
Reversible Simulation of Irreversible Computation

?

Ming Li

1

Department of Computer Science, University of Waterloo, Waterloo, Ont. N2L

3G1, Canada. E-mail: mli@math.uwaterloo.ca

John Tromp

2

CWI, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands; Email: tromp@cwi.nl

Paul Vit�anyi

3

CWI, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands; Email: paulv@cwi.nl

Computer computations are generally irreversible while the laws of

physics are reversible. This mismatch is penalized by among other

things generating excess thermic entropy in the computation. Com-

puting performance has improved to the extent that e�ciency de-

grades unless all algorithms are executed reversibly, for example

by a universal reversible simulation of irreversible computations.

All known reversible simulations are either space hungry or time

hungry. The leanest method was proposed by Bennett and can by

analyzed using a simple `reversible' pebble game. The reachable

reversible simulation instantaneous descriptions (pebble con�gu-

rations) of such pebble games are characterized completely. As a

corollary we obtain the reversible simulation by Bennett and, more-

over, show that it is a space-optimal pebble game. We also intro-

duce irreversible steps and give a theorem on the tradeo� between

the number of allowed irreversible steps and the memory gain in the

pebble game. In this resource-bounded setting the limited erasing

needs to be performed at precise instants during the simulation.

The reversible simulation can be modi�ed so that it is applicable

also when the simulated computation time is unknown.

?

Part of the results appeared in [15,14] with less satisfying analysis and proofs.

1

Supported in part by the NSERC Operating Grant OGP0046506, ITRC, a CGAT

grant, and the Steacie Fellowship

2

Partially supported by the European Union through NeuroCOLT ESPRIT Work-

ing Group Nr. 8556, and by NWO through NFI Project ALADDIN under Contract

number NF 62-376

3

Partially supported by the European Union through NeuroCOLT ESPRIT Work-

Preprint submitted to Elsevier Preprint

1 Introduction

Both classical and quantum physics are believed to be strictly reversible: A

complete description of the microscopic state of the system uniquely deter-

mines the earlier and future states of the system|this holds not only in Newto-

nian mechanics but for example also for the unitary evolution of any quantum

mechanical system. Currently, computations are commonly irreversible, even

though the physical devices that execute them are fundamentally reversible.

This contrast is only possible at the cost of e�ciency loss by generating thermal

entropy into the environment. With computational device technology rapidly

approaching the elementary particle level it has been argued many times that

this e�ect gains in signi�cance to the extent that e�cient operation (or opera-

tion at all) of future computers requires them to be reversible (for example, in

[20,10,1,2,5,9,19,14,6]). Especially R. Landauer [10] has argued that it is only

the `logically irreversible' operations in a physical computer that necessarily

dissipate energy by generating a corresponding amount of entropy for every bit

of information that gets irreversibly erased; the logically reversible operations

can in principle be performed dissipation-free. Reversible computers can be

implemented using classical technologies [2,16,6] or quantum-mechanical tech-

nologies as in [4,17,8]; the latter quantum-mechanical computers are reversible

except for the observation phases.

The traditionalmodels used in the analysis of computation, for example Turing

machines, RAMs, or circuits, allow logically irreversible operations. To re
ect

physical reality they must be replaced by completely reversible computational

models, for example by universal simulation. Simulation of irreversible Turing

machines by reversible ones goes back to Lecerf [12] and Bennett [1]. The

original methods required an amount of memory proportional to the amount

of computation time, since the step-by-step reproducibility of the history was

achieved by remembering it during most of the computation. It was recognized

later that keeping the con�guration only of certain times (\checkpoints") of

the original computation can reduce the memory requirement at the expense

of increasing the computing time.

Bennett in a \Remark" in [3] compares the \checkpointing" to moves in a cer-

tain pebble game. This paper takes up this suggestion to analyze time-space

and space-irreversibility tradeo�s. It completely characterizes the realizable

pebble con�gurations of the reversible pebble games (they encode the reach-

able instantaneous descriptions of a Turing machine reversibly simulating an

irreversible computation). As corollary we obtain Bennett's earlier [3] simula-

ing Group Nr. 8556, and by NWO through NFI Project ALADDIN under Contract

number NF 62-376 and NSERC under International Scienti�c Exchange Award

ISE0125663. A�liations are CWI and the University of Amsterdam.

2

tion and a �rst proof that this simulation is a space-optimal pebble game. It

also introduces irreversible steps and gives a theorem on the tradeo� between

the number of allowed irreversible steps and the memory gain in the pebble

game. For such a tradeo� the limited irreversible actions have to take place

at precise times during the reversible simulation, and cannot be delayed to be

executed all together at the end of the computation (as is possible in compu-

tations without time or space resource bounds). Finally, in all such reversible

simulations it is assumed that the number of steps to be simulated is known

in advance and used to construct the simulation (for that number of steps).

We show how to reversibly simulate an irreversible computation of unknown

computing time, using the same order of magnitude of simulation time.

1.1 Reversible Turing Machines

In the standard model of a Turing machine the elementary operations are rules

in quadruple format (p; s; a; q) meaning that if the �nite control is in state p

and the machine scans tape symbol s, then the machine performs action a

and subsequently the �nite control enters state q. Such an action a consists

of either printing a symbol s

0

in the tape square under scan, or moving the

scanning head one tape square left, right or not at all.

Quadruples are said to overlap in domain if they cause the machine in the

same state and scanning the same symbol to perform di�erent actions. A

deterministic Turing machine is de�ned as a Turing machine with quadruples

no two of which overlap in domain.

Now consider the special format (deterministic) Turing machines using quadru-

ples of two types: read/write quadruples and move quadruples. A read/write

quadruple (p; a; b; q) causes the machine in state p scanning tape symbol a

to write symbol b and enter state q. A move quadruple (p; �; �; q) causes the

machine in state p to move its tape head by � 2 f�1; 0;+1g squares and

enter state q, oblivious to the particular symbol in the currently scanned tape

square. (Here `�1' means `one square left', `0' means `no move' and `+1' means

`one square right'.) Quadruples are said to overlap in range if they cause the

machine to enter the same state and either both write the same symbol or (at

least) one of them moves the head. Said di�erently, quadruples that enter the

same state overlap in range unless they write di�erent symbols. A reversible

Turing machine is a deterministic Turing machine with quadruples no two

of which overlap in range. A k-tape reversible Turing machine uses (2k + 2)

tuples which, for every tape separately, select a read/write or move on that

tape. Moreover, any two tuples can be restricted to some single tape where

they don't overlap in range.

3

To show that every partial recursive function can be computed by a reversible

Turing machine one can proceed as follows. Take the standard irreversible Tur-

ing machine computing that function. We modify it by adding an auxiliary

storage tape called the `history tape'. The quadruple rules are extended to

6-tuples to additionally manipulate the history tape. To be able to reversibly

undo (retrace) the computation deterministically, the new 6-tuple rules have

the e�ect that the machine keeps a record on the auxiliary history tape con-

sisting of the sequence of quadruples executed on the original tape. Reversibly

undoing a computation entails also erasing the record of its execution from

the history tape. This notion of reversible computation means that only 1 : 1

recursive functions can be computed. To reversibly simulate an irreversible

computation from x to f(x) one reversibly computes from input x to output

hx; f(x)i.

1.2 Reversible Programming

Reversible Turing machines or other reversible computers will require special

reversible programs. One feature of such programs is that they should be ex-

ecutable when read from bottom to top as well as when read from top to

bottom. Examples are the programs F (�) and A(�) we show in the later sec-

tions. In general, writing reversible programs will be di�cult. However, given a

general reversible simulation of irreversible computation, one can simply write

an oldfashioned irreversible program in an irreversible programming language,

and subsequently simulate it reversibly. This leads to the following:

De�nition 1 An irreversible-to-reversible compiler receives an irreversible

program as input and reversibly compiles it to a reversible program. Subse-

quently, the reversible program can be executed reversibly.

Note that there is a decisive di�erence between reversible circuits and re-

versible special purpose computers on the one hand, and reversible universal

computers on the other hand. While one can design a special-purpose re-

versible version for every particular irreversible circuit using reversible univer-

sal gates, such a method does not yield an irreversible-to-reversible compiler

that can execute any irreversible program on a �xed universal reversible com-

puter architecture as we are interested in here.

1.3 Models of Reversible Simulation and Related Work

The reversible simulation in [1] of T steps of an irreversible computation from

x to f(x) reversibly computes from input x to output hx; f(x)i in T

0

= O(T)

time. However, since this reversible simulation at some time instant has to

4

record the entire history of the irreversible computation, its space use increases

linearly with the number of simulated steps T . That is, if the simulated irre-

versible computation uses S space, then for some constant c > 1 the simulation

uses T

0

� c+cT time and S

0

� c+c(S+T) space. This can be an unacceptable

amount of space for many practically useful computations.

In [3] another elegant simulation technique is devised reducing the auxiliary

storage space. This simulation does not save the entire history of the irre-

versible computation but it breaks up the simulated computation into seg-

ments of about S steps and saves in a hierarchical manner checkpoints con-

sisting of complete instantaneous descriptions of the simulated machine (entire

tape contents, tape heads positions, state of the �nite control). After a later

checkpoint is reached and saved, the simulating machine reversibly undoes

its intermediate computation, reversibly erasing the intermediate history and

reversibly canceling the previously saved checkpoint. Subsequently, the com-

putation is resumed from the new checkpoint onwards.

The reversible computation simulates k

n

segments of length m of irreversible

computation in (2k�1)

n

segments of length �(m+S) of reversible computation

using n(k � 1) + 1 checkpoint registers using �(m + S) space each, for every

k; n;m.

This way it is established that there are various tradeo�s possible in time-space

in between T

0

= �(T) and S

0

= �(TS) at one extreme (k = 1; m = T; n = 1)

and (with the corrections of [13]) T

0

= �(T

1+�

=S

�

) and S

0

= �(c(�)S(1 +

logT=S)) with c(�) = �2

1=�

for every � > 0, using always the same simulation

method but with di�erent parameters k; n where � = log

k

(2k � 1) and m =

�(S). Typically, for k = 2 we have � = log 3. Since for T > 2

S

the machine

goes into a computational loop, we always have S � logT . Therefore, every

irreversible Turing machine using space S can be simulated by a reversible

machine using space S

2

in polynomial time. Let us note that it is possible

to improve the situation by reversibly simulating only the irreversible steps.

Call a quadruple of a Turing machine irreversible if its range overlaps with

the range of another quadruple. A step of the computation is irreversible if

it uses an irreversible quadruple. Let the number of irreversible steps in a T

step computation be denoted by I. Clearly, I � T . The simulation results

hold with T in the auxiliary space use replaced by I. In particular, S

0

=

O(S log I). In many computations, I may be much smaller than T . There arises

the problem of estimating the number of irreversible steps in a computation.

(More complicatedly, one could extend the notion of irreversible step to those

steps which can be reversed on local information alone. In some cases this is

possible even when the used quadruple itself was irreversible.)

In a preliminary version of this paper [15], two of us proposed a quantitative

study of exchanges of computing resources such as time and space for number

5

of irreversible operations which we believe will be relevant for the physics of

future computation devices. We conjectured that all reversible simulations of

an irreversible computation can essentially be represented as the pebble game

de�ned below, and that consequently the lower bound of Corollary 2 applies

to all reversible simulations of irreversible computations. This conjecture was

refuted in [11] using a technique due to [18] to show that there exists a general

reversible simulation of an irreversible computation using only order S space

at the cost of using a thoroughly unrealistic simulation time exponential in S.

In retrospect the conjecture is phrased too general: it should be restricted

to useful simulations|using linear or slightly superlinear time and space si-

multaneously. The real question is whether there is a compiler that takes as

input any irreversible algorithm A using S space and T time and produces

a reversible algorithm B such that B(x) = A(x) for all input x and using

T

0

= O(T) time and S

0

= O(S) space. In the extreme cases of time and space

use this is possible: If S = �(T) then the simulation in [1] does the trick, and

if T = �(2

S

) then the simulation of [11] works. For all other cases the pebble

game analysis below has been used in [7] to show that any such simulation, if

it exists, cannot relativize to oracles, or work in cases where the space bound

is much less than the input length. (This is a standard method of giving ev-

idence that the aimed-for result|here: simulation doesn't exist|is likely to

be true in case the result itself is too hard to obtain.)

2 Reversible Pebbling

Let G be a linear list of nodes f1; 2; : : : ; T

G

g. We de�ne a pebble game on G as

follows. The game proceeds in a discrete sequence of steps of a single player.

There are n pebbles which can be put on nodes of G. At any time the set of

pebbles is divided in pebbles on nodes of G and the remaining pebbles which

are called free pebbles. At every step either an existing free pebble can be

put on a node of G (and is thus removed from the free pebble pool) or be

removed from a node of G (and is added to the free pebble pool). Initially G

is unpebbled and there is a pool of free pebbles. The game is played according

to the following rule:

Reversible Pebble Rule: If node i is occupied by a pebble, then one may

either place a free pebble on node i + 1 (if it was not occupied before), or

remove the pebble from node i+ 1.

We assume an extra initial node 0 permanently occupied by an extra, �xed

pebble, so that node 1 may be (un)pebbled at will. This pebble game is in-

spired by the method of simulating irreversible Turing Machines on reversible

ones in a space e�cient manner. The placement of a pebble corresponds to

6

checkpointing the current state of the irreversible computation, while the re-

moval of a pebble corresponds to reversibly erasing a checkpoint. Our main

interest is in determining the number of pebbles k needed to pebble a given

node i.

The maximum number n of pebbles which are simultaneously on G at any

one time in the game gives the space complexity nS of the simulation. If one

deletes a pebble not following the above rules, then this means a block of bits

of size S is erased irreversibly. The limitation to Bennett's simulation is in fact

space, rather than time. When space is limited, we may not have enough place

to store garbage, and these garbage bits will have to be irreversibly erased. We

establish a tight lower bound for any strategy for the pebble game in order to

obtain a space-irreversibility tradeo�.

2.1 Reachable Pebble Con�gurations

We describe the idea of Bennett's simulation [3]. Given that some node s is

pebbled, and that at least n free pebbles are available, the task of pebbling

nodes s+ 1; : : : ; s+ 2

n

� 1 can be seen to reduce to the task of �rst pebbling

nodes s+1; : : : ; s+2

n�1

�1 using n�1 free pebbles, then placing a free pebble

on node s + 2

n�1

, then unpebbling nodes s + 1; : : : ; s + 2

n�1

� 1 to retrieve

our n � 1 pebbles, and �nally pebbling nodes s + 2

n�1

+ 1; : : : ; s + 2

n

� 1

using these pebbles. By symmetry, an analogous reduction works for the task

of unpebbling nodes s + 1; : : : ; s + 2

n

� 1 with n free pebbles. The following

two mutually recursive procedures implement this scheme; their correctness

follows by straightforward induction.

pebble(s; n)

f

if (n = 0) return;

t = s + 2

n�1

;

pebble(s; n� 1);

put a free pebble on node t

unpebble(s; n� 1)

pebble(t; n� 1);

g

unpebble(s,n)

f

if (n = 0) return;

t = s + 2

n�1

;

unpebble(t; n� 1);

pebble(s; n� 1)

7

remove the pebble from node t

unpebble(s; n� 1);

g

The di�cult part is showing that this method is optimal. It turns out that

characterizing the maximum node that can be pebbled with a given number of

pebbles is best done by completely characterizing what pebble con�gurations

are realizable. First we need to introduce some helpful notions.

In a given pebble con�guration with f free pebbles, a placed pebble is called

available if there is another pebble at most 2

f

positions to its left (0 being the

leftmost node). According to the above procedures, an available pebble can

be removed with the use of the free pebbles. For convenience we imagine this

as a single big step in our game.

Call a pebble con�guration weakly solvable if there is a way of repeatedly

removing an available pebble until all are free. Note that such con�gurations

are necessarily realizable, since the removal process can be run in reverse

to recreate the original con�guration. Call a pebble con�guration strongly

solvable if all ways of repeatedly removing an available pebble lead to all being

free. Obviously any strongly solvable con�guration is also weakly solvable.

The starting con�guration is obviously both weakly and strongly solvable. How

does the single rule of the game a�ect solvability? Clearly, adding a pebble

to a weakly solvable con�guation yields another weakly solvable con�guation,

while removing a pebble from a strongly solvable con�guation yields another

strongly solvable con�guation. It is not clear if removing a pebble from a

weakly solvable con�guation yields another one. If such is the case then we

may conclude that all realizable con�gurations are weakly solvable and hence

the two classes coincide. This is exactly what the next theorem shows.

Theorem 1 Every weakly solvable con�guration is strongly solvable.

Proof. Let f be the number of free pebbles in a weakly solvable con�guration.

Number the placed pebbles f; f + 1; : : : ; n � 1 according to their order of

removal. It is given that, for all i, pebble i has a higher-numbered pebble at

most 2

i

positions to its left (number the �xed pebble at 0 in�nity). We know

that pebble f is available. Suppose a pebble g with g > f is also available|so

there must be a pebble at most 2

f

positions to its left. It su�ces to show that

if pebble g is removed �rst, then pebbles f; f + 1; : : : ; g � 1 are still available

when their turn comes. Suppose pebble j �nds pebble g at most 2

j

places to

its left (otherwise j will still be available after g's removal for sure). Then after

removal of pebbles g; f; f + 1; : : : ; j � 1, it will still �nd a higher-numbered

pebble at most 2

j

+ 2

f

+ 2

f

+ 2

f+1

+ � � �+ 2

j�1

� 2

j+1

places to its left, thus

making it available given the extra now free pebble g. 2

8

Corollary 1 A con�guration with f free pebbles is realizable if and only if

its placed pebbles can be numbered f; f + 1; : : : ; n� 1 such that pebble i has a

higher-numbered pebble at most 2

i

positions to its left.

Corollary 2 The maximum reachable node with n pebbles is

P

n�1

i=0

2

i

= 2

n

�1.

Moreover, if pebble(s; n) takes t(n) steps we �nd t(0) = 1 and t(n) = 3t(n�

1) + 1 = (3

n+1

� 1)=2. That is, the number of steps T

0

G

of a winning play of a

pebble game of size T

G

= 2

n

� 1 is T

0

G

� 1:53

n

, that is, T

0

G

� T

log 3

G

.

2.2 Tradeo�s

The simulation given in [3] follows the rules of the pebble game of length

T

G

= 2

n

� 1 with n pebbles above. A winning strategy for a game of length

T

G

using n pebbles corresponds with reversibly simulating T

G

segments of S

steps of an irreversible computation using S space such that the reversible

simulator uses T

0

� ST

0

G

� ST

log 3

G

steps and total space S

0

= nS. The space

S

0

corresponds to the maximal number of pebbles on G at any time during

the game. The placement or removal of a pebble in the game corresponds to

the reversible copying or reversible cancelation of a `checkpoint' consisting of

the entire instantaneous description of size S (work tape contents, location of

heads, state of �nite control) of the simulated irreversible machine. The total

time T

G

S used by the irreversible computation is broken up in segments of size

S so that the reversible copying and canceling of a checkpoints takes about the

same number of steps as the computation segments in between checkpoints.

4

We can now formulate a tradeo� between space used by a polynomial time

reversible computation and irreversible erasures. First we show that allowing a

limited amount of erasure in an otherwise reversible computation means that

we can get by with less work space. Therefore, we de�ne an m-erasure pebble

game as the pebble game above but with the additional rule

{ In at most m steps the player can remove a pebble from any node i > 1

without node i� 1 being pebbled at the time.

An m-erasure pebble game corresponds with an otherwise reversible compu-

tation using mS irreversible bit erasures, where S is the space used by the

irreversible computation being simulated.

4

If we are to account for the permanent pebble on node 0, we get that the simu-

lation uses n + 1 pebbles for a pebble game with n pebbles of length T

G

+ 1. The

simulation uses n+1 = S

0

=S pebbles for a simulated number of S(T

G

+1) steps of

the irreversible computation.

9

Lemma 1 There is a winning strategy with n+2 pebbles and m� 1 erasures

for pebble games G with T

G

= m2

n

, for all m � 1.

Proof. The strategy is to use 2 pebbles as springboards that are alternately

placed 2

n

in front of each other using the remaining n pebbles to bridge the

distance. The most backward springboard can be erased from its old position

once all n pebbles are cleared from the space between it and the front spring-

board. We give the precise procedure in self-explanatory pseudo PASCAL

using the procedures given in section 2.1.

Procedure A(n;m;G):

for i := 0; 1; 2; : : : ; m� 1:

pebble(i2

n

; n);

put springboard on node (i + 1)2

n

;

unpebble(i2

n

; n);

if i < m� 1 erase springboard on node i2

n

;

The simulation time T

0

G

is T

0

G

� 2m�3

n�1

+2 � 2m(T

G

=m)

log 3

= 2m

1�log 3

T

log 3

G

for T

G

= m2

n�1

. 2

Theorem 2 (Space-Irreversibility Trade-o�) (i) Pebble games G of size

2

n

� 1 can be won using n pebbles but not using n� 1 pebbles.

(ii) If G is a pebble game with a winning strategy using n pebbles without

erasures, then there is also a winning strategy for G using E erasures and

n� log(E + 1) pebbles (for E is an odd integer at least 1).

Proof. (i) By Corollory 2.

(ii) By (i), T

G

= 2

n

� 1 is the maximum length of a pebble game G for which

there is a winning strategy using n pebbles and no erasures. By Lemma 1,

we can pebble a game G of length T

G

= m2

n�logm

= 2

n

using n + 1 � logm

pebbles and 2m� 1 erasures. 2

We analyze the consequences of Theorem 2. It is convenient to consider the

special sequence of values E := 2

k+2

� 1 for k := 0; 1; : : :. Let G be Bennett's

pebble game of Lemma 2 of length T

G

= 2

n

�1. It can be won using n pebbles

without erasures, or using n � k pebbles plus 2

k+2

� 1 erasures (which gives

a gain over not erasing as in Lemma 2 only for k � 1), but not using n � 1

pebbles.

Therefore, we can exchange space use for irreversible erasures. Such a tradeo�

can be used to reduce the space requirements of the reversible simulation. The

correspondence between the erasure pebble game and the otherwise reversible

10

computations using irreversible erasures is that if the pebble game uses n� k

pebbles and 2

k+2

� 1 erasures, then the otherwise reversible computation uses

(n� k)S space and erases (2

k+2

� 1)S bits irreversibly.

Therefore, a reversible simulation according to the pebble game of every ir-

reversible computation of length T = (2

n

� 1)S can be done using nS space

using (T=S)

log 3

S time, but is impossible using (n � 1)S space. It can also

be performed using (n � k)S space, (2

k+2

� 1)S irreversible bit erasures and

2

(k+1)(1�log 3)+1

(T=S)

log 3

S time. In the extreme case we use no space to store

the history and erase about 4T bits. This corresponds to the fact that an ir-

reversible computation may overwrite its scanned symbol irreversibly at each

step.

De�nition 2 Consider a simulation according to the pebble game using S

0

storage space and T

0

time which reversibly computes y = hx; f(x)i from x

in order to simulate an irreversible computation using S storage space and T

time which computes f(x) from x. The irreversible simulation cost B

S

0

(x; y)

of the simulation is the number of irreversibly erased bits in the simulation

(with the parameters S; T; T

0

understood).

If the irreversible simulated computation from x to f(x) uses T steps, then for

S

0

= nS and n = log(T=S) we have above treated the most space parsimonious

simulation which yields B

S

0

(x; y) = 0, with y = hx; f(x)i.

Corollary 3 (Space-Irreversibility Trade-o�) Simulating a T = (2

n

�

1)S step irreversible computation from x to f(x) using S space by a computa-

tion from x to y = hx; f(x)i, the irreversible simulation cost satis�es:

(i) B

(n�k)S

(x; y) � B

nS

(x; y) + (2

k+2

� 1)S, for n � k � 1.

(ii) B

(n�1)S

(x; y) > B

nS

(x; y), for n � 1.

For the most space parsimonious simulation with n = log(T=S) this means

that

B

S(log(T=S)�k)

(x; y) � B

S log(T=S)

(x; y) + (2

k+2

� 1)S:

2.3 Local Irreversible Actions

Suppose we have an otherwise reversible computation containing local irre-

versible actions. In [14] it is shown that we can always simulate such a compu-

tation with an otherwise reversible computation with all irreversibly provided

bits provided at the beginning of the computation, and all irreversibly erased

bits erased at the end of the computation. This is when we are in the situation

11

when there are no a priori bounds on the resources in time or space consumed

by the computation.

However, in the case above where there are very tight bounds on the space

used by the computation, we found in Lemma 1 a method where at the cost

of limited erasing, precisely controlled with respect to its spacing in the com-

putation time, we could save on the auxiliary space use. By Corollary 2 it is

impossible in our pebble game to shift these erasures to the end of the compu-

tation, since if we do, then the same auxiliary space is still needed at precise

times spaced during the simulation time.

Quantum computing is a particular form of reversible computation. Apart

from classical irreversible erasures, quantum computing has a nonclassical

form of irreversibility, namely the irreversible observations. An irreversible

observationmakes the superposition of the quantum state of the computer col-

lapse from the original state space to a subspace thereof, where the probability

amplitudes of constituent elements of the new superposition are renormalized.

It is well-known and observed in some papers [17], that we can replace all

observations during the quantum computation by a composition of observa-

tions at the end of the computation. One wonders if this non-classical type of

irreversibility constituted by irreversible observation of quantum states also is

constrained to strictly local instants during the computation by restrictions

on time or space resources. This seems to be the case in the

p

n data item

queries unstructured database search algorithm of Grover [8]. There, we have

to observe and renormalize at precise time instants during the computation

to achieve the improvement of O(

p

n) data item queries in the quantum algo-

rithm over the classically required
(n) queries.

2.4 Reversible Simulation of Unknown Computing Time

In the previous analysis we have tacitly assumed that the reversible simulator

knows in advance the number of steps T taken by the irreversible computation

to be simulated. Indeed, the exhibited programs F (�) and A(�) have parameters

I

k

and G involving T . In this context one can distinguish on-line computations

and o�-line computations to be simulated. On-line computations are compu-

tations which interact with the outside environment and in principle keep

running forever. An example is the operating system of a computer. O�-line

computations are computations which compute a de�nite function from an

input (argument) to an output (value). For example, given as input a positive

integer number, compute as output all its prime factors. For every input such

an algorithm will have a de�nite running time. A similar problem is choosing

optimal parameters m;n as in Section 1.3 without knowing T and space S.

12

There is a well-known simple device (used in detail in [3]) to remove this de-

pendency for batch computations without increasing the simulation time (and

space) too much. Suppose we want to simulate a computation with unknown

computation time T . Then we simulate t steps of the computation with t run-

ning through the sequence of values 2; 2

2

; 2

3

; : : : For every value t takes on we

reversibly simulate the �rst t steps of the irreversible computation. If T > t

then the computation is not �nished at the end of this simulation. Subse-

quently we reversibly undo the computation until the initial state is reached

again, set t := 2t and reversibly simulate again. This way we continue until

t � T at which bound the computation �nishes. The total time spent in this

simulation is

T

0

� 2

dlog T e

X

i=1

2

i log 3

� 2(4T)

log 3

:

This is the canonical case. With these �gures, just like the original simulation,

by suitable choice of parameter k we can obtain T

0

= �(T

1+�

=S

�

). for every

constant � > 0.

Acknowledgment

We thank Wim van Dam for pointing out an (harmless) error in the origi-

nal proof (in [14]) of Lemma 1, and Tom To�oli and the referees for useful

comments.

References

[1] C.H. Bennett. Logical reversibility of computation. IBM J. Res. Develop.,

17:525{532, 1973.

[2] C.H. Bennett. The thermodynamics of computation|a review. Int. J. Theoret.

Phys., 21(1982), 905-940.

[3] C.H. Bennett. Time-space tradeo�s for reversible computation. SIAM J.

Comput., 18(1989), 766-776.

[4] D. Deutsch, Quantum theory, the Church-Turing principle and the universal

quantum computer. Proc. Royal Society London. Vol. A400(1985), 97-117.

[5] E. Fredkin and T. To�oli. Conservative logic. Int. J. Theoret. Phys.,

21(1982),219-253.

13

[6] M. Frank, T. Knight, and N. Margolus,

Reversibility in optimally scalable computer architectures, Manuscript, MIT-

LCS, 1997: http://www.ai.mit.edu/�mpf/publications.html.

[7] M.P. Frank and M.J. Ammer, Separations of reversible and irreversible space-

time complexity classes, Submitted to the 13th IEEE Computational Complexity

Conference; http://www.ai.mit.edu/�mpf/rc/memos/M06 oracle.html.

[8] L.K. Grover, A fast quantum mechanical algorithm for database search, Proc.

28th ACM Symp. Theory of Computing, 1996, 212-219.

[9] R.W. Keyes, IBM J. Res. Dev., 32(1988), 24-28.

[10] R. Landauer. Irreversibility and heat generation in the computing process. IBM

J. Res. Develop., 5:183{191, 1961.

[11] K.J. Lange, P. McKenzie, and A. Tapp, Reversible space equals deterministic

space, Proc. 12th IEEE Computational Complexity Conference, IEEE Comp.

Soc. Press, 1997.

[12] Y. Lecerf, Machines de Turing r�eversibles. R�ecursive insolubilit�e en n 2 N de

l'�equation u = �

n

, o�u � est un \isomorphisme de codes", Comptes Rendus,

257(1963), 2597-2600.

[13] R.Y. Levine and A.T. Sherman, A note on Bennett's time-space tradeo� for

reversible computation, SIAM J. Comput., 19:4(1990), 673-677.

[14] M. Li and P.M.B. Vit�anyi, Reversibility and adiabatic computation: trading

time and space for energy, Proc. Royal Society of London, Series A, 452(1996),

769-789.

[15] M. Li and P.M.B. Vit�anyi, Reversible simulation of irreversible computation,

Proc. 11th IEEE Computational Complexity Conference, IEEE Comp. Soc.

Press, 1996, 301-306.

[16] R.C. Merkle, Reversible electronic logic using switches, Nanotechnology,

4(1993), 21-40.

[17] P.W. Shor, Polynomial-time algorithms for prime factorization and discrete

logarithms on a quantum computer. SIAM Journal on Computing, 26:5(1997),

1484{1509.

[18] M. Sipser, Halting space-bounded computations, Theoretical Computer Science,

10(1980), 335-338.

[19] P.M.B. Vit�anyi, Physics and the New Computation, Proc. 20th Int. Symp.

Math. Foundations of Computer Science, MFCS'95, Lecture Notes in Computer

Science, Vol 969, Springer-Verlag, Heidelberg, 1995, 106-128.

[20] J. von Neumann. Theory of Self-Reproducing Automata. A.W. Burks, Ed.,

Univ. Illinois Press, Urbana, 1966.

14

