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Approximating Rate-Distortion Graphs
of Individual Data: Experiments in Lossy
Compression and Denoising

Steven de Rooij and Paul M.B. Vitanyi

Abstract—Classical rate-distortion theory requires specifying a source distribution. Instead, we analyze rate-distortion properties of
individual objects using the recently developed algorithmic rate-distortion theory. The latter is based on the noncomputable notion of
Kolmogorov complexity. To apply the theory we approximate the Kolmogorov complexity by standard data compression techniques,
and perform a number of experiments with lossy compression and denoising of objects from different domains. We also introduce a
natural generalization to lossy compression with side information. To maintain full generality we need to address a difficult searching
problem. While our solutions are therefore not time efficient, we do observe good denoising and compression performance.

Index Terms—Compression, denoising, rate-distortion, structure function, Kolmogorov complexity.

1 INTRODUCTION

RATE—DISTORTION theory analyzes communication over a
channel under a constraint on the number of trans-
mitted bits, the “rate.” It currently serves as the theoretical
frame of reference for many important applications such as
lossy compression; it can also be applied to denoising, and
more generally, applications that require a separation of
structure and noise in the input data.

Classical rate-distortion theory evolved from Shannon’s
theory of communication [1]. It describes the trade-off
between the rate and the achievable fidelity of the
transmitted representation under some distortion function,
where the analysis is carried out in expectation under some
source distribution. Therefore the theory can only be
meaningfully applied if we have some inkling as to the
distribution on objects that we want to compress lossily.
While lossy compression is ubiquitous, propositions with
regard to the underlying distribution tend to be ad hoc,
because the assumption that the objects of interest are
drawn from a single distribution is questionable. Moreover,
even if a true source distribution is known to exist, it is
typically hard to determine what it is like, and objects that
occur in practice all too often exhibit more structure than
expected under the source model of choice.

For large outcome spaces then, it becomes important to
consider structural properties of individual objects. For
example, if the rate is low, then we may still be able to
transmit objects that have a very regular structure without
introducing any distortion, but this becomes impossible for
objects with high information density. In his 1980 paper [2],
Ziv shows that there is a universal algorithm that
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asymptotically performs as well as the optimal finite state
method for a fixed but infinite individual sequence. As such
it is not necessary to specify a source distribution. For more
modern (and practically useful) research along those lines
see, e.g., [3], [4].

In order to define a nonasymptotic rate-distortion theory
that allows analysis of individual finite objects, the notion of
Kolmogorov complexity is required. Donoho made the first
foray in this direction [5]; the present work is inspired by [6],
which lays down the foundations for an algorithmic
analogue of Shannon’s probabilistic rate-distortion theory.
There is a problem: although this theory allows for an elegant
formalization of rate-distortion for individual objects, it
cannot be applied directly, as Kolmogorov complexity is
uncomputable.

Our aim is to test this new theory in practice. We
approximate Kolmogorov complexity by the compressed
size of the object using a (lossless) general purpose data
compression algorithm, and conduct a number of experi-
ments in two distinct applications of the theory, namely
lossy compression and denoising. A number of studies have
pointed out the relationship between lossy compression and
denoising; see, e.g., [7], but the present framework makes it
particularly easy to explain the connection.

In Section 2, we briefly introduce algorithmic rate-
distortion theory. We also generalize the theory to settings
with side information. A practical version of the theory is
outlined in Section 3. Finding the approximate rate-distortion
function is a difficult search problem. We motivate and
outline the genetic algorithm we used to approximate the
rate-distortion function. Then, in Section 4, we describe five
experiments in lossy compression and denoising. The results
are presented and discussed in Section 5. In Section 6, we take
a step back and discuss to what extent our practical approach
yields a faithful approximation of the theoretical algorithmic
rate-distortion function. In Section 7, we relate our framework
toa Minimum Description Length approach. Our findings are
summarized in Section 8.

Published by the IEEE Computer Society
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Fig. 1. Rate-distortion profile and distortion-rate function.

2 ALGORITHMIC RATE-DISTORTION THEORY

This section very briefly summarizes the relevant theory in
[6]. Suppose we want to communicate objects x from a
countable set of source words X using at most r bits per
object. We call r the rate. We locate a good representation of =
within a finite set ), which may be different from X in
general (but we usually have X = ) in this text). The lack of
fidelity of a representation y is quantified by a distortion
function d : X x Y — [0, 00).

The Kolmogorov complexity of y, denoted K(y), is the
length of the shortest program that constructs y. More
precisely, it is the length of the shortest input to a fixed
universal binary prefix machine that will output y and then
halt; also see the textbook [8]. We can transmit that shortest
program for any representation y that has K(y) <r; the
receiver can then run the program to obtain y and is thus able
to reconstruct z up to distortion d(z,y). Define the rate-
distortion profile P, of the source word x as the set of pairs (r, a)
such that there is a representation y € ) with d(z,y) < aand
K(y) < r. The possible combinations of r and a can also be
characterized by the rate-distortion function of the source word
x, which is defined as r;(a) = min{r | (r,a) € P,}, or by the
distortion-rate function of the source word x, which is defined as
d;(r) = min{a | (r,a) € P,}. These two functions are some-
what like inverses of each other; although strictly speaking
they are not since they are monotonic but not strictly
monotonic. Also note that, unlike in classical rate-distortion
theory, each source word has associated rate-distortion and
distortion-rate functions. A representation y is said to witness
the rate-distortion function of z if r,(d(x,y)) = K(y). These
definitions are illustrated in Fig. 1.

Algorithmic rate-distortion theory is a generalization of
Kolmogorov’s structure function theory. It is developed and
treated in much more detail in [6].

2.1 Side Information

Suppose we want to transmit a source word z € X and we
have chosen a representation y € ) as before. The encoder
and decoder often share a lot of information: both might
know that grass is green and the sky is blue, they might
share a common language, and so on. They would not need
to transmit such information. It seems reasonable to allow
the program to compute a representation y, transmitted
from an encoder to a decoder, to use any side information z
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they might share. Such programs may be shorter than they
could be otherwise. This can be formalized by switching to
the conditional Kolmogorov complexity K (y|z), which is the
length of the shortest Turing machine program that
constructs y on input z. We redefine K(y) = K(yle), where
€ is the empty sequence, so that K(y|z) < K(y) up to an
independent constant: the length of the shortest program
for y can never significantly increase when side information
is provided, but it might certainly decrease when y and z
share a lot of information [8]. We change the definitions as
follows: the rate-distortion profile of the source word x with side
information z is the set of pairs (r,a) such that there is a
representation y € ) with d(z,y) <a and K(y|z) <r. The
definitions of the rate-distortion function and the distortion-
rate function are similarly changed. In Section 5, we will
demonstrate an application: removal of errors in short text
documents. Henceforth, we will omit mention of the side
information z unless it is relevant to the discussion.

2.2 Distortion Spheres, the Minimal Sufficient
Statistic

A representation y that witnesses the rate-distortion
function is the best possible rendering of the source object
x because it achieves a distortion of d(z,y) at the lowest
possible rate, but if the rate is lower than K(z), then some
information is necessarily lost. As we want to find the best
possible separation between structure and noise in the data,
it is important to determine to what extent the discarded
information is noise.

Together, a representation y and the distortion a =
d(z,y) conveys the information that the source object x
can be found somewhere on the list of all 2/ € X' that
satisfy d(z/,y) = a. We call such a list a distortion sphere. A
distortion sphere of radius a, centered around y is
defined as follows:

Sy(a) = {2’ € X : d(a',y) = a}. (1)

If x is a completely random element of this list, then the
discarded information is pure “white noise”: it contains no
meaningful information. Conversely, all random elements
in the list share all “simply described” (in the sense of
having low Kolmogorov complexity) properties that z
satisfies. Hence, with respect to the “simply described”
properties, every such random element is as good as x, see
[6] for more details. In such cases, given that z is in Sy(a), a
literal specification of the index of x in the list is the most
efficient code for z. A fixed-length, literal code requires
log |Sy(a)| bits. (Here and in the following, all logarithms are
taken to base 2.) On the other hand, if the discarded
information is structured, then the Kolmogorov complexity
of the index of x in S, (a) will be significantly lower than the
logarithm of the size of the sphere. The difference between
these two code lengths can be used as an indicator of the
amount of structural information that is discarded by the
representation y. Vereshchagin and Vitanyi [6] call this
quantity the randomness deficiency of the source object z in
the set S,(a), and they show that if y witnesses the rate-
distortion function of z, then it minimizes the randomness
deficiency at rate K(y); thus the rate-distortion function
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identifies those representations that account for as much
structure as possible at the given rate.

To assess how much structure is being discarded at a
given rate, consider a code for the source object x in which
we first transmit the shortest possible program that
constructs y, then the shortest possible program that
constructs the radius of the distortion sphere, and finally
a literal, fixed-length index of z in the distortion sphere
Sy(a). Such a code has the following length function:

Ly(z) = K(y) + K(d(z,y)ly) + log |Sy(d(z,y))|.  (2)

It is possible that d(z,y) is fully determined by y, for
example if ) is the set of all finite subsets of X and list
decoding distortion is used, as described in [6]. In such
cases, K(d(x,y)|y) never exceeds a fixed constant. How-
ever, this does not apply in our experiments; we actually
need to encode d(z,y) separately. However, the number of
bits required is negligible compared to the total three part
code length.

If the rate is very low then the representation y models
only very basic structure and the randomness deficiency in
the distortion sphere around y is high. Borrowing terminol-
ogy from statistics, we may say that y is a representation
that “underfits” the data: y does not capture all relevant
features of the data. In such cases, we should find that
L,(z) > K(z), because the fixed-length code for the index of
« within the distortion sphere is suboptimal in this case. But
suppose that y is complex enough that it satisfies L,(z) ~
K(z) (making this definition more precise is outside the
scope of this paper). In [6], such representations are called
(algorithmic) sufficient statistics for the data x. A sufficient
statistic has close to zero randomness deficiency, which
means that it represents all structure that can be detected in
the data. However, sufficient statistics might contain not
only structure, but noise as well. Such a representation
would be overly complex, an example of overfitting. A
minimal sufficient statistic balances between underfitting
and overfitting. It is defined as the lowest complexity
sufficient statistic, which is the same as the lowest complex-
ity representation y that minimizes the code length L,(z).
As such it can also be regarded as the “model” that should
be selected on the basis of the Minimum Description Length
(MDL) principle; also see Section 7. To be able to relate the
distortion-rate function to this code length we define the
code length function \.(r) = L,(x) where y is the representa-
tion that minimizes the distortion at rate r.

2.3 Applications: Denoising and Lossy
Compression

Representations that witness the rate-distortion function
provide optimal separation between structure that can be
expressed at the given rate and residual information that is
perceived as noise. Therefore, these representations can be
interpreted as denoised versions of the original. Since the
minimal sufficient statistic discards as much noise as
possible, without losing any structure, it is the best candidate
for applications of denoising.

While the minimal sufficient statistic is a denoised
representation of the original signal, it is not necessarily
given in a directly usable form. For instance, ) could consist
of subsets of X, but a set of source words is not always

acceptable as a denoising result. So in general, one may
need to apply some function f:) — X to the sufficient
statistic to construct a usable object. But if X =) and the
distortion function is a metric, as in our case, then the
representations are already in an acceptable format, so here
we use the identity function for the transformation f.

In applications of lossy compression, one may be willing
to accept a rate which is lower than the complexity K (y) for a
minimal sufficient statistic y, thereby losing some structural
information. However, theory does tell us that it is not
worthwhile to set the rate to a value higher than K(y). The
original object x is a random element of Sy(d(x,y)), and it
cannot be distinguished from any other random =z €
Sy(d(z,y)) using only “simply described” properties. So we
have no “simply described” test to discredit the hypothesis
that any such z is the original object, given y and d(z, y). But
increasing the rate, yielding a model ¢/ and d(z, ') < d(z,y),
we commonly obtain a sphere Sy of smaller cardinality than
S,, with some random elements of .S, not being random
elements of Sy . Since these excluded elements were perfectly
good candidates of being the original object, if the rate is
higher than K(y), the resulting representation y models
irrelevant features (“noise”) that are specific to a: the
representation starts to “overfit.”

In lossy compression, as in denoising, the representa-
tions themselves may be unsuitable for presentation to the
user. For example, when decompressing a lossily com-
pressed image, in most applications a set of images would
not be an acceptable result. So again a transformation from
representations to objects of a usable form has to be
specified. There are two obvious ways of doing this. First,
if a representation y witnesses the rate-distortion function
for a source word z € X, then any two random objects in
Sy(d(z,y)) cannot be distinguished from one another at rate
K (y). Therefore, we might choose not to use a deterministic
transformation, but rather report the uniform distribution
on the objects in S (d(z,y)) as the lossily compressed
version of z. This method has the advantage that it is
applicable whether or not X = Y. Second, if & = ) and the
distortion function is a metric, then it makes sense to use the
identity transformation again, although here the motivation
is different. Suppose we select some 2’ € S,(d(z,y)) other
than y. Then the best upper bound we can give on the
distortion is d(z,z') < d(z,y) +d(y,2') = 2d(z,y) (by the
triangle inequality and symmetry). Thus, the distortion for y
is only half of the upper bound on the distortion we
obtained for z'. Therefore, using y is more suitable from a
worst-case perspective. This method has as an additional
advantage that the decoder does not need to know the
distortion d(z,y) which often cannot be computed from y
without knowledge of .

Of these two approaches, if the rate is high enough to
transmit a sufficient statistic, the first seems preferable. We
have nevertheless chosen to always report y directly in our
analysis, which has the advantage that this way, all
reported results are of the same type.

3 ComPUTING INDIVIDUAL OBJECT RATE
DISTORTION
The rate-distortion function for an object x with side

information z and a distortion function d is found by
simultaneously minimizing two objective functions
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91(y) = K(yl2) and g2(y) = d(,y).

We impose a partial order on representations

y =y, iff gi(y) < g1(y) and ga(y) < g2(¥/). (3)

Our goal is to find the set of representations that are
minimal under <. Such an optimization problem cannot be
implemented because of the uncomputability of K. To make
the idea practical, we need to approximate the conditional
Kolmogorov complexity. As observed in [9], it follows
directly from symmetry of information for Kolmogorov
complexity (see [8, p. 233]) that

K(ylz) = K(zy) — K(2) + O(logn), (4)

where n is the length of zy. To approximate conditional
complexity, we will ignore the logarithmic term, and
replace K by K, the length of the compressed representa-
tion under a general purpose compression algorithm." The
approximate conditional complexity thus becomes

K(ylz) = K(zy) — K(2) = K(yl2), ()

and the definition of g; is changed to use K rather than K.
This may be a poor approximation: K (y) may be quite high
even for objects y that have K(y) close to zero. Our results
show evidence that some of the theoretical properties of the
distortion-rate function nevertheless carry over to the
practical setting; we also explain how some observations
that are not predicted by theory are in fact related to the
(unavoidable) inefficiencies of the used compressor.

Compressor (rate function). One can use any general-
purpose compressor in (5); in our experiments we used a
block sorting compression algorithm with a move-to-front
scheme as described in [10]. The algorithm is very similar to
a number of common general purpose compressors, such as
bzip2 and zzip [11], but it is simpler and faster for small
inputs; the source code (in C) is available from the authors.

Of course, domain specific compressors might yield
better compression for some object types (such as sound
wave files), and therefore a better approximation of the
Kolmogorov complexity. However, we could find no
standard algorithms that substantially outperform ours on
the very small inputs that we experimented with.

Code length function. In Section 2.2, we introduced the
code length function A,(r). Its definition makes use of (2),
for which we have not yet provided a computable
alternative. We use the following approximation:

Ly(x) = K(y) + Lp(d(z,y)ly) +log|S,(d(z,y))|.  (6)

In this paper we use an Elias code [12] for Lp, with code
length Lp(d) =log(d+ 1) + 2loglog(d + 2) + O(1).

Distortion functions. In all our experiments (Section 4), we
have X = ) and the used distortion functions are metrics.
We use the following three common metrics:

1. Hamming distortion. Hamming distortion is perhaps
the simplest distortion function that could be used.
Let z and y be two objects of equal length n. The
Hamming distortion d(x, y) is equal to the number of

1. The logarithmic overhead can be avoided by approximating
conditional complexity directly using a sequential compressor; see the
end of Section 4.
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symbols in z that do not match those in the
corresponding positions in y.

2.  Euclidean distortion. As before, let x = x1,...,x, and
Y=19Y1,...,Y, be two objects of equal length, but the
symbols now have a numerical interpretation.
Euclidean distortion is

n

d(x,y) = Z(Jﬁz —y):

i=1

the distance between 2 and y when they are
interpreted as vectors in an n-dimensional euclidean
space. In other words, this distortion is the root of
the summed squared error. Note that this definition
of euclidean distortion differs from the one in [6].

3. Edit distortion. The edit distortion, or Levenshtein
distortion, is a well-known criterion for approximate
string matching [13]. The edit distortion of two
strings « and y, possibly of different lengths, is the
minimum number of symbols that have to be deleted
from, inserted into, or changed in z in order to
obtain y (or vice versa).

3.1 Searching for the Rate-Distortion Function

The search problem that we have to address is hard for
three reasons. First, the search space is very large: for an
object of n bits there are 2" candidate representations of the
same size, and objects that are typically subjected to lossy
compression are often millions or billions of bits long. Thus,
an exhaustive search algorithm is not practical. Second, we
found on the other hand that a greedy search procedure
tends to terminate quickly in some local optimum that is
very bad globally. Third, we want to avoid making too
many assumptions about the two objective functions, so
that we are free to change the compression algorithm and
the distortion function.

Since the structure of the search landscape is at present
poorly understood and we do not want to make any
unjustifiable assumptions, we use a genetic search algo-
rithm which performs well enough that interesting results
can be obtained. More specialized Monte Carlo algorithms
may vyield faster performance; one such approach is
described in [4].

We need a number of definitions for the subsequent
discussion. A finite subset of Y is called a pool. A pool P
induces a trade-off profile p(P) = {(91(y), g2(y)) | y € V.
Y =y for some v/ in P}. The weakness wp(y) of an object y €
P is defined as the number of elements of the pool that are
smaller according to <. The (transitive) reduction trd(P) of a
pool P is the subset of all elements with zero weakness.
Elements of trd(P) are also called models.

The search algorithm initializes a pool Py, which is then
subjected to a process of selection through survival of the
fittest: the pool is iteratively updated by replacing elements
with low fitness by new ones, which are created through
either mutation (random modifications of elements) or
crossover (“genetic” recombination of pairs of other candi-
dates). We write P; to denote the pool after ¢ iterations.
When the algorithm terminates after n iterations it outputs
the reduction of P,,. Implementation details are in the online
appendix, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TC.2011.25.
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4 EXPERIMENTS

We subjected five objects to our program. The following
considerations have guided our choice of objects:

1. Objects should not be too complex, allowing our
program to find a good approximation of the
distortion-rate curve. We found that the running
time of the program seems to depend mostly on the
complexity of the original object; a compressed size
of 20,000 bits seemed to be about the maximum our
program could handle within a reasonable amount
of time, requiring a running time of the order of
weeks on a desktop computer.

2. Tocheck that our method really is general, as much as
possible we selected objects from different domains,
for which different distortion functions are appro-
priate. Preferably, the objects contain structure at
different levels of complexity.

3. Objects should contain primary structure and
regularities that are distinguishable and compressi-
ble by a block sorting compressor such as the one we
use. Otherwise, the assumption that compressor
implements a reasonable approximation of Kolmo-
gorov complexity becomes very strained. For in-
stance, we would not expect our program to do well
on a sequence of digits from the binary expansion of
the number 7.

With this in mind, we have selected the objects shown
in Fig. 2.

In each experiment, as time progressed the program
found less and less improvements per iteration, but the pool
never stabilized completely. Therefore we interrupted each
experiment when 1) after at least one night of computation,
the pool did not improve a lot, and 2) for all intuitively
good models y € ) that we could conceive of a priori, the
algorithm had found an /' in the pool with 3/ < y according
to (3). In each denoising experiment, this test included the
original, noiseless object. In the experiment, on the mouse
without added noise, we also included the images that can
be obtained by reducing the number of gray levels in the
original with an image manipulation program. Finally, for
the grayscale images we included a number of objects that
can be obtained by subjecting the original object to JPEG
compression at various quality levels.

The first experiment illustrates how algorithmic rate-
distortion theory may be applied to lossy compression
problems, and it illustrates how for a given rate, some
features of the image are preserved while others can no longer
be retained. We compare the performance of our method to
the performance of JPEG (the 2000 standard). JPEG images
were encoded to jpc format with three quality levels using
NetPBM version 10.33.0; all other options are default. For
more information about this software refer to [14].

The other four experiments are concerned with denois-
ing. Any model that is output by the program can be
interpreted as a denoised version of the input object. We
measure the denoising success of a model y as d(z/,y),
where z' is the original version of the input object x, before
noise was added. We also compare the denoising results to
those of other denoising algorithms:

A grey scale picture of a mouse of 64 x 40
pixels. The picture is analysed with respect
to Euclidean distortion.

A monochrome image of 64 X 64 pixels
that depicts a cross. The original has 1188
black pixels and 2908 white pixels, but 377
random pixels have been inverted to arrive
at a noisy image with 1347 black pixels.
Hamming distortion is used.

The same picture of a mouse, but now zero
mean Gaussian noise with 0 = 8 has been
added to each pixel. Euclidean distortion is
used; the distortion to the original mouse is
391.1.

Regression problem: for ¢ = O,..., 255
set Y; = 100sin(mé/ 256) + ¢;, where
each ¢; is normally distributed with g = 0
and 0 = 14. Representations are sequences
of 256 integers, evaluated using Euclidean
distortion. The compressor operates on the
*, sequence of differences, see the discussion
o " in Section V-B.

A corrupted quotation from Chapter 1 of
The Picture of Dorian Gray, by Oscar
Wilde. The 733 byte long fragment was cre-
ated by performing 68 random insertions,
deletions and replacements of characters in
the original text. Edit distortion is used. The
rest of chapters one and two of the novel are
given to the program as side information.

Beauty, real beauty, ends2wheresan intellectual
expressoon begins. IntellHet isg in itself
a mMde ofSexggeration, an\  destroys
theLharmony of n face. [...]

(See Figure 9)

Fig. 2. Objects of experimentation.

1. Blurring (convolution with a Gaussian kernel).
Blurring works like a low-pass filter, eliminating all
high frequency information including noise. Other
high frequency features of the image, such as sharp
contours, are also discarded.

2. Naive denoising. We applied a naive denoising
algorithm to the noisy cross, in which each pixel was
inverted if five or more out of the eight neighboring
pixels were of different color.

3. Denoising based on JPEG. Here we subjected the
noisy input image to JPEG compression at various
quality levels. We then selected the result for which
the distortion to the original image was lowest.

We have also tried BayesShrink [15], a more sophisti-
cated, wavelet-based denoising algorithm. However it turns
out that BayesShrink hardly affects the input image at all,
probably because it is so small.

4.1 Names of Objects

To facilitate description and discussion of the experiments we
will adopt the following naming convention. Objects related
to the experiments with the mouse, the noisy cross, the noisy
mouse, the sine wave, and the Wilde fragment, are denoted
by the symbols M, €, IN, §, and W, respectively. A number
of important objects in each experiment are identified by a
subscript as follows: for @ € {IM, C,IN,$, W}, the input
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object, for which the rate-distortion function is approximated
by the program, is called @y, which is sometimes abbre-
viated to @. In the denoising experiments, the input object is
always constructed by adding noise to an original object. The
original object and the noise are called @orig and Qnoisk,
respectively. If Hamming distortion is used, addition is
carried out modulo 2, which means that Cy equals Coric
XOR Cyoise- As mentioned before, the search program
outputs the reduction of the gene pool, which is the set of
considered models. Two important models are also given
special names: the model within the gene pool that minimizes
the distortion to @oric constitutes the best denoising of the
input object and is therefore called @grst, and the minimal
sufficient statistic as described in Section 2.2 is called @yss.
Finally, in the denoising experiments we also give names to
the results of the alternative denoising algorithms. Namely,
Carve is the result of the naive denoising algorithm applied
to the noisy cross, INgrur is the convolution of IN with a
Gaussian kernel with o = 0.458 (which was found to be
optimal), and IN;pg is the image produced by subjecting IN
to JPEG compression at the quality level for which the
distortion to INogi¢ is minimized.

5 RESULTS AND DISCUSSION

After running for some time on each input object, our
program outputs the reduction of a pool P, which is
interpreted as a set of models. For each experiment, we
report a number of different properties of these sets.
Since we are interested in the rate-distortion properties of
the input object z = @x, we plot the approximation of the
distortion-rate function of each input object: d,(r)=
min{d(z,y) | y € trd(P), K(y) < r}. Such approximations of
the distortion-rate function are provided for all experi-
ments. For the grayscale images we also plot the distortion-
rate approximation that is achieved by JPEG at different
quality levels. Here, the rate is the code length achieved by
JPEG, and the distortion is the euclidean distortion to @x.
We also plot an approximation of the code length function
discussed in Section 2.2

min

Ae(r) = mi
yeP|K (y)<r

Ly(=), (7)
minimal sufficient statistics can be identified by locating the
minimum of this graph.

5.1 Lossy Compression

5.1.1 Experiment 1: Mouse (Euclidean Distortion)

Our first experiment involved the lossy compression of IM,
a grayscale image of a mouse. A number of elements of the
gene pool are shown in Fig. 3. The pictures show how at
low rates, the models capture the most important global
structures of the image; at higher rates more subtle
properties of the image can be represented. Image (a)
shows a rough rendering of the distribution of bright and
dark areas in IMpy. These shapes are rectangular, which is
probably an artifact of the compression algorithm we used:
it is better able to compress images with rectangular
structure than with circular structure. There is no real
reason why a circular structure should be in any way more
complex than a rectangular structure, but most general
purpose data compression software is similarly biased. In
(b), the rate is high enough that the oval shape of the mouse
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Fig. 3. Lossy image compression results for the mouse (h). The numbers
below each image denote its compressed size K(-), total code length
I:(.)(]MIN) and euclidean distortion d(-,My), respectively. (a) 163.0/
19220.9/2210.0. (b) 437.8/17013.6/1080.0. (c) 976.6/15779.7/668.9.
(d) 1242.9/15297.9/546.4. (e) 1676.6/14641.9/406.9. (f) 2324.5/
14150.1/298.9. (g) 3190.6/13601.4/2083.9. (h) 7995.1/7996.1/0.

can be accommodated, and two areas of different overall
brightness are identified. After the number of gray shades
has been increased a little further in (c), the first hint of the
mouse’s eyes becomes visible. The eyes are improved and
the mouse is given paws in (d). At higher rates, the image
becomes more and more refined, but the improvements are
subtle and seem of a less qualitative nature.

The code length function (Fig. 4) shows that the only
sufficient statistic in the set of models is My itself,
indicating that the image hardly contains any noise. It also
shows the rates that correspond to the models that are
shown in Fig. 3. By comparing these figures it can be clearly
seen that the image quality only starts to deteriorate
significantly after more than half of the information in
IMin has been discarded. Note that this is not a statement
about the compression ratio, where the size is related to the
size of the uncompressed object. For example, IMjy has an
uncompressed size of 64-40-8 =20,480 bits, and the
representation in Fig. 3b has a compressed size of
3190.6 bits. This representation therefore constitutes com-
pression by a factor of 20,480/3190.6 = 6.42, which is
substantial for an image of such small size. At the same
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Fig. 4. Approximate distortion-rate and code length functions for the
mouse.

time, the amount of information is reduced by a factor of
7995.0/3190.6 = 2.51.

5.2 Denoising

For each denoising experiment, we report a number of
important objects, a graph that shows the approximate
distortion-rate function and a graph that shows the approx-
imate code length function. In the distortion-rate graph, we
plot not only the distortion to @y but also the distortion to
©oriq, to visualize the denoising success at each rate.

It is important to realize that only the reported minimal
sufficient statistic and the results of the naive denoising
methods can be obtained without knowledge of the original
object—the other objects @prst, @;prc, and Opryr involve
minimizing the distortion to @orig, which cannot be done
in practical situations where @orig is not known.

5.2.1 Experiment 2: Noisy Cross (Hamming Distortion)
In the first denoising experiment, we approximated the
distortion-rate function of a monochrome cross Cogriq of
very low complexity, to which artificial noise was added to
obtain €y (the rightmost image in Fig. 5). The best
denoising Cgrsr (leftmost image) has a distortion of only
three to the original ©oriq, which shows that the distortion-
rate function indeed separates structure and noise extre-
mely well in this example. The bottom graph shows the
approximate code length function; the minimum on this
graph is the minimal sufficient statistic Cygs. In this low
complexity example, we have Cyiss = ©ggst, so the best
denoising is not only very good in this simple example, but
it can also be identified.

1400 T T
Distortion to noisy cross

1200 + Distortion to original ------ -
21000 -
£ |
£ 800
= 1
£ 600
p=
8
Z 400 F VN S

200

0 . /»"T/OJ(" | | |
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4000 :
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;E 3000 - 8
52500 ° ]
8
5 2000 |- R
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<
a
g 1000 8

500 - 8
0O 500 1000 1500 2000 2500 3000
rate (compressed size in bits)
‘ Cgrst=Cmss  Cnarve Cix ‘
K(.) 260.4 669.2  3178.6
Ly (Cw) 2081.9 25333  3179.6
d(-,Cy) 376 389 0
d(-, Coric) 3 40 377

Fig. 5. Denoising a noisy cross. Highlighted objects, from left to right:
Cgrst, Crxave, and Cry. Exact values are in the bottom table.

We did not subject © to blurring because it is mono-
chrome. Instead we used the extremely simple, “naive”
denoising method that is described in Section 4 on this
specificimage instead. The resultis the middle image of Fig. 5;
while most of the noise has indeed been removed, 40 errors
remain whichis alot more than those incurred by the minimal
sufficient statistic. All errors except one are close to the
contours of the cross. This illustrates how the naive algorithm
is limited by its property that it takes only the local
neighborhood of each pixel into account, it cannot represent
larger structures such as straight lines.

5.2.2 Experiment 3: INoisy Mouse (Euclidean Distortion)
The noisy mouse poses a significantly harder denoising
problem, where the total complexity of the input INiy is
more than five times as high as for the noisy cross. The
results are in Fig. 6. The top-left image (a) is the input object
IN1y; it was constructed by adding noise to the original
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(b)

(d)
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()

Fig. 6. Denoising results for the noisy mouse (a). The numbers
below each image denote its compressed size K(-), total code
length L(y(INix), distortion to INix and distortion to WNogic,
respectively. (a) Ny, 16699.7/16700.7/0/392.1. (b) Nogric = Mx.
(C) INniss, 19698/155049/4747/3370 (d) INyss — Norig- (e) WNjpra,
3104/16395.4/444.4/379.8. (f) WNyppc — Noric. (9) Npgsr, 3354.5/
15952.8/368.4/272.2. (h) WNpgst — Norig. (i) Nprur(o = 0.458),
14117.0/25732.4/260.4/291.2. (j) NpLur — Nogic-

noiseless image INorig = My (top-right). We display three
different denoising results. Image (g) shows INgggr, the best
denoised object from the gene pool. Visually, it appears to
resemble INopie quite well, but it might be the case that
there is structure in INorig that is lost in the denoising
process. Because human perception is perhaps the most
sensitive detector of structure in image data, we show the
difference between INggst and INogrig in (h). We would
expect any significant structure in the original image that is
lost in the denoising process, as well as structure that is not
present in the original image, but is somehow introduced as
an artifact of the denoising procedure, to become visible in
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this residual image. In the case of INgggT, we cannot make
out any particular features in the residual.

We have done the same for the minimal sufficient
statistic (c). The result also appears to be a quite successful
denoising, although it is clearly of lower complexity than
the best one. This is also visible in the residual, which still
does not appear to contain much structure, but darker and
lighter patches are definitely discernible. Apparently INpy
does contain some structure beyond what is captured by
INygg, but this cannot be exploited by the compression
algorithm. We think that the fact that the minimal sufficient
statistic is of lower complexity than the best possible
denoising result should therefore again be attributed to
inefficiencies of the compressor.

For comparison, we have also denoised IN using the
methods based on blurring and JPEG as described in
Section 4. Blurring-based denoising does not actually
perform that badly, as shown in (i). The distortion from
WprLur to Norie lies in-between the distortions for INygg
and INgggr, but it differs from those objects in two respects.
First, INg,yr remains much closer to INyy, at a distortion of
260.4 instead of 368 or more, and second, INgLyr is much
less compressible by K. These observations are at present
not well understood. The contours of the mouse contain
high frequency information which is discarded by blurring,
creating artifacts that are clearly visible in the residual
image (j). Finally, the performance of JPEG is clearly inferior
to our method visually as well as in terms of rate and
distortion. The result seems to have undergone a smoothing
process similar to blurring which introduces similar
artifacts in the residual. As before, the comparison may be
somewhat unfair because JPEG was not designed for the
purpose of denoising, might optimize a different distortion
measure and is much faster.

5.2.3 Experiment 4: Regression

In the fourth experiment, we consider a simple regression
problem. We start with Soriq, a discretization of a sine
wave: it is a sequence of 256 bytes, where the ith byte is set
to |100sin(mi/256)] (negative values are represented by
byte values 128 through 255). We added mean zero
normally distributed noise with variance 14 to obtain
$n, with a euclidean distortion of 209.2.

While block sorting compressors provide an acceptable
model for naturally occurring images, they cannot normally
compress even the simplest functions very well. For
example, a representation of the identity function (in which
byte i has value i) cannot be compressed at all. This is
because the compressor cannot detect patterns in the input
if they have been translated up or down, so a sequence 1, 2,
3, 4 is not matched to a sequence 11,12,13,14 that occurs
later in the input. To remedy this, all representations are
subjected to a filter before being compressed: from each
byte except the first one, the value of the preceding byte is
subtracted. Clearly this operation is reversible and thus
does not change the information content of a representation.
Our example from before, the identity function, is trans-
formed into a sequence of one zero and 255 ones, which can
be compressed very well. But in fact any straight line with a
“simple” slope (a slope with an easy fraction) can now be
compressed quite well. In this manner, the used compressor
becomes an interesting model for the description of discrete
functions.
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The results of the genetic search are given in Fig. 8. In the
two graphs on the left hand side, the curved line indicates
the original sine wave $orig and the open circles show $x.
The small black dots represent the model as found by the
program. The top left figure shows that a rate of 40.6 bits
suffices to represent the best horizontal straight line, for a
distortion to Sorig of 493.4. This is even higher than the
distortion for $y; thus, naive linear regression does not seem
to be a very good approach to this problem! However, the
bottom left figure shows the minimal sufficient statistic,
which approximates the sine wave with three straight lines.
This reduces the distortion to only 60.0 while the rate is still
less than 100 bits (compared to a total code length of about
1,600 bits). (We have not plotted $gggr as it is very similar to
$uss, achieving a distortion of 55.5.)

This experiment shows that the used method is a general
approach to denoising that does not require many domain
specific assumptions, but it also illustrates the impact of
approximating the Kolmogorov complexity: in the ideal
setting with real Kolmogorov complexity, and given enough
data of sufficient precision, a sine wave would be recovered
as the best model for the data, because there obviously exists
a simple program to compute the sine function. A data
compressor cannot compute the sine function, so its use will
necessarily result in an approximation, even though with
more data that approximation might become more accurate
(e.g., consist of more line segments).

5.2.4 Experiment 5: Oscar Wilde Fragment (Edit
Distortion)

In the fifth experiment we analyze Wy, a corrupted
quotation from Oscar Wilde. In this case, we have trained
the compression algorithm by supplying it with the rest of
Chapters 1 and 2 of the same novel as side information, to
make it more efficient at compressing fragments of English
text. The results are in Fig. 9. We make the following
observations regarding the minimal sufficient statistic:

1. In this experiment, Wyss = Wggsr so the minimal
sufficient statistic separates structure from noise
extremely well here.

2. The distortion is reduced from 68 errors to only 46
errors. 26 errors are corrected (A\), four are introduced
(V), 20 are unchanged (e), and 22 are changed
incorrectly (%).

3. The errors that are newly introduced (57) and the
incorrect changes (x) typically simplify the fragment
a lot, in the sense that the compressed size drops
significantly. Not surprisingly therefore, many of the
symbols marked 7 or * are deletions, or modifica-
tions that create a word which is different from the
original, but still correct English:

Line  Woric Win Wnmss

5 or Nor of

6 the Ghe he

6 any anL an

6 learned JeaFned yearned
7 course corze core

8 then ehen when

11 he fhe the

Since it would be hard for any general-purpose
mechanical method (that does not incorporate a
sophisticated English language model) to determine

that these changes are incorrect, we should not be
surprised to find errors of this kind.

Similar experiments on denoising text are also reported in
[3]. The described DUDE algorithm does not use side
information, but as it can process much larger inputs this
becomes less crucial. It would be interesting to see to what
extent their results could be improved by taking it into
account.

5.2.5 Side Information

The following table shows the compressed size of a number
of models for different amounts of side information:

Side information k(WOng) k(WMSS) k(WIN)

None 3344.1  3333.7 3834.8
Chapters 1,2 (57kB) 17457  1901.9 32345
Whole novel (421kB) 1513.6  1876.5 3365.9

Here, Worig is never included in the side information;
also, we do not let Wyss vary with side information but keep
it fixed at the object reported in Fig. 9c. Clearly, providing
side information yields a substantially improved compres-
sion performance, and the improvement is typically larger
if 1) the amount of side information is larger, or 2) if the
compressed object is more similar to the side information.
Thus, by giving side information, correct English prose is
recognized as “structure” sooner and a better separation
between structure and noise is to be expected. The table also
shows that if the compressed object is in some way different
from the side information, then adding more side informa-
tion will at some point become counterproductive, presum-
ably because the side information will then cause the
compression algorithm to build up false expectations about
the object to be compressed, which can be costly.

5.2.6 Sequential Compressors

While denoising performance probably increases if the
amount of side information is increased, it was infeasible to
do so with our current implementation. Recall from Section 3,
that the conditional Kolmogorov complexity K(y|z) is
approximated by K(zy) — K(z). The time required to
compute this is dominated by the length of z if the amount
of side information is much larger than the size of the object to
be compressed. This could be remedied by using a compres-
sion algorithm that operates sequentially from left to right,
because the state of such an algorithm can be cached after
processing the side information z; the conditional complexity
could then be approximated directly by recalling the state
that was cached after processing z, and processing y from
there. This also avoids the logarithmic overhead in (4). Many
compression algorithms, among which Lempel-Ziv com-
pressors and statistical compressors such as PPM [16] and
CTW [17] have this property; our approach could thus be
made to work with much more side information by switching
to a sequential compressor.

6 QUALITY OF THE APPROXIMATION

As is clear from the definition, the distortion rate must be a
nonincreasing function, and our approximation is also
nonincreasing. In every experiment, the gene pool is
initialized with @y, which always has zero weakness and
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Fig. 7. Approximate distortion-rate and code length functions for the
noisy mouse.

must therefore remain in the pool. Therefore, at rate high
enough to specify z, the distortion must reach zero.

The shape of the code length function for an object « is
more complicated. Let y be the representation for which
d(z,y) =0, i.e.,, y = z. In theory, the code length can never
become less than the complexity of y, and the minimal
sufficient statistic witnesses the code length function at the
lowest rate at which the code length is equal to the
complexity of y. Practically, we found in all denoising
experiments that the total code length using the minimal
sufficient statistic, L@ (Oqy), is less than the code length
K(Ony) that is obtame& by compressmg the input ob]ect
directly. This can be observed in the code length graphs in
Figs. 5,7, 8, and 9. The effect is most clearly visible for the
cross, where the separation between structure and noise is
most pronounced.

Our hypothesis is that this departure from the theoretical
shape of the code length function must be explained by
inefficiency of the compression algorithm in dealing with
noise. This is evidenced by the fact that it needs 2735.7 bits
to encode the noise Cnoise that was added to the cross,
while only log (1) ~ 1810 bits would suffice if the noise
were specified with a uniform code on the set of indices of
all binary sequences with exactly 377 ones out of 64 - 64.
Similarly, K(INyoisg) = 14,093, whereas a literal encoding
requires 12,829 or fewer bits (using the bound from the
online appendix, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TC.2011.25).

Another strange effect occurs in Figs. 7 and 8: in both, the
code length function displays a strange “bump”: as the rate
is increased beyond the level required to specify the
minimal sufficient statistic, the code length goes up as
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before, but here at very high rates the code length starts
dropping again.

It is theoretically possible that the code length function
should exhibit such behavior to a limited extent. It can be
seen in [6] that a temporary increase in the code length
function can occur up to a number of bits that depends on
the so-called covering coefficient. Loosely speaking this is the
density of small distortion balls that is required in order to
completely cover a larger distortion ball. The covering
coefficient in turn depends on the used distortion function
and the number of dimensions. It is quite hard to analyze in
the case of euclidean distortion, so we cannot at present say
if theory admits such a large increase in the code length
function. However, we believe that the explanation is more
mundane in this case: we fear that this bump may simply
indicate that we interrupted our search procedure too soon.
Possibly the bump would disappear altogether if we let our
program run for a much longer period of time.

Fig. 4 shows that our approximation of the distortion-
rate function is somewhat better than the approximations
provided by JPEG, although the difference is not extremely
large for higher rates. The probable reason is twofold: on
the one hand, we do not know for which distortion function
JPEG is optimized, but it might well be something other
than euclidean distortion. In that case, the comparison is
unfair because our method might perform worse on JPEG’s
own distortion measure. On the other hand, JPEG is very
time efficient: it took only a matter of seconds to compute
models at various different quality levels, while it took our
own algorithm days or weeks to compute its distortion-rate
approximation. Two conclusions can be drawn. On the one
hand, if the performance of existing image compression
software had been better than the performance of our own
method in our experiments, this would have been evidence
to suggest that our algorithm does not compute a good
approximation to the rate-distortion function. The fact that
this is not the case is thus reassuring. Vice versa, if we
assume that we have computed a good approximation to
the algorithmic rate-distortion function, then our results
give a measure of how close JPEG comes to the theoretical
optimum; our program can thus be used to provide a basis
for the evaluation of the performance of lossy compressors.

7 AN MDL PERSPECTIVE

It is natural to ask how the practical method we described
above fits within the established Minimum Description
Length theory [18], [19]. After all, MDL was originally
developed to obtain a practical version of universal learning
based on Kolmogorov complexity, which can even be
interpreted as a special case (“ideal MDL,” see, e.g., [20], [21]).

We compare the code length function used in MDL to the
one we used for algorithmic rate distortion. As stated earlier
in (6), the total code length of the source object x € X using
a representation y € ) equals

K(y) + Lp(d(z,y)ly) +log |S,(d(z,y))]- (®)

In this three part code, the first term counts the number of bits
required to specify the representation, or hypothesis, for the
data and the last term counts the number of bits required to
specify the noise. Whether the distortion level of the source
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object given a representation should be interpreted as part of
the hypothesis or as noise is debatable; earlier we found it
convenient to treat the distortion level as part of the
hypothesis, as in (2). But to match algorithmic rate distortion
to MDL it is better to think of the distortion level as part of the
noise and identify ) with the available hypotheses.

In the usual description of MDL, see, e.g., [18], the total
code length of x € X with the help of a hypothesis y € ) is

L(y) + L(z[y). 9)

To explain how algorithmic rate-distortion theory gener-
alizes MDL we will match (8) to (9). Starting with an
instance of MDL, specified by the code length functions
L(y) and L(z|y), define the probability mass function
P(zly) = 27119 Now, the model selected by MDL is equal
to a sufficient statistic as found by the rate-distortion
algorithm that is obtained by setting K (y) = L(y), d(z,y) =
L(z|y), and Lp(dly) = —log P(d(X,y) = d|y). Then

P(zly) = P(X =z, L(X]y) = L(z|y)|y)
= P(X = zly, L(X]y) = L(z|y))-P(L(X]y) = L(z|y)|y)
_ P(L(X]y) = L(zly)ly) 2~ Loldw)ly)
- o | L(a'ly) = L(z[y)}] 1Sy (d(z,y))|’

and taking the — log we find that L(z|y) matches the last two
terms of (8): MDL selects a representation that minimizes (8),
in other words it selects some sufficient statistic. Note that
the only requirement on the distortion function is that for all
y€ Y and all z,2’ € X it should satisfy d(z,y) = d(a/,y) iff
L(z|y) = L(a'|y). We chose d(z,y) = L(z|y) for simplicity,

and because it allows an interpretation of the distortion as the
incurred logarithmic loss.

The correspondence works both ways: starting with a
rate-distortion problem specified by some K, code Lp
and distortion function d, we can also construct the MDL
problem by defining L(y) = K(y) and L(z|y) = Lp(d(z,
Y)ly) + log |Sy(d(z, y))l-

Many descriptions of MDL learning are somewhat
unspecific as to which hypothesis should be selected if
more than one minimize the code length; the issue becomes
much clearer in a rate-distortion analysis where one can
easily express a preference for the minimal sufficient statistic
as the best hypothesis for the data. If a thorough analysis of
the data is required, it also seems sensible to look at the
whole rate-distortion function rather than just at the
minimal sufficient statistic, since it provides additional
information about the structure that is present in the data at
each level of complexity.

8 CONCLUSION

Algorithmic rate distortion provides a good framework for
analysis of large and structured objects. It is based on
Kolmogorov complexity, which is not computable. We
nevertheless attempted to put this theory into practice by
approximating the Kolmogorov complexity of an object by
its compressed size. We also generalized the theory to allow
side information, which is interpreted as being available to
both the sender and the receiver in a transmission over a
rate restricted channel. We then described how algorithmic
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Beauty, real beauty, ends where an intellectual
expression begins. Intellect is in itself a mode
of exaggeration, and destroys the harmony of any
face. The moment one sits down to think, one becomes
all nose, or all forehead, or something horrid. Look
at the successful men in any of the learned professions.
How perfectly hideous they are! Except, of course, in
the Church. But then in the Church they don’t think.
A bishop keeps on saying at the age of eighty what he
was told to say when he was a boy of eighteen, and as a
natural consequence he always looks absolutely delightful.
Your mysterious young friend, whose name you have never
told me, but whose picture really fascinates me, never
thinks. I feel quite sure of that.
(a) WoRrig, the original text
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Fig. 9. A fragment of The Picture of Dorian Gray, by Oscar Wilde.

rate-distortion theory may be applied to lossy compression
and denoising problems.

Finding the approximate rate-distortion function of an
individual object is a difficult search problem. We describe
a genetic algorithm that is very slow, but has the important
advantage that it requires only few assumptions about the
problem at hand. Judging from our experimental results,
our algorithm provides a good approximation, as long as its
input object is of reasonably low complexity and is
compressible by the used data compressor. The shape of
the approximate rate-distortion function, and especially
that of the associated three part code length function, is
reasonably similar to the shape that we would expect on the
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a Ghe successf\l men in anL of te JeaFned professions.
How per}ectly tideous 4they re6 Except, of corze, in7
the Chdrch. BuP ehen in the Church they dol’t bthink.
=A bishop keeps on saying at the age of eighty what he was
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(b) Win, the corrupted version of the fragment. At 68 ran-
domly selected positions characters have been inserted, deleted
or modified. New and replacement characters are drawn uni-
formly from ASCII symbols 32-126.

* A
Beauty, real beauty, ends-where an intellectual
L] A A A
expressoon begins. Intellect isz in itself a mode
A o A A e o
of exnggeration, and destroys the harmony of ©no

* A A *
face. @The moment one sits down to thinkm one becomes
* ® % AV *x v . * .
oll nomen mof all forebemd, or something hirrid. Look
* x * . * e x a v
ao whe successfol men in ano of twe yearned provessions.
A L A L] L] ® X . A
How perfectly tideous mthey mre6 Except, of comrze, ino
* A K [ A
the Charch. But when in the Church they dol’t mthink.
*x v
wAwbishop keeps on saying at the age of eighty what he was
* * . o0
told to say when he was ambsy of eightzen, and msja natural
° * * A A * A
consequence the amways looks absolutely demightful. Your
A A A A
mysterious youngm friend, whose name you have never
L] L] A A A
told me, mut whose picture really famscinates mme, never

thinCs. 1 feel quite sura of thatO

(c) WpgsT = Wss; it has edit distortion 46 to the original
fragment. Marks indicate the error type: A=correction; v=new
error; e=old error; x=changed but still wrong. Deletions are
represented as [,

basis of theory, but there is a striking difference as well: at
rates higher than the complexity of the minimal sufficient
statistic, the approximated code length tends to increase
with the rate, where theory suggests it should remain
constant. We expect that this effect can be attributed to
inefficiencies in the compressor.

We find that the algorithm performs quite well in lossy
compression, with apparently somewhat better image
quality than that achieved by JPEG, although the compar-
ison may not be altogether fair. When applied to denoising,
the minimal sufficient statistic tends to slightly under-
estimate the complexity of the best possible denoising (an
example of underfitting). This is presumably again due to
inefficiencies in the used compression algorithm.
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