap that element from A to B or
vice versa.

4) Repeat steps 2 and 3 until no more elements want
to change subsets or until we exceed e.g. 100
iterations.

Repeat the whole process some fixed number of times
(here we use 5) for each X and choose the subsets that
achieve the maximum of NCD1(AB) − NCD1(A) −
NCD1(B). If that value exceeds the minimum inter-
class separation and the subsets are not smaller than the
specified minimum size then divide X into A and B and
repeat the process for A and B. If the value does not ex-
ceed the minimum inter-class separation of our training
data or the subsets exceed the specified minimum size,
then accept X as approximately monotonic and go on
to the next class.
TABLE I: Partitioning algorithm for identifying max-
imally separated subsets For each class (multiset) X ,
partition X into two subsets A and B such that
NCD1(AB)−NCD1(A)−NCD1(B) is a maximum.

subsets that had a larger separation as measured by
(IV.2) compared to the separation between the classes.
For the MNIST handwritten digits data, the partitioning
algorithm was consistently able to find subsets with
separation larger than the between class separation. The
partitioning was run for a range of different minimum
cluster sizes (10%, 20% and 30% of the original class
size). This results in multiple distances to each orig-
inal digit class. Here we included the two minimum
distances to each class as input to the ensemble of
discriminant classifiers. This resulted in a classification
accuracy of 85% [0.83,0.87] for the 30 element partition
size. The other two partition sizes had marginally lower
classification accuracy. Finally, we combined the two
minimal class distances from the partitioned multisets
data along with the pairwise spectral distances described
above as input to the classification algorithm, resulting
in a combined leave-one-out cross validation accuracy of

99.1% correct [0.983,0.995], a significant improvement
over the accuracy achieved using either the pairwise
or multisets NCD alone. This is without any essential
domain-specific knowledge.

The partitioning algorithm is based on an expectation-
maximization approach that generates an approximate
solution to NP-hard problem of finding combinations of
elements (partitions) from the training set that are more
similar to each other and less similar other partitions.
Given a data set of size N , the number of iterations
required by the K-Lists algorithm is at least O(logN)
for the case where each iteration partitions the data in
two equal size sets, and at most O(N) corresponding to
the case where each iteration partitions the data into sets
of size N − 1 and 1. At each iteration, N computations
of the NCD must be computed, with each distance
taking O(N) compression operations. The complexity
of the K-Lists algorithm is therefore O(N2 logN) in
the best case, and O(N3) worst case. As described in
the Section IV-E below, the time constraints imposed by
the partitioning algorithm precluded our applying this
approach to the full MNIST dataset, but we still believe
these results an encouraging step. At this time of writing
the record using any method and computing power, is
held by a classifier for the MNIST data which achieves
an accuracy of 99.77% correct [5] (according to the
MNIST website http://yann.lecun.com/exdb/mnist/). Us-
ing a medium sized network trained using the approach
of Ciresan et al.. [5], classification errors were evenly
distributed across the test set, with approximately 10%
of the errors occuring in the 1000 digit subset that was
analyzed here. Their approach also required less than one
day to fully process and classify the 70,000 elements of
the training and test sets.

A significant drawback of the multiset NCD with
partitioning-based classification approach for the MNIST
digits is that the underlying bzip2 compression is
extremely computationally demanding. Running on a 94
core Xeon and i7 cluster, partitioning and classifying
1,000 MNIST digits required nearly five days of compute
time. Extending this naively to partition the full 60,000
element MNIST training set would increase this time
requirement by at least on the order of 602 log 60,
clearly intractable. The major component of the time
requirement is the bzip2 compression step. In other
ongoing experiments using the NCD multiples approach
for biological image classification applications in mito-
sis detection and stem cell viability categorization we
have found that using the JPEG2000 image compres-
sion algorithm achieves good results with the NCD
multiples, results that will be submitted to a biological
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journal. The compression ratio achieved using bzip2
is far better, nearly four times as much compression
compared to JPEG2000 but JPEG2000 runs nearly 25
times faster compared to bzip2 for compressing a
single digit from the MNIST dataset. This makes it
feasible to process the full 70,000 element dataset using
JPEG2000 compression. Following the approach from
[4], we picked 500 five element sets randomly for each
digit from the training data. We computed the NCD
multiples distances from each remaining training element
to these sets using JPEG2000 as the compressor. The
distances from the remaining training data to each of
the training sets were then used to train a supervised
classifier. Finally, we compute the distance from each
test element to the training sets and use the resulting
distances as input to the supervised classifier. Using
the same 94 core cluster the entire process required
approximately 50 hours to process and classify the full
MNIST dataset. We achieved classification accuracy of
81% [0.802,0.818] correct. For the supervised classifier,
we used the same ensemble of discriminant classifiers
used in the partitioning above. We also obtained the
same result in signicantly less training time using a feed-
forward neural network for the supervised classier. By
many standards, the MNIST dataset is not considered
extremely large, but processing this fully with the NCD
can still be prohibitively time intensive. Finding more
time efficient approaches to process very large datasets
will be a challenge going forward for approaches based
on the NCD.

E. Data, Software, Machines

All of the software and the time sequence data for
the RPC fate outcome problem can be downloaded from
http://bioimage.coe.drexel.edu. The software is imple-
mented in C and uses MPI for parallelization. All data
compression was done with bzip2 using the default
settings, except that JPEG2000 used to analyze the full
MNIST dataset. Data import is handled by a MATLAB
script that is also provided. The same software imple-
mentation was used for the retinal progenitors, the axonal
organelle transport and the synthetic dataset. For the
analysis of the full MNIST dataset using JPEG2000,
all of the software was implemented in MATLAB, and
the MATLAB JPEG2000 implementation with default
settings was used. The software has been run on a
small cluster, consisting of 94 (hyperthreaded for 188
parallel threads of execution) Xeon and i7 cores running
at 2.9 Ghz. The RPC and synthetic classification runs
in approximately 20 minutes for each question. For the
MNIST handwritten digits, the classification was applied

to a 1,000 digit subset of the full data due to the time re-
quirements of the partitioning algorithm. Execution time
for the partitioning algorithm vary due to the random
initialization of the algorithm, but ranged between 24–
36 hours for each of the three minimum partition sizes
that were combined for classification. The subsequent
distance calculations for cross-validation required from
1-6 hours for each partition size. The total time required
to partition and classify the 1000 element subset of the
MNIST test data was nearly five days. Using JPEG2000
compression significantly reduces the time requirements
for the MNIST data. JPEG2000 was nearly 25 times
faster compared to bzip2, but bzip2 achieved four
times the compression ratio. The JPEG2000-based anal-
ysis of the MNIST dataset required approximately 50
hours to process and classify the full MNIST dataset.

V. CONCLUSION

An object capable of being manipulated in a com-
puter is a string. The information distance of a multiset
of strings (each string can occur more than once) is
expressed as the length of the shortest binary program
that can transform any string of the multiset into any
other string of the multiset. If the multiset consists
of identical strings then this length is small, and if
it consists of very different strings then this length is
large. By dividing the realized distance by the maximally
possible distance we obtain a value between 0 and 1.
This value is a formalization of the similarity of the
strings in the multiset. We present necessary conditions
for such a formal notion to be a metric. The proposed
similarity is called the normalized information distance
for multisets, and reduces to the formulation in [19],
[4] for pairs. The similarity is expressed in terms of
the incomputable Kolmogorov complexity and shown
to possess all relevant computable properties, it is in
normalized form, a metric, and it ranges from 0 to
1. Subsequently the Kolmogorov complexities involved
are approximated from above by compression programs
leading to the normalized compression distance (NCD)
for multisets.

In classification problems the multiset version is con-
ceptually simpler than the pairwise version. Additionally
we showed that it is also performs better. One chal-
lenge to the NCD in general, and particularly to the
more computationally demanding multiples formulation
of the NCD is the time requirement. As in the MNIST
dataset, using different compression algorithms such
as JPEG2000 can reduce the time needed to process
the data, but with a potential to decrease classification
accuracy. There is also the question, as datasets become
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very large, of how to best present data to the compressor.
Partitioning is one approach to divide large datasets into
more manageable subsets for analysis with the NCD.
Still, there will be a need moving forward to find new
ways to best leverage the capabilities of the multiset
NCD and of the underlying compression algorithms for
detecting similarities in complex data.

The NCD for multisets is applied to previous appli-
cations where the pairwise NCD was used in order that
comparison is possible. In some applications, including
retinal progenitor cell fate prediction, axonal organelle
transport in neurodegenerative disease and the analysis
of simulated populations of proliferating cells, the new
NCD for multisets obtained major improvements over
the pairwise NCD. For these applications, the use of the
NCD allowed a single software tool to analyze the data,
with no application specific settings for the analysis. The
ability of the NCD to compare multidimensional time
sequence data directly, with no parameters or alignment
is especially useful for diverse biological time sequence
data. The NCD needs no application specific knowl-
edge, making it especially well suited for exploratory
investigation of data with unknown chacteristics. In other
applications such as the MNIST handwritten digits, the
NCD for multisets alone did not significantly improve
upon the result from the pairwise NCD, but a significant
overall improvement in accuracy resulted by combining
both distance measures. For the MNIST dataset, we
did modify the way we presented the input data to
the NCD software, partitioning the large amount of
data into smaller sets more effectively classified by the
compressor. We also modified our approach to use a
different compression algorithm, trading classification
accuracy for reduced computational time. In all cases, we
applied the same parameter-free formulation of both the
multiple version and the pairwise version of the NCD.
That is, no features of the problems were used at all.

VI. THEORY REQUIREMENTS AND PROOFS

A. Strings

We write string to mean a finite binary string, and ε
denotes the empty string. The length of a string x (the
number of bits in it) is denoted by |x|. Thus, |ε| = 0.
We identify strings with natural numbers by associating
each string with its index in the length-increasing
lexicographic ordering according to the scheme
(ε, 0), (0, 1), (1, 2), (00, 3), (01, 4), (10, 5), (11, 6), . . . .
In this way the Kolmogorov complexity in Section VI-C
can be about finite binary strings or natural numbers.

B. Computability Notions

A pair of integers, such as (p, q) can be interpreted as
the rational p/q. We assume the notion of a function with
rational arguments and values. A function f(x) with x
rational is upper semicomputable if it is defined by a
rational-valued total computable function φ(x, k) with x
a rational number and k a nonnegative integer such that
φ(x, k+1) ≤ φ(x, k) for every k and limk→∞ φ(x, k) =
f(x). This means that f (with possibly real values)
can be computed in the limit from above (see [22], p.
35). A function f is lower semicomputable if −f is
semicomputable from above. If a function is both upper
semicomputable and lower semicomputable then it is
computable.

C. Kolmogorov Complexity

The Kolmogorov complexity is the information in a
single finite object [15]. Informally, the Kolmogorov
complexity of a string is the length of the shortest string
from which the original can be lossless reconstructed
by a general-purpose computer. Hence the Kolmogorov
complexity of a string constitutes a lower bound on how
far a lossless compression program can compress. For
definiteness the computers considered here are prefix
Turing machines (see for example [22]) with a separate
read-only input tape on which the program is placed and
that is scanned from left to right without backing up,
a separate work tape on which the computation takes
place, a tape on which an auxiliary string is placed, and
a separate output tape. The programs for such a machine
are by construction a prefx code: no program is a proper
prefix of another program. These machines can be com-
putably enumerated as T1, T2, . . . . There are machines
in this list, say Tu, such that Tu(i, p, y) = Ti(p, y) for
all indexes i, programs p, and auxiliary strings y. One of
those is selected as the reference universal prefix Turing
machine U .

Formally, the conditional Kolmogorov complexity
K(x|y) is the length of the shortest program p such that
the reference universal prefix Turing machine U on input
q (replacing the above pair (i, p) by a possibly shorter
single string q) with auxiliary information y outputs
x. The unconditional Kolmogorov complexity K(x) is
defined by K(x|ε) where ε is the empty string. In these
definitions both x and y can consist of strings into which
finite multisets of finite binary strings are encoded. The
Kolmogorov complexity function K is incomputable.

Theory and applications are given in the textbook [22].
A deep, and very useful, result due to L.A. Levin and
A.N. Kolmogorov [33] called symmetry of information
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states that(in the prefix Kolmogorov complexity variant
of [8])

K(x, y) = K(x)+K(y|x,K(x)) = K(y)+K(x|y,K(y)),
(VI.1)

with the equalities holding up to a O(1) additive term.
Here K(y|x,K(x)) = K(y|x) +O(logK(x))).

D. Multiset

A multiset is also known as bag, list, or multiple. A
multiset is a generalization of the notion of set. The
members are allowed to appear more than once. For
example, if x 6= y then {x, y} is a set, but {x, x, y}
and {x, x, x, y, y} are multisets, with abuse of the set
notation. For us, a multiset is finite such as {x1, . . . , xn}
with 0 ≤ n < ∞ and the members are finite binary
strings in length-increasing lexicographic order. If X
is a multiset, then some or all of its elements may
be equal. The notation xi ∈ X means that “xi is
an element of multiset X .” Thus, x ∈ {x, x, y} and
z 6∈ {x, x, y} for z 6= x, y. If X,Y are multisets
X = {x1, . . . , xn} and Y = {y1, . . . , ym} we denote
XY = {x1, . . . , xn, y1, . . . , ym} (with the elements
ordered length-increasing lexicographic). If X ⊆ Y then
the elements of X occur (not necessary consecutive) in
Y . If X,Y, Z are multisets such that X = Y Z with
Z 6= ∅, then we write Y ⊂ X . With {x1, . . . , xn}\{x}
we mean the multiset {x1, . . . , xn} with one occurrence
of x removed.

The finite binary strings, finiteness and length-
increasing lexicographic order allows us to assign a
unique Kolmogorov complexity to a multiset. The con-
ditional prefix Kolmogorov complexity K(X|x) of a
multiset X given an element x is the length of a
shortest program p for the reference universal Turing
machine that with input x outputs the multiset X . The
prefix Kolmogorov complexity K(X) of a multiset X
is defined by K(X|ε). One can also put multisets in
the conditional such as K(x|X) or K(X|Y ). We will
use the straightforward laws K(·|X,x) = K(·|X) and
K(X|x) = K(X ′|x) up to an additive constant term,
for x ∈ X and X ′ equals the multiset X with one
occurrence of the element x deleted.

E. Information Distance

The information distance in a multiset X (|X| ≥
2) is given by (I.1). To obtain the pairwise informa-
tion distance in [2] we take X = {x, y} in (I.1).
The resulting formula is equivalent to Emax(x, y) =
max{K(x|y),K(y|x)} up to a logarithmic additive
term.

F. Metricity

A distance function d on X is defined by d : X → R+

where R+ is the set of nonnegative real numbers. If
X,Y, Z ∈ X , then Z = XY if Z is the multiset con-
sisting of the elements of the multisets X and Y ordered
length-increasing lexicographic. A distance function d is
a metric if

1) Positive definiteness: d(X) = 0 if all elements of
X are equal and d(X) > 0 otherwise.

2) Symmetry: d(X) is invariant under all permuta-
tions of X .

3) Triangle inequality: d(XY ) ≤ d(XZ) + d(ZY ).
We recall Theorem 4.1 and Claim 4.2 from [27].

Theorem VI.1. The information distance for multisets
Emax is a metric where the (in)equalities hold up to a
O(logK) additive term, where K is the largest quantity
involved in each metric (in)equality 1 to 3, respectively.

Claim VI.2. Let X,Y, Z ∈ X and K = K(XY Z).
Then, Emax(XY ) ≤ Emax(XZ) +Emax(ZY ) up to an
O(logK) additive term.

G. Proofs

Proof of Lemma II.1. Let A,B,C ∈ X , AB ⊆ C, and
d a distance that satisfies the triangle inequality. Assume
that the lemma is false and d(C) < d(AB). Let D =
C \A. It follows from the triangle inequality that

d(AB) ≤ d(AD) + d(DB).

Since AD = C this implies d(AB) ≤ d(C) + d(DB),
and therefore d(C) ≥ d(AB). But this contradicts the
assumption.

Proof of Theorem II.3. By induction on n = |X|.
Base case: The theorem is vacuously true for n = 1.
Induction: n > 1. Assume that the lemma is true

for the cases 1, . . . , n − 1. Let |X| = n. If e(X) =
maxY⊂X{e(Y )} then the lemma holds by the inductive
assumption since |Y | < n. Hence assume that

e(X) =
maxx∈X{K(X|x)}

maxx∈X{K(X \ {x})}
.

For every x ∈ X we have K(X|x) ≤ K(X \ {x}|x) +
O(1) ≤ K(X \ {x}). Therefore, the numerator is at
most the denominator minus an O(1) additive term. The
lemma is proven. For n = 2 the definition of e(X) is
(II.2). The proof in [19] is more complex than for the
general case above.

Proof of Theorem II.6. The quantity e(X) satisfies
positive definiteness and symmetry up to an
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O((logK(X))/K(X)) additive term, as follows
directly from the definition of e(X) in (II.4). It remains
to prove the triangle inequality:

Let X,Y, Z ∈ X . Then, e(XY ) ≤ e(XZ) + e(ZY )
within an additive term of O((logK)/K) where K =
max{K(X),K(Y ),K(Z)}. The proof proceeds by in-
duction on n = |XY |.

Base Case: n = 1. This case is vacuously true.
Induction n > 1. Assume that the lemma is true for

the cases 1, . . . , n − 1. Let |XY | = n. If e(XY ) =
maxZ⊂XY {e(Z)} then the lemma holds by the inductive
assumption since |Z| < n. Therefore assume that

e(XY ) = e1(XY ) =
K(XY |xXY )

K(XY \ {xxy})
,

where xV is such that K(V |xV ) = maxx∈V {K(V |x)},
and xu is such that K(U \ {xu}) = maxx∈U{K(U \
{x})}.

Claim VI.3. Let X,Y, Z ∈ X . Then,
K(XY Z|xXY Z) ≤ K(XZ|xXZ) +K(ZY |xZY ) up to
an additive O(logK) term, where K = K(XY Z).

Proof. (If one or more of X,Y, Z equal ∅ the
claim holds trivially.) By Theorem VI.1 we have that
Emax and hence K(XY |xXY ) is a metric up to an
O(logK) additive term. In particular, the triangle in-
equality is satisfied by Claim VI.2: K(XY |xXY ) ≤
K(XZ|xXZ) + K(ZY |xZY ) up to an additive term
of O(logK). Thus with X ′ = XZ and Y ′ =
ZY we have K(X ′Y ′|xX′Y ′) ≤ K(X ′Z|xX′Z) +
K(ZY ′|xZY ′) up to the logarithmic additive term. Writ-
ing this out K(XZZY |xXZZY ) ≤ K(XZZ|xXZZ) +
K(ZY Z|xZY Z) or K(XY Z|xXY Z) ≤ K(XZ|xXZ)+
K(ZY |xZY ) up to an additive term of O(logK).

Now consider the following inequalities:

e1(XY Z) =
K(XY Z|xXY Z)

K(XY Z \ {xxyz})
(VI.2)

≤ K(XZ|xXZ)

K(XY Z \ {xxyz})
+

K(ZY |xZY )

K(XY Z \ {xxyz})

≤ K(XZ|xXZ)

K(XZ \ {xxz})
+

K(ZY |xZY )

K(ZY \ {xzy})
= e1(XZ) + e1(ZY ),

up to a O((logK)/K) additive term. The first inequality
is Claim VI.3 (each term with the same denomina-
tor). The second inequality follows from K(XY Z \
{xxyz}) ≥ K(XZ \ {xxz}) and K(XY Z \ {xxyz}) ≥
K(ZY \ {xzy}) using the principle that K(u, v) ≥
K(u) +O(1) since K(u, v) = K(u) +K(v|u,K(u)) +
O(1) by the symmetry of information (VI.1), reducing

both denominators and increasing the sum of the quo-
tients (by this inequality the numerators are unchanged).
The last equality follows by (II.3).

By (II.4) and (II.3) a multiset XY Z has e(XY Z) =
e1(XY Z) or it contains a proper submultiset U such
that e(U) = e1(U) = e(XY Z). This U ⊂ XY Z is the
multiset (if it exists) that achieves the maximum in the
left-hand term of the outer maximalization of e(XY Z)
in (II.4).

Assume U exists. Denote X ′ = X
⋂
U , Y ′ = Y

⋂
U ,

and Z ′ = Z
⋂
U . Then (VI.2) holds with X ′ substituted

for X , Y ′ substituted for Y , and Z ′ substituted for Z.
Since e(U) = e1(U) and e(XY ) ≤ e(XY Z) = e(U)
we have e(XY ) ≤ e1(X ′Z ′) + e1(Z ′Y ′) up to a
O((logK)/K) additive term.

Assume U does not exist. Then e(XY ) ≤ e(XY Z) =
e1(XY Z). By (VI.2) we have e(XY ) ≤ e1(XZ) +
e1(ZY ) up to a O((logK)/K) additive term.

By the monotonicity property of (II.4) and since
X ′Z ′ ⊆ XZ and Z ′Y ′ ⊆ ZY we have e(XZ) ≥
e1(X ′Z ′), e1(XZ) and e(ZY ) ≥ e1(Z ′Y ′), e1(ZY ).
Therefore, e(XY ) ≤ e(XZ) + e(ZY ) up to an
O((logK)/K) additive term. This finishes the proof.
(The definition of e(XY ) with |XY | = 2 is (II.2). The
proof of the Theorem for this case is in [19], but it is
more complex than the proof above.)

Proof of Lemma II.8. Let X ∈ X and G a normal
compressor as in [4]. For EG,max(X) to be an admissible
distance it must satisfy the density requirement (II.1)
and be upper semicomputable (Section VI-B). Since the
length G(x) is computable it is a fortiori upper semi-
computable. The density requirement (II.1) is equivalent
to the Kraft inequality [16] which states if a set of
strings has lengths l1, l2 . . . satisfying

∑
i 2−li ≤ 1,

then this set is a prefix code: no code word is a proper
prefix of another code word, and if the set of strings
is a prefix code then it satisfies the inequality. Hence,
for every string x, the set of EG,max(X) is a prefix-
free code for the set of X’s containing x, provided
|X| ≥ 2 and X contains nonequal elements. According
to (II.9) we have for every x ∈ X that EG,max(X) ≥
G(X)−G(x) and clearly G(X)−G(x) ≥ G(X \{x}).
Thus, 2−EG,max(X) ≤ 2−G(X\{x}) and therefore∑

X:x∈X
2−EG,max(X) ≤

∑
X:x∈X

2−G(X\{x}).

A compressor G compresses strings into a uniquely de-
codable code (it must satisfy the unique decompression
property) and therefore the lengths set of the compressed
strings must satisfy the Kraft inequality [23]. Thus, for
every x the compressed codes for the multisets X \ {x}
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with x ∈ X must satisfy this inequality. Hence the right-
hand side of above displayed inequality is at most 1.

Proof of Lemma II.9. Let X,Y, Z ∈ X and G a nor-
mal compressor as in [4]. The positive definiteness
and the symmetry property of X hold clearly up to
an O(logG(X))) additive term. Only the triangular
inequality is nonobvious. For every compressor G we
have G(XY ) ≤ G(X) + G(Y ) up to an additive
O(logG(XY )) term, otherwise we obtain a better com-
pression by dividing the string to be compressed. (This
also follows from the distributivity property of normal
compressors.) By the monotonicity property G(X) ≤
G(XZ) and G(Y ) ≤ G(Y Z) up to an O(logG(XY ))
or O(logG(Y Z)) additive term, respectively. Therefore,
G(XY ) ≤ G(XZ)+G(ZY ) up to an O(logG(XY Z))
additive term.

Proof of Theorem II.10. Let X,Y, Z ∈ X and G a nor-
mal compressor as in [4]. The NCD (II.11) is a normal-
ized admissible distance by Lemma II.8. It is normalized
to [0, 1] up to an additive term of O((logG)/G) with
G = G(XY Z) as we can see from the formula (II.11)
and Theorem II.3 with G substituted for K throughout.
We next show it is a metric.

Let X consist of equal elements. We must have that
NCD(X) = 0 up to negligible error. The idempotency
property of a normal compressor is up to an additive term
of O(logG(X)). Hence the numerator of both terms in
the maximalization of (II.4) are 0 up to an additive term
of O((logG(X))/G(X)). If X does not consist of equal
elements then the numerator of NCD(X) is greater
than 0 up to an additive term of O((logG(X))/G(X)).
Hence the positive definiteness of NCD(X) is satisfied
up to this additive term of O((logG(X))/G(X)). The
order of the members of X is assumed to be length-
increasing lexicographic. Therefore it is symmetric. It
remains to show the triangle inequality NCD(XY ) ≤
NCD(XZ) + NCD(ZY ) up to an additive term of
O((logG)/G) where G = G(XY Z). We do this by
induction on n = |XY |.

Base case: n = 1. The triangle property is vacuously
satisfied.

Induction: n > 1. Assume the triangle property
is satisfied for the cases 1, . . . , n − 1. We prove
it for |XY | = n. If NCD(XY ) = NCD(U)
for some U ⊂ XY then the case follows from
the inductive argument. Therefore, NCD(XY ) is the
first term in the outer maximization of (II.11). Write
G(XY |xXY ) = G(XY ) − minx∈XY {G(x)} and
G(XY \ {xxy}) = maxx∈XY {G(XY ) \ {x}} and
similar for XZ, Y Z,XY Z. Following the induction case

of the triangle inequality in the proof of Theorem II.6,
using Lemma II.9 for the metricity of EG,max wherever
Theorem VI.1 is used to assert the metricity of Emax,
and substitute G for K in the remainder. This completes
the proof. That is, for every Z we have

NCD(XY ) ≤ NCD(XZ) +NCD(ZY ),

up to an additive term of O((logG)/G). This finishes
the proof. For |XY | = 2 the triangle property is also
proved in [4]. This proof of the general case is both
simpler and more elementary.

Proof of Theorem III.1. We use the analysis in Re-
mark II.5 and in particular the inequality (II.7). We
ignore logarithmic additive terms. We approximate
NCD(X) from below by maxY⊆X{NCD1(Y )} for a
sequence of n − 1 properly nested Y ’s of decreasing
cardinality. That is, in the computation we set the value
of NCD(X) to NCD1(X) unless the Y with maximal
NCD1 in the sequence of Y ’s has NCD1(X) <
NCD1(Y ). In that case we set the value of NCD(X) to
NCD1(Y ). (In the form of e1(Y ) > e1(X) this occurs
in the example of Remark II.5.) How do we choose this
sequence of Y ’s?

Claim VI.4. Let Y ⊂ X and G(X)−minx∈X{G(x)}−
maxx∈X{G(X \ {x})} < G(Y ) − minx∈Y {G(x)} −
maxx∈Y {G(Y \{x})}. Then, NCD1(X) < NCD1(Y ).

Proof. We first show that maxx∈Y {G(Y \ {x})} ≤
maxx∈X{G(X \ {x})}. Let G(Y \ {y}) =
maxx∈Y {G(Y \ {x})}. Since Y ⊂ X we have
G(Y \ {y}) ≤ G(X \ {y}) ≤ maxx∈X{G(X \ {x})}.

We next show that if a − b < c − d and d ≤ b then
a/b < c/d. Namely, dividing the first inequality by b
we obtain a/b − b/b < (c − d)/b ≤ (c − d)/d. Hence,
a/b < c/d.

Setting a = G(X) − minx∈X{G(x)}, b =
maxx∈X{G(X \ {x})}, c = G(Y ) − minx∈Y {G(x)},
and d = maxx∈Y {G(Y \ {x})}, the above shows that
the claim holds.

Claim VI.4 states that the only candidates Y (Y ⊂
X) for NCD1(Y ) > NCD1(X) are the Y such that
G(X) − minx∈X{G(x)} − maxx∈X{G(X \ {x})} <
G(Y )−minx∈Y {G(x)} −maxx∈Y {G(Y \ {x})}.

For example, let X = {x1, x2, . . . , xn},
|Y | = 2, G(X) = maxx∈X{G(X \ {x})} (for
instance x1 = x2), and minx∈X{G(x)} > 0.
Clearly, G(Y ) − maxx∈Y {G(Y \ {x})} =
G(Y ) − maxx∈Y {G(x)} = minx∈Y {G(x)}.
Then, 0 = G(X) − maxx∈X{G(X \ {x})} <
G(Y ) − maxx∈Y {G(Y \ {x})} + minx∈X{G(x)} −
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minx∈Y {G(x)} = minx∈Y {G(x)}+ minx∈X{G(x)}−
minx∈Y {G(x)} = minx∈X{G(x)}.

Hence for Y ⊂ X , if G(X)−maxx∈X{G(X \ {x})}
is smaller than G(Y ) − maxx∈Y {G(Y \
{x})} + minx∈X{G(x)} − minx∈Y {G(x)} then
NCD1(Y ) > NCD1(X). Note that if the
x that maximizes maxx∈X{G(X \ {x})} is
not the x that minimizes minx∈X{G(x)} then
minx∈X{G(x)} − minx∈Y {G(x)} = 0, otherwise
minx∈X{G(x)} −minx∈Y {G(x)} < 0.

Removing the element that minimizes G(X) −
maxx∈X{G(X \ {x})} may make the elements of
Y more dissimilar and therefore increase G(Y ) −
G(maxx∈Y {G(Y \ {x})}. Iterating this process may
make the elements of the resulting sets ever more
dissimilar, until the associated NCD1 declines due to
decreasing cardinality.

Therefore, we come to the following heuristic. Let
X = {x1, . . . , xn} and m = max{|x| : x ∈ X}.
Compute

G(X)−max
x∈X
{G(X \ {x})}.

Let I be the index i for which the maximum in the
second term is reached. Set Y1 = X \ {xI}. Re-
peat this process with Y1 instead of X to obtain Y2,
and so on. The result is Y0 ⊃ Y1 ⊃ · · · ⊃ Yn−2
with Y0 = X and |Yn−2| = 2. Set NCD(X) =
max0≤i≤n−2{NCD1(Yi)}. The whole process to com-
pute this heuristic to approximate NCD(X) from below
takes O(n2) steps where a step involves compressing a
subset of X in O(nm) time.

Remark VI.5. Reason from Practice for Using NCD1

Instead of NCD. Let Y0 = A
⋃
{x} be as in the

proof of Theorem III.1. For the handwritten digit
recognition application in Section IV-D we computed
NCD1(Y0) for digits 1, 2, . . . , 9, 0. The values were
0.9845, 0.9681, 0.9911, 0.9863, 0.9814, 0.9939, 0.9942,
0.9951,0.992, 0.9796. Let us consider the class of
digit 1. This class without the handwritten digit x
to be classified is A and Y0 = A

⋃
{x}. For

this class max0≤i≤n−2{NCD1(Yi)} = 0.9953 where
the maximum is reached for index i = 21. Thus
NCD(A

⋃
{x}) −NCD1(A

⋃
{x}) = 0.0108 comput-

ing the NCD as max0≤i≤n−2{NCD1(Yi)} according
to Theorem III.1. By Lemma II.1 we have NCD(A) ≤
NCD(A

⋃
{x}) because A ⊂ A

⋃
{x}. Now comes the

problem. Computing NCD(A) also according to Theo-
rem III.1 may yield the same multiset Yj for A

⋃
{x}

as the multiset Yj−1 for A for some 1 ≤ j ≤ 21.
In this case NCD(A) = NCD(A

⋃
{x}). This has

nothing to do with the element x we try to classify.

The same may happen in the case of class B, that is,
NCD(B

⋃
{x}) = NCD(B), and so on. Then, the

classification of x using the NCD is worthless. This
scenario is impossible using NCD1. ♦
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