
Sharpening Occam’s Razor ?

Ming Li 1

Department of Computer Science, Univ. California Santa Barbara, CA 93106,
USA, E-mail: mli@cs.ucsb.edu

John Tromp 2

CWI, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands; Email: tromp@cwi.nl

Paul Vitányi 3

CWI, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands; Email: paulv@cwi.nl

We provide a new representation-independent formulation of Occam’s
razor theorem, based on Kolmogorov complexity. This new formulation
allows us to: (i) Obtain better sample complexity than both length-based
[4] and VC-based [3] versions of Occam’s razor theorem, in many ap-
plications; and (ii) Achieve a sharper reverse of Occam’s razor theorem
than that of [5]. Specifically, we weaken the assumptions made in [5] and
extend the reverse to superpolynomial running times.

Key words: Analysis of algorithms, pac-learning, Kolmogorov
complexity, Occam’s razor-style theorems

? A preliminary version was presented at the 8th Intn’l Computing and Combina-
torics Conference (COCOON), held in Singapore, August, 2002.
1 Supported in part by the NSERC Operating Grant OGP0046506, ITRC, and
NSF-ITR Grant 0085801 at UCSB.
2 Partially supported by an NSERC International Fellowship and ITRC.
3 Affiliated with CWI and the University of Amsterdam. Supported in part by
the EU fifth framework project QAIP, IST–1999–11234, the NoE QUIPROCONE
IST–1999–29064, the ESF QiT Programmme, and the EU Fourth Framework BRA
NeuroCOLT II Working Group EP 27150.

Preprint submitted to Elsevier Preprint

1 Introduction

Occam’s razor theorem as formulated by [3,4] is arguably the substance of
efficient pac learning. Roughly speaking, it says that in order to (pac-)learn, it
suffices to compress. A partial reverse, showing the necessity of compression,
has been proved by Board and Pitt [5]. Since the theorem is about the relation
between effective compression and pac learning, it is natural to assume that a
sharper version ensues by couching it in terms of the ultimate limit to effective
compression which is the Kolmogorov complexity. We present results in that
direction.

Despite abundant research generated by its importance, several aspects of
Occam’s razor theorem remain unclear. There are basically two versions. The
VC dimension-based version of Occam’s razor theorem (Theorem 3.1.1 of [3])
gives the following upper bound on sample complexity: For a hypothesis space
H with V Cdim(H) = d, 1 ≤ d <∞,

m(H, δ, ε) ≤ 4
ε
(d log

12

ε
+ log

2

δ
). (1)

The following lower bound was proved by Ehrenfeucht et al [6].

m(H, δ, ε) > max(
d− 1
32ε

,
1

ε
ln
1

δ
). (2)

The upper bound in (1) and the lower bound in (2) differ by a factor Θ(log 1
ε
).

It was shown in [8] that this factor is, in a sense, unavoidable.

When H is finite, one can directly obtain the following bound on sample
complexity for a consistent algorithm:

m(H, δ, ε) ≤ 1
ε
ln
|H|
δ
. (3)

For a graded boolean space Hn, we have the following relationship between
the VC dimension d of Hn and the cardinality of Hn,

d ≤ log |Hn| ≤ nd. (4)

When log |Hn| = O(d) holds, then the sample complexity upper bound given
by (3) can be seen to equal 1

ε
(O(d) + ln 1

δ
) which matches the lower bound

of (2) up to a constant factor, and thus every consistent algorithm achieves
optimal sample complexity for such hypothesis spaces.

2

The length-based version of Occam’s razor theorem then gives the following
sample complexity m to guaranty that the algorithm pac-learns: For given ε
and δ:

m = max(
2

ε
ln
1

δ
, (
(2 ln 2)sβ

ε
)1/(1−α)), (5)

This bound is based on the length-based Occam algorithm [3]: A deterministic
algorithm that returns a consistent hypothesis of length at most mαsβ, where
α < 1 and s is the length of the target concept.

In summary, the VC dimension based Occam’s razor theorem may be hard to
use and it sometimes does not give the best sample complexity. The length-
based Occam’s razor is more convenient to use and often gives better sample
complexity in the discrete case.

However, as we demonstrate below, the fact that the length-based Occam’s
razor theorem sometimes gives inferior sample complexity, can be due to
the redundant representation format of the concept. We believe Occam’s ra-
zor theorem should be “representation-independent”. That is, it should not
be dependent on accidents of “representation format”. (See [16] for other
representation-independence issues.) In fact, the sample complexities given
in (1) and (2) are indeed representation-independent. However they are not
easy to use and do not give optimal sample complexity. Here, we give a Kol-
mogorov complexity based Occam’s razor theorem. We will demonstrate that
our KC-based Occam’s razor theorem is convenient to use (as convenient as the
length based version), gives a better sample complexity than the length based
version, and is representation-independent. In fact, the length based version
can be considered as a specific computable approximation to the KC-based
Occam’s razor.

As one of the examples, we will demonstrate that the standard trivial learning
algorithm for monomials actually often has a better sample complexity than
the more sophisticated Haussler’s greedy algorithm [7]. This is contrary to
the commen, but mistaken, belief that Haussler’s algorithm is better in all
cases (to be sure, Haussler’s method is superior for target monimials of small
length). Another issue related to Occam’s razor theorem is the status of the
reverse assertion. Although a partial reverse of Occam’s razor theorem has
been proved by [5], it applied only to the case of polynomial running time and
sample complexity. They also required a property of closure under exception
list. This latter requirement, although quite general, excludes some reasonable
concept classes. Our new formulation of Occam’s razor theorem allows us to
prove a more general reverse of Occam’s razor theorem, allowing the arbitrary
running time and weakening the requirement of exception list of [5].

3

Discussion of Result and Technique: In our approach we obtain bet-
ter bounds on the sample complexity to learn the representation of a tar-
get concept in the given representation system. These bounds, however, are
representation-independent and depend only on the Kolmogorov complexity of
the target concept. If we don’t care about the representation of the hypothesis
(but that is not the case in this paper) then better “iff Occam style” charac-
terizations of polynomial time learnability/predicatability can be given. They
rely on Schapire’s result that “weak learnability” equals “strong learnability”
in polynomial time [13] exploited in [9]. For a recent survey of the important
related “boosting” technique see [14].

The use of Kolmogorov complexity is to obtain a bound on the size of the
hypotheses class for a fixed (but arbitrary) target concept. Obviously, the re-
sults described can be obtained using other proof methods—all true provable
statements must be provable from the axioms of mathematics by the inference
methods of mathematics. The question is whether a particular proof method
facilitates and guides the proving effort. The message we want to convey is
that thinking in terms of coding and incompressibility suggest improvements
to long-standing results. A survey of the use of the Kolmogorov complexity
method in combinatorics, computational complexity, and the analysis of algo-
rithms is [12] Chapter 6.

2 Occam’s Razor

Let us assume the usual definitions, say Anthony and Biggs [1], and notation
of [5]. For Kolmogorov complexity we assume the basics of [12].

In the following Σ,Γ is are finite alphabets: We consider only discrete learning
problems in this paper. The set of finite strings over Σ is denoted by Σ∗ and
similarly for Γ. An element of Σ∗ is an example, and a concept is a set of
examples (a language over Σ). An representation is an element of Γ∗.

Definition 1 A representation system is a tuple (R,Γ, c,Σ), where R ⊂ Γ∗ is
the set of representations, and c : R→ 2Σ

∗

maps representations to concepts,
the latter being languages over Σ.

Hence, given R the mapping c determines a concept class. For example, let
Γ is the alphabet to express Boolean formulas, Σ = {0, 1}, and let R be the
subset of disjunctive normal form (DNF) formulas. Let c map each element
r ∈ R, say a DNF formula over n variables, to c(r) ⊆ {0, 1}n such that every
example e ∈ c(r) viewed as truth-value assignment makes r “true”. That is, if
e = e1 . . . en and we assign “true” or “false” to the ith variable in r according to
whether ei equals “0” or “1” then r becomes “true”. Each concept in the thus

4

defined concept class is the set of truth assignments that make a particular
DNF formula “true”.

Definition 2 A pac-algorithm for a representation system R = (R,Γ, c,Σ) is
a randomized algorithm L such that, for every s, n ≥ 1, ε > 0, δ > 0, r ∈ R≤s,
and every probability distribution D on Σ≤n, if L is given s, n, ε, δ as input and
has access to an oracle providing examples of c(r) (the concept represented by
r) according to D, then L, with probability at least 1− δ, outputs a represen-
tation r′ ∈ R approximating the target r in the sense that D(c(r′)∆c(r)) ≤ ε.
Here, ∆ denotes the symmetric set difference.

The acronym “pac” coined by Dana Angluin stands for “probably approxi-
mately correct” which aptly captures the requirement the output represen-
tation must satisfy according to the definition. The question of interest in
pac-learning is how many examples (and running time) a learning algorithm
has to qualify as a pac-alpgorithm. The running time and and number of ex-
amples (sample complexity) of the pac-algorithm are expressed as functions
t(n, s, ε, δ) and m(n, s, ε, δ). The following definition generalizes the notion of
Occam algorithm in [3]:

Definition 3 An Occam-algorithm for a representation systemR = (R,Γ, c,Σ)
is a randomized algorithm which for every s, n ≥ 1, γ > 0, on input of a sam-
ple consisting of m examples of a fixed target r ∈ R≤s, with probability at least
1 − γ outputs a representation r′ ∈ R consistent with the sample, such that
K(r′ | r, n, s) < m/f(m,n, s, γ), with f(m,n, s, γ), the compression achieved,
being an increasing function of m.

The length-based version of (possibly randomized) Occam algorithm can be
obtained by replacing K(r′ | r, n, s) by |r| in this definition. The running time
of the Occam-algorithm is expressed as a function t(m,n, s, γ), where n is the
maximum length of the input examples.

Remark 1 An Occam algorithm satisfying a given f , achieves a lower bound
on the number m of examples required in terms of K(r′ | r, n, s), the Kol-
mogorov complexity of the outputted representation conditioned on the tar-
get representation, rather than the (maximal) length s of r as in the original
Occam algorithm [3] and the length-based version above. This improvement
enables one to use information drawn from the hidden target for reduction of
the Kolmogorov complexity of the output representation, and hence further
reduction of the required sample complexity.

We need to show that the main properties of an Occam algorithm are preserved
under this generalization. Our first theorem is a Kolmogorov complexity based
Occam’s Razor. We denote the minimum m such that f(m,n, s, γ) ≥ x by
f−1(x, n, s, γ), where we set f−1(x, n, s, γ) = ∞ if f(m,n, s, γ) < x for every
m.

5

Theorem 1 Suppose we have an Occam-algorithm for R = (R,Γ, c,Σ) with
compression f(m,n, s, γ). Then there is a pac-learning algorithm for R with
sample complexity

m(n, s, ε, δ) = max

{

2

ε
ln
2

δ
, f−1(

2 ln 2

ε
, n, s, δ/2)

}

,

and running time tpac(n, s, ε, δ) = toccam(m(n, s, ε, δ), n, s, δ/2).

Proof. On input of ε, δ, s, n, the learning algorithm will take a sample of
length m = m(n, s, ε, δ) from the oracle, then use the Occam algorithm with
γ = δ/2 to find a hypothesis (with probability at least 1−δ/2) consistent with
the sample and with low Kolmogorov complexity. In the proof we abbreviate
f(m,n, s, γ) to f(m) with the other parameters implicit. Learnability follows
in the standard manner from bounding (by the remaining δ/2) the probability
that all m examples of the target concept fall outside the, probability ε or
greater, symmetric difference with a bad hypothesis. Let m = m(n, s, ε, δ).
Then m ≥ f−1(2 ln 2

ε
, n, s, δ

2
) gives

ε− ln 2

f(m)
≥ ε

2
,

and therefore m ≥ 2
ε
ln 2

δ
gives

m(ε− ln 2

f(m)
) ≥ ln 2

δ
.

This implies (taking the exponent on both sides and using 1− ε < e−ε)

2m/f(m)(1− ε)m ≤ δ/2.

The probability that some concept the Occam-algorithm can output has all
m examples being bad is at most the number of concepts of complexity less
than m/f(m), times (1− ε)m, which by the above is at most δ/2. ¤

Corollary 1 When the compression is of the form

f(m,n, s, γ) =
m1−α

p(n, s, γ)
,

6

one can achieve a sample complexity of

max

2

ε
ln
2

δ
,

(

(2 ln 2)p(n, s, δ/2)

ε

)1/(1−α)

.

In the special case of total compression, where α = 0, this further reduces to

2

ε

{

max(ln
2

δ
, (ln 2)p(n, s, δ/2))

}

. (6)

For deterministic Occam-algorithms, we can furthermore replace 2/δ and δ/2
in Theorem 1 by 1/δ and δ respectively.

Remark 2 Essentially, our new Kolmogorov complexity condition is a com-
putationally universal generalization of the length condition in the original
Occam’s razor theorem of [4]. Here, in Theorem 1, we consider the shortest
description length over all effective representations, given the target repre-
sentation, rather than in a specific (syntactical) representation system. This
allows us to bound the required sample complexity not by a function of the
number of hypotheses (returned representations) of length at most the bound
on the length of the target representation, but by a similar function of the num-
ber of hypotheses that have a certain Kolmogorov complexity conditioned on
the target concept, see Remark 1. Nonetheless, like in the original Occam’s ra-
zor Theorem of [4], we return a representation of a concept approximating the
target concept in the given representation system, rather than a representation
outside the system like in Boosting approaches.

Suppose we have a concept c and a mis-classified example x—an exception.
Then, the symmetric difference c∆{x} classifies x correctly: if x 6∈ c then
c∆{x} = c

⋃{x}, and if x ∈ c then c∆{x} = c \ {x}.

Definition 4 An exception handler for a representation systemR = (R,Γ, c,Σ)
is an algorithm which on input of a representation r ∈ R of length s, and an
x ∈ Σ∗ of length n, outputs a representation r′ ∈ R of the concept c(r)∆{x},
of length at most e(s, n), where e is called the exception expansion function.
The running time of the exception-handler is expressed as a function t(n, s) of
the representation and exception lengths. If t(n, s) is polynomial in n, s, and
furthermore e(s, n) is of the form s+p(n) for some polynomial p, then we say
R is polynomially closed under exceptions.

Theorem 2 Let L be a deterministic pac-algorithm with m(n, s, 1
2n
, γ) the

sample size, and let E be an exception handler for a representation system
R. Then there is an Occam algorithm for R that for m examples achieves
compression f(m,n, s, γ) = 1

2εn
. Moreover, m ≥ 2nm(n, s, 1

2n
, γ) and where ε,

depending on m,n, s, γ, is such that m(n, s, ε, γ) = εm holds.

7

Proof. The proof is obtained in a fashion similar to [5]. Suppose we are given
a sample of length m and confidence parameter γ. Assume without loss of
generality that the sample contains m different examples. Define a uniform
distribution on these examples with µ(x) = 1/m for each x in the sample.
Let ε be as described. The function m(n, s, ε, γ) decreases with increasing ε,
while the function εm increases with ε so the two necessarily intersect, under
the assumption in the theorem, for some ε0, although it may yield an ε0 >

1
2n
,

giving no actual compression. For example, if m(n, s, ε, γ) = (1
ε
)b for some

constant b, then ε0 = m−1/(b+1). Apply L with δ = γ and ε = ε0. With proba-
bility 1− γ, it produces a concept which is correct with error ε, giving up to
εm exceptions. We can just add these one by one using the exception handler.
This will expand the concept size, but not the Kolmogorov complexity. The
resulting representation can be described by the ≤ εm examples used plus
the ≤ εm exceptions found, Since L is deterministic, this uniquely determines
the required consistent concept. The compression achieved is m

2εmn
= 1

2εn
. This

is an increasing function of m, since increasing the slope of the function εm
moves its intersection with the function m(n, s, ε, γ) to the left, that is, to
smaller ε. ¤

Definition 5 Let R = (R,Γ, c,Σ) be a representation system. The concept
MAJ(r1, r2, r3) is the set {x : x belongs to at least two out of the three concepts
c(r1), c(r2), c(r3)}. A majority-of-three algorithm for R is an algorithm which
on input of three representation r1, r2, r3 ∈ R≤s, outputs a representation r′ ∈
R of the concept MAJ(r1, r2, r3) of length at most e(s), where e is called the
majority expansion function. The running time of the algorithm is expressed
as a function t(s) of the maximum representation length. If t(s) and e(s) are
polynomial in s then we say R is polynomially closed under majority-of-three.

Theorem 3 Let L be a deterministic pac-algorithm with sample complexity
m(n, s, ε, δ) ∈ o(1/ε2), and let M be a majority-of-three algorithm for the
representation system R. Then there is an Occam algorithm for R that for m
examples has compression f(m,n, s, γ) = m/3nm(n, s, 1

2
√

m
, γ/3).

Proof. Let us be given a sample of length m. Take δ = γ/3 and ε = 1
2
√

m
.

Stage 1: Define a uniform distribution on the m examples with µ1(x) = 1/m
for each x in the sample. Apply the learning algorithm. It produces (with
probability at least 1−γ/3) a hypothesis r1 which has error less than ε, giving
up to εm =

√
m/2 exceptions. Denote this set of exceptions by E1.

Stage 2: Define a new distribution µ2(x) = ε for each x ∈ E1, and µ2(x) =
(1− |E1|/2

√
m)/(m− |E1|) for each x 6∈ E1. Apply the learning algorithm. It

produces (with probability at least 1 − γ/3) a hypothesis r2 which is correct
on all of E1 and with error less than ε on the remaining examples. This gives
up to ε(m− |E1|)/(1− |E1|/2

√
m) <

√
m exceptions. This set, denoted E2, is

8

disjoint from E1.

Stage 3: Define a new distribution on the m examples with µ(x) = 1/|E1 ∪
E2| > ε for each x in E1 ∪ E2, and µ(x) = 0 elsewhere. Apply the learn-
ing algorithm. The algorithm produces (with probability at least 1 − γ/3) a
hypothesis r3 which is correct on all of E1 and E2.

In total the number of examples consumed by the pac-algorithm is at most
3m(n, s, 1

2
√

m
, γ/3), each requiring n bits to describe. The three representations

are combined into one representation by the majority-of-three algorithm M .
This is necessarily correct on all of the m examples, since the three exception-
sets are all disjoint. Furthermore, it can be described in terms of the ex-
amples fed to the deterministic pac-algorithm and thus achieves compression
f(m,n, s, γ) = m/3nm(n, s, 1

2
√

m
, γ/3). This is an increasing function of m

given the assumed subquadratic sample complexity. ¤

The following corollaries use the fact that if a representation system is learn-
able, it must have finite VC-dimension and hence, according to (1), they are
learnable with sample complexity subquadratic in 1

ε
.

Corollary 2 Let a representation system R be closed under either exceptions
or majority-of-three, or both. Then R is pac-learnable iff there is an Occam
algorithm for R.

Corollary 3 Let a representation system R be polynomially closed under ei-
ther exceptions or majority-of-three, or both. Then R is deterministically poly-
nomially pac-learnable iff there is a polynomial time Occam algorithm for R.

Example. Consider threshold circuits, acyclic circuits whose nodes compute
threshold functions of the form a1x1+a2x2+ · · ·+anxn ≥ δ, xi ∈ {0, 1}, ai, δ ∈
N (note that no expressive power is gained by allowing rational weights and
threshold). A simple way of representing circuits over the binary alphabet
is to number each node and use prefix-free encodings of these numbers. For

instance, encode i as 1|bin(i)|0bin(i), the binary representation of i preceded
by its length in unary. A complete node encoding then consists of the encoded
index, encoded weights, threshold, encoded degree, and encoded indices of the
nodes corresponding to its inputs. A complete circuit can be encoded with a
node-count followed by a sequence of node-encodings. For this representation,
a majority-of-three algorithm is easily constructed that renumbers two of its
three input representations, and combines the three by adding a 3-input node
computing the majority function x1 + x2 + x3 ≥ 2. It is clear that under this
representation, the system of threshold circuits are polynomially closed under
majority-of-three. On the other hand they are not closed under exceptions, or
under the exception lists of [5].

9

Example. Let h1, h2, h3 be 3 k-DNF formulas. Then MAJ(h1, h2, h3) = (h1 ∧
h2) ∨ (h2 ∧ h3) ∨ (h3 ∧ h1) which can be expanded into a 2k-DNF formula.
This is not good enough for Theorem 3, but it allows us to conclude that
pac-learnability of k-DNF implies compression of k-DNF into 2k-DNF.

3 Applications

Our KC-based Occam’s razor theorem might be conveniently used, providing
better sample complexity than the length-based version. In addition to giving
better sample complexity, our new KC-based Occam’s razor theorem, Theo-
rem 1, is easy to use, as easy as the length based version, as demonstrated by
the following two examples. While it is easy to construct an artificial system
with extremely bad representations such that our Theorem 1 gives arbitrarily
better sample complexity than the length-based sample complexity given in
(5), we prefer to give natural examples.

Application 1: Learning a String.

The DNA sequencing process can be modeled as the problem of learning a
super-long string in the pac model [10,11]. We are interested in learning a
target string t of length s, say s = 3×109 (length of a human DNA sequence).
At each step, we can obtain as an example a substring of this sequence of
length n, from a random location of t (Sanger’s Procedure). At the time of
writing, n ≈ 500, and sampling is very expensive. Formally, the concepts
we are learning are sets of possible length n substrings of a superstring, and
these are naturally represented by the superstrings. We assume a minimal
target representation (which may not hold in practice). Suppose we obtain a
sample of m substrings (all positive examples). In biological labs, a Greedy
algorithm which repeatedly merges a pair of substrings with maximum overlap
is routinely used. It is conjectured that Greedy produces a common superstring
t′ of length at most 2s, where s is the optimal length (NP-hard to find). In
[2], we have shown that s ≤ |t′| ≤ 4s. Assume that |t′| ≈ 2s. 4 Using the
length-based Occam’s razor theorem, that is, Theorem 2 with K(r′ | r, s, n)
in Definition 3 replaced by |r′|, this length of 2s would determine the sample
complexity, as in (6), with p(n, s, δ/2) = 2 · 2s (the extra factor 2 is the 2-
logarithm of the size of the alphabet {A,C,G, T}). Is this the best we can do?
It is well-known that the sampling process in DNA sequencing is a very costly
and slow process. We improve the sample complexity using our KC-based
Occam’s razor theorem.

4 Although only the 4s upper bound was proved in [2], which has since been im-
proved, it is widely believed that 2s is the true bound.

10

Lemma 1 Let t be the target string of length s and t′ be the superstring re-
turned by Greedy of length at most 2s. Then

K(t′ | t, s, n) ≤ 2s(2 log s+ log n)/n.

Proof. We give t′ a short description using some information from t. Let
S = {s1, . . . , sm} be the set of m examples (substrings of t of length n). Align
these substrings with the common superstring t′, from left to right. Divide
them into groups such that each group’s leftmost string overlaps with every
string in the group but does not overlap with the leftmost string of the previous
group. Thus there are at most 2s/n such groups. To specify t′, we only need to
specify these 2s/n groups. After we obtain the superstring for each group, we
re-construct t′ by optimally merging the superstrings of neighboring groups.
To specify each group, we only need to specify the first and the last string
of the group and how they are merged. This is because every other string in
the group is a substring of the string obtained by properly merging the first
and last strings. Specifying the first and the last strings requires 2 log s bits of
information to indicate their locations in t and we need another log n bits to
indicate how they are merged. Thus K(t′ | t, s, n) ≤ 2s(2 log s+ log n)/n. ¤

This lemma shows that (6) can also be applied with p(n, s, δ/2) = 2·2s(2 log s+
log n)/n, giving a factor n/(2 log s+log n) improvement in sample-complexity.
Note that in (mammal) genome computation practice, we have n = 500 and
s = 3× 109. The sample complexity using the Kolmogorov complexity-based
Occam’s razor is reduced over the “length based” Occam’s razor by a multi-
plicative factor of n/(2 log s+ log n) ≈ 500

2×31+9 ≈ 7.

Application 2: Learning a Monomial.

Consider boolean space of {0, 1}n. There are two well-known algorithms for
learning monomials. One is the standard algorithm.

Standard Algorithm.

(i) Initially set the concept representationM := x1x1 . . . xnxn (a conjunction
of all literals of n variables—which contradicts every example).

(ii) For each positive example, delete from the current M the literals that
contradict the example.

(iii) Return the resulting monomial M .

Haussler [7] proposed a more sophisticated algorithm based on set-cover ap-
proximation as follows. Let k be the number of variables in the target mono-
mial, and m be the number of examples used.

Haussler’s Algorithm.

11

(i) Use only negative examples. For each literal x, define Sx to be the set of
negative examples such that x falsifies these negative examples. The sets
associated with the literals in the target monomial form a set cover of
negative examples.

(ii) Run the approximation algorithm of set cover, this will use at most
k logm sets or, equivalently, literals in our approximating monomial.

It is commonly believed that Haussler’s algorithm has better sample com-
plexity than the standard algorithm 5 We demonstrate that the opposite is
sometimes true (in fact for most cases), using our KC-based Occam’s razor
theorem, Theorem 1. Assume that our target monomialM is of length n−√n.
Then the length-based Occam’s razor theorem gives sample complexity n/ε
for both algorithms, by Formula 6. However, K(M ′ | M) ≤ √n log 3 + O(1),
where M ′ is the monomial returned by the standard algorithm. This is true
since the standard algorithm always produces a monomial M ′ that contains
all literals of the target monomial M , and we need at most

√
n log 3 + O(1)

bits to specify whether other literals are in (positive or negative) or not in M ′

for the variables that are in M ′ but not in M . Thus our (6) gives the sample
complexity of O(

√
n/ε). In fact, as long as |M | > n/ log n (which is most likely

to be the case if every monomial has equal probability), it makes sense to use
the standard algorithm.

4 Conclusions

Several new problems are suggested by this work. If we have an algorithm
that, given a length-m sample of a concept in Euclidean space, produces a
consistent hypothesis that can be described with only mα, α < 1 symbols
(including a symbol for every real number; we’re using uncountable represen-
tation alphabet), then it seems intuitively appealing that this implies some
form of learning. However, as noted in [5], the standard proof of Occam’s
Razor does not apply, since we cannot enumerate these representations. The
main open question is under what conditions (specifically on the real number
computation model) such an implication would nevertheless hold.

Can we replace the exception element or majority of 3 requirement by some
weaker requirement? Or can we even eliminate such closure requirement and
obtain a complete reverse of Occam’s razor theorem? Our current requirements
do not even include things like k-DNF and some other reasonable representa-
tion systems.

5 In fact, Haussler’s algorithm is specifically aimed at reducing sample complexity
for small target monomials, and that it does.

12

5 Acknowledgements

We wish to thank Tao Jiang for many stimulating discussions.

References

[1] M. Anthony and N. Biggs, Computational Learning Theory, Cambridge
University Press, 1992.

[2] A. Blum, T. Jiang, M. Li, J. Tromp, M. Yannakakis, Linear approximation of
shortest common superstrings. Journal ACM, 41:4 (1994), 630-647.

[3] A. Blumer and A. Ehrenfeucht and D. Haussler and M. Warmuth, Learnability
and the Vapnik-Chervonenkis Dimension. J. Assoc. Comput. Mach., 35(1989),
929-965.

[4] A. Blumer and A. Ehrenfeucht and D. Haussler and M. Warmuth, Occam’s
Razor. Inform. Process. Lett., 24(1987), 377-380.

[5] R. Board and L. Pitt, On the necessity of Occam Algorithms. 1990 STOC, pp.
54-63.

[6] A. Ehrenfeucht, D. Haussler, M. Kearns, L. Valiant. A general lower bound on
the number of examples needed for learning. Inform. Computation, 82(1989),
247-261.

[7] D. Haussler. Quantifying inductive bias: AI learning algorithms and Valiant’s
learning framework. Artificial Intelligence, 36:2(1988), 177-222.

[8] D. Haussler, N. Littlestone, and, M. Warmuth. Predicting {0, 1}-functions on
randomly drawn points. Information and Computation, 115:2(1994), 248–292.

[9] D.P. Helmbold and M.K. Warmuth, On weak learning, J. Comput. Syst. Sci.,
50:3(1995),551-573.

[10] T. Jiang and M. Li, DNA sequencing and string learning, Math. Syst. Theory,
29(1996), 387-405.

[11] M. Li. Towards a DNA sequencing theory. 31st IEEE Symp. on Foundations of
Comp. Sci., 125-134, 1990.

[12] M. Li and P. Vitányi. An Introduction to Kolmogorov Complexity and Its
Applications. 2nd Edition, Springer-Verlag, 1997.

[13] R. E. Schapire. The strength of weak learnability. Machine Learning,
5:2(1990),197–227.

[14] R.E. Schapire, The boosting approach to machine learning: An overview. In:
MSRI Workshop on Nonlinear Estimation and Classification, 2002.

[15] L. G. Valiant. A Theory of the Learnable. Comm. ACM, 27(11), 1134-1142,
1984.

[16] M.K. Warmuth. Towards representation independence in PAC-learning. In AII-
89, pp. 78-103, 1989.

13

