Reversible Simulation of Irreversible Computation *

Ming Li!

Department of Computer Science, University of Waterloo, Waterloo, Ont. N2L
3G1, Canada. E-mail: mli@math.uwaterloo.ca

John Tromp 2

CWI, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands; Email: tromp@cwi.nl

Paul Vitanyi?

CWI, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands; Email: paulv@cwi.nl

Computer computations are generally irreversible while the laws of
physics are reversible. This mismatch is penalized by among other
things generating excess thermic entropy in the computation. Com-
puting performance has improved to the extent that efficiency de-
grades unless all algorithms are executed reversibly, for example
by a universal reversible simulation of irreversible computations.
All known reversible simulations are either space hungry or time
hungry. The leanest method was proposed by Bennett and can by
analyzed using a simple ‘reversible’ pebble game. The reachable
reversible simulation instantaneous descriptions (pebble configu-
rations) of such pebble games are characterized completely. As a
corollary we obtain the reversible simulation by Bennett and, more-
over, show that it is a space-optimal pebble game. We also intro-
duce irreversible steps and give a theorem on the tradeoff between
the number of allowed irreversible steps and the memory gain in the
pebble game. In this resource-bounded setting the limited erasing
needs to be performed at precise instants during the simulation.
The reversible simulation can be modified so that it is applicable
also when the simulated computation time is unknown.

* Part of the results appeared in [15,14] with less satisfying analysis and proofs.

L Supported in part by the NSERC Operating Grant OGP0046506, ITRC, a CGAT
grant, and the Steacie Fellowship

2 Partially supported by the European Union through NeuroCOLT ESPRIT Work-
ing Group Nr. 8556, and by NWO through NFI Project ALADDIN under Contract
number NF 62-376

3 Partially supported by the European Union through NeuroCOLT ESPRIT Work-

Preprint submitted to Elsevier Preprint

1 Introduction

Both classical and quantum physics are believed to be strictly reversible: A
complete description of the microscopic state of the system uniquely deter-
mines the earlier and future states of the system—this holds not only in Newto-
nian mechanics but for example also for the unitary evolution of any quantum
mechanical system. Currently, computations are commonly irreversible, even
though the physical devices that execute them are fundamentally reversible.
This contrast is only possible at the cost of efficiency loss by generating thermal
entropy into the environment. With computational device technology rapidly
approaching the elementary particle level it has been argued many times that
this effect gains in significance to the extent that efficient operation (or opera-
tion at all) of future computers requires them to be reversible (for example, in
[20,10,1,2,5,9,19,14,6]). Especially R. Landauer [10] has argued that it is only
the ‘logically irreversible’ operations in a physical computer that necessarily
dissipate energy by generating a corresponding amount of entropy for every bit
of information that gets irreversibly erased; the logically reversible operations
can in principle be performed dissipation-free. Reversible computers can be
implemented using classical technologies [2,16,6] or quantum-mechanical tech-
nologies as in [4,17,8]; the latter quantum-mechanical computers are reversible
except for the observation phases.

The traditional models used in the analysis of computation, for example Turing
machines, RAMs, or circuits, allow logically irreversible operations. To reflect
physical reality they must be replaced by completely reversible computational
models, for example by universal simulation. Simulation of irreversible Turing
machines by reversible ones goes back to Lecerf [12] and Bennett [1]. The
original methods required an amount of memory proportional to the amount
of computation time, since the step-by-step reproducibility of the history was
achieved by remembering it during most of the computation. It was recognized
later that keeping the configuration only of certain times (“checkpoints”) of
the original computation can reduce the memory requirement at the expense
of increasing the computing time.

Bennett in a “Remark” in [3] compares the “checkpointing” to moves in a cer-
tain pebble game. This paper takes up this suggestion to analyze time-space
and space-irreversibility tradeoffs. It completely characterizes the realizable
pebble configurations of the reversible pebble games (they encode the reach-
able instantaneous descriptions of a Turing machine reversibly simulating an
irreversible computation). As corollary we obtain Bennett’s earlier [3] simula-

ing Group Nr. 8556, and by NWO through NFI Project ALADDIN under Contract
number NF 62-376 and NSERC under International Scientific Exchange Award
ISE0125663. Affiliations are CWI and the University of Amsterdam.

tion and a first proof that this simulation is a space-optimal pebble game. It
also introduces irreversible steps and gives a theorem on the tradeoff between
the number of allowed irreversible steps and the memory gain in the pebble
game. For such a tradeoff the limited irreversible actions have to take place
at precise times during the reversible simulation, and cannot be delayed to be
executed all together at the end of the computation (as is possible in compu-
tations without time or space resource bounds). Finally, in all such reversible
simulations it is assumed that the number of steps to be simulated is known
in advance and used to construct the simulation (for that number of steps).
We show how to reversibly simulate an irreversible computation of unknown
computing time, using the same order of magnitude of simulation time.

1.1 Reversible Turing Machines

In the standard model of a Turing machine the elementary operations are rules
in quadruple format (p, s, a,¢) meaning that if the finite control is in state p
and the machine scans tape symbol s, then the machine performs action a
and subsequently the finite control enters state ¢. Such an action a consists
of either printing a symbol s’ in the tape square under scan, or moving the
scanning head one tape square left, right or not at all.

Quadruples are said to owverlap in domain if they cause the machine in the
same state and scanning the same symbol to perform different actions. A
deterministic Turing machine is defined as a Turing machine with quadruples
no two of which overlap in domain.

Now consider the special format (deterministic) Turing machines using quadru-
ples of two types: read/write quadruples and move quadruples. A read/write
quadruple (p,a,b,q) causes the machine in state p scanning tape symbol a
to write symbol b and enter state ¢. A move quadruple (p, %, 0, q) causes the
machine in state p to move its tape head by o € {—1,0,4+1} squares and
enter state ¢, oblivious to the particular symbol in the currently scanned tape
square. (Here ‘—1” means ‘one square left’, ‘0’ means ‘no move’ and ‘4+1’ means
‘one square right’.) Quadruples are said to overlap in range if they cause the
machine to enter the same state and either both write the same symbol or (at
least) one of them moves the head. Said differently, quadruples that enter the
same state overlap in range unless they write different symbols. A reversible
Turing machine is a deterministic Turing machine with quadruples no two
of which overlap in range. A k-tape reversible Turing machine uses (2k + 2)
tuples which, for every tape separately, select a read/write or move on that
tape. Moreover, any two tuples can be restricted to some single tape where
they don’t overlap in range.

To show that every partial recursive function can be computed by a reversible
Turing machine one can proceed as follows. Take the standard irreversible Tur-
ing machine computing that function. We modify it by adding an auxiliary
storage tape called the ‘history tape’. The quadruple rules are extended to
6-tuples to additionally manipulate the history tape. To be able to reversibly
undo (retrace) the computation deterministically, the new 6-tuple rules have
the effect that the machine keeps a record on the auxiliary history tape con-
sisting of the sequence of quadruples executed on the original tape. Reversibly
undoing a computation entails also erasing the record of its execution from
the history tape. This notion of reversible computation means that only 1: 1
recursive functions can be computed. To reversibly simulate an irreversible
computation from z to f(z) one reversibly computes from input x to output

(z, f(z)).

1.2 Reversible Programming

Reversible Turing machines or other reversible computers will require special
reversible programs. One feature of such programs is that they should be ex-
ecutable when read from bottom to top as well as when read from top to
bottom. Examples are the programs F'(-) and A(-) we show in the later sec-
tions. In general, writing reversible programs will be difficult. However, given a
general reversible simulation of irreversible computation, one can simply write
an oldfashioned irreversible program in an irreversible programming language,
and subsequently simulate it reversibly. This leads to the following:

Definition 1 An irreversible-to-reversible compiler receives an irreversible
program as input and reversibly compiles it to a reversible program. Subse-
quently, the reversible program can be executed reversibly.

Note that there is a decisive difference between reversible circuits and re-
versible special purpose computers on the one hand, and reversible universal
computers on the other hand. While one can design a special-purpose re-
versible version for every particular irreversible circuit using reversible univer-
sal gates, such a method does not yield an irreversible-to-reversible compiler
that can execute any irreversible program on a fixed universal reversible com-
puter architecture as we are interested in here.

1.3 Models of Reversible Simulation and Related Work

The reversible simulation in [1] of 7" steps of an irreversible computation from
x to f(x) reversibly computes from input = to output (z, f(x)) in 7" = O(T)
time. However, since this reversible simulation at some time instant has to

record the entire history of the irreversible computation, its space use increases
linearly with the number of simulated steps T". That is, if the simulated irre-
versible computation uses S space, then for some constant ¢ > 1 the simulation
uses T &~ c¢+cT time and S’ & c+¢(S+7T) space. This can be an unacceptable
amount of space for many practically useful computations.

In [3] another elegant simulation technique is devised reducing the auxiliary
storage space. This simulation does not save the entire history of the irre-
versible computation but it breaks up the simulated computation into seg-
ments of about S steps and saves in a hierarchical manner checkpoints con-
sisting of complete instantaneous descriptions of the simulated machine (entire
tape contents, tape heads positions, state of the finite control). After a later
checkpoint is reached and saved, the simulating machine reversibly undoes
its intermediate computation, reversibly erasing the intermediate history and
reversibly canceling the previously saved checkpoint. Subsequently, the com-
putation is resumed from the new checkpoint onwards.

The reversible computation simulates k™ segments of length m of irreversible
computation in (2k—1)" segments of length ©(m+S) of reversible computation
using n(k — 1) + 1 checkpoint registers using ©(m + S) space each, for every
k,n,m.

This way it is established that there are various tradeoffs possible in time-space
in between 7" = O(T) and S’ = ©(T'S) at one extreme (k=1,m=T,n=1)
and (with the corrections of [13]) 7" = O(T'"¢/S¢) and S" = O(c(e)S(1 +
log T/S)) with c(e) = €2/¢ for every ¢ > 0, using always the same simulation
method but with different parameters k,n where € = log,(2k — 1) and m =
O(S). Typically, for k = 2 we have ¢ = log3. Since for 7' > 2° the machine
goes into a computational loop, we always have S < logT. Therefore, every
irreversible Turing machine using space S can be simulated by a reversible
machine using space S? in polynomial time. Let us note that it is possible
to improve the situation by reversibly simulating only the irreversible steps.
Call a quadruple of a Turing machine irreversible if its range overlaps with
the range of another quadruple. A step of the computation is irreversible if
it uses an irreversible quadruple. Let the number of irreversible steps in a T’
step computation be denoted by I. Clearly, I < T. The simulation results
hold with 7" in the auxiliary space use replaced by I. In particular, S’ =
O(SlogI). In many computations, I may be much smaller than 7'. There arises
the problem of estimating the number of irreversible steps in a computation.
(More complicatedly, one could extend the notion of irreversible step to those
steps which can be reversed on local information alone. In some cases this is
possible even when the used quadruple itself was irreversible.)

In a preliminary version of this paper [15], two of us proposed a quantitative
study of exchanges of computing resources such as time and space for number

of irreversible operations which we believe will be relevant for the physics of
future computation devices. We conjectured that all reversible simulations of
an irreversible computation can essentially be represented as the pebble game
defined below, and that consequently the lower bound of Corollary 2 applies
to all reversible simulations of irreversible computations. This conjecture was
refuted in [11] using a technique due to [18] to show that there exists a general
reversible simulation of an irreversible computation using only order S space
at the cost of using a thoroughly unrealistic simulation time exponential in S.

In retrospect the conjecture is phrased too general: it should be restricted
to useful simulations—using linear or slightly superlinear time and space si-
multaneously. The real question is whether there is a compiler that takes as
input any irreversible algorithm A using S space and 7' time and produces
a reversible algorithm B such that B(z) = A(x) for all input = and using
T"=O(T) time and S" = O(S) space. In the extreme cases of time and space
use this is possible: If S = ©(T') then the simulation in [1] does the trick, and
if T = ©(2°) then the simulation of [11] works. For all other cases the pebble
game analysis below has been used in [7] to show that any such simulation, if
it exists, cannot relativize to oracles, or work in cases where the space bound
is much less than the input length. (This is a standard method of giving ev-
idence that the aimed-for result—here: simulation doesn’t exist—is likely to
be true in case the result itself is too hard to obtain.)

2 Reversible Pebbling

Let G be a linear list of nodes {1,2,...,T}. We define a pebble game on G as
follows. The game proceeds in a discrete sequence of steps of a single player.
There are n pebbles which can be put on nodes of G. At any time the set of
pebbles is divided in pebbles on nodes of G and the remaining pebbles which
are called free pebbles. At every step either an existing free pebble can be
put on a node of G (and is thus removed from the free pebble pool) or be
removed from a node of G (and is added to the free pebble pool). Initially G
is unpebbled and there is a pool of free pebbles. The game is played according
to the following rule:

Reversible Pebble Rule: If node ¢ is occupied by a pebble, then one may
either place a free pebble on node i + 1 (if it was not occupied before), or
remove the pebble from node i + 1.

We assume an extra initial node 0 permanently occupied by an extra, fixed
pebble, so that node 1 may be (un)pebbled at will. This pebble game is in-
spired by the method of simulating irreversible Turing Machines on reversible
ones in a space efficient manner. The placement of a pebble corresponds to

checkpointing the current state of the irreversible computation, while the re-
moval of a pebble corresponds to reversibly erasing a checkpoint. Our main
interest is in determining the number of pebbles k& needed to pebble a given
node 1.

The maximum number n of pebbles which are simultaneously on G at any
one time in the game gives the space complexity nS of the simulation. If one
deletes a pebble not following the above rules, then this means a block of bits
of size S is erased irreversibly. The limitation to Bennett’s simulation is in fact
space, rather than time. When space is limited, we may not have enough place
to store garbage, and these garbage bits will have to be irreversibly erased. We
establish a tight lower bound for any strategy for the pebble game in order to
obtain a space-irreversibility tradeoff.

2.1 Reachable Pebble Configurations

We describe the idea of Bennett’s simulation [3]. Given that some node s is
pebbled, and that at least n free pebbles are available, the task of pebbling
nodes s+1,...,s+ 2" — 1 can be seen to reduce to the task of first pebbling
nodes s+1,...,5+2" 1 —1 using n—1 free pebbles, then placing a free pebble
on node s + 2"~ then unpebbling nodes s +1,...,s5+ 2"t — 1 to retrieve
our n — 1 pebbles, and finally pebbling nodes s + 27! +1,...,s +2" — 1
using these pebbles. By symmetry, an analogous reduction works for the task
of unpebbling nodes s +1,...,s + 2" — 1 with n free pebbles. The following
two mutually recursive procedures implement this scheme; their correctness
follows by straightforward induction.

pebble(s, n)

{
if (n = 0) return;
t =5+ 271
pebble(s,n — 1);
put a free pebble on node ¢
unpebble(s, n — 1)
pebble(t,n — 1);

}

unpebble(s,n)

{
if (n = 0) return;
t =5+ 2L
unpebble(t, n — 1);
pebble(s,n — 1)

remove the pebble from node ¢
unpebble(s, n — 1);

}

The difficult part is showing that this method is optimal. It turns out that
characterizing the maximum node that can be pebbled with a given number of
pebbles is best done by completely characterizing what pebble configurations
are realizable. First we need to introduce some helpful notions.

In a given pebble configuration with f free pebbles, a placed pebble is called
available if there is another pebble at most 2/ positions to its left (0 being the
leftmost node). According to the above procedures, an available pebble can
be removed with the use of the free pebbles. For convenience we imagine this
as a single big step in our game.

Call a pebble configuration weakly solvable if there is a way of repeatedly
removing an available pebble until all are free. Note that such configurations
are necessarily realizable, since the removal process can be run in reverse
to recreate the original configuration. Call a pebble configuration strongly
solvable if all ways of repeatedly removing an available pebble lead to all being
free. Obviously any strongly solvable configuration is also weakly solvable.

The starting configuration is obviously both weakly and strongly solvable. How
does the single rule of the game affect solvability? Clearly, adding a pebble
to a weakly solvable configuation yields another weakly solvable configuation,
while removing a pebble from a strongly solvable configuation yields another
strongly solvable configuation. It is not clear if removing a pebble from a
weakly solvable configuation yields another one. If such is the case then we
may conclude that all realizable configurations are weakly solvable and hence
the two classes coincide. This is exactly what the next theorem shows.

Theorem 1 FEvery weakly solvable configuration is strongly solvable.

Proof. Let f be the number of free pebbles in a weakly solvable configuration.
Number the placed pebbles f, f + 1,...,n — 1 according to their order of
removal. It is given that, for all 7, pebble ¢ has a higher-numbered pebble at
most 2' positions to its left (number the fixed pebble at 0 infinity). We know
that pebble f is available. Suppose a pebble g with g > f is also available—so
there must be a pebble at most 2/ positions to its left. It suffices to show that
if pebble ¢ is removed first, then pebbles f, f +1,..., g — 1 are still available
when their turn comes. Suppose pebble j finds pebble ¢ at most 27 places to
its left (otherwise j will still be available after g’s removal for sure). Then after
removal of pebbles ¢, f, f + 1,...,7 — 1, it will still find a higher-numbered
pebble at most 29 + 2/ + 2/ 4 2/+1 ... 4 2771 < 27*1 places to its left, thus
making it available given the extra now free pebble g. O

Corollary 1 A configuration with f free pebbles is realizable if and only if
its placed pebbles can be numbered f, f+1,...,n — 1 such that pebble 1 has a
higher-numbered pebble at most 2° positions to its left.

Corollary 2 The mazimum reachable node with n pebbles is Y1~y 20 = 2" —1.

Moreover, if pebble(s,n) takes t(n) steps we find ¢(0) = 1 and ¢(n) = 3t(n —
1) +1 = (3" —1)/2. That is, the number of steps T, of a winning play of a
pebble game of size Ty; = 2" — 1 is T, ~ 1.53", that is, T}, ~ T®>.

2.2 Tradeoffs

The simulation given in [3] follows the rules of the pebble game of length
T = 2™ — 1 with n pebbles above. A winning strategy for a game of length
T using n pebbles corresponds with reversibly simulating Tz segments of S
steps of an irreversible computation using S space such that the reversible
simulator uses 17" ~ ST¢, ~ STg’g3 steps and total space S’ = nS. The space
S’ corresponds to the maximal number of pebbles on G at any time during
the game. The placement or removal of a pebble in the game corresponds to
the reversible copying or reversible cancelation of a ‘checkpoint’ consisting of
the entire instantaneous description of size S (work tape contents, location of
heads, state of finite control) of the simulated irreversible machine. The total
time 7S used by the irreversible computation is broken up in segments of size
S so that the reversible copying and canceling of a checkpoints takes about the

same number of steps as the computation segments in between checkpoints.
4

We can now formulate a tradeoff between space used by a polynomial time
reversible computation and irreversible erasures. First we show that allowing a
limited amount of erasure in an otherwise reversible computation means that
we can get by with less work space. Therefore, we define an m-erasure pebble
game as the pebble game above but with the additional rule

— In at most m steps the player can remove a pebble from any node 7 > 1
without node ¢ — 1 being pebbled at the time.

An me-erasure pebble game corresponds with an otherwise reversible compu-
tation using mS irreversible bit erasures, where S is the space used by the
irreversible computation being simulated.

4 If we are to account for the permanent pebble on node 0, we get that the simu-
lation uses n 4+ 1 pebbles for a pebble game with n pebbles of length Tz + 1. The
simulation uses n + 1 = S’/S pebbles for a simulated number of S(T¢ + 1) steps of
the irreversible computation.

Lemma 1 There is a winning strategy with n + 2 pebbles and m — 1 erasures
for pebble games G with T = m2"™, for all m > 1.

Proof. The strategy is to use 2 pebbles as springboards that are alternately
placed 2" in front of each other using the remaining n pebbles to bridge the
distance. The most backward springboard can be erased from its old position
once all n pebbles are cleared from the space between it and the front spring-
board. We give the precise procedure in self-explanatory pseudo PASCAL
using the procedures given in section 2.1.

Procedure A(n,m,G):
for::=0,1,2,....m—1:
pebble(i2", n);
put springboard on node (i 4+ 1)2" ;
unpebble(i2", n);
if © < m — 1 erase springboard on node 2" ;

The simulation time T% is T, ~ 2m-3" 142 ~ 2m(Tg/m)"083 = 2m! lee3 083
for T =m2" 1. O

Theorem 2 (Space-Irreversibility Trade-off) (i) Pebble games G of size
2" — 1 can be won using n pebbles but not using n — 1 pebbles.

(ii) If G is a pebble game with a winning strategy using n pebbles without
erasures, then there is also a winning strateqy for G using E erasures and
n — log(E + 1) pebbles (for E is an odd integer at least 1).

Proof. (i) By Corollory 2.

(ii) By (i), T = 2™ — 1 is the maximum length of a pebble game G for which
there is a winning strategy using n pebbles and no erasures. By Lemma 1,
we can pebble a game G of length T, = m2"1¢™ = 2" using n + 1 — logm
pebbles and 2m — 1 erasures. O

We analyze the consequences of Theorem 2. It is convenient to consider the
special sequence of values E := 282 — 1 for k:=0,1,.... Let G be Bennett’s
pebble game of Lemma 2 of length T; = 2" — 1. It can be won using n pebbles
without erasures, or using n — k pebbles plus 2572 — 1 erasures (which gives
a gain over not erasing as in Lemma 2 only for £ > 1), but not using n — 1
pebbles.

Therefore, we can exchange space use for irreversible erasures. Such a tradeoff
can be used to reduce the space requirements of the reversible simulation. The
correspondence between the erasure pebble game and the otherwise reversible

10

computations using irreversible erasures is that if the pebble game uses n — k&
pebbles and 2¥t2 — 1 erasures, then the otherwise reversible computation uses
(n — k)S space and erases (28¥2 — 1)S bits irreversibly.

Therefore, a reversible simulation according to the pebble game of every ir-
reversible computation of length 7' = (2" — 1)S can be done using nS space
using (T/S)'°¢3S time, but is impossible using (n — 1)S space. It can also
be performed using (n — k)S space, (282 — 1)S irreversible bit erasures and
k+1)(1-log3)+1 (T /G)log3 S time, In the extreme case we use no space to store
the history and erase about 47" bits. This corresponds to the fact that an ir-
reversible computation may overwrite its scanned symbol irreversibly at each
step.

Definition 2 Consider a simulation according to the pebble game using S’
storage space and 7" time which reversibly computes y = (z, f(x)) from x
in order to simulate an irreversible computation using S storage space and 7T’
time which computes f(z) from z. The irreversible simulation cost BY (x,v)
of the simulation is the number of irreversibly erased bits in the simulation
(with the parameters S, T, T" understood).

If the irreversible simulated computation from x to f(z) uses T steps, then for
S" =nS and n = log(7T/S) we have above treated the most space parsimonious
simulation which yields B% (z,y) = 0, with y = (z, f(x)).

Corollary 3 (Space-Irreversibility Trade-off) Simulating a T = (2" —
1)S step irreversible computation from x to f(x) using S space by a computa-
tion from x to y = (x, f(x)), the irreversible simulation cost satisfies:

(i) Bn=kS(x,y) < B™(x,y) + (282 — 1)S, forn > k > 1.

(ii) Bm=Y5(z,9) > B™(x,y), forn > 1.

For the most space parsimonious simulation with n = log(7'/S) this means
that

BS(log(T/S)—k) (% y) < BSlog(T/S) (% y) + (2k+2 . I)S.

2.8 Local Irreversible Actions

Suppose we have an otherwise reversible computation containing local irre-
versible actions. In [14] it is shown that we can always simulate such a compu-
tation with an otherwise reversible computation with all irreversibly provided
bits provided at the beginning of the computation, and all irreversibly erased
bits erased at the end of the computation. This is when we are in the situation

11

when there are no a priori bounds on the resources in time or space consumed
by the computation.

However, in the case above where there are very tight bounds on the space
used by the computation, we found in Lemma 1 a method where at the cost
of limited erasing, precisely controlled with respect to its spacing in the com-
putation time, we could save on the auxiliary space use. By Corollary 2 it is
impossible in our pebble game to shift these erasures to the end of the compu-
tation, since if we do, then the same auxiliary space is still needed at precise
times spaced during the simulation time.

Quantum computing is a particular form of reversible computation. Apart
from classical irreversible erasures, quantum computing has a nonclassical
form of irreversibility, namely the irreversible observations. An irreversible
observation makes the superposition of the quantum state of the computer col-
lapse from the original state space to a subspace thereof, where the probability
amplitudes of constituent elements of the new superposition are renormalized.
It is well-known and observed in some papers [17], that we can replace all
observations during the quantum computation by a composition of observa-
tions at the end of the computation. One wonders if this non-classical type of
irreversibility constituted by irreversible observation of quantum states also is
constrained to strictly local instants during the computation by restrictions
on time or space resources. This seems to be the case in the y/n data item
queries unstructured database search algorithm of Grover [8]. There, we have
to observe and renormalize at precise time instants during the computation
to achieve the improvement of O(y/n) data item queries in the quantum algo-
rithm over the classically required Q(n) queries.

2.4 Reversible Simulation of Unknown Computing Time

In the previous analysis we have tacitly assumed that the reversible simulator
knows in advance the number of steps T' taken by the irreversible computation
to be simulated. Indeed, the exhibited programs F(-) and A(-) have parameters
I}, and G involving T'. In this context one can distinguish on-line computations
and off-line computations to be simulated. On-line computations are compu-
tations which interact with the outside environment and in principle keep
running forever. An example is the operating system of a computer. Off-line
computations are computations which compute a definite function from an
input (argument) to an output (value). For example, given as input a positive
integer number, compute as output all its prime factors. For every input such
an algorithm will have a definite running time. A similar problem is choosing
optimal parameters m,n as in Section 1.3 without knowing 7" and space S.

12

There is a well-known simple device (used in detail in [3]) to remove this de-
pendency for batch computations without increasing the simulation time (and
space) too much. Suppose we want to simulate a computation with unknown
computation time 7. Then we simulate ¢ steps of the computation with ¢ run-
ning through the sequence of values 2,22, 23, ... For every value t takes on we
reversibly simulate the first ¢ steps of the irreversible computation. If 7" > ¢
then the computation is not finished at the end of this simulation. Subse-
quently we reversibly undo the computation until the initial state is reached
again, set t := 2t and reversibly simulate again. This way we continue until
t > T at which bound the computation finishes. The total time spent in this
simulation is

flog T
T' < 92 Z 2110g3 < 2(4T)log3‘

1=1

This is the canonical case. With these figures, just like the original simulation,
by suitable choice of parameter k we can obtain 7" = O(T"*¢/S¢). for every
constant € > 0.

Acknowledgment

We thank Wim van Dam for pointing out an (harmless) error in the origi-
nal proof (in [14]) of Lemma 1, and Tom Toffoli and the referees for useful
comments.

References

[1] C.H. Bennett. Logical reversibility of computation. IBM .J. Res. Develop.,
17:525-532, 1973.

[2] C.H. Bennett. The thermodynamics of computation—a review. Int. J. Theoret.
Phys., 21(1982), 905-940.

[3] C.H. Bennett. Time-space tradeoffs for reversible computation. SIAM J.
Comput., 18(1989), 766-776.

4] D. Deutsch, Quantum theory, the Church-Turing principle and the universal
g
quantum computer. Proc. Royal Society London. Vol. A400(1985), 97-117.

[5] E. Fredkin and T. Toffoli. Conservative logic. Int. J. Theoret. Phys.,
21(1982),219-253.

13

[6] M. Frank, T. Knight, and N. Margolus,
Reversibility in optimally scalable computer architectures, Manuscript, MIT-
LCS, 1997: http://www.ai.mit.edu/~mpf/publications.html.

[7] M.P. Frank and M.J. Ammer, Separations of reversible and irreversible space-
time complexity classes, Submitted to the 13th IEEE Computational Complezity
Conference; http://www.ai.mit.edu/~mpf/rc/memos/M06 oracle.html.

[8] L.K. Grover, A fast quantum mechanical algorithm for database search, Proc.
28th ACM Symp. Theory of Computing, 1996, 212-219.

[9] R.W. Keyes, IBM J. Res. Dev., 32(1988), 24-28.

[10] R. Landauer. Irreversibility and heat generation in the computing process. IBM
J. Res. Develop., 5:183-191, 1961.

[11] K.J. Lange, P. McKenzie, and A. Tapp, Reversible space equals deterministic
space, Proc. 12th IEEE Computational Complexity Conference, IEEE Comp.
Soc. Press, 1997.

[12] Y. Lecerf, Machines de Turing réversibles. Récursive insolubilité en n € N de

I’équation u = 6™, ou 0 est un “isomorphisme de codes”, Comptes Rendus,
257(1963), 2597-2600.

[13] R.Y. Levine and A.T. Sherman, A note on Bennett’s time-space tradeoff for
reversible computation, STAM J. Comput., 19:4(1990), 673-677.

[14] M. Li and P.M.B. Vitdnyi, Reversibility and adiabatic computation: trading
time and space for energy, Proc. Royal Society of London, Series A, 452(1996),
769-789.

[15] M. Li and P.M.B. Vitanyi, Reversible simulation of irreversible computation,
Proc. 11th IEEE Computational Complexity Conference, IEEE Comp. Soc.
Press, 1996, 301-306.

[16] R.C. Merkle, Reversible electronic logic using switches, Nanotechnology,
4(1993), 21-40.

[17] P.W. Shor, Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer. SIAM Journal on Computing, 26:5(1997),
1484-1509.

[18] M. Sipser, Halting space-bounded computations, Theoretical Computer Science,
10(1980), 335-338.

[19] P.M.B. Vitanyi, Physics and the New Computation, Proc. 20th Int. Symp.
Math. Foundations of Computer Science, MFCS’95, Lecture Notes in Computer
Science, Vol 969, Springer-Verlag, Heidelberg, 1995, 106-128.

[20] J. von Neumann. Theory of Self-Reproducing Automata. A.W. Burks, Ed.,
Univ. Illinois Press, Urbana, 1966.

14

